Final Report on Experimental and Numerical Modeling Activities...
Office of Scientific and Technical Information (OSTI)
Technical Report: Final Report on Experimental and Numerical Modeling Activities for the Newark Basin Citation Details In-Document Search Title: Final Report on Experimental and ...
Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...
Open Energy Information (Open El) [EERE & EIA]
Numerical Modeling At Dixie Valley Geothermal Area (McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling...
Numerical Modeling At Raft River Geothermal Area (1983) | Open...
Open Energy Information (Open El) [EERE & EIA]
Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983)...
Numerical Modeling At Neal Hot Springs Geothermal Area (U.S....
Open Energy Information (Open El) [EERE & EIA]
Area Exploration Technique Numerical Modeling Activity Date 2011 - 2011 Usefulness useful DOE-funding Unknown Exploration Basis A numerical reservoir model was created to...
numerical modeling | OpenEI Community
Open Energy Information (Open El) [EERE & EIA]
Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...
Numerical Modeling | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
4.0 4.1 Jerome Sacks,William Welch,Toby Mitchell,Henry Wynn. 1989. Design and Analysis of Computer Experiments. Statistical Science. . Page Area Activity Start Date Activity End...
Numerical Modeling Studies of The Dissolution-Diffusion-Convection...
Office of Scientific and Technical Information (OSTI)
Numerical Modeling Studies of The Dissolution-Diffusion-Convection ProcessDuring CO2 Storage in Saline Aquifers Citation Details In-Document Search Title: Numerical Modeling ...
Numerical modeling of water injection into vapor-dominatedgeothermal...
Office of Scientific and Technical Information (OSTI)
Technical Report: Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs Citation Details In-Document Search Title: Numerical modeling of water injection ...
Advanced Numerical Model for Irradiated Concrete
Giorla, Alain B.
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some
NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION
Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.
2011-11-01
Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.
An Updated Numerical Model Of The Larderello-Travale Geothermal...
Open Energy Information (Open El) [EERE & EIA]
Numerical Model Of The Larderello-Travale Geothermal System, Italy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Updated Numerical Model Of...
Numerical Modeling Of Basin And Range Geothermal Systems | Open...
Open Energy Information (Open El) [EERE & EIA]
for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal...
Numerical Modelling of Geothermal Systems a Short Introduction...
Open Energy Information (Open El) [EERE & EIA]
Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short...
Numerical Modeling of PCCI Combustion | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
PCCI Combustion Numerical Modeling of PCCI Combustion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Livermore National Laboratory/University of Michigan 2004_deer_flowers.pdf (252.97 KB) More Documents & Publications Modeling of HCCI and PCCI Combustion Processes Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Numerical Modeling of HCCI Combustion
Numerical Modeling At Coso Geothermal Area (1995) | Open Energy...
Open Energy Information (Open El) [EERE & EIA]
transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling...
Numerical Modeling At Lightning Dock Geothermal Area (O'Brien...
Open Energy Information (Open El) [EERE & EIA]
Basin Additional References Retrieved from "http:en.openei.orgwindex.php?titleNumericalModelingAtLightningDockGeothermalArea(O%27Brien,EtAl.,1984)&oldid762871...
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Gunzburger, Max
2015-02-17
We have treated the modeling, analysis, numerical analysis, and algorithmic development for nonlocal models of diffusion and mechanics. Variational formulations were developed and finite element methods were developed based on those formulations for both steady state and time dependent problems. Obstacle problems and optimization problems for the nonlocal models were also treated and connections made with fractional derivative models.
Use of ARM observations and numerical models to determine radiative...
Office of Scientific and Technical Information (OSTI)
We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the ...
Rapid installation of numerical models in multiple parent codes
Brannon, R.M.; Wong, M.K.
1996-10-01
A set of``model interface guidelines``, called MIG, is offered as a means to more rapidly install numerical models (such as stress-strain laws) into any parent code (hydrocode, finite element code, etc.) without having to modify the model subroutines. The model developer (who creates the model package in compliance with the guidelines) specifies the model`s input and storage requirements in a standardized way. For portability, database management (such as saving user inputs and field variables) is handled by the parent code. To date, NUG has proved viable in beta installations of several diverse models in vectorized and parallel codes written in different computer languages. A NUG-compliant model can be installed in different codes without modifying the model`s subroutines. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort potentially reducing the cost of installing and sharing models.
Numerical Modeling of HCCI Combustion | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
HCCI Combustion Numerical Modeling of HCCI Combustion Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_aceves.pdf (840 KB) More Documents & Publications High Fidelity Modeling of Premixed Charge Compression Ignition Engines New Methodologies for Analysis of Premixed Charge Compression Ignition Engines Modeling of HCCI and PCCI Combustion Processes
AEETES---A solar reflux receiver thermal performance numerical model
Hogan, R.E. Jr.
1991-01-01
Reflux solar receivers for dish-Stirling electric power generation systems are currently being investigated by several companies and laboratories. In support of these efforts, the AEETES thermal performance numerical model has been developed to predict thermal performance of pool-boiler and heat-pipe reflux receivers. The formulation of the AEETES numerical model, which is applicable to axisymmetric geometries with asymmetric incident fluxes, is presented in detail. Thermal efficiency predictions agree to within 4.1% with test data from on-sun tests of a pool-boiler reflux receiver. Predicted absorber and sidewall temperatures agree with thermocouple data to within 3.3.% and 7.3%, respectively. The importance of accounting for the asymmetric incident fluxes is demonstrated in comparisons with predictions using azimuthally averaged variables. The predicted receiver heat losses are characterized in terms of convective, solar and infrared radiative, and conductive heat transfer mechanisms. 27 refs., 9 figs., 4 tabs.
ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS
Chiswell, S.; Buckley, R.
2009-01-15
During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Du, Qiang
2014-11-12
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next
Numerical simulation model for vertical flow in geothermal wells
Tachimori, M.
1982-01-01
A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.
Numerical Model for Conduction-Cooled Current Lead Heat Loads
White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY
2011-06-10
Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).
Comparison of numerical models of a pyrotechnic device
Pierce, K.G.
1986-01-01
The predictions of two numerical models of a hot-wire initiated pyrotechnic device are compared to each other and to experimental results. Both models employ finite difference approximations to the heat diffusion equation in cylindrical coordinates. The temperature dependence of the thermal properties of the pyrotechnic materials and of the bridgewire are modeled. An Arrhenius' model is used to describe the exothermic reaction in the powder. One model employs a single radial coordinate and predicts the radial temperature distribution in the bridgewire and surrounding powder mass. In addition to the radial coordinate, the other model also employs a longitudinal coordinate to predict the temperature distribution parallel to the axis of the bridgewire. The predictions of the two-dimensional model concerning the energy requirements for ignition and the energy losses from the ends of the bridgewire are presented. A comparison of the predictions of the two models and the development of thermal gradients are employed to define the regime where the assumption, in the one-dimensional model, of negligible heat transfer axial to the bridgewire does not lead to significant error. The general problems associated with predicting ignition from a diffusion model are also discussed.
On Numerical Considerations for Modeling Reactive Astrophysical Shocks
Papatheodore, Thomas L; Messer, Bronson
2014-01-01
Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds (and associated quantities) is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in Type Ia supernovae.
Numerical modeling of solar magnetostatic structures bounded by current sheets
Pizzo, V.J. )
1990-12-01
A numerical method for efficiently determining the magnetostatic equilibrium configuration of erupted solar flux concentrations, such as sunspots and flux tubes, is presented. The magnetic structures are taken to be approximately vertically oriented and axisymmetric in the surface layers and are assumed to be isolated from the surrounding photosphere by a vanishingly thin current sheet. Since the location of the current sheet is initially unknown, the final structure is generated iteratively as a free-surface problem, with the magnetic configuration for each iterate being obtained from the horizontal force balance equation, subject to the appropriate boundary conditions. Multigrid methods are used at each stage to solve the equilibrium equation, which is mapped algebraically into a body-fitted coordinate system via transfinite interpolation techniques. Several model flux tubes and sunspots are computed to illustrate the procedure, and the accuracy of the numerical method is assessed against exact analytic solutions. 32 refs.
SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION
Dixon, K.; Knox, A.
2012-02-13
Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long-term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short-term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a non-reactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the non-reactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1-D, numerical model was created to qualitatively predict the long-term performance of apatite based on the findings from the column study. The results of the modeling showed that apatite could delay the breakthrough of some metals for hundreds of years under typical groundwater flow velocities.
Progress report on LBL's numerical modeling studies on Cerro Prieto
Halfman-Dooley, S.E.; Lippman, M.J.; Bodvarsson, G.S.
1989-04-01
An exploitation model of the Cerro Prieto geothermal system is needed to assess the energy capacity of the field, estimate its productive lifetime and develop an optimal reservoir management plan. The model must consider the natural state (i.e., pre-exploitation) conditions of the system and be able to predict changes in the reservoir thermodynamic conditions (and fluid chemistry) in response to fluid production (and injection). This paper discusses the results of a three-dimensional numerical simulation of the natural state conditions of the Cerro Prieto field and compares computed and observed pressure and temperature/enthalpy changes for the 1973--1987 production period. 16 refs., 24 figs., 2 tabs.
Numerical modeling of the SNS H{sup ?} ion source
Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan; Stoltz, Peter H.
2015-04-08
Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved in order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report
Numerical Modeling of Impact Initiation of High Explosives
Wu, C J; Piggott, T; Yoh, J; Reaugh, J
2006-05-31
We performed continuum mechanics simulations to examine the behavior of energetic materials in Ballistic Chamber Impact (BIC) experiments, using an Arbitrary Lagrangian-Eulerian code (ALE3D). Our simulations revealed that interface friction plays an important role in inducing the formation of shear bands, which result in 'hot spots' for ignition. The temperature localization during BIC impact was found to be significant in materials with high yield strength. In those materials, there are multiple locations inside shear bands can achieve temperatures exceeding the threshold temperature for reaction. In addition, we investigated the relevant parameters influencing the pressure profile of a BIC test by numerical analysis from a simple phenomenological model. To our surprise, we found that the peaks of BIC pressure profiles not only can be a result of multi-center chemical reactions, but can also arise from factors associated apparatus configuration.
Numerical modeling of self-limiting and self-enhancing caprock...
Office of Scientific and Technical Information (OSTI)
modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir Citation Details In-Document Search Title: Numerical modeling of ...
Numerical Modeling At Coso Geothermal Area (2010) | Open Energy...
Open Energy Information (Open El) [EERE & EIA]
model was developed using Poly3D to simulate the distribution and magnitude of stress concentration in the vicinity of the borehole floor, and determine the conditions...
Numerical Modeling At Coso Geothermal Area (1997) | Open Energy...
Open Energy Information (Open El) [EERE & EIA]
velocity structure have been estimated. It is suggested that the identification and modeling of guided waves is an effective tool to locate fracture-induced, low-velocity...
Numerical Modeling At Coso Geothermal Area (2006) | Open Energy...
Open Energy Information (Open El) [EERE & EIA]
transport and exchange analysis Notes Finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and...
Numerical modeling of aerial bursts and ablation melting of Libyan...
Office of Scientific and Technical Information (OSTI)
Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 58 GEOSCIENCES; ABLATION; DESERTS; GLASS; MELTING; MATHEMATICAL MODELS; LIBYAN ARAB ...
Numerically Solvable Model for Resonant Collisions of Electronswith Diatomic Molecules
Houfek, Karel; Rescigno, T.N.; McCurdy, C.W.
2006-01-27
We describe a simple model for electron-molecule collisions that has one nuclear and one electronic degree of freedom and that can be solved to arbitrarily high precision, without making the Born-Oppenheimer approximation, by employing a combination of the exterior complex scaling method and a finite-element implementation of the discrete variable representation. We compare exact cross sections for vibrational excitation and dissociative attachment with results obtained using the local complex potential approximation as commonly applied in the ''boomerang'' model, and suggest how this two-dimensional model can be used to test the underpinnings of contemporary nonlocal approximations to resonant collisions.
Numerical Modeling of the Nucleation Conditions of Petal-Centerline...
Open Energy Information (Open El) [EERE & EIA]
model using Poly3D has been developed to investigate the conditions in which the stress concentration below the floor of a borehole can cause tensile stress necessary to...
Numerical Modeling At Dixie Valley Geothermal Area (Benoit, 1999...
Open Energy Information (Open El) [EERE & EIA]
large geothermal flow test was performed where there was 6 geothermal wells flowing at once and 8 idle wells being monitored. The conceptual model developed from this flow test...
Advances in the numerical modeling of field-reversed configurations
Belova, Elena V.; Davidson, Ronald C.; Ji, Hantao; Yamada, Masaaki
2006-05-15
The field-reversed configuration (FRC) is a compact torus with little or no toroidal magnetic field. A theoretical understanding of the observed FRC equilibrium and stability properties presents significant challenges due to the high plasma beta, plasma flows, large ion gyroradius, and the stochasticity of the particle orbits. Advanced numerical simulations are generally required to describe and understand the detailed behavior of FRC plasmas. Results of such simulations are presented in this paper. It is shown that 3D nonlinear hybrid simulations using the HYM code [E. V. Belova et al., Phys. Plasmas 7, 4996 (2000)] reproduce all major experimentally observed stability properties of elongated (theta-pinch-formed) FRCs. Namely, the scaling of the growth rate of the n=1 tilt mode with the S*/E parameter (S* is the FRC kinetic parameter, E is elongation, and n is toroidal mode number), the nonlinear saturation of the tilt mode, ion toroidal spin-up, and the growth of the n=2 rotational mode have been demonstrated and studied in detail. The HYM code has also been used to study stability properties of FRCs formed by the counterhelicity spheromak merging method. A new stability regime has been found for FRCs with elongation E{approx}1, which requires a close-fitting conducting shell and energetic beam ion stabilization.
Numerical modeling of an all vanadium redox flow battery.
Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.
2014-01-01
We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.
Numerical simulations of altocumulus with a cloud resolving model
Liu, S.; Krueger, S.K.
1996-04-01
Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.
Joint physical and numerical modeling of water distribution networks.
Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.; Kajder, Karen C.; Webb, Stephen Walter; Cappelle, Malynda A.; Khalsa, Siri Sahib; Wright, Jerome L.; Sun, Amy Cha-Tien; Chwirka, J. Benjamin; Hartenberger, Joel David; McKenna, Sean Andrew; van Bloemen Waanders, Bart Gustaaf; McGrath, Lucas K.; Ho, Clifford Kuofei
2009-01-01
This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.
Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135
Oran, E.S.; Boris, J.P. )
1991-01-01
Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonation transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.
Xing, Lu; Cullin, James; Spitler, Jeffery; Im, Piljae; Fisher, Daniel
2011-01-01
A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.
Final Report on Experimental and Numerical Modeling Activities...
Office of Scientific and Technical Information (OSTI)
Authors: Mukhopadhyay, Sumit ; Spycher, Nicolas ; Pester, Nick ; Saldi, Giuseppe ; Beyer, John ; Houseworth, Jim ; Knauss, Kevin Publication Date: 2014-09-04 OSTI Identifier: ...
ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL A NUMERICAL MODELING ANALYSIS
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea
2014-04-18
This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.
Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium
Taylor, S.R.; Kamm, J.R.
1993-11-01
The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.
Numerical Investigation of Flapwise-Torsional Vibration Model of a Smart Section Blade with Microtab
Li, Nailu; Balas, Mark J.; Yang, Hua; Jiang, Wei; Magar, Kaman T.
2015-01-01
This study presents a method to develop an aeroelastic model of a smart section blade equipped with microtab. The model is suitable for potential passive vibration control study of the blade section in classic flutter. Equations of the model are described by the nondimensional flapwise and torsional vibration modes coupled with the aerodynamic model based on the Theodorsen theory and aerodynamic effects of the microtab based on the wind tunnel experimental data. The aeroelastic model is validated using numerical data available in the literature and then utilized to analyze the microtab control capability on flutter instability case and divergence instabilitymore » case. The effectiveness of the microtab is investigated with the scenarios of different output controllers and actuation deployments for both instability cases. The numerical results show that the microtab can effectively suppress both vibration modes with the appropriate choice of the output feedback controller.« less
NUMERICAL VERIFICATION OF THE RELAP-7 CORE CHANNEL SINGLE-PHASE MODEL
Haihua Zhao; Ling Zou; Hongbin Zhang; Richard Martineau
2014-06-01
The RELAP-7 code is the next generation of nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). All the physics in RELAP-7 are fully coupled and the errors resulted from the traditional operator-splitting approach are eliminated. By using 2nd order methods in both time and space and eliminating operator-splitting errors, the numerical error of RELAP-7 can be minimized. Numerical verification is the process to verify the orders of numerical methods. It is an important part of modern verification and validation process. The core channel component in RELAP-7 is designed to simulate coolant flow as well as the conjugated heat transfer between coolant flow and the fuel rod. A special treatment at fuel centerline to avoid numerical singularity for the cylindrical heat conduction in the continuous finite element mesh is discussed. One steady state test case and one fast power up transient test case are utilized for the verification of the core channel model with single-phase flow. Analytical solution for the fuel pin temperature and figures of merit such as peak clad temperature and peak fuel temperature are used to define numerical errors. These cases prove that the mass and energy are well conserved and 2nd order convergence rates for both time and space are achieved in the core channel model.
PNNL Support of the DOE GTO Model Comparison Activity
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
PNNL Support of the DOE GTO Model Comparison Activity Principal Investigator: Tim Scheibe Pacific Northwest National Laboratory Modeling Track Project Officer: Lauren Boyd Total Project Funding: $550,000 April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Velo PNNL-SA-94295 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objective: Identify and quantify strengths and weaknesses of diverse numerical
On Improving Analytical Models of Cosmic Reionization for Matching Numerical Simulations
Kaurov, Alexander A.
2016-01-01
The methods for studying the epoch of cosmic reionization vary from full radiative transfer simulations to purely analytical models. While numerical approaches are computationally expensive and are not suitable for generating many mock catalogs, analytical methods are based on assumptions and approximations. We explore the interconnection between both methods. First, we ask how the analytical framework of excursion set formalism can be used for statistical analysis of numerical simulations and visual representation of the morphology of ionization fronts. Second, we explore the methods of training the analytical model on a given numerical simulation. We present a new code which emerged from this study. Its main application is to match the analytical model with a numerical simulation. Then, it allows one to generate mock reionization catalogs with volumes exceeding the original simulation quickly and computationally inexpensively, meanwhile reproducing large scale statistical properties. These mock catalogs are particularly useful for CMB polarization and 21cm experiments, where large volumes are required to simulate the observed signal.
CHEMICAL TRANSPORT IN A FISSURED BOCK: VERIFICATION OF A NUMERICAL MODEL
Rasmuson, A.; Narasimhan, T.N.; Neretnieks, I.
1982-04-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end, we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions with or without decay and source terms. The method is based on an integrated finite-difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10{sup -3} % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters is likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time
Vrnak, B.; ic, T.; Dumbovi?, M.; Temmer, M.; Mstl, C.; Veronig, A. M.; Taktakishvili, A.; Mays, M. L.; Odstr?il, D. E-mail: tzic@geof.hr E-mail: manuela.temmer@uni-graz.at E-mail: astrid.veronig@uni-graz.at E-mail: m.leila.mays@nasa.gov
2014-08-01
Real-time forecasting of the arrival of coronal mass ejections (CMEs) at Earth, based on remote solar observations, is one of the central issues of space-weather research. In this paper, we compare arrival-time predictions calculated applying the numerical ''WSA-ENLIL+Cone model'' and the analytical ''drag-based model'' (DBM). Both models use coronagraphic observations of CMEs as input data, thus providing an early space-weather forecast two to four days before the arrival of the disturbance at the Earth, depending on the CME speed. It is shown that both methods give very similar results if the drag parameter ? = 0.1 is used in DBM in combination with a background solar-wind speed of w = 400 km s{sup 1}. For this combination, the mean value of the difference between arrival times calculated by ENLIL and DBM is ?-bar =0.099.0 hr with an average of the absolute-value differences of |?|-bar =7.1 hr. Comparing the observed arrivals (O) with the calculated ones (C) for ENLIL gives O C = 0.3 16.9 hr and, analogously, O C = +1.1 19.1 hr for DBM. Applying ? = 0.2 with w = 450 km s{sup 1} in DBM, one finds O C = 1.7 18.3 hr, with an average of the absolute-value differences of 14.8 hr, which is similar to that for ENLIL, 14.1 hr. Finally, we demonstrate that the prediction accuracy significantly degrades with increasing solar activity.
2D numerical simulation of the MEP energy-transport model with a finite difference scheme
Romano, V. . E-mail: romano@dmi.unict.it
2007-02-10
A finite difference scheme of Scharfetter-Gummel type is used to simulate a consistent energy-transport model for electron transport in semiconductors devices, free of any fitting parameters, formulated on the basis of the maximum entropy principle. Simulations of silicon n{sup +}-n-n{sup +} diodes, 2D-MESFET and 2D-MOSFET and comparisons with the results obtained by a direct simulation of the Boltzmann transport equation and with other energy-transport models, known in the literature, show the validity of the model and the robustness of the numerical scheme.
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less
A Numerical Model of the Temperature Field of the Cast and Solidified Ceramic Material
Kavicka, Frantisek; Sekanina, Bohumil; Stransky, Karel; Stetina, Josef [Brno University of Technology, Brno, Technicka 2 (Czech Republic); Dobrovska, Jana [Technical University of Ostrava, Ostrava, Tr. 17.listopadu 17 (Czech Republic)
2010-06-15
Corundo-baddeleyit material (CBM)--EUCOR--is a heat- and wear-resistant material even at extreme temperatures. This article introduces a numerical model of solidification and cooling of this material in a non-metallic mould. The model is capable of determining the total solidification time of the casting and also the place of the casting which solidifies last. Furthermore, it is possible to calculate the temperature gradient in any point and time, and also determine the local solidification time and the solidification interval of any point. The local solidification time is one of the input parameters for the cooperating model of chemical heterogeneity. This second model and its application on samples of EUCOR prove that the applied method of measurement of chemical heterogeneity provides detailed quantitative information on the material structure and makes it possible to analyse the solidification process. The analysis of this process entails statistical processing of the results of the measurements of the heterogeneity of the components of EUCOR and performs correlation of individual components during solidification. The crystallisation process seems to be very complicated, where the macro- and microscopic segregations differ significantly. The verification of both numerical models was conducted on a real cast 350x200x400 mm block.
Ostermann, Lars; Seidel, Christian
2015-03-10
The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified by in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.
Numerical Modeling of the Lake Mary Road Bridge for Foundation Reuse Assessment
Sitek, M. A.; Bojanowski, C.; Lottes, S. A.
2015-04-01
This project uses numerical techniques to assess the structural integrity and capacity of the bridge foundations and, as a result, reduces the risk associated with reusing the same foundation for a new superstructure. Nondestructive test methods of different types were used in combination with the numerical modeling and analysis. The onsite tests included visual inspection, tomography, ground penetrating radar, drilling boreholes and coreholes, and the laboratory tests on recovered samples. The results were utilized to identify the current geometry of the structure with foundation, including the hidden geometry of the abutments and piers, and soil and foundation material properties. This data was used to build the numerical models and run computational analyses on a high performance computer cluster to assess the structural integrity of the bridge and foundations including the suitability of the foundation for reuse with a new superstructure and traffic that will increase the load on the foundations. Computational analysis is more cost-effective and gives an advantage of getting more detailed knowledge about the structural response. It also enables to go beyond non-destructive testing and find the failure conditions without destroying the structure under consideration.
Zarea, M.F.; Toumbas, D.N.; Philibert, C.E.; Deo, I.
1996-12-31
Gas transmission pipe resistance to external damage is a subject of great attention at Gaz de France and in Europe. Existing results cover part of the necessary criteria for the residual life of damaged pipelines, but more knowledge is needed on defect creation. The authors propose to complement existing experimental work which is limited to the explored range of parameters by validated numerical models. The first, simple static denting model aims at optimizing the conditions for calculating the residual stress distribution needed to assess the fatigue life of dents and dents and gouges. The second, more complex dynamic puncture model calculates both the puncture force and the puncture energy for a given pipe, excavator and tooth geometry. These models can contribute to enhance the external damage prevention policies of transmission pipeline operators.
Masada, Youhei; Sano, Takayoshi E-mail: sano@ile.osaka-u.ac.jp
2014-10-10
The mechanism of large-scale dynamos in rigidly rotating stratified convection is explored by direct numerical simulations (DNS) in Cartesian geometry. A mean-field dynamo model is also constructed using turbulent velocity profiles consistently extracted from the corresponding DNS results. By quantitative comparison between the DNS and our mean-field model, it is demonstrated that the oscillatory α{sup 2} dynamo wave, excited and sustained in the convection zone, is responsible for large-scale magnetic activities such as cyclic polarity reversal and spatiotemporal migration. The results provide strong evidence that a nonuniformity of the α-effect, which is a natural outcome of rotating stratified convection, can be an important prerequisite for large-scale stellar dynamos, even without the Ω-effect.
Monitoring and Numerical Modeling of Shallow CO{sub 2} Injection, Greene County, Missouri
Rovey, Charles; Gouzie, Douglas; Biagioni, Richard
2013-09-30
The project titled Monitoring and Numerical Modeling of Shallow CO{sub 2} Injection, Greene County, Missouri provided training for three graduate students in areas related to carbon capture and storage. Numerical modeling of CO{sub 2} injection into the St. Francois aquifer at the Southwest Power Plant Site in Greene County, Missouri indicates that up to 4.1 x 10{sup 5} metric tons of CO{sub 2} per year could be injected for 30 years without exceeding a 3 MPa differential injection pressure. The injected CO{sub 2} would remain sequestered below the top of the overlying caprock (St. Francois confining unit) for more than 1000 years. Geochemical modeling indicates that portions of the injected CO{sub 2} will react rapidly with trace minerals in the aquifer to form various solid carbonate mineral phases. These minerals would store significant portions of injected CO{sub 2} over geologic time scales. Finally, a GIS data base on the pore-fluid chemistry of the overlying aquifer system in Missouri, the Ozark aquifer, was compiled from many sources. This data base could become useful in monitoring for leakage from future CO{sub 2} sequestration sites.
Numeric-modeling sensitivity analysis of the performance of wind turbine arrays
Lissaman, P.B.S.; Gyatt, G.W.; Zalay, A.D.
1982-06-01
An evaluation of the numerical model created by Lissaman for predicting the performance of wind turbine arrays has been made. Model predictions of the wake parameters have been compared with both full-scale and wind tunnel measurements. Only limited, full-scale data were available, while wind tunnel studies showed difficulties in representing real meteorological conditions. Nevertheless, several modifications and additions have been made to the model using both theoretical and empirical techniques and the new model shows good correlation with experiment. The larger wake growth rate and shorter near wake length predicted by the new model lead to reduced interference effects on downstream turbines and hence greater array efficiencies. The array model has also been re-examined and now incorporates the ability to show the effects of real meteorological conditions such as variations in wind speed and unsteady winds. The resulting computer code has been run to show the sensitivity of array performance to meteorological, machine, and array parameters. Ambient turbulence and windwise spacing are shown to dominate, while hub height ratio is seen to be relatively unimportant. Finally, a detailed analysis of the Goodnoe Hills wind farm in Washington has been made to show how power output can be expected to vary with ambient turbulence, wind speed, and wind direction.
Numerical modeling of the action of an explosion on an iron slab
Sugak, S.G.; Fortov, V.E.; Kanel', G.I.; Ni, A.L.; Stel'makh, V.G.
1983-09-01
This article examines the explosion of a condensed high explosive (HE) by a flat Armco iron slab. The fundamental physical processes accompanying the nonstationary two-dimensional compression pulse propagation in a metal are analyzed, a mathematical model of the process is formulated, and its numerical characteristics are determined. A cylindrical charge of trinitrotoluene of 20 mm diameter and height, initiated at the axial point on the free surface, was mounted on a 10-mm-thick and 120-mm-diameter armco iron disk. A finite-difference method using a quadrangular computational mesh is employed. It is assumed that the process of detonation transformation occurs instantaneously and is characterized only by singularities in the equation of state. Numerical modeling of the loading of an iron slab by an explosion showed that the simple kinetic relationship proposed for the fracture computation will assure a realistic description of the fracture process. It is determined that the progress of a reversible polymorphic transformation in the specimen material substantially influences the nature of its fracture by explosion. The magnitude of the strain on the strength properties of the material must be taken into account in order to achieve a detailed description of the fracture.
Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)
2014-01-15
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice BhatnagarGrossKrook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.
Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere
Eliasson, B.; Stenflo, L.; Shukla, P. K.
2008-10-15
We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuir wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.
Anooshehpoor, Rasool; Purvance, Matthew D.; Brune, James N.; Preston, Leiph A.; Anderson, John G.; Smith, Kenneth D.
2006-09-29
This report covers the following projects: Shake table tests of precarious rock methodology, field tests of precarious rocks at Yucca Mountain and comparison of the results with PSHA predictions, study of the coherence of the wave field in the ESF, and a limited survey of precarious rocks south of the proposed repository footprint. A series of shake table experiments have been carried out at the University of Nevada, Reno Large Scale Structures Laboratory. The bulk of the experiments involved scaling acceleration time histories (uniaxial forcing) from 0.1g to the point where the objects on the shake table overturned a specified number of times. The results of these experiments have been compared with numerical overturning predictions. Numerical predictions for toppling of large objects with simple contact conditions (e.g., I-beams with sharp basal edges) agree well with shake-table results. The numerical model slightly underpredicts the overturning of small rectangular blocks. It overpredicts the overturning PGA for asymmetric granite boulders with complex basal contact conditions. In general the results confirm the approximate predictions of previous studies. Field testing of several rocks at Yucca Mountain has approximately confirmed the preliminary results from previous studies, suggesting that he PSHA predictions are too high, possibly because the uncertainty in the mean of the attenuation relations. Study of the coherence of wavefields in the ESF has provided results which will be very important in design of the canisters distribution, in particular a preliminary estimate of the wavelengths at which the wavefields become incoherent. No evidence was found for extreme focusing by lens-like inhomogeneities. A limited survey for precarious rocks confirmed that they extend south of the repository, and one of these has been field tested.
Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.
2013-08-24
Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.
A Numerical Algorithm for the Solution of a Phase-Field Model of Polycrystalline Materials
Dorr, M R; Fattebert, J; Wickett, M E; Belak, J F; Turchi, P A
2008-12-04
We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-18
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-18
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less
Taylor, G.; Dong, C.; Sun, S.
2010-03-18
A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The finite volume method and the standard MFE method are used to approximate the convection and dispersion terms respectively. The model is used to investigate the interaction of adsorption with transport and to extract information on effective adsorption distribution coefficients. Numerical examples in different fractured media illustrate the robustness and efficiency of the proposed numerical model.
Eckert, Andreas
2013-05-31
In this project generic anticline structures have been used for numerical modeling analyses to study the influence of geometrical parameters, fluid flow boundary conditions, in situ stress regime and inter-bedding friction coefficient on geomechanical risks such as fracture reactivation and fracture generation. The resulting stress states for these structures are also used to determine safe drilling directions and a methodology for wellbore trajection optimization is developed that is applicable for non-Andersonian stress states. The results of the fluid flow simulation show that the type of fluid flow boundary condition is of utmost importance and has significant impact on all injection related parameters. It is recommended that further research is conducted to establish a method to quantify the fluid flow boundary conditions for injection applications. The results of the geomechanical simulation show that in situ stress regime is a crucial, if not the most important, factor determining geomechanical risks. For extension and strike slip stress regimes anticline structures should be favored over horizontally layered basin as they feature higher ΔP{sub c} magnitudes. If sedimentary basins are tectonically relaxed and their state of stress is characterized by the uni-axial strain model the basin is in exact frictional equilibrium and fluids should not be injected. The results also show that low inter bedding friction coefficients effectively decouple layers resulting in lower ΔP{sub c} magnitudes, especially for the compressional stress regime.
NUMERICAL MODELING OF THE COAGULATION AND POROSITY EVOLUTION OF DUST AGGREGATES
Okuzumi, Satoshi; Sakagami, Masa-aki [Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Tanaka, Hidekazu, E-mail: satoshi.okuzumi@ax2.ecs.kyoto-u.ac.j [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)
2009-12-20
Porosity evolution of dust aggregates is crucial in understanding dust evolution in protoplanetary disks. In this study, we present useful tools to study the coagulation and porosity evolution of dust aggregates. First, we present a new numerical method for simulating dust coagulation and porosity evolution as an extension of the conventional Smoluchowski equation. This method follows the evolution of the mean porosity for each aggregate mass simultaneously with the evolution of the mass distribution function. This method reproduces the results of previous Monte Carlo simulations with much less computational expense. Second, we propose a new collision model for porous dust aggregates on the basis of our N-body experiments on aggregate collisions. As the first step, we focus on 'hit-and-stick' collisions, which involve neither compression nor fragmentation of aggregates. We first obtain empirical data on porosity changes between the classical limits of ballistic cluster-cluster and particle-cluster aggregation. Using the data, we construct a recipe for the porosity change due to general hit-and-stick collisions as well as formulae for the aerodynamical and collisional cross sections. Our collision model is thus more realistic than a previous model of Ormel et al. based on the classical aggregation limits only. Simple coagulation simulations using the extended Smoluchowski method show that our collision model explains the fractal dimensions of porous aggregates observed in a full N-body simulation and a laboratory experiment. By contrast, similar simulations using the collision model of Ormel et al. result in much less porous aggregates, meaning that this model underestimates the porosity increase upon unequal-sized collisions. Besides, we discover that aggregates at the high-mass end of the distribution can have a considerably small aerodynamical cross section per unit mass compared with aggregates of lower masses. This occurs when aggregates drift under uniform
Numerical method to test a theoretical model of the quantum interferen...
Office of Scientific and Technical Information (OSTI)
A numerical method is provided to fit the experimental conductivity to the complicated conductivity expression for the quantum interference effect of Anderson localization. This ...
Chang, S. L.
1998-08-25
Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. New and modified processes are constantly developed by refinery companies to improve their global competitiveness and meet more stringent environmental regulations. Short residence time FCC riser reactor is one of the advanced processes that the refining industry is actively pursuing because it can improve the yield selectivity and efficiency of an FCC unit. However, as the residence time becomes shorter, the impact of the mixing between catalyst and feed oil at the feed injection region on the product yield becomes more significant. Currently, most FCC computer models used by the refineries perform sophisticated kinetic calculations on simplified flow field and can not be used to evaluate the impact of fluid mixing on the performance of an FCC unit. Argonne National Laboratory (AFL) is developing a computational fluid dynamic (CFD) code ICRKFLO for FCC riser flow modeling. The code, employing hybrid hydrodynamic-chemical kinetic coupling techniques, is used to investigate the effect of operating and design conditions on the product yields of FCC riser reactors. Numerical calculations were made using the code to examine the impacts of the operating and design conditions on the product yields. The controlling parameters under investigation include the residence time, reaction temperature, and catalyst/oil ratio. This paper describes the CFD code, presents computation results, and discusses the effects of operating conditions on the performance of short residence time FCC riser reactors.
Paradkar, B. S.; Cros, B.; Maynard, G.; Mora, P.
2013-08-15
Numerical modeling of laser wakefield electron acceleration inside a gas filled dielectric capillary tube is presented. Guiding of a short pulse laser inside a dielectric capillary tube over a long distance (∼1 m) and acceleration of an externally injected electron bunch to ultra-relativistic energies (∼5-10 GeV) are demonstrated in the quasi-linear regime of laser wakefield acceleration. Two dimensional axisymmetric simulations were performed with the code WAKE-EP (Extended Performances), which allows computationally efficient simulations of such long scale plasma. The code is an upgrade of the quasi-static particle code, WAKE [P. Mora and T. M. Antonsen, Jr., Phys. Plasmas 4, 217 (1997)], to simulate the acceleration of an externally injected electron bunch (including beam loading effect) and propagation of the laser beam inside a dielectric capillary. The influence of the transverse electric field of the plasma wake on the radial loss of the accelerated electrons to the dielectric wall is investigated. The stable acceleration of electrons to multi-GeV energy with a non-resonant laser pulse with a large spot-size is demonstrated.
Numerical research of the optimal control problem in the semi-Markov inventory model
Gorshenin, Andrey K.
2015-03-10
This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the systems research and finding the optimal control are presented.
Sim, Yoon Sub; Kim, Eui Kwang; Eoh, Jae Hyuk [Korea Atomic Energy Research Institute (Korea, Republic of)
2005-06-15
To overcome the drawbacks of conventional schemes for a numerical analysis of a steam generator (SG), an efficient numerical model has been developed to analyze the steady state of a once-through-type SG where the feedwater is heated to superheated steam. In the developed model, the temperature and enthalpy are defined at the boundary of a calculation cell, and the exact solutions for the temperature distribution in a calculation cell are utilized. This feature of the developed model frees calculation from the undesirable effects of numerical diffusion, and only a small number of nodes are required. Also, the developed model removes the ambiguity from the parameter values at the inlet and exit of a calculation.The BoSupSG-SS computer code was developed by using the analysis model, and it performed well with only three calculation nodes to analyze a superheated SG. The developed model can be effectively used for the cases where a fast one-dimensional calculation is required such as an SG or system design analysis.
Sjöberg, Ylva; Coon, Ethan; K. Sannel, A. Britta; Pannetier, Romain; Harp, Dylan; Frampton, Andrew; Painter, Scott L.; Lyon, Steve W.
2016-02-05
Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this paper, we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels weremore » observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. Finally, as sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.« less
Petrov, A.V.; Samsonova, L.M.; Vasil`kova, N.A.; Zinin, A.I.; Zinina, G.A. |
1994-06-01
Methodological aspects of the numerical modeling of the groundwater contaminant transport for the Lake Karachay area are discussed. Main features of conditions of the task are the high grade of non-uniformity of the aquifer in the fractured rock massif and the high density of the waste solutions, and also the high volume of the input data: both on the part of parameters of the aquifer (number of pump tests) and on the part of observations of functions of processes (long-time observations by the monitoring well grid). The modeling process for constructing the two dimensional regional model is described, and this model is presented as the basic model for subsequent full three-dimensional modeling in sub-areas of interest. Original powerful mathematical apparatus and computer codes for finite-difference numerical modeling are used.
Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.
2014-06-01
Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.
Validation of model based active control of combustion instability
Fleifil, M.; Ghoneim, Z.; Ghoniem, A.F.
1998-07-01
The demand for efficient, company and clean combustion systems have spurred research into the fundamental mechanisms governing their performance and means of interactively changing their performance characteristics. Thermoacoustic instability which is frequently observed in combustion systems with high power density, when burning close to the lean flammability limit, or using exhaust gas recirculation to meet more stringent emissions regulations, etc. Its occurrence and/or means to mitigate them passively lead to performance degradation such as reduced combustion efficiency, high local heat transfer rates, increase in the mixture equivalence ratio or system failure due to structural damage. This paper reports on their study of the origin of thermoacoustic instability, its dependence on system parameters and the means of actively controlling it. The authors have developed an analytical model of thermoacoustic instability in premixed combustors. The model combines a heat release dynamics model constructed using the kinematics of a premixed flame stabilized behind a perforated plate with the linearized conservation equations governing the system acoustics. This formulation allows model based controller design. In order to test the performance of the analytical model, a numerical solution of the partial differential equations governing the system has been carried out using the principle of harmonic separation and focusing on the dominant unstable mode. This leads to a system of ODEs governing the thermofluid variables. Analytical predictions of the frequency and growth ate of the unstable mode are shown to be in good agreement with the numerical simulations as well s with those obtained using experimental identification techniques when applied to a laboratory combustor. The authors use these results to confirm the validity of the assumptions used in formulating the analytical model. A controller based on the minimization of a cost function using the LQR technique has
Theory and modeling of active brazing.
van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.
2013-09-01
Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.
Henry de Frahan, M. T.; Belof, J. L.; Cavallo, R. M.; Raevsky, V. A.; Ignatova, O. N.; Lebedev, A.; Ancheta, D. S.; El-dasher, B. S.; Florando, J. N.; Gallegos, G. F.; Johnsen, E.; LeBlanc, M. M.
2015-06-14
A recent collaboration between LLNL and VNIIEF has produced a set of high explosive driven Rayleigh-Taylor strength data for beryllium. Design simulations using legacy strength models from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, shows close to classical growth. We characterize the material properties of the beryllium tested in the experiments. We also discuss recent efforts to simulate the data using the legacy strength models as well as the more recent RING relaxation model developed at VNIIEF. Finally, we present shock and ramp-loading recovery experiments conducted as part of the collaboration.
Numerical modeling of pulsed laser-material interaction and of laser plume dynamics
Zhao, Qiang; Shi, Yina
2015-03-10
We have developed two-dimensional Arbitrary Lagrangian Eulerian (ALE) code which is used to study the physical processes, the plasma absorption, the crater profile, and the temperature distribution on metallic target and below the surface. The ALE method overcomes problems with Lagrangian moving mesh distortion by mesh smoothing and conservative quantities remapping from Lagrangian mesh to smoothed one. A new second order accurate diffusion solver has been implemented for the thermal conduction and radiation transport on distorted mesh. The results of numerical simulation of pulsed laser ablation are presented. The influences of different processes, such as time evolution of the surface temperature, interspecies interactions (elastic collisions, recombination-dissociation reaction), interaction with an ambient gas are examined. The study presents particular interest for the analysis of experimental results obtained during pulsed laser ablation.
Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.
2015-12-24
Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less
Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.
2015-12-24
Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.
Arima, T.; Sonoda, T.; Shirotori, M.; Tamura, A.; Kikuchi, K.
1999-01-01
The authors have developed a computer simulation code for three-dimensional viscous flow in turbomachinery based on the time-averaged compressible Navier-Stokes equations and a low-Reynolds-number {kappa}-{epsilon} turbulence model. It is described in detail in this paper. The code is used to compute the flow fields for two types of rotor (a transonic fan NASA Rotor 67 and a transonic axial compressor NASA rotor 37), and numerical results are compared to experimental data based on aerodynamic probe and laser anemometer measurements. In the case of Rotor 67, calculated and experimental results are compared under the design speed to validate the code. The calculated results show good agreement with the experimental data, such as the rotor performance map and the spanwise distribution of total pressure, total temperature, and flow angle downstream of the rotor. In the case of Rotor 37, detailed comparisons between the numerical results and the experimental data are made under the design speed condition to assess the overall quality of the numerical solution. Furthermore, comparisons under the part-speed condition are used to investigate a flow field without passage shock. The results are well predicted qualitatively. However, considerable quantitative discrepancies remain in predicting the flow near the tip. In order to assess the predictive capabilities of the developed code, computed flow structures are presented with the experimental data for each rotor and the cause of the discrepancies is discussed.
A numerical test of KPZ scaling; Potts models coupled to two-dimensional quantum gravity
Baillie, C.F. , 91 - Nozay ); Johnston, D.A. . Dept. of Mathematics)
1992-06-07
In this paper, the authors perform Monte-Carlo simulations using the Wolff cluster algorithm of the q = 2 (Ising), 3, 4 and q = 10 Potts models on dynamical phi-cubed graphs of spherical topology with up to 5000 nodes. The authors find that the measured critical exponents are in reasonable agreement with those from the exact solution of the Ising model and with those calculated from KPZ scaling for q = 3, 4 where no exact solution is available. Using Binder's cumulant, the authors find that the q = 10 Potts model displays a first order phase transition on a dynamical graph, as it does on a fixed lattice. The authors also examine the internal geometry of the graphs generated in the simulation, finding a linear relationship between ring length probabilities and the central charge of the Potts model.
Final Report: A Model Management System for Numerical Simulations of Subsurface Processes
Zachmann, David
2013-10-07
The DOE and several other Federal agencies have committed significant resources to support the development of a large number of mathematical models for studying subsurface science problems such as groundwater flow, fate of contaminants and carbon sequestration, to mention only a few. This project provides new tools to help decision makers and stakeholders in subsurface science related problems to select an appropriate set of simulation models for a given field application.
Potyondy, D.O.; Fairhurst, C.E.
1999-07-01
The post-peak load/deformation behavior of cohesive-frictional materials is an integral part of the overall response of a specimen to compressive loading. A more comprehensive understanding of the pre- and post-peak behavior is necessary. Recent developments in numerical modeling that allow study of the overall response of a synthetic material containing discrete heterogeneities and discontinuities both at the micro (particle) scale and at the larger scale of jointed rock masses can greatly aid the interpretation and application of laboratory test results on these materials.
Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code
Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.
2009-01-01
Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.
Numerical model for the vacuum pyrolysis of scrap tires in batch reactors
Yang, J.; Tanguy, P.A.; Roy, C.
1995-06-01
A quantitative model for scrap tire pyrolysis in a batch scale reactor developed comprises the following basic phenomena: conduction inside tire particles; conduction, convection, and radiation between the feedstock particles or between the fluids and the particles; tire pyrolysis reaction; exothermicity and endothermicity caused by tire decomposition and volatilization; and the variation of the composition and the thermal properties of tire particles. This model was used to predict the transient temperature and density distributions in the bed of particles, the volatile product evolution rate, the mass change, the energy consumption during the pyrolysis process, and the pressure history in a tire pyrolysis reactor with a load of 1 kg. The model predictions agree well with independent experimental data.
Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint
Li, Y.; Yu, Y. H.
2012-05-01
During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.
Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology
Dettinger, M.D.
1980-04-01
The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories.
Numerical modeling and experiments of creep crack growth under cyclic loading
Brust, F.W.
1995-12-31
This paper presents a summary of some recent studies of creep crack growth under history dependent load conditions. The effect of a proper constitutive law is illustrated. Moreover, the asymptotic fields are reconsidered under cyclic creep conditions. In addition, several experiments are modeled and the behavior of integral parameters is discussed.
Numerical Study of Coal Gasification Using Eulerian-Eulerian Multiphase Model
Shi, S.; Guenther, C.; Orsino, S.
2007-09-01
Gasification converts the carbon-containing material into a synthesis gas (syngas) which can be used as a fuel to generate electricity or used as a basic chemical building block for a large number of uses in the petrochemical and refining industries. Based on the mode of conveyance of the fuel and the gasifying medium, gasification can be classified into fixed or moving bed, fluidized bed, and entrained flow reactors. Entrained flow gasifiers normally feature dilute flow with small particle size and can be successfully modeled with the Discrete Phase Method (DPM). For the other types, the Eulerian-Eulerian (E-E) or the so called two-fluid multiphase model is a more appropriate approach. The E-E model treats the solid phase as a distinct interpenetrating granular fluid and it is the most general-purposed multi-fluid model. This approach provides transient, three-dimensional, detailed information inside the reactor which would otherwise be unobtainable through experiments due to the large scale, high pressure and/or temperature. In this paper, a transient, three-dimensional model of the Power Systems Development Facility (PSDF) transport gasifier will be presented to illustrate how Computational Fluid Dynamics (CFD) can be used for large-scale complicated geometry with detailed physics and chemistry. In the model, eleven species are included in the gas phase while four pseudo-species are assumed in the solid phase. A total of sixteen reactions, both homogeneous (involving only gas phase species) and heterogeneous (involving species in both gas and solid phases), are used to model the coal gasification chemistry. Computational results have been validated against PSDF experimental data from lignite to bituminous coals under both air and oxygen blown conditions. The PSDF gasifier geometry was meshed with about 70,000, hexahedra-dominated cells. A total of six cases with different coal, feed gas, and/or operation conditions have been performed. The predicted and
Rosa, M.P.; Podowski, M.Z.
1995-09-01
This paper is concerned with the analysis of dynamics and stability of boiling channels and systems. The specific objectives are two-fold. One of them is to present the results of a study aimed at analyzing the effects of various modeling concepts and numerical approaches on the transient response and stability of parallel boiling channels. The other objective is to investigate the effect of closed-loop feedback on stability of a boiling water reactor (BWR). Various modeling and computational issues for parallel boiling channels are discussed, such as: the impact of the numerical discretization scheme for the node containing the moving boiling boundary on the convergence and accuracy of computations, and the effects of subcooled boiling and other two-phase flow phenomena on the predictions of marginal stability conditions. Furthermore, the effects are analyzed of local loss coefficients around the recirculation loop of a boiling water reactor on stability of the reactor system. An apparent paradox is explained concerning the impact of changing single-phase losses on loop stability. The calculations have been performed using the DYNOBOSS computer code. The results of DYNOBOSS validation against other computer codes and experimental data are shown.
Stein, W.; Ermak, D.L.
1980-11-04
A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method. Output of the calculations is presented in both tabular and graphical form.
Stein, W.; Ermak, D.L.
1981-01-01
A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method.Output of the calculations is presented in both tabular and graphical form.
Danish, Mohammad Suman, Sawan Srinivasan, Balaji
2014-12-15
The pressure Hessian tensor plays a key role in shaping the behavior of the velocity gradient tensor, and in turn, that of many incumbent non-linear processes in a turbulent flow field. In compressible flows, the role of pressure Hessian is even more important because it represents the level of fluid-thermodynamic coupling existing in the flow field. In this work, we first perform a direct numerical simulation-based study to clearly identify, isolate, and understand various important inviscid mechanisms that govern the evolution of the pressure Hessian tensor in compressible turbulence. The ensuing understanding is then employed to introduce major improvements to the existing Lagrangian model of the pressure Hessian tensor (the enhanced Homogenized Euler equation or EHEE) in terms of (i) non-symmetric, non-isentropic effects and (ii) improved representation of the anisotropic portion of the pressure Hessian tensor. Finally, we evaluate the new model extensively by comparing the new model results against known turbulence behavior over a range of Reynolds and Mach numbers. Indeed, the new model shows much improved performance as compared to the EHEE model.
Kumaran, K.; Babu, V.
2009-04-15
In this numerical study, the influence of chemistry models on the predictions of supersonic combustion in a model combustor is investigated. To this end, 3D, compressible, turbulent, reacting flow calculations with a detailed chemistry model (with 37 reactions and 9 species) and the Spalart-Allmaras turbulence model have been carried out. These results are compared with earlier results obtained using single step chemistry. Hydrogen is used as the fuel and three fuel injection schemes, namely, strut, staged (i.e., strut and wall) and wall injection, are considered to evaluate the impact of the chemistry models on the flow field predictions. Predictions of the mass fractions of major species, minor species, dimensionless stagnation temperature, dimensionless static pressure rise and thrust percentage along the combustor length are presented and discussed. Overall performance metrics such as mixing efficiency and combustion efficiency are used to draw inferences on the nature (whether mixing- or kinetic-controlled) and the completeness of the combustion process. The predicted values of the dimensionless wall static pressure are compared with experimental data reported in the literature. The calculations show that multi step chemistry predicts higher and more wide spread heat release than what is predicted by single step chemistry. In addition, it is also shown that multi step chemistry predicts intricate details of the combustion process such as the ignition distance and induction distance. (author)
Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes
Chen, M.; Cormier-Michel, E.; Geddes, C.G.R.; Bruhwiler, D.L.; Yu, L.L.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.
2013-03-01
Methods for the calculation of laser tunneling ionization in explicit particle-in-cell codes used for modeling laserplasma interactions are compared and validated against theoretical predictions. Improved accuracy is obtained by using the direct current form for the ionization rate. Multi level ionization in a single time step and energy conservation have been considered during the ionization process. The effects of grid resolution and number of macro-particles per cell are examined. Implementation of the ionization algorithm in two different particle-in-cell codes is compared for the case of ionization-based electron injection in a laserplasma accelerator.
Application of numerical modeling in a clean-coal demonstration project
Latham, C.E.; Laursen, T.A.; Bellanca, C.; Duong, H.
1992-11-01
Currently, utility boilers equipped with cell burners comprise 13% of pre-NSPS coal-fired generating capacity. The cell burner rapidly mixes the pulverized coal and combustion air resulting in rapid combustion and high NO{sub x} generation. A US Department of Energy (DOE) Clean-Coal Technology Demonstration project is underway at Dayton Power & Light`s J. M. Stuart Station to demonstrate the Low-NO{sub x} Cell{trademark} burner (LNCB{trademark}) on a 605-MWe utility boiler originally equipped with cell burners. The LNCB{trademark} is designed to reduce NO{sub x} emissions by delaying the mixing of the coal and the combustion air without boiler pressure part modifications. Preliminary post-retrofit testing results showed unexpectedly high carbon monoxide (CO) and hydrogen sulfide (H{sub 2}S) concentrations below the lowest burner row. The substoichiometric operation of the lowest burner row caused the relatively high concentrations in the lower furnace. Babcock & Wilcox`s flow, combustion, and heat transfer models were used to predict the CO concentrations in the lower furnace. The predictions were compared to field measurements for three different operating conditions. Based on this validation, the models were used to evaluate several methods for mitigating the CO concentrations. The results of this analysis are presented and discussed. The most attractive alternative was selected and will be implemented during the spring of 1992. The effectiveness of the new alternative will be available when the installation is complete and testing resumes.
Zacharias, O.; Kleiber, R.; Borchardt, M.; Comisso, L.; Grasso, D.; Hatzky, R.
2014-06-15
The first detailed comparison between gyrokinetic and gyrofluid simulations of collisionless magnetic reconnection has been carried out. Both the linear and nonlinear evolution of the collisionless tearing mode have been analyzed. In the linear regime, we have found a good agreement between the two approaches over the whole spectrum of linearly unstable wave numbers, both in the drift kinetic limit and for finite ion temperature. Nonlinearly, focusing on the small-Δ′ regime, with Δ′ indicating the standard tearing stability parameter, we have compared relevant observables such as the evolution and saturation of the island width, as well as the island oscillation frequency in the saturated phase. The results are basically the same, with small discrepancies only in the value of the saturated island width for moderately high values of Δ′. Therefore, in the regimes investigated here, the gyrofluid approach can describe the collisionless reconnection process as well as the more complete gyrokinetic model.
Volker Sick; Dennis N. Assanis
2002-11-27
Through the combination of advanced imaging laser diagnostics with multi-dimensional computer models, a new understanding of the performance of direct-injection gasoline engines is pursuit. The work focuses on the fuel injection process, the breakup of the liquid into a fine spray and the mixing of the fuel with the in-cylinder gases. Non-intrusive laser diagnostics will be used to measure the spatial distribution of droplets and vaporized fuel with very high temporal resolution. These data along with temperature measurements will be used to validate a new spray breakup model for gasoline direct-injection. Experimental data on near wall fuel distributions will be used for comparison with a model that predicts the spray-wall interaction and the dynamics of the liquid film on the surface. Quantitative measurements of local nitric oxide concentrations inside the combustion chamber will provide a critical test for a numerical simulation of the nitric oxide formation process. This model is based on a modified flamelet approach and will be used to study the effects of exhaust gas recirculation.
Prinja, A.K.
1998-09-01
relatively smooth as a consequence of the less localized recycling, leading to an improved convergence rate of the numerical algorithm. Peak plasma density is lower and the temperature correspondingly higher than those predicted by the standard diffusion model. It is believed that the FFCD model is more accurate. With both the TP continuation and multigrid methods, the author has demonstrated the robustness of these two methods. A mutually beneficial hybridization between the TP method and multigrid methods is clearly an alternative for edge plasma simulation. While the fundamental transport model considered in this work has ignored important physics such as drifts and currents, he has nevertheless demonstrated the versatility and robustness of the numerical scheme to handle such new physics. The application of gaseous-radiative divertor model in this work is just a beginning and up to this point numerically, the future is exciting.
Tall Tower Wind Energy Monitoring and Numerical Model Validation in Northern Nevada
Koracin, D.; Kaplan, M.; Smith, C.; McCurdy, G.; Wolf, A.; McCord, T.; King, K.; Belu, R.; Horvath, K.
2015-10-01
The main objectives of this project were to conduct a tall-tower and sodar field campaign in complex terrain, investigate wind properties relevant to wind energy assessment, and evaluate high-resolution models with fixed and adaptive grid structures. Two 60-m towers at Virginia Peak ridges near Washoe Valley, Nevada, were instrumented with cup and vane anemometers as well as sonic anemometers, and an acoustic sounder (hereafter sodar) was installed near one of the towers. The towers were located 2,700 m apart with a vertical distance of 140 m elevation between their bases. Each tower had a downhill exposure of rolling complex terrain, with the nearby valley floor 3,200 m to the west and 800 m below the summit. Cup anemometers were installed at both towers at 20, 40, and 60 m, wind vanes at 20 and 60 m, and sonic anemometers at 20 and 60 m. The sodar measurements were nominally provided every 10 m in vertical distance from 40 to 200 m with the quality of the data generally decreasing with height. Surface air temperature, atmospheric pressure, and radiation measurements were conducted at 1.5 m AGL at both of the towers. Although the plan was to conduct a 1-year period of data collection, we extended the period (October 5, 2012 through February 24, 2014) to cover for possible data loss from instrument or communication problems. We also present a preliminary analysis of the towers and sodar data, including a detailed inventory of available and missing data as well as outliers. The analysis additionally includes calculation of the Weibull parameters, turbulence intensity, and initial computation of wind power density at various heights.
Connecticut Fuel Cell Activities: Markets, Programs, and Models
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Connecticut Fuel Cell Activities: Markets, Programs, & Models DOE State's Call - December ... Local, State and Federal Tax Revenue 16 16 Reducing Production Cost Economic Stimulus Plan ...
PNNL Support of the DOE GTO Model Comparison Activity
PNNL Support of the DOE GTO Model Comparison Activity presentation at the April 2013 peer review meeting held in Denver, Colorado.
Model Documentation Report: Macroeconomic Activity Module of...
Gasoline and Diesel Fuel Update
are covered in order to meet client needs regarding investment and financial allocation strategies. (See Table A10.) Inflation: Inflation (VI) is modeled as a...
Summary of FY15 results of benchmark modeling activities
Arguello, J. Guadalupe
2015-08-01
Sandia is participating in the third phase of an is a contributing partner to a U.S.-German "Joint Project" entitled "Comparison of current constitutive models and simulation procedures on the basis of model calculations of the thermo-mechanical behavior and healing of rock salt." The first goal of the project is to check the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure storage of radioactive wastes in rock salt, thereby enhancing the acceptance of the results. These results may ultimately be used to make various assertions regarding both the stability analysis of an underground repository in salt, during the operating phase, and the long-term integrity of the geological barrier against the release of harmful substances into the biosphere, in the post-operating phase.
Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.
2004-10-12
This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that is essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.
Chiswell, S
2009-01-11
Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.
Wang, X.H.; Zhao, D.Q.; Jiang, L.Q.; Yang, W.B.
2009-07-01
Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristics (especially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input same) were simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.
Atmospheric transmittance model for photosynthetically active radiation
Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia
2013-11-13
A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; et al
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan -Wen; Millis, Andrew J.; Prokof’ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo -Xiao; Zhu, Zhenyue; Gull, Emanuel
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling
Wang, Gangsheng; Mayes, Melanie; Gu, Lianhong; Schadt, Christopher Warren
2014-01-01
Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem models typically ignore microbial dormancy, resulting in notable model uncertainties. To facilitate the consideration of dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of substrate availabilities. This new model is based on microbial physiological states and the major parameters are the maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates. A major improvement of our model over extant models is that it can explain the low active microbial fractions commonly observed in undisturbed soils. Our new model shows that the exponentially-increasing respiration from substrate-induced respiration experiments can only be used to determine the maximum specific growth rate and initial active microbial biomass, while the respiration data representing both exponentially-increasing and non-exponentially-increasing phases can robustly determine a range of key parameters including the initial total live biomass, initial active fraction, the maximum specific growth and maintenance rates, and the half-saturation constant. Our new model can be incorporated into existing ecosystem models to account for dormancy in microbially-driven processes and to provide improved estimates of microbial activities.
Pelanti, Marica; Shyue, Keh-Ming
2014-02-15
We model liquidgas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of SaurelPetitpasBerry (Saurel et al., 2009) [9]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxation terms to model heat and mass transfer and hence liquidvapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquidvapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.
Role Model and Activity Volunteers Needed to Help with BEAMS...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Model and Activity Volunteers Needed to Help with BEAMS - Jefferson Lab's Science and Math Outreach Program for Students B.E.A.M.S. BEAMS students learn about energy transfer,...
Connecticut Fuel Cell Activities: Markets, Programs, and Models |
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Department of Energy Activities: Markets, Programs, and Models Connecticut Fuel Cell Activities: Markets, Programs, and Models Presented by the Connecticut Center for Advanced Technology, Inc. at the bi-monthly informational call for the DOE Fuel Cell Technologies Program on December 16, 2009 ccat_hydrogen_ct.pdf (1.39 MB) More Documents & Publications Job Creation Analysis in the Hydrogen and Fuel Cell Industry State of the States: Fuel Cells in America 2011 2009 DOE Hydrogen Program
Houze, Jr., Robert A.
2013-11-13
We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.
Mauger, Sarah; Colin de Verdière, Guillaume; Bergé, Luc; Skupin, Stefan; Friedrich Schiller University, Institute of Condensed Matter Theory and Optics, 07743 Jena
2013-02-15
A computer cluster equipped with Graphics Processing Units (GPUs) is used for simulating nonlinear optical wave packets undergoing Kerr self-focusing and stimulated Brillouin scattering in fused silica. We first recall the model equations in full (3+1) dimensions. These consist of two coupled nonlinear Schrödinger equations for counterpropagating optical beams closed with a source equation for light-induced acoustic waves seeded by thermal noise. Compared with simulations on a conventional cluster of Central Processing Units (CPUs), GPU-based computations allow us to use a significant (16 times) larger number of mesh points within similar computation times. Reciprocally, simulations employing the same number of mesh points are between 3 and 20 times faster on GPUs than on the same number of classical CPUs. Performance speedups close to 45 are reported for isolated functions evaluating, e.g., the optical nonlinearities. Since the field intensities may reach the ionization threshold of silica, the action of a defocusing electron plasma is also addressed.
Scheibe, Timothy D.; Richmond, Marshall C.
2002-01-30
This paper describes a numerical model of juvenile salmonid migration in the Columbia and Snake Rivers. The model, called the Fish Individual-based Numerical Simulator or FINS, employs a discrete, particle-based approach to simulate the migration and history of exposure to dissolved gases of individual fish. FINS is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories can be input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. Therefore, FINS serves as a critical linkage between hydrodynamic models of the river system and models of biological impacts. FINS was parameterized and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998. A quasi-inverse approach was used to decouple fish swimming movements from advection with the local water velocity, allowing inference of time series of non-advective displacements of individual fish from the radiotelemetry data. Statistical analyses of these displacements are presented, and confirm that strong temporal correlation of fish swimming behavior persists in some cases over several hours. A correlated random-walk model was employed to simulate the observed migration behavior, and parameters of the model were estimated that lead to close correspondence between predictions and observations.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-08-24
This study presents a numerical investigation on using the Jacobian-free Newton–Krylov (JFNK) method to solve the two-phase flow four-equation drift flux model with realistic constitutive correlations (‘closure models’). The drift flux model is based on Isshi and his collaborators’ work. Additional constitutive correlations for vertical channel flow, such as two-phase flow pressure drop, flow regime map, wall boiling and interfacial heat transfer models, were taken from the RELAP5-3D Code Manual and included to complete the model. The staggered grid finite volume method and fully implicit backward Euler method was used for the spatial discretization and time integration schemes, respectively. Themore » Jacobian-free Newton–Krylov method shows no difficulty in solving the two-phase flow drift flux model with a discrete flow regime map. In addition to the Jacobian-free approach, the preconditioning matrix is obtained by using the default finite differencing method provided in the PETSc package, and consequently the labor-intensive implementation of complex analytical Jacobian matrix is avoided. Extensive and successful numerical verification and validation have been performed to prove the correct implementation of the models and methods. Code-to-code comparison with RELAP5-3D has further demonstrated the successful implementation of the drift flux model.« less
Lee, S. Y.; Park, C. E.; Hibiki, T.; Ishii, M.; Ransom, V. H.
2012-07-01
The well-posedness, convergence and the stability of the two-fluid code has been studied for a long time. Most of the investigations concern the semi-implicit upwind solution scheme for the six equation two-fluid model such as used in RELAP5 3 or TRACE 21. Since the system code, SPACE 2, adopts one more field, a droplet field, it consists of nine equations (3 mass, 3 momentum and 3 energy balance equations) and thus more involved investigations are necessary to confirm the stability and convergence. For this objective, the old issue of the well-posedness, convergence and the stability is revisited and some general guidelines to develop a well-posed numerical multi-fluid model are derived as follows; (1) Hyperbolicity of the corresponding system of partial differential equations is not a necessary condition for the development of a numerical model for multi-phase flow, but whether or not it is hyperbolic can provide guidance relative to initial conditions, boundary conditions, and expected high frequency behavior of the model. (2) A necessary condition for a well-posed numerical model is stability in the von Neumann sense, i.e. growth factor less than 1.0 for the shortest wave-length, 2{Delta}x. (3) The smallest node size used for convergence studies should be of the order of the characteristic dimension of the average description, i.e. smaller nodes can be used so long as they do not result in unphysical growth of wave-lengths less than the characteristic dimension. The usual mathematical definition of convergence i.e. the behavior of the solution as the node size approaches zero, is not appropriate for the discrete averaged numerical model, since there is diminished physical meaning to behavior at wavelengths less than the characteristic dimension of the average description. Under these guidelines, dispersion analysis and von Neumann stability analysis are performed for the three field multi-fluid, semi-implicit, upwind numerical model to show that the necessary
Auletta, C.; Raiconi, G.; De Luca, R.; Pace, S.
1995-05-01
We have performed numerical simulations of a field-cooled dc susceptibility experiment carried out for granular superconductors by modeling these systems with a simple Josephson-junction array proposed by the authors. By this analysis the temperature dependence of the positive field-cooled susceptibility at very low values of the applied magnetic field, observed by Braunisch {ital et} {ital al}. [Phys. Rev. Lett. 68, 1908 (1992)] for some ceramic superonductors, has been reproduced and interpreted.
Tang, Guoping; Yuan, Fengming; Bisht, Gautam; Hammond, Glenn E.; Lichtner, Peter C.; Kumar, Jitendra; Mills, Richard T.; Xu, Xiaofeng; Andre, Ben; Hoffman, Forrest M.; et al
2016-03-04
We explore coupling to a configurable subsurface reactive transport code as a flexible and extensible approach to biogeochemistry in land surface models. A reaction network with the Community Land Model carbon–nitrogen (CLM-CN) decomposition, nitrification, denitrification, and plant uptake is used as an example. We implement the reactions in the open-source PFLOTRAN (massively parallel subsurface flow and reactive transport) code and couple it with the CLM. To make the rate formulae designed for use in explicit time stepping in CLMs compatible with the implicit time stepping used in PFLOTRAN, the Monod substrate rate-limiting function with a residual concentration is used to represent the limitation ofmore » nitrogen availability on plant uptake and immobilization. We demonstrate that CLM–PFLOTRAN predictions (without invoking PFLOTRAN transport) are consistent with CLM4.5 for Arctic, temperate, and tropical sites.Switching from explicit to implicit method increases rigor but introduces numerical challenges. Care needs to be taken to use scaling, clipping, or log transformation to avoid negative concentrations during the Newton iterations. With a tight relative update tolerance (STOL) to avoid false convergence, an accurate solution can be achieved with about 50 % more computing time than CLM in point mode site simulations using either the scaling or clipping methods. The log transformation method takes 60–100 % more computing time than CLM. The computing time increases slightly for clipping and scaling; it increases substantially for log transformation for half saturation decrease from 10−3 to 10−9 mol m−3, which normally results in decreasing nitrogen concentrations. The frequent occurrence of very low concentrations (e.g. below nanomolar) can increase the computing time for clipping or scaling by about 20 %, double for log transformation. Overall, the log transformation method is accurate and robust, and the clipping and scaling
Tang, Guoping; Yuan, Fengming; Bisht, Gautam; Hammond, Glenn E.; Lichtner, Peter C.; Kumar, Jitendra; Mills, Richard T.; Xu, Xiaofeng; Andre, Ben; Hoffman, Forrest M.; et al
2016-03-04
Here, we explore coupling to a configurable subsurface reactive transport code as a flexible and extensible approach to biogeochemistry in land surface models. A reaction network with the Community Land Model carbon nitrogen (CLM-CN) decomposition, nitrification, denitrification, and plant uptake is used as an example. We implement the reactions in the open-source PFLOTRAN (massively parallel subsurface flow and reactive transport) code and couple it with the CLM. To make the rate formulae designed for use in explicit time stepping in CLMs compatible with the implicit time stepping used in PFLOTRAN, the Monod substrate rate-limiting function with a residual concentration ismore » used to represent the limitation of nitrogen availability on plant uptake and immobilization. We demonstrate that CLM PFLOTRAN predictions (without invoking PFLOTRAN transport) are consistent with CLM4.5 for Arctic, temperate, and tropical sites. Switching from explicit to implicit method increases rigor but introduces numerical challenges. Care needs to be taken to use scaling, clipping, or log transformation to avoid negative concentrations during the Newton iterations. With a tight relative update tolerance (STOL) to avoid false convergence, an accurate solution can be achieved with about 50 % more computing time than CLM in point mode site simulations using either the scaling or clipping methods. The log transformation method takes 60–100 % more computing time than CLM. The computing time increases slightly for clipping and scaling; it increases substantially for log transformation for half saturation decrease from 10–3 to 10–9 mol m–3, which normally results in decreasing nitrogen concentrations. The frequent occurrence of very low concentrations (e.g. below nanomolar) can increase the computing time for clipping or scaling by about 20 %, double for log transformation. Overall, the log transformation method is accurate and robust, and the clipping and scaling methods are
Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping
2013-03-14
observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available http://cloud.gsfc.nasa.gov/. The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results
U.S. Energy Information Administration (EIA) (indexed site)
Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System May 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Macroeconomic Activity Module Documentation Report i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and
D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma
2002-11-22
In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.
High-Resolution Modeling to Assess Tropical Cyclone Activity in Future Climate Regimes
Lackmann, Gary
2013-06-10
Applied research is proposed with the following objectives: (i) to determine the most likely level of tropical cyclone intensity and frequency in future climate regimes, (ii) to provide a quantitative measure of uncertainty in these predictions, and (iii) to improve understanding of the linkage between tropical cyclones and the planetary-scale circulation. Current mesoscale weather forecasting models, such as the Weather Research and Forecasting (WRF) model, are capable of simulating the full intensity of tropical cyclones (TC) with realistic structures. However, in order to accurately represent both the primary and secondary circulations in these systems, model simulations must be configured with sufficient resolution to explicitly represent convection (omitting the convective parameterization scheme). Most previous numerical studies of TC activity at seasonal and longer time scales have not utilized such explicit convection (EC) model runs. Here, we propose to employ the moving nest capability of WRF to optimally represent TC activity on a seasonal scale using a downscaling approach. The statistical results of a suite of these high-resolution TC simulations will yield a realistic representation of TC intensity on a seasonal basis, while at the same time allowing analysis of the feedback that TCs exert on the larger-scale climate system. Experiments will be driven with analyzed lateral boundary conditions for several recent Atlantic seasons, spanning a range of activity levels and TC track patterns. Results of the ensemble of WRF simulations will then be compared to analyzed TC data in order to determine the extent to which this modeling setup can reproduce recent levels of TC activity. Next, the boundary conditions (sea-surface temperature, tropopause height, and thermal/moisture profiles) from the recent seasons will be altered in a manner consistent with various future GCM/RCM scenarios, but that preserves the large-scale shear and incipient disturbance
Wirojanagud, P.; Kreitler, C.W.; Smith, D.A.
1986-01-01
Bedded Permian-age evaporite sequences in the Palo Duro Basin are being considered for a permanent nuclear waste repository by the U.S. Department of Energy. The purpose of this modeling study is to provide an understanding of regional ground-water flow in the formations beneath the Permian evaporite section. From this understanding, more detailed, smaller scale studies can be designed. This study is also intended to provide a better understanding of the boundary conditions and permeabilities of the aquifer and aquitard system as well as provide estimates of ground-water travel times across the basin. Numerical simulations were made of the Wolfcamp aquifer modeled as a single layer and of the entire Deep-Basin Brine aquifer system, including the Wolfcamp aquifer, modeled as a single layer.
Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1
Gupta, Prabhat Kumar; Rabehl, Roger
2014-07-01
Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operational modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.
Kicker, Dwayne Curtis; Herrick, Courtney G.; Zeitler, Todd; Malama, Bwalya; Rudeen, David Keith; Gilkey, Amy P.
2016-01-01
The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant (WIPP) solid waste subject to material failure and transport to the surface as a result of a hypothetical future inadvertent drilling intrusion. An error in the implementation of the DRSPALL finite difference equations was discovered as documented in Software Problem Report (SPR) 13-001. The modifications to DRSPALL to correct the finite difference equations are detailed, and verification and validation testing has been completed for the modified DRSPALL code. The complementary cumulative distribution function (CCDF) of spallings releases obtained using the modified DRSPALL is higher compared to that found in previous WIPP performance assessment (PA) calculations. Compared to previous PAs, there was an increase in the number of vectors that result in a nonzero spallings volume, which generally translates to an increase in spallings releases. The overall mean CCDFs for total releases using the modified DRSPALL are virtually unchanged, thus the modification to DRSPALL did not impact WIPP PA calculation results.
Basic, Ivan; Nadramija, Damir; Flajslik, Mario; Amic, Dragan; Lucic, Bono
2007-12-26
Several quantitative structure-activity studies for this data set containing 107 HEPT derivatives have been performed since 1997, using the same set of molecules by (more or less) different classes of molecular descriptors. Multivariate Regression (MR) and Artificial Neural Network (ANN) models were developed and in each study the authors concluded that ANN models are superior to MR ones. We re-calculated multivariate regression models for this set of molecules using the same set of descriptors, and compared our results with the previous ones. Two main reasons for overestimation of the quality of the ANN models in previous studies comparing with MR models are: (1) wrong calculation of leave-one-out (LOO) cross-validated (CV) correlation coefficient for MR models in Luco et al., J. Chem. Inf. Comput. Sci. 37 392-401 (1997), and (2) incorrect estimation/interpretation of leave-one-out (LOO) cross-validated and predictive performance and power of ANN models. More precise and fairer comparison of fit and LOO CV statistical parameters shows that MR models are more stable. In addition, MR models are much simpler than ANN ones. For real testing the predictive performance of both classes of models we need more HEPT derivatives, because all ANN models that presented results for external set of molecules used experimental values in optimization of modeling procedure and model parameters.
Activity Diagrams for DEVS Models: A Case Study Modeling Health Care Behavior
Ozmen, Ozgur; Nutaro, James J
2015-01-01
Discrete Event Systems Specification (DEVS) is a widely used formalism for modeling and simulation of discrete and continuous systems. While DEVS provides a sound mathematical representation of discrete systems, its practical use can suffer when models become complex. Five main functions, which construct the core of atomic modules in DEVS, can realize the behaviors that modelers want to represent. The integration of these functions is handled by the simulation routine, however modelers can implement each function in various ways. Therefore, there is a need for graphical representations of complex models to simplify their implementation and facilitate their reproduction. In this work, we illustrate the use of activity diagrams for this purpose in the context of a health care behavior model, which is developed with an agent-based modeling paradigm.
David Werner; Upal Ghosh; Richard G. Luthy
2006-07-01
The sorption kinetics and concentration of polychlorinated biphenyls (PCBs) in historically polluted sediment is modeled to assess a remediation strategy based on in situ PCB sequestration by mixing with activated carbon (AC). The authors extend their evaluation of a model based on intraparticle diffusion by including a biomimetic semipermeable membrane device (SPMD) and a first-order degradation rate for the aqueous phase. The model predictions are compared with the previously reported experimental PCB concentrations in the bulk water phase and in SPMDs. The simulated scenarios comprise a marine and a freshwater sediment, four PCB congeners, two AC grain sizes, four doses of AC, and comparison with laboratory experiments. The modeling approach distinguishes between two different sediment particles types: a light-density fraction representing carbonaceous particles such as charcoal, coal, coke, cenospheres, or wood, and a heavy-density fraction representing the mineral phase with coatings of organic matter. A third particle type in the numerical model is AC. The model qualitatively reproduces the observed shifts in the PCB distribution during repartitioning after AC amendment but overestimates the overall effect of the treatment in reducing aqueous and SPMD concentrations of PCBs by a factor of 2-6. For the AC application in sediment, competitive sorption of the various solutes apparently requires a reduction by a factor of 16 of the literature values for the AC-water partitioning coefficient measured in pure aqueous systems. With this correction, model results and measurements agree within a factor of 3. After AC amendment is homogeneously mixed into the sediment and then left undisturbed, aqueous PCB concentrations tend toward the same reduction after 5 years. 19 refs., 5 figs., 4 tabs.
Seaman, N.L.; Guo, Z.; Ackerman, T.P.
1996-04-01
Predictions of cloud occurrence and vertical location from the Pennsylvannia State University/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) were evaluated statistically using cloud observations obtained at Coffeyville, Kansas, as part of the Second International satellite Cloud Climatology Project Regional Experiment campaign. Seventeen cases were selected for simulation during a November-December 1991 field study. MM5 was used to produce two sets of 36-km simulations, one with and one without four-dimensional data assimilation (FDDA), and a set of 12-km simulations without FDDA, but nested within the 36-km FDDA runs.
Koniges, Alice; Liu, Wangyi; Lidia, Steven; Schenkel, Thomas; Barnard, John; Friedman, Alex; Eder, David; Fisher, Aaron; Masters, Nathan
2016-03-01
We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as wellmore » as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.« less
Freeze, G.A.; Larson, K.W.; Davies, P.B.
1995-10-01
Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.
Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.
2016-04-26
The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less
Not Available
1994-02-07
This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 1994 (AEO94). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS MAM used for the AEO 1994 production runs for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.
Self-Consistant Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS
Vay, J-L.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H,
2010-09-01
The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the growth rate and frequency patterns in space-time of the electron cloud driven transverse instability for a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Comparisons to selected experimental data are also given. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons. Comparisons to experimental data are also given.
Direct Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS
Vay, J-L.; Furman, M.A.; Venturini, M.
2011-03-01
The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the buildup and interaction of electron clouds with a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons.
Boron-10 ABUNCL Prototype Models And Initial Active Testing
Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.
2013-04-23
The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNPX model simulations and initial testing of the active mode variation of the Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Initial experimental testing of the as-delivered passive ABUNCL was previously reported.
Discovering an Active Subspace in a Single-Diode Solar Cell Model...
Office of Scientific and Technical Information (OSTI)
Discovering an Active Subspace in a Single-Diode Solar Cell Model Citation Details In-Document Search Title: Discovering an Active Subspace in a Single-Diode Solar Cell Model ...
Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Lindberg, Michael J.; Clayton, Ray E.
2012-03-19
To characterize the extent of contamination under the 324 Building, a pit was excavated on the north side of the building in 2010 by Washington Closure Hanford LLC (WCH). Horizontal closed-end steel access pipes were installed under the foundation of the building from this pit and were used for measuring temperatures and exposure rates under the B-Cell. The deployed sensors measured elevated temperatures of up to 61 C (142 F) and exposure rates of up to 8,900 R/hr. WCH suspended deactivation of the facility because it recognized that building safety systems and additional characterization data might be needed for remediation of the contaminated material. The characterization work included additional field sampling, laboratory measurements, and numerical flow and transport modeling. Laboratory measurements of sediment physical, hydraulic, and geochemical properties were performed by Pacific Northwest National Laboratory (PNNL) and others. Geochemical modeling and subsurface flow and transport modeling also were performed by PNNL to evaluate the possible extent of contamination in the unsaturated sand and gravel sediments underlying the building. Historical records suggest that the concentrated 137Cs- and 90Sr-bearing liquid wastes that were spilled in B-Cell were likely from a glass-waste repository testing program associated with the Federal Republic of Germany (FRG). Incomplete estimates of the aqueous chemical composition (no anion data provided) of the FRG waste solutions were entered into a geochemical speciation model and were charge balanced with nitrate to estimate waste composition. Additional geochemical modeling was performed to evaluate reactions of the waste stream with the concrete foundation of the building prior to the stream entering the subsurface.
Model developer`s appendix to the model documentation report: NEMS macroeconomic activity module
1994-07-15
The NEMS Macroeconomic Activity Module (MAM) tested here was used to generate the Annual Energy Outlook 1994 (AEO94). MAM is a response surface model, not a structural model, composed of three submodules: the National Submodule, the Interindustry Submodule, and the Regional Submodule. Contents of this report are as follows: properties of the mathematical solution; NEMS MAM empirical basis; and scenario analysis. Scenario analysis covers: expectations for scenario analysis; historical world oil price scenario; AEO94 high world oil price scenario; AEO94 low world oil price scenario; and immediate increase world oil price scenario.
Movshovitz, Naor; Asphaug, Erik; Korycansky, Donald
2012-11-10
We advance the modeling of rubble-pile solid bodies by re-examining the tidal breakup of comet Shoemaker-Levy 9, an event that occurred during a 1.33 R encounter with Jupiter in 1992 July. Tidal disruption of the comet nucleus led to a chain of sub-nuclei {approx}100-1000 m diameter; these went on to collide with the planet two years later. They were intensively studied prior to and during the collisions, making SL9 the best natural benchmark for physical models of small-body disruption. For the first time in the study of this event, we use numerical codes treating rubble piles as collections of polyhedra. This introduces forces of dilatation and friction, and inelastic response. As in our previous studies we conclude that the progenitor must have been a rubble pile, and we obtain approximately the same pre-breakup diameter ({approx}1.5 km) in our best fits to the data. We find that the inclusion of realistic fragment shapes leads to grain locking and dilatancy, so that even in the absence of friction or other dissipation we find that disruption is overall more difficult than in our spheres-based simulations. We constrain the comet's bulk density at {rho}{sub bulk} {approx} 300-400 kg m{sup -3}, half that of our spheres-based predictions and consistent with recent estimates derived from spacecraft observations.
Numerical simulations for low energy nuclear reactions including...
Office of Scientific and Technical Information (OSTI)
Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Citation Details In-Document Search Title: Numerical simulations for ...
Sandia Energy - Numerical Simulations of Hydrokinetics in the...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Numerical Simulations of Hydrokinetics in the Roza Canal, Yakima Washington Home Renewable Energy Energy Water Power Computational Modeling & Simulation Numerical Simulations of...
Confidence in Numerical Simulations
Hemez, Francois M.
2015-02-23
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Computer modeling of active experiments in space plasmas
Bollens, R.J.
1993-01-01
The understanding of space plasmas is expanding rapidly. This is, in large part, due to the ambitious efforts of scientists from around the world who are performing large scale active experiments in the space plasma surrounding the earth. One such effort was designated the Active Magnetospheric Particle Tracer Explorers (AMPTE) and consisted of a series of plasma releases that were completed during 1984 and 1985. What makes the AMPTE experiments particularly interesting was the occurrence of a dramatic anomaly that was completely unpredicted. During the AMPTE experiment, three satellites traced the solar-wind flow into the earth's magnetosphere. One satellite, built by West Germany, released a series of barium and lithium canisters that were detonated and subsequently photo-ionized via solar radiation, thereby creating an artificial comet. Another satellite, built by Great Britain and in the vicinity during detonation, carried, as did the first satellite, a comprehensive set of magnetic field, particle and wave instruments. Upon detonation, what was observed by the satellites, as well as by aircraft and ground-based observers, was quite unexpected. The initial deflection of the ion clouds was not in the ambient solar wind's flow direction ([rvec V]) but rather in the direction transverse to the solar wind and the background magnetic field ([rvec V] [times] [rvec B]). This result was not predicted by any existing theories or simulation models; it is the main subject discussed in this dissertation. A large three dimensional computer simulation was produced to demonstrate that this transverse motion can be explained in terms of a rocket effect. Due to the extreme computer resources utilized in producing this work, the computer methods used to complete the calculation and the visualization techniques used to view the results are also discussed.
Horsfall, F.; Bleck, R.; Hanson, H.P.
1997-11-01
This study addresses the issue of the ocean`s response to the changing climate. The objectives is to determine the effect of variable atmospheric forcing on the ocean on decadal time scales, specifically on the subduction of a passive tracer. In the context of the model used in this study, this tracer is {open_quotes}tagged{close_quotes} water that is subducted into the thermocline and into the deep ocean. The model used in this study is the Miami Isopycnic Coordinate Ocean Model which has a realistic Atlantic domain from 20{degrees}S to 60{degrees}N. There are twelve model layers, the first (top) layer being the thermodynamically active mixed layer and the lower eleven layers all having constant potential density ({sigma}{sub {theta}}). The atmospheric forcing changes vary latitudinally, allowing for a maximum increase in wind at midlatitudes and a maximum increase in temperature at the poles. In these experiments, it was found that wind speed and temperature effects dominate in bringing about changes in mixed-layer depth and in tracer penetration at high latitudes, with wind speed effects having the greater weight. It is apparent from the results that the weakening of the North Atlantic thermohaline circulation is dependent on the atmospheric changes in air temperature and in the wind field. 11 refs., 2 figs.
Impact of Higher Fidelity Models on Active Aerodynamic Load Control...
U.S. Department of Energy (DOE) all webpages (Extended Search)
simulation of active aerodynamic load control technology is provided here. Turbine component fatigue damage calculations require time-series load histories at the turbine...
White Paper on DOE-HEP Accelerator Modeling Science Activities
U.S. Department of Energy (DOE) all webpages (Extended Search)
modeling science within the Department of Energy (DOE) Office of High Energy Physics (HEP) and (b) increasing the community-wide coordination and integration of code development. ...
Final Report: Performance Modeling Activities in PERC2
Allan Snavely
2007-02-25
Progress in Performance Modeling for PERC2 resulted in: • Automated modeling tools that are robust, able to characterize large applications running at scale while simultaneously simulating the memory hierarchies of mul-tiple machines in parallel. • Porting of the requisite tracer tools to multiple platforms. • Improved performance models by using higher resolution memory models that ever before. • Adding control-flow and data dependency analysis to the tracers used in perform-ance tools. • Exploring and developing several new modeling methodologies. • Using modeling tools to develop performance models for strategic codes. • Application of modeling methodology to make a large number of “blind” per-formance predictions on certain mission partner applications, targeting most cur-rently available system architectures. • Error analysis to correct some systematic biases encountered as part of the large-scale blind prediction exercises. • Addition of instrumentation capabilities for communication libraries other than MPI. • Dissemination the tools and modeling methods to several mission partners, in-cluding DoD HPCMO and two DARPA HPCS vendors (Cray and IBM), as well as to the wider HPC community via a series of tutorials.
Numerical uncertainty in computational engineering and physics
Hemez, Francois M
2009-01-01
Obtaining a solution that approximates ordinary or partial differential equations on a computational mesh or grid does not necessarily mean that the solution is accurate or even 'correct'. Unfortunately assessing the quality of discrete solutions by questioning the role played by spatial and temporal discretizations generally comes as a distant third to test-analysis comparison and model calibration. This publication is contributed to raise awareness of the fact that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases, overwhelm in complexity and magnitude other sources of uncertainty that include experimental variability, parametric uncertainty and modeling assumptions. The concepts of consistency, convergence and truncation error are overviewed to explain the articulation between the exact solution of continuous equations, the solution of modified equations and discrete solutions computed by a code. The current state-of-the-practice of code and solution verification activities is discussed. An example in the discipline of hydro-dynamics illustrates the significant effect that meshing can have on the quality of code predictions. A simple method is proposed to derive bounds of solution uncertainty in cases where the exact solution of the continuous equations, or its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh discretization should always be quantified and accounted for in the overall uncertainty 'budget' that supports decision-making for applications in computational physics and engineering.
Bonnefous, Y.C. |; Gadgil, A.J.; Allard, F.
1992-04-01
The functioning of an active sub-slab ventilation system (SVS) has been studied successfully with the help of a previously evaluated numerical model. The parameters explored are the permeability of the sub-slab and the gravel placed beneath it, the amplitude of applied pressure at the installation point of the system and the functioning method: depressurization or pressurization. The mechanisms contributing to the success of the two systems are identified. This numerical study shows that the presence of a layer of gravel beneath the sub-slab considerably improves the performance of the SVS. Considered separately from the extremely permeable sub-slabs, the depressurization systems perform better than the pressurization systems. 17 refs. [Francais] Le fonctionnement des Systemes de Ventilation active du Sol (SVS) a ete etudie a l`aide d`un outil numerique precedemment evalue avec succes. Les parametres explores sont les permeabilites du sol et du gravier place sous plancher bas, l`amplitude de la pression appliquee au point d`installation du systeme, et le mode de fonctionnement: Depressurisation ou Pressurisation. Les mecanismes contribuant au succes des deux systemes sont identifies. Cette etude numerique montre que la presence d`une couche de gravier sous plancher bas ameliore de facon considerable les performances des SVS. Mis a part le cas des sols extremement permeables, les systemes de Depressurisation ont de meilleures performances que les systemes de Pressurisation. 17 refs.
Highly dispersed buckybowls as model carbocatalysts for C–H bond activation
Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; Li, An-Ping; Liang, Chengdu; Schwartz, Viviane
2015-03-19
Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.
Energy flow in passive and active 3D cochlear model
Wang, Yanli; Steele, Charles; Puria, Sunil
2015-12-31
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Active patterning and asymmetric transport in a model actomyosin network
Wang, Shenshen; Wolynes, Peter G.
2013-12-21
Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.
Schwantes, Jon M.
2009-06-01
The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.
Numerical computation of Pop plot
Menikoff, Ralph
2015-03-23
The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparison of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.
Gupta, A.; Moridis, G.J.; Kneafsey, T.J.; Sloan, Jr., E.D.
2009-08-15
The numerical simulator TOUGH+HYDRATE (T+H) was used to predict the transient pure methane hydrate (no sediment) dissociation data. X-ray computed tomography (CT) was used to visualize the methane hydrate formation and dissociation processes. A methane hydrate sample was formed from granular ice in a cylindrical vessel, and slow depressurization combined with thermal stimulation was applied to dissociate the hydrate sample. CT images showed that the water produced from the hydrate dissociation accumulated at the bottom of the vessel and increased the hydrate dissociation rate there. CT images were obtained during hydrate dissociation to confirm the radial dissociation of the hydrate sample. This radial dissociation process has implications for dissociation of hydrates in pipelines, suggesting lower dissociation times than for longitudinal dissociation. These observations were also confirmed by the numerical simulator predictions, which were in good agreement with the measured thermal data during hydrate dissociation. System pressure and sample temperature measured at the sample center followed the CH{sub 4} hydrate L{sub w}+H+V equilibrium line during hydrate dissociation. The predicted cumulative methane gas production was within 5% of the measured data. Thus, this study validated our simulation approach and assumptions, which include stationary pure methane hydrate-skeleton, equilibrium hydrate-dissociation and heat- and mass-transfer in predicting hydrate dissociation in the absence of sediments. It should be noted that the application of T+H for the pure methane hydrate system (no sediment) is outside the general applicability limits of T+H.
Pohlmann Karl,Ye Ming
2012-03-01
Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.
Disruptive Innovation in Numerical Hydrodynamics
Waltz, Jacob I.
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Hoffman, Forrest M [ORNL; Randerson, James T [ORNL; Thornton, Peter E [ORNL; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Erickson III, David J [ORNL; Fung, Inez [University of California, Berkeley
2009-12-01
The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Project (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon
Modeling and production of 240Am by deuteron-induced activation of a 240Pu target
Finn, Erin C.; McNamara, Bruce K.; Greenwood, Lawrence R.; Wittman, Richard S.; Soderquist, Chuck Z.; Woods, Vincent T.; VanDevender, Brent A.; Metz, Lori A.; Friese, Judah I.
2015-02-01
A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggests that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.3 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.
Prowell, I.; Robertson, A.; Jonkman, J.; Stewart, G. M.; Goupee, A. J.
2013-01-01
Realizing the critical importance the role physical experimental tests play in understanding the dynamics of floating offshore wind turbines, the DeepCwind consortium conducted a one-fiftieth-scale model test program where several floating wind platforms were subjected to a variety of wind and wave loading condition at the Maritime Research Institute Netherlands wave basin. This paper describes the observed behavior of a tension-leg platform, one of three platforms tested, and the systematic effort to predict the measured response with the FAST simulation tool using a model primarily based on consensus geometric and mass properties of the test specimen.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
R. T. Mills; G. Bisht; G. E. Hammond; J. Kumar; P. C. Lichtner; F. M. Hoffman; X. Xu; F. Yuan; S. L. Painter; G. Tang; and P.E. Thornton; B. Andre
2016-04-19
This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at doi:10.5194/gmd-9-927-2016. The purpose is to document the simulations to allow verification, reproducibility, and follow-up studies. This dataset contains shell scripts to create the CLM-PFLOTRAN cases, specific input files for PFLOTRAN and CLM, outputs, and python scripts to make the figures using the outputs in the publication. Through these results, we demonstrate that CLM-PFLOTRAN can approximately reproduce CLM results in selected cases for the Arctic, temperate and tropic sites. In addition, the new framework facilitates mechanistic representations of soil biogeochemistry processes in the land surface model.
Technosocial Modeling for Determining the Status and Nature of a State’s Nuclear Activities
Gastelum, Zoe N.; Harvey, Julia B.
2009-09-25
The International Atomic Energy Agency State Evaluation Process: The Role of Information Analysis in Reaching Safeguards Conclusions (Mathews et al. 2008), several examples of nonproliferation models using analytical software were developed that may assist the IAEA with collecting, visualizing, analyzing, and reporting information in support of the State Evaluation Process. This paper focuses on one of the examples a set of models developed in the Proactive Scenario Production, Evidence Collection, and Testing (ProSPECT) software that evaluates the status and nature of a state’s nuclear activities. The models use three distinct subject areas to perform this assessment: the presence of nuclear activities, the consistency of those nuclear activities with national nuclear energy goals, and the geopolitical context in which those nuclear activities are taking place. As a proof-of-concept for the models, a crude case study was performed. The study, which attempted to evaluate the nuclear activities taking place in Syria prior to September 2007, yielded illustrative, yet inconclusive, results. Due to the inconclusive nature of the case study results, changes that may improve the model’s efficiency and accuracy are proposed.
Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer
Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine
2009-06-10
Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Direct Numerical Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced
Wu, Weibin; Institutes of Biomedical Science, Fudan University, Shanghai 200032 ; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin; Institutes of Biomedical Science, Fudan University, Shanghai 200032
2014-01-03
Highlights: FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR attenuated alcohol-induced liver injury and steatosis. Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.
ASPEN PLUS modeling of the SRC-I Demonstration Plant. Task 19: modeling support activities report
Not Available
1984-09-28
The APCI version of ASPEN PLUS was maintained and enhanced in order to support the requirements of the simulation effort described in the earlier tasks. The support effort is conveniently divided into systems support and technical support in the areas of flowsheeting and thermophysical properties. Systems support required installation of the fourth release of ASPEN PLUS, installation of AspenTech's updates to correct program errors, and several general maintenance tasks unique to the APCI version of ASPEN PLUS. Technical support in the area of flowsheeting consisted of the organization of training courses, consultation in solving simulation problems, and identifying and resolving problems resulting from bugs in ASPEN PLUS. Thermodynamic technical support consisted of developing a few new models, implementing the coal-fluid thermophysical models into ASPEN PLUS, providing convenient access to the physical properties through INSERTs, and consultation to resolve simulation problems resulting from the nonideality of the properties. All software enhancements to ASPEN PLUS have been described and delivered so that APCI's version of the program may be duplicated and maintained at other sites. 16 references.
Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R. E-mail: dnandi@iiserkol.ac.i E-mail: anthony@maths.dundee.ac.u
2010-09-01
The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.
Forward modeling transient brightenings and microflares around an active region observed with Hi-C
Kobelski, Adam R.; McKenzie, David E.
2014-10-20
Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C) sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (?0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.
Anaerobic waste-activated sludge digestion - A bioconversion mechanism and kinetic model
Shimizu, Tatsuo; Kudo, Kenzo; Nasu, Yoshikazu )
1993-05-01
The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher than the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes - the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first-order kinetics. The model approximately simulated the overall process performance of the anaerobic digestion of waste-activated sludge. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria.
Mechanical diode: Comparing numerical and experimental characterizations
Sagartz, M.J.; Segalman, D.; Simmermacher, T.
1998-02-01
In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predictions, in spite of convergence being very sensitive to numerical artifacts of the interface model, are in good agreement with experimentally measured strains and joint compliances. The joint behavior is a mechanical analogy to a diode, i.e., in compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is relatively soft, acting as a spring.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...
Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk
2012-10-02
The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of
U.S. Department of Energy (DOE) all webpages (Extended Search)
Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...
Yu, Z.; Peldszus, S.; Huck, P.M.
2009-03-01
The adsorption of two representative pharmaceutically active compounds (PhACs) naproxen and carbamazepine and one endocrine disrupting compound (EDC) nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. The GAC adsorbents were coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. 25 refs., 4 figs., 1 tab.
Rythmos Numerical Integration Package
Energy Science and Technology Software Center (OSTI)
2006-09-01
Rythmos numerically integrates transient differential equations. The differential equations can be explicit or implicit ordinary differential equations ofr formulated as fully implicit differential-algebraic equations. Methods include backward Euler, forward Euler, explicit Runge-Kutta, and implicit BDF at this time. Native support for operator split methods and strict modularity are strong design goals. Forward sensitivity computations will be included in the first release with adjoint sensitivities coming in the near future. Rythmos heavily relies on Thyra formore » linear algebra and nonlinear solver interfaces to AztecOO, Amesos, IFPack, and NOX in Tilinos. Rythmos is specially suited for stiff differential equations and thos applictions where operator split methods have a big advantage, e.g. Computational fluid dynamics, convection-diffusion equations, etc.« less
SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES
Petrie, G. J. D.
2013-05-10
We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.
Subtask 2.2 - Creating A Numerical Technique for Microseismic Data Inversion
Anastasia Dobroskok; Yevhen Holubnyak; James Sorensen
2009-05-01
Geomechanical and geophysical monitoring are the techniques which can complement each other and provide enhancement in the solutions of many problems of geotechnical engineering. One of the most promising geophysical techniques is passive seismic monitoring. The essence of the technique is recording the acoustic signals produced in the subsurface, either naturally or in response to human activity. The acoustic signals are produced by mechanical displacements on the contacts of structural elements (e.g., faults, boundaries of rock blocks, natural and induced fractures). The process can be modeled by modern numerical techniques developed in geomechanics. The report discusses a study that was aimed at the unification of the passive seismic monitoring and numerical modeling for the monitoring of the hydraulic fracture propagation. The approach adopted in the study consisted of numerical modeling of the seismicity accompanying hydraulic fracture propagation and defining seismic attributes and patterns characterizing the process and fracture parameters. Numerical experiments indicated that the spatial distribution of seismic events is correlated to geometrical parameters of hydrofracture. Namely, the highest density of the events is observed along fracture contour, and projection of the events to the fracture plane makes this effect most pronounced. The numerical experiments also showed that dividing the totality of the events into groups corresponding to the steps of fracture propagation allows for reconstructing the geometry of the resulting fracture more accurately than has been done in the majority of commercial applications.
Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, Lai-Yung R.; Fan, Jiwen; Nenes, Athanasios
2015-07-22
Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation
Saeed, Noha M.; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M.; Algandaby, Mardi M.; Al-Abbasi, Fahad A.; Abdel-Naim, Ashraf B.
2012-10-01
Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6). MP and EP decreased NF-?B expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ? Efficacy of MP and EP in combating inflammation was displayed in several models. ? MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ? MP and EP decreased TNF-? and IL-6 levels in experimental endotoxemia. ? MP and EP reduced NF-?B expression and histological changes in rat liver and lung. ? MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.
TWO-DIMENSIONAL CELLULAR AUTOMATON MODEL FOR THE EVOLUTION OF ACTIVE REGION CORONAL PLASMAS
Lpez Fuentes, Marcelo; Klimchuk, James A.
2015-02-01
We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of 2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.
Numerical simulations of strong incompressible magnetohydrodynamic turbulence
Mason, J.; Cattaneo, F.; Perez, J. C.; Boldyrev, S.
2012-05-15
Magnetised plasma turbulence pervades the universe and is likely to play an important role in a variety of astrophysical settings. Magnetohydrodynamics (MHD) provides the simplest theoretical framework in which phenomenological models for the turbulent dynamics can be built. Numerical simulations of MHD turbulence are widely used to guide and test the theoretical predictions; however, simulating MHD turbulence and accurately measuring its scaling properties is far from straightforward. Computational power limits the calculations to moderate Reynolds numbers and often simplifying assumptions are made in order that a wider range of scales can be accessed. After describing the theoretical predictions and the numerical approaches that are often employed in studying strong incompressible MHD turbulence, we present the findings of a series of high-resolution direct numerical simulations. We discuss the effects that insufficiencies in the computational approach can have on the solution and its physical interpretation.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley
2016-04-21
This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.
An integrated experimental and numerical study: Developing a reaction
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
transport model that couples chemical reactions of mineral dissolution/precipitation with spatial and temporal flow variations in CO2/brine/rock systems | Department of Energy An integrated experimental and numerical study: Developing a reaction transport model that couples chemical reactions of mineral dissolution/precipitation with spatial and temporal flow variations in CO2/brine/rock systems An integrated experimental and numerical study: Developing a reaction transport model that
Ribeiro-Filho, Jaime; Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana; Moraes de Carvalho, Katharinne Ingrid; Silva Mendes, Diego da; Melo, Christianne Bandeira; Martins, Marco Aurlio; Silva Dias, Celidarque da; Piuvezam, Mrcia Regina; and others
2013-11-15
Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. Curine
Ion-heated thermal Comptonization models and x-ray spectral correlations in active galactic nuclei
Dermer, C.D.
1989-11-01
Recent Ginga observations of the Seyfert 1 galaxies NGC 4051 and MCG 6-30-15 show a positive correlation between the 2-10 keV luminosity and photon spectral index {alpha}. Similar behavior has also been reported in Exosat and Einstein observations of other active galactic nuclei, and is suggested in hard x-ray low-state data of the galactic black-hole candidate Cygnus X-1. A two-temperature thermal Comptonization model with internal soft-photon production provides a simple explanation for this correlation. The electron temperature, determined by a balance between ion heating and radiative cooling, decreases in response to an enhancement of the soft photon flux, resulting in a softening of the spectrum and an increase in the soft x-ray luminosity. The bulk of the soft photons are produced through pion production in collisions between the hot ions. Pivoting of the spectrum at photon energies {var epsilon} > 50 keV is a consequence of variations in the ion temperature. An important test of the model would be time correlations between soft and hard x-ray bands. 17 refs., 9 figs., 1 tab.
MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS
Ofman, L.; Liu, W.; Title, A.; Aschwanden, M.
2011-10-20
Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.
IceCube expectations for two high-energy neutrino production models at active galactic nuclei
Argüelles, C.A.; Bustamante, M.; Gago, A.M. E-mail: mbustamante@pucp.edu.pe
2010-12-01
We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers and Tinyakov (KT) and another by Becker and Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 10{sup 5} ≤ E{sub ν}/GeV ≤ 10{sup 8}. We have used the latest estimated discovery potential of the IceCube-86 array at the 5σ level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, α, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Γ{sub ν}/Γ{sub CR}, and the maximum redshift of the sources that contribute to the cosmic-ray flux, z{sub CR}{sup max}. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of α = 2.7 obtained from fits to cosmic-ray data. Lower values of α, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5σ level or more is guaranteed.
Simple intrinsic defects in GaAs : numerical supplement.
Schultz, Peter Andrew
2012-04-01
This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.
U.S. Department of Energy (DOE) all webpages (Extended Search)
... saturation mechanism depends sensitively on the viscosity parameterized by Pm. ... A more thorough treatment of the dynamic variation of dominant eigenmodes can be found for ...
Modeling hot gas flow in the low-luminosity active galactic nucleus of NGC 3115
Shcherbakov, Roman V.; Reynolds, Christopher S.; Wong, Ka-Wah; Irwin, Jimmy A.
2014-02-20
Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with ?{sup 2}/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 10{sup 9} M {sub ?}. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r {sub st} ? 1'', so that most of the gas, including the gas at a Bondi radius r{sub B} = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 10{sup 3} M {sub ?} yr{sup 1}. We find a shallow density profile n?r {sup ?} with ? ? 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r ? 1'', and (4) the outflow at r ? 1''. The gas temperature is close to the virial temperature T{sub v} at any radius.
Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.
2015-03-01
We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less
Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.
2015-03-01
We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismic moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.
Root, D.E.; McGinty, D.; Hughes, B.
1995-12-31
This paper presents a new approach to statistical active circuit design which unifies device parametric-based process control and non-parametric circuit simulation. Predictions of circuit sensitivity to process variation and yield-loss of circuits fabricated in two different GaAs IC processes are described. The simulations make use of measurement-based active device models which are not formulated in terms of conventional parametric statistical variables. The technique is implemented in commercially available simulation software (HP MDS).
RELAP-7 Numerical Stabilization: Entropy Viscosity Method
R. A. Berry; M. O. Delchini; J. Ragusa
2014-06-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.
Stephanie von Numers | Department of Energy
Stephanie von Numers - Communications and Web Coordinator, Education & Workforce Development Stephanie von Numers joined the U.S. Department of Energy's Office of Energy Efficiency ...
He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D. N.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; et al
2015-08-20
We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst ≈ –45) and 14 January 2013 (Dst ≈ –18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 – 6.3, with a lower frequency band 0.1–0.5fce and a peak spectral density ~10–4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (~10–300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations tomore » show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation approximately between 0.3fce and 0.4fce, at latitude <7°. Moreover, chorus waves launched with initial normal angles either θ < 90° or > 90° propagate along the field either northward or southward and then bounce back either away from Earth for a lower frequency or toward Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Furthermore, we examine a dayside event during a small storm C on 8 May 2014 (Dst ≈ –45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.« less
He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D. N.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.; Blake, J. B.
2015-08-20
We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst ≈ –45) and 14 January 2013 (Dst ≈ –18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 – 6.3, with a lower frequency band 0.1–0.5fce and a peak spectral density ~10^{–4} nT^{2}/Hz. In the same period, the fluxes and anisotropy of energetic (~10–300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation approximately between 0.3f_{ce} and 0.4f_{ce}, at latitude <7°. Moreover, chorus waves launched with initial normal angles either θ < 90° or > 90° propagate along the field either northward or southward and then bounce back either away from Earth for a lower frequency or toward Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Furthermore, we examine a dayside event during a small storm C on 8 May 2014 (Dst ≈ –45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.
Numerical simulations shed new light on early universe
U.S. Department of Energy (DOE) all webpages (Extended Search)
Numerical simulations shed new light on early universe Numerical simulations shed new light on early universe The code simulates conditions during the first few minutes of cosmological evolution to model the role of neutrinos, nuclei and other particles in shaping the early universe. April 21, 2016 Los Alamos scientists developed the BURST computer code to predict-to unprecedented precision-the amounts of light nuclei synthesized in the Big Bang. Los Alamos scientists developed the BURST
Recent advances in two-phase flow numerics
Mahaffy, J.H.; Macian, R.
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Numerical recipes for mold filling simulation
Kothe, D.; Juric, D.; Lam, K.; Lally, B.
1998-07-01
Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.
Hall, M.M., Jr
1995-12-31
There is a growing awareness that awareness that environmentally assisted creep plays an important role in integranular stress corrosion cracking (IGSCC) of NiCrFe alloys in the primary coolant water environment of a pressurized water reactor (PWR). The expected creep mechanism is the thermally activated glide of dislocations. This mode of deformation is favored by the relatively low temperature of PWR operation combined with the large residual stresses that are most often identified as responsible for the SCC failure of plant components. Stress corrosion crack growth rate (CGR) equations that properly reflect the influence of this mechanism of crack tip deformation are required for accurate component life predictions. A phenomenological IGSCC-CGR model, which is based on an apriori assumption that the IGSCC-CGR is controlled by a low temperature dislocation creep mechanism, is developed in this report. Obstacles to dislocation creep include solute atoms such as carbon, which increase the lattice friction force, and forest dislocations, which can be introduced by cold prestrain. Dislocation creep also may be environmentally assisted due to hydrogen absorption at the crack tip. The IGSCC-CGR model developed here is based on an assumption that crack growth occurs by repeated fracture events occurring within an advancing crack-tip creep-fracture zone. Thermal activation parameters for stress corrosion cracking are obtained by fitting the CGR model to IGSCC-CGR data obtained on NiCrFe alloys, Alloy X-750 and Alloy 600. These IGSCC-CGR activation parameters are compared to activation parameters obtained from creep and stress relaxation tests. Recently reported CGR data, which exhibit an activation energy that depends on yield stress and the applied stress intensity factor, are used to benchmark the model. Finally, the effects of matrix carbon concentration, grain boundary carbides and absorbed hydrogen concentration are discussed within context of the model.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. The collection provides access to the Oceanographic Numeric Data Packages (NDPs).
Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt
Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens
2014-09-26
The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.
LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM
DeLong, Edward; Harwood, Caroline; Reid, Ann
2011-01-01
This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.
Numerical Simulation of Groundwater Withdrawal at the Nevada Test Site
Carroll, Rosemary; Giroux, Brian; Pohll, Greg; Hershey, Ronald; Russell, Charles; Howcroft, William
2004-01-28
Alternative uses of the Nevada Test Site (NTS) may require large amounts of water to construct and/or operate. The only abundant source of water at the NTS is groundwater. This report describes preliminary modeling to quantify the amount of groundwater available for development from three hydrographic areas at the NTS. Modeling was conducted with a three-dimensional transient numerical groundwater flow model.
Numerical simulations of capillary barrier field tests
Morris, C.E.; Stormont, J.C.
1997-12-31
Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments [OSTI]
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
Interagency mechanical operations group numerical systems group
1997-09-01
This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.
Extended micro hot fusion model for burst activity in deuterated solids
Kuehne, R.W.; Sioda, R.E.
1995-03-01
An extended micro hot fusion scenario attempts to explain the burst processes of cold fusion reports and unsuccessful experiments. A heuristic model requires only 10 m{sup 3} of palladium deuteride to release a power of 1 GW for a long time. This might facilitate future commercial use of cold fusion. 40 refs.
Simple intrinsic defects in InAs : numerical predictions.
Schultz, Peter Andrew
2013-03-01
This Report presents numerical tables summarizing properties of intrinsic defects in indium arsenide, InAs, as computed by density functional theory using semi-local density functionals, intended for use as reference tables for a defect physics package in device models.
Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO2 hydrogenation
Asara, Gian Giacomo; Ricart, Josep M.; Rodriguez, Jose A.; Illas, Francesc
2015-02-02
Small metallic nanoparticles supported on transition metal carbides exhibit an unexpected high activity towards a series of chemical reactions. In particular, the Au/TiC system has proven to be an excellent catalyst for SO2 decomposition, thiophene hydrodesulfurization, O2 and H2 dissociation and the water gas shift reaction. Recent studies have shown that Au/TiC is a very good catalyst for the reverse water–gas shift (CO2 + H2 → CO + H2O) and CO2 hydrogenation to methanol. The present work further expands the range of applicability of this novel type of systems by exploring the catalytic activity of Au/TiC towards the hydrogenation ofmore » CO or CO2 with periodic density functional theory (DFT) calculations on model systems. Hydrogen dissociates easily on Au/TiC but direct hydrogenation of CO to methanol is hindered by very high activation barriers implying that, on this model catalyst, methanol production from CO2 involves the hydrogenation of a HOCO-like intermediate. Thus, when dealing with mixtures of syngas (CO/CO2/H2/H2O), CO could be transformed into CO2 through the water gas shift reaction with subsequent hydrogenation of CO2 to methanol.« less
Numerical studies of active current profile control in the reversed...
U.S. Department of Energy (DOE) all webpages (Extended Search)
... the basic concept: the freezing of the dynamic auxiliary field (section 3.2) and the ... In DEBSP, viscosity, resistivity and finite pressure are included as well as transport ...
St. John, C.; Krug, A.; Key, S.; Monsees, J.
1983-05-01
Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.
Experimental and numerical analysis of metal leaching from fly ash-amended highway bases
Cetin, Bora; Aydilek, Ahmet H.; Li, Lin
2012-05-15
Highlights: Black-Right-Pointing-Pointer This study is the evaluation of leaching potential of fly ash-lime mixed soils. Black-Right-Pointing-Pointer This objective is met with experimental and numerical analysis. Black-Right-Pointing-Pointer Zn leaching decreases with increase in fly ash content while Ba, B, Cu increases. Black-Right-Pointing-Pointer Decrease in lime content promoted leaching of Ba, B and Cu while Zn increases. Black-Right-Pointing-Pointer Numerical analysis predicted lower field metal concentrations. - Abstract: A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. This objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.
A dynamo model of magnetic activity in solar-like stars with different rotational velocities
Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.
2014-08-10
We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.
Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities
Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G.
2012-09-26
The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.
Direct numerical simulation of turbulent reacting flows
Chen, J.H.
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT
Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y
2014-06-15
Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant
Hamann, S. Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.
2015-12-15
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.
Numerical and Experimental Investigation of Internal Short Circuit...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Battery Thermal Modeling and Testing Implantation, Activation, Characterization and PreventionMitigation of Internal Short Circuits in Lithium-Ion Cells Progress of DOE Materials, ...
Numerical evaluation of effective unsaturated hydraulic properties...
Office of Scientific and Technical Information (OSTI)
unsaturated hydraulic properties for fractured rocks Citation Details In-Document Search Title: Numerical evaluation of effective unsaturated hydraulic properties for ...
MODELING THE Fe K LINE PROFILES IN TYPE I ACTIVE GALACTIC NUCLEI WITH A COMPTON-THICK DISK WIND
Tatum, M. M.; Turner, T. J.; Sim, S. A.; Miller, L.; Reeves, J. N.; Patrick, A. R.; Long, K. S.
2012-06-20
We have modeled a small sample of Seyfert galaxies that were previously identified as having simple X-ray spectra with little intrinsic absorption. The sources in this sample all contain moderately broad components of Fe K-shell emission and are ideal candidates for testing the applicability of a Compton-thick accretion disk wind model to active galactic nucleus (AGN) emission components. Viewing angles through the wind allow the observer to see the absorption signature of the gas, whereas face-on viewing angles allow the observer to see the scattered light from the wind. We find that the Fe K emission line profiles are well described with a model of a Compton-thick accretion disk wind of solar abundances, arising tens to hundreds of gravitational radii from the central black hole. Further, the fits require a neutral component of Fe K{alpha} emission that is too narrow to arise from the inner part of the wind, and likely comes from a more distant reprocessing region. Our study demonstrates that a Compton-thick wind can have a profound effect on the observed X-ray spectrum of an AGN, even when the system is not viewed through the flow.
Melin, Alexander M; Kisner, Roger A; Fugate, David L; Holcomb, David Eugene
2015-01-01
Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.
Yu, Zheng; Krause, Sascha M. B.; Beck, David A. C.; Chistoserdova, Ludmila
2016-06-15
In this perspective article, we question how well model organisms, the ones that are easy to cultivate in the laboratory and that show robust growth and biomass accumulation, reflect the dynamics and interactions of microbial communities observed in nature. Today's -omics toolbox allows assessing the genomic potential of microbes in natural environments in a high-throughput fashion and at a strain-level resolution. However, understanding of the details of microbial activities and of the mechanistic bases of community function still requires experimental validation in simplified and fully controlled systems such as synthetic communities. We have studied methane utilization in Lake Washington sedimentmore » for a few decades and have identified a number of species genetically equipped for this activity. We have also identified cooccurring satellite species that appear to form functional communities together with the methanotrophs. Here, we compare experimental findings from manipulation of natural communities involved in metabolism of methane in this niche with findings from manipulation of synthetic communities assembled in the laboratory of species originating from the same study site, from very simple (two-species) to rather complex (50-species) synthetic communities. We observe some common trends in community dynamics between the two types of communities, toward representation of specific functional guilds. However, we also identify strong discrepancies between the dominant methane oxidizers in synthetic communities compared to natural communities, under similar incubation conditions. Furthermore, these findings highlight the challenges that exist in using the synthetic community approach to modeling dynamics and species interactions in natural communities.« less
Category:Modeling Techniques | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Analytical Modeling 1 pages C Conceptual Model 1 pages M Modeling-Computer Simulations 1 pages N Numerical Modeling 1 pages P Portfolio Risk...
Numerical simulations of the decay of primordial magnetic turbulence
Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Brandenburg, Axel [Nordita, AlbaNova University Center, Roslagstullsbacken 23, 10691 Stockholm (Sweden); Department of Astronomy, Stockholm University, SE 10691 Stockholm (Sweden); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue Tbilisi, GE-0128 (Georgia); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)
2010-06-15
We perform direct numerical simulations of forced and freely decaying 3D magnetohydrodynamic turbulence in order to model magnetic field evolution during cosmological phase transitions in the early Universe. Our approach assumes the existence of a magnetic field generated either by a process during inflation or shortly thereafter, or by bubble collisions during a phase transition. We show that the final configuration of the magnetic field depends on the initial conditions, while the velocity field is nearly independent of initial conditions.
Improvements to the RELAP5-3D Nearly-Implicit Numerical Scheme
Richard A. Riemke; Walter L. Weaver; RIchard R. Schultz
2005-05-01
The RELAP5-3D computer program has been improved with regard to its nearly-implicit numerical scheme for twophase flow and single-phase flow. Changes were made to the nearly-implicit numerical scheme finite difference momentum equations as follows: (1) added the velocity flip-flop mass/energy error mitigation logic, (2) added the modified Henry-Fauske choking model, (3) used the new time void fraction in the horizontal stratification force terms and gravity head, and (4) used an implicit form of the artificial viscosity. The code modifications allow the nearly-implicit numerical scheme to be more implicit and lead to enhanced numerical stability.
Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona
Thalmann, J. K.
2014-01-01
The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (?100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.
TGFβ loss activates ADAMTS-1-mediated EGF-dependent invasion in a model of esophageal cell invasion
Le Bras, Grégoire F.; Taylor, Chase; Koumangoye, Rainelli B.; Revetta, Frank; Loomans, Holli A.; Andl, Claudia D.
2015-01-01
The TGFβ signaling pathway is essential to epithelial homeostasis and is often inhibited during progression of esophageal squamous cell carcinoma. Recently, an important role for TGFβ signaling has been described in the crosstalk between epithelial and stromal cells regulating squamous tumor cell invasion in mouse models of head-and-neck squamous cell carcinoma (HNSCC). Loss of TGFβ signaling, in either compartment, leads to HNSCC however, the mechanisms involved are not well understood. Using organotypic reconstruct cultures (OTC) to model the interaction between epithelial and stromal cells that occur in dysplastic lesions, we show that loss of TGFβ signaling promotes an invasive phenotype in both fibroblast and epithelial compartments. Employing immortalized esophageal keratinocytes established to reproduce common mutations of esophageal squamous cell carcinoma, we show that treatment of OTC with inhibitors of TGFβ signaling (A83-01 or SB431542) enhances invasion of epithelial cells into a fibroblast-embedded Matrigel/collagen I matrix. Invasion induced by A83-01 is independent of proliferation but relies on protease activity and expression of ADAMTS-1 and can be altered by matrix density. This invasion was associated with increased expression of pro-inflammatory cytokines, IL1 and EGFR ligands HB-EGF and TGFα. Altering EGF signaling prevented or induced epithelial cell invasion in this model. Loss of expression of the TGFβ target gene ROBO1 suggested that chemorepulsion may regulate keratinocyte invasion. Taken together, our data show increased invasion through inhibition of TGFβ signaling altered epithelial-fibroblasts interactions, repressing markers of activated fibroblasts, and altering integrin-fibronectin interactions. These results suggest that inhibition of TGFβ signaling modulates an array of pathways that combined promote multiple aspects of tumor invasion. - Highlights: • Chemical inhibition of TGFβ signaling advances collective invasion
Direct Numerical Simulation of Compressible, Turbulent Flow ...
U.S. Department of Energy (DOE) all webpages (Extended Search)
The computational mesh for this direct numerical simulation was over 33 billion cells, and was run on up to 102,400 cores under a DoD HPCMP Frontier Project. Nicholas Bisek and ...
Numerical routines for predicting ignition in pyrotechnic devices
Pierce, K.G.
1986-06-01
Two numerical models of the thermal processes leading to ignition in a pyrotechnic device have been developed. These models are based on finite difference approximations to the heat diffusion equation, with temperature-dependent thermal properties, in a single spatial coordinate. The derivation of the finite difference equations is discussed and the methods employed at boundaries and interfaces are given. The sources of the thermal-properties data are identified and how these data are used is explained. The program structure is explained and example runs of the programs are given.
Numerical simulation of the flow in wire-wrapped pin bundles: Effect of
U.S. Department of Energy (DOE) all webpages (Extended Search)
pin-wire contact modeling | Argonne Leadership Computing Facility simulation of the flow in wire-wrapped pin bundles: Effect of pin-wire contact modeling Authors: Merzari, E., Smith, J.G., Tentner, A., Pointer, W.D., Fischer, P. The rapid advancement of numerical techniques and the availability of increasingly powerful supercomputers recently enabled scientists to use large eddy simulation (LES) to simulate numerically the flow in a full subassembly composed of wire-wrapped pins. Because of
Numerical Modeling At Coso Geothermal Area (2007) | Open Energy...
Open Energy Information (Open El) [EERE & EIA]
the Coso Range. Notes A finite element analysis is used to establish the 3D state of stress within the tectonic setting of the Coso Range. The mean and differential stress...
Numerical Modeling At Coso Geothermal Area (1999) | Open Energy...
Open Energy Information (Open El) [EERE & EIA]
microseismic travel time data Lees, J.M.; Wu, H. (1 August 1999) P wave anisotropy, stress, and crack distribution at Coso geothermal field, California Additional References...
Analytical-Numerical Modeling Of Komatiite Lava Emplacement And...
Open Energy Information (Open El) [EERE & EIA]
submarine tuff. Flow distances must have been long (tens to hundreds of kilometers) and flow volumes must have been very high (hundreds to thousands of km3). Lava...
A NUMERICAL MODEL OF STANDARD TO BLOWOUT JETS
Archontis, V.; Hood, A. W.
2013-06-01
We report on three-dimensional (3D) MHD simulations of the formation of jets produced during the emergence and eruption of solar magnetic fields. The interaction between an emerging and an ambient magnetic field in the solar atmosphere leads to (external) reconnection and the formation of ''standard'' jets with an inverse Y-shaped configuration. Eventually, low-atmosphere (internal) reconnection of sheared fieldlines in the emerging flux region produces an erupting magnetic flux rope and a reconnection jet underneath it. The erupting plasma blows out the ambient field and, moreover, it unwinds as it is ejected into the outer solar atmosphere. The fast emission of the cool material that erupts together with the hot outflows due to external/internal reconnection form a wider ''blowout'' jet. We show the transition from ''standard'' to ''blowout'' jets and report on their 3D structure. The physical plasma properties of the jets are consistent with observational studies.
Validation of Numerical Two-Fluid and Kinetic Plasma Models
Daniel Barnes
2011-03-25
This was a four year grant commencing October 1, 2003 and finishing September 30, 2007. The funding was primarily used to support the work of the Principal Investigator, who collaborated with Profs. Scott Parker and John Cary at U. Colorado, and with two students, N. Xiang and J. Cheng also of U. Colorado. The technical accomplishments of this grant can be found in the publications listed in the final Section here. The main accomplishments of the grant work were: (1) Development and implementation of time-implicit two-fluid simulation methods in collaboration with the NIMROD team; and (2) Development and testing of a new time-implicit delta-f, energy-conserving method The basic two-fluid method, with many improvements is used in present NIMROD calculations. The energy-conserving delta-f method is under continuing development under contract between Coronado Consulting, a New Mexico sole proprietorship and the Oak Ridge National Laboratory.
Hydrodynamic and numerical modeling of a spherical homogeneous.pdf
U.S. Department of Energy (DOE) all webpages (Extended Search)
A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...
Open Energy Information (Open El) [EERE & EIA]
on the fluid flow distribution in an HDR geothermal reservoir. Authors T. W. Hicks, R. J. Pine, J. Willis-Richards, S. Xu, A. J. Jupe and N. E. V. Rodrigues Published Journal...
Numerical Modeling At Coso Geothermal Area (2000) | Open Energy...
Open Energy Information (Open El) [EERE & EIA]
porosity, which are then used to constrain and delineate possible zones of intense heat, fracture accumulation and fluid saturation. Poisson's ratio at Coso ranges from 0.15 to...
Numerical Modeling of Transient Basin and Range Extensional Geothermal...
Open Energy Information (Open El) [EERE & EIA]
R. McKenna and D. D. Blackwell Conference PROCEEDINGS, TOUGH Symposium 2003 Lawrence Berkeley National Laboratory; Berkeley, California; 2003 Published PROCEEDINGS, TOUGH...
Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...
Open Energy Information (Open El) [EERE & EIA]
H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Christoph...
Numerical Modeling of WECS at Ecole Centrale de Nantes
U.S. Department of Energy (DOE) all webpages (Extended Search)
LHEEA Lab. : Hydrodynamics, Energetics and Atmospheric Environment Staff : 100, Director : ... windwave coupling, freak wave statistics, wave propagation over complex ...
Numerical method for shear bands in ductile metal with inclusions
Plohr, Jee Yeon N [Los Alamos National Laboratory; Plohr, Bradley J [Los Alamos National Laboratory
2010-01-01
A numerical method for mesoscale simulation of high strain-rate loading of ductile metal containing inclusions is described. Because of small-scale inhomogeneities, such a composite material is prone to localized shear deformation (adiabatic shear bands). The modeling framework is the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. /27-139, 1992], which ensures that the micromechanical response of the material is reflected in the behavior of the composite at the mesoscale. To calculate the effective plastic strain rate when shear bands are present, the analytic and numerical analysis of shear bands by Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996] is adapted and extended.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-15
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Modeling & Analysis, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia Develops Stochastic ...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Monte Carlo modeling it was found that for noisy signals with a significant background component, accuracy is improved by fitting the total emission data which includes the...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Solar Sandia Labs Releases New Version of PVLib Toolbox Sandia has released version 1.3 of PVLib, its widely used Matlab toolbox for modeling photovoltaic (PV) power ...
U.S. Department of Energy (DOE) all webpages (Extended Search)
... Sandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Computational Modeling & Simulation, Distribution Grid Integration, Energy, Facilities, Grid ...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Science and Actuarial Practice" Read More Permalink New Project Is the ACME of Computer Science to Address Climate Change Analysis, Climate, Global Climate & Energy, Modeling, ...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Though adequate for modeling mean transport, this approach does not address ... Microphysics such as diffusive transport and chemical kinetics are represented by ...
Modeling of geothermal systems
Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.
1985-03-01
During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.
Numerical prediction of window condensation potential
McGowan, A.G.
1995-08-01
Although a substantial amount of effort has been expended to develop numerical methods for determining windows U-factors (EE 1983; Goss and Curcija 1994; Standaert 1985; CSA 1993a; NFRC 1991), there has been little work to data on using numerical methods to predict condensation potential. It is perhaps of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a precursor to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building material, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products as part of its mandate from the US Department of Energy (DOE). A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing to reduce the cost and time required for implementation and increase the flexibility of the rating method. This paper outlines one of the necessary components in the application of numerical methods for evaluating condensation in fenestration products. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products.
Numerical likelihood analysis of cosmic ray anisotropies
Carlos Hojvat et al.
2003-07-02
A numerical likelihood approach to the determination of cosmic ray anisotropies is presented which offers many advantages over other approaches. It allows a wide range of statistically meaningful hypotheses to be compared even when full sky coverage is unavailable, can be readily extended in order to include measurement errors, and makes maximum unbiased use of all available information.
Numerical and experimental analysis of a retrievable offshore loading facility
Sterndorff, M.J.; O`Brien, P.
1995-12-31
ROLF (Retrievable Offshore Loading Facility) has been proposed as an alternative offshore oil export tanker loading system for the North Sea. The system consists of a flexible riser ascending from the seabed in a lazy wave configuration to the bow of a dynamically positioned tanker. In order to supplant and support the numerical analyses performed to design the system, an extensive model test program was carried out in a 3D offshore basin at scale 1:50. A model riser with properties equivalent to the properties of the oil filled prototype riser installed in seawater was tested in several combinations of waves and current. During the tests the forces at the bow of the tanker and at the pipeline end manifold were measured together with the motions of the tanker and the riser. The riser motions were measured by means of a video based 3D motion monitoring system. Of special importance was accurate determination of the minimum bending radius for the riser. This was derived based on the measured riser motions. The results of the model tests were compared to numerical analyses by an MCS proprietary riser analysis program.
Stress-dependent permeability of fractured rock masses: A numerical...
Office of Scientific and Technical Information (OSTI)
permeability of fractured rock masses: A numerical study Citation Details In-Document Search Title: Stress-dependent permeability of fractured rock masses: A numerical study We ...
Toward portable programming of numerical linear algebra on manycore...
Office of Scientific and Technical Information (OSTI)
Toward portable programming of numerical linear algebra on manycore nodes. Citation Details In-Document Search Title: Toward portable programming of numerical linear algebra on ...
Error Estimation for Fault Tolerance in Numerical Integration...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Error Estimation for Fault Tolerance in Numerical Integration Solvers Event Sponsor: ... In numerical integration solvers, approximation error can be estimated at a low cost. We ...
Numerical Verification of Bounce Harmonic Resonances in Neoclassical
Office of Scientific and Technical Information (OSTI)
for Tokamaks Kimin Kim, Jong-Kyu Park and Allen H. Boozer 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Tokamaks, Numerical Verification Tokamaks, Numerical Verification This...
Development of Numerical Simulation Capabilities for In Situ...
Office of Scientific and Technical Information (OSTI)
Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Citation Details In-Document Search Title: Development of Numerical Simulation Capabilities for In ...
U.S. Department of Energy (DOE) all webpages (Extended Search)
with application in modeling NDCX-II experiments Wangyi Liu 1 , John Barnard 2 , Alex Friedman 2 , Nathan Masters 2 , Aaron Fisher 2 , Alice Koniges 2 , David Eder 2 1 LBNL, USA, 2...
U.S. Department of Energy (DOE) all webpages (Extended Search)
NASA Earth at Night Video EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos NASA Earth at Night Video Have you ever wondered what the ...
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James
2014-07-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.
Daeva, S.G.; Setukha, A.V.
2015-03-10
A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.
Hydrologic Modeling Capabilities
U.S. Department of Energy (DOE) all webpages (Extended Search)
Understanding complex hydrologic systems requires the ability to develop, utilize, and interpret both numerical and analytical models. The Defense Waste Management Programs has both experience and technical knowledge to use and develop Earth systems models. Hydrological Modeling Models are simplified representations of reality, which we accept do not capture every detail of reality. Mathematical and numerical models can be used to rigorously test geologic and hydrologic assumptions, determine
Numerical calculation of two-phase turbulent jets
Saif, A.A.
1995-05-01
Two-phase turbulent round jets were numerically simulated using a multidimensional two-phase CFD code based on the two-fluid model. The turbulence phenomena were treated with the standard k-{epsilon} model. It was modified to take into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-fluid model it is more appropriate and physically justified to treat the diffusion by an interfacial force in the momentum equation. In this work, the diffusion force and the additional dissipation effect by the dispersed phase were modeled starting from the classical turbulent energy spectrum analysis. A cut-off frequency was proposed to decrease the dissipation effect by the dispersed phase when large size particles are introduced in the flow. The cut-off frequency combined with the bubble-induced turbulence effect allows for an increase in turbulence for large particles. Additional care was taken in choosing the right kind of experimental data from the literature so that a good separate effect test was possible for their models. The models predicted the experimental data very closely and they were general enough to predict extreme limit cases: water-bubble and air-droplet jets.
Brown, Christopher F.; Serne, R. Jeffrey
2008-01-17
This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).
Modeling and low-level waste management: an interagency workshop
Little, C.A.; Stratton, L.E.
1980-01-01
The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop.
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge
Effect of virtual mass on the characteristics and the numerical stability in two-phase flows
No, H.C.; Kazimi, M.S.
1981-04-01
It is known that the typical six equation two-fluid model of the two-phase flow possesses complex characteristics, exhibits unbounded instabilities in the short-wavelength limit and constitutes an ill-posed initial value problem. Among the suggestions to overcome these difficulties, one model for the virtual mass force terms were studied here, because the virtual mass represents real physical effects to accomplish the dissipation for numerical stability. It was found that the virtual mass has a profound effect upon the mathematical characteristic and numerical stability. Here a quantitative bound on the coefficient of the virtual mass terms was suggested for mathematical hyperbolicity and numerical stability. It was concluded that the finite difference scheme with the virtual mass model is restricted only by the convective stability conditions with the above suggested value.
1980-12-01
The second quarterly technical progress report is presented for a program entitled, Application of Numerical Simulation Methodology to Automotive Combustion. The goal of the program is to develop, validate, demonstrate and apply a numerical simulation methodology for in-cylinder reactive flows in internal combustion engines. Previous work on this contract involved the initial development and validation of a finite difference based simulation model for time dependent axisymmetric flows which includes: a generalized coordinate system for arbitrary mesh design and treatment of complex and time dependent boundaries; multiple and interacting chemical species; coupled swirl flow velocity component; and two-equation turbulence closure. In its various stages of development, the model has been used to simulate numerous engine-related problems for validation and demonstration purposes. The technical effort during the current reporting period has concentrated on: reactive flow model development, test and data comparison studies; swirl flow simulations; and in-cylinder compression cycle flow simulations. Results of these studies are discussed.
Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.
2005-09-01
Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.
Savcheva, A.; Van Ballegooijen, A.; DeLuca, E.; Pariat, E.; Aulanier, G.
2012-05-01
In this paper we show that when accurate nonlinear force-free field (NLFFF) models are analyzed together with high-resolution magnetohydrodynamic (MHD) simulations, we can determine the physical causes for the coronal mass ejection (CME) eruption on 2007 February 12. We compare the geometrical and topological properties of the three-dimensional magnetic fields given by both methods in their pre-eruptive phases. We arrive at a consistent picture for the evolution and eruption of the sigmoid. Both the MHD simulation and the observed magnetic field evolution show that flux cancellation plays an important role in building the flux rope. We compute the squashing factor, Q, in different horizontal maps in the domains. The main shape of the quasi-separatrix layers (QSLs) is very similar between the NLFFF and MHD models. The main QSLs lie on the edge of the flux rope. While the QSLs in the NLFFF model are more complex due to the intrinsic large complexity in the field, the QSLs in the MHD model are smooth and possess lower maximum value of Q. In addition, we demonstrate the existence of hyperbolic flux tubes (HFTs) in both models in vertical cross sections of Q. The main HFT, located under the twisted flux rope in both models, is identified as the most probable site for reconnection. We also show that there are electric current concentrations coinciding with the main QSLs. Finally, we perform torus instability analysis and show that a combination between reconnection at the HFT and the resulting expansion of the flux rope into the torus instability domain is the cause of the CME in both models.
Numerical simulation of tectonic plates motion and seismic process in Central Asia
Peryshkin, A. Yu.; Makarov, P. V. Eremin, M. O.
2014-11-14
An evolutionary approach proposed in [1, 2] combining the achievements of traditional macroscopic theory of solid mechanics and basic ideas of nonlinear dynamics is applied in a numerical simulation of present-day tectonic plates motion and seismic process in Central Asia. Relative values of strength parameters of rigid blocks with respect to the soft zones were characterized by the ? parameter that was varied in the numerical experiments within ? = 1.11.8 for different groups of the zonal-block divisibility. In general, the numerical simulations of tectonic block motion and accompanying seismic process in the model geomedium indicate that the numerical solutions of the solid mechanics equations characterize its deformation as a typical behavior of a nonlinear dynamic system under conditions of self-organized criticality.
Fritscher, Karl D. Sharp, Gregory; Peroni, Marta; Zaffino, Paolo; Spadea, Maria Francesca; Schubert, Rainer
2014-05-15
Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presented approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a
Advanced numerical methods for three dimensional two-phase flow calculations
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
Numerical simulation of multi-layered textile composite reinforcement forming
Wang, P.; Hamila, N.; Boisse, P.
2011-05-04
One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual work is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
Energy Science and Technology Software Center (OSTI)
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Becausemore » it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical and physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical and physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.
Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO_{2} hydrogenation
Asara, Gian Giacomo; Ricart, Josep M.; Illas, Francesc
2015-02-02
Small metallic nanoparticles supported on transition metal carbides exhibit an unexpected high activity towards a series of chemical reactions. In particular, the Au/TiC system has proven to be an excellent catalyst for SO_{2} decomposition, thiophene hydrodesulfurization, O_{2} and H_{2} dissociation and the water gas shift reaction. Recent studies have shown that Au/TiC is a very good catalyst for the reverse water–gas shift (CO_{2} + H_{2} → CO + H_{2}O) and CO_{2} hydrogenation to methanol. The present work further expands the range of applicability of this novel type of systems by exploring the catalytic activity of Au/TiC towards the hydrogenation of CO or CO_{2} with periodic density functional theory (DFT) calculations on model systems. Hydrogen dissociates easily on Au/TiC but direct hydrogenation of CO to methanol is hindered by very high activation barriers implying that, on this model catalyst, methanol production from CO_{2} involves the hydrogenation of a HOCO-like intermediate. Thus, when dealing with mixtures of syngas (CO/CO_{2}/H_{2}/H_{2}O), CO could be transformed into CO_{2} through the water gas shift reaction with subsequent hydrogenation of CO_{2} to methanol.
Numerical description of cavitation on axisymmetric bodies
Hickox, C.E.; Hailey, C.E.; Wolfe, W.P.; Watts, H.A.; Gross, R.J.; Ingber, M.S.
1988-01-01
This paper reports on ongoing studies which are directed toward the development of predictive techniques for the modeling of steady cavitation on axisymmetric bodies. The primary goal of the modeling effort is the prediction of cavity shape and pressure distribution from which forces and moments can be calculated. Here we present an overview of the modeling techniques developed and compare predictions with experimental data obtained from water tunnel tests for both limited and supercavitation. 14 refs., 4 figs.
Numerical simulations of a vertical tail of a commercial aircraft with
U.S. Department of Energy (DOE) all webpages (Extended Search)
active flow control | Argonne Leadership Computing Facility simulations of a vertical tail of a commercial aircraft with active flow control Authors: Rasquin, M., Martin, J., Jansen, K. A series of numerical simulations of a realistic vertical tail of a commercial aircraft, with a tapered swept stabilizer and a rudder, is considered in this work with application of flow control. Flow control is known to have the capacity to augment the streamwise momentum near the rudder suction peak where
Myint, P. C.; Hao, Y.; Firoozabadi, A.
2015-03-27
Thermodynamic property calculations of mixtures containing carbon dioxide (CO_{2}) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO_{2} activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO_{2}, pure water, and both CO_{2}-rich and aqueous (H_{2}O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Suns model yields accurate results for the partial molar enthalpy of CO_{2}. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H_{2}O-CO_{2}-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.
A survey of numerical cubature over triangles
Lyness, J.N.; Cools, R.
1993-12-31
This survey collects together theoretical results in the area of numerical cubature over triangles and is a vehicle for a current bibliography. We treat first the theory relating to regular integrands and then the corresponding theory for singular integrands with emphasis on the ``full comer singularity.`` Within these two sections we treat successively approaches based on transforming the triangle into a square, formulas based on polynomial moment fitting, and extrapolation techniques. Within each category we quote key theoretical results without proof, and relate other results and references to these. Nearly all the references we have found may be readily placed in one of these categories. This survey is theoretical in character and does not include recent work in adaptive and automatic integration.
High numerical aperture multilayer Laue lenses
Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; Krzywinski, Jacek; Meents, Alke; Pennicard, David; Graafsma, Heinz; Barty, Anton; Bean, Richard J.; Barthelmess, Miriam; Oberthuer, Dominik; Yefanov, Oleksandr; Aquila, Andrew; Chapman, Henry N.; Bajt, Saša
2015-06-01
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along the lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.
New numeric data packages from CDIAC
Hahn, C.J.; Warren, S.G.; London, J.
1995-12-31
This article describes 6 numerical data packages related to climate and greenhouse gas concentrations: Edited synoptic cloud reports from ships and land stations (1982-1991); Carbon dioxide concentrations in surface water and the atmosphere (1986-1989); Carbon-13 isotopic abundance and concentration of atmospheric methane for background air (1978-1989); Six and Three hourly meteorological observations from 223 USSR stations; Global, regional and national annual CO2 emission estimates from fossil-fuel burning, hydraulic-cement production, and gas flaring (1950-1992); continental-scale estimates of biotic carbon flux from land-cover change (1850-1980); Carbon dioxide, hydrographic and chemical data in the south Atlantic Ocean (February-March 1991).
Very high numerical aperture light transmitting device
Allison, Stephen W.; Boatner, Lynn A.; Sales, Brian C.
1998-01-01
A new light-transmitting device using a SCIN glass core and a novel calcium sodium cladding has been developed. The very high index of refraction, radiation hardness, similar solubility for rare earths and similar melt and viscosity characteristics of core and cladding materials makes them attractive for several applications such as high-numerical-aperture optical fibers and specialty lenses. Optical fibers up to 60 m in length have been drawn, and several simple lenses have been designed, ground, and polished. Preliminary results on the ability to directly cast optical components of lead-indium phosphate glass are also discussed as well as the suitability of these glasses as a host medium for rare-earth ion lasers and amplifiers.
COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC...
Office of Scientific and Technical Information (OSTI)
Title: COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Acceleration and transport of high-energy particles and fluid ...
Open-source extreme conditions modeling tools
U.S. Department of Energy (DOE) all webpages (Extended Search)
... HomeEnergy, Modeling & Analysis, News, Renewable Energy, Water PowerOpen-source extreme ... numerical tools for use in modeling extreme conditions of wave energy converters (WECs). ...
A NUMERICAL STUDY OF DIFFUSIVE COSMIC-RAY TRANSPORT WITH ADIABATIC FOCUSING
Litvinenko, Yuri E.; Noble, P. L.
2013-03-01
Focused particle transport in a nonuniform large-scale magnetic field is investigated numerically in the case of isotropic pitch-angle scattering. Evolving particle density profiles and distribution moments are computed from solutions of a system of stochastic differential equations, equivalent to the original Fokker-Planck equation for the particle distribution. Conflicting analytical predictions for the transport coefficients in the diffusion limit, independently calculated by Beeck and Wibberenz and Shalchi, are compared with the numerical results. The reasons for the discrepancies among the analytical and numerical treatments, as well as the general limitations of the diffusion model, are discussed. The telegraph equation, derived in a higher-order expansion of the particle distribution function, is shown to describe the particle transport much more accurately than the diffusion model, especially ahead of a moving density pulse.
Numerical simulation of Rayleigh-Taylor instabilities involving solids
Chang, Chong H.
2015-11-20
This report is a description of research performed by LANL regarding numeric simulations of Rayleigh-Taylor instability.
Force-controlled absorption in a fully-nonlinear numerical wave tank
Spinneken, Johannes Christou, Marios; Swan, Chris
2014-09-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.
Numerical simulation of linear fiction welding (LFW) processes
Fratini, L.; La Spisa, D. [University of Palermo-Dept. of Industrial engineering (Italy)
2011-05-04
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Modeling of HCCI and PCCI Combustion Processes | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
HCCI and PCCI Combustion Processes Modeling of HCCI and PCCI Combustion Processes 2005 ... More Documents & Publications Numerical Modeling of HCCI Combustion High Fidelity Modeling ...
Moloney, Joshua [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Michael Shull, J., E-mail: joshua.moloney@colorado.edu, E-mail: michael.shull@colorado.edu [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK. (United Kingdom)
2014-10-01
Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ? z ? 0.64, two AGNs with 0.32 ? z ? 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV ?765, O II ?833, and O III ?834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ? 10{sup 12} cm{sup 3}) and hydrogen ionizing photon fluxes (?{sub H} ? 10{sup 22} cm{sup 2} s{sup 1}).
High numerical aperture multilayer Laue lenses
Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; Krzywinski, Jacek; Meents, Alke; Pennicard, David; Graafsma, Heinz; Barty, Anton; Bean, Richard J.; Barthelmess, Miriam; et al
2015-06-01
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore » lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less
Preliminary assessment of numerical data requirements TA-73 landfill Los Alamos, New Mexico
Not Available
1993-11-19
A numerical model, TOUGH2, was selected for describing liquid- and gas-phase flow in the unsaturated tuff underlying the TA-73 landfill. The model was selected primarily for its ability to simulate the significant mechanisms that may affect transport of contaminants through the vadose zone at the TA-73 landfill, including non-isothermal flow through fractured media. TOUGH2 is the best documented, verified, and validated model capable of performing the required simulations. The sensitivity analyses that were performed and describes in this report identified the input parameters that the selected numerical model is most sensitive to. The input parameters analyzed were saturated hydraulic conductivity, van Genuchten {alpha} and n, residual and saturated moisture contents, infiltration rate, fracture spacing and permeability, atmospheric pressure, and temperature. The sensitivity analyses were performed using a model grid that was designed to incorporate the regions in the landfill vicinity where contaminant transport is likely to occur and where the physical processes affecting flow and transport are the most dynamic. The sensitivity analyses performed suggest that the model is quite sensitive to a number of input parameters, including saturated hydraulic conductivity, the van Genuchten parameters {alpha} and n (for both the tuff matrix and fractures), fracture density and aperture, and atmospheric pressure. The results indicate that additional site-specific hydraulic properties and fracture data should be obtained before attempting to perform predictive, numerical simulations of gas- and liquid-phase flow beneath the landfill.
Numerical analysis of modified Central Solenoid insert design
Khodak, Andrei; Martovetsky, Nicolai; Smirnov, Aleksandre; Titus, Peter
2015-06-21
The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design we performed three-dimensional numerical simulations using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagneticmore » simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4K, no current, (3) temperature 4K, current 60 kA direct charge, and (4) temperature 4K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4K, no current, and temperature 4K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Lastly, special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor material. Published by Elsevier B.V.« less
Numerical analysis of modified Central Solenoid insert design
Khodak, Andrei; Martovetsky, Nicolai; Smirnov, Aleksandre; Titus, Peter
2015-06-21
The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design we performed three-dimensional numerical simulations using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagnetic simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4K, no current, (3) temperature 4K, current 60 kA direct charge, and (4) temperature 4K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4K, no current, and temperature 4K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Lastly, special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor material. Published by Elsevier B.V.
Hassig, N.L.
1980-01-01
The objective of the research was to determine if feasible reconciliation procedures exist that meet the multiple (and sometimes competing) goals of the electricity pricing problem while staying within the constraints of the problem. The answer was that such procedures do exist. Selection among the alternative, feasible procedures depends on the weighting factors placed on the goals. One procedure did not universally satisfy all the goals; the various procedures satisfied the alternative goals to varying degrees. The selection process was sensitive to the initial conditions of the model and to the band width of the constraint boundary conditions. Discriminate analysis was used to identify the variables that contribute the most to the optimal selection process. The results of the research indicated that the variables that are the most effective in selecting among the various procedures were the following: the ratio of peak to off-peak prices, the amount of revenue adjustment required, the constraint on equity, the constraint on peak price stability, and the constraint on meeting the revenue requirement. The poicy recommendations that can be derived from this research are very relevant in light of today's energy problems. Time-of-use pricing of electricity is needed in order to signal to the consumer the true cost of electricity by season and by time of day. Marginal costs capture such costs and rates should be based on such costs. Revenue reconciliation procedures make marginal cost-based rates feasible from a regulatory requirement perspective. This research showed that such procedures are available and selection among alternative procedures depends on the preference rankings placed on the multiple, and sometimes competing goals of electricity pricing.
Contribution to the numerical study of turbulence in high intensity discharge lamps
Kaziz, S.; Ben Ahmed, R.; Helali, H.; Gazzah, H.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)
2011-07-15
We present in this paper a comparison between results obtained with a laminar and turbulent models for high-pressure mercury arc. The two models are based on the resolution of bidimensional time-dependent equations by a semi-implicit finite-element code. The numerical computation of turbulent model is solved with large eddy simulation model; this approach takes into account the various scales of turbulence by a filtering method on each scale. The results show the quantitative influence of turbulence on the flow fields and also the difference between laminar and turbulent effects on the dynamic thermal behaviour and on the characteristics of the discharge.
DRIVER TO SUPPORT USE OF NUMERICAL SIMULATION TOOLS
Energy Science and Technology Software Center (OSTI)
2001-02-13
UNIPACK is a computer interface that simplifies and enhances the use of numerical simulation tools to design a primary geometry and/or a forming die for a powder compact and/or to design the pressing process used to shape a powder by compaction. More particularly, it is an interface that utilizes predefined generic geometric configurations to simplify the use of finite element method modeling software to simply and more efficiently design: (1) the shape and size amore » powder compact; (2) a forming die to shape a powder compact; and/or (3) the pressing process used to form a powder compact. UNIPACK is a user interface for a predictive model for powder compaction that incorporates unprecedented flexibility to design powder press tooling and powder pressing processes. UNIPACK works with the Sandia National Laboratories (SNL) Engineering Analysis Cide Access System (SEACAS) to generate a finite element (FE) mesh and automatically perform a FE analysis of powder compaction. UNIPACK was developed to allow a non-expert with minimal training to quickly and easily design/construct a variable dimension component or die in real time on a desktop or laptop personal computer.« less
Numerical simulation of plasma heating of a composite powder particle
Demetriou, M.D.; Lavine, A.S.; Ghoniem, N.M.
1999-07-01
The use of fine composite powder particles (composed of a ceramic core and a metallic coating) in plasma spraying processes is desirable in developing thin film coatings that possess high abrasion as well as high fracture resistance. Quantitative knowledge of the thermal behavior of a composite particle in a plasma beam is essential in optimizing the process variables to achieve uniform melting of the coating material. In this work, a numerical model is developed to analyze the in-flight thermal behavior of a spherically symmetric WC-Co composite particle travelling in an argon arc-jet DC plasma under strongly unsteady plasma conditions. The model gives quantitative as well as qualitative information about the thermal response of the heated particle. The important features that are addressed are the temperature response of the particle; the history of the location of the melting and vaporization fronts; and the physical state of the particle at the end of its flight. For the conditions investigated, it was determined that the internal conduction resistance is negligible as compared to the net external resistance. However, the presence of the ceramic base was found to affect the transient heating process since its content in the particle composition determines the time constant of the process. Another interesting observation is that proper selection of the particle injection speed and injection location can be effective means for optimizing the heating process and achieving uniform melting of the coating material.
Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts
Sapir, Nir; Halbertal, Dorri
2014-12-01
We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.
Numerical design of SiC bulk crystal growth for electronic applications
Wejrzanowski, T.; Grybczuk, M.; Kurzydlowski, K. J.; Tymicki, E.
2014-10-06
Presented study concerns numerical simulation of Physical Vapor Transport (PVT) growth of bulk Silicon Carbide (SiC) crystals. Silicon Carbide is a wide band gap semiconductor, with numerous applications due to its unique properties. Wider application of SiC is limited by high price and insufficient quality of the product. Those problems can be overcame by optimizing SiC production methods. Experimental optimization of SiC production is expensive because it is time consuming and requires large amounts of energy. Numerical modeling allows to learn more about conditions inside the reactor and helps to optimize the process at much lower cost. In this study several simulations of processes with different reactor geometries were presented along with discussion of reactor geometry influence on obtained monocrystal shape and size.
Talamo, Alberto
2013-05-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.
Electromagnetic scattering problems -Numerical issues and new experimental approaches of validation
Geise, Robert; Neubauer, Bjoern; Zimmer, Georg
2015-03-10
Electromagnetic scattering problems, thus the question how radiated energy spreads when impinging on an object, are an essential part of wave propagation. Though the Maxwells differential equations as starting point, are actually quite simple,the integral formulation of an objects boundary conditions, respectively the solution for unknown induced currents can only be solved numerically in most cases.As a timely topic of practical importance the scattering of rotating wind turbines is discussed, the numerical description of which is still based on rigorous approximations with yet unspecified accuracy. In this context the issue of validating numerical solutions is addressed, both with reference simulations but in particular with the experimental approach of scaled measurements. For the latter the idea of an incremental validation is proposed allowing a step by step validation of required new mathematical models in scattering theory.
Self-similar radiation from numerical Rosenau-Hyman compactons
Rus, Francisco Villatoro, Francisco R.
2007-11-10
The numerical simulation of compactons, solitary waves with compact support, is characterized by the presence of spurious phenomena, as numerically induced radiation, which is illustrated here using four numerical methods applied to the Rosenau-Hyman K(p, p) equation. Both forward and backward radiations are emitted from the compacton presenting a self-similar shape which has been illustrated graphically by the proper scaling. A grid refinement study shows that the amplitude of the radiations decreases as the grid size does, confirming its numerical origin. The front velocity and the amplitude of both radiations have been studied as a function of both the compacton and the numerical parameters. The amplitude of the radiations decreases exponentially in time, being characterized by a nearly constant scaling exponent. An ansatz for both the backward and forward radiations corresponding to a self-similar function characterized by the scaling exponent is suggested by the present numerical results.
Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames
Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D.; de Goey, L.P.H.
2008-04-15
The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)
Mikellides, Ioannis G.; Goebel, Dan M.; Snyder, John Steven; Katz, Ira; Herman, Daniel A.
2010-12-01
Numerical simulations of neutralizer hollow cathodes at various operating conditions and orifice sizes are presented. The simulations were performed using a two-dimensional axisymmetric model that solves numerically an extensive system of conservation laws for the partially ionized gas in these devices. The results for the plasma are compared directly with Langmuir probe measurements. The computed keeper voltages are also compared with the observed values. Whenever model inputs and/or specific physics of the cathode discharge were uncertain or unknown additional sensitivity calculations have been performed to quantify the uncertainties. The model has also been employed to provide insight into recent ground test observations of the neutralizer cathode in NASA's evolutionary xenon thruster. It is found that a likely cause of the observed keeper voltage drop in a long duration test of the engine is cathode orifice erosion.
Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor
Isvoranu, Dragos D.; Cizmas, Paul G. A.
2003-01-01
This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less
Numerical analysis and measurement in corner-fired furnace
Zhengjun, S.; Rongsheng, G.
1999-07-01
For several years, numerical analysis has been successfully used by Dongfang Boiler (Group) Co., Ltd. at a 200MW boiler, a 300MW boiler and so on, which were designed and made by DBC. The distribution of results is agreement each other between numerical analysis and measurement. In conclusion, it is considered that numerical analysis can be used as an important reference method in pulverized coal boiler design and test.
Numerical Verification of Bounce Harmonic Resonances in Neoclassical
Office of Scientific and Technical Information (OSTI)
Toroidal Viscosity for Tokamaks (Technical Report) | SciTech Connect Numerical Verification of Bounce Harmonic Resonances in Neoclassical Toroidal Viscosity for Tokamaks Citation Details In-Document Search Title: Numerical Verification of Bounce Harmonic Resonances in Neoclassical Toroidal Viscosity for Tokamaks This Letter presents the rst numerical veri cation for the bounce-harmonic (BH) resonance phenomena of the neoclassical transport in a tokamak perturbed by non-axisymmetric magnetic
Amber Shrivastava; Brian Williams; Ali S. Siahpush; Bruce Savage; John Crepeau
2014-06-01
There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. First a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.
Development of Numerical Simulation Capabilities for In Situ...
Office of Scientific and Technical Information (OSTI)
for In Situ Heating of Oil Shale Citation Details In-Document Search Title: Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Authors: Hoda, ...
Accurate and fast numerical solution of Poisson s equation for...
Office of Scientific and Technical Information (OSTI)
Citation Details In-Document Search Title: Accurate and fast numerical solution of Poisson ... Our method avoids all ill-convergent sums, is simple, accurate, efficient, and works ...
Info-Gap Analysis of Truncation Errors in Numerical Simulations...
Office of Scientific and Technical Information (OSTI)
Title: Info-Gap Analysis of Truncation Errors in Numerical Simulations. Authors: Kamm, James R. ; Witkowski, Walter R. ; Rider, William J. ; Trucano, Timothy Guy ; Ben-Haim, Yakov. ...
Info-Gap Analysis of Numerical Truncation Errors. (Conference...
Office of Scientific and Technical Information (OSTI)
Title: Info-Gap Analysis of Numerical Truncation Errors. Authors: Kamm, James R. ; Witkowski, Walter R. ; Rider, William J. ; Trucano, Timothy Guy ; Ben-Haim, Yakov. Publication ...
A Numerical Evaluation Of Electromagnetic Methods In Geothermal...
Open Energy Information (Open El) [EERE & EIA]
Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration - Discussion...
Numerical Simulation of Ni Grain Growth in a Thermal Gradient
Office of Scientific and Technical Information (OSTI)
665C Numerical Simulation of Ni Grain Growth in a Thermal Gradient Sandia National Laboratories John A. Mitchell and Veena Tikare Sandia National Laboratories, Albuquerque New ...
Direct Numerical Simulations and Robust Predictions of Cloud...
U.S. Department of Energy (DOE) all webpages (Extended Search)
cloud. Credit: Computational Science and Engineering Laboratory, ETH Zurich, Switzerland Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name:...
Numerical simulations for low energy nuclear reactions including...
Office of Scientific and Technical Information (OSTI)
Numerical simulations for low energy nuclear reactions including direct channels to ... Visit OSTI to utilize additional information resources in energy science and technology. A ...
Development of Numerical Simulation Capabilities for In Situ...
Office of Scientific and Technical Information (OSTI)
Numerical Simulation Capabilities for In Situ Heating of Oil Shale Hoda, Nazish ExxonMobil Upstream Research Company, Houston, TX, USA; Fang, Chen ExxonMobil Upstream Research...
Using fully coupled hydro-geomechanical numerical test bed to...
Office of Scientific and Technical Information (OSTI)
test bed to study reservoir stimulation with low hydraulic pressure Citation Details In-Document Search Title: Using fully coupled hydro-geomechanical numerical test bed to ...
Numerical Analysis of Fixed Point Algorithms in the Presence...
Office of Scientific and Technical Information (OSTI)
in the Presence of Hardware Faults Citation Details In-Document Search Title: Numerical Analysis of Fixed Point Algorithms in the Presence of Hardware Faults You are ...
A review of recent advances of numerical simulations of microscale...
Office of Scientific and Technical Information (OSTI)
Due to the reformer's small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems. This paper reviews the development of ...
History, Applications, Numerical Values and Problems with the...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Numerical Values and Problems with the Calculation of EROI (Energy Return on Energy Investment) Professor Charles Hall State University of NY College of Environmental Science and...
An Integrated Experimental and Numerical Study: Developing a...
Open Energy Information (Open El) [EERE & EIA]
in a numerical simulator (modified version of TOUGH2) that can adjust porosity and permeability fields according to experimentally observed chemical fluid-rock interactions...
Numerical simulation of the environmental impact of hydraulic...
Office of Scientific and Technical Information (OSTI)
Numerical simulation of the environmental impact of hydraulic fracturing of tightshale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs,...
Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark
2010-02-26
Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 g/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.
Ke, Ruian; Lewin, Sharon R.; Elliott, Julian H.; Perelson, Alan S.; Chakraborty, Arup K.
2015-10-23
Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recentmore » clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Lastly, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.« less
Ke, Ruian; Lewin, Sharon R.; Elliott, Julian H.; Perelson, Alan S.; Chakraborty, Arup K.
2015-10-23
Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recent clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Lastly, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.
Schuster, Eugenio
2014-05-02
The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex#2;B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.
Oliva, A.; Costa, M.; Perez Segarra, C.D. )
1991-01-01
A numerical model has been developed for determination of thermal behavior of solar collector. The model takes into account the multidimensional and transient aspects that characterize the phenomenon of heat transfer in a collector. The modelization carried out allows the analysis of the influence of such aspects as: flow nonuniformity distribution, areas of shadow, and variations in dimension and properties of the different elements. These aspects can be analyzed equally for steady and nonsteady outdoor conditions. Illustrative situations of the influence on the collector performance of the different aspects previously mentioned are shown.
Numerical simulation of alumina spraying in argon-helium plasma jet
Chang, C.H.
1992-01-01
A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)
Numerical simulation of alumina spraying in argon-helium plasma jet
Chang, C.H.
1992-08-01
A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)
Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation
Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.
2000-01-01
In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less
Figueroa, Aldo [Facultad de Ciencias, Universidad Autnoma del Estado de Morelos, Cuernavaca, Morelos 62209 (Mexico)] [Facultad de Ciencias, Universidad Autnoma del Estado de Morelos, Cuernavaca, Morelos 62209 (Mexico); Meunier, Patrice; Villermaux, Emmanuel [Aix-Marseille Univ., CNRS, Centrale Marseille, IRPHE, Marseille F-13384 (France)] [Aix-Marseille Univ., CNRS, Centrale Marseille, IRPHE, Marseille F-13384 (France); Cuevas, Sergio; Ramos, Eduardo [Instituto de Energas Renovables, Universidad Nacional Autnoma de Mxico, A.P. 34, Temixco, Morelos 62580 (Mexico)] [Instituto de Energas Renovables, Universidad Nacional Autnoma de Mxico, A.P. 34, Temixco, Morelos 62580 (Mexico)
2014-01-15
We present a combination of experiment, theory, and modelling on laminar mixing at large Pclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, The diffusive strip method for scalar mixing in two-dimensions, J. Fluid Mech. 662, 134172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.
Numerical Cosmology: Building a Dynamical Universe
Garrison, David
2010-10-11
In this talk I discuss an often over-looked aspect of most cosmological models, dynamical interactions caused by gravitational waves. I begin by reviewing our current state of cosmological knowledge and gravitational waves. Then, I review work done to understand the nature of primordial magnetic fields. Finally, I combine the ideas of gravitational wave theory and plasma turbulence to develop a new theory of cosmic structure formation. Eventually, this work could help to explain the distribution of mass-energy in the observable universe as well as the anisotropies in the Cosmic Microwave Background without a heavy dependence on dark matter. This work seeks to explain how the dense, hot, turbulent plasma of protons, neutrons, electrons and neutrinos cooled in the presence of gravitational waves to form into structures and develop a statistical mechanics to describe this dynamical system.
NUMERICAL STUDY OF THE VISHNIAC INSTABILITY IN SUPERNOVA REMNANTS
Michaut, C.; Cavet, C.; Bouquet, S. E.; Roy, F.; Nguyen, H. C.
2012-11-10
The Vishniac instability is thought to explain the complex structure of radiative supernova remnants in their Pressure-Driven Thin Shell (PDTS) phase after a blast wave (BW) has propagated from a central explosion. In this paper, the propagation of the BW and the evolution of the PDTS stage are studied numerically with the two-dimensional (2D) code HYDRO-MUSCL for a finite-thickness shell expanding in the interstellar medium (ISM). Special attention is paid to the adiabatic index, {gamma}, and three distinct values are taken for the cavity ({gamma}{sub 1}), the shell ({gamma}{sub 2}), and the ISM ({gamma}{sub 3}) with the condition {gamma}{sub 2} < {gamma}{sub 1}, {gamma}{sub 3}. This low value of {gamma}{sub 2} accounts for the high density in the shell achieved by a strong radiative cooling. Once the spherical background flow is obtained, the evolution of a 2D-axisymmetric perturbation is computed from the linear to the nonlinear regime. The overstable mechanism, previously demonstrated theoretically by E. T. Vishniac in 1983, is recovered numerically in the linear stage and is expected to produce and enhance anisotropies and clumps on the shock front, leading to the disruption of the shell in the nonlinear phase. The period of the increasing oscillations and the growth rate of the instability are derived from several points of view (the position of the perturbed shock front, mass fluxes along the shell, and density maps), and the most unstable mode differing from the value given by Vishniac is computed. In addition, the influence of several parameters (the Mach number, amplitude and wavelength of the perturbation, and adiabatic index) is examined and for wavelengths that are large enough compared to the shell thickness, the same conclusion arises: in the late stage of the evolution of the radiative supernova remnant, the instability is dampened and the angular initial deformation of the shock front is smoothed while the mass density becomes uniform with the
Numerical and laboratory simulations of auroral acceleration
Gunell, H.; De Keyser, J.; Mann, I.
2013-10-15
The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.
Lu, Le; Wang, Jinlong; Lu, Hongwei; Zhang, Guoyu; Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia; Li, Yiming
2015-09-25
Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.
Pfrommer, Christoph
2013-12-10
Feedback by active galactic nuclei (AGNs) appears to be critical in balancing radiative cooling of the low-entropy gas at the centers of galaxy clusters and in mitigating the star formation of elliptical galaxies. New observations of M87 enable us to put forward a comprehensive model for the physical heating mechanism. Low-frequency radio observations by LOFAR revealed the absence of fossil cosmic-ray (CR) electrons in the radio halo surrounding M87. This puzzle can be resolved by accounting for the CR release from the radio lobes and the subsequent mixing of CRs with the dense ambient intracluster gas, which thermalizes the electrons on a timescale similar to the radio halo age of 40 Myr. Hadronic interactions of similarly injected CR protons with the ambient gas should produce an observable gamma-ray signal in accordance with the steady emission of the low state of M87 detected by Fermi and H.E.S.S. Hence, we normalize the CR population to the gamma-ray emission, which shows the same spectral slope as the CR injection spectrum probed by LOFAR, thereby supporting a common origin. We show that CRs, which stream at the Alfvn velocity with respect to the plasma rest frame, heat the surrounding thermal plasma at a rate that balances that of radiative cooling on average at each radius. However, the resulting global thermal equilibrium is locally unstable and allows for the formation of the observed cooling multi-phase medium through thermal instability. Provided that CR heating balances cooling during the emerging 'cooling flow', the collapse of the majority of the gas is halted around 1 keVin accordance with X-ray data. We show that both the existence of a temperature floor and the similar radial scaling of the heating and cooling rates are generic predictions of the CR heating model.
Numerical errors in the presence of steep topography: analysis and alternatives
Lundquist, K A; Chow, F K; Lundquist, J K
2010-04-15
It is well known in computational fluid dynamics that grid quality affects the accuracy of numerical solutions. When assessing grid quality, properties such as aspect ratio, orthogonality of coordinate surfaces, and cell volume are considered. Mesoscale atmospheric models generally use terrain-following coordinates with large aspect ratios near the surface. As high resolution numerical simulations are increasingly used to study topographically forced flows, a high degree of non-orthogonality is introduced, especially in the vicinity of steep terrain slopes. Numerical errors associated with the use of terrainfollowing coordinates can adversely effect the accuracy of the solution in steep terrain. Inaccuracies from the coordinate transformation are present in each spatially discretized term of the Navier-Stokes equations, as well as in the conservation equations for scalars. In particular, errors in the computation of horizontal pressure gradients, diffusion, and horizontal advection terms have been noted in the presence of sloping coordinate surfaces and steep topography. In this work we study the effects of these spatial discretization errors on the flow solution for three canonical cases: scalar advection over a mountain, an atmosphere at rest over a hill, and forced advection over a hill. This study is completed using the Weather Research and Forecasting (WRF) model. Simulations with terrain-following coordinates are compared to those using a flat coordinate, where terrain is represented with the immersed boundary method. The immersed boundary method is used as a tool which allows us to eliminate the terrain-following coordinate transformation, and quantify numerical errors through a direct comparison of the two solutions. Additionally, the effects of related issues such as the steepness of terrain slope and grid aspect ratio are studied in an effort to gain an understanding of numerical domains where terrain-following coordinates can successfully be used and
Pan, Dongqing; Ma, Lulu; Xie, Yuanyuan; Yuan, Chris; Jen, Tien Chien
2015-03-15
Alumina thin film is typically studied as a model atomic layer deposition (ALD) process due to its high dielectric constant, high thermal stability, and good adhesion on various wafer surfaces. Despite extensive applications of alumina ALD in microelectronics industries, details on the physical and chemical processes are not yet well understood. ALD experiments are not able to shed adequate light on the detailed information regarding the transient ALD process. Most of current numerical approaches lack detailed surface reaction mechanisms, and their results are not well correlated with experimental observations. In this paper, the authors present a combined experimental and numerical study on the details of flow and surface reactions in alumina ALD using trimethylaluminum and water as precursors. Results obtained from experiments and simulations are compared and correlated. By experiments, growth rate on five samples under different deposition conditions is characterized. The deposition rate from numerical simulation agrees well with the experimental results. Details of precursor distributions in a full cycle of ALD are studied numerically to bridge between experimental observations and simulations. The 3D transient numerical model adopts surface reaction kinetics and mechanisms based on atomic-level studies to investigate the surface deposition process. Surface deposition is shown as a strictly self-limited process in our numerical studies. ALD is a complex strong-coupled fluid, thermal and chemical process, which is not only heavily dependent on the chemical kinetics and surface conditions but also on the flow and material distributions.
Integrated Climate and Carbon-cycle Model
Energy Science and Technology Software Center (OSTI)
2006-03-06
The INCCA model is a numerical climate and carbon cycle modeling tool for use in studying climate change and carbon cycle science. The model includes atmosphere, ocean, land surface, and sea ice components.
Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard
Biswas, Kaushik; LuPh.D., Jue; Soroushian, Parviz; Shrestha, Som S
2014-01-01
In the United States, forty-eight (48) percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced building envelopes can facilitate maximizing the energy efficiency of buildings. Combined experimental testing and numerical modeling of PCM-enhanced envelope components are two important aspects of the evaluation of their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conductive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. A wall with cellulose cavity insulation and prototype PCM-enhanced interior wallboards was built and tested in a natural exposure test (NET) facility in a hot-humid climate location. The test wall contained PCM wallboards and regular gypsum wallboard, for a side-by-side annual comparison study. Further, numerical modeling of the walls containing the nano-PCM wallboard was performed to determine its actual impact on wall-generated heating and cooling loads. The model was first validated using experimental data, and then used for annual simulations using Typical Meteorological Year (TMY3) weather data. This article presents the measured performance and numerical analysis evaluating the energy-saving potential of the nano-PCM-enhanced wallboard.
Vittorini, V.; Tavani, M.; Vercellone, S.
2014-10-01
3C 454.3 is a prominent flat-spectrum radio quasar that in recent years attracted considerable attention because of its variable high-energy emissions. In this paper, we focus on the exceptional flaring activity of 3C 454.3 that was detected by AGILE and by Fermi-LAT in 2010 November. In the light of the time-varying data ranging from the radio, optical, and X-ray up to GeV γ-ray bands, we discuss a theoretical framework addressing all data in their overall evolution. For two weeks, the source has shown a plateau of enhanced GeV emission preceding a sudden major flare lasting about three days before decaying. The γ-ray flare onset is abrupt (about six hours), and is characterized by a prominent 'Compton dominance' with the GeV flux exceeding the pre-flare values by a factor of four to five. During this episode, the optical and X-ray fluxes increased by a factor of around two. Within the standard framework of a jet launched with a Lorentz bulk factor Γ ∼ 10 from a central black hole, we explore the yields of two alternatives. Case 1, with high-energy emission originating within the broad line region (BLR); and Case 2, with most of it produced outside at larger distances of a few parsecs. We show that Case 1 has considerable problems in explaining the whole set of multifrequency data. Case 2, instead, leads to a consistent and interesting interpretation based on the enhanced inverse Compton radiation that is produced as the jet crashes onto a mirror cloud positioned at parsec scales. This model explains the γ-ray versus optical/X-ray behavior of 3C 454.3, including the otherwise puzzling phenomena such as the prominent 'rphan' optical flare, and the enhanced line emission with no appreciable γ-ray counterpart that preceded the GeV γ-ray flare. It also accounts for the delayed onset of the latter on top of the long plateau. Our modeling of the exceptional 3C 454.3 γ-ray flare shows that while emission inside the canonical BLR is problematic, major and rapid
Bellotti, R.; De Carlo, F.; Gargano, G.; Tangaro, S.; Cascio, D.; Catanzariti, E.; Cerello, P.; Cheran, S. C.; Delogu, P.; De Mitri, I.; Fulcheri, C.; Grosso, D.; Retico, A.; Squarcia, S.; Tommasi, E.; Golosio, Bruno
2007-12-15
A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: (1) the lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are included through the new ACM technique; (2) a RG algorithm is iteratively applied to the previously segmented volume in order to detect the candidate nodules; (3) a double-threshold cut and a neural network are applied to reduce the false positives (FPs). After having set the parameters on a clinical CT, the system works on whole scans, without the need for any manual selection. The CT database was recorded at the Pisa center of the ITALUNG-CT trial, the first Italian randomized controlled trial for the screening of the lung cancer. The detection rate of the system is 88.5% with 6.6 FPs/CT on 15 CT scans (about 4700 sectional images) with 26 nodules: 15 internal and 11 pleural. A reduction to 2.47 FPs/CT is achieved at 80% efficiency.
Numerical simulation of transient, incongruent vaporization induced by high power laser
Tsai, C.H.
1981-01-01
A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.
The Effect of Element Formulation on the Prediction of Boost Effects in Numerical Tube Bending
Bardelcik, A.; Worswick, M.J.
2005-08-05
This paper presents advanced FE models of the pre-bending process to investigate the effect of element formulation on the prediction of boost effects in tube bending. Tube bending experiments are conducted with 3'' (OD) IF (Interstitial-Free) steel tube on a fully instrumented Eagle EPT-75 servo-hydraulic mandrel-rotary draw tube bender. Experiments were performed in which the bending boost was varied at three levels and resulted in consistent trends in the strain and thickness distribution within the pre-bent tubes. A numerical model of the rotary draw tube bender was used to simulate pre-bending of the IF tube with the three levels of boost from the experiments. To examine the effect of element formulation on the prediction of boost, the tube was modeled with shell and solid elements. Both models predicted the overall strain and thickness results well, but showed different trends in each of the models.
Pan Yi; Buonanno, Alessandra; Buchman, Luisa T.; Chu, Tony; Scheel, Mark A.; Kidder, Lawrence E.; Pfeiffer, Harald P.
2010-04-15
We present the first attempt at calibrating the effective-one-body (EOB) model to accurate numerical relativity simulations of spinning, nonprecessing black-hole binaries. Aligning the EOB and numerical waveforms at low frequency over a time interval of 1000M, we first estimate the phase and amplitude errors in the numerical waveforms and then minimize the difference between numerical and EOB waveforms by calibrating a handful of EOB-adjustable parameters. In the equal-mass, spin aligned case, we find that phase and fractional amplitude differences between the numerical and EOB (2,2) mode can be reduced to 0.01 radian and 1%, respectively, over the entire inspiral waveforms. In the equal-mass, spin antialigned case, these differences can be reduced to 0.13 radian and 1% during inspiral and plunge, and to 0.4 radian and 10% during merger and ringdown. The waveform agreement is within numerical errors in the spin aligned case while slightly over numerical errors in the spin antialigned case. Using Enhanced LIGO and Advanced LIGO noise curves, we find that the overlap between the EOB and the numerical (2,2) mode, maximized over the initial phase and time of arrival, is larger than 0.999 for binaries with total mass 30M{sub {center_dot}-}200M{sub {center_dot}}. In addition to the leading (2,2) mode, we compare four subleading modes. We find good amplitude and frequency agreements between the EOB and numerical modes for both spin configurations considered, except for the (3,2) mode in the spin antialigned case. We believe that the larger difference in the (3,2) mode is due to the lack of knowledge of post-Newtonian spin effects in the higher modes.
Numerical simulation experiments on the long-term evolution of...
Office of Scientific and Technical Information (OSTI)
the long-term evolution of a CO2 plume under a sloping caprock Citation Details In-Document Search Title: Numerical simulation experiments on the long-term evolution of a CO2 plume ...
Numerical study of heterogeneous mean temperature and shock wave...
Office of Scientific and Technical Information (OSTI)
We numerically study the gas oscillation with shock wave in a resonator of square cross section by solving the initial and boundary value problem of the system of three-dimensional ...
A Numerical Evaluation Of Electromagnetic Methods In Geothermal...
Open Energy Information (Open El) [EERE & EIA]
L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Numerical...
Ozoe, H. ); Sato, N. ); Churchill, S.W. )
1990-01-01
This paper reports general two- and three-dimensional models derived and solved numerically for the thermoacoustical convection that is generated in a compressible fluid by rapid heating of one of the vertical enclosing walls.
Numerical investigation of spontaneous flame propagation under RCCI conditions
Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline H
2015-06-30
This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel
Numerical investigation of spontaneous flame propagation under RCCI conditions
Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline H
2015-06-30
This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles and n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel
Soderstrand, Michael A.
1976-01-01
An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.
Numerical Investigation of Advanced Compressor Technologies | Department of
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Energy Investigation of Advanced Compressor Technologies Numerical Investigation of Advanced Compressor Technologies The purpose of the work was to explore advanced boost technologies to support clean diesel combustion, such as HCCI/LTC applications. deer08_sun.pdf (189.93 KB) More Documents & Publications Numerical Investigation of Advanced Compressor Technologies Advanced boost system development for diesel HCCI/LTC applications Advanced Boost System Development for Diesel HCCI/LTC
MEMORANDUM OF UNDERSTANDING Between The Numerical Algorithms Group Ltd
U.S. Department of Energy (DOE) all webpages (Extended Search)
Between The Numerical Algorithms Group Ltd and The University of California, as Management and Operating Contractor for Lawrence Berkeley National Laboratory on a Visitor Exchange Program This Memorandum of Understanding (MOU) is by and between the Numerical Algorithms Group Ltd (NAG) with a registered address at: Wilkinson House, Jordan hill Road, Oxford, UK and the University of California, as Management and Operating Contractor for Lawrence Berkeley National Laboratory, including its
Not Available
1993-12-01
The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.
Ashby, J.; Rowe, J.
1980-02-01
The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases.
Ramos Almeida, C.; Levenson, N. A.; Radomski, J. T.; Alonso-Herrero, A.; Asensio Ramos, A.; Rodriguez Espinosa, J. M.; Perez Garcia, A. M.; Mason, R.; DIaz-Santos, T.
2011-04-20
We present new mid-infrared imaging data for three Type-1 Seyfert galaxies obtained with T-ReCS on the Gemini-South Telescope at subarcsecond resolution. Our aim is to enlarge the sample studied in a previous work to compare the properties of Type-1 and Type-2 Seyfert tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear spectral energy distributions. Thus, the sample considered here comprises 7 Type-1, 11 Type-2, and 3 intermediate-type Seyferts. The unresolved IR emission of the Seyfert 1 galaxies can be reproduced by a combination of dust heated by the central engine and direct active galactic nucleus (AGN) emission, while for the Seyfert 2 nuclei only dust emission is considered. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Unification schemes of AGN account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold and that the immediate dusty surroundings of Type-1 and Type-2 Seyfert nuclei are intrinsically different. The Type-2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type-1 tori. The larger the covering factor of the torus, the smaller the probability of having a direct view of the AGN, and vice versa. In our sample, Seyfert 2 tori have larger covering factors (C{sub T} = 0.95 {+-} 0.02) and smaller escape probabilities (P{sub esc} = 0.05% {+-} {sup 0.08}{sub 0.03}%) than those of Seyfert 1 (C{sub T} = 0.5 {+-} 0.1; P{sub esc} = 18% {+-} 3%). All the previous differences are significant according to the Kullback-Leibler divergence. Thus, on the basis of the results presented here, the classification of a Seyfert galaxy as a Type-1 or Type-2 depends more on the intrinsic properties of the torus rather than on its mere inclination toward us, in contradiction with the simplest unification model.
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.
On a framework for generating PoD curves assisted by numerical simulations
Subair, S. Mohamed Agrawal, Shweta Balasubramaniam, Krishnan Rajagopal, Prabhu; Kumar, Anish; Rao, Purnachandra B.; Tamanna, Jayakumar
2015-03-31
The Probability of Detection (PoD) curve method has emerged as an important tool for the assessment of the performance of NDE techniques, a topic of particular interest to the nuclear industry where inspection qualification is very important. The conventional experimental means of generating PoD curves though, can be expensive, requiring large data sets (covering defects and test conditions), and equipment and operator time. Several methods of achieving faster estimates for PoD curves using physics-based modelling have been developed to address this problem. Numerical modelling techniques are also attractive, especially given the ever-increasing computational power available to scientists today. Here we develop procedures for obtaining PoD curves, assisted by numerical simulation and based on Bayesian statistics. Numerical simulations are performed using Finite Element analysis for factors that are assumed to be independent, random and normally distributed. PoD curves so generated are compared with experiments on austenitic stainless steel (SS) plates with artificially created notches. We examine issues affecting the PoD curve generation process including codes, standards, distribution of defect parameters and the choice of the noise threshold. We also study the assumption of normal distribution for signal response parameters and consider strategies for dealing with data that may be more complex or sparse to justify this. These topics are addressed and illustrated through the example case of generation of PoD curves for pulse-echo ultrasonic inspection of vertical surface-breaking cracks in SS plates.
Wang, Jingfu Xue, Yanqing; Zhang, Xinxin; Shu, Xinran
2015-10-15
Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.
Spherically symmetric cosmological spacetimes with dust and radiation — numerical implementation
Lim, Woei Chet; Regis, Marco; Clarkson, Chris E-mail: regis@to.infn.it
2013-10-01
We present new numerical cosmological solutions of the Einstein Field Equations. The spacetime is spherically symmetric with a source of dust and radiation approximated as a perfect fluid. The dust and radiation are necessarily non-comoving due to the inhomogeneity of the spacetime. Such a model can be used to investigate non-linear general relativistic effects present during decoupling or big-bang nucleosynthesis, as well as for investigating void models of dark energy with isocurvature degrees of freedom. We describe the full evolution of the spacetime as well as the redshift and luminosity distance for a central observer. After demonstrating accuracy of the code, we consider a few example models, and demonstrate the sensitivity of the late time model to the degree of inhomogeneity of the initial radiation contrast.
Analytical and numerical solution of one- and two-dimensional steady heat transfer in a coldplate
Jones, G.F.; Bennett, G.A.; Bultman, D.H.
1987-01-01
We develop analytical models for steady-state, one- and two-dimensional heat transfer in a single-material, flat-plate coldplate. Discrete heat sources are mounted on one side of the plate and heat transfer to a flowing fluid occurs on the other. The models are validated numerically using finite differences. We propose a simple procedure for estimating maximum coldplate temperature at the location of each heat source which includes thermal interaction among the sources. Results from one model are compared with data obtained for a composite coldplate operated in the laboratory. We demonstrate the utility of the models as diagnostic tools to be used for predicting the existence and extent of void volumes and delaminations in the composite material that can occur with coldplates of this type. Based on our findings, recommendations for effective coldplate design are given.
Numerical simulation study on fluid dynamics of plasma window using argon
Huang, S.; Zhu, K.; Shi, B. L.; Lu, Y. R.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.; Wei, G. D.
2013-07-15
In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic model has been developed to investigate the arc and flow field of plasma window, which is used as a windowless vacuum sealing device. The gas inlet, arc creation-developing and plasma expansion segments are all incorporated together in the integral model. An axis-symmetry cathode structure (hollow cathode) is used in the model. Current distribution of the arc is presented and discussed. The temperature, velocity, and pressure field are presented to show the physical mechanisms for the high pressure gap within the plasma window. Flow acceleration and viscosity effect are concluded as the main reasons for the pressure drop. The result for the pressure distribution in the cylindrical tube section has a good agreement with the analytical model. The validation for the sealing ability of plasma window is verified.
Lavergne, F.; Sab, K.; Sanahuja, J.; Bornert, M.; Toulemonde, C.
2015-05-15
Prestress losses due to creep of concrete is a matter of interest for long-term operations of nuclear power plants containment buildings. Experimental studies by Granger (1995) have shown that concretes with similar formulations have different creep behaviors. The aim of this paper is to numerically investigate the effect of size distribution and shape of elastic inclusions on the long-term creep of concrete. Several microstructures with prescribed size distribution and spherical or polyhedral shape of inclusions are generated. By using the 3D numerical homogenization procedure for viscoelastic microstructures proposed by Šmilauer and Bažant (2010), it is shown that the size distribution and shape of inclusions have no measurable influence on the overall creep behavior. Moreover, a mean-field estimate provides close predictions. An Interfacial Transition Zone was introduced according to the model of Nadeau (2003). It is shown that this feature of concrete's microstructure can explain differences between creep behaviors.
Holladay, Jamelyn D.; Wang, Yong
2015-05-01
Microscale (<5W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformer’s small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanol’s low reforming temperature and high conversion, although, there are several methane fueled systems. As computational power has decreased in cost and increased in availability, the codes increased in complexity and accuracy. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included, plate reactors, microchannel reactors, annulus reactors, wash-coated, packed bed systems.
DOE modeling and analysis activities focus on reducing uncertainties and improving transparency in photovoltaics (PV) and concentrating solar power (CSP) performance modeling. The overall goal of...
Numerical simulations of impulsively generated Alfvn waves in solar magnetic arcades
Chmielewski, P.; Murawski, K.; Musielak, Z. E.; Srivastava, A. K.
2014-09-20
We perform numerical simulations of impulsively generated Alfvn waves in an isolated solar arcade, which is gravitationally stratified and magnetically confined. We study numerically the propagation of Alfvn waves along the magnetic structure that extends from the lower chromosphere, where the waves are generated, to the solar corona, and analyze the influence of the arcade size and the width of the initial pulses on the wave propagation and reflection. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical VAL-C model and specifying the curved magnetic field lines that constitute the asymmetric magnetic arcade. The propagation and reflection of Alfvn waves in this arcade is described by 2.5-dimensional magnetohydrodynamic equations that are numerically solved by the FLASH code. Our numerical simulations reveal that the Alfvn wave amplitude decreases as a result of a partial reflection of Alfvn waves in the solar transition region, and that the waves that are not reflected leak through the transition region and reach the solar corona. We also find the decrement of the attenuation time of Alfvn waves for wider initial pulses. Moreover, our results show that the propagation of Alfvn waves in the arcade is affected by the spatial dependence of the Alfvn speed, which leads to phase mixing that is stronger for more curved and larger magnetic arcades. We discuss the processes that affect the Alfvn wave propagation in an asymmetric solar arcade and conclude that besides phase mixing in the magnetic field configuration, the plasma properties of the arcade, the size of the initial pulse, and the structure of the solar transition region all play a vital role in the Alfvn wave propagation.
Pahn, T.; Jonkman, J.; Rolges, R.; Robertson, A.
2012-11-01
Physically measuring the dynamic responses of wind turbine support structures enables the calculation of the applied loads using an inverse procedure. In this process, inverse means deriving the inputs/forces from the outputs/responses. This paper presents results of a numerical verification of such an inverse load calculation. For this verification, the comprehensive simulation code FAST is used. FAST accounts for the coupled dynamics of wind inflow, aerodynamics, elasticity and turbine controls. Simulations are run using a 5-MW onshore wind turbine model with a tubular tower. Both the applied loads due to the instantaneous wind field and the resulting system responses are known from the simulations. Using the system responses as inputs to the inverse calculation, the applied loads are calculated, which in this case are the rotor thrust forces. These forces are compared to the rotor thrust forces known from the FAST simulations. The results of these comparisons are presented to assess the accuracy of the inverse calculation. To study the influences of turbine controls, load cases in normal operation between cut-in and rated wind speed, near rated wind speed and between rated and cut-out wind speed are chosen. The presented study shows that the inverse load calculation is capable of computing very good estimates of the rotor thrust. The accuracy of the inverse calculation does not depend on the control activity of the wind turbine.
Choi, Yong Joon; Yoo, Jun Soo; Smith, Curtis Lee
2015-09-01
This INL plan comprehensively describes the Requirements Traceability Matrix (RTM) on main physics and numerical method of the RELAP-7. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7.
Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.; Fried, Laurence E.
2015-05-14
A numerical model is developed to study the shock wave ignition of HMX crystal. The model accounts for the coupling between crystal thermal/mechanical responses and chemical reactions that are driven by the temperature field. This allows for the direct numerical simulation of decomposition reactions in the hot spots formed by shock/impact loading. The model is used to simulate intragranular pore collapse under shock wave loading. In a reference case: (i) shear-enabled micro-jetting is responsible for a modest extent of reaction in the pore collapse region, and (ii) shear banding is found to be an important mode of localization. The shearmore » bands, which are filled with molten HMX, grow out of the pore collapse region and serve as potential ignition sites. The model predictions of shear banding and reactivity are found to be quite sensitive to the respective flow strengths of the solid and liquid phases. In this regard, it is shown that reasonable assumptions of liquid-HMX viscosity can lead to chemical reactions within the shear bands on a nanosecond time scale.« less
Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.; Fried, Laurence E.
2015-05-14
A numerical model is developed to study the shock wave ignition of HMX crystal. The model accounts for the coupling between crystal thermal/mechanical responses and chemical reactions that are driven by the temperature field. This allows for the direct numerical simulation of decomposition reactions in the hot spots formed by shock/impact loading. The model is used to simulate intragranular pore collapse under shock wave loading. In a reference case: (i) shear-enabled micro-jetting is responsible for a modest extent of reaction in the pore collapse region, and (ii) shear banding is found to be an important mode of localization. The shear bands, which are filled with molten HMX, grow out of the pore collapse region and serve as potential ignition sites. The model predictions of shear banding and reactivity are found to be quite sensitive to the respective flow strengths of the solid and liquid phases. In this regard, it is shown that reasonable assumptions of liquid-HMX viscosity can lead to chemical reactions within the shear bands on a nanosecond time scale.
An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys
Becker, R; Stolken, J; Jannetti, C; Bassani, J
2003-10-16
Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numerical simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.
Tombesi, F.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.
2011-11-20
X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s{sup -1} and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from {approx}10,000 km s{sup -1} ({approx}0.03c) up to {approx}100,000 km s{sup -1} ({approx}0.3c), with a peak and mean value of {approx}42,000 km s{sup -1} ({approx}0.14c). The ionization parameter is very high and in the range log {xi} {approx} 3-6 erg s{sup -1} cm, with a mean value of log {xi} {approx} 4.2 erg s{sup -1} cm. The associated column densities are also large, in the range N{sub H} {approx} 10{sup 22}-10{sup 24} cm{sup -2}, with a mean value of N{sub H} {approx} 10{sup 23} cm{sup -2}. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of
Two-dimensional numerical simulation of a Stirling engine heat exchanger
Ibrahim, M.B.; Tew, R.C.; Dudenhoefer, J.E.
1994-09-01
This paper describes the first phase of an effort to develop multidimensional models of Stirling engine components; the ultimate goal is to model an entire engine working space. More specifically, this paper describes parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes: Laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, have been solved Crack-Nicloson finite-difference scheme. Model predictions have been compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. The simplifying assumptions will later be relaxed to permit modeling of incompressible, laminar/turbulent flow that occurs in Stirling heat exchanger. Excellent agreement has been obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.
Pedler, William H. (Radon Abatement Systems, Inc., Golden, CO); Jepsen, Richard Alan (Sandia National Laboratories, Carlsbad, NM)
2003-08-01
The requirement to accurately measure subsurface groundwater flow at contaminated sites, as part of a time and cost effective remediation program, has spawned a variety of flow evaluation technologies. Validation of the accuracy and knowledge regarding the limitations of these technologies are critical for data quality and application confidence. Leading the way in the effort to validate and better understand these methodologies, the US Army Environmental Center has funded a multi-year program to compare and evaluate all viable horizontal flow measurement technologies. This multi-year program has included a field comparison phase, an application of selected methods as part of an integrated site characterization program phase, and most recently, a laboratory and numerical simulator phase. As part of this most recent phase, numerical modeling predictions and laboratory measurements were made in a simulated fracture borehole set-up within a controlled flow simulator. The scanning colloidal borescope flowmeter (SCBFM) and advanced hydrophysical logging (NxHpL{trademark}) tool were used to measure velocities and flow rate in a simulated fractured borehole in the flow simulator. Particle tracking and mass flux measurements were observed and recorded under a range of flow conditions in the simulator. Numerical models were developed to aid in the design of the flow simulator and predict the flow conditions inside the borehole. Results demonstrated that the flow simulator allowed for predictable, easily controlled, and stable flow rates both inside and outside the well. The measurement tools agreed well with each other over a wide range of flow conditions. The model results demonstrate that the Scanning Colloidal Borescope did not interfere with the flow in the borehole in any of the tests. The model is capable of predicting flow conditions and agreed well with the measurements and observations in the flow simulator and borehole. Both laboratory and model results showed a
LLNL Ocean General Circulation Model
Energy Science and Technology Software Center (OSTI)
2005-12-29
The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.
Numerical simulation of fracture rocks and wave propagation by means of fractal theory
Valle G., R. del
1994-12-31
A numerical approach was developed for the dynamic simulation of fracture rocks and wave propagation. Based on some ideas of percolation theory and fractal growth, a network of particles and strings represent the rock model. To simulate an inhomogeneous medium, the particles and springs have random distributed elastic parameters and are implemented in the dynamic Navier equation. Some of the springs snap with criteria based on the confined stress applied, therefore creating a fractured rock consistent with the physical environment. The basic purpose of this research was to provide a method to construct a fractured rock with confined stress conditions as well as the wave propagation imposed in the model. Such models provide a better understanding of the behavior of wave propagation in fractured media. The synthetic seismic data obtained henceforth, can be used as a tool to develop methods for characterizing fractured rocks by means of geophysical inference.
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems
Yang, Ge; Wang, Jun; Fang, Wen
2015-04-15
In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.
Translation and integration of numerical atomic orbitals in linear molecules
Heinäsmäki, Sami
2014-02-14
We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.
A numerical and experimental investigation of premixed methane-air flame transient response
Habib N. Najm; Phillip H. Paul; Omar M. Knio; Andrew McIlroy
2000-01-06
The authors report the results of a numerical and experimental investigation of the response of premixed methane-air flames to transient strain-rate disturbances induced by a two-dimensional counter-rotating vortex-pair. The numerical and experimental time histories of flow and flame evolution are matched over a 10 ms interaction time. Measurements and computations of CH and OH peak data evolution are reported, and found to indicate mis-prediction of the flame time scales in the numerical model. Qualitative transient features of OH at rich conditions are not predicted in the computations. On the other hand, evolution of computed and measured normalized HCO fractions are in agreement. The computed CH{sub 3}O response exhibits a strong transient driven by changes to internal flame structure, namely temperature profile steepening, induced by the flow field. Steady state experimental PLIF CH{sub 3}O data is reported, but experimental transient CH{sub 3}O data is not available. The present analysis indicates that the flame responds at time scales that are quite distinct from ``propagation'' time scale derived from flame thickness and burning speed. Evidently, these propagation time scales are not adequate for characterizing the transient flame response.
Bae, Y. Y.; Hong, S. D.; Kim, Y. W.
2012-07-01
A number of computational works have been performed so far for the simulation of heat transfer in a supercritical fluid. The simulations, however, faced a lot of difficulties when heat transfer deteriorates due either to buoyancy or by acceleration. When the bulk temperature approaches the pseudo-critical temperature the fluid experiences a severe axial density gradient on top of a severe radial one. Earlier numerical calculations showed, without exception, unrealistic over-predictions, as soon as the bulk temperature exceeded the pseudo-critical temperature. The over-predictions might have been resulted from an inapplicability of widely-used turbulence models. One of the major causes for the difficulties may probably be an assumption of a constant turbulent Prandtl number. Recent research, both numerical and experimental, indicates that the turbulent Prandtl number is never a constant when the gradient of physical properties is significant. This paper describes the applicability of a variable turbulent Prandtl number to the numerical simulation of heat transfer in supercritical fluids flowing in narrow vertical tubes. (authors)
Analytical and Numerical Solutions of Generalized Fokker-Planck Equations - Final Report
Prinja, Anil K.
2000-12-31
The overall goal of this project was to develop advanced theoretical and numerical techniques to quantitatively describe the spreading of a collimated beam of charged particles in space, in angle, and in energy, as a result of small deflection, small energy transfer Coulomb collisions with the target nuclei and electrons. Such beams arise in several applications of great interest in nuclear engineering, and include electron and ion radiotherapy, ion beam modification of materials, accelerator transmutation of waste, and accelerator production of tritium, to name some important candidates. These applications present unique and difficult modeling challenges, but from the outset are amenable to the language of ''transport theory'', which is very familiar to nuclear engineers and considerably less-so to physicists and material scientists. Thus, our approach has been to adopt a fundamental description based on transport equations, but the forward peakedness associated with charged particle interactions precludes a direct application of solution methods developed for neutral particle transport. Unique problem formulations and solution techniques are necessary to describe the transport and interaction of charged particles. In particular, we have developed the Generalized Fokker-Planck (GFP) approach to describe the angular and radial spreading of a collimated beam and a renormalized transport model to describe the energy-loss straggling of an initially monoenergetic distribution. Both analytic and numerical solutions have been investigated and in particular novel finite element numerical methods have been developed. In the first phase of the project, asymptotic methods were used to develop closed form solutions to the GFP equation for different orders of expansion, and was described in a previous progress report. In this final report we present a detailed description of (i) a novel energy straggling model based on a Fokker-Planck approximation but which is adapted for a
Van Eerten, Hendrik J.; MacFadyen, Andrew I.
2012-06-01
We discuss jet dynamics for narrow and wide gamma-ray burst (GRB) afterglow jets and the observational implications of numerical simulations of relativistic jets in two dimensions. We confirm earlier numerical results that sideways expansion of relativistic jets during the bulk of the afterglow emission phase is logarithmic in time and find that this also applies to narrow jets with half opening angle of 0.05 rad. As a result, afterglow jets remain highly nonspherical until after they have become nonrelativistic. Although sideways expansion steepens the afterglow light curve after the jet break, the jet edges becoming visible dominates the jet break, which means that the jet break is sensitive to the observer angle even for narrow jets. Failure to take the observer angle into account can lead to an overestimation of the jet energy by up to a factor of four. This weakens the challenge posed to the magneter energy limit by extreme events such as GRB090926A. Late-time radio calorimetry based on a spherical nonrelativistic outflow model remains relevant when the observer is approximately on-axis and where differences of a few in flux level between the model and the simulation are acceptable. However, this does not imply sphericity of the outflow and therefore does not translate to high observer angles relevant to orphan afterglows. For more accurate calorimetry and in order to model significant late-time features such as the rise of the counterjet, detailed jet simulations remain indispensable.
Numerical construction and flow simulation in networks of fractures using fractals
Yortsos, Y.C.; Acuna, J.A.
1991-11-01
Present models for the representation of naturally fractured systems rely on the double-porosity Warren-Root model or on random arrays of fractures. However, field observation in outcrops has demonstrated the existence of multiple length scales in many naturally fractured media. The existing models fail to capture this important fractal property. In this paper, we use concepts from the theory of fragmentation and from fractal geometry for the numerical construction of networks of fractures that have fractal characteristics. The method is based mainly on the work of Barnsley (1) and allows for great flexibility in the development of patterns. Numerical techniques are developed for the simulation of unsteady single phase flow in such networks. It is found that the pressure transient response of finite fractals behaves according to the analytical predictions of Chang and Yortsos (6), provided that there exists a power law in the mass-radius relationship around the test well location. Otherwise, the finite size effects become significant and interfere severely with the identification of the underlying fractal structure. 21 refs., 13 figs.
Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.; Gaido, Kevin W.; Ierapetritou, Marianthi G.; Androulakis, Ioannis P.
2013-09-15
Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.
Experimental Observations and Numerical Prediction of Induction Heating in a Graphite Test Article
Jankowski, Todd A [Los Alamos National Laboratory; Johnson, Debra P [Los Alamos National Laboratory; Jurney, James D [Los Alamos National Laboratory; Freer, Jerry E [Los Alamos National Laboratory; Dougherty, Lisa M [Los Alamos National Laboratory; Stout, Stephen A [Los Alamos National Laboratory
2009-01-01
The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds during casting operations. Preliminary results of experiments aimed at understanding the induction heating process in the mold portion of the furnaces are reported. The experiments have been modeled in COMSOL Multiphysics and the numerical and experimental results are compared to one another. These comparisons provide insight into the heating process and provide a benchmark for COMSOL calculations of induction heating in the mold portion of the plutonium casting furnaces.
Numerical prediction of energy consumption in buildings with controlled interior temperature
Jarošová, P.; Št’astník, S.
2015-03-10
New European directives bring strong requirement to the energy consumption of building objects, supporting the renewable energy sources. Whereas in the case of family and similar houses this can lead up to absurd consequences, for building objects with controlled interior temperature the optimization of energy demand is really needed. The paper demonstrates the system approach to the modelling of thermal insulation and accumulation abilities of such objetcs, incorporating the significant influence of additional physical processes, as surface heat radiation and moisture-driven deterioration of insulation layers. An illustrative example shows the numerical prediction of energy consumption of a freezing plant in one Central European climatic year.
V. Chipman
2002-10-05
The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post
Hwang, Seho; Shin, Jehyun; Kim, Jongman; Won, Byeongho
2015-03-10
Density log is widely applied for a variety of fields such as the petroleum exploration, mineral exploration, and geotechnical survey. The logging condition of density log is normally open holes but there are frequently cased boreholes. The primary calibration curve by slim hole logging manufacturer is normally the calibration curves for the variation of borehole diameter. In this study, we have performed the correction of steel casing effects using numerical and experimental methods. We have performed numerical modeling using the Monte Carlo N-Particle (MCNP) code based on Monte Carlo method, and field experimental method from open and cased hole log. In this study, we used the FDGS (Formation Density Gamma Sonde) for slim borehole with a 100 mCi 137Cs source, three inch borehole and steel casing. The casing effect between numerical and experimental method is well matched.
Coupled reactive mass transport and fluid flow: Issues in model verification
Freedman, Vicky L.; Ibaraki, Motomu
2003-01-03
Model verification and validation are both important steps in the development of reactive transport models. In this paper, a distinction is made between verification and validation, and the focus is on codifying the issues of verification for a numerical, reactive transport flow model. First, the conceptual basis of model verification is reviewed, which shows that verification should be understood as a first step in model development, and be followed by a protocol that assures that the model accurately represents system behavior. Second, commonly used procedures and methods of model verification are presented. In the third part of this paper, an intercomparison of models is used to demonstrate that model verification can be performed despite differences in hydrogeochemical transport code formulations. Results of an example simulation of transport are presented in which the numerical model is tested against other hydrogeochemical codes. Different kinetic formulations between solid and aqueous phases used among numerical models complicates model verification. This test problem involves uranium transport under conditions of varying pH and oxidation potential, with reversible precipitation of calcium uranate and coffinite. Results between the different hydrogeochemical transport codes show differences in oxidation potentials, but similarities in mineral assemblages and aqueous transport patterns. Because model verification can be further complicated by differences in the approach for solving redox problems, a comparison of a fugacity approach to both the external approach (based on hypothetical electron activity) and effective internal approach (based on conservation of electrons) is performed. The comparison demonstrates that the oxygen fugacity approach produces different redox potentials and mineral assemblages than both the effective internal and external approaches.
A quantum energy transport model for semiconductor device simulation
Sho, Shohiro; Odanaka, Shinji
2013-02-15
This paper describes numerical methods for a quantum energy transport (QET) model in semiconductors, which is derived by using a diffusion scaling in the quantum hydrodynamic (QHD) model. We newly drive a four-moments QET model similar with a classical ET model. Space discretization is performed by a new set of unknown variables. Numerical stability and convergence are obtained by developing numerical schemes and an iterative solution method with a relaxation method. Numerical simulations of electron transport in a scaled MOSFET device are discussed. The QET model allows simulations of quantum confinement transport, and nonlocal and hot-carrier effects in scaled MOSFETs.
Sandia Energy - IEA PVPS Task 13 Activities
U.S. Department of Energy (DOE) all webpages (Extended Search)
IEA PVPS Task 13 Activities Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis IEA PVPS Task 13 Activities IEA PVPS Task 13...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Statistics Network Activity Network Activity PDSF Network Uplinks to NERSC (dual 10 Gbps) NERSC Uplink to ESnet Last edited: 2011-03-31 22:20:59...
Duane, Gregory S.; Tsonis, Anastasios; Kocarev, Ljupco; Tribbia, Joseph
2015-10-30
The project takes a hierarchical approach. The supermodeling scheme was first studied exhaustively with simple systems of ordinary differential equations. Results were described in detail in the previous report. The principal findings were that 1) for highly non-linear systems, such as Lorenz-63, including systems which describe phenomena on very different (atmosphere/ocean) times scales, supermodeling is far superior to any form of output-averaging; 2) negative coefficients can be used to advantage in situations where all models err in the same way, but to different degrees; 3) an interesting variant of supermodeling, “weighted supermodeling”, is the limiting case where inter-model nudging coefficients in the originally conceived “connected supermodel” become infinite, but with fixed ratios, corresponding to a direct combination of the tendencies that appear in corresponding equations for the alternative models; 4) noise is useful for avoiding local optima in training the inter-model coefficients in the supermodel. The supermodeling scheme was then investigated with simple quasigeostrophic (QG) models. As described in the previous report, it was found that QG models on a sphere can be coupled most efficaciously by working in a basis which captures the most variance, rather than the most instability, a somewhat unexpected result that still deserves scrutiny in a broader context. Further studies (since the last report) with QG channel models addressed the central question of when supermodeling is superior to output averaging in situations where nonlinearites are less extreme than with the ODEs initially studied. It was found that for realistic variations in a parameter in the QG model, output averaging is sufficient to capture all but the most subtle quantitative and qualitative behavior. Supermodeling helps when qualitative differences between the models result from unrealistically large parameter differences, or when very detailed spatial structure of the
Numerical simulations for width fluctuations in compound elastic...
Office of Scientific and Technical Information (OSTI)
The statistical theories - the Hauser-Feshbach model with the width fluctuation correction ... in the fast energy region, hence the statistical model codes are essential for the ...
Numerical study of thermoacoustic convection in a cavity
Fusegi, Toru; Farouk, B.; Oran, E.S.
1995-12-31
Thermoacoustic convection in a two-dimensional cavity is numerically studied. Part of a compressible fluid (Helium) near the center line of the cavity is suddenly energized to generate pressure waves. Numerical solutions are secured by employing a highly accurate explicit method termed LCPFCT algorithm for the convection terms of the full Navier-Stokes equations. Thermoacoustic waves, which decay in large time due to the viscosity of fluid, are of the oscillatory nature. Much higher heat transfer rate can be achieved in an initial stage of transient processes, compared to that due to conduction. When a partial length of the cavity center line is heated, resulting thermoacoustic waves exhibit remarkable two-dimensional patterns.
Wimmer, Thomas Srimathveeravalli, Govindarajan; Gutta, Narendra; Ezell, Paula C.; Monette, Sebastien; Maybody, Majid; Erinjery, Joseph P.; Durack, Jeremy C.; Coleman, Jonathan A.; Solomon, Stephen B.
2015-02-15
PurposeNumerical simulations are used for treatment planning in clinical applications of irreversible electroporation (IRE) to determine ablation size and shape. To assess the reliability of simulations for treatment planning, we compared simulation results with empiric outcomes of renal IRE using computed tomography (CT) and histology in an animal model.MethodsThe ablation size and shape for six different IRE parameter sets (70–90 pulses, 2,000–2,700 V, 70–100 µs) for monopolar and bipolar electrodes was simulated using a numerical model. Employing these treatment parameters, 35 CT-guided IRE ablations were created in both kidneys of six pigs and followed up with CT immediately and after 24 h. Histopathology was analyzed from postablation day 1.ResultsAblation zones on CT measured 81 ± 18 % (day 0, p ≤ 0.05) and 115 ± 18 % (day 1, p ≤ 0.09) of the simulated size for monopolar electrodes, and 190 ± 33 % (day 0, p ≤ 0.001) and 234 ± 12 % (day 1, p ≤ 0.0001) for bipolar electrodes. Histopathology indicated smaller ablation zones than simulated (71 ± 41 %, p ≤ 0.047) and measured on CT (47 ± 16 %, p ≤ 0.005) with complete ablation of kidney parenchyma within the central zone and incomplete ablation in the periphery.ConclusionBoth numerical simulations for planning renal IRE and CT measurements may overestimate the size of ablation compared to histology, and ablation effects may be incomplete in the periphery.
Selection of a numerical unsaturated flow code for tilted capillary barrier performance evaluation
Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.
1996-09-01
Capillary barriers consisting of tilted fine-over-coarse layers have been suggested as landfill covers as a means to divert water infiltration away from sensitive underground regions under unsaturated flow conditions, especially for arid and semi-arid regions. Typically, the HELP code is used to evaluate landfill cover performance and design. Unfortunately, due to its simplified treatment of unsaturated flow and its essentially one-dimensional nature, HELP is not adequate to treat the complex multidimensional unsaturated flow processes occurring in a tilted capillary barrier. In order to develop the necessary mechanistic code for the performance evaluation of tilted capillary barriers, an efficient and comprehensive unsaturated flow code needs to be selected for further use and modification. The present study evaluates a number of candidate mechanistic unsaturated flow codes for application to tilted capillary barriers. Factors considered included unsaturated flow modeling, inclusion of evapotranspiration, nodalization flexibility, ease of modification, and numerical efficiency. A number of unsaturated flow codes are available for use with different features and assumptions. The codes chosen for this evaluation are TOUGH2, FEHM, and SWMS{_}2D. All three codes chosen for this evaluation successfully simulated the capillary barrier problem chosen for the code comparison, although FEHM used a reduced grid. The numerical results are a strong function of the numerical weighting scheme. For the same weighting scheme, similar results were obtained from the various codes. Based on the CPU time of the various codes and the code capabilities, the TOUGH2 code has been selected as the appropriate code for tilted capillary barrier performance evaluation, possibly in conjunction with the infiltration, runoff, and evapotranspiration models of HELP. 44 refs.
NREL Receives Numerous Accolades from Industry and DOE - News Releases |
U.S. Department of Energy (DOE) all webpages (Extended Search)
NREL Receives Numerous Accolades from Industry and DOE Lab honored with awards for sustainability; employees recognized for hydrogen, battery R&D November 8, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) and its employees have garnered awards and recognition from industry groups for advancing energy research as well as furthering the lab's sustainable operating practices. Bryan Pivovar Named Charles W. Tobias Young Investigator by the
Numerical Simulations of Small Non-spherical Particles in Turbulence |
U.S. Department of Energy (DOE) all webpages (Extended Search)
Argonne Leadership Computing Facility Numerical Simulations of Small Non-spherical Particles in Turbulence Event Sponsor: Mathematics and Computer Science Division LANS Seminar Start Date: Aug 31 2016 - 3:00pm Building/Room: Building 240/Room 1404-1405 Location: Argonne National Laboratory Speaker(s): Nimish Pujara Speaker(s) Title: UC Berkeley Motivated by the ubiquity of natural particles in turbulent flows in the natural environment as well as in many industrial processes, we investigate
Direct Numerical Simulations and Robust Predictions of Cloud Cavitation
U.S. Department of Energy (DOE) all webpages (Extended Search)
Collapse | Argonne Leadership Computing Facility cavitating vapor bubbles above a solid wall This image shows cavitating vapor bubbles above a solid wall. The yellow is a visualization of the pressure peak in the center of the bubble cloud. Credit: Computational Science and Engineering Laboratory, ETH Zurich, Switzerland Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name: Petros Koumoutsakos PI Email: petros@ethz.ch Institution: ETH Zürich Allocation
Direct Numerical Simulations and Robust Predictions of Cloud Cavitation
U.S. Department of Energy (DOE) all webpages (Extended Search)
Collapse | Argonne Leadership Computing Facility Initiation of cloud cavitation collapse for 50,000 bubbles Initiation of cloud cavitation collapse for 50,000 bubbles. Jonas Sukys, ETH Zurich Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name: Petros Koumoutsakos PI Email: petros@ethz.ch Institution: ETH Zurich Allocation Program: INCITE Allocation Hours at ALCF: 72 Million Year: 2016 Research Domain: Engineering Cloud cavitation collapse-the evolution
Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow
U.S. Department of Energy (DOE) all webpages (Extended Search)
| Argonne Leadership Computing Facility Visualization of the spanwise vorticity in a turbulent channel. S. Hoyas and O. Flores while they were at Universidad Politecnica de Madrid Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas Allocation Program: INCITE Allocation Hours at ALCF: 175 Million Year: 2013 Research Domain: Engineering Approximately 28% of U.S. energy resources are
Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study
Burt, G.; Ronald, K.; Young, A.R.; Phelps, A.D.R.; Cross, A.W.; Konoplev, I.V.; He, W.; Thomson, J.; Whyte, C.G.; Samsonov, S.V.; Denisov, G.G.; Bratman, V.L.
2004-10-01
Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared.
Los Alamos National Laboratory communicators capture numerous awards from
U.S. Department of Energy (DOE) all webpages (Extended Search)
Society for Technical Communication Society for Technical Communication Awards Los Alamos National Laboratory communicators capture numerous awards from Society for Technical Communication Three Los Alamos entries garnered Distinguished Technical Communication awards, the competition's highest award category. April 15, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering
Numerical solution of sand transport in hydraulic fracturing
Daneshy, A.A.; Crichlow, H.B.
1980-02-07
A numerical solution is developed for the deposition of a propping agent inside a hydraulic fracture. Such parameters as fluid leak-off into the formation, increase in sand concentration caused by leak-off, non-Newtonian fracturing fluids, hindered settling velocity, and an up-to-date geometry are taken into consideration. Three examples investigate the proppant deposition for low-, medium-, and high-viscosity fracturing fluids.
COLLOQUIUM: History, Applications, Numerical Values and Problems with the
U.S. Department of Energy (DOE) all webpages (Extended Search)
Calculation of EROI - Energy Return on (Energy) Investment | Princeton Plasma Physics Lab March 2, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: History, Applications, Numerical Values and Problems with the Calculation of EROI - Energy Return on (Energy) Investment Professor Charles Hall State University of NY College of Environmental Science and Forestry Plants and animals are subjected to fierce selective pressure to do the "right thing" energetically, that is to
Heteropolymer freezing and design: Towards physical models of protein folding
Pande, Vijay S. [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States)] [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States); Grosberg, Alexander Yu. [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States)] [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Tanaka, Toyoichi [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2000-01-01
Protein folding has become one of the most actively studied problems in modern molecular biophysics. Approaches to the problem combine ideas from the physics of disordered systems, polymer physics, and molecular biology. Much can be learned from the statistical properties of model heteropolymers, the chain molecules having different monomers in irregular sequences. Even in highly evolved proteins, there is a strong random element in the sequences, which gives rise to a statistical ensemble of sequences for a given folded shape. Simple analytic models give rise to phase transitions between random, glassy, and folded states, depending on the temperature T and the design temperature T{sup des} of the ensemble of sequences. Besides considering the analytic results obtainable in a random-energy model and in the Flory mean-field model of polymers, the article reports on confirming numerical simulations. (c) 2000 The American Physical Society.
A review of direct numerical simulations of astrophysical detonations and their implications
Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; Bronson Messer, O. E.
2013-04-11
Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x107 g∙cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x107 g∙cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less
Numerical simulation of the hydrodynamical combustion to strange quark matter
Niebergal, Brian; Ouyed, Rachid; Jaikumar, Prashanth
2010-12-15
We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable u,d,s quark matter. Our method solves hydrodynamical flow equations in one dimension with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change from heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature-dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below {approx_equal}2 times saturation density). In a two-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.
Numerical Investigation of Laser Propulsion for Transport in Water Environment
Han Bing; Li Beibei; Zhang Hongchao; Chen Jun; Shen Zhonghua; Lu Jian; Ni Xiaowu
2010-10-08
Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. The numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.
Transient productivity index for numerical well test simulations
Blanc, G.; Ding, D.Y.; Ene, A.
1997-08-01
The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.
Andrea Prosperetti
2006-03-24
The report briefly describes the activities carried out in the course of the project. A first line of research was the development of systematic closure relations for averaged equations for disperse multiphase flow. A second line was the development of efficient numerical methods for the simulation of Navier-Stokes flows with many suspended particles. The report also lists the 21 journal articles in which this work is more fully decsribed.
Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN
2009-12-08
A method of detecting an activator, the method including impinging with an activator a receptor material lacking a photoluminescent material and generating a by-product of a radioactive decay due to the activator impinging the reeptor material. The method further including, generating light from the by-product via the Cherenkov effect and identifying a characteristic of the activator based on the light.
Benchmark of numerical tools simulating beam propagation and secondary particles in ITER NBI
Sartori, E. Veltri, P.; Serianni, G.; Dlougach, E.; Hemsworth, R.; Singh, M.
2015-04-08
Injection of high energy beams of neutral particles is a method for plasma heating in fusion devices. The ITER injector, and its prototype MITICA (Megavolt ITER Injector and Concept Advancement), are large extrapolations from existing devices: therefore numerical modeling is needed to set thermo-mechanical requirements for all beam-facing components. As the power and charge deposition originates from several sources (primary beam, co-accelerated electrons, and secondary production by beam-gas, beam-surface, and electron-surface interaction), the beam propagation along the beam line is simulated by comprehensive 3D models. This paper presents a comparative study between two codes: BTR has been used for several years in the design of the ITER HNB/DNB components; SAMANTHA code was independently developed and includes additional phenomena, such as secondary particles generated by collision of beam particles with the background gas. The code comparison is valuable in the perspective of the upcoming experimental operations, in order to prepare a reliable numerical support to the interpretation of experimental measurements in the beam test facilities. The power density map calculated on the Electrostatic Residual Ion Dump (ERID) is the chosen benchmark, as it depends on the electric and magnetic fields as well as on the evolution of the beam species via interaction with the gas. Finally the paper shows additional results provided by SAMANTHA, like the secondary electrons produced by volume processes accelerated by the ERID fringe-field towards the Cryopumps.
Numerical investigation of the double-arcing phenomenon in a cutting arc torch
Mancinelli, B. R.; Minotti, F. O.; Kelly, H.; Prevosto, L.
2014-07-14
A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electronion recombination, and ionion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7??10{sup 4}?A/s.
Mayhall, Nicholas J.; Head-Gordon, Martin
2014-07-28
An approximation to the spin-flip extended configuration interaction singles method is developed using a second-order perturbation theory approach. In addition to providing significant efficiency advantages, the new framework is general for an arbitrary number of spin-flips, with the current implementation being applicable for up to around 4 spin-flips. Two new methods are introduced: one which is developed using non-degenerate perturbation theory, spin-flip complete active-space (SF-CAS(S)), and a second quasidegenerate perturbation theory method, SF-CAS(S){sub 1}. These two approaches take the SF-CAS wavefunction as the reference, and then perturbatively includes the effect of single excitations. For the quasidegenerate perturbation theory method, SF-CAS(S){sub 1}, the subscripted 1 in the acronym indicates that a truncated denominator expansion is used to obtain an energy-independent down-folded Hamiltonian. We also show how this can alternatively be formulated in terms of an extended Lagrangian, by introducing an orthonormality constraint on the first-order wavefunction. Several numerical examples are provided, which demonstrate the ability of SF-CAS(S) and SF-CAS(S){sub 1} to describe bond dissociations, singlet-triplet gaps of organic molecules, and exchange coupling parameters for binuclear transition metal complexes.
Modifications improve waterflood performance model
El-Banbi, A.H.; Abdel Wally, A.; Abd-el Fattah, K.A.; Sayyouh, M.H.
1996-01-01
Modifications to the Craig-Geffen-Morse (CGM) waterflooding model improve reservoir performance predictions and allow for the inclusion of pressure drop variations with time. The modified model was validated against numerical simulation results. The paper describes the CGM model, the hypothetical data set, the simulation technique, comparisons between the CGM model and the simulation, and modifications to the CGM model relating to pressure drop variation and water production.
Howard Barker; Jason Cole
2012-05-17
Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.
Experimental and numerical investigation of hydrogen combustion in a supersonic flow
Segal, C.
1991-01-01
Supersonic combustion ramjet, or SCRAMJET, engines are currently being evaluated for the propulsion of hypersonic vehicles. A unique supersonic wind tunnel facility has been built at the Aerospace Research Laboratory to simulate the operation of a SCRAMJET over a range of Mach numbers of 5 to 6.5 and altitudes of 40,000 to 150,000 ft. The tunnel provides high stagnation temperature, clean air in a continuous Mach 2 flow to the combustor where hydrogen is injected and burned. One of the major parameters in the design of the engine is the combustion efficiency, a quantity which is extremely difficult to evaluate directly. Wall pressure and temperature measurements were made on a model combustor in the ARL facility and a one-dimensional, chemical equilibrium, finite difference model was used to infer combustion efficiency. The initial stagnation temperature was maintained around or below 850 K and an inlet static pressure of 1/2 atm, or less. At these relative low temperatures, thermal choking occurred for relatively low equivalence ratios, limiting this parameter to a maximum of 0.1, depending on the injection configuration. A detailed validation of the analytical model requires extensive knowledge of the physical properties of the flowfield. Since reliable, non-intrusive measurements methods are still under development, the results of the combustion efficiency evaluation were compared with a detailed numerical simulation of the flowfield of interest. The numerical simulation used a 3-D full Navier-Stokes program, which includes a finite rate chemistry model to duplicate one of the experimental cases. The calculations were performed on a CRAY - 2S supercomputer at the National Supercomputer Applications Center at NASA Langley. The solution required 35 CPU hours.
DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS
Trk, T.; Titov, V. S.; Miki?, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.
2014-02-10
There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.
Carbon Dioxide Information Analysis Center: FY 1991 activities
Cushman, R.M.; Stoss, F.W.
1992-06-01
During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.
Carbon Dioxide Information Analysis Center: FY 1991 activities
Cushman, R.M.; Stoss, F.W.
1992-06-01
During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.
Carbon Dioxide Information Analysis Center: FY 1992 activities
Cushman, R.M.; Stoss, F.W.
1993-03-01
During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.
Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Fang, Yilin; Garg, Srinath; Long, Philip E.; Lovley, Derek R.
2009-03-01
Quantitative numerical simulation codes known as reactive transport models are widely used for simulating the hydrologic transport and geochemical speciation of dissolved constituents in the subsurface (Steefel et al., 2005). Because the activity of microorganisms strongly influences the fate of many constituents, both organic and inorganic, such models often include microbially-mediated reactions in their reaction networks (Hunter et al., 1998; Burgos et al., 2002; Fang et al., 2006; Scheibe et al., 2006; Yabusaki et al., 2007). However, the canonical form and stoichiometry of microbial reactions, reaction rate formulations and parameters, and biomass growth yield coefficients are prescribed a priori and applied over the entire range of simulated conditions. This approach does not account for the fact that fundamental microbial functions vary in response to local variations in environmental conditions(Stewart and Franklin, 2008). Multiple alternative reaction pathways are encoded in microbial genomes; specific pathways become active or inactive in response to, for example, nutrient limitation. Recent advances in genomic analysis allow us to define cellular metabolic networks, and accurate predictions of active pathways and reaction fluxes have been made using constraint-based metabolic models (Mahadevan et al., 2002; Price et al., 2003; Reed and Palsson, 2003; Mahadevan et al., 2006). Here, we demonstrate for the first time a methodology of coupling constraint-based metabolic models with reactive transport models. Our approach integrates advanced microbiological characterization, hydrology, and geochemistry in a powerful manner that will significantly improve subsurface reactive transport models.
A numerical study of soot aggregate formation in a laminar coflow diffusion flame
Zhang, Q.; Thomson, M.J. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8 (Canada); Guo, H.; Liu, F.; Smallwood, G.J. [Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Building M-9, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)
2009-03-15
Soot aggregate formation in a two-dimensional laminar coflow ethylene/air diffusion flame is studied with a pyrene-based soot model, a detailed sectional aerosol dynamics model, and a detailed radiation model. The chemical kinetic mechanism describes polycyclic aromatic hydrocarbon formation up to pyrene, the dimerization of which is assumed to lead to soot nucleation. The growth and oxidation of soot particles are characterized by the HACA surface mechanism and pyrene-soot surface condensation. The mass range of the solid soot phase is divided into thirty-five discrete sections and two equations are solved in each section to model the formation of the fractal-like soot aggregates. The coagulation model is improved by implementing the aggregate coagulation efficiency. Several physical processes that may cause sub-unitary aggregate coagulation efficiency are discussed. Their effects on aggregate structure are numerically investigated. The average number of primary soot particles per soot aggregate n{sub p} is found to be a strong function of the aggregate coagulation efficiency. Compared to the available experimental data, n{sub p} is well reproduced with a constant 20% aggregate coagulation efficiency. The predicted axial velocity, OH mole fraction, and C{sub 2}H{sub 2} mole fraction are validated against experimental data in the literature. Reasonable agreements are obtained. Finally, a sensitivity study of the effects of particle coalescence on soot volume fraction and soot aggregate nanostructure is conducted using a coalescence cutoff diameter method. (author)
Crandall, Dustin; Bromhal, Grant; Karpyn, Zuleima T.
2010-07-01
Understanding how fracture wall-roughness affects fluid flow is important when modeling many subsurface transport problems. Computed tomography scanning provides a unique view of rock fractures, allowing the measurement of fracture wall-roughness, without destroying the initial rock sample. For this computational fluid dynamics study, we used several different methods to obtain three-dimensional meshes of a computed tomography scanned fracture in Berea sandstone. These volumetric meshes had different wall-roughnesses, which we characterized using the Joint Roughness Coefficient and the fractal dimension of the fracture profiles. We then related these macroscopic roughness parameters to the effective flow through the fractures, as determined from Navier-Stokes numerical models. Thus, we used our fracture meshes to develop relationships between the observed roughness properties of the fracture geometries and flow parameters that are of importance for modeling flow through fractures in field scale models. Fractures with high Joint Roughness Coefficients and fractal dimensions were shown to exhibit tortuous flow paths, be poorly characterized by the mean geometric aperture, and have a fracture transmissivity 35 times smaller than the smoother modeled fracture flows.
Numerical simulation of steam injection processes with solvent
Zerpa, L.; Mendez, Z.
1995-12-31
In Venezuela during recent years, gas oil has been evaluated as an additive to increase steam injection process efficiency. The results of laboratory and field tests have shown a significant improvement in the production behavior. Despite these experiences, it is necessary to complement the information with results obtained from numerical simulation studies in order to know injection parameter effects, such as gas oil concentration, schemes and rates of injection, temperatures, etc., and also some mechanisms involved in the process. In this work, the results achieved in the numerical simulation of displacement tests with steam and gas oil are presented. A fully implicit 2-D thermal, three-phase compositional simulator was used to obtain all the data presented in this paper The numerical simulation results show a similar oil production performance to those obtained in the displacement tests with injection of gas oil and steam simultaneously. These results indicate rising of the production rate when the solvent concentration increases. They also reveal that the solvent co-injection scheme improves the productivity in relation to the gas oil pre-injection at low temperature. However, when gas oil is pre-injected at higher temperature, the oil production performance is similar to the co-injection scheme performance. This can attribute to the favorable temperature effect on the diffusion mechanisms. On the other hand, an increase of the gas oil injection rate causes a productivity reduction. In addition, the gas oil capacity to remove more viscous fractions than the original crude was verified. It was determined that the gas oil light fraction volatilization contributes to the process improvement. In general, these results confirm the benefit of using solvent and contribute to the understanding of process mechanisms.
Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States) [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States); Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chausse de Waterloo, 72, 1640 Rhode-St-Gense (Belgium); Magin, Thierry E. [Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chausse de Waterloo, 72, 1640 Rhode-St-Gense (Belgium)] [Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chausse de Waterloo, 72, 1640 Rhode-St-Gense (Belgium); Shaqfeh, Eric S.G.; Iaccarino, Gianluca [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States)] [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States)
2013-12-15
A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible NavierStokes equations using an explicit time advancement scheme and high-order finite differences. This NavierStokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.
Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator
Grishin, S. V. Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Nikitov, S. A.
2014-02-07
Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data.
Numerical simulation of carbon arc discharge for nanoparticle synthesis
Kundrapu, M.; Keidar, M.
2012-07-15
Arc discharge with catalyst-filled carbon anode in helium background was used for the synthesis of carbon nanoparticles. In this paper, we present the results of numerical simulation of carbon arc discharges with arc current varying from 10 A to 100 A in a background gas pressure of 68 kPa. Anode sublimation rate and current voltage characteristics are compared with experiments. Distribution of temperature and species density, which is important for the estimation of the growth of nanoparticles, is obtained. The probable location of nanoparticle growth region is identified based on the temperature range for the formation of catalyst clusters.
Numerical studies of the radiant flash pyrolysis of cellulose
Kothari, V.; Antal, M.J. Jr.
1983-01-01
When biomass particles are heated very rapidly (temperatures greater than 1000 degrees/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This two temperature effect gives rise to the formation of high yields of syrups from the pyrolyzing biomass. Numerical exploration of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenonmena are described in this paper. 12 references.
Numerical calculation of the ion polarization in MEIC
Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M A; Filatov, Yury
2015-09-01
Ion polarization in the Medium-energy Electron-Ion Collider (MEIC) is controlled by means of universal 3D spin rotators designed on the basis of "weak" solenoids. We use numerical calculations to demonstrate that the 3D rotators have negligible effect on the orbital properties of the ring. We present calculations of the polarization dynamics along the collider's orbit for both longitudinal and transverse polarization directions at a beam interaction point. We calculate the degree of depolarization due to the longitudinal and transverse beam emittances in case when the zero-integer spin resonance is compensated.
High numerical aperture projection system for extreme ultraviolet projection lithography
Hudyma, Russell M.
2000-01-01
An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Numerical analysis of decoy state quantum key distribution protocols
Harrington, Jim W; Rice, Patrick R
2008-01-01
Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically find optimal three-level protocols, and we examine how the secret bit rate and the optimized parameters are dependent on various system properties, such as session length, transmission loss, and visibility. Additionally, we show how to modify the decoy state analysis to handle partially distinguishable decoy states as well as uncertainty in the prepared intensities.
Improving the quality of numerical software through user-centered design
Pancake, C. M., Oregon State University
1998-06-01
The software interface - whether graphical, command-oriented, menu-driven, or in the form of subroutine calls - shapes the user`s perception of what software can do. It also establishes upper bounds on software usability. Numerical software interfaces typically are based on the designer`s understanding of how the software should be used. That is a poor foundation for usability, since the features that are ``instinctively right`` from the developer`s perspective are often the very ones that technical programmers find most objectionable or most difficult to learn. This paper discusses how numerical software interfaces can be improved by involving users more actively in design, a process known as user-centered design (UCD). While UCD requires extra organization and effort, it results in much higher levels of usability and can actually reduce software costs. This is true not just for graphical user interfaces, but for all software interfaces. Examples show how UCD improved the usability of a subroutine library, a command language, and an invocation interface.
Analytical Modeling | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
& Analytical Models Website - University of Washington, Department of Economic Business and Geography Page Area Activity Start Date Activity End Date Reference Material...
Prexl, A.; Hoffmann, H. [Institute of Metal Forming and Casting, Technische Universitaet Muenchen D-85747 Garching (Germany); Golle, M. [Institute of Metal Forming and Casting, Technische Universitaet Muenchen D-85747 Garching (Germany); Institute of Punching and Blanking, Pforzheim University, D-75175 Pforzheim (Germany); Kudrass, S.; Wahl, M. [AUDI AG, D-85045 Ingolstadt (Germany)
2011-01-17
Springback prediction and compensation is nowadays a widely recommended discipline in finite element modeling. Many researches have shown an improvement of the accuracy in prediction of springback using advanced modeling techniques, e.g. by including the Bauschinger effect. In this work different models were investigated in the commercial simulation program AutoForm for a large series production part, manufactured from the dual phase steel HC340XD. The work shows the differences between numerical drawbead models and geometrically modeled drawbeads. Furthermore, a sensitivity analysis was made for a reduced kinematic hardening model, implemented in the finite element program AutoForm.
NUMERICAL SIMULATIONS OF CHROMOSPHERIC ANEMONE JETS ASSOCIATED WITH MOVING MAGNETIC FEATURES
Yang, Liping; He, Jiansen; Tu, Chuanyi; Zhang, Lei; Peter, Hardi; Feng, Xueshang; Zhang, Shaohua
2013-11-01
Observations with the space-based solar observatory Hinode show that small-scale magnetic structures in the photosphere are found to be associated with a particular class of jets of plasma in the chromosphere called anemone jets. The goal of our study is to conduct a numerical experiment of such chromospheric anemone jets related to the moving magnetic features (MMFs). We construct a 2.5 dimensional numerical MHD model to describe the process of magnetic reconnection between the MMFs and the pre-existing ambient magnetic field, which is driven by the horizontal motion of the magnetic structure in the photosphere. We include thermal conduction parallel to the magnetic field and optically thin radiative losses in the corona to account for a self-consistent description of the evaporation process during the heating of the plasma due to the reconnection process. The motion of the MMFs leads to the expected jet and our numerical results can reproduce many observed characteristics of chromospheric anemone jets, topologically and quantitatively. As a result of the tearing instability, plasmoids are generated in the reconnection process that are consistent with the observed bright moving blobs in the anemone jets. An increase in the thermal pressure at the base of the jet is also driven by the reconnection, which induces a train of slow-mode shocks propagating upward. These shocks are a secondary effect, and only modulate the outflow of the anemone jet. The jet itself is driven by the energy input due to the reconnection of the MMFs and the ambient magnetic field.
Numerical analysis of the spatial range of the Kondo effect
Busser, C. A.; Martins, G. B.; Ribeiro, L. Costa; Vernek, E.; Anda, E. V.; Dagotto, Elbio R
2010-01-01
The spatial length of the Kondo screening is still a controversial issue related to Kondo physics. While renormalization-group and Bethe-Ansatz solutions have provided detailed information about the thermodynamics of magnetic impurities, they are insufficient to study the effect on the surrounding electrons, i.e., the spatial range of the correlations created by the Kondo effect between the localized magnetic moment and the conduction electrons. The objective of this work is to present a quantitative way of measuring the extension of these correlations by studying their effect directly on the local density of states (LDOS) at arbitrary distances from the impurity. The numerical techniques used, the embedded cluster approximation, the finite-U slave bosons, and numerical renormalization group, calculate the Green s functions in real space. With this information, one can calculate how the local density of states away from the impurity is modified by its presence, below and above the Kondo temperature, and then estimate the range of the disturbances in the noninteracting Fermi sea due to the Kondo effect, and how it changes with the Kondo temperature TK. The results obtained agree with results obtained through spin-spin correlations, showing that the LDOS captures the phenomenology of the Kondo cloud as well.
Anand, S.C.; Pandit, A.
1983-06-01
In the investigation, a Galerkin finite element model in two dimensions is developed to study the phenomena of mass transfer in porous media. In particular, the problems of the saltwater encroachment in coastal aquifers and the transport of hazardous wastes in groundwater environment are studied for a wide range of aquifer parameters. The coupled governing partial differential equations are nondimensionalized and solved for a two-dimensional, saturated aquifer in the vertical plane for both steady state and transient conditions using an iterative solution procedure. The flow transport is represented either in terms of the stream function or the freshwater hydraulic head.
Real time control and numerical simulation of pipeline subjected to landslide
Cuscuna, S.; Giusti, G.; Gramola, C.
1984-06-01
This paper describes SNAM research activity in the study of behaviour and real-time control of pipelines in landslide areas. The subject can be delt considering three different aspects: 1. Geotechnical characterization of unstable soils. The mechanical parameters of soil and the landslide types are defined; 2. Structural analysis of pipe-soil system. By means of a finite element program it's possible to study the pipe-soil interaction; in this numerical code the soil parameters attend by the non-linear elastic behaviour of pipe restraints. The results of this analysis are the location of the expected most stressed sections of pipe and the global behaviour of pipe inside the soil. 3. Instrumental control. The adoption of a suitable appliance of vibrating wire strain gauges allows the strain control of pipe in time. The aim is to make possible timely interventions in order to guarantee the installation safety.
Faydide, B.
1997-07-01
This paper presents the current and planned numerical development for improving computing performance in case of Cathare applications needing real time, like simulator applications. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the general characteristics of the code are presented, dealing with physical models, numerical topics, and validation strategy. Then, the current and planned applications of Cathare in the field of simulators are discussed. Some of these applications were made in the past, using a simplified and fast-running version of Cathare (Cathare-Simu); the status of the numerical improvements obtained with Cathare-Simu is presented. The planned developments concern mainly the Simulator Cathare Release (SCAR) project which deals with the use of the most recent version of Cathare inside simulators. In this frame, the numerical developments are related with the speed up of the calculation process, using parallel processing and improvement of code reliability on a large set of NPP transients.
A Numerical Model For The Dynamics Of Pyroclastic Flows At Galeras...
Open Energy Information (Open El) [EERE & EIA]
with the time; (2) dynamic pressure change; and (3) particle concentration along the computer domain from the eruption to the impact with a topographic barrier located more than...
Numerical Modeling of CO2 Sequestration in Geologic Formations -Recent Results and Open Challenges
Pruess, Karsten
2006-03-08
Rising atmospheric concentrations of CO2, and their role inglobal warming, have prompted efforts to reduce emissions of CO2 fromburning of fossil fuels. An attractive mitigation option underconsideration in many countries is the injection of CO2 from stationarysources, such as fossil-fueled power plants, into deep, stable geologicformations, where it would be stored and kept out of the atmosphere fortime periods of hundreds to thousands of years or more. Potentialgeologic storage reservoirs include depleted or depleting oil and gasreservoirs, unmineable coal seams, and saline formations. While oil andgas reservoirs may provide some attractive early targets for CO2 storage,estimates for geographic regions worldwide have suggested that onlysaline formations would provide sufficient storage capacity tosubstantially impact atmospheric releases. This paper will focus on CO2storage in saline formations.Injection of CO2 into a saline aquifer willgive rise to immiscible displacement of brine by the advancing CO2. Thelower viscosity of CO2 relative to aqueous fluids provides a potentialfor hydrodynamic instabilities during the displacement process. Attypical subsurface conditions of temperature and pressure, CO2 is lessdense than aqueous fluids and is subject to upward buoyancy force inenvironments where pressures are controlled by an ambient aqueous phase.Thus CO2 would tend to rise towards the top of a permeable formation andaccumulate beneath the caprock. Some CO2 will also dissolve in theaqueous phase, while the CO2-rich phase may dissolve some formationwaters, which would tend to dry out the vicinity of the injection wells.CO2 will make formation waters more acidic, and will induce chemicalrections that may precipitate and dissolve mineral phases (Xu et al.,2004). As a consequence of CO2 injection, significant pressurization offormation fluids would occur over large areas. These pressurizationeffects will change effective stresses, and may cause movement alongfaults with associated seismicity and increases in permeability thatcould lead to leakage from the storage reservoir (Rutqvist and Tsang,2005).
Numerical and Physical Modelling of Bubbly Flow Phenomena - Final Report to the Department of Energy
Andrea Prosperetti
2004-12-21
This report describes the main features of the results obtained in the course of this project. A new approach to the systematic development of closure relations for the averaged equations of disperse multiphase flow is outlined. The focus of the project is on spatially non-uniform systems and several aspects in which such systems differ from uniform ones are described. Then, the procedure used in deriving the closure relations is given and some explicit results shown. The report also contains a list of publications supported by this grant and a list of the persons involved in the work.
Numerical models analysis of energy conversion process in air-breathing laser propulsion
Hong Yanji; Song Junling; Cui Cunyan; Li Qian
2011-11-10
Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.
Modeling, mesh generation, and adaptive numerical methods for partial differential equations
Babuska, I.; Henshaw, W.D.; Oliger, J.E.; Flaherty, J.E.; Hopcroft, J.E.; Tezduyar, T.
1995-12-31
Mesh generation is one of the most time consuming aspects of computational solutions of problems involving partial differential equations. It is, furthermore, no longer acceptable to compute solutions without proper verification that specified accuracy criteria are being satisfied. Mesh generation must be related to the solution through computable estimates of discretization errors. Thus, an iterative process of alternate mesh and solution generation evolves in an adaptive manner with the end result that the solution is computed to prescribed specifications in an optimal, or at least efficient, manner. While mesh generation and adaptive strategies are becoming available, major computational challenges remain. One, in particular, involves moving boundaries and interfaces, such as free-surface flows and fluid-structure interactions. A 3-week program was held from July 5 to July 23, 1993 with 173 participants and 66 keynote, invited, and contributed presentations. This volume represents written versions of 21 of these lectures. These proceedings are organized roughly in order of their presentation at the workshop. Thus, the initial papers are concerned with geometry and mesh generation and discuss the representation of physical objects and surfaces on a computer and techniques to use this data to generate, principally, unstructured meshes of tetrahedral or hexahedral elements. The remainder of the papers cover adaptive strategies, error estimation, and applications. Several submissions deal with high-order p- and hp-refinement methods where mesh refinement/coarsening (h-refinement) is combined with local variation of method order (p-refinement). Combinations of mathematically verified and physically motivated approaches to error estimation are represented. Applications center on fluid mechanics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
A neural approach for the numerical modeling of two-dimensional...
Office of Scientific and Technical Information (OSTI)
inductions components at each time step and it is trained by 2-d measurements ... of the neural system returns the predicted value of the field H at the same time step. ...
PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME
Buscheck, Timothy Eric
1980-03-01
There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.
Tao, Y.B.; He, Y.L.
2010-10-15
A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)
Dynamic Response of a Pulse-Heated, Thick-Walled, Hollow Sphere: Validation of Code Numerics
Canaan, R.E.
2000-01-19
Volumetric pulse heating of a thick-walled hollow sphere is numerically investigated. The primary objective is to validate a variety of LLNL 30 hydrocodes for modeling the dynamic behavior of fissile/fissionable metals subject to rapid ''fission-heating'' transients. The 30 codes tested include both DYNA3D and NIKE3D, as well as the ''ASCI'' code, ALE3D. The codes are compared ''head-to-head'' and are benchmarked against a 1D finite difference solution to the problem that is derived from basic principles. Three pulse-heating transients are examined with full-width-half-maximum pulse durations of 41{micro}s, 85{micro}s, and 140{micro}s, respectively. These three transients produce a significant range of dynamic responses in the thermo-elastic regime. We present results for dynamic radial displacements and stresses for each pulse, and also discuss which code features/options worked best for these types of calculations. In general, the code results are in excellent agreement for the simple system considered. Validation of code numerics in simple systems is a key first step toward future application of the codes in more complicated geometries (U).
Numerical study on microwave-sustained argon discharge under atmospheric pressure
Yang, Y.; Hua, W. Guo, S. Y.
2014-04-15
A numerical study on microwave sustained argon discharge under atmospheric pressure is reported in this paper. The purpose of this study is to investigate both the process and effects of the conditions of microwave-excited gas discharge under atmospheric pressure, thereby aiding improvements in the design of the discharge system, setting the appropriate working time, and controlling the operating conditions. A 3D model is presented, which includes the physical processes of electromagnetic wave propagation, electron transport, heavy species transport, gas flow, and heat transfer. The results can be obtained by means of the fluid approximation. The maxima of the electron density and gas temperature are 4.96 × 10{sup 18} m{sup −3} and 2514.8 K, respectively, and the gas pressure remains almost unchanged for typical operating conditions with a gas flow rate of 20 l/min, microwave power of 1000 W, and initial temperature of 473 K. In addition, the conditions (microwave power, gas flow rate, and initial temperature) of discharge are varied to obtain deeper information about the electron density and gas temperature. The results of our numerical study are valid and clearly describe both the physical process and effects of the conditions of microwave-excited argon discharge.
Rutqvist, Jonny; Rutqvist, J.; Moridis, G.J.
2008-06-01
In this paper, we describe the development and application of a numerical simulator that analyzes the geomechanical performance of hydrate-bearing sediments, which may become an important future energy supply. The simulator is developed by coupling a robust numerical simulator of coupled fluid flow, hydrate thermodynamics, and phase behavior in geologic media (TOUGH+HYDRATE) with an established geomechanical code (FLAC3D). We demonstrate the current simulator capabilities and applicability for two examples of geomechanical responses of hydrate bearing sediments during production-induced hydrate dissociation. In these applications, the coupled geomechanical behavior within hydrate-bearing seducements are considered through a Mohr-Coulomb constitutive model, corrected for changes in pore-filling hydrate and ice content, based on laboratory data. The results demonstrate how depressurization-based gas production from oceanic hydrate deposits may lead to severe geomechanical problems unless care is taken in designing the production scheme. We conclude that the coupled simulator can be used to design production strategies for optimizing production, while avoiding damaging geomechanical problems.
Spin filtering in a double quantum dot device: Numerical renormalizati...
Office of Scientific and Technical Information (OSTI)
Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; MATHEMATICAL MODELS; MATHEMATICAL SOLUTIONS; QUANTUM DOTS; ...
Numerical studies of the radiant flash pyrolysis of cellulose
Kothari, V.; Antal, M.J.
1983-01-01
When biomass particles are heated very rapidly (>1000/sup 0/C/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles, their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This ''two temperature'' effect gives rise to the formation of high yields of sirups from the pyrolyzing biomass. Interest in the selective formation of sirups during the radiative flash pyrolysis of biomass caused the authors to initiate numerical explorations of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenomena. These explorations are described in this paper.
Three dimensional numerical simulations of the UPS-292-SC engine
O'Rourke, P.J.; Amsden, A.A.
1987-01-01
We present and analyze three-dimensional calculations of the spray, mixing and combustion in the UPS-292 stratified charge engine for three different operating conditions, corresponding to overall air-fuel ratios between 22.4 and 61.0. The numerical calculations are performed with KIVA, a multidimensional arbitrary-mesh, finite-difference hydrodynamics program for internal combustion engine applications. The calculations use a mesh of 10,000 computational cells, which conform to the shape of the piston bowl and cylinder and move to follow piston motion. Each operating condition is calculated from intake valve closure at 118/sup 0/ BTDC to 90/sup 0/ ATDC and requires approximately three hours of CRAY-XMP computer time.
The implementation of substation automation coordinated with numerical protection relaying
Welie, G. van; Carolin, T.
1994-12-31
During 1987 Eskom embarked on a process of defining user requirements in the area of substation control. This ultimately resulted in a project being established for the procurement and development of a new generation of substation control equipment. At the same time it was decided to establish a new generation of protection schemes for transmission substations, based on numerical protection relays. From the outset, a high degree of coordination was planned between the substation control and protection equipment. Development contracts were placed with suppliers during late 1990 for the protection schemes and during early 1991 for the substation control equipment. These contracts are nearing completion and the first large installations will commence during 1994. The Transmission Group has committed to employing this new technology in all new substations and all substations to be refurbished. This paper discusses the concept of coordinated substation control and protection and gives insight into implementation issues and functional compromises which had to be made to meet project deadlines.
LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT
Jerry Havens; Iraj A. Salehi
2005-02-21
This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.
Romero, C.; Benner, J.C.; Berkbigler, L.W.
1997-02-01
Los Alamos National Laboratory is currently in the design phase of a large Containment System that will be used to contain hydrodynamic experiments. The system in question is being designed to elastically withstand a 50 kg internal high explosive (PBX-9501) detonation. A one-tenth scaled model of the containment system was fabricated and used to obtain experimental results of both pressure loading and strain response. The experimental data are compared with numerical predictions of pressure loading and strain response obtained from an Eulerian hydrodynamic code (MESA-2D) and an explicit, non-linear finite element code (LLNL DYNA3D). The two-dimensional pressure predictions from multiple hydrodynamic simulations are used as loading in the structural simulation. The predicted pressure histories and strain response compare well with experimental results at several locations.
Numerical studies of the flux-to-current ratio method in the KIPT neutron source facility
Cao, Y.; Gohar, Y.; Zhong, Z.
2013-07-01
The reactivity of a subcritical assembly has to be monitored continuously in order to assure its safe operation. In this paper, the flux-to-current ratio method has been studied as an approach to provide the on-line reactivity measurement of the subcritical system. Monte Carlo numerical simulations have been performed using the KIPT neutron source facility model. It is found that the reactivity obtained from the flux-to-current ratio method is sensitive to the detector position in the subcritical assembly. However, if multiple detectors are located about 12 cm above the graphite reflector and 54 cm radially, the technique is shown to be very accurate in determining the k{sub eff} this facility in the range of 0.75 to 0.975. (authors)
Numerical approach for the voloxidation process of an advanced spent fuel conditioning process (ACP)
Park, Byung Heung; Jeong, Sang Mun; Seo, Chung-Seok
2007-07-01
A voloxidation process is adopted as the first step of an advanced spent fuel conditioning process in order to prepare the SF oxide to be reduced in the following electrolytic reduction process. A semi-batch type voloxidizer was devised to transform a SF pellet into powder. In this work, a simple reactor model was developed for the purpose of correlating a gas phase flow rate with an operation time as a numerical approach. With an assumption that a solid phase and a gas phase are homogeneous in a reactor, a reaction rate for an oxidation was introduced into a mass balance equation. The developed equation can describe a change of an outlet's oxygen concentration including such a case that a gas flow is not sufficient enough to continue a reaction at its maximum reaction rate. (authors)
Numerical simulation to study the transient self focusing of laser beam in plasma
Sharma, R. P.; Hussain, Saba Gaur, Nidhi
2015-02-15
In this paper, we present the numerical simulation for the coupled system of equations governing the dynamics of laser and Ion Acoustic Wave (IAW) in a collisionless plasma, when the coupling between the waves is through ponderomotive non-linearity. The nonlinear evolution of the laser beam is studied when the pump laser is perturbed by a periodic perturbation. By changing the perturbation wave number, we have studied its effect on the nonlinear evolution pattern of laser beam. In order to have a physical insight into the nonlinear dynamics of laser beam evolution in time and space, we have studied the laser and IAW spectra containing spatial harmonics. The magnitude of these harmonics changes with time and leads to time dependent localization of laser beam in spatial domain. The nonlinear dynamics of this localization is investigated in detail by using simulation and a semi-analytical model.
Numerical study of the Columbia high-beta device: Torus-II
Izzo, R.
1981-01-01
The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.
Numerical simulation of a thermoacoustic refrigerator. 2: Stratified flow around the stack
Worlikar, A.S.; Knio, O.M.; Klein, R.
1998-08-10
The unsteady, two-dimensional, thermally stratified flow in the neighborhood of an idealized thermoacoustic stack is analyzed using a low-Mach-number model that extends the adiabatic flow scheme developed in part 1 (Journal of Computational Physics 127, 424 (1996)). The extension consists of incorporation of numerical solvers for the energy equations in the fluid and the stack plates, and construction and implementation of fast Poisson solver for the velocity potential based on a domain decomposition/boundary Green`s function technique. The unsteady computations are used to predict the steady-state, acoustically generated temperature gradient across a two-dimensional couple and to analyze its dependence on the amplitude of the prevailing resonant wave. Computed results are compared to theoretical predictions and experimental data.
Hasson, Rian M.; Briggs, Alexandra; Rizvi, Hira; Carothers, Adelaide M.; Davids, Jennifer S.; Bertagnolli, Monica M.; Cho, Nancy L.
2014-02-14
Highlights: Wnt/?-catenin signaling is aberrantly activated in most colorectal cancers. Locked nucleic acid (LNA)-based antisense is a novel tool for cancer therapy. ?-Catenin inhibition was observed in mature intestinal tissue of LNA-treated mice. Further investigation of Wnt/?-catenin targeted therapies is warranted. - Abstract: Background: Previously, we showed that short-term inhibition of ?-catenin expression and reversal of aberrant ?-catenin subcellular localization by the selective COX-2 inhibitor celecoxib is associated with adenoma regression in the C57BL/6J Min/+ mouse. Conversly, long-term administration resulted in tumor resistance, leading us to investigate alternative methods for selective ?-catenin chemoprevention. In this study, we hypothesized that disruption of ?-catenin expression by EZN-3892, a selective locked nucleic acid (LNA)-based ?-catenin inhibitor, would counteract the tumorigenic effect of Apc loss in Min/+ adenomas while preserving normal intestinal function. Materials and methods: C57BL/6J Apc{sup +/+} wild-type (WT) and Min/+ mice were treated with the maximum tolerated dose (MTD) of EZN-3892 (30 mg/kg). Drug effect on tumor numbers, ?-catenin protein expression, and nuclear ?-catenin localization were determined. Results: Although the tumor phenotype and ?-catenin nuclear localization in Min/+ mice did not change following drug administration, we observed a decrease in ?-catenin expression levels in the mature intestinal tissue of treated Min/+ and WT mice, providing proof of principle regarding successful delivery of the LNA-based antisense vehicle. Higher doses of EZN-3892 resulted in fatal outcomes in Min/+ mice, likely due to ?-catenin ablation in the intestinal tissue and loss of function. Conclusions: Our data support the critical role of Wnt/?-catenin signaling in maintaining intestinal homeostasis and highlight the challenges of effective drug delivery to target disease without permanent toxicity to normal cellular
Liu, Qian; Liu, Yue, E-mail: liuyue@dlut.edu.cn; Samir, Tagra; Ma, Zhaoshuai [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2014-08-15
Based on the drift and diffusion approximation theory, a 1D fluid model on capacitively coupled RF argon glow discharge at low pressure is established to study the effect of secondary electron emission (SEE) on the discharge characteristics. The model is numerically solved by using a finite difference method and the numerical results are obtained. The numerical results indicate that when the SEE coefficient is larger, the plasma density is higher and the time of reaching steady state is longer. It is also found that the cycle-averaged electric field, electric potential, and electron temperature change a little as the SEE coefficient is increased. Moreover, the discharge characteristics in some nonequilibrium discharge processes with different SEE coefficients have been compared. The analysis shows that when the SEE coefficient is varied from 0.01 to 0.3, the cycle-averaged electron net power absorption, electron heating rate, thermal convective term, electron energy dissipation, and ionization all have different degrees of growth. While the electron energy dissipation and ionization are quite special, there appear two peaks near each sheath region in the discharge with a relatively larger SEE coefficient. In this case, the discharge is certainly operated in a hybrid ?-?-mode.
Biswas, Kaushik; Abhari, Ramin
2014-10-03
A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test building in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. Furthermore, this article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.
Biswas, Kaushik; Abhari, Mr. Ramin
2014-01-01
A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test building in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. This article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.
Biswas, Kaushik; Abhari, Ramin
2014-10-03
A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test buildingmore » in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. Furthermore, this article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.« less
Yang, Xiaofan; Scheibe, Timothy D.; Richmond, Marshall C.; Perkins, William A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; Mckinley, Matthew I.
2013-04-01
A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier-Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental error in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods.
Numerical simulation of optical feedback on a quantum dot lasers
Al-Khursan, Amin H.; Ghalib, Basim Abdullattif; Al-Obaidi, Sabri J.
2012-02-15
We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.
McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.
2001-01-01
A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.
Problems with numerical techniques: Application to mid-loop operation transients
Bryce, W.M.; Lillington, J.N.
1997-07-01
There has been an increasing need to consider accidents at shutdown which have been shown in some PSAs to provide a significant contribution to overall risk. In the UK experience has been gained at three levels: (1) Assessment of codes against experiments; (2) Plant studies specifically for Sizewell B; and (3) Detailed review of modelling to support the plant studies for Sizewell B. The work has largely been carried out using various versions of RELAP5 and SCDAP/RELAP5. The paper details some of the problems that have needed to be addressed. It is believed by the authors that these kinds of problems are probably generic to most of the present generation system thermal-hydraulic codes for the conditions present in mid-loop transients. Thus as far as possible these problems and solutions are proposed in generic terms. The areas addressed include: condensables at low pressure, poor time step calculation detection, water packing, inadequate physical modelling, numerical heat transfer and mass errors. In general single code modifications have been proposed to solve the problems. These have been very much concerned with means of improving existing models rather than by formulating a completely new approach. They have been produced after a particular problem has arisen. Thus, and this has been borne out in practice, the danger is that when new transients are attempted, new problems arise which then also require patching.
Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada
Cooper, C.A.
1990-01-01
Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.
Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; Umansky, Maxim V.; Baver, Derek A.
2016-04-11
Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summarymore » that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.« less