National Library of Energy BETA

Sample records for activities solar decathlon

  1. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar Decathlon 2011 Solar Decathlon 2013 & XPO Washington, D.C. Washington, D.C. Irvine, California 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: How to provide workforce training, improve building science instruction, foster innovation in whole-building design, and educate

  2. Solar Decathlon

    Energy.gov [DOE]

    The Energy Department's Solar Decathlon challenges collegiate teams to design, build and operate solar-powered houses that are cost effective, energy efficient and attractive.

  3. Solar Decathlon 2009 (Brochure)

    SciTech Connect

    Not Available

    2009-04-01

    This brochure provides key information about Solar Decathlon 2009--the dates, the background of the competition and event, and where to go for more information.

  4. Webtrends Archives by Fiscal Year - Solar Decathlon | Department...

    Energy.gov [DOE] (indexed site)

    Solar Decathlon site by fiscal year. Solar Decathlon FY07 (2.28 MB) Solar Decathlon FY08 (2.23 MB) Solar Decathlon FY09 (2.26 MB) Solar Decathlon FY10 (2.18 MB) Solar Decathlon ...

  5. Solar Decathlon 2007 Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Decathlon 2007 Overview Solar Decathlon 2007 Overview This podcast captures an interview with Richard King, who provides an overview of Solar Decathlon 2007. King is with the U.S. Department of Energy and director of Solar Decathlon. Audio MP3 (7.25 MB) Text-Alternative (29 KB) More Documents & Publications Secretary Bodman Talks Solar Decathlon 2007 Solar Decathlon Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program

  6. Solar Decathlon Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Welcome STEAB 2007 2007 Solar Decathlon Accelerates R&D - Largest housing experiment ever held * Side-by-side comparison of building technologies - Testing and redesign * Iterative design process drives improvement 2002 Virginia Tech 2005 2007 Decathletes From all over the World ! 2007 2007 Moving in 2007 Mega lifts 2007 2007 2007 Solar Decathlon 2007 Schedule Sunday Monday Tuesday Wednesday Thursday Friday Saturday Oct 9 Oct 10 Oct 2 Oct 7 Oct 8 Oct 12 Oct 13 Oct 14 Oct 15 Oct 16 Oct 17

  7. NREL: Technology Deployment - Solar Decathlon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Decathlon is an international competition that challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and ...

  8. Solar Decathlon 2015 | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Decathlon 2015 Solar Decathlon 2015 Addthis 1 of 68 An electric car sits parked at Clemson University during public exhibit hours of U.S. Department of Energy Solar Decathlon...

  9. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... |1.|Department of Energy Solar Decathlon Home Page http: www. solardecathl on. org |43,756|61,116| |2.|EERE: Department of Energy Solar Decathlon Home Page http: ...

  10. 2005 Solar Decathlon (Competition Program)

    SciTech Connect

    Not Available

    2005-10-01

    The 2005 Solar Decathlon Competition Program is distributed to Solar Decathlon visitors, media, sponsors, and the student competitors. It contains basic facts about the Solar Decathlon: what, where, when, who, and how. It is a guide for visitors to the events and workshops. It describes the 10 contests and the technologies used in the houses. It celebrates the accomplishments of the competitors and provides an opportunity for the major sponsors to describe their roles and relay their commitment to the ideals of the Solar Decathlon.

  11. Solar Decathlon 2015: Nation's Leading Sustainable Home Design...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar ... Richard King Richard King Director, Solar Decathlon KEY FACTS 2015 Solar Decathlon to kick ...

  12. Solar Decathlon: How Do WE Do Efficiency?

    Energy.gov [DOE]

    The weather is cooling off, the trees look gorgeous and (every other year) the National Mall turns into a beehive of activity when the Solar Decathlon comes to town.

  13. Solar Decathlon 2013

    SciTech Connect

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard; ,

    2013-10-22

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  14. Solar Decathlon 2013

    ScienceCinema

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard;

    2014-01-10

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  15. Solar Decathlon | Department of Energy

    Energy.gov [DOE] (indexed site)

    and Farhana Rahman of the New York City College of Technology prepare to install the last solar panel on Day 8 of the U.S. Department of Energy Solar Decathlon. Image: Thomas...

  16. Solar Decathlon Opening | Department of Energy

    Office of Environmental Management (EM)

    Solar Decathlon Opening Solar Decathlon Opening October 6, 2005 - 12:25pm Addthis Remarks Prepared for Energy Secretary Bodman Let me begin by welcoming all of you to this Solar...

  17. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... |1.|U.S. Department of Energys Solar Decathlon Home Page http: www. solardecathl on. org |279,740|497,549| |2.|DOE Solar Decathlon: Final Results http: www. ...

  18. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... |1.|U.S. Department of Energys Solar Decathlon Home Page http: www. solardecathl on. org |141,058|197,478| |2.|DOE Solar Decathlon: Teams http: www. solardecathl ...

  19. NREL: Technology Deployment - Solar Decathlon Prepares Thousands of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Students for the Clean-Energy Workforce with Valuable Hands-On Experience Solar Decathlon Prepares Thousands of Students for the Clean-Energy Workforce with Valuable Hands-On Experience News Alumnus Builds Houses, Career on Solar Decathlon Experience Strong Ties Lead Solar Decathlon Alum to Career With Team Sponsor Solar Decathlon 2015 Kicks Off With Irvine Workshop Solar Decathlon News Blog (provides regular updates about Solar Decathlon news and events) Publications Impact Evaluation of

  20. Secretary Bodman Talks Solar Decathlon 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Secretary Bodman Talks Solar Decathlon 2007 Secretary Bodman Talks Solar Decathlon 2007 In this podcast, U.S. Energy Secretary Samuel Bodman discusses Solar Decathlon 2007 and the college teams participating. Audio MP3 (3.12 MB) Text-Alternative (25.5 KB) More Documents & Publications Solar Decathlon 2007 Overview Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program Solar Decathlon

  1. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  2. Solar Decathlon Design Models 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Decathlon Design Models 2009 Solar Decathlon Design Models 2009 Addthis Florida International 1 of 20 Florida International Image: Energy Department Image Team New Jersey 2...

  3. Solar Decathlon Team Leading the Way Toward Sustainable Living...

    Energy.gov [DOE] (indexed site)

    of Illinois at Urbana-Champaign Solar Decathlon Team. The Rehouse is nearing completion. | Courtesy of the University of Illinois at Urbana-Champaign Solar Decathlon Team. ...

  4. Solar Decathlon 2015: Nation's Leading Sustainable Home Design...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon...

  5. Solar Decathlon 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Decathlon 2015 Solar Decathlon 2015 Addthis 1 of 69 Stevens Institute of Technology won top honors at the U.S. Department of Energy Solar Decathlon on October 17, 2015 overall by designing, building, and operating the most cost-effective, energy-efficient and attractive solar powered house. University at Buffalo, The State University of New York took second place followed by California Polytechnic State University, San Luis Obispo in third place. Image: Thomas Kelsey, U.S. Department of

  6. Solar Decathlon Turns Ten | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turns Ten Solar Decathlon Turns Ten September 28, 2012 - 2:22pm Addthis For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided

  7. Energy Department Announces Second Solar Decathlon | Department...

    Office of Environmental Management (EM)

    The colleges and universities competing in the 2005 Solar Decathlon are: California ... of Massachusetts Dartmouth University of Michigan University of Missouri - Rolla and the ...

  8. Solar Decathlon Technology Spotlight: Structural Insulated Panels...

    Energy.gov [DOE] (indexed site)

    in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs. ...

  9. Are You Going to the Solar Decathlon?

    Energy.gov [DOE]

    Drew told you about the upcoming Solar Decathlon, held every other year on the National Mall in Washington, D.C.

  10. Solar Decathlon: How far did they travel? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decathlon Journeys Visualizing the distances that each Solar Decathlon house travelled Click competitors to toggle their journeys on and off. All routes and distances are...

  11. Vote for Your Favorite Solar Decathlon House | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Your Favorite Solar Decathlon House Vote for Your Favorite Solar Decathlon House Vote for Your Favorite Solar Decathlon House Thank you for voting in our Solar Decathlon 2015 Favorite poll! Sort by rating (high to low) to see which teams scored best and read our blog post on the results. Also, go to SolarDecathlon.gov for full coverage of the competition, including final scores and standings, videos, photos and more! Innovators Sort by: Random | Alphabetical | Rating (High to Low) | Rating

  12. 2011 Solar Decathlon – The Volunteer's Perspective

    Energy.gov [DOE]

    The Solar Village has been open to the public on the National Mall’s West Potomac Park for seven days now, which means the 2011 Solar Decathlon is fully underway. But the 19 teams of students...

  13. Team Ontario 2009 Solar Decathlon House

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features Team Ontario/BC's solar-powered house that glows at night during the Lighting Design contest at the U.S. Department of Energy Solar Decathlon on the National Mall. Team...

  14. Santa Clara University 2007 Solar Decathlon House

    Energy.gov [DOE]

    This photograph features a 2007 Solar Decathlon competition home that includes residential photovoltaic (PV) modules from SunPower Corporation of San Jose, California, and a solar collector from...

  15. Installation on 2007 Solar Decathlon Home

    Energy.gov [DOE]

    This photograph features a 2007 Solar Decathlon competition home that includes residential photovoltaic (PV) modules from SunPower Corporation of San Jose, California, and a solar collector from ...

  16. Solar Decathlon 2011: The Visitor’s Perspective

    Energy.gov [DOE]

    Ride along as we visit the 2011 Solar Decathlon competition and explore the Solar Village with fellow sightseers!

  17. Solar Decathlon 2005: The Event in Review

    SciTech Connect

    Moon, S.; Nahan, R.; Warner, C.; Wassmer, M.

    2006-06-01

    Solar Decathlon 2005: The Event in Review is a technical report describing the 2005 Solar Decathlon, an event sponsored by the U.S. Department of Energy wherein 18 collegiate teams competed in 10 contests to design, build, and operate an attractive, efficient, entirely solar-powered home. The report gives an overview of the competition, including final results, team strategies, and detailed descriptions the 18 homes.

  18. Construction Begins for Solar Decathlon 2011 | Department of...

    Energy Saver

    Construction Begins for Solar Decathlon 2011 Construction Begins for Solar Decathlon 2011 September 13, 2011 - 11:13am Addthis Location of U.S. Department of Energy's 2011 Solar ...

  19. New Location for Solar Decathlon 2011 Announced | Department...

    Energy Saver

    The Solar Decathlon challenges 20 teams to design, build and operate solar-powered houses that are cost-effective, energy-efficient and attractive. The first Solar Decathlon was ...

  20. Roof Installation at 2009 Solar Decathlon

    Energy.gov [DOE]

    Iowa State student Timothy Lentz, foreground, and Team Alberta student Leah Battersdy, right, work on the roofs of their houses during the U.S. Department of Energy Solar Decathlon 2009.

  1. Solar Decathlon 2011, (Small Program)(Brochure)

    SciTech Connect

    Not Available

    2010-11-01

    This brochure provides a high-level overview of the U.S. Department of Energy Solar Decathlon 2011. The competition's background, purpose, impact, 10 contests, 20 teams, and where to go for additional information.

  2. What Do You Think About Solar Decathlon?

    Energy.gov [DOE]

    Did you get a chance to see the Solar Decathlon houses, or did you follow the teams on Facebook or their website? Tell us what you thought of the event.

  3. Solar Decathlon Update from Secretary Chu

    ScienceCinema

    Chu, Steven

    2016-07-12

    Secretary Steven Chu provides his insights on the 2009 Solar Decathlon in Washington, DC. To view each of the houses in this year's competition and vote for your favorite, visit http://www.solardecathlon.org/virtual_tours/

  4. Solar Decathlon 2013: New Teams! New Location! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New Teams! New Location! Solar Decathlon 2013: New Teams! New Location! January 26, 2012 - 1:32pm Addthis Orange County Great Park in Irvine, California -- venue for the 2013 U.S. Department of Energy Solar Decathlon. | Image credit: Richard King. Orange County Great Park in Irvine, California -- venue for the 2013 U.S. Department of Energy Solar Decathlon. | Image credit: Richard King. Richard King Richard King Director, Solar Decathlon "With each competition, entry into the Solar

  5. VIDEO: Watch the Solar Decathlon 2013 Google+ Hangout | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Watch the Solar Decathlon 2013 Google+ Hangout VIDEO: Watch the Solar Decathlon 2013 Google+ Hangout September 19, 2013 - 2:26pm Addthis Miss the Solar Decathlon 2013 Google+ Hangout? Watch a recording of it above. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs For two years, collegiate teams from around the world have been designing and building energy-efficient solar-powered houses for the U.S. Department of Energy Solar Decathlon

  6. Department of Energy Considers New Venue for Solar Decathlon...

    Office of Environmental Management (EM)

    Considers New Venue for Solar Decathlon 2013 Department of Energy Considers New Venue for Solar Decathlon 2013 August 1, 2011 - 3:29pm Addthis Washington, D.C. - Energy Secretary ...

