National Library of Energy BETA

Sample records for addresses telephone numbers

  1. Mailing Addresses and Information Numbers for Operations, Field, and Site

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Offices | Department of Energy About Energy.gov » Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Name Telephone Number U.S. Department of Energy Ames Site Office 111 TASF, Iowa State University Ames, Iowa 50011 515-294-9557 U.S. Department of Energy Argonne Site Office 9800 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Berkeley Site Office Berkeley

  2. Name Name Address Place Zip Category Sector Telephone number...

    Open Energy Information (Open El) [EERE & EIA]

    Hydro Marine and Hydrokinetic http acep uaf edu facilities tanana river hydrokinetic test site aspx Alden Research Laboratory Inc Alden Research Laboratory Inc Shrewsbury Street...

  3. Alaska Power Telephone Company | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Alaska Power Telephone Company Address: 193 Otto Street PO Box 3222 Place: Port Townsend Zip: 98368 Region: United States Sector: Marine and Hydrokinetic Phone Number:...

  4. Address:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Additive Manufacturing: Pursuing the Promise Additive Manufacturing: Pursuing the Promise Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise (1.42 MB) More Documents & Publications Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry CEMI Accomplishments Report Fiber Reinforced Polymer Composite Manufacturing Workshop

    Address: ~~. . ~L~ -'7(J'",

  5. Telephone Service | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Request (log in with your Argonne username and password) Documentation Login to Blue Jeans Forward Your Telephone Calls Depending on what model of phone you have, you can...

  6. Addresses and Phone Numbers | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Technology Center 303-384-6900 Photovoltaics 303-384-6491 Solar Hot Water Heating 303-384-7440 Solar Thermal 303-384-7425 Transportation Deployment 303-275-4470 Wind ...

  7. Microsoft Word - craft-change-address-form.docx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CHANGE OF NAME, ADDRESS, TELEPHONE and EMERGENCY CONTACT TO: LABOR RELATIONS DATE: ________________________ _______________________ _________________________ Z# SOCIAL SECURITY# _______________________ _________________________ _____________________________ FIRST NAME MIDDLE NAME LAST NAME NEW INFORMATION (WHERE APPLICABLE) NAME CHANGE _______________________ _________________________ _____________________________ FIRST NAME MIDDLE NAME LAST NAME ADDRESS CHANGE _______________________

  8. Keynote Address

    Energy.gov [DOE]

    Wednesday's keynote address by Dr. David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy, U.S. Department of Energy.

  9. DOE - Office of Legacy Management -- Bell Telephone Laboratories...

    Office of Legacy Management (LM)

    Bell Telephone Laboratories - Murray Hill - NJ 0-04 FUSRAP Considered Sites Site: BELL TELEPHONE LABORATORIES - MURRAY HILL (NJ.0-04 ) Eliminated from consideration under FUSRAP...

  10. The Telephone: An Invention with Many Fathers

    ScienceCinema (OSTI)

    Brenni, Paolo [CNR-FST-IMSS, Florence, Italy

    2016-07-12

    The names of A.G. Bell, A. Meucci, P.Reis, E. Gray, just to mention the most important ones, are all connected with the invention of the telephone. Today, the Italian inventor A. Meucci is recognized as being the first to propose a working prototype of the electric telephone. However, for a series of reasons his strenuous efforts were not rewarded. I will not repeat here the endless and complex disputes about the “real father” of the telephone. From an historical point of view it is more interesting to understand why so many individuals from different backgrounds conceived of a similar apparatus and why most of these devices were simply forgotten or just remained laboratory curiosities. The case of the development of the telephone is an emblematic and useful example for better understanding the intricate factors which are involved in the birth of an invention and reasons for its success and failure.

  11. The Telephone: An Invention with Many Fathers

    SciTech Connect (OSTI)

    Brenni, Paolo

    2008-10-01

    The names of A.G. Bell, A. Meucci, P.Reis, E. Gray, just to mention the most important ones, are all connected with the invention of the telephone. Today, the Italian inventor A. Meucci is recognized as being the first to propose a working prototype of the electric telephone. However, for a series of reasons his strenuous efforts were not rewarded. I will not repeat here the endless and complex disputes about the 'real father' of the telephone. From an historical point of view it is more interesting to understand why so many individuals from different backgrounds conceived of a similar apparatus and why most of these devices were simply forgotten or just remained laboratory curiosities. The case of the development of the telephone is an emblematic and useful example for better understanding the intricate factors which are involved in the birth of an invention and reasons for its success and failure.

  12. ORISE: Contact Us - phone numbers, email addresses, shipping addresses

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Oak Ridge Institute for Science Education Contact Us Employee Phone Directory Enter the name of the person you are looking for: To use this directory, you must know the full last name of the employee. Last Name:* First Name: Search (*required field) General Information Communications Oak Ridge Institute for Science and Education MC-100-44 P.O. Box 117 Oak Ridge, TN 37831-0117 Work: (865) 576-3146 Fax: (865) 241-2923 communications@orau.org ORISE Director's Office Andy Page, Director Oak Ridge

  13. SBOT OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone (918) 595-6671 Email gary.bridges@swpa...

  14. COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TRANSPORTATION & WAREHOUSING COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone (720) 356-1269 Email karen.downs@go.doe.gov Other Support Activities for Air Transportation 488190 Freight Transportation Arrangement 488510 General Warehousing and Storage 493110 NATIONAL RENEWABLE ENERGY LAB POC Nancy Gardner Telephone (303) 384-7335 Email nancy.gardner@nrel.gov Specialized Freight (except Used Goods) Trucking, Local 484220 ROCKY FLATS POC Telephone Email Specialized Freight (except Used

  15. EDUCATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EDUCATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Computer Training 611420 Professional and Management Development Training 611430 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Computer Training 611420 Professional and Management Development Training 611430 COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone (720) 356-1269 Email karen.downs@go.doe.gov Computer Training 611420 Professional and

  16. UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone (720) 962-7154 Email drake@wapa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone (706) 213-3823 Email annc@sepa.doe.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone (918) 595-6671 Email gary.bridges@swpa.gov Electric Bulk Power

  17. SBOT TEXAS PANTEX PLANT POC Brad Beck Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PANTEX PLANT POC Brad Beck Telephone (806) 477-6192 Email bbrack@pantex.com ADMINISTATIVE WASTE REMEDIATION Facilities Support Services 561210 Executive Search Services 561312 ...

  18. FORESTRY COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FORESTRY COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone (720) 962-7154 Email drake@wapa.gov Timber tract operations 113110 Cutting and transporting timber 113310 GEORGIA ...

  19. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Energy Savers

    ... Utilization ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov Other Accounting Services 541219 Architectural Services ...

  20. SBOT SOUTH CAROLINA SAVANNAH RIVER LAB POC Sharon Campbell Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SOUTH CAROLINA SAVANNAH RIVER LAB POC Sharon Campbell Telephone (800) 888-7986 Email sharon-pmmd.campbell@srs.gov EDUCATION Professional and Management Development Training 611430 ...

  1. Systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a service representative

    DOE Patents [OSTI]

    Harris, Scott H.; Johnson, Joel A.; Neiswanger, Jeffery R.; Twitchell, Kevin E.

    2004-03-09

    The present invention includes systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a customer service representative. In one embodiment of the invention, a system configured to distribute a telephone call within a network includes a distributor adapted to connect with a telephone system, the distributor being configured to connect a telephone call using the telephone system and output the telephone call and associated data of the telephone call; and a plurality of customer service representative terminals connected with the distributor and a selected customer service representative terminal being configured to receive the telephone call and the associated data, the distributor and the selected customer service representative terminal being configured to synchronize, application of the telephone call and associated data from the distributor to the selected customer service representative terminal.

  2. Request Number:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  3. CARLSBAD ENVIRONMENTAL MONITORING & RESEARCH CENTER NEW MEXICO STATE UNIVERSITY TELEPHONE (575) 887-2759

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CAREERS & the disABLED Career Expo CAREERS & the disABLED Career Expo November 18, 2016 10:00AM to 3:00PM EST Location: The Ronald Reagan Building, Atrium Hall, 1300 Pennsylvania Ave. NW, Washington, DC 20004 Website: http://www.eop.com/

    ENVIRONMENTAL MONITORING & RESEARCH CENTER NEW MEXICO STATE UNIVERSITY TELEPHONE (575) 887-2759 1400 UNIVERSITY DRIVE, CARLSBAD, NEW MEXICO 88220 FAX NUMBER (575) 887-3051 An Update on CEMRC radiological results from air and surface water sampling

  4. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PROFESSIONAL / SCIENTIFIC / TECHNICAL CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services 541360 Testing Laboratories 541380 Custom Computer Programming Services 541511 Computer Systems Design Services 541512 Other Computer Related Services 541519 Administrative Management and General Management Consulting Services 541611 Other Scientific and Technical

  5. Stratified random sampling plan for an irrigation customer telephone survey

    SciTech Connect (OSTI)

    Johnston, J.W.; Davis, L.J.

    1986-05-01

    This report describes the procedures used to design and select a sample for a telephone survey of individuals who use electricity in irrigating agricultural cropland in the Pacific Northwest. The survey is intended to gather information on the irrigated agricultural sector that will be useful for conservation assessment, load forecasting, rate design, and other regional power planning activities.

  6. Addressing Big Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Addressing Big Data Challenges in Simulation-based Science Prof. Manish Parashar Rutgers University Tuesday, Jan 28, 2014 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The ...

  7. Mailing Addresses and Information Numbers for Operations, Field...

    Energy Savers

    Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 510-486-5784 U.S. ... Los Alamos Site Office 3747 West Jemez Road Los Alamos, NM 87544 505-667-5491 U.S. ...

  8. Report Period: EIA ID NUMBER: Appendix A: Mailing Address: Appendix...

    U.S. Energy Information Administration (EIA) (indexed site)

    This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other ...

  9. ATTACHMENT

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... to be Public 7 PII and includes, for example, first and last name, address, work telephone number, e-mail address, home telephone number, and general educational credentials. ...

  10. 1

    Energy Savers

    ... to be Public PII and includes, for example, first and last name, address, work telephone number, e-mail address, home telephone number, and general educational credentials. ...

  11. 4600.2 OE

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... to be Public PII and includes, for example, first and last name, address, work telephone number, e-mail address, home telephone number, and general educational credentials. ...

  12. Brinkman Addresses JLab | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Brinkman Addresses JLab Brinkman Addresses JLab Brinkman Addresses JLab Dr. William F. Brinkman, Director of the Department of Energy's Office of Science, addressed Jefferson Lab staff on the Office of Science perspective during his visit Monday. Dr. William F. Brinkman, Director of the Department of Energy's Office of Science, addressed Jefferson Lab staff on the Office of Science perspective during his visit Monday. "There is still a lot of interesting nuclear physics that we want to do

  13. Keynote Address | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Keynote Address Keynote Address An overview and update on Environmental Management given by Alice Williams, Associate Principal Deputy Assistant Secretary of the Office of Environmental Management. Keynote Address (2.53 MB) More Documents & Publications EIS-0337-SA-01: Supplement Analysis West Valley Demonstration Project Low-Level Waste Shipment Chairs Meeting - October 2012

  14. Keynote Address | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    40PM to 2:05PM PDT Pacific Ballroom Wednesday keynote address by Dan Arvizu, Director, National Renewable Energy Laboratory

  15. Consensual Listening-in to or Recording Telephone/Radio Conversations (restricted)

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-11-12

    This Order specifies the Department of Energy (DOE) policy regarding the consensual listening-in to or recording of conversations on radio and telephone systems. Canceled by DOE N 251.107.

  16. (Document Number)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  17. Review of Current Literature and Research on Gas Supersaturation and Gas Bubble Trauma: Special Publication Number 1, 1986.

    SciTech Connect (OSTI)

    Colt, John; Bouck, Gerald R.; Fidler, Larry

    1986-12-01

    This report presents recently published information and on-going research on the various areas of gas supersaturation. Growing interest in the effects of chronic gas supersaturation on aquatic animals has been due primarily to heavy mortality of salmonid species under hatchery conditions. Extensive examination of affected animals has failed to consistently identify pathogenic organisms. Water quality sampling has shown that chronic levels of gas supersaturation are commonly present during a significant period of the year. Small marine fish larvae are significantly more sensitive to gas supersaturation than salmonids. Present water quality criteria for gas supersaturation are not adequate for the protection of either salmonids under chronic exposure or marine fish larvae, especially in aquaria or hatcheries. To increase communication between interested parties in the field of gas supersaturation research and control, addresses and telephone numbers of all people responding to the questionnaire are included. 102 refs.

  18. State of the Lab Address

    ScienceCinema (OSTI)

    King, Alex

    2016-07-12

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  19. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities ...

  20. Agenda: Enhancing Energy Infrastructure Resiliency and Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities A Public Meeting ...

  1. Addressing the workforce pipeline challenge

    SciTech Connect (OSTI)

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  2. Addressing Failures in Exascale Computing

    SciTech Connect (OSTI)

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  3. Addressing failures in exascale computing

    SciTech Connect (OSTI)

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  4. JLab Test Public Address System | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Test Public Address System May 18 at 5:30 p.m.: JLab Will Test its Public Address System On Wednesday, May 18, Jefferson Lab will conduct the monthly test of its Public Address ...

  5. Keynote Address: Update on Environmental Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Address: Update on Environmental Management Keynote Address: Update on Environmental Management Keynote presentation made by David G. Huizenga for the NTSF annual meeting held from ...

  6. EPA -- Addressing Children's Health through Reviews Conducted...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EPA -- Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's ...

  7. Deputy Secretary Poneman Addresses Nuclear Deterrence Summit...

    Office of Environmental Management (EM)

    Addresses Nuclear Deterrence Summit Deputy Secretary Poneman Addresses Nuclear Deterrence Summit February 17, 2010 - 12:00am Addthis Alexandria, VA - U.S. Deputy Secretary of ...

  8. IP address management : augmenting Sandia's capabilities through open source tools.

    SciTech Connect (OSTI)

    Nayar, R. Daniel

    2005-08-01

    Internet Protocol (IP) address management is an increasingly growing concern at Sandia National Laboratories (SNL) and the networking community as a whole. The current state of the available IP addresses indicates that they are nearly exhausted. Currently SNL doesn't have the justification to obtain more IP address space from Internet Assigned Numbers Authority (IANA). There must exist a local entity to manage and allocate IP assignments efficiently. Ongoing efforts at Sandia have been in the form of a multifunctional database application notably known as Network Information System (NWIS). NWIS is a database responsible for a multitude of network administrative services including IP address management. This study will explore the feasibility of augmenting NWIS's IP management capabilities utilizing open source tools. Modifications of existing capabilities to better allocate available IP address space are studied.

  9. Addressing Security and Reliability Concerns of Large Power Transformers |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Services » Addressing Security and Reliability Concerns of Large Power Transformers Addressing Security and Reliability Concerns of Large Power Transformers Large power transformers (LPTs) are critical to the nation's power grid, with more than 90 percent of consumed power passing through high-voltage transformers at some point. LPTs, however, face a number of challenges that make them one of the most vulnerable components on the grid. They are expensive, difficult to

  10. POLICY GUIDANCE MEMORANDUM #03 Addressing Missclassified Positions |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 3 Addressing Missclassified Positions POLICY GUIDANCE MEMORANDUM #03 Addressing Missclassified Positions This memorandum provides policy guidance on how to consistently address misclassified positions within the Department and is effective immediately. There are several different circumstances that affect how a misclassified position will be addressed. POLICY GUIDANCE MEMORANDUM #3A Addressing Missclassified Positions (77.5 KB) Responsible Contacts Jennifer Ackerman

  11. Address conversion unit for multiprocessor system

    SciTech Connect (OSTI)

    Fava, T.F.; Lary, R.F.; Blackledge, R.

    1987-03-03

    An address conversion unit is described for use in one processor in a multi-processor data processing system including a common memory, the processors and common memory being interconnected by a common bus including means for transferring address signals defining a common address space. The processor includes private bus means including means for transferring signals including address signals defining a private address space. A processor unit means is connected to the private bus means and includes means for transmitting and receiving signals including address signals over the private bus means for engaging in data transfers thereover. The address conversion unit is connected to the private bus means and common bus means for receiving address signals over the private bus means from the processor unit means in the private address space. The unit comprises: A. pointer storage means for storing a pointer identifying a portion of the common bus memory space; B. pointer generation means connected to receive a common bus address and for generating a pointer in response thereto for storage in the pointer storage means; and C. common bus address generation means connected to the private bus and the pointer storage means for receiving an address from the processor unit means and for generating a common bus address in response thereto. The common bus address is used to initiate transfers between the processor unit means and the common memory over the common bus.

  12. Keynote Address: Future Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Future Vision Keynote Address: Future Vision May 20, 2014 1:00PM to 1:30PM PDT Pacific Ballroom Tuesday's keynote address by Raffi Garabedian, Chief Technology Officer, First Solar

  13. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) (indexed site)

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  14. Report Period: EIA ID NUMBER: Instructions: (e.g., Street Address...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Mo If this is a resubmission, enter an "X" in the block: Ext: Fax No.: Comments: ... changed since the last report, enter an "X" in the block: http:www.eia.govsurvey...

  15. Report Outlines Promising Opportunities for Addressing Climate...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Report Outlines Promising Opportunities for Addressing Climate Change For more information contact: George Douglas, 303-275-4096 email: George Douglas Golden, Colo., Nov. 15, 2000 ...

  16. Addressing Challenges of Identifying Geometrically Diverse Sets...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials Previous Next List R. L. Martin, B. Smit, and M. Haranczyk, J. Chem Inf. Model. 52...

  17. Multithreaded Global Address Space Communication Techniques

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Multithreaded Global Address Space Communication Techniques for Gyrokinetic Fusion ... of high communication work loads of the underlying kernel among OpenMP threads. ...

  18. Ex Parte Communication Docket number EERE-2014-BT-STD-0031 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy number EERE-2014-BT-STD-0031 Ex Parte Communication Docket number EERE-2014-BT-STD-0031 On Wednesday March 23, 2016, representatives of the American Gas Association (AGA) and the Natural Resources Defense Council (NRDC) spoke by telephone with representatives of the Department of Energy (DOE) to discuss energy conservation standards for residential furnaces. Ex Parte Furnace Meeting Memo 24Mar2015 (21.51 KB) More Documents & Publications ISSUANCE 2015-10-15: Energy

  19. Number | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  20. Federal Actions to Address Impacts of Uranium

    Office of Legacy Management (LM)

    Federal Actions to Address Impacts of Uranium Contamination in the Navajo Nation 2014 Page | i TABLE OF CONTENTS Executive Summary ....................................................................................................................... 1 Introduction .................................................................................................................................... 2 Summary of Work Completed 2008-2012

  1. 2015 State of Indian Nations Address

    Energy.gov [DOE]

    The President of the National Congress of American Indians will deliver his annual State of the Indian Nations address to Member of Congress, government officials, tribal leaders and citizens, and...

  2. Rio Arriba Leadership Summit addresses challenges, opportunities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    » Rio Arriba Leadership Summit addresses challenges, opportunities Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Rio Arriba Leadership Summit addresses challenges, opportunities Community leaders gather in Española for a round-table discussion. July 6, 2016 DOE's Office of Small and Disadvantaged Business Utilization presented Mentor and Protégé of the Year awards to LANS and RG

  3. NSR Key Number Retrieval

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  4. Enhancing Railroad Hazardous Materials Transportation Safety

    Office of Environmental Management (EM)

    * Two Options * Two Options * Fusion Centers * Direct Hazmat * Carriers must provide name, title, telephone number, and e-mail address to fusion centers and those address to...

  5. U

    National Nuclear Security Administration (NNSA)

    ... job title, facility name, address, telephone number, and email address. ... A list of presentations and documents presented at the meeting will appear. Select the link "NMMSS ...

  6. DOE/ID-Number

    Office of Environmental Management (EM)

    ... The laptop is a Compaq Evo with a Mobile Intel Pentium M running Windows XP ... Since it is based on IP address, the software is capable of scanning any element of a system ...

  7. Cheaper Adjoints by Reversing Address Computations

    DOE PAGES-Beta [OSTI]

    Hascoët, L.; Utke, J.; Naumann, U.

    2008-01-01

    The reverse mode of automatic differentiation is widely used in science and engineering. A severe bottleneck for the performance of the reverse mode, however, is the necessity to recover certain intermediate values of the program in reverse order. Among these values are computed addresses, which traditionally are recovered through forward recomputation and storage in memory. We propose an alternative approach for recovery that uses inverse computation based on dependency information. Address storage constitutes a significant portion of the overall storage requirements. An example illustrates substantial gains that the proposed approach yields, and we show use cases in practical applications.

  8. Shared address collectives using counter mechanisms

    DOE Patents [OSTI]

    Blocksome, Michael; Dozsa, Gabor; Gooding, Thomas M; Heidelberger, Philip; Kumar, Sameer; Mamidala, Amith R; Miller, Douglas

    2014-02-18

    A shared address space on a compute node stores data received from a network and data to transmit to the network. The shared address space includes an application buffer that can be directly operated upon by a plurality of processes, for instance, running on different cores on the compute node. A shared counter is used for one or more of signaling arrival of the data across the plurality of processes running on the compute node, signaling completion of an operation performed by one or more of the plurality of processes, obtaining reservation slots by one or more of the plurality of processes, or combinations thereof.

  9. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    SciTech Connect (OSTI)

    Gala, Alan; Ohmacht, Martin

    2014-09-02

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memory access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.

  10. Big Numbers | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Big Numbers Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of

  11. Florida Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Florida Natural Gas Number of Oil Wells (Number of ... Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Florida ...

  12. Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities

    Energy.gov [DOE]

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session. The meeting will be livestreamed at energy.gov/live

  13. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    SciTech Connect (OSTI)

    1999-02-01

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  14. Global-Address Space Networking (GASNet) Library

    Energy Science and Technology Software Center (OSTI)

    2011-04-06

    GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address spacemore » languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performance by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.« less

  15. Resume Based Application

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    borders, provide photos or list a Social Security Number or ... telephone numbers * Email address * Vacancy ... pages for other required documents in the application is not ...

  16. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vision and Strategy for the Development and Deployment of Advanced Reactors 2016 Version 21 27 May 2016 Unpublished Draft 2 Vision and Strategy for the Development and Deployment of Advanced Reactors EXECUTIVE SUMMARY Global efforts to address climate change and meet increasing energy needs require greater use of clean energy sources in the United States and elsewhere. In particular, massive deployment of clean power will be needed by mid-century to meet clean energy commitments negotiated

  17. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  18. Framework for Address Cooperative Extended Transactions

    Energy Science and Technology Software Center (OSTI)

    1997-12-01

    The Framework for Addressing Cooperative Extended Transactions (FACET) is an object-oriented software framework for building models of complex, cooperative behaviors of agents. it can be used to implement simulation models of societal processes such as the complex interplay of participating individuals and organizations engaged in multiple concurrent transactions in pursuit of their various goals. These transactions can be patterned on, for example, clinical guidelines and procedures, business practices, government and corporate policies, etc. FACET canmore » also address other complex behaviors such as biological life cycles or manufacturing processes. FACET includes generic software objects representing the fundamental classes of agent -- Person and Organization - with mechanisms for resource management, including resolution of conflicting requests for participation and/or use of the agent's resources. The FACET infrastructure supports stochastic behavioral elements and coping mechanisms by which specified special conditions and events can cause an active cooperative process to be preempted, diverting the participants onto appropriate alternative behavioral pathways.« less

  19. Florida Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers Florida Number of Natural Gas ...

  20. Florida Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial ... Referring Pages: Number of Natural Gas Industrial Consumers Florida Number of Natural Gas ...

  1. Florida Natural Gas Number of Residential Consumers (Number of...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential ... Referring Pages: Number of Natural Gas Residential Consumers Florida Number of Natural Gas ...

  2. New York Natural Gas Number of Commercial Consumers (Number of...

    Annual Energy Outlook

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...

  3. New Mexico Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...

  4. North Dakota Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  5. Quantum random number generator

    DOE Patents [OSTI]

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  6. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  7. Quantum random number generation

    DOE PAGES-Beta [OSTI]

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  8. Opportunities for Building America Research to Address Energy...

    Energy Savers

    Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ (301) Opportunities for Building America Research to Address...

  9. Keck Institute for Space Studies "Addressing the MARS ISRU Challenge...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Keck Institute for Space Studies "Addressing the MARS ISRU Challenge" Workshop Keck Institute for Space Studies "Addressing the MARS ISRU Challenge" Workshop Tue, Jun 28, 2016 ...

  10. DOE Convenes Multi-stakeholder Process to Address Privacy for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by Smart Grid Technologies DOE Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by ...

  11. Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges ...

  12. Addressing Uncertainties in Design Inputs: A Case Study of Probabilist...

    Office of Environmental Management (EM)

    Addressing Uncertainties in Design Inputs: A Case Study of Probabilistic Settlement Evaluations for Soft Zone Collapse at SWPF Addressing Uncertainties in Design Inputs: A Case ...

  13. Addressable morphology control of silica structures by manipulating...

    Office of Scientific and Technical Information (OSTI)

    Addressable morphology control of silica structures by manipulating the reagent addition time Citation Details In-Document Search Title: Addressable morphology control of silica ...

  14. Financing Innovation to Address Global Climate Change | Department...

    Office of Environmental Management (EM)

    Financing Innovation to Address Global Climate Change Financing Innovation to Address Global Climate Change DOE-LPOReportFinancing-Innovation-Climate-Change.pdf (1.97 MB) More ...

  15. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and...

    Energy Savers

    ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges The American ...

  16. Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy...

    Office of Environmental Management (EM)

    Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and ...

  17. Department of Energy Releases Strategic Plan to Address Energy...

    Energy Savers

    Strategic Plan to Address Energy Challenges Department of Energy Releases Strategic Plan to Address Energy Challenges October 2, 2006 - 9:01am Addthis WASHINGTON, DC - Secretary of ...

  18. Bush Administration Plays Leading Role in Studying and Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bush Administration Plays Leading Role in Studying and Addressing Global Climate Change Bush Administration Plays Leading Role in Studying and Addressing Global Climate Change...

  19. Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation ...

  20. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. ...

  1. Policy Agenda for Addressing Climate Change in Bangladesh: Copenhagen...

    Open Energy Information (Open El) [EERE & EIA]

    Agenda for Addressing Climate Change in Bangladesh: Copenhagen and Beyond Jump to: navigation, search Name Policy Agenda for Addressing Climate Change in Bangladesh: Copenhagen and...

  2. Indonesia National Action Plan Addressing Climate Change | Open...

    Open Energy Information (Open El) [EERE & EIA]

    National Action Plan Addressing Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Indonesia National Action Plan Addressing Climate Change AgencyCompany...

  3. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Office of Environmental Management (EM)

    Addressing Policy and Logistical Challenges to Smart Grid Implementation: Comments by the ... "Addressing Policy and Logistical Challenges to Smart Grid Implementation" See 75 Fed. ...

  4. Addressing Policy and Logistical Challenges to smart grid Implementati...

    Office of Environmental Management (EM)

    Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response ... Addressing Policy and Logistical Challenges to smart grid Implementation: Response to ...

  5. NERSC Implements Organizational Changes to Better Address Evolving...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Organizational Changes to Better Address Evolving Data Environment NERSC Implements Organizational Changes to Better Address Evolving Data Environment February 23, 2015 Contact: ...

  6. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. ...

  7. Strategies to Address Split Incentives in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Address Split Incentives in Multifamily Buildings Strategies to Address Split Incentives in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Low-Income ...

  8. Energy Department Addresses Largest Gathering of Geothermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Addresses Largest Gathering of Geothermal Energy Stakeholders Energy Department Addresses Largest Gathering of Geothermal Energy Stakeholders October 4, 2012 - 1:00pm Addthis Photo ...

  9. Smart Grid RFI: Addressing Policy and Logistical Challenges....

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the...

  10. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems...

  11. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  12. COST OF ADDRESSING TARGETS OF UNEQUAL VALUE

    SciTech Connect (OSTI)

    G.H. CANAVAN

    2001-08-01

    The formalism for evaluating first strike costs and incentives for military targeting generalize to include higher value targets. That introduces two new allocations to the usual allocation between missiles and military targets, but they can be performed analytically. As the number of weapons on each side decreases, the optimal fraction of second strike weapons allocated to military values falls. The shift to high value targets is more pronounced below about 1,000 weapons for nominal parameters. Below 500 weapons the first striker's cost of action drops below its cost of inaction. A strike would induce a second strike of about 250 weapons on high value targets. An increase in the first striker's preference for damage to the other's high value targets increases or a decrease in its preference for preventing damage to its own high value targets decreases first strike costs and stability margins. Including defenses complicates allocations slightly. The main effect is increased attrition of second strikes, particularly at larger defenses, which makes it possible to significantly reduce damage to high value targets. At 1,000 weapons, by 300 to 400 interceptors the first striker's costs are reduced to 30% below that of inaction and the number of weapons delivered on the first striker's high value targets is reduced to about 100.

  13. Final Report on Internet Addressable Lightswitch

    SciTech Connect (OSTI)

    Rubinstein, Francis; Pettler, Peter

    2001-08-27

    This report describes the work performed to develop and test a new switching system and communications network that is useful for economically switching lighting circuits in existing commercial buildings. The first section of the report provides the general background of the IBECS (Integrated Building Environmental Communications System) research and development work as well as the context for the development of the new switching system. The research and development effort that went into producing the first proof-of-concept (the IBECS Addressable Power Switch or APS) and the physical prototype of that concept is detailed in the second section. In the third section of the report, we detail the refined Powerline Carrier Based IBECS Title 24 Wall Switch system that evolved from the APS prototype. The refined system provided a path for installing IBECS switching technology in existing buildings that may not be already wired for light level switching control. The final section of the report describes the performance of the IBECS Title 24 Switch system as applied to a small demonstration in two offices at LBNL's Building 90. We learned that the new Powerline Carrier control systems (A-10 technology) that have evolved from the early X-10 systems have solved most of the noise problems that dogged the successful application of X-10 technologies in commercial buildings. We found that the new A-10 powerline carrier control technology can be reliable and effective for switching lighting circuits even in electrically noisy office environments like LBNL. Thus we successfully completed the task objectives by designing, building and demonstrating a new switching system that can provide multiple levels of light which can be triggered either from specially designed wall switches or from a digital communications network. By applying commercially available powerline carrier based technologies that communicate over the in-place lighting wiring system, this type of control can be

  14. Modular redundant number systems

    SciTech Connect (OSTI)

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  15. SPDWRAP#1.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Please notify Aon Hewitt's Your Benefit Resources (YBR) in Appendix G to update your personal information, such as your home address and home telephone number. 2. Eligibility...

  16. DOE/EIA-0487(87) Energy Information Administration Petroleum

    U.S. Energy Information Administration (EIA) (indexed site)

    Addresses and telephone numbers appear below. National Energy Information Center, EI-231 Energy Information Administration Forrestal Building Room IF-048 Washington, DC 20585...

  17. Keynote Address: Billy Parish of Mosaic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Billy Parish of Mosaic Keynote Address: Billy Parish of Mosaic May 20, 2014 3:00PM to 3:30PM PDT Pacific Ballroom Billy Parish, President and Founder of Mosaic, will address Summit attendees

  18. ASER Web Addresses and Points of Contact at DOE Sites

    Energy.gov (indexed) [DOE]

    ASER Web Addresses and Points of Contact at DOE Sites March 29, 2013 Site and Web Address ASER Contact Name Phone E-mail Ames Laboratory http:www.ameslab.govoperationsesha...

  19. Technology Plan to Address the EM Mercury Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    EM’s Technology Plan to Address the EM Mercury Challenge addresses mercury contamination, and advocates for research and technology development to resolve key technical uncertainties with the pollutant in environmental remediation, facility deactivation and decommissioning, and tank waste processing.

  20. Wyoming Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  3. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. Virginia Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  5. Wyoming Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  7. Vermont Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  9. Virginia Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. West Virginia Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. Wisconsin Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. Vermont Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. Wyoming Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. West Virginia Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. Washington Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Washington Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Washington Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Wisconsin Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. Vermont Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. West Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. New York Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. New Mexico Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. New Jersey Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  4. North Carolina Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. North Carolina Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. North Dakota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  7. North Dakota Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  8. North Carolina Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  9. New Hampshire Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. New Hampshire Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook

    Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. New Mexico Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. System for routing messages in a vertex symmetric network by using addresses formed from permutations of the transmission line indicees

    DOE Patents [OSTI]

    Faber, Vance; Moore, James W.

    1992-01-01

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs .GAMMA..sub.d (k) with degree d, diameter k, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k and .GAMMA..sub.d (k,-1) with degree 3-1, diameter k+1, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k.gtoreq.4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network .GAMMA..sub.d (k,-1) is provided, no processor has a channel connected to form an edge in a direction .delta..sub.1. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations.

  14. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges | Department of Energy Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges. Southern recognizes that many policy and logistical concerns must be addressed for the promises of smart grid technologies and applications to be fully realized in ways that are beneficial, secure, and cost-effective

  15. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges | Department of Energy Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges. Pepco Holdings, Inc. (PHI) is pleased to respond to the US Department of Energy (DOE) request for information regarding addressing policy and logistical challenges to smart grid implementation. This follows on the heels of

  16. Progress Energy draft regarding Smart Grid RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Logistical Challenges | Department of Energy Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges (549.44 KB) More Documents & Publications Comments of DRSG to DOE Smart Grid

  17. Individually addressable cathodes with integrated focusing stack or detectors

    DOE Patents [OSTI]

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas; Whealton, John; Whitson, John C.; Wilgen, John B.

    2005-07-12

    Systems and method are described for addressable field emission array (AFEA) chips. A plurality of individually addressable cathodes are integrated with an electrostatic focusing stack and/or a plurality of detectors on the addressable field emission array. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  18. SES CANDIDATE DEVELOPMENT PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Developmental Assignment Opportunity DATE: NAME OF SES CANDIDATE: TITLE: ASSIGNMENT NUMBER: ASSIGNMENT BEGINS: ENDS: TELEPHONE NUMBER: FAX NUMBER: EMAIL ADDRESS: ASSIGNMENT LOCATION HOST ORGANIZATION: PURPOSE OF ASSIGNMENT: ASSIGNMENT POSITION: ASSIGNMENT DUTIES: EXECUTIVE COR QUALIFICATIONS TO BE ADDRESSED: OFFICE ADDRESS: TELEPHONE NUMBER: FAX NUMBER: E-MAIL ADDRESS: 1 U.S. DEPARTMENT OF ENERGY SENIOR EXECUTIVE SERVICE

  19. Analysis of Network Address Shuffling as a Moving Target Defense

    SciTech Connect (OSTI)

    Carroll, Thomas E.; Crouse, Michael B.; Fulp, Errin W.; Berenhaut, Kenneth S.

    2014-06-10

    Address shuffling is a type of moving target defense that prevents an attacker from reliably contacting a system by periodically remapping network addresses. Although limited testing has demonstrated it to be effective, little research has been conducted to examine the theoretical limits of address shuffling. As a result, it is difficult to understand how effective shuffling is and under what circumstances it is a viable moving target defense. This paper introduces probabilistic models that can provide insight into the performance of address shuffling. These models quantify the probability of attacker success in terms of network size, quantity of addresses scanned, quantity of vulnerable systems, and the frequency of shuffling. Theoretical analysis will show that shuffling is an acceptable defense if there is a small population of vulnerable systems within a large network address space, however shuffling has a cost for legitimate users. These results will also be shown empirically using simulation and actual traffic traces.

  20. Secretary Chu Addresses the International Atomic Energy Agency General

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conference | Department of Energy Addresses the International Atomic Energy Agency General Conference Secretary Chu Addresses the International Atomic Energy Agency General Conference September 20, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's 54th General Conference today in Vienna. His prepared remarks are below: Thank you, Ambassador Enkhsaikhan. Congratulations on your election as President of this Conference.

  1. Executive Order 12898: Federal Actions to Address Environmental Justice in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minority Populations and Low-Income Populations (1994) | Department of Energy 2898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (1994) Executive Order 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (1994) Executive Order 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (1994). Directs each federal agency to make

  2. Abraham Calls on Global Community to Aggressively Address Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nonproliferation | Department of Energy Abraham Calls on Global Community to Aggressively Address Nuclear Nonproliferation Abraham Calls on Global Community to Aggressively Address Nuclear Nonproliferation January 13, 2005 - 9:49am Addthis WASHINGTON, DC - In a lunchtime speech to the Council on Foreign Relations in Washington, DC, Energy Secretary Spencer Abraham called on the global community to join in implementing a comprehensive nuclear nonproliferation strategy to address 21st century

  3. Utility Regulation and Business Model Reforms for Addressing the Financial

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Impacts of Distributed Solar on Utilities | Department of Energy Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Implementing a range of alternative utility-rate reforms could minimize solar

  4. Working Together to Address Natural Gas Storage Safety | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Together to Address Natural Gas Storage Safety Working Together to Address Natural Gas Storage Safety April 1, 2016 - 11:15am Addthis Working Together to Address Natural Gas Storage Safety Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy Marie Therese Dominguez Marie Therese Dominguez Administrator, U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration As a part of the Administration's ongoing commitment to support

  5. Headquarters Program & Staff Office Mailing Addresses | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Headquarters Program & Staff Office Mailing Addresses Headquarters Program & Staff Office Mailing Addresses The following addresses are for delivery of regular mail and small packages: Delivery to the Headquarters buildings in Washington, DC: Name of Individual Title Routing Symbol/Forrestal Building U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585 Name of Individual Title Routing Symbol/L'Enfant Plaza Building U.S. Department of Energy 1000

  6. Bush Administration Plays Leading Role in Studying and Addressing Global

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Climate Change | Department of Energy Plays Leading Role in Studying and Addressing Global Climate Change Bush Administration Plays Leading Role in Studying and Addressing Global Climate Change February 27, 2007 - 3:49pm Addthis Washington, DC - Continuing to take the lead in addressing global climate change, Energy Secretary Samuel Bodman, Environmental Protection Agency (EPA) Administrator Stephen Johnson, and National Oceanic and Atmospheric Administration (NOAA) Administrator Vice

  7. Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges | Department of Energy Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges. The Department of Energy is seeking comments on policy and logistical challenges that confront smart grid implementation, as well as recommendations on how to best overcome those challenges. Steffes Corporation Smart Grid

  8. Upcoming Webinars to Focus on Topics Addressed in the National...

    Office of Environmental Management (EM)

    and computational research that must be addressed for the next-generation electric transmission and distribution system. The report also includes a series of recommendations. ...

  9. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's ... to deploy cost-effective long-term smart grid benefits. ...

  10. Smart Grid RFI: Addressing Policy and Logistical Challenges,...

    Energy.gov (indexed) [DOE]

    Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Smart Grid Consortium, Response of New York State Smart Grid Addressing ...

  11. Global Gathering Addresses PV Role in Energy Prosperity and Climate...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Global Gathering Addresses PV Role in Energy Prosperity and Climate Change Mitigation March 30, 2016 Scientists from the Energy Department's National Renewable Energy Laboratory ...

  12. New partnership uses advanced computer science modeling to address...

    National Nuclear Security Administration (NNSA)

    partnership uses advanced computer science modeling to address climate change Friday, August 29, 2014 - 10:26am Several national laboratories and institutions have joined forces to ...

  13. Addressing Climate Change with Next Generation Energy Storage...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    March 19, 2015, Videos Addressing Climate Change with Next Generation Energy Storage Technology George Crabtree gives keynote at Loyola University In March 2015, George Crabtree ...

  14. Pensacola Smart Grid RFI Addressing Policy and Logistical Challenges...

    Energy Savers

    Pensacola Smart Grid RFI Addressing Policy and Logistical Challenges. Providing comment on: Consumer facing programs such as feedback, demandresponse, energy efficiency, and ...

  15. Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Studies on Lithium Manganese Rich MNC Composite Cathodes ... Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials

  16. Smart Grid RFI: Addressing Policy and Logistical Challenges....

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges. Comments of the Alliance to Save Energy. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. The Alliance to Save ...

  17. Addressing Biomass Supply Chain Challenges With AFEX™ Technology

    Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX™ Technology Allen Julian, Chief Business Officer, MBI

  18. Africa - Technical Potential of Solar Energy to Address Energy...

    Open Energy Information (Open El) [EERE & EIA]

    - Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical Potential of Solar...

  19. Address (Smart Grid Project) (France) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    France) Jump to: navigation, search Project Name Address Country France Coordinates 46.073231, 2.427979 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  20. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Allen Julian, Chief Business Officer, MBI ...

  1. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Office of Environmental Management (EM)

    Addressing Policy and Logistical Challenges to Smart Grid Implementation: Federal Register ... The Department of Energy (DOE) is seeking comments from interested parties on policy and ...

  2. Addressing Challenging Materials at Oak Ridge National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    Title: Addressing Challenging Materials at Oak Ridge National Laboratory No abstract prepared. Authors: Jubin, Robert Thomas 1 ; Patton, Bradley D 1 ; Robinson, Sharon M 1 ; ...

  3. Method for the electro-addressable functionalization of electrode...

    Office of Scientific and Technical Information (OSTI)

    Title: Method for the electro-addressable functionalization of electrode arrays A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium ...

  4. Method for the electro-addressable functionalization of electrode...

    Office of Scientific and Technical Information (OSTI)

    A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable ...

  5. Addressing Barriers to Upgrade Projects at Affordable Multifamily Properties (201)

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Addressing Barriers to Upgrade Projects at Affordable Multifamily Properties (201), call slides and discussion summary.

  6. Strategies to Address Split Incentives in Multifamily Buildings

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Multifamily / Low-Income Peer Exchange Call: Strategies to Address Split Incentives in Multifamily Buildings, Call Slides and Discussion Summary, April 26, 2012.

  7. New York Independent System Operator, Smart Grid RFI: Addressing...

    Office of Environmental Management (EM)

    New York Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical ... September 17, 2010 Federal Register, the New York Independent System Operator, Inc. ...

  8. Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  9. Synthetic Biology for Advanced Fuels (Opening Keynote Address...

    Office of Scientific and Technical Information (OSTI)

    Synthetic Biology for Advanced Fuels (Opening Keynote Address - 2010 JGI User Meeting) Citation Details In-Document Search Title: Synthetic Biology for Advanced Fuels (Opening ...

  10. Research Projects to Address Technical Challenges Facing Small...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas ...

  11. Method for the electro-addressable functionalization of electrode...

    Office of Scientific and Technical Information (OSTI)

    Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes. Authors: Harper, Jason C. ; Polsky, ...

  12. Microsoft Word - Actions to address lessons learned.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Actions to address Work Planning and Scheduling System lessons learned Action Executive owner Staff assigned Due date Understand the business environment of vendor references....

  13. Towards Addressing Surface Effects in Ordinary Isotropic Peridynamic...

    Office of Scientific and Technical Information (OSTI)

    Towards Addressing Surface Effects in Ordinary Isotropic Peridynamic Models Position Aware ... Resource Relation: Conference: SIAM Conference on 'Analysis of Partial Differential ...

  14. Number

    Office of Legacy Management (LM)

    It is seen that all operations are performed vet, thus eliminating almost entirely a dust exposure hazard. A* Monazite sand is at present derived from India which supplies an ore ...

  15. Tennessee Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Tennessee Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 52 75 NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Tennessee Natural Gas Summ

  16. Texas Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Texas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 85,030 94,203 96,949 104,205 105,159 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Texas Natural

  17. Pennsylvania Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Pennsylvania Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,046 7,627 7,164 8,481 7,557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Pennsylvania

  18. Louisiana Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Louisiana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,201 5,057 5,078 5,285 4,968 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Louisiana Natural

  19. Michigan Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Michigan Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 510 514 537 584 532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Michigan Natural Gas Summary

  20. Mississippi Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Mississippi Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 561 618 581 540 501 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Mississippi Natural Gas

  1. Missouri Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Missouri Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 1 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Missouri Natural Gas Summary

  2. Montana Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Montana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,956 2,147 2,268 2,377 2,277 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Montana Natural Gas

  3. Nebraska Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nebraska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 84 73 54 51 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nebraska Natural Gas Summar

  4. Nevada Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nevada Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4 4 4 4 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nevada Natural Gas Summary

  5. Ohio Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Ohio Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,775 6,745 7,038 7,257 5,941 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Ohio Natural Gas

  6. Oklahoma Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Oklahoma Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,723 7,360 8,744 7,105 8,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oklahoma Natural

  7. Alabama Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alabama Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 367 402 436 414 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alabama Natural Gas Sum

  8. Alaska Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alaska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,040 1,981 2,006 2,042 2,096 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alaska Natural Gas

  9. Arizona Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arizona Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arizona Natural Gas Summary

  10. Arkansas Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arkansas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 165 174 218 233 240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arkansas Natural Gas

  11. California Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) California Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 25,958 26,061 26,542 26,835 27,075 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) California

  12. Colorado Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Colorado Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,963 6,456 6,799 7,771 7,733 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Colorado Natural

  13. Utah Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Utah Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,119 3,520 3,946 4,249 3,966 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Utah Natural Gas

  14. Virginia Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Virginia Natural Gas Summary

  15. Wyoming Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Wyoming Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,430 4,563 4,391 4,538 4,603 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Wyoming Natural Gas

  16. Kentucky Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Kentucky Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 317 358 340 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kentucky Natural Gas Su

  17. Keynote Address: Ali Zaidi, the White House Domestic Policy Council |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote address by Ali Zaidi, Deputy Director for Energy Policy, the White House Domestic Policy Council

  18. Symbiosis: Addressing Biomass Production Challenges and Climate Change |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening keynote of the Symbiosis Conference. symbiosis_conference_hamilton.pdf (1.4 MB) More Documents & Publications The Future of Bioenergy Feedstock Production Symbiosis Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase Feedstock Production Symbiosis

  19. Method for the electro-addressable functionalization of electrode arrays

    SciTech Connect (OSTI)

    Harper, Jason C.; Polsky, Ronen; Dirk, Shawn M.; Wheeler, David R.; Arango, Dulce C.; Brozik, Susan M.

    2015-12-15

    A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable conversion of the unreactive group to a chemical or biological recognition group. Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes.

  20. Maryland Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Maryland Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Maryland Natural Gas Summary

  1. Oregon Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oregon Natural Gas Summary

  2. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Natural

  3. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Natural Gas Indu

  4. Indiana Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Indiana Natural Gas Summary

  5. Kansas Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kansas Natural Gas Summary

  6. JLab will test its Public Address System | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    will test its Public Address System Wednesday, Sept. 28 at 5:30 p.m.: JLab will test its Public Address System On Wednesday, Sept. 28, Emergency Management Team staff will conduct the monthly test of Jefferson Lab's Public Address (PA) System - the live audible announcement feature - available through the lab's Cisco phones. This monthly operational test of the system occurs at 5:30 p.m. on the third Wednesday of each month. No actions are required or expected from members of the lab community

  7. ARM - Measurement - Particle number concentration

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  8. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) (indexed site)

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  9. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  10. The State of the Ames Laboratory Address 2011

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01

    Alex King, director of The Ames Laboratory, discusses the budget situation, improvements at Ames Lab and infrastructure improvements during the State of the Lab address on Tuesday, May 24, 2011.

  11. JLab Will Test its Public Address System | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    June 22 at 5:30 p.m.: JLab Will Test its Public Address System On Wednesday, June 22, Emergency Management Team staff will conduct the monthly test of Jefferson Lab's Public ...

  12. JLab Will Test its Public Address System | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    July 20 at 5:30 p.m.: JLab Will Test its Public Address System On Wednesday, July 20, Emergency Management Team staff will conduct the monthly test of Jefferson Lab's Public ...

  13. Keynote Address: Cristin Dorgelo, White House Office of Science...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cristin Dorgelo, White House Office of Science and Technology Policy Keynote Address: Cristin Dorgelo, White House Office of Science and Technology Policy May 21, 2014 2:20PM to ...

  14. Keynote Address: Ali Zaidi, the White House Domestic Policy Council...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote...

  15. The INL Seismic Risk Assessment Project: Requirements for Addressing...

    Office of Environmental Management (EM)

    The INL Seismic Risk Assessment Project: Requirements for Addressing DOE Order 420.1C & A Proposed Generic Methodology Presentation from the May 2015 Seismic Lessons-Learned Panel ...

  16. Corrective Action Plan Addressing the Accident Investigation Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Corrective Action Plan Addressing the Accident Investigation Report of the February 5, 2014 Fire Event and the February 14, 2014 Radiological Release Event, Rev 1 Page 2 of 89 Table of Contents 1 Purpose ................................................................................................................................................................................................ 7 2 Summary of the

  17. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges...

    Energy.gov (indexed) [DOE]

    research and development (r&d) portfolio for energy-Intensive Processes (eIP) addresses the top technology opportunities to save energy and reduce carbon emissions across the ...

  18. United Indigenous Voices Address Sustainability: Climate Change and Traditional Places

    Energy.gov [DOE]

    At the First Stewards Symposium, over 300 industry and policy leaders from around the nation will discuss four main themes generated from the 2012 First Stewards Symposium that address issues...

  19. Letters of Interest PRICE/COST Estimate Sheet for [Insert LOI #]

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Form (10-19-2000) Estimated Budget Form Offeror's Name And Address: Principal Investigator Name: Telephone Number: Project Title: Proposed Lower-Tier Subcontractor(s) Organization's Name and Address: Telephone Number: Type of Business: Approval Signatures: _____________________________ ___________ (Signature) Date _________________________________________ (Typed Name) _____________________________ ___________ (Signature) Date _________________________________________ (Typed Name) NREL Form

  20. NAP Coalition Response to DOE RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges to Smart Grid Implementation | Department of Energy NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation The NAP Coalition is a "Coalition of Coalitions" that has been formed for the purpose of implementing the National Action Plan released by FERC in cooperation with DOE in June of 2010. Organizations working

  1. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges to Smart Grid Implementation | Department of Energy Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District (The District) an Independent Special District of the State of Florida is appreciative of the opportunity to submit for your consideration the following comments in response to the U.S.

  2. Exploring the Utilization of Complex Algal Communities to Address Algal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pond Crash and Increase Annual Biomass Production for Algal Biofuels | Department of Energy Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels white paper exploring complex algal communities as a means of increasing algal biomass production

  3. President Obama Praises NAMII in State of the Union Address

    Office of Energy Efficiency and Renewable Energy (EERE)

    In his 2013 State of the Union address, President Obama used the National Additive Manufacturing Institute (NAMII) as a model of the potential for innovation in manufacturing in the U.S. His address made it clear that his Administration is making the revitalization of the manufacturing sector a priority, stating that he plans to make the U.S. "a magnet for new jobs and manufacturing." He laid out a plan for spurring growth in manufacturing in the following statement:

  4. Keynote Address to the Western Governors' Association 2016 Annual Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -- As Delivered | Department of Energy to the Western Governors' Association 2016 Annual Meeting -- As Delivered Keynote Address to the Western Governors' Association 2016 Annual Meeting -- As Delivered June 14, 2016 - 3:06pm Addthis Secretary Moniz's Keynote Address to the Western Governors' Association 2016 Annual Meeting Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Well, thank you. I had planned to say how pleased I was to be back with the Western Governors' Association.

  5. ADR Lunchtime Program: Addressing Unconscious Bias in the ADR Process |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Addressing Unconscious Bias in the ADR Process ADR Lunchtime Program: Addressing Unconscious Bias in the ADR Process This session focuses on strategies, issues, and insights into how unconscious bias impacts our perceptions, beliefs, and behaviors in today's workplace. Real-world case studies and current research are provided to increase awareness of the elements of the mediation/ADR process that may be impacted by biased communication and perception. The discussion

  6. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges | Department of Energy ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges The American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE), founded in 1894, is an international organization of over 50,000 members. ASHRAE fulfills its mission of advancing heating, ventilation, air conditioning and refrigeration to serve humanity and promote a

  7. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Logistical Challenges to Smart Grid Implementation | Department of Energy Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation submits the following comments to the US Department of Energy (DOE) in hopes that their contribution can highlight and further the understanding of the DOE on

  8. EO 12898: Federal Actions to Address Environmental Justice in Minority

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Populations and Low-Income Populations (1994) | Department of Energy 898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (1994) EO 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (1994) Executive Order 12898 and an accompanying Presidential Memorandum were issued to focus Federal attention on the environmental and human health conditions in minority communities and low-income

  9. Addressing Policy and Logistical Challenges to Smart Grid Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the Department of Energy Washington, D.C. 20585 In the Matter of Addressing Policy and Logistical Challenges to Smart Grid Implementation Smart Grid RFI: Addressing Policy and Logistical Challenges COMMENTS OF BALTIMORE GAS & ELECTRIC COMPANY I. Introduction BGE is the nation's oldest utility company. It has met the energy needs of Central Maryland for nearly 200 years. Today, it serves more than 1.2 million business and residential electric customers and approximately 650,000 gas

  10. NETL's Supercomputer Addresses Energy Issues on Two Fronts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Supercomputer Addresses Energy Issues on Two Fronts NETL's Supercomputer Addresses Energy Issues on Two Fronts September 26, 2013 - 10:42am Addthis The visualization center for the SBEUC (Simulation Based Engineering User Center). Located at the Department’s National Energy Technology Laboratory in Morgantown, W. Va., the SBEUC will be powered by a high performance computer that will allow researchers to simulate phenomena that are difficult or impossible to probe experimentally.

  11. DOE Awards Over a Billion Supercomputing Hours to Address Scientific

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges | Department of Energy Over a Billion Supercomputing Hours to Address Scientific Challenges DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges January 26, 2010 - 12:00am Addthis Washington, DC. - The U.S. Department of Energy announced today that approximately 1.6 billion supercomputing processor hours have been awarded to 69 cutting-edge research projects through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

  12. NERSC Implements Organizational Changes to Better Address Evolving Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Environment Organizational Changes to Better Address Evolving Data Environment NERSC Implements Organizational Changes to Better Address Evolving Data Environment February 23, 2015 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 Sudip Dosanjh, director of the Department of Energy's National Energy Research Scientific Computing Center, announced several organizational changes to help the center's 6,000 users more productively manage their data-intensive research. The changes took effect

  13. Addressing Failures in Exascale Computing (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: Addressing Failures in Exascale Computing Citation Details In-Document Search Title: Addressing Failures in Exascale Computing Authors: Snir, M. ; Wisniewski, R. W. ; Abraham, J. A. ; Adve, S. V. ; Bagchi, S. ; Balaji, P. ; Belak, J. ; Bose, P. ; Cappello, F. ; Carlson, B. ; Chien, A. A. ; Coteus, P. ; Debardeleben, N. A. ; Diniz, P. ; Engelmann, C. ; Erez, M. ; Fazzari, S. ; Geist, A. ; Gupta, R. ; Johnson, F. more »; Krishnamoorthy, S. ; Leyffer, S. ; Liberty, D.

  14. Role of CA Utility Programs in Addressing MELS

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Role of CA Utility Programs in addressing MELS Mangesh Basarkar, Emerging Technologies, PG&E DOE MELS Workshop Pacific Energy Center, San Francisco, June 3, 2016 OVERVIEW  Growing realization for utilities on the impact of miscellaneous electric loads (MELS) in buildings  Lot of ongoing data collection activities in support of products, programs and services for addressing MELS  Data collection activities primarily happens in the:  Emerging Technologies Programs  Codes and

  15. Students Innovate to Address Gas Shortages Following Hurricane Sandy |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Innovate to Address Gas Shortages Following Hurricane Sandy Students Innovate to Address Gas Shortages Following Hurricane Sandy November 9, 2012 - 3:43pm Addthis Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Ian Kalin Director of the Energy Data Initiative What are the key

  16. New partnership uses advanced computer science modeling to address climate

    National Nuclear Security Administration (NNSA)

    change | National Nuclear Security Administration | (NNSA) partnership uses advanced computer science modeling to address climate change Friday, August 29, 2014 - 10:26am Several national laboratories and institutions have joined forces to develop and apply the most complete climate and Earth system model to address the most challenging and demanding climate change issues. Accelerated Climate Modeling for Energy, or ACME, is designed to accelerate the development and application of fully

  17. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 260 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  18. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 578 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  19. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 136 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  20. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  1. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 219 215 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  2. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 400 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  3. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 144 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  4. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  5. Departmental Business Instrument Numbering System

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  6. Departmental Business Instrument Numbering System

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  7. Wind vs. Biofuels: Addressing Climate, Health and Energy

    SciTech Connect (OSTI)

    Professor Mark Jacobson

    2007-01-29

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  8. Wind versus Biofuels for Addressing Climate, Health, and Energy

    SciTech Connect (OSTI)

    Jacobson, Mark Z.

    2007-01-29

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  9. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,027 132,392 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 2,651 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 - = No Data

  12. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 316,756 319,512 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,398 6,655 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282

  15. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 241,682 - = No Data Reported; -- = Not

  16. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 4,932 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  18. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 24,088 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 236,323 - = No Data Reported; -- =

  20. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,323 56,871 - = No Data Reported; -- = Not Applicable; NA = Not

  1. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,442 1,438 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 605,644 620,555 - = No Data Reported; -- =

  3. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 24,040 - = No Data Reported; -- = Not Applicable; NA = Not

  4. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 182,568 - = No Data Reported; -- =

  5. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,996 57,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  6. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 845 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 903,686 888,023 - = No Data Reported; -- = Not Applicable; NA

  8. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 11,888 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 31,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 78,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  11. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 1,169 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  12. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 1,113,342 - = No Data Reported;

  13. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 140,533 - = No Data Reported; -- = Not

  14. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 11,266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  16. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 254,484 - = No Data Reported; -- = Not Applicable; NA =

  17. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 7,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  19. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,380 138,871 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,880 1,868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  1. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1,496,790

  2. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 49,911 49,821 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  4. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 440,252 439,359 - = No Data Reported; -- =

  5. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,134 141,216 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 3,232 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  7. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  8. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 35,777 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 269,766 - = No Data Reported; -- = Not Applicable; NA =

  10. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 57,521 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  11. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 8,868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 525,165 - = No Data Reported; -- = Not Applicable; NA

  13. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 42,860 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  14. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 824,039 - = No Data Reported; -- = Not Applicable; NA =

  15. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 269,981 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 6,502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,968

  18. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,005 96,471 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  19. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,062 3,059 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  20. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 941,137 - = No Data Reported; -- = Not Applicable; NA

  1. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 80,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 1,117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 717,999 - = No Data Reported; -- = Not Applicable; NA =

  4. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,847 67,746 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  5. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 3,300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,900 768,568 - = No Data Reported; -- = Not Applicable;

  7. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 13,549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  8. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 128,605 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 56,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  10. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 1,200,783 - = No Data Reported;

  11. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 69,265 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 1,023 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 550,108 - = No Data Reported; -- = Not Applicable;

  14. California Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 446,510 - = No Data Reported; -- = Not Applicable;

  15. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 36,854 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. California Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  17. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 150,545 - = No Data Reported; -- = Not Applicable;

  18. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 8,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581

  20. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 40,886 41,594 43,703 1990's 45,364 45,925 46,859 45,529 45,042 45,935 47,055 48,195 47,110 49,930 2000's 52,384 49,815 49,383 50,691 50,839 52,572 52,982 52,389 53,903 54,510 2010's 54,842 55,028 55,407 55,500 56,591 57,403 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  1. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 3,945 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  2. Connecticut Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 411,349 417,831 424,036 1990's 428,912 430,078 432,244 427,761 428,157 431,909 433,778 436,119 438,716 442,457 2000's 458,388 458,404 462,574 466,913 469,332 475,221 478,849 482,902 487,320 489,349 2010's 490,185 494,970 504,138 513,492 522,658 531,380 - = No Data Reported; --

  3. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 13,430 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 161,607 - = No Data Reported; -- = Not Applicable; NA =

  5. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,578 123,307 - = No Data Reported; -- = Not Applicable; NA =

  6. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 2,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  7. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  8. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 2,815 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 28,952 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  10. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 40,744 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 374,557 - = No Data Reported; -- = Not Applicable; NA =

  12. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  13. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 23,049 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  14. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  15. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 160,051 - = No Data Reported; -- = Not Applicable; NA =

  16. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 5,095 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  18. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,186 99,662 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 908,058 - = No Data Reported; -- = Not Applicable; NA =

  1. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,654 86,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,328 7,218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 860,441 861,419 - = No Data Reported; -- = Not Applicable; NA =

  4. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,630 85,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  5. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 2,008 2,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 761,935 764,946 - = No Data Reported; -- = Not Applicable; NA

  7. Illinois Natural Gas Number of Oil Wells (Number of Elements)

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  8. Buckland Students Explore Ways to Address Rural Alaska Energy Challenges |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Buckland Students Explore Ways to Address Rural Alaska Energy Challenges Buckland Students Explore Ways to Address Rural Alaska Energy Challenges May 23, 2016 - 6:03pm Addthis Students pose in front of Buckland’s 10.53-kW solar system used to power the village’s new water plant. Photo from Alison Jech, Buckland School. Students pose in front of Buckland's 10.53-kW solar system used to power the village's new water plant. Photo from Alison Jech, Buckland School.

  9. Argonne Director Eric Isaacs addresses the National Press Club

    ScienceCinema (OSTI)

    Eric Isaccs

    2016-07-12

    Argonne Director Eric Isaacs addresses the National Press Club on 9/15/2009. To build a national economy based on sustainable energy, the nation must first "reignite its innovation ecology," he said. Issacs makes the case for investing in science to secure America's future.

  10. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Information (Open El) [EERE & EIA]

    operates a number of power stations including the largest coal fired power station in the world as well as the Koeberg nuclear power station Esmeralda Energy Company Esmeralda...

  11. Registration Open for National Environmental Justice Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    address, e-mail address, and telephone number for future follow-up as necessary. Non-English speaking attendees wishing to arrange for a foreign language interpreter also may...

  12. Plan for addressing issues relating to oil shale plant siting

    SciTech Connect (OSTI)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  13. Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities

    Energy.gov [DOE]

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session.

  14. Briefing Memo: Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session.

  15. Energy Saver RSS Subscribers: Update Your Feed Address | Department of

    Energy Savers

    Department of Energy Customer Service Plan Department of Energy Customer Service Plan The U.S. Department of Energy (DOE) strives to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. Through this work, the Department serves a range of internal and external customers including DOE's employee and contractor workforce, students, scientists and researchers, businesses and other branches of

  16. Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral Discussion with President of Turkmenistan on Opening of Markets, Increased Investment, and Multiple Trade Routes ASHGABAT, TURKMENISTAN - U.S. Secretary of Energy Samuel W. Bodman today held bilateral energy discussions with the President of Turkmenistan and other senior Turkmenistan officials and

  17. Smart Grid RFI: Addressing Policy and Logistical Challenges, Comments from

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Edison Electric Institute | Department of Energy Challenges, Comments from the Edison Electric Institute Smart Grid RFI: Addressing Policy and Logistical Challenges, Comments from the Edison Electric Institute The Edison Electric Institute ("EEI"), on behalf of its member companies, hereby submits the following comments in response to the request by the Department of Energy ("DOE" or "Department") for information on a wide range of issues dealing with Smart

  18. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Alliance to Save Energy. | Department of Energy Challenges. Comments of the Alliance to Save Energy. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. The Alliance to Save Energy is a coalition of prominent business, government, environmental, and consumer leaders who promote the efficient use of energy worldwide to benefit consumers, the environment, economy, and national security. The Alliance to Save Energy (the Alliance) thanks the

  19. Community Leaders to Address Energy Solutions Through Leadership Program -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News Releases | NREL Community Leaders to Address Energy Solutions Through Leadership Program May 16, 2007 Thirteen local community leaders were chosen to join the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory's (NREL) Executive Energy Leadership program. Energy Execs will participate in monthly educational sessions covering topics such as solar technology, wind energy and transportation of the future. Sessions will include an in depth look at future markets and

  20. Technology Transfer Sustaining Our Legacy of Addressing National Challenges

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technology Transfer Sustaining Our Legacy of Addressing National Challenges 2007-2008 Progress Report Credits Writing: Shandra Clow, Steven Girrens, David Holmes, Marjorie Mascheroni, Duncan McBranch, John Mott, Mig Owens, Belinda Padilla, Tatjana Rosev, John Russell, and Steve Stringer Editing: Marjorie Mascheroni Design: Kathi G. Parker Printing Coordination: Guadalupe Archuleta www.lanl.gov/partnerships Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is

  1. Addressing Policy and Logistical Challenges to Smart Grid Implementation:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comments by the Office of the Ohio Consumers' Counsel | Department of Energy Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel Addressing Policy and Logistical Challenges to Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel The Office of the Ohio Consumers' Counsel ("OCC") hereby submits the following comments in response to the United States Department of Energy ("DOE") Request for Information

  2. Addressing Policy and Logistical Challenges to Smart Grid Implementation:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Register Notice Volume 75, No. 180 - Sep. 17, 2010 | Department of Energy Smart Grid Implementation: Federal Register Notice Volume 75, No. 180 - Sep. 17, 2010 Addressing Policy and Logistical Challenges to Smart Grid Implementation: Federal Register Notice Volume 75, No. 180 - Sep. 17, 2010 The Department of Energy (DOE) is seeking comments from interested parties on policy and logistical challenges that confront smart grid implementation, as well as recommendations on how to best

  3. Addressing Policy and Logistical Challenges to smart grid Implementation:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    eMeter Response to Department of Energy RFI | Department of Energy smart grid Implementation: eMeter Response to Department of Energy RFI Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of Energy RFI eMeter is a smart grid software company that provides smart network application platform (SNAP) software to integrate smart meters and smart grid communications networks and devices with utility IT systems. eMeter also provides smart grid

  4. Smart Grid RFI: Addressing Policy and Logistical Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Room 8H033 Washington, DC 20585 Submitted electronically via smartgridpolicy@hq.doe.gov Smart Grid Request for Information: Addressing Policy and Logistical Challenges Comments of the Alliance to Save Energy The Alliance to Save Energy (the Alliance) thanks the Department of Energy for the opportunity to comment on broad issues of policy and logistical challenges faced in smart grid implementation. The Alliance to Save

  5. Energy Department Addresses Largest Gathering of Geothermal Energy Stakeholders

    Energy.gov [DOE]

    U.S. Department of Energy investments are tapping a vast resource of clean, baseload energy from the earth's heat, according to Douglas Hollett, Program Manager for the Department's Geothermal Technologies Office. Hollett addressed over 1,000 this week at the annual conference of the Geothermal Resources Council (GRC) in Reno, Nevadathe industry's largest annual gathering of geothermal energy stakeholders in the nation.

  6. UK Energy Minister to Address World Renewable Energy Congress - News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Releases | NREL UK Energy Minister to Address World Renewable Energy Congress Conference, Expo to Bring International 'Clean Energy' experts to Denver April 7, 2004 Golden, Colo. - Stephen Timms, energy minister for the United Kingdom will speak to delegates from as many as 100 nations at the opening ceremony of the eighth World Renewable Energy Congress (WREC VIII) in Denver on Aug. 30. Expected to be the world's largest gathering of renewable energy experts, WREC VIII will provide a forum

  7. Symbiosis: Addressing Biomass Production Challenges and Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Symbiosis: Addressing Biomass Production Challenges and Climate Change Cyd E. Hamilton, PhD American Association for Advancement of Science Fellow Symbiosis Conference, Cornell University 2013 2 | Bioenergy Technologies Office Outline * Thank you! - John Ferrell and Valerie Reed (BETO) - James White (Rutgers) - Stacey Young (Sentech) * Background Motivation * Conference Objectives - Two days - Long term (Bioenergy Tech. Office Report) - Articles e.g., reviews, commentaries * Plenary Speaker

  8. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect (OSTI)

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  9. Keynote Address to the Western Governors' Association 2016 Annual...

    Office of Environmental Management (EM)

    ... Well, the facts are that low natural gas prices have actually hit hard is coal and nuclear, because that's what's also underpinning the closure of a number of nuclear power plants. ...

  10. MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: Why are you interested in the mentoring program? (This information will be included with the invitation to your potential mentor.) What goals do you want to work on during your participation in the mentoring program? Is there someone you would like to be your mentor? Yes No If yes, please list their name and any other possible mentors in order of preference: Expectations of the Mentoring Program How long? 6-months

  11. Strategies to Address Identified Education Gaps in the Preparation of a National Security Workforce

    SciTech Connect (OSTI)

    2008-06-30

    This report will discuss strategies available to address identified gaps and weaknesses in education efforts aimed at the preparation of a skilled and properly trained national security workforce.The need to adequately train and educate a national security workforce is at a critical juncture. Even though there are an increasing number of college graduates in the appropriate fields, many of these graduates choose to work in the private sector because of more desirable salary and benefit packages. This is contributing to an inability to fill vacant positions at NNSA resulting from high personnel turnover from the large number of retirements. Further, many of the retirees are practically irreplaceable because they are Cold War scientists that have experience and expertise with nuclear weapons.

  12. Imulation of polymer forming processes - addressing industrial needs

    SciTech Connect (OSTI)

    Thibault, F.; DiRaddo, R. [Industrial Materials Institute-National Research Council (Canada)

    2011-05-04

    The objective of this paper is to present the development of simulation and design optimization capabilities, for polymer forming processes, in the context of addressing industrial needs. Accomplishments generated from close to twenty years of research in this field, at the National Research Council (NRC), are presented. Polymer forming processes such as extrusion blow moulding, stretch blow moulding and thermoforming have been the focus of the work, yet the research is extendable to similar polymer forming operations such as micro-blow moulding, sheet blow moulding and composites stamping. The research considers material models, process sequence integration and design optimization, derivative processes and 3D finite elements with multi-body contact.

  13. Content-addressable memory based enforcement of configurable policies

    SciTech Connect (OSTI)

    Berg, Michael J

    2014-05-06

    A monitoring device for monitoring transactions on a bus includes content-addressable memory ("CAM") and a response policy unit. The CAM includes an input coupled to receive a bus transaction tag based on bus traffic on the bus. The CAM stores data tags associated with rules of a security policy to compare the bus transaction tag to the data tags. The CAM generates an output signal indicating whether one or more matches occurred. The response policy unit is coupled to the CAM to receive the output signal from the CAM and to execute a policy action in response to the output signal.

  14. A novel electron gun with an independently addressable cathode array.

    SciTech Connect (OSTI)

    Rudys, Joseph Matthew; Reed, Kim Warren; Pea, Gary Edward; Schneider, Larry X.

    2006-08-01

    The design of a novel electron gun with an array of independently addressable cathode elements is presented. Issues relating to operation in a 6.5 Tesla axial magnetic field are discussed. Simulations with the TriComp [1] electromagnetic field code that were used to determine the space charge limited tube characteristic and to model focusing of the electron beam in the magnetic field are reviewed. Foil heating and stress calculations are discussed. The results of CYLTRAN [2] simulations yielding the energy spectrum of the electron beam and the current transmitted through the foil window are presented.

  15. Recent NRC research activities addressing valve and pump issues

    SciTech Connect (OSTI)

    Morrison, D.L.

    1996-12-01

    The mission of the U.S. Nuclear Regulatory Commission (NRC) is to ensure the safe design, construction, and operation of commercial nuclear power plants and other facilities in the U.S.A. One of the main roles that the Office of Nuclear Regulatory Research (RES) plays in achieving the NRC mission is to plan, recommend, and implement research programs that address safety and technical issues deemed important by the NRC. The results of the research activities provide the bases for developing NRC positions or decisions on these issues. Also, RES performs confirmatory research for developing the basis to evaluate industry responses and positions on various regulatory requirements. This presentation summarizes some recent RES supported research activities that have addressed safety and technical issues related to valves and pumps. These activities include the efforts on determining valve and motor-operator responses under dynamic loads and pressure locking events, evaluation of monitoring equipment, and methods for detecting and trending aging of check valves and pumps. The role that RES is expected to play in future years to fulfill the NRC mission is also discussed.

  16. Compensated individually addressable array technology for human breast imaging

    DOE Patents [OSTI]

    Lewis, D. Kent

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  17. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  18. Network Security Mechanisms Utilizing Dynamic Network Address Translation LDRD Project

    SciTech Connect (OSTI)

    PRICE, CARRIE M.; STANTON, ERIC; LEE, ERIK J.; MICHALSKI, JOHN T.; CHUA, KUAN SEAH; WONG, YIP HENG; TAN, CHUNG PHENG

    2002-11-01

    A new protocol technology is just starting to emerge from the laboratory environment. Its stated purpose is to provide an additional means in which networks, and the services that reside on them, can be protected from adversarial compromise. This report has a two-fold objective. First is to provide the reader with an overview of this emerging Dynamic Defenses technology using Dynamic Network Address Translation (Dynat). This ''structure overview'' is concentrated in the body of the report, and describes the important attributes of the technology. The second objective is to provide a framework that can be used to help in the classification and assessment of the different types of dynamic defense technologies along with some related capabilities and limitations. This information is primarily contained in the appendices.

  19. Addressing the Need for Independence in the CSE Model

    SciTech Connect (OSTI)

    Abercrombie, Robert K; Ferragut, Erik M; Sheldon, Frederick T; Grimaila, Michael R

    2011-01-01

    Abstract Information system security risk, defined as the product of the monetary losses associated with security incidents and the probability that they occur, is a suitable decision criterion when considering different information system architectures. Risk assessment is the widely accepted process used to understand, quantify, and document the effects of undesirable events on organizational objectives so that risk management, continuity of operations planning, and contingency planning can be performed. One technique, the Cyberspace Security Econometrics System (CSES), is a methodology for estimating security costs to stakeholders as a function of possible risk postures. In earlier works, we presented a computational infrastructure that allows an analyst to estimate the security of a system in terms of the loss that each stakeholder stands to sustain, as a result of security breakdowns. Additional work has applied CSES to specific business cases. The current state-of-the-art of CSES addresses independent events. In typical usage, analysts create matrices that capture their expert opinion, and then use those matrices to quantify costs to stakeholders. This expansion generalizes CSES to the common real-world case where events may be dependent.

  20. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  1. Software programs that address site-specific inventory characteristics issues.

    SciTech Connect (OSTI)

    Dare, J. H.; Cournoyer, M. E.

    2001-01-01

    The proper characterization of Hazardous, Mixed Low-Level, and Mixed Transuranic waste enhances productivity and safety. Hazardous material criteria that need to be considered include physical and health hazards inherent to the waste stream. Other factors that may influence characterization include: particulate diameter, complexing or chelating agent properties, lead, and mercury content, pressurized containers, and P-listed wastes. To meet these requirements are only a simple matter of generating a database with the proper fields. Manufactures and institutional databases bank huge sources of information, such as, work control documents, substance identification, container types, components of mixtures, physical property data, and regulatory data. In this report, utilization of commercially available software programs to take advantage of these resources in addressing waste characterization issues are presented. The application of user-friendly programs eliminates part of the tediousness associated with the complex requirements of certifying to general waste acceptance criteria with minimal impact on programmatic work. In other words, tapping into manufacturer and institutional database provides a way to take advantage of the combined expertise of these resources in managing a cost effective waste certification program as well as adding a quality assurance element to the program.

  2. Hidden benefits of electric vehicles for addressing climate change

    SciTech Connect (OSTI)

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.

  3. Hidden benefits of electric vehicles for addressing climate change

    DOE PAGES-Beta [OSTI]

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought bymore » the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.« less

  4. Developing and Enhancing Workforce Training Programs: Number...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the ...

  5. Addressing Water Consumption of Evaporative Coolers with Greywater

    SciTech Connect (OSTI)

    Sahai, Rashmi; Shah, Nihar; Phadke, Amol

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  6. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    SciTech Connect (OSTI)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.; Eddlemon, Gerald K.

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nations waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other

  7. MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: is interested in this program because: Are you willing to act as a mentor for ? Yes No Expectations of the Mentoring Program How long? 6-months minimum commitment. Are you willing to commit to the 6-months minimum timeframe? Yes No How much time? You decide with your mentee; 1-4 hours/month is recommended. Please return completed form to Ames Lab Human Resources, 105 TASF. Are you willing to commit 1-4 hours per month

  8. Addressing Fission Product Validation in MCNP Burnup Credit Criticality Calculations

    SciTech Connect (OSTI)

    Mueller, Don; Bowen, Douglas G; Marshall, William BJ J

    2015-01-01

    The US Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation issued Interim Staff Guidance (ISG) 8, Revision 3 in September 2012. This ISG provides guidance for NRC staff members’ review of burnup credit (BUC) analyses supporting transport and dry storage of pressurized water reactor spent nuclear fuel (SNF) in casks. The ISG includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MAs). Based on previous work documented in NRC Regulatory Guide (NUREG) Contractor Report (CR)-7109, the ISG recommends that NRC staff members accept the use of either 1.5 or 3% of the FP&MA worth—in addition to bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF—to conservatively account for the bias and bias uncertainty associated with the specified unvalidated FP&MAs. The ISG recommends (1) use of 1.5% of the FP&MA worth if a modern version of SCALE and its nuclear data are used and (2) 3% of the FP&MA worth for well qualified, industry standard code systems other than SCALE with the Evaluated Nuclear Data Files, Part B (ENDF/B),-V, ENDF/B-VI, or ENDF/B-VII cross sections libraries. The work presented in this paper provides a basis for extending the use of the 1.5% of the FP&MA worth bias to BUC criticality calculations performed using the Monte Carlo N-Particle (MCNP) code. The extended use of the 1.5% FP&MA worth bias is shown to be acceptable by comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII–based nuclear data. The comparison supports use of the 1.5% FP&MA worth bias when the MCNP code is used for criticality calculations, provided that the cask design is similar to the hypothetical generic BUC-32 cask model and that the credited FP&MA worth is no more than 0.1 Δkeff (ISG-8, Rev. 3, Recommendation 4).

  9. Florida Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update

    Gas and Gas Condensate Wells (Number of Elements) Florida Natural Gas Number of Gas and ...2016 Referring Pages: Number of Producing Gas Wells (Summary) Florida Natural Gas Summary

  10. PNNL: Contacts

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Contacts Have a Question or Comment? Please use our feedback form. We would love to hear from you. Looking for a Staff Member at PNNL? Use our searchable staff directory to find staff contact information. Information returned includes staff name and telephone number. Phone Numbers and Addresses View our phone and address book for mailing addresses and important phone numbers

  11. Low Mach Number Models in Computational Astrophysics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number...

  12. Climate Zone Number 5 | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  13. NETL F 534.1-1#

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    using same headings.) A. LINE ITEM NO. B. IDENTIFICATION C. QUANTITY D. TOTAL PRICE E. REF. 9. PROVIDE NAME, ADDRESS, AND TELEPHONE NUMBER FOR THE FOLLOWING (If available) A....

  14. Office of Information Resources

    Energy Savers

    code, telephone number, email address, etc.) or (ii) by ... If yes, explain, and list the identifiers that will be ... http:cio.enerav.g;ovdocumentsADM 14.pdf). 3. What ...

  15. U-115: Novell GroupWise Client Address Book Processing Buffer Overflow Vulnerability

    Energy.gov [DOE]

    The vulnerability is caused due to an error when processing Novell Address Book (".nab") files and can be exploited to cause a heap-based buffer overflow via an overly long email address.

  16. Join @Energy for the 2015 State of the Union Address | Department...

    Energy Savers

    Join @Energy for the 2015 State of the Union Address Join @Energy for the 2015 State of the Union Address January 20, 2015 - 12:08pm Addthis Join us for live coverage of the State...

  17. AMO Deputy Director Addresses Water-Energy Nexus at 2016 Energy...

    Energy Savers

    Deputy Director Addresses Water-Energy Nexus at 2016 Energy Efficiency Global Forum AMO Deputy Director Addresses Water-Energy Nexus at 2016 Energy Efficiency Global Forum May 20, ...

  18. On the binary expansions of algebraic numbers

    SciTech Connect (OSTI)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl

    2003-07-01

    Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.

  19. Self-correcting random number generator

    DOE Patents [OSTI]

    Humble, Travis S.; Pooser, Raphael C.

    2016-09-06

    A system and method for generating random numbers. The system may include a random number generator (RNG), such as a quantum random number generator (QRNG) configured to self-correct or adapt in order to substantially achieve randomness from the output of the RNG. By adapting, the RNG may generate a random number that may be considered random regardless of whether the random number itself is tested as such. As an example, the RNG may include components to monitor one or more characteristics of the RNG during operation, and may use the monitored characteristics as a basis for adapting, or self-correcting, to provide a random number according to one or more performance criteria.

  20. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  1. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  2. ARM - Measurement - Cloud particle number concentration

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  3. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Poster ...

  4. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  5. Identification of Export Control Classification Number - ITER

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" ... be shipped from the United States to the ITER International Organization in Cadarache, ...

  6. Compendium of Experimental Cetane Number Data

    SciTech Connect (OSTI)

    Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

    2004-09-01

    In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

  7. Addressing Cybersecurity

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    experience in security and pushing the limits of computing comes into play. From the physicist's point of view, the only true unpredictability comes from quantum mechanics. ...

  8. 5-address

    U.S. Department of Energy (DOE) all webpages (Extended Search)

  9. Keynote Address

    Office of Environmental Management (EM)

    ... americium-beryllium neutron source used in oil exploration (well logging) A self-shielded ... solidified sludge associated with: - Production of molybdenum-99 (Mo-99) - Production ...

  10. 20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-05-01

    This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure

  11. Assistant Secretary Patricia Hoffman to Deliver Keynote Address at IEEE PES

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conference on Innovative Smart Grid Technologies | Department of Energy Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies Assistant Secretary Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies January 25, 2013 - 3:10pm Addthis Assistant Secretary Patricia Hoffman will give the keynote address at the 4th annual IEEE PES Conference on Innovative Smart Grid Technologies (ISGT 2013) on

  12. NBP RFI-Addressing Policy and Logistical Challenges to Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Implementation. September 10, 2009 | Department of Energy NBP RFI-Addressing Policy and Logistical Challenges to Smart Grid Implementation. September 10, 2009 NBP RFI-Addressing Policy and Logistical Challenges to Smart Grid Implementation. September 10, 2009 The Telecommunications Industry Association (TIA) is pleased to provide comments on how to address the numerous challenges facing the development and deployment of smart grid technologies. Smart grid is a more robust application of

  13. Response to Request for Information titled "Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Logistical Challenges to Smart Grid Implementation" | Department of Energy to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation" Response to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation" Response to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation." urrent smart grid initiatives are

  14. U.S. Energy Secretary Addresses International Atomic Energy Agency General

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conference | Department of Energy Addresses International Atomic Energy Agency General Conference U.S. Energy Secretary Addresses International Atomic Energy Agency General Conference September 19, 2011 - 4:48pm Addthis VIENNA, AUSTRIA - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's General Conference today in Vienna. Opening with a message from President Barack Obama, Secretary Chu highlighted the importance of safety and security in the nuclear

  15. GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Questions | Department of Energy GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions November 23, 2015 - 2:57pm Addthis GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model allows researchers and analysts to fully evaluate the energy and emission

  16. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    reliability, flexibility, and efficiency of our electric grid. PDF icon GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges More Documents & ...

  17. Addressing the Challenges of RCCI Operation on a Light-Duty Multi...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ORNL and UW collaboration in evaluating and developing RCCI operation in fully built multi-cylinder engine to address hardware, aftertreatment, and control challenges PDF icon ...

  18. Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and...

    Energy.gov (indexed) [DOE]

    Department of Energy RFI Association of Home Appliance Manufacturers Comments on Smart Grid RFI ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges

  19. RE-SCHEDULED FROM JAN 22 TO JAN 28 - COLLOQUIUM: Addressing Big...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MBG Auditorium RE-SCHEDULED FROM JAN 22 TO JAN 28 - COLLOQUIUM: Addressing Big Data Challenges in Simulation-based Science Professor Manish Parashar Rutgers University ...

  20. Keynote Address: Cristin Dorgelo, White House Office of Science and Technology Policy

    Energy.gov [DOE]

    Cristin Dorgelo, Assistant Director of Grand Challenges for The White House Office of Science and Technology Policy will deliver a keynote address.

  1. Jackie Chen to give keynote address at ISC High performance conference...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    at ISC High performance conference in Germany - Sandia Energy Energy Search Icon Sandia ... Jackie Chen to give keynote address at ISC High performance conference in Germany Home...

  2. The Lessons of Practice: Domestic Policy Reform as a Way to Address...

    Open Energy Information (Open El) [EERE & EIA]

    Lessons of Practice: Domestic Policy Reform as a Way to Address Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Lessons of Practice: Domestic Policy...

  3. Galvin Electricity Initiative DOE RFI DOE RFI 2010-23251: Addressing...

    Energy Savers

    Galvin Electricity Initiative DOE RFI DOE RFI 2010-23251: Addressing Policy and Logistical Challenges to Smart Grid Implementation Galvin Electricity Initiative DOE RFI DOE RFI ...

  4. Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine

    Energy.gov [DOE]

    ORNL and UW collaboration in evaluating and developing RCCI operation in fully built multi-cylinder engine to address hardware, aftertreatment, and control challenges

  5. Genes and Genomics for Improving Energy Crops (Keynote Address - 2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Pennell, Roger

    2016-07-12

    Roger Pennell, Vice President of Trait Development at Ceres, Inc., delivers a keynote address at the 5th Annual DOE JGI User Meeting on March 25, 2010

  6. Tungsten impurity transport experiments in Alcator C-Mod to address...

    Office of Scientific and Technical Information (OSTI)

    Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER Citation Details In-Document Search Title: Tungsten impurity ...

  7. U-237: Mozilla Firefox CVE-2012-1950 Address Bar URI Spoofing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Addthis PROBLEM: Mozilla Firefox CVE-2012-1950 Address Bar URI Spoofing Vulnerability PLATFORM: Version(s): Mozilla Firefox 6 - 12 ABSTRACT: To exploit this issue, an attacker...

  8. Identification of Export Control Classification Number - ITER

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare instances an

  9. Progress in Addressing DNFSB Recommendation 2002-1 Issues: Improving Accident Analysis Software Applications

    SciTech Connect (OSTI)

    VINCENT, ANDREW

    2005-04-25

    Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1 (''Quality Assurance for Safety-Related Software'') identified a number of quality assurance issues on the use of software in Department of Energy (DOE) facilities for analyzing hazards, and designing and operating controls to prevent or mitigate potential accidents. Over the last year, DOE has begun several processes and programs as part of the Implementation Plan commitments, and in particular, has made significant progress in addressing several sets of issues particularly important in the application of software for performing hazard and accident analysis. The work discussed here demonstrates that through these actions, Software Quality Assurance (SQA) guidance and software tools are available that can be used to improve resulting safety analysis. Specifically, five of the primary actions corresponding to the commitments made in the Implementation Plan to Recommendation 2002-1 are identified and discussed in this paper. Included are the web-based DOE SQA Knowledge Portal and the Central Registry, guidance and gap analysis reports, electronic bulletin board and discussion forum, and a DOE safety software guide. These SQA products can benefit DOE safety contractors in the development of hazard and accident analysis by precluding inappropriate software applications and utilizing best practices when incorporating software results to safety basis documentation. The improvement actions discussed here mark a beginning to establishing stronger, standard-compliant programs, practices, and processes in SQA among safety software users, managers, and reviewers throughout the DOE Complex. Additional effort is needed, however, particularly in: (1) processes to add new software applications to the DOE Safety Software Toolbox; (2) improving the effectiveness of software issue communication; and (3) promoting a safety software quality assurance culture.

  10. Recommendations to Address Power Reliability Concerns Raised as a Result of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pending Environmental Regulations for Electric Generation Stations | Department of Energy to Address Power Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Recommendations to Address Power Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant Secretary Patricia Hoffman on recommendations to

  11. 2016 Annual Merit Review and Peer Evaluation Plenary – Keynote Address (Text Version)

    Energy.gov [DOE]

    This is the text version of the 2016 Annual Merit Review and Peer Evaluation Meeting Plenary – Keynote Address video, which includes the keynote address by the Honorable Byron Dorgan, U.S. Senate (retired) and an introduction by David Friedman, Acting Assistant Secretary, Office of Energy Efficiency and Renewable Energy.

  12. WIPP Documents - All documents by number

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Note: Documents that do not have document numbers are not included in this listing. Large file size alert This symbol means the document may be a large file size. All documents by number Common document prefixes DOE/CAO DOE/TRU DOE/CBFO DOE/WIPP DOE/EA NM DOE/EIS Other DOE/CAO Back to top DOE/CAO 95-1095, Oct. 1995 Remote Handled Transuranic Waste Study This study was conducted to satisfy the requirements defined by the WIPP Land Withdrawal Act and considered by DOE to be a prudent exercise in

  13. Approximate resolution of hard numbering problems

    SciTech Connect (OSTI)

    Bailleux, O.; Chabrier, J.J.

    1996-12-31

    We present a new method for estimating the number of solutions of constraint satisfaction problems. We use a stochastic forward checking algorithm for drawing a sample of paths from a search tree. With this sample, we compute two values related to the number of solutions of a CSP instance. First, an unbiased estimate, second, a lower bound with an arbitrary low error probability. We will describe applications to the Boolean Satisfiability problem and the Queens problem. We shall give some experimental results for these problems.

  14. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  15. U.S. Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) U.S. Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 181,241 195,869 203,990 215,815 215,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) U.S. Natural

  16. South Dakota Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) South Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 72 69 74 68 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) South Dakota Natural Gas

  17. New Mexico Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New Mexico Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,887 13,791 14,171 14,814 14,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New Mexico

  18. New York Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New York Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 988 1,170 1,589 1,731 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New York Natural Gas

  19. North Dakota Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) North Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,561 7,379 9,363 11,532 12,799 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) North Dakota

  20. West Virginia Natural Gas Number of Oil Wells (Number of Elements)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) West Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,373 2,509 2,675 2,606 2,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) West Virginia

  1. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  2. Climate Zone Number 1 | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  3. Nevada Number of Natural Gas Consumers

    Annual Energy Outlook

    760,391 764,435 772,880 782,759 794,150 808,970 1987-2014 Sales 764,435 772,880 782,759 794,150 808,970 1997-2014 Commercial Number of Consumers 41,303 40,801 40,944 41,192 41,710 ...

  4. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  5. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    ,102,001 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1987-2014 Sales 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1997-2014 Commercial Number of Consumers 113,630...

  6. Pennsylvania Number of Natural Gas Consumers

    Annual Energy Outlook

    1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 618 606 604 540 627 666 1967-2014 Industrial Number of Consumers 4,745 4,624 5,007 5,066 5,024 5,084 1987-2014...

  7. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  8. Oklahoma Number of Natural Gas Consumers

    Annual Energy Outlook

    924,745 914,869 922,240 927,346 931,981 937,237 1987-2014 Sales 914,869 922,240 927,346 931,981 937,237 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers ...

  9. New Mexico Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    560,479 559,852 570,637 561,713 572,224 614,313 1987-2014 Sales 559,825 570,592 561,652 572,146 614,231 1997-2014 Transported 27 45 61 78 82 1997-2014 Commercial Number of...

  10. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers...

  11. New Hampshire Number of Natural Gas Consumers

    Annual Energy Outlook

    96,924 95,361 97,400 99,738 98,715 99,146 1987-2014 Sales 95,360 97,400 99,738 98,715 99,146 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 16,937 16,645 ...

  12. Minnesota Number of Natural Gas Consumers

    Annual Energy Outlook

    423,703 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1987-2014 Sales 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1997-2014 Commercial Number of Consumers 131,801 132,163 ...

  13. Energy By The Numbers: An Energy Revolution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy By The Numbers: An Energy Revolution Energy By The Numbers: An Energy Revolution

  14. Investigation of Rossby-number similarity in the neutral boundary layer using large-eddy simulation

    SciTech Connect (OSTI)

    Ohmstede, W.D.; Cederwall, R.T.; Meyers, R.E.

    1988-01-01

    One special case of particular interest, especially to theoreticians, is the steady-state, horizontally homogeneous, autobarotropic (PLB), hereafter referred to as the neutral boundary layer (NBL). The NBL is in fact a 'rare' atmospheric phenomenon, generally associated with high-wind situations. Nevertheless, there is a disproportionate interest in this problem because Rossby-number similarity theory provides a sound approach for addressing this issue. Rossby-number similarity theory has rather wide acceptance, but because of the rarity of the 'true' NBL state, there remains an inadequate experimental database for quantifying constants associated with the Rossby-number similarity concept. Although it remains a controversial issue, it has been proposed that large-eddy simulation (LES) is an alternative to physical experimentation for obtaining basic atmospherc 'data'. The objective of the study reported here is to investigate Rossby-number similarity in the NBL using LES. Previous studies have not addressed Rossby-number similarity explicitly, although they made use of it in the interpretation of their results. The intent is to calculate several sets of NBL solutions that are ambiguous relative to the their respective Rossby numbers and compare the results for similarity, or the lack of it. 14 refs., 1 fig.

  15. Second Five-Year Plan to Address Uranium Contamination in the Navajo Nation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Second Five-Year Plan to Address Uranium Contamination in the Navajo Nation Second Five-Year Plan to Address Uranium Contamination in the Navajo Nation April 3, 2015 - 4:31pm Addthis What does this project do? Goal 1. Protect human health and the environment. Federal agencies recently completed a second Five-Year Plan to address uranium contamination on the Navajo Nation, which follows a progress report on the first plan that was initiated in January 2007. Contributing

  16. Secretary Chu to Address the Winter Meeting of the U.S. Conference of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mayors | Department of Energy to Address the Winter Meeting of the U.S. Conference of Mayors Secretary Chu to Address the Winter Meeting of the U.S. Conference of Mayors January 19, 2011 - 12:00am Addthis WASHINGTON, D.C. - US Energy Secretary Steven Chu will address the 79th winter meeting of the U.S. Conference of Mayors. Secretary Chu will attend the Energy Standing Committee session of the conference where he will discuss the importance of clean energy to our economic competitiveness.

  17. RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges. | Department of Energy RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges. RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges. RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges. RedSeal's core technology is the ability to understand the access control of the network as a whole - not simply the behavior of a single device. RedSeal analyzes the interactions of firewalls,

  18. U.S.-China Clean Energy Research Center Issues Solicitation to Address the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy-Water Nexus | Department of Energy Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus U.S.-China Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus March 4, 2015 - 4:31pm Addthis News Media Contact 202 586 4940 DOENews@hq.doe.gov U.S.-China Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus WASHINGTON - Today the U.S. Department of Energy (DOE) issued a $12.5 million Funding Opportunity

  19. April 30, 2008; HSS/Union Working Group Meeting to address training - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HSS/UNION MEETING TO ADDRESS TRAINING INTEGRATED EXECUTIVE SUMMARY AND FINAL ACTION LIST HSS and the labor unions who participated in the initial 2007 HSS Focus Group meetings agreed to a path forward in which various unions combined to form core working groups to address union identified issues by topical area. The following is a synthesis of actions/activities identified in the April 30 HSS/Union meeting to address training issues with focus in the areas of the development of DOE-wide HAMMER

  20. Louisiana Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    893,400 897,513 963,688 901,635 903,686 888,023 1987-2015 Sales 893,400 897,513 963,688 901,635 903,686 888,023 1997-2015 Transported 0 0 0 0 0 0 1997-2015 Commercial Number of Consumers 58,562 58,749 63,381 59,147 58,996 57,873 1987-2015 Sales 58,501 58,685 63,256 58,985 58,823 57,695 1998-2015 Transported 61 64 125 162 173 178 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 461 441 415 488 530 515 1967-2015 Industrial Number of Consumers 942 920 963 916 883 845 1987-2015 Sales

  1. Maine Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    21,142 22,461 23,555 24,765 27,047 31,011 1987-2015 Sales 21,141 22,461 23,555 24,765 27,047 31,011 1997-2015 Transported 1 0 0 0 0 0 2010-2015 Commercial Number of Consumers 9,084 9,681 10,179 11,415 11,810 11,888 1987-2015 Sales 7,583 8,081 8,388 9,481 9,859 10,216 1998-2015 Transported 1,501 1,600 1,791 1,934 1,951 1,672 1999-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 642 681 718 714 765 847 1967-2015 Industrial Number of Consumers 94 102 108 120 126 136 1987-2015 Sales 26 29

  2. Mississippi Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    436,840 442,479 442,840 445,589 440,252 439,359 1987-2015 Sales 436,840 439,511 440,171 442,974 440,252 439,359 1997-2015 Transported 0 2,968 2,669 2,615 0 0 2010-2015 Commercial Number of Consumers 50,537 50,636 50,689 50,153 49,911 49,821 1987-2015 Sales 50,503 50,273 50,360 49,829 49,870 49,766 1998-2015 Transported 34 363 329 324 41 55 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 419 400 352 388 445 395 1967-2015 Industrial Number of Consumers 980 982 936 933 943 930

  3. Missouri Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    348,549 1,342,920 1,389,910 1,357,740 1,363,286 1,369,204 1987-2015 Sales 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1,369,204 1997-2015 Transported 0 0 0 0 0 0 2010-2015 Commercial Number of Consumers 138,670 138,214 144,906 142,495 143,134 141,216 1987-2015 Sales 137,342 136,843 143,487 141,047 141,587 140,144 1998-2015 Transported 1,328 1,371 1,419 1,448 1,547 1,072 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 441 451 378 453 509 435 1967-2015 Industrial Number of

  4. Montana Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    257,322 259,046 259,957 262,122 265,849 269,766 1987-2015 Sales 256,841 258,579 259,484 261,637 265,323 269,045 1997-2015 Transported 481 467 473 485 526 721 2005-2015 Commercial Number of Consumers 34,002 34,305 34,504 34,909 35,205 35,777 1987-2015 Sales 33,652 33,939 33,967 34,305 34,558 35,022 1998-2015 Transported 350 366 537 604 647 755 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 602 651 557 601 612 541 1967-2015 Industrial Number of Consumers 384 381 372 372 369 366

  5. Nebraska Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    510,776 514,481 515,338 527,397 522,408 525,165 1987-2015 Sales 442,413 446,652 447,617 459,712 454,725 457,504 1997-2015 Transported 68,363 67,829 67,721 67,685 67,683 67,661 1997-2015 Commercial Number of Consumers 56,246 56,553 56,608 58,005 57,191 57,521 1987-2015 Sales 40,348 40,881 41,074 42,400 41,467 41,718 1998-2015 Transported 15,898 15,672 15,534 15,605 15,724 15,803 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 569 568 468 555 567 512 1967-2015 Industrial Number of

  6. Alabama Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    778,985 772,892 767,396 765,957 769,900 768,568 1986-2015 Sales 778,985 772,892 767,396 765,957 769,900 768,568 1997-2015 Transported 0 0 0 0 0 0 1997-2015 Commercial Number of Consumers 68,163 67,696 67,252 67,136 67,847 67,746 1986-2015 Sales 68,017 67,561 67,117 67,006 67,718 67,619 1998-2015 Transported 146 135 135 130 129 127 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 397 371 320 377 406 368 1967-2015 Industrial Number of Consumers 3,039 2,988 3,045 3,143 3,244 3,300

  7. Alaska Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    121,166 121,736 122,983 124,411 126,416 128,605 1986-2015 Sales 121,166 121,736 122,983 124,411 126,416 128,605 1997-2015 Commercial Number of Consumers 12,998 13,027 13,133 13,246 13,399 13,549 1986-2015 Sales 12,673 12,724 13,072 13,184 13,336 13,529 1998-2015 Transported 325 303 61 62 63 20 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 1,225 1,489 1,515 1,411 1,338 1,363 1967-2015 Industrial Number of Consumers 3 5 3 3 1 4 1987-2015 Sales 2 2 3 2 1 4 1998-2015 Transported 1

  8. Arkansas Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    549,970 551,795 549,959 549,764 549,034 550,108 1986-2015 Sales 549,970 551,795 549,959 549,764 549,034 550,108 1997-2015 Commercial Number of Consumers 67,987 67,815 68,765 68,791 69,011 69,265 1986-2015 Sales 67,676 67,454 68,151 68,127 68,291 68,438 1998-2015 Transported 311 361 614 664 720 827 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 592 590 603 692 734 688 1967-2015 Industrial Number of Consumers 1,079 1,133 990 1,020 1,009 1,023 1986-2015 Sales 580 554 523 513 531

  9. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  10. North Dakota Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    23,585 125,392 130,044 133,975 137,972 141,465 1987-2015 Sales 123,585 125,392 130,044 133,975 137,972 141,465 1997-2015 Transported 0 0 0 0 0 0 2004-2015 Commercial Number of Consumers 17,823 18,421 19,089 19,855 20,687 21,345 1987-2015 Sales 17,745 18,347 19,021 19,788 20,623 21,283 1998-2015 Transported 78 74 68 67 64 62 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 578 596 543 667 677 577 1967-2015 Industrial Number of Consumers 307 259 260 266 269 286 1987-2015 Sales 255

  11. Oregon Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    682,737 688,681 693,507 700,211 707,010 717,999 1987-2015 Sales 682,737 688,681 693,507 700,211 707,010 717,999 1997-2015 Commercial Number of Consumers 77,370 77,822 78,237 79,276 80,480 80,877 1987-2015 Sales 77,351 77,793 78,197 79,227 80,422 80,772 1998-2015 Transported 19 29 40 49 58 105 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 352 390 368 386 353 319 1967-2015 Industrial Number of Consumers 1,053 1,066 1,076 1,085 1,099 1,117 1987-2015 Sales 821 828 817 821 839 853

  12. Rhode Island Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    25,204 225,828 228,487 231,763 233,786 236,323 1987-2015 Sales 225,204 225,828 228,487 231,763 233,786 236,323 1997-2015 Commercial Number of Consumers 23,049 23,177 23,359 23,742 23,934 24,088 1987-2015 Sales 21,507 21,421 21,442 21,731 21,947 22,084 1998-2015 Transported 1,542 1,756 1,917 2,011 1,987 2,004 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 454 468 432 490 551 499 1967-2015 Industrial Number of Consumers 249 245 248 271 266 260 1987-2015 Sales 57 53 56 62 62 48

  13. South Carolina Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    570,797 576,594 583,633 593,286 605,644 620,555 1987-2015 Sales 570,797 576,594 583,633 593,286 605,644 620,555 1997-2015 Commercial Number of Consumers 55,853 55,846 55,908 55,997 56,323 56,871 1987-2015 Sales 55,776 55,760 55,815 55,902 56,225 56,768 1998-2015 Transported 77 86 93 95 98 103 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 432 396 383 426 451 413 1967-2015 Industrial Number of Consumers 1,325 1,329 1,435 1,452 1,442 1,438 1987-2015 Sales 1,139 1,137 1,215 1,223

  14. South Dakota Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    69,838 170,877 173,856 176,204 179,042 182,568 1987-2015 Sales 169,838 170,877 173,856 176,204 179,042 182,568 1997-2015 Commercial Number of Consumers 22,267 22,570 22,955 23,214 23,591 24,040 1987-2015 Sales 22,028 22,332 22,716 22,947 23,330 23,784 1998-2015 Transported 239 238 239 267 261 256 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 495 492 406 523 522 434 1967-2015 Industrial Number of Consumers 580 556 574 566 575 578 1987-2015 Sales 453 431 445 444 452 449 1998-2015

  15. Tennessee Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    ,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 1987-2015 Sales 1,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 1997-2015 Commercial Number of Consumers 127,914 128,969 130,139 131,091 131,027 132,392 1987-2015 Sales 127,806 128,866 130,035 130,989 130,931 132,294 1998-2015 Transported 108 103 104 102 96 98 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 439 404 345 411 438 401 1967-2015 Industrial Number of Consumers 2,702 2,729 2,679 2,581 2,595 2,651

  16. Number of Gas Producing Oil Wells

    Gasoline and Diesel Fuel Update

    73 0 1 2 3 4 5 6 7 8 9 10 11 12 Number of Consumers Eligible Participating Table 26. Number of consumers eligible and participating in a customer choice program in the residential sector, 2015 Figure 26. Top Five States with Participants in a Residential Customer Choice Program, 2015 California 10,969,597 6,712,311 441,523 Colorado 1,712,153 1,254,056 0 Connecticut 531,380 1,121 340 District of Columbia 147,895 147,867 17,167 Florida 701,981 17,626 16,363 Georgia 1,777,558 1,468,084 1,468,084

  17. Utah Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    821,525 830,219 840,687 854,389 869,052 891,917 1987-2015 Sales 821,525 830,219 840,687 854,389 869,052 891,917 1997-2015 Commercial Number of Consumers 61,976 62,885 63,383 64,114 65,134 66,143 1987-2015 Sales 61,929 62,831 63,298 63,960 64,931 65,917 1998-2015 Transported 47 54 85 154 203 226 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 621 643 558 646 586 541 1967-2015 Industrial Number of Consumers 293 286 302 323 326 320 1987-2015 Sales 205 189 189 187 176 157 1998-2015

  18. Vermont Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    38,047 38,839 39,917 41,152 42,231 43,267 1987-2015 Sales 38,047 38,839 39,917 41,152 42,231 43,267 1997-2015 Commercial Number of Consumers 5,137 5,256 5,535 5,441 5,589 5,696 1987-2015 Sales 5,137 5,256 5,535 5,441 5,589 5,696 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 464 472 418 873 864 1,039 1967-2015 Industrial Number of Consumers 38 36 38 13 13 14 1987-2015 Sales 37 35 38 13 13 14 1998-2015 Transported 1 1 0 0 0 0 1999-2015 Average Consumption per Consumer (Thousand

  19. Washington Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    067,979 1,079,277 1,088,762 1,102,318 1,118,193 1,133,629 1987-2015 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1,133,629 1997-2015 Commercial Number of Consumers 99,231 99,674 100,038 100,939 101,730 102,266 1987-2015 Sales 99,166 99,584 99,930 100,819 101,606 102,129 1998-2015 Transported 65 90 108 120 124 137 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 517 567 534 553 535 489 1967-2015 Industrial Number of Consumers 3,372 3,353 3,338 3,320 3,355 3,385 1987-2015

  20. West Virginia Number of Natural Gas Consumers

    U.S. Energy Information Administration (EIA) (indexed site)

    344,131 342,069 340,256 340,102 338,652 337,643 1987-2015 Sales 344,125 342,063 340,251 340,098 338,649 337,642 1997-2015 Transported 6 6 5 4 3 1 1997-2015 Commercial Number of Consumers 34,063 34,041 34,078 34,283 34,339 34,448 1987-2015 Sales 33,258 33,228 33,257 33,466 33,574 33,706 1998-2015 Transported 805 813 821 817 765 742 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 731 708 664 707 702 656 1967-2015 Industrial Number of Consumers 102 94 97 95 92 101 1987-2015 Sales 32