  7. Checking in on Solar Decathlon 2011 | Department of Energy

    Energy.gov [DOE] (indexed site)

    latest updates and media-and be sure to follow Solar Decathlon on Facebook, Twitter, YouTube, and Flickr. Addthis Related Articles Countdown to Solar Decathlon: The Info You Need...

  8. Solar Decathlon Design Places People and the Outdoors at its...

    Office of Environmental Management (EM)

    Design Places People and the Outdoors at its Heart Solar Decathlon Design Places People ... How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the ...

  9. Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results October 22, 2015 - 10:10am Addthis West Virginia University...

  10. Solar Decathlon 2015: Let the Competition Begin | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Let the Competition Begin Solar Decathlon 2015: Let the Competition Begin February 13, 2014 - 1:00pm Addthis The Solar Decathlon competition has provided more than 17,000 college students with the training and hands-on experience. This video highlights how the competition is shaping the careers of the students involved and making sustainable home design popular. | Video by Matty Greene, Energy Department. Richard King Richard King Director, Solar Decathlon Solar Decathlon 2015 Team Facts: This

  11. Podcasts: Energy Secretary Samuel Bodman Discusses the Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Decathlon 2007 Podcasts: Energy Secretary Samuel Bodman Discusses the Solar Decathlon (Text Version) Below is the text version of the podcast recorded by Secretary of Energy Samuel Bodman. Visit the Solar Decathlon Podcasts section to subscribe to the podcast or download individual audio files. INTRO: This is a special 2007 Solar Decathlon edition of Energy Buzz, the podcast series produced by the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy in

  12. Webtrends Archives by Fiscal Year — Solar Decathlon

    Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Solar Decathlon site by fiscal year.

  13. How to Win a Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Win a Solar Decathlon How to Win a Solar Decathlon October 1, 2015 - 3:01pm Addthis The finals of the U.S. Department of Energy Solar Decathlon 2015 are upon us. Not familiar with the competition? Here’s everything you need to know ahead of the big event, <a href="http://www.solardecathlon.gov/2015/visit.html">happening Oct. 8-18 in Irvine, California</a>. | Photo by Stefano Paltera, Solar Decathlon. The finals of the U.S. Department of Energy Solar Decathlon 2015

  14. Solar Decathlon Opening | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Opening Solar Decathlon Opening October 6, 2005 - 12:25pm Addthis Remarks Prepared for Energy Secretary Bodman Let me begin by welcoming all of you to this Solar Decathlon. I want to extend a particularly warm welcome to our student competitors. These student teams have come from all over the United States, as well as Canada, the Caribbean and Spain, and have spent the last two years working to design, build, and operate the most livable, energy-efficient, completely solar-powered house. Each of

  15. Purdue's "INhome" Rallies for the Solar Decathlon | Department...

    Office of Environmental Management (EM)

    Purdue's Net-Zero INhome (Indiana Home). Purdue's Solar Decathlon team is using three words to ... that generates its energy from solar power. | Courtesy of University of Maryland ...

  16. NREL: News - Energy Department Honors Solar Decathlon Winners

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department Honors Solar Decathlon Winners Saturday, October 5, 2002 Energy Department Honors Solar Decathlon Winners University of Colorado at Boulder Takes First in Solar Household Competition Washington, D.C. - The University of Colorado at Boulder took first place in the Department of Energy's (DOE) Solar Decathlon, officially bringing an end to the 10-day competition among university teams from around the country. David Garman, DOE's Assistant Secretary for Energy Efficiency and Renewable

  17. Solar Decathlon Opening Ceremony and VIP Ribbon Cutting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Opening Ceremony and VIP Ribbon Cutting Solar Decathlon Opening Ceremony and VIP Ribbon Cutting September 21, 2011 - 1:52pm Addthis Solar Decathlon 2011 at West Potomac Park Solar Decathlon 2011 at West Potomac Park Program Features Government Officials, Students and Foreign Dignitaries WASHINGTON, DC - A ceremony on Thursday featuring U.S. government officials, students, foreign dignitaries and event sponsors will officially open the solar village of the U.S. Department of Energy

  18. Secretary Chu Visits the 2011 Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Solar Decathlon Secretary Chu Visits the 2011 Solar Decathlon September 30, 2011 - 6:27pm Addthis Secretary Chu toured the Solar Village at the 2011 Solar Decathlon on the National Mall's West Potomac Park on September 30, 2011. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier today, student Decathletes at the 2011 Solar Decathlon got to show off their homes - and the hard work they've done for the last two years -- to Secretary of Energy Steven

  19. DOE Solar Decathlon Coming to National Mall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Decathlon Coming to National Mall DOE Solar Decathlon Coming to National Mall October 1, 2009 - 12:00am Addthis WASHINGTON, DC - Early this morning, twenty university-led teams descended on the National Mall along with high-tech, high-efficiency solar-powered homes they have built for the 2009 U.S. Department of Energy Solar Decathlon. Over 800 student competitors from the United States, Canada, Spain and Germany will compete in the 2009 Solar Decathlon. The international competition takes

  20. Energy, Interior Departments Announce New Location for Solar Decathlon 2011

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Energy, Interior Departments Announce New Location for Solar Decathlon 2011 Energy, Interior Departments Announce New Location for Solar Decathlon 2011 February 23, 2011 - 12:00am Addthis WASHINGTON -- The Department of Energy and the Department of the Interior today announced that the U.S. Department of Energy Solar Decathlon 2011 will be held at the National Mall's West Potomac Park, on the banks of the Potomac River along the path between the Lincoln and Jefferson

  1. Energy Department Announces Student Teams, New Location for Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2013 | Department of Energy Student Teams, New Location for Solar Decathlon 2013 Energy Department Announces Student Teams, New Location for Solar Decathlon 2013 January 26, 2012 - 10:56am Addthis WASHINGTON, DC - At an event today in Albuquerque, New Mexico, U.S. Department of Energy Secretary Steven Chu announced the 20 collegiate teams selected to compete in the U.S. Department of Energy Solar Decathlon 2013 and unveiled the competition's location, the Orange County Great Park in Irvine,

  2. Solar Decathlon 2015: The Next Generation of Clean Energy Leaders |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy The Next Generation of Clean Energy Leaders Solar Decathlon 2015: The Next Generation of Clean Energy Leaders September 3, 2015 - 10:30am Addthis Teams gather to hear the final results at the U.S. Department of Energy Solar Decathlon 2013. Many former Solar Decathlon participants have gone on to pursue careers in clean energy and sustainable housing. Photo by Stefano Paltera, U.S. Department of Energy Solar Decathlon Teams gather to hear the final results at the U.S.

  3. October 14, 2005: 2005 Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 14, 2005 Secretary Bodman announces that the University of Colorado takes overall honors in the 2005 Solar Decathlon on the National Mall. Cornell University places second, ...

  4. Energy Department Announces Student Teams for Solar Decathlon...

    Energy.gov [DOE] (indexed site)

    The following teams have been selected to compete in Solar Decathlon 2015: California ... and Design of Ferris State University (Michigan) Missouri University of Science and ...

  5. Vote for Your Favorite Solar Decathlon House | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. ... They found their inspiration in nature: the golden poppy, California's state flower. Learn ...

  6. Technische Universität Darmstadt 2007 Solar Decathlon House

    Energy.gov [DOE]

    This photograph features the winning home from the 2007 Solar Decathlon competition. It has wooden louvers that provide shading and privacy, and simultaneously generates electricity through...

  7. Solar Decathlon 2011, The National Mall, Washington, D.C.

    SciTech Connect

    U.S. Department of Energy

    2010-04-01

    This brochure provides an overview of the 2011 U.S. Department of Energy Solar Decathlon and new teams selected for the event.

  8. 2007 Solar Decathlon: Powered by the Sun (Competition Program)

    SciTech Connect

    Not Available

    2007-09-01

    The 2007 Solar Decathlon Competition Program is distributed to Solar Decathlon visitors, media, sponsors, and the student competitors. It contains basic facts about the Solar Decathlon: what, where, when, who, and how. It is a guide for visitors to the events and workshops. It describes the 10 contests and the technologies used in the houses. It celebrates the accomplishments of the competitors and provides an opportunity for the major sponsors to describe their roles and relay their commitment to the ideals of the Solar Decathlon.

  9. 2007 Solar Decathlon Closing Ceremony and Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Solar Decathlon Closing Ceremony and Awards 2007 Solar Decathlon Closing Ceremony and Awards October 19, 2007 - 3:21pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Andy. I want to thank you once again for your leadership in making the Solar Decathlon such a success. The Solar Decathlon is now a permanent part of America. I also want to thank everyone sponsors, DOE employees, Members of Congress, any parents and faculty who might be with us and anyone else who came out this week

  10. Secretary Chu to Speak at Solar Decathlon 2011 Awards Ceremony...

    Energy Saver

    WHAT: The Solar Decathlon challenges collegiate teams to design, build, and operate houses powered by the sun that are affordable, energy efficient, attractive, and easy to live ...

  11. Solar Decathlon Homes-- They’re Not Just for Show

    Energy.gov [DOE]

    Have you ever wondered what happens to Solar Decathlon Houses after the competition? We explore where some of the houses are now.

  12. A Solar Decathlon Entry for Historic Norfolk

    Energy.gov [DOE]

    It’s a tale of two universities with a vision for one historic city. Students from both Hampton and Old Dominion universities have joined forces to compete in the upcoming Energy Department Solar Decathlon with their entry, called Unit 6 Unplugged. At Tidewater Virginia, the students will unveil their vision for the future -- an energy-efficient house that captures the “Arts and Crafts” design style of homes dotted throughout historic Norfolk, Virginia.

  13. NREL: News - Winner of Solar Decathlon to be Announced

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Winner of Solar Decathlon to be Announced Friday, October 4, 2002 Washington, D.C.- The winner of the U.S. Department of Energy's first Solar Decathlon will be announced noon, Saturday, October 6 in the Solar Village on the National Mall. The Solar Decathlon is a team competition among 14 colleges and universities from across the country and Puerto Rico to design and build the most attractive and energy-efficient solar-powered homes. The winning team must blend aesthetics and modern conveniences

  14. Solar Decathlon 2013 Infographic: The Path to a Brighter Future...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infographic: The Path to a Brighter Future Solar Decathlon 2013 Infographic: The Path to a Brighter Future September 13, 2013 - 11:50am Addthis Our latest infographic -- Solar...

  15. Virgina Tech 2009 Solar Decathlon House at Night

    Energy.gov [DOE]

    This photograph features the energy-efficient lighting that illuminates the solar-powered Virginia Tech house during the U.S. Department of Energy Solar Decathlon 2009 on the National Mall. The...

  16. U.S. Department of Energy Solar Decathlon 2015

    Energy.gov [DOE]

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive.

  17. Solar Decathlon 2015: Meet the Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meet the Teams Solar Decathlon 2015: Meet the Teams August 27, 2015 - 10:31am Addthis Solar Decathlon 2015: Meet the Teams Matt Dozier Matt Dozier Digital Content Specialist, Office of Public Affairs From storm-resistant shelters to breezy dwellings that open like a flower, the solar-powered houses in the U.S. Department of Energy Solar Decathlon 2015 are as diverse and creative as the teams behind them. Each was inspired by the unique cultures, experiences and landscapes of its creators, who

  18. Energy Department Announces Student Teams for Solar Decathlon 2015 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Student Teams for Solar Decathlon 2015 Energy Department Announces Student Teams for Solar Decathlon 2015 February 19, 2014 - 12:00am Addthis The Energy Department on February 13 announced the 20 collegiate teams selected to compete in the U.S. Department of Energy Solar Decathlon 2015 and unveiled the competition's location - €the Orange County Great Park, located between Los Angeles and San Diego, in Irvine, California. Orange County Great Park was the site of Solar

  19. University of Colorado Wins 2005 Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Colorado Wins 2005 Solar Decathlon University of Colorado Wins 2005 Solar Decathlon October 14, 2005 - 11:56am Addthis Solar Village to Remain Open to Public through Oct. 16 WASHINGTON, D.C. - U.S. Secretary of Energy Samuel W. Bodman today announced that the University of Colorado took overall honors in the 2005 Solar Decathlon on the National Mall. Cornell University placed second, and California Polytechnic State University finished third. The houses will remain open to the public from 9 a.m.

  20. 2009 Solar Decathlon Winners Announced | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 Solar Decathlon Winners Announced 2009 Solar Decathlon Winners Announced October 16, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Deputy Secretary Daniel Poneman today announced the winners of the 2009 Department of Energy Solar Competition on the National Mall in Washington, D.C. Team Germany, the student team from Darmstadt, Germany, won top honors by designing, building, and operating the most attractive and efficient solar-powered home. The University of Illinois at

  1. Energy Department Announces Denver as Next Location for Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Competition in 2017 | Department of Energy Denver as Next Location for Solar Decathlon Competition in 2017 Energy Department Announces Denver as Next Location for Solar Decathlon Competition in 2017 March 11, 2016 - 12:01pm Addthis Under Secretary for Science and Energy Dr. Franklin Orr announces Denver as the host city for the 2017 U.S. Department of Energy Solar Decathlon. | Photo courtesy of Ellen Jaskol Under Secretary for Science and Energy Dr. Franklin Orr announces Denver as the host

  2. Energy Department Announces Student Teams, Location for Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2015 | Department of Energy Student Teams, Location for Solar Decathlon 2015 Energy Department Announces Student Teams, Location for Solar Decathlon 2015 February 13, 2014 - 1:00pm Addthis News Media Contact (202) 586-4940 IRVINE, Calif. - At an event today in Irvine, Calif., U.S. Deputy Secretary of Energy Daniel Poneman will announce the 20 collegiate teams selected to compete in the U.S. Department of Energy Solar Decathlon 2015 and unveil the competition's location - the Orange County

  3. Solar Decathlon 2013 Infographic: The Path to a Brighter Future |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Infographic: The Path to a Brighter Future Solar Decathlon 2013 Infographic: The Path to a Brighter Future September 13, 2013 - 11:50am Addthis Our latest infographic -- Solar Decathlon 2013: The Path to a Brighter Future -- takes a look at the teams competing in this year’s competition and highlights innovative design features in each of the teams’ houses. Not featured in the "Meet the Teams" section, Team Texas will also compete at Solar Decathlon

  4. Solar Decathlon 2013: Let the Building Begin | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Let the Building Begin Solar Decathlon 2013: Let the Building Begin September 30, 2013 - 10:45am Addthis Day 7 Construction 1 of 22 Day 7 Construction During the 7th day of construction, the Solar Decathlon village has started to take shape. The houses open to the public on October 3, 2013 at 11 am. Image: Stefano Paltera, Energy Department Day 7 Construction 2 of 22 Day 7 Construction The University of North Carolina at Charlotte team members assemble their Solar Decathlon entry. Image: Eric

  5. Solar Decathlon: Appalachian State Wins People's Choice Award |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Appalachian State Wins People's Choice Award Solar Decathlon: Appalachian State Wins People's Choice Award October 3, 2011 - 10:38am Addthis On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State’s Solar Decathlon team. | Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke

  6. Solar Decathlon: Rain and Shine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rain and Shine Solar Decathlon: Rain and Shine October 20, 2009 - 7:00am Addthis Drew Bittner Writer/Editor, Office of Energy Efficiency and Renewable Energy Friday marked the end of the Solar Decathlon competition. Team Germany won (for the second time) in a very competitive field, in a ceremony marked by gray skies, cold temperatures and rain. For all the bad weather, however, the mood in DC was very upbeat. This was the fourth Solar Decathlon, an event that has seen great strides since its

  7. 2017 Solar Decathlon Announces Dates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Solar Decathlon Announces Dates 2017 Solar Decathlon Announces Dates Addthis Description Below is the text version for the "2017 Solar Decathlon Announces Dates" video. Eric Escudero, EERE Digital Team: Hi everybody, I'm Eric Escudero with the EERE digital team. We're in Denver, Colorado, near the new commuter line that connects the airport to downtown. The video shows a shot of the Denver light rail system In just over a year from now, this place will be packed with people and

  8. Housing Innovation Awards at the Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Housing Innovation Awards at the Solar Decathlon Housing Innovation Awards at the Solar Decathlon Housing Innovation Awards at the Solar Decathlon, U.S. Department of Energy, Breakfast presented by BASF, Friday, October 4, 2013 8:30-10:30 a.m. Historic Hanger 244 Orange County Great Park in Irvine, CA. ch_hia_breakfast100413.pdf (9.43 MB) More Documents & Publications ZERH Webinar: Successful Strategies for the Housing Innovation Awards Zero Energy Ready Home Training Presentation DOE ZERH

  9. Effectiveness of energy rating systems in evaluating Solar Decathlon homes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Effectiveness of energy rating systems in evaluating Solar Decathlon homes Elizabeth Buechler 1,2 , Alicen Kandt 2 , and Joe Simon 2 1 Tufts University, Medford, MA 2 National Renewable Energy Laboratory, Golden, CO Introduction Process Outcomes Conclusions & Future Work Acknowledgements What is the U.S. Department of Energy Solar Decathlon? * A competition managed by NREL. Every two years, approximately 20 teams compete to build the most energy-efficient solar home. * The custom homes use

  10. U.S. Department of Energy Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Buildings U.S. Department of Energy Solar Decathlon U.S. Department of Energy Solar Decathlon Photo of the Solar Village from 2013 The U.S. Department of Energy ...

  11. Vote for Your Favorite Solar Decathlon House | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor Vergata entry in the 2015 Solar Decathlon, during team dinners that...

  12. Solar Decathlon 2013: Building Skills for Future Careers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building Skills for Future Careers Solar Decathlon 2013: Building Skills for Future Careers September 16, 2013 - 3:03pm Addthis It took six months and nearly 60 students to build...

  13. Affordability Contest Adds New Dimension to Solar Decathlon 2011...

    Office of Environmental Management (EM)

    Alexis PowerU.S. Department of Energy Solar Decathlon) Matt Hansen reviews each ... Matt and his team used RSMeans to find exact or close matches to the materials and ...

  14. Smart Meters Help Balance Energy Consumption at Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clouds, rain, thunderstorms… at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's teams, thanks to smart grid technology that is helping them monitor their energy consumption.

  15. Vote for Your Favorite Solar Decathlon House | Department of...

    Energy.gov [DOE] (indexed site)

    their 2015 Solar Decathlon entry, dubbed "Indigo Pine." Learn More STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  16. NREL: News - Solar Decathlon Graphics and Communication Results Announced

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Graphics and Communication Results Announced Tuesday, October 1, 2002 First Place Goes to University of Colorado Washington, D.C.-The University of Colorado at Boulder took first place in the Graphics and Communication results announced today at the U. S. Department of Energy's Solar Decathlon competition on the National Mall in Washington, DC. Auburn University placed second and Crowder College placed third. The Solar Decathlon runs through Oct. 5. With today's third round contest results, and

  17. Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program

    SciTech Connect

    Barnes, Harley

    2012-12-01

    This report includes the methodology and findings in evaluating DOE’s Solar Decathlon event. The primary purpose of this evaluation is to learn how effectively the Solar Decathlon event is in meeting its objectives.

  18. Solar Decathlon 2015: Build it and They Will Come | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decathlon 2015: Build it and They Will Come Solar Decathlon 2015: Build it and They Will Come August 25, 2015 - 11:27am Addthis The US Department of Energy Solar Decathlon 2015 is recruiting volunteers! The award-winning educational event, October 8-18 in Irvine, California, will showcase solar efficiency houses designed and built by collegiate teams worldwide. Source: Alexis Powers The US Department of Energy Solar Decathlon 2015 is recruiting volunteers! The award-winning educational event,

  19. Come for Solar Decathlon, Stay for the Clean Energy XPO | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Come for Solar Decathlon, Stay for the Clean Energy XPO Come for Solar Decathlon, Stay for the Clean Energy XPO September 27, 2013 - 9:49am Addthis In early January 2013, Solar Decathlon teams gathered at the competition site in Irvine, California. | Photo courtesy of Stefano Paltera, Energy Department. In early January 2013, Solar Decathlon teams gathered at the competition site in Irvine, California. | Photo courtesy of Stefano Paltera, Energy Department. Richard King Richard King

  20. Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future

    Energy.gov [DOE]

    See how Appalachian State University used traditional mountain life architecture to design their 2011 Solar Decathlon home.

  1. Setting the Stage for the Next Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Setting the Stage for the Next Solar Decathlon Setting the Stage for the Next Solar Decathlon November 4, 2013 - 2:43pm Addthis Philipp Klebert, center, celebrates after learning Vienna University of Technology placed first in the U.S. Department of Energy Solar Decathlon 2013 at Orange County Great Park in Irvine, California. | Photo by Stefano Paltera, U.S. Department of Energy Solar Decathlon Philipp Klebert, center, celebrates after learning Vienna University of Technology placed first in

  2. U.S. and Spain to Develop Solar Decathlon Europe | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spain to Develop Solar Decathlon Europe U.S. and Spain to Develop Solar Decathlon Europe October 18, 2007 - 3:21pm Addthis WASHINGTON, DC - Today U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Spain's Undersecretary of Housing Fernando Magro Fernández signed a Memorandum of Understanding (MOU) to collaborate in the development of a Solar Decathlon Europe competition in 2010. The Solar Decathlon is a competition launched by

  3. Solar Decathlon 2015: Nation's Leading Sustainable Home Design

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Competition on the Horizon | Department of Energy Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon July 13, 2015 - 2:15pm Addthis The New York City College of Technology is weatherproofing its house, called DURA, at a Brooklyn Navy Yard construction site. | Photo courtesy of New York City College of Technology. The New York City College of Technology is weatherproofing

  4. Impact Evaluation of the U.S. Department of Energy's Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program | Department of Energy of the U.S. Department of Energy's Solar Decathlon Program Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program The U.S. Department of Energy (DOE) Solar Decathlon Program challenges teams of college students to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive, and then demonstrate them to the public.1 The first Solar Decathlon was held in 2002; the Solar Decathlon has occurred

  5. Grid Modernization Highlighted in Washington DC in September with the Solar Decathlon

    Energy.gov [DOE]

    Smart Grid is on display at the U.S. Department of Energy 2011 Solar Decathlon, held September 23 through October 2 on the National Mall, West Potomac Park, Washington, DC. The decathlon...

  6. Solar Decathlon 2015: Vote for Your Favorite Solar-Powered House |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Vote for Your Favorite Solar-Powered House Solar Decathlon 2015: Vote for Your Favorite Solar-Powered House October 8, 2015 - 4:02pm Addthis Go to <a href="/node/1280696">energy.gov/fanfavorite</a> to vote for the Solar Decathlon house that you like best! Go to energy.gov/fanfavorite to vote for the Solar Decathlon house that you like best! Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs How can I participate? Pick your

  7. Energy Department Announces Dates and New Contests for Solar Decathlon 2017

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Denver, Colorado | Department of Energy Dates and New Contests for Solar Decathlon 2017 in Denver, Colorado Energy Department Announces Dates and New Contests for Solar Decathlon 2017 in Denver, Colorado August 24, 2016 - 10:58am Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov WASHINGTON, DC -The U.S. Department of Energy Solar Decathlon 2017 student design competition, which challenges collegiate teams to design, build and operate solar-powered houses that are

  8. U.S. Department of Energy Solar Decathlon

    SciTech Connect

    2011-12-16

    The U.S. Department of Energy Solar Decathlon is an award-winning program that challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. In addition to showcasing the cost savings and environmental benefits of market-ready solar technologies, the event encourages participating students to think in new ways about incorporating practical, affordable clean-energy solutions into residential applications.

  9. Where are They Now? In Search of Former Solar Decathlon Houses...

    Energy Saver

    Olympic Dreams for the Solar Decathlon: Zero energy West House, inspired by 2009 Team OntarioBC, was ... have reduced our carbon footprint through repurposed and recycled materials. ...

  10. University of Maryland Solar Decathlon Team Celebrates with a "Shed Raising"

    Energy.gov [DOE]

    The University of Maryland 2011 Solar Decathlon Team is using one element -- water -- as a major component of their home. Here's how.

  11. Here Comes the Sun: Solar Decathlon Opens To Public Today | Department...

    Office of Environmental Management (EM)

    Here Comes the Sun: Solar Decathlon Opens To Public Today Here Comes the Sun: Solar ... solar-powered houses that are affordable, energy-efficient, and attractive. "The Solar ...

  12. NREL: News - Solar Decathlon Engineering Design Results Announced

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Engineering Design Results Announced Thursday, October 3, 2002 Distinguished Panel Picks University of Colorado and Crowder College The University of Colorado at Boulder and Crowder College tied for first place in the Engineering Design results announced today at the Department of Energy's (DOE) Solar Decathlon competition on the National Mall in Washington, DC, today. Virginia Polytechnic Institute and State University took the second highest number of points and the University of Maryland

  13. Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon

    Energy.gov [DOE]

    Team Massachusetts is bringing a unique perspective to the Solar Decathlon this fall. You might say it is a fourth dimension because of the team’s newly constructed 4D Home. But it could also be argued that it is because the Massachusetts College of Art and Design and University of Massachusetts Lowell are collaborating for the team’s first entry into the biannual competition, and they’re both public institutions.

  14. Impact Evaluation of the U.S. Department of Energy's Solar Decathlon...

    Energy Saver

    The U.S. Department of Energy (DOE) Solar Decathlon Program challenges teams of college students to design, build, and operate solar-powered houses that are cost-effective, ...

  15. U.S. Department of Energy Solar Decathlon 2015 | Department of...

    Energy.gov [DOE] (indexed site)

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and...

  16. Solar Decathlon 2011 Opens To Media This Week | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Opens To Media This Week Solar Decathlon 2011 Opens To Media This Week September 19, 2011 - 12:41pm Addthis Location of U.S. Department of Energy's 2011 Solar Decathlon at the National Mall's West Potomac Park in Washington, D.C. Location of U.S. Department of Energy's 2011 Solar Decathlon at the National Mall's West Potomac Park in Washington, D.C. WASHINGTON, DC - Collegiate teams featuring over 4,000 students from around the world are putting the finishing touches on their solar-powered

  17. University of Maryland's "WaterShed" Wins 2011 Solar Decathlon | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Maryland's "WaterShed" Wins 2011 Solar Decathlon University of Maryland's "WaterShed" Wins 2011 Solar Decathlon October 3, 2011 - 2:02pm Addthis The University of Maryland's “WaterShed” won the 2011 Solar Decathlon. The school from College Park, Maryland competed against 18 other collegiate teams to build an aesthetically pleasing, architecturally innovative and well-engineered energy efficient living space that generates its energy from solar power. |

  18. Solar Decathlon 2013: Building Skills for Future Careers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Building Skills for Future Careers Solar Decathlon 2013: Building Skills for Future Careers September 16, 2013 - 3:03pm Addthis It took six months and nearly 60 students to build Stanford’s Start.Home, a house that aims to lower the entry barrier for an ultra-efficient house and make sustainability trendy. | Photo courtesy of Stanford. It took six months and nearly 60 students to build Stanford's Start.Home, a house that aims to lower the entry barrier for an ultra-efficient

  19. Solar Decathlon 2013: Life After the Competition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Life After the Competition Solar Decathlon 2013: Life After the Competition September 30, 2013 - 12:45pm Addthis Following the competition, Norwich University's Delta T-90 House will make its way to Frank Lloyd Wright’s Westcott House in Springfield, Ohio, where it will take on new life as the “Westcott Experiential Design Lab.” | Photo courtesy of Norwich University. Following the competition, Norwich University's Delta T-90 House will make its way to Frank Lloyd Wright's

  20. Solar Decathlon 2013: Meet the Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meet the Teams Solar Decathlon 2013: Meet the Teams September 9, 2013 - 12:23pm Addthis Arizona State University and The University of New Mexico 1 of 18 Arizona State University and The University of New Mexico Arizona State University and The University of New Mexico are teaming up to create SHADE -- an adaptable, self-sustaining house designed for the typical southwestern suburbia. An 800-square-foot house, SHADE uses multiple patios to extend the living space of the house. Image: Jessica

  1. Solar Decathlon Entry Uses iPad to Monitor Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Entry Uses iPad to Monitor Home Solar Decathlon Entry Uses iPad to Monitor Home August 25, 2011 - 6:27pm Addthis Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. Come check it out! In honor of the U.S Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build and

  2. Energy Department Selects Student Teams to Compete in 2009 Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Student Teams to Compete in 2009 Solar Decathlon Energy Department Selects Student Teams to Compete in 2009 Solar Decathlon January 24, 2008 - 10:53am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the 20 university-led teams selected to compete in the Department's fourth Solar Decathlon, which will be held on the National Mall in Washington, DC, in the fall of 2009. This year's teams have been selected from universities in the United

  3. Solar Decathlon Team Leading the Way Toward Sustainable Living, Even in the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wake of Disasters | Department of Energy Team Leading the Way Toward Sustainable Living, Even in the Wake of Disasters Solar Decathlon Team Leading the Way Toward Sustainable Living, Even in the Wake of Disasters August 18, 2011 - 6:26pm Addthis The Re_house is nearing completion. | Courtesy of the University of Illinois at Urbana-Champaign Solar Decathlon Team. The Re_house is nearing completion. | Courtesy of the University of Illinois at Urbana-Champaign Solar Decathlon Team. April Saylor

  4. Solar Decathlon Teams Working Around the Clock to Assemble Homes For

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Competition | Department of Energy Teams Working Around the Clock to Assemble Homes For Competition Solar Decathlon Teams Working Around the Clock to Assemble Homes For Competition September 14, 2011 - 12:59pm Addthis The City College of New York team gathers at the 2011 Solar Decathlon’s All-Team Meeting, immediately before the assembly stage of the competition. | Photo Credit: Carol Anna/U.S. Department of Energy Solar Decathlon. The City College of New York team gathers at the 2011

  5. Four Minority Serving Institutions Selected to Compete in the 2013 Solar Decathlon

    Energy.gov [DOE]

    Of the elite twenty teams that have been selected from across the country and around the world to compete in the 2013 Solar Decathlon, four are Minority Serving Institutions (MSIs), showcasing the...

  6. Solar Decathlon 2011, The National Mall, Washington, D.C., Fall 2011 (Brochure)

    SciTech Connect

    Not Available

    2010-04-01

    This brochure provides a high-level overview of the U.S. Department of Energy Solar Decathlon 2011-the competition's background, purpose, impact, 10 contests, 20 teams, and where to go for additional information.

  7. U.S. Department of Energy Solar Decathlon Visitors Guide 2015

    SciTech Connect

    2015-09-03

    The U.S. Department of Energy 2015 Visitors Guide is a free, hard-copy publication distributed free to those attending the Solar Decathlon event. The publications' objectives are to serve as the primary information resource for those in attendance, and to deliver a compelling message about the Solar Decathlon's success as a proven workforce development program and its role in educating students and the public about clean energy products and design solutions. The U.S. Department of Energy 2015 Visitors Guide SD15 Visitors Guide goals are to guide attendees through the Solar Decathlon village; List and explain the 10 contests; educate attendees about the participating teams and their competition houses; provide access to more information on the Solar Decathlon website through the use of QR codes; and acknowledge the support of all event sponsors.

  8. Team Canada Returns to the Solar Decathlon with First Nation Values in Mind

    Office of Energy Efficiency and Renewable Energy (EERE)

    Team Canada’s 2011 Solar Decathlon house -- which is known as TRTL (Technological Residence that respects Traditional Living) -- addresses critical housing issues in Alberta, Canada’s Aboriginal communities.

  9. Solar Decathlon 2013: Raising More Than Just Walls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Raising More Than Just Walls Solar Decathlon 2013: Raising More Than Just Walls September 10, 2013 - 1:36pm Addthis Key to the University of North Carolina at Charlotte's fundraising success was involving the local community. To celebrate the groundbreaking of their Solar Decathlon house, the team invited all of their sponsors to the event. | Photo courtesy of the University of North Carolina at Charlotte. Key to the University of North Carolina at Charlotte's fundraising success was involving

  10. Secretary Chu Congratulates Solar Decathlon Winners | Department...

    Office of Environmental Management (EM)

    ... Let's look again at our history; read from our own playbook. The Wright Brothers ... We invented solar cells, wind turbines and lithium ion batteries, but are no longer the ...

  11. Stevens Institute of Technology Wins Both Architecture and Communications Contests at U.S. Department of Energy Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Stevens Institute of Technology took first place in the Architecture and Communications Contests at the U.S. Department of Energy Solar Decathlon 2015.

  12. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Updating web site content is one way to draw return visitors. | Domain Names This report lists the domain names that generate the most activity to your web site. Because the data ...

  13. Countdown to Solar Decathlon: The Info You Need Before You Go

    Energy.gov [DOE]

    The Solar Decathlon, if you haven't heard about it, is an event put on once every two years by the U.S. Department of Energy. Essentially, 20 university teams are challenged to construct a house that is 100% powered by solar energy.

  14. Solar Decathlon Participants Bring Innovation to D.C.'s Ward 7 | Department

    Energy.gov [DOE] (indexed site)

    Day 7 Construction 1 of 22 Day 7 Construction During the 7th day of construction, the Solar Decathlon village has started to take shape. The houses open to the public on October 3, 2013 at 11 am. Image: Stefano Paltera, Energy Department Day 7 Construction 2 of 22 Day 7 Construction The University of North Carolina at Charlotte team members assemble their Solar Decathlon entry. Image: Eric Grigorian, Energy Department Day 7 Construction 3 of 22 Day 7 Construction Kevin Davis, of West Virginia

  15. U.S. and Colombia to Collaborate on First Solar Decathlon in Latin America

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Colombia to Collaborate on First Solar Decathlon in Latin America U.S. and Colombia to Collaborate on First Solar Decathlon in Latin America March 11, 2014 - 8:30am Addthis News Media Contact (202) 586-4940 WASHINGTON - This week, U.S. Deputy Secretary of Energy Daniel Poneman, Colombia's Minister of Energy and Mines Amylkar Acosta, Mayor of Santiago de Calí Rodrigo Guerrero, and Director of Planning of Colombia Tatyana Orozco signed a Memorandum of Understanding

  16. Belgium’s Ghent University Prepares their E-Cube for Solar Decathlon 2011

    Energy.gov [DOE]

    The Ghent University 2011 Solar Decathlon Team -- aka Team Belgium -- is a unique two-story home that could very well be an international star at the competition due to the Belgium team’s innovative, ultra-efficient, passive home design.

  17. Online National Solar Energy Directory and 2005 Solar Decathlon Product Directory. Final report

    SciTech Connect

    Hamm, Julia; Taylor, Mike

    2008-12-31

    The Solar Electric Power Association (SEPA), in partnership with the American Solar Energy Society, developed an online National Solar Energy Directory with clear, comprehensive information on suppliers and purchasing options. The site was originally located at FindSolar.com, but has recently been moved to Find-Solar.org. The original FindSolar.com domain name has been taken by the American Solar Energy Society (a partner in this project) and utilized for a similar but different project. This Find-Solar.org directory offers the rapidly growing base of potential solar customers a simple, straightforward destination to learn about their solar options. Members of the public are able to easily locate contractors in their geographic area and verify companies?? qualifications with accurate third-party information. It allows consumers to obtain key information on the economics, incentives, desirability, and workings of a solar energy system, as well as competing quotes from different contractors and reviews from customers they have worked with previously. Find-Solar.org is a means of facilitating the growing public interest in solar power and overcoming a major barrier to widespread development of U.S. solar markets. In addition to the development of Find-Solar.org, SEPA developed a separate online product directory for the 2005 DOE Solar Decathlon to facilitate the communication of information about the energy efficiency and renewable energy products used in each university team??s home.

  18. Design and Performance of Solar Decathlon 2011 High-Penetration Microgrid: Preprint

    SciTech Connect

    Stafford, B.; Coddington, M.; Butt, R.; Solomon, S.; Wiegand, G.; Wagner, C.; Gonzalez, B.

    2012-04-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Solar Decathlon 2011 was held in Washington, D.C., from September 23 to October 2, 2011 . A high-penetration microgrid was designed, installed, and operated for the Solar Decathlon 2011 to grid-connect 19 highly energy-efficient, solar-powered competition houses to a single utility connection point. The capacity penetration of this microgrid (defined as maximum PV generation divided by maximum system load over a two-week period) was 74% based on 1-minute averaged data. Temporary, ground-laid conductors and electrical distribution equipment were installed to grid-connect the Solar Decathlon village, which included the houses as well as other electrical loads used by the event organizers. While 16 of the houses were connected to the 60 Hz microgrid, three houses from Belgium, China, and New Zealand were supplied with 50 Hz power. The design of the microgrid, including the connection of the houses powered by 50 Hz and a standby diesel generator, is discussed in this paper. In addition to the utility-supplied net energy meters at each house, a microgrid monitoring system was installed to measure and record energy consumption and PV energy production at 1-second intervals at each house. Bidirectional electronic voltage regulators were installed for groups of competition houses, which held the service voltage at each house to acceptable levels. The design and successful performance of this high-penetration microgrid is presented from the house, microgrid operator, and utility perspectives.

  19. Solar Decathlon 2013: Designing the Houses of Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Designing the Houses of Today Solar Decathlon 2013: Designing the Houses of Today September 12, 2013 - 12:40pm Addthis The Southern California Institute of Architecture and California Institute of Technology team's 10-month design process resulted in their unique design -- a house made of two prefab modules and canopies that run on a system of rails. | Photo courtesy of SCI-Arc/Caltech. The Southern California Institute of Architecture and California Institute of Technology team's 10-month

  20. Impact Evaluation of the U.S. Department of Energys Solar Decathlon Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program Submitted to: Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Prepared by: Lockheed Martin Energy Services Energy Solutions Group 2277 Research Boulevard Rockville, MD 20850 FINAL REPORT December 2012 Acknowledgements This study has benefited from the contributions of many individuals. Jeff Dowd of the U.S. Department of Energy's (DOE)

  1. OSTIblog Articles in the DOE's Solar Decathlon Topic | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information DOE's Solar Decathlon Topic University of Tennessee Knoxville in DOE's .EDUconnections Spotlight by Kathy Chambers 04 Sep, 2012 in Science Communications 4266 EDU_UT.jpg University of Tennessee Knoxville in DOE's .EDUconnections Spotlight Read more about 4266 Science is always in the spotlight at the University of Tennessee Knoxville, a land-grant institution and the state's flagship research campus. Recent research might include

  2. Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Energy.gov Fan Favorite Poll Results Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results October 22, 2015 - 10:10am Addthis West Virginia University and University of Roma Tor Vergata's STILE House took first place in our Fan Favorite poll. | Graphic by <a href="/node/1332956">Carly Wilkins</a>, U.S. Department of Energy. West Virginia University and University of Roma Tor Vergata's STILE House took first place in our Fan Favorite poll. | Graphic by Carly

  3. Solar Decathlon at Home in the D.C. Community | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community December 4, 2012 - 4:25pm Addthis One of the new homeowners, Layika Culley, and her family cut the ribbon to her new ultra-efficient home in the historic Deanwood neighborhood. For more photos of the Empowerhouse ribbon cutting, <a href="/node/580963">view our photo gallery</a>. | Photo courtesy of Sarah Gerrity, Energy Department. One of the new homeowners, Layika Culley, and her family cut the

  4. Solar Decathlon 2013: Designing the Houses of Today | Department...

    Energy.gov [DOE] (indexed site)

    in the teams hometown of Middlebury, Vermont. The result: The team created a Solar Path -- a walkway under the free-standing solar panels to the front of the house. |...

  5. DOE's Solar Decathlon to Highlight Innovation, Future Green Jobs...

    Energy.gov [DOE] (indexed site)

    will each build a completely self-sufficient solar powered house, showcasing energy-efficient amenities and smart home systems that provide reduced carbon emissions without ...

  6. Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes

    SciTech Connect

    Gordon, Kelly L.; Gilbride, Theresa L.

    2008-05-22

    This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

  7. Solar Decathlon 2013: Meet the Teams | Department of Energy

    Energy.gov [DOE] (indexed site)

    Louisville, Ball State University and University of Kentucky -- is building a low-cost, solar-powered house that can easily be deployed after a disaster. Inspired by a tornado that...

  8. NREL: News - Solar Decathlon Design Presentation and Simulation Results

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Announced Design Presentation and Simulation Results Announced Monday, September 30, 2002 Second Round Goes to Virginia Tech Washington, D.C.-Virginia Polytechnic Institute and State University took first place in the Design Presentation and Simulation Contest at the Solar Village on the National Mall in Washington, D.C. today. Carnegie Mellon University placed second and the University of Maryland placed third. With today's contest results, and results from ongoing contests, the overall

  9. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    SciTech Connect

    Simon, J.

    2012-01-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  10. Solar Decathlon Visitors Guide 2011, National Mall, West Potomac Park, Washington, D.C., September 23 - October 2, 2011 (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    Guide to the student-designed houses, ten contests, exhibits, and workshops of the U.S. Department of Energy 2011 Solar Decathlon, held in Washington, D.C., from September 23 through October 2, 2011. Teams of college students designed and built the solar-powered houses on display here. They represent 13 U.S. states, five countries, and four continents. Now the teams are rising to the challenge by competing in 10 contests over nine days, with the championship trophy on the line. This is their time to shine. The 2011 teams may share a common goal - to design and build the best energy-efficient house powered by the sun - but their strategies are different. One house is made of precast concrete, while another 'dances' in response to its environment. Another house is meant to sit atop a building, proving the sky's the limit for energy innovation. Whatever your idea of sustainable living may be, you are bound to find it at the Solar Decathlon.

  11. Design, Operation, and Controlled-Island Operation of the U.S. Department of Energy Solar Decathlon 2013 Microgrid

    SciTech Connect

    Kurnik, C.; Butt, R. S.; Metzger, I.; Lavrova, O.; Patibandla, S.; Wagner, V.; Frankosky, M.; Wiegand, G.

    2015-04-22

    This document reports on the design and operation of a high-capacity and high-penetration-ratio microgrid, which consists of 19 photovoltaic-powered residential houses designed by collegiate teams as part of their participation in the U.S. Department of Energy Solar Decathlon 2013. The microgrid was interconnected with the local utility, and resulting net-power and power-quality events were recorded in high detail (1-minute data sampling or better). Also, a controlled-island operation test was conducted to evaluate the microgrid response to additional events such as increased loads (e.g., from electric vehicles) and bypassing of voltage regulators. This temporary ground-laid microgrid was stable under nominal and island-operation conditions; adverse weather and loads did not lead to power-quality degradation.

  12. OSTIblog Articles in the decathlon Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information decathlon Topic DOE's Solar Decathlon - Building the Future by Kate Bannan 26 Sep, 2011 in Science Communications 4361 head_sd_logo.gif DOE's Solar Decathlon - Building the Future Read more about 4361 The Solar Decathlon is being held September 23-October 2, 2011, at the National Mall's West Potomac Park in Washington, DC. The event is free and open to the public. The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design,

  13. Energy Department Announces Student Teams, New Location for Solar...

    Office of Environmental Management (EM)

    Student Teams, New Location for Solar Decathlon 2013 Energy Department Announces Student Teams, New Location for Solar Decathlon 2013 January 26, 2012 - 10:56am Addthis WASHINGTON, ...

  14. Video: 2017 U.S. Department of Energy Solar Decathlon Dates Announced...

    Office of Environmental Management (EM)

    From October 5 -15, 14 college teams will design, build and operate solar-powered houses that are cost-effective, energy efficient, and boast maximum curb appeal. Learn more about ...

  15. Energy Department Announces Denver as Next Location for Solar...

    Office of Environmental Management (EM)

    Denver as Next Location for Solar Decathlon Competition in 2017 Energy Department Announces Denver as Next Location for Solar Decathlon Competition in 2017 March 11, 2016 - 12:01pm ...

  16. Energy Department Opens Competition to Select Student Teams for Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decathlon 2015 | Department of Energy Competition to Select Student Teams for Solar Decathlon 2015 Energy Department Opens Competition to Select Student Teams for Solar Decathlon 2015 November 1, 2013 - 3:17pm Addthis In support of President Obama's commitment to a clean energy future, the Energy Department today began the process to select collegiate teams to compete in the U.S. Department of Energy Solar Decathlon 2015. Colleges, universities, and other post-secondary educational

  17. Activ Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Activ Solar Jump to: navigation, search Name: Activ Solar Address: Vienna, Wipplingerstrasse 35 Place: Austria Zip: 1010 Sector: Solar Product: The company's main business areas...

  18. Energy Department Announces up to $4 Million for 2017 and 2019 Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decathlon Program Administrator | Department of Energy up to $4 Million for 2017 and 2019 Solar Decathlon Program Administrator Energy Department Announces up to $4 Million for 2017 and 2019 Solar Decathlon Program Administrator August 26, 2015 - 5:19pm Addthis In support of President Obama's commitment to a clean energy future, the Energy Department today announced up to $4 million in funding available to one recipient to organize, manage, and conduct the Solar Decathlon competitions in

  19. Energy Department Announces 16 Collegiate Teams to Compete in Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decathlon 2017 | Department of Energy 16 Collegiate Teams to Compete in Solar Decathlon 2017 Energy Department Announces 16 Collegiate Teams to Compete in Solar Decathlon 2017 January 20, 2016 - 12:26pm Addthis Crowds gather at the U.S. Department of Energy Solar Decathlon 2015 village in October. Today, the Energy Department announced the 16 collegiate teams selected to participate in the U.S. Department of Energy Solar Decathlon 2017 competition. | Photo by Thomas Kelsey, U.S. Department

  20. Solar Decathlon | Department of Energy

    Energy.gov [DOE] (indexed site)

    Residential Buildings Integration Project for the 2013 Building Technologies Office's ... More Documents & Publications Building America System Research Residential Buildings ...

  1. Solar Deployment System (SolarDS) Model: Documentation and Sample Results

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Decathlon Solar Decathlon 1 of 69 Stevens Institute of Technology won top honors at the U.S. Department of Energy Solar Decathlon on October 17, 2015 overall by designing, building, and operating the most cost-effective, energy-efficient and attractive solar powered house. University at Buffalo, The State University of New York took second place followed by California Polytechnic State University, San Luis Obispo in third place. Image: Thomas Kelsey, U.S. Department of Energy Solar

  2. What Do You Wish You Knew About Home Solar Energy?

    Energy.gov [DOE]

    Solar Decathlon 2011 is in full swing, and the Energy Savers blog is all about home solar energy during the event!

  3. Solar Power International | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wake of Disasters | Department of Energy Re_house is nearing completion. | Courtesy of the University of Illinois at Urbana-Champaign Solar Decathlon Team. The Re_house is nearing completion. | Courtesy of the University of Illinois at Urbana-Champaign Solar Decathlon Team. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in

  4. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding

    Energy Saver

    Energy Opening Ceremony and VIP Ribbon Cutting Solar Decathlon Opening Ceremony and VIP Ribbon Cutting September 21, 2011 - 1:52pm Addthis Solar Decathlon 2011 at West Potomac Park Solar Decathlon 2011 at West Potomac Park Program Features Government Officials, Students and Foreign Dignitaries WASHINGTON, DC - A ceremony on Thursday featuring U.S. government officials, students, foreign dignitaries and event sponsors will officially open the solar village of the U.S. Department of Energy

  5. Energy Department Assistant Secretary Danielson Honors Stevens Institute of Technology as Winner of U.S. Department of Energy Solar Decathlon

    Energy.gov [DOE]

    Stevens Institute of Technology wins top honors overall by designing, building, and operating the most cost-effective, energy-efficient and attractive solar powered house.

  6. Solar Photovoltaic Success Stories - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Panel Design Ideas for Your Home Solar Panel Design Ideas for Your Home June 8, 2016 - 5:08pm Addthis These examples of building integrated photovoltaic panels are like solar eye candy. All images from U.S. Department of Energy Solar Decathlon These examples of building integrated photovoltaic panels are like solar eye candy. All images from U.S. Department of Energy Solar Decathlon Alexis Powers Communications Specialist at the National Renewable Energy Laboratory Solar is not just for

  7. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    9 Companies involved in solar thermal collector related activities by type, 2008 and 2009 ... 26 32 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  8. Energy Department Opens Competition to Select Student Teams for Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decathlon 2017 | Department of Energy Opens Competition to Select Student Teams for Solar Decathlon 2017 Energy Department Opens Competition to Select Student Teams for Solar Decathlon 2017 August 26, 2015 - 5:05pm Addthis In support of President Obama's commitment to a clean energy workforce, the Energy Department today announced for the first time that up to $2 million in prize money will be awarded to collegiate teams selected to compete in the U.S. Department of Energy Solar Decathlon

  9. SPO Takes a Rooftop Tour of Forrestal's Solar Panels | Department...

    Office of Environmental Management (EM)

    ... All images from U.S. Department of Energy Solar Decathlon Solar Panel Design Ideas for Your Home DOE to Invest Up to 13.7 Million in 11 Solar Cell Projects Bob Repine, Oregon ...

  10. Decathletes Demonstrate Affordable Solar Housing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The first-ever Affordability Contest at the 2011 Solar ... each, which includes materials, labor and construction ... to the U.S. Department of Energy Solar Decathlon 2011. 25 ...

  11. U.S. Department of Energy Announces Student Teams to Compete in 2011 Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decathlon | Department of Energy Student Teams to Compete in 2011 Solar Decathlon U.S. Department of Energy Announces Student Teams to Compete in 2011 Solar Decathlon April 15, 2010 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu today announced the 20 collegiate teams selected to compete in the next U.S. Department of Energy Solar Decathlon which will be held on the National Mall in Washington, DC in the Fall 2011. For two weeks, teams of college and university

  12. Solar Thermal Collector Manufacturing Activities - Energy Information...

    Annual Energy Outlook

    Solar Thermal Manufacturing Activities Release Date: December 2010 | Next Release Date: ... Year: (PDF) 2009 2008 2007 2006 2005 2004 2003 1993 Go Overview Total shipments26 of solar ...

  13. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... This information can indicate whether or not your site compels visitors to return. Updating web site content is one way to draw return visitors. | Domain Names This report lists ...

  14. Housing Innovation Awards at the Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficiency Market Buildings.Energy.gov Next Generation Advanced Framing PHI - 3 Advanced framing techniques - Improve thermal performance - Reduce the cost of ...

  15. Supporting Diversity at the Solar Decathlon

    Energy.gov [DOE]

    It's an honor and a privilege to be selected for grueling hours of hard work, including planning, modeling,  energy research, and construction - at least, it is when it comes to the Department of...

  16. Solar Decathlon Technology Spotlight: Structural Insulated Panels

    Energy.gov [DOE]

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs.

  17. Active Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Active solar heating systems use solar energy to ... Liquid systems are more often used when storage is included, and are well suited ... A solar power system with battery storage can ...

  18. Active Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating

  19. Thin-Film Photovoltaics on Solar House

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this photograph, people are reflected on Team Germany's window louvers with integrated thin-film copper indium gallium selenide (CIGS) cells during the U.S. Department of Energy Solar Decathlon...

  20. NREL: News - Energy Secretary Abraham Opens Solar Village on National Mall

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in Washington, DC Opens Solar Village on National Mall in Washington, DC Thursday, September 26, 2002 14 University Teams Competing in DOE's First Solar Decathlon Washington, D.C.-This morning, Energy Secretary Spencer Abraham officially opened the first Solar Decathlon on the National Mall. Standing in front of the nation's Capitol building and a Solar Village, composed of 14 solar-powered, highly energy efficient homes, Abraham congratulated the students for their creative labor and

  1. Solar Energy Education. Humanities: activities and teacher's...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Humanities: activities and teacher's guide. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Humanities: activities and teacher's guide. Field ...

  2. Active Solar Heating | Department of Energy

    Energy Saver

    ... Heating your home with an active solar energy system can significantly reduce your fuel bills in the winter. A solar heating system will also reduce the amount of air pollution and ...

  3. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    2 Solar thermal collector shipments by type, quantity, revenue, and average price, 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  4. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  5. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." ...

  6. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    Annual shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  7. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    Shipments of solar thermal collectors ranked by origin and destination, 2009 Origin Top ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  8. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    Annual shipments of solar thermal collectors by source, 2000 - 2009 Imports Domestically ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  9. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    Annual shipments of solar thermal collectors by disposition, 2000 - 2009 (thousand square ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  10. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    7 Percent of solar thermal collector shipments by the 10 largest companies, 2000 - 2009 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  11. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  12. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    8 Import shipments of solar thermal collectors by country, 2008 and 2009 (square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  13. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    7 Import shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  14. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    6 Number of companies expecting to introduce new solar new solar thermal collector products in 2010 Low-Temperature Collectors 4 Medium-Temperature Collectors 16 High-Temperature ...

  15. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    8 Employment in the solar thermal collector industry, 2000 - 2009 2000 284 2001 256 2002 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  16. Active Solar Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Active Solar Heating Basics Active Solar Heating Basics August 16, 2013 - 3:23pm Addthis There are two basic types of active solar heating systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun. Liquid-based systems heat water or an antifreeze solution in a "hydronic" collector, whereas air-based systems heat air in an "air collector." Both of these systems

  17. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  18. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  19. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    U.S. Total 74 88 Percent of Total Sales Revenue Number of Companies Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers ...

  20. Solar Energy Educational Material, Activities and Science Projects

    Office of Scientific and Technical Information (OSTI)

    DOE Documents with ActivitiesProjects: Web Pages Solar Energy Education. Renewable Energy Activities for Junior HighMiddle School Science Solar Energy Education. Renewable Energy ...

  1. Solar Energy Education. Home economics: student activities. Field...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Solar Energy Education. Home economics: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Home economics: ...

  2. Solar Energy Education. Renewable energy activities for earth...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Citation Details In-Document Search Title: Solar Energy Education. Renewable energy ... The main emphasis is placed on solar energy. Activities for the student include a study of ...

  3. Buildings Energy Data Book: 5.8 Active Solar Systems

    Buildings Energy Data Book

    4 Thermal Solar Collector Manufacturer Statistics - Number of Manufacturers in 2008: 88 - Companies with 90% of their revenue coming from solar collector sales: 56 - Percentage of shipped solar collectors produced by top 5 manufacturers: 79% Source(s): EIA, Solar Thermal Collector Manufacturing Activities 2009, Dec. 2010, p. 2, Table 2.17, p. 24, Table 2.20, p. 27.

  4. Solar activities at Sandia National Laboratories

    SciTech Connect

    Klimas, P.C.; Hasti, D.E.

    1994-03-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth`s present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  5. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  6. Solar Energy Education. Social studies: activities and teacher...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Social studies: activities and teacher's guide. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Social studies: activities and teacher's ...

  7. Solar energy education. Renewable energy activities for general...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    energy education. Renewable energy activities for general science Citation Details In-Document Search Title: Solar energy education. Renewable energy activities for general science ...

  8. Shedding Light on the Solar Decathlon 2013 Teams | Department...

    Energy.gov [DOE] (indexed site)

    ... Stevens: Stevens Institute of Technology students are designing the "Enlighten House" -- a house with smart technology that adapts to occupants' behavior. Keep apprised of the ...

  9. Solar Decathlon 2013: Going the Distance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... for an ultra-efficient house and make sustainability trendy. | Photo courtesy of Stanford. ... The Southern California Institute of Architecture and California Institute of Technology ...

  10. Solar Decathlon 2013: Going the Distance | Department of Energy

    Energy.gov [DOE] (indexed site)

    Volume 1 Resource Analysis * Potential economic availability of biomass feedstocks under speci- fed market scenarios, including currently used resources * Cost of production, harvesting, and transportation; potential yield range, and economic supply for 30 candidate feedstocks (>1 billion dry tons/year) Resource Commercialization * Advanced feedstock supply system simulation, expansion of feedstock production over time in response to simulated markets. Volume 2 Environmental Sustainability

  11. Solar Decathlon 2013: Let the Building Begin | Department of Energy

    Energy Saver

    Topic Areas Smart Grid Investment Grant Topic Areas A description of the topic areas for projects selected for award under the Smart Grid Investment Grant project of the American Recovery and Reinvestment Act. Smart Grid Investment Grant Topic Areas (25.19 KB) More Documents & Publications Smart Grid Investment Grant Program - Progress Report (July 2012) SGIG and SGDP Highlights: Jumpstarting a Modern Grid (October 2014) Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2011

  12. Are You Attending Solar Decathlon This Year? | Department of Energy

    Energy Saver

    Communication & Engagement » EM SSAB » Archived EM SSAB Correspondence & Briefings Archived EM SSAB Correspondence & Briefings 2006 June 21, 2006 Letter: Congratulating Oak Ridge SSAB and its Stewardship Committee for Receiving the EPA's 2006 Citizen's Excellence in Community Involvement Award From: Assistant Secretary for Environmental Management, James A. Rispoli To: Mr. Kerry Trammell, Chair Site Specific Advisory Board 2004 March 9, 2004 Letter: Transition of Closure Sites from

  13. Middlebury Students Practice 'Self-Reliance' with Solar Decathlon...

    Energy Saver

    to become carbon neutral by 2016. The campus also houses a new biomass plant, which boasts a gasification system that converts regionally grown wood chips into gas, which it ...

  14. Vote for Your Favorite Solar Decathlon House | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    school's first, the team has drawn from a tradition of innovation and pride in its identity to create its entry "Aggie Sol." Learn More ALF HOUSE Western New York may not be...

  15. Vote for Your Favorite Solar Decathlon House | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    school's first, the team has drawn from a tradition of innovation and pride in its identity to create its entry "Aggie Sol." Learn More DURA URBAN HOUSE People from many nations...

  16. Secretary of Energy Moniz Cuts Ribbon, Kicks Off Solar Decathlon...

    Office of Environmental Management (EM)

    are able to tour the houses, gather ideas to use in their own homes, and learn how energy-saving features can help them save money today. The overall winner will be...

  17. Solar Decathlon 2013: Raising More Than Just Walls | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the teams can even start on the building process, they must first master the art of fundraising. To get them started, the Energy Department gives each team a 100,000...

  18. Solar Decathlon 2013: Life After the Competition | Department...

    Energy.gov [DOE] (indexed site)

    serves as student housing and university research facilities. | Photo courtesy of the Energy Department. Missouri University of Science and Technology's Chameleon House will join...

  19. Solar Decathlon at Home in the D.C. Community

    Energy.gov [DOE]

    Right from the very beginning of the competition, the Empowerhouse team -- composed of students from Parsons The New School for Design and Stevens Institute of Technology -- decided on a community...

  20. Solar Decathlon 2013: Meet the Teams | Department of Energy

    Energy Saver

    Software Configuration Management Plan Software Configuration Management Plan This template is used for documenting the configuration management methodology, tools, techniques, roles and responsibilities and tasks for a systems development project Software Configuration Management Plan (85.99 KB) More Documents & Publications CITSS Project Plan CITSS Project Plan CITSS Configurable Item List: COTS Software

    May 2012 EFCOG Las Vegas Software Dedication May 2012 EFCOG Las Vegas Presentation

  1. Secretary of Energy Moniz Cuts Ribbon, Kicks Off Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    collegiate teams to design, build, and operate houses powered by the sun that are affordable, energy efficient, attractive, and easy to live in. "These inspiring collegiate ...

  2. See you Friday at the Solar Decathlon? | Department of Energy

    Energy.gov [DOE] (indexed site)

    West Potomac Park in Washington D.C. The event provides a one-of-a-kind opportunity for members of the public to tour homes that save energy and money-and are powered by the sun. ...

  3. Miami Students' Solar Decathlon Design Focused on Sustainability

    Energy.gov [DOE]

    The 2011 Florida International University Team designed their home around the ability to use adjustable panels on the outside of the home -- to protect from everything from sunshine to hurricanes.

  4. Solar Energy Education. Industrial arts: student activities....

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: ... to introduce students to information on solar energy through classroom instruction. ...

  5. Material and Chemical Processing (Concentrated Solar) (4 Activities) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Material and Chemical Processing (Concentrated Solar) (4 Activities) Material and Chemical Processing (Concentrated Solar) (4 Activities) Below is information about the student activity/lesson plan from your search. Grades 5-8 Subject Solar Summary Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today, scientists are developing systems that use concentrated sunlight to

  6. Solar Energy Education. Renewable energy activities for biology...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    biology Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for biology You are accessing a document from the Department of Energy's ...

  7. Active Solar Heating and Cooling Systems Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Name State Administrator North Carolina Solar Center State North Carolina Program Type Property Tax Incentive Rebate Amount No more than conventional equipment Summary Active...

  8. Solar Energy Education. Renewable energy activities for chemistry...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for chemistry and physics You are accessing a document from the Department of ...

  9. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  10. Solar Flare Activity Closely Monitored | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Flare Activity Closely Monitored Solar Flare Activity Closely Monitored September 11, 2014 - 5:30pm Addthis Dr. Ken Friedman Senior Policy Advisor in the Office of Electricity Delivery and Energy Reliability The National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center, which provides important resources to describe the space environment, including geomagnetic storms, solar radiation storms and radio blackouts, is forecasting the possibility of

  11. Active solar heating systems installation manual

    SciTech Connect

    Not Available

    1991-01-01

    This book provides an industry consensus of the best available installation procedures for large commercial-scale solar service water and space heating systems.

  12. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  13. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  14. Buildings Energy Data Book: 5.8 Active Solar Systems

    Buildings Energy Data Book

    3 2009 Top Five Destinations of Thermal Solar Collector Shipments Percent of Domestic State U.S. Shipments Thousand SF Florida 27% California 26% Arizona 5% Hawaii 4% Oregon 3% Note(s): Source(s): EIA, Solar Thermal Collector Manufacturing Activities 2009, Dec. 2010, Table 2.4, p. 10. 3771 3537 745 520 387

  15. Photovoltaics and Solar Energy (2 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaics and Solar Energy (2 Activities) Photovoltaics and Solar Energy (2 Activities) Below is information about the student activity/lesson plan from your search. Grades 5-8 Subject Solar Summary This module addresses issues dealing with the energy from the sun, the energy needs of students in the classroom and, ultimately, our energy needs as a nation. Students will use a photovoltaic (PV) cell to measure the energy from the sun. Using a light bulb with a known wattage, the students will

  16. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    SciTech Connect

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  17. Solar Decathletes Inspire Today's Green Builders and Tomorrow's Innovations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Decathletes Inspire Today's Green Builders and Tomorrow's Innovations Solar Decathletes Inspire Today's Green Builders and Tomorrow's Innovations January 14, 2011 - 5:35pm Addthis Solar Decathletes Inspire Today's Green Builders and Tomorrow's Innovations Richard King Richard King Director, Solar Decathlon An energetic group of university students from New Zealand to North Carolina are a huge draw at this year's International Builders' Show in Orlando, Florida. The

  18. Federal Solar Activities and Policies: Update on Strategic Areas of Focus

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Activities & Policies: Update on Strategic Areas of Focus STEAB Meeting October 17, 2007 Tom Kimbis, Market Transformation Director DOE Solar Energy Technologies Program For More Information: http://www.eere.energy.gov/solar/solar_america/ Email: tom.kimbis@ee.doe.gov Tel: 202-586-7055 1 With growing budget, Solar America Initiative is accelerating supply & adoption of PV/CSP technologies Solar Energy Technologies Funding, FY01 - FY08 0 50 100 150 200 250 Budget (Million $) Solar

  19. Multi-scale statistical analysis of coronal solar activity

    DOE PAGES [OSTI]

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  20. THE MAGNETIC ENERGY-HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Tziotziou, Kostas; Georgoulis, Manolis K.; Raouafi, Nour-Eddine

    2012-11-01

    Using a recently proposed nonlinear force-free method designed for single-vector magnetograms of solar active regions, we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 162 vector magnetograms corresponding to 42 different active regions. We find a statistically robust, monotonic correlation between the free magnetic energy and the relative magnetic helicity in the studied regions. This correlation implies that magnetic helicity, in addition to free magnetic energy, may be an essential ingredient for major solar eruptions. Eruptive active regions appear well segregated from non-eruptive ones in both free energy and relative helicity with major (at least M-class) flares occurring in active regions with free energy and relative helicity exceeding 4 Multiplication-Sign 10{sup 31} erg and 2 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The helicity threshold agrees well with estimates of the helicity contents of typical coronal mass ejections.

  1. The interaction of active comets with the solar wind

    SciTech Connect

    Neugebauer, M. )

    1990-11-01

    The interaction of the solar wind with active comets is investigated based on observations of cometary plasma processes and studies of comets using telescopes and photographic plates. Data were also collected when a spacecraft flew through the tail of Comet Giacobini-Zinner in 1985 and five spacecraft encountered Comet Halley in 1986. The solar wind is considered to be supersonic (thermal Mach number 2-10) and to carry a magnetic field twisted into an Archimedean spiral by the rotation of the sun. Since the wind can change its properties during the time a spacecraft is inside the ionosphere or magnetosphere of the body being studied, it is difficult to separate spatial from temporal effects. Photoionization results in addition of plasma to the solar wind. Between the outer and inner edges of the cometosheath, the increasing rate of ion pickup causes the flow to slow down until it stagnates, while the plasma density and the magnetic field strength increase.

  2. Discovering an Active Subspace in a Single-Diode Solar Cell Model...

    Office of Scientific and Technical Information (OSTI)

    Discovering an Active Subspace in a Single-Diode Solar Cell Model Citation Details In-Document Search Title: Discovering an Active Subspace in a Single-Diode Solar Cell Model ...

  3. Pervasive faint Fe XIX emission from a solar active region observed...

    Office of Scientific and Technical Information (OSTI)

    from a solar active region observed with EUNIS-13: Evidence for nanoflare heating Citation Details In-Document Search Title: Pervasive faint Fe XIX emission from a solar active ...

  4. Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  5. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    SciTech Connect

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V. E-mail: s.zharkov@hull.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  6. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    SciTech Connect

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  7. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Trk, T.; Titov, V. S.; Miki?, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  8. Solar Energy Educational Material, Activities and Science Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Educational Materials Solar with glasses "The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as heat and electricity. ... [It can be] used for heating water for domestic use, space heating of buildings, drying agricultural products, and generating electrical energy." - Edited excerpt from Solar Energy - Energy from the Sun DOE

  9. SunShot Prize: Solar in Your Community Challenge | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SunShot News SunShot News RSS November 14, 2016 Energy Department Secretary Ernest Moniz Signs Memorandum of Understanding with Morocco for Solar Decathlon Africa Competition in 2019 Today, U.S. Department of Energy (DOE) Secretary Ernest Moniz and Minister Moulay Hafid Elalamy, Ministry of Energy, Mines, Water, and Environment (MEMEE) and Director Badr Ikken of the Research Institute in Solar Energy and New Energies (IRESEN) signed a Memorandum of Understanding (MOU) to collaborate in the

  10. Buildings Energy Data Book: 5.8 Active Solar Systems

    Buildings Energy Data Book

    7 2009 Top 10 Destinations of U.S. Photovoltaic Cell and Module Export Shipments, by Country Peak Percent of Country U.S. Exports Germany Italy France Canada Belgium Spain China India South Korea Australia Total U.S. Exports Note(s): Source(s): 8,368 1% 681,427 100% Total U.S. exports of photovoltaic cells and modules increased by 47% from 2008 to 2009. EIA, Solar Photovoltaic Cell/Module Manufacturing Activities, Dec. 2010, Table 3.14. 18,297 3% 14,806 2% 12,581 2% 43,458 6% 27,247 4% 23,460 3%

  11. ACTIVITY ANALYSES FOR SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. PROXIES OF MAGNETIC ACTIVITY

    SciTech Connect

    He, Han; Wang, Huaning; Yun, Duo

    2015-11-15

    Light curves of solar-type stars often show gradual fluctuations due to rotational modulation by magnetic features (starspots and faculae) on stellar surfaces. Two quantitative measures of modulated light curves are employed as the proxies of magnetic activity for solar-type stars observed with Kepler telescope. The first is named autocorrelation index i{sub AC}, which describes the degree of periodicity of the light curve; the second is the effective fluctuation range of the light curve R{sub eff}, which reflects the depth of rotational modulation. The two measures are complementary and depict different aspects of magnetic activities on solar-type stars. By using the two proxies i{sub AC} and R{sub eff}, we analyzed activity properties of two carefully selected solar-type stars observed with Kepler (Kepler ID: 9766237 and 10864581), which have distinct rotational periods (14.7 versus 6.0 days). We also applied the two measures to the Sun for a comparative study. The result shows that both the measures can reveal cyclic activity variations (referred to as i{sub AC}-cycle and R{sub eff}-cycle) on the two Kepler stars and the Sun. For the Kepler star with the faster rotation rate, i{sub AC}-cycle and R{sub eff}-cycle are in the same phase, while for the Sun (slower rotator), they are in the opposite phase. By comparing the solar light curve with simultaneous photospheric magnetograms, it is identified that the magnetic feature that causes the periodic light curve during solar minima is the faculae of the enhanced network region, which can also be a candidate of magnetic features that dominate the periodic light curves on the two Kepler stars.

  12. Kiwis Take Home Engineering Win for Solar Home 'First Light' | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Kiwis Take Home Engineering Win for Solar Home 'First Light' Kiwis Take Home Engineering Win for Solar Home 'First Light' September 29, 2011 - 4:22pm Addthis “First Light,” the solar home from New Zealand, stands complete on the first day of the 2011 U.S. Department of Energy Solar Decathlon. The 25-student team from Victory University of Wellington won the Engineering Contest today, the fourth juried contest of the competition. "First Light," the solar home

  13. DOE Announces $87 Million in Funding to Support Solar Energy Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 87 Million in Funding to Support Solar Energy Technologies DOE Announces $87 Million in Funding to Support Solar Energy Technologies October 8, 2009 - 12:23pm Addthis At the opening of the U.S. Department of Energy's (DOE) Solar Decathlon on the National Mall, Energy Secretary Steven Chu announced up to $87 million will be made available to support the development of new solar energy technologies and the rapid deployment of available carbon-free solar energy systems. Of

  14. DOE Announces $87 Million in Funding to Support Solar Energy Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 7 Million in Funding to Support Solar Energy Technologies DOE Announces $87 Million in Funding to Support Solar Energy Technologies October 8, 2009 - 12:00am Addthis WASHINGTON, DC - At the opening of the U.S. Department of Energy's Solar Decathlon on the National Mall, Energy Secretary Steven Chu announced up to $87 million will be made available to support the development of new solar energy technologies and the rapid deployment of available carbon-free solar energy

  15. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect

    Cheung, M. C. M.; Title, A. M.; Rempel, M.; Schuessler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  16. Solar Energy Education. Home economics: student activities. Field...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Citation Details In-Document Search Title: Solar Energy Education. Home economics: student ... A view of solar energy from the standpoint of home economics is taken in this book of ...

  17. Solar Energy Education. Renewable energy activities for junior...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Citation Details In-Document Search Title: Solar Energy Education. Renewable energy ... basic topics on the subject of solar energy are outlined in the form of a teaching manual. ...

  18. Solar

    Energy.gov [DOE]

    Learn about the Energy Department's efforts to advance innovative technologies that drive down the cost of solar energy in America.

  19. SPECTROSCOPIC OBSERVATIONS OF Fe XVIII IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Teriaca, Luca; Curdt, Werner; Warren, Harry P.

    2012-08-01

    The large uncertainties associated with measuring the amount of high temperature emission in solar active regions (ARs) represents a significant impediment to making progress on the coronal heating problem. Most current observations at temperatures of 3 MK and above are taken with broadband soft X-ray instruments. Such measurements have proven difficult to interpret unambiguously. Here, we present the first spectroscopic observations of the Fe XVIII 974.86 A emission line in an on-disk AR taken with the SUMER instrument on SOHO. Fe XVIII has a peak formation temperature of 7.1 MK and provides important constraints on the amount of impulsive heating in the corona. Detailed evaluation of the spectra and comparison of the SUMER data with soft X-ray images from the X-Ray Telescope on Hinode confirm that this line is unblended. We also compare the spectroscopic data with observations from the Atmospheric Imaging Assembly (AIA) 94 A channel on the Solar Dynamics Observatory. The AIA 94 A channel also contains Fe XVIII, but is blended with emission formed at lower temperatures. We find that it is possible to remove the contaminating blends and form relatively pure Fe XVIII images that are consistent with the spectroscopic observations from SUMER. The observed spectra also contain the Ca XIV 943.63 A line that, although a factor 2-6 weaker than the Fe XVIII 974.86 A line, allows us to probe the plasma around 3.5 MK. The observed ratio between the two lines indicates (isothermal approximation) that most of the plasma in the brighter Fe XVIII AR loops is at temperatures between 3.5 and 4 MK.

  20. Buildings Energy Data Book: 5.8 Active Solar Systems

    Buildings Energy Data Book

    Solar Collector Shipments, by Type and Market (Thousand SF, unless noted) (1) Type 1980 1990 2000 2009 Solar Thermal Collectors (2) Residential N.A. Commercial N.A. Industrial N.A. Utility N.A. Other N.A. (4) Photovoltaics (kW) (5) Note(s): Source(s): (6) 6,897 13,837 88,221 1,282,560 1) Shipments for 1980-2000 include imports and exports; 2008 shipments are domestic only. 2) Solar thermal collectors: receive solar radiation, convert it to thermal energy, and are typically used forspace

  1. Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Applications National Solar Thermal Test Facility ... EnergyWater Nexus EnergyWater History Water Monitoring & ... Market Transformation Fuel Cells Predictive Simulation of ...

  2. Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  3. Solar Power International 2016 | Department of Energy

    Energy Saver

    Meet the Teams Solar Decathlon 2013: Meet the Teams September 9, 2013 - 12:23pm Addthis Arizona State University and The University of New Mexico 1 of 18 Arizona State University and The University of New Mexico Arizona State University and The University of New Mexico are teaming up to create SHADE -- an adaptable, self-sustaining house designed for the typical southwestern suburbia. An 800-square-foot house, SHADE uses multiple patios to extend the living space of the house. Image: Jessica

  4. Guide for preparing active solar heating systems operation and maintenance manuals

    SciTech Connect

    Not Available

    1991-01-01

    This book presents a systematic and standardized approach to the preparation of operation and maintenance manuals for active solar heating systems. Provides an industry consensus of the best operating and maintenance procedures for large commercial-scale solar service water and space heating systems. A sample O M manual is included. 3-ring binder included.

  5. Hangout with Solar Decathlon 2013 Teams on Sept. 18 at 2 pm ET | Department

    Energy.gov [DOE] (indexed site)

    H.E.A.T. SQUAD WARMS VERMONT UP TO EFFICIENCY Because Rutland County, Vermont, residents often experience seven-month winters, a nonprofit housing organization that promotes affordable and sustainable homeownership decided to tackle the challenge of making the county's historic building stock more comfortable and energy-efficient through the long winter season. Using $4.5 million in seed funding from the U.S. Department of Energy's Better Buildings Neighborhood Program, NeighborWorks® of

  6. Material and Chemical Processing (Concentrated Solar) (4 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grades 5-8 Subject Solar Summary Concentrated sunlight is a versatile and high-quality form of energy with several ... reactions, and to treat materials for increased hardness ...

  7. MAGNETIC HELICITY AND ENERGY SPECTRA OF A SOLAR ACTIVE REGION

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2014-04-01

    We compute for the first time the magnetic helicity and energy spectra of the solar active region NOAA 11158 during 2011 February 11-15 at 20° southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of the magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ≈ 0.4 Mm{sup –1}, corresponding to a scale of 2π/k ≈ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k {sup –11/3} power law at large wavenumbers, which implies a k {sup –5/3} spectrum for the modulus of the current helicity. A k {sup –5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm{sup –1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artifacts at small scales.

  8. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  9. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    SciTech Connect

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  10. Matter effects in active-sterile solar neutrino oscillations

    SciTech Connect

    Giunti, C.; Li, Y. F.

    2009-12-01

    The matter effects for solar neutrino oscillations are studied in a general scheme with an arbitrary number of sterile neutrinos, without any constraint on the mixing, assuming only a realistic hierarchy of neutrino squared-mass differences in which the smallest squared-mass difference is effective in solar neutrino oscillations. The validity of the analytic results are illustrated with a numerical solution of the evolution equation in three examples of the possible mixing matrix in the simplest case of four-neutrino mixing.

  11. THE ACOUSTIC CUTOFF FREQUENCY OF THE SUN AND THE SOLAR MAGNETIC ACTIVITY CYCLE

    SciTech Connect

    Jimenez, A.; Palle, P. L.; Garcia, R. A.

    2011-12-20

    The acoustic cutoff frequency-the highest frequency for acoustic solar eigenmodes-is an important parameter of the solar atmosphere as it determines the upper boundary of the p-mode resonant cavities. At frequencies beyond this value, acoustic disturbances are no longer trapped but are traveling waves. Interference among them gives rise to higher-frequency peaks-the pseudomodes-in the solar acoustic spectrum. The pseudomodes are shifted slightly in frequency with respect to p-modes, making possible the use of pseudomodes to determine the acoustic cutoff frequency. Using data from the GOLF and VIRGO instruments on board the Solar and Heliospheric Observatory spacecraft, we calculate the acoustic cutoff frequency using the coherence function between both the velocity and intensity sets of data. By using data gathered by these instruments during the entire lifetime of the mission (1996 until the present), a variation in the acoustic cutoff frequency with the solar magnetic activity cycle is found.

  12. Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy.gov Solar Decathlon 2015 Solar Decathlon 2015 The competition is heating up at U.S. Department of Energy Solar Decathlon 2015 Go to energy.govsolardecathlon for full...

  13. Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

    1999-01-08

    Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

  14. Buildings Energy Data Book: 5.8 Active Solar Systems

    Buildings Energy Data Book

    2 Thermal Solar Collector Shipments, by End Use (Thousand SF) (1) Type 2000 2005 2006 2007 2008 2009 Pool Heating 7863 8934 Hot Water 367 640 1136 1393 1978 1992 Space Heating 99 228 330 189 186 150 Space Cooling 0 2 3 13 18 10 Combined Space/Water Heating 2 16 66 73 148 137 Process Heating 20 0 0 27 50 608 Electricity Generation 3 114 (2) 3847 6 361 389 Total 8354 Note(s): Source(s): 13798 1) Total shipments include imports and exports for all years.For 2007 to 2009, end-use values only include

  15. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  16. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    SciTech Connect

    Petrie, G. J. D.

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  17. Richard King | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Starting with the Solar Decathlon 2007 the competition began including international teams, and in 2010 the first Solar Decathlon Europe was held in Madrid, Spain. The success of ...

  18. Office of Energy Efficiency & Renewable Energy | Department of...

    Office of Environmental Management (EM)

    more Energy Secretary Moniz Launches Solar Decathlon 2015 Energy Secretary Moniz Launches Solar Decathlon 2015 Secretary Moniz kicked off our competition that challenges collegiate...

  19. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    SciTech Connect

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1'-601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance contribution

  20. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    SciTech Connect

    Raphaldini, Breno; Raupp, Carlos F. M. E-mail: carlos.raupp@iag.usp.br

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  1. Concentrating Solar Power

    SciTech Connect

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  2. Emission measure distribution for diffuse regions in solar active regions

    SciTech Connect

    Subramanian, Srividya; Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2014-11-01

    Our knowledge of the diffuse emission that encompasses active regions is very limited. In this paper we investigate two off-limb active regions, namely, AR 10939 and AR 10961, to probe the underlying heating mechanisms. For this purpose, we have used spectral observations from Hinode/EIS and employed the emission measure (EM) technique to obtain the thermal structure of these diffuse regions. Our results show that the characteristic EM distributions of the diffuse emission regions peak at log T = 6.25 and the coolward slopes are in the range 1.4-3.3. This suggests that both low- as well as high-frequency nanoflare heating events are at work. Our results provide additional constraints on the properties of these diffuse emission regions and their contribution to the background/foreground when active region cores are observed on-disk.

  3. Solar interior and atmosphere

    SciTech Connect

    Cox, A.N.; Livingston, W.C.; Matthews, M.S. National Solar Observatory, Tucson, AZ )

    1991-01-01

    The present work discusses nuclear energy generation in the solar interior, solar neutrino experiments, solar premain-sequence evolution, the computation of standard solar models, radiative-zone mixing, solar element separation by atomic diffusion, the observation and theory of solar oscillations, the solar internal rotation and magnetism implications of oscillations, solar gravity modes, and solar oscillation-mode excitation. Also discussed are the solar spectrum, the role of the solar photosphere and a radiative boundary, high spatial-resolution techniques for solar study, high-resolution observations of the solar granulation, large-scale velocity fields, the solar activity cycle, the magnetic fields of active regions and sunspots, the physics of flux tubes and filigrees, the heating of the solar chromosphere, the fine structure of the solar transition region, coronal activity, the coronal origins of the solar winds, and postmain sequence solar evolution.

  4. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  5. MAGNETIC NONPOTENTIALITY IN PHOTOSPHERIC ACTIVE REGIONS AS A PREDICTOR OF SOLAR FLARES

    SciTech Connect

    Yang Xiao; Lin Ganghua; Zhang Hongqi; Mao Xinjie

    2013-09-10

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform well, however, they are less sensitive in predicting large flares. Employing the nonpotentiality predictors from vector fields improves the performance of predicting large flares of magnitude {>=}M5.0 and {>=}X1.0.

  6. NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Liu, Zhong; Xiang, Yongyuan E-mail: zjun@nao.cas.cn

    2014-04-01

    One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST H? data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads, tracking the twisted flux rope structure. The length of the flux rope is about 75Mm, the average width of its individual threads is 1.11Mm, and the estimated twist is 1?. The flux rope appears as a dark structure in H? images, a partial dark and partial bright structure in 304 , and as a bright structure in 171 and 131 images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.

  7. Solar Energy Education. Renewable energy activities for junior high/middle school science

    SciTech Connect

    Not Available

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  8. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  9. Statistical study of free magnetic energy and flare productivity of solar active regions

    SciTech Connect

    Su, J. T.; Jing, J.; Wang, S.; Wang, H. M.; Wiegelmann, T.

    2014-06-20

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  10. Solar Thermal Systems: Solar Heating R&D

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Technologies Solar Thermal Systems: Solar Heating R&D National Renewable Energy Laboratory Sandia National Laboratories U.S. Department of Energy Solar Energy Technologies Presentation Outline * Description of solar thermal R&D activities in: - Low-cost passive solar hot water systems * Polymer integral collector-storage (PICS) systems - Low-cost active solar systems * Cold-climate solar water heating systems * Combined heating and cooling (CHC) systems Solar Thermal Systems

  11. On the area expansion of magnetic flux tubes in solar active regions

    SciTech Connect

    Dudík, Jaroslav; Dzifčáková, Elena; Cirtain, Jonathan W. E-mail: elena@asu.cas.cz

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  12. Sherry Stout | Department of Energy

    Energy Saver

    Shedding Light on the Solar Decathlon 2013 Teams Shedding Light on the Solar Decathlon 2013 Teams August 29, 2012 - 10:13am Addthis Meet the teams competing in the Solar Decathlon 2013 and get a feel for their different personalities. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What is the Solar Decathlon? Started in 2002 and held every two years, the Solar Decathlon challenges university teams to create affordable, energy-efficient

  13. OSTIblog Articles in the decathlon Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The winner of the competition will be announced on October 1. To learn more about solar energy and other green energy technologies, go to the DOE Green Energy Portal and find ...

  14. CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29

    SciTech Connect

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin; Ma, Suli

    2015-07-20

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

  15. A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.

    2012-11-10

    The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

  16. Concentrating Solar Power

    SciTech Connect

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  17. Directory of Solar Energy Research Activities in the United States: First Edition, May 1980. [1220 projects

    SciTech Connect

    1980-05-01

    Information covering 1220, FY 1978 and FY 1979 solar energy research projects is included. In addition to the title and text of project summaries, the directory contains the following indexes: subject index, investigator index, performing organization index, and supporting organization index. This information was registered with the Smithsonian Science Information Exchange by Federal, State, and other supporting organizations. The project summaries are categorized in the following areas: biomass, ocean energy, wind energy,photovoltaics, photochemical energy conversion, photobiological energy conversion, solar heating and cooling, solar process heat, solar collectors and concentrators, solar thermal electric generation, and other solar energy conversion. (WHK)

  18. CHANGES OF THE SOLAR MERIDIONAL VELOCITY PROFILE DURING CYCLE 23 EXPLAINED BY FLOWS TOWARD THE ACTIVITY BELTS

    SciTech Connect

    Cameron, R. H.; Schuessler, M.

    2010-09-10

    The solar meridional flow is an important ingredient in Babcock-Leighton type models of the solar dynamo. Global variations of this flow have been suggested to explain the variations in the amplitudes and lengths of the activity cycles. Recently, cycle-related variations in the amplitude of the P{sup 1}{sub 2} term in the Legendre decomposition of the observed meridional flow have been reported. The result is often interpreted in terms of an overall variation in the flow amplitude during the activity cycle. Using a semi-empirical model based upon the observed distribution of magnetic flux on the solar surface, we show that the reported variations of the P{sup 1}{sub 2} term can be explained by the observed localized inflows into the active region belts. No variation of the overall meridional flow amplitude is required.

  19. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  20. Method for including operation and maintenance costs in the economic analysis of active solar energy systems

    SciTech Connect

    Short, W.D.

    1986-08-01

    For a developing technology such as solar energy, the costs for operation and maintenance (O and M) can be substantial. In the past, most economic analyses included these costs by simply assuming that an annual cost will be incurred that is proportional to the initial cost of the system. However, in assessing the economics of new systems proposed for further research and development, such a simplification can obscure the issues. For example, when the typical method for including O and M costs in an economic analysis is used, the O and M costs associated with a newly developed, more reliable, and slightly more expensive controller will be assumed to increase - an obvious inconsistency. The method presented in this report replaces this simplistic approach with a representation of the O and M costs that explicitly accounts for the uncertainties and risks inherent in the operation of any equipment. A detailed description of the data inputs required by the method is included as well as a summary of data sources and an example of the method as applied to an active solar heating system.

  1. Contract to coordinate on-going documentation requirements associated with Title X legislation for DOE active-solar activities. Final project technical report

    SciTech Connect

    Not Available

    1982-06-01

    The objectives of this work were to ensure that Title X Active Solar Program reports complied with all guidance regarding length, format, coverage, tone, tables and schedules; provide necessary Conservation and Renewable Energy Office background and back-up material; follow this activity through to its completion in January 1982; assess information requirements associated with on-going documentation of Federal Buildings Program and its predecessors; establish a method for collecting, maintaining and utilizing appropriate program data specifically related to the preparation of report due in June 1982. Work on this project has generally remained on schedule and within budget. DOE-SAN has been instrumental in keeping us on track, by providing timely guidance as needed. Attached are recommendations and methods for documenting solar heat technologies research and the Title X sunset policy, planning, and evaluation long report for Active Solar Heating and Cooling Program.

  2. Energy in Mexico: a profile of solar energy activity in its national context

    SciTech Connect

    Hawkins, D.

    1980-04-01

    The geopolitical, economic, and cultural aspects of the United States of Mexico are presented. Mexico's energy profile includes the following: energy policy objectives, government energy structure, organizations for implementation, indigeneous energy sources, imported energy sources, solar energy research and development, solar energy organizations and solar energy related legislation and administrative policies. International agreements, contacts, manufacturers, and projects are listed. (MRH)

  3. Self-consistent simulation of CdTe solar cells with active defects

    SciTech Connect

    Brinkman, Daniel; Guo, Da; Akis, Richard; Ringhofer, Christian; Sankin, Igor; Fang, Tian; Vasileska, Dragica

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations to demonstrate the accuracy of the solver and then show results unique to the 2D case.

  4. Self-consistent simulation of CdTe solar cells with active defects

    SciTech Connect

    Brinkman, Daniel; Ringhofer, Christian; Guo, Da; Akis, Richard; Vasileska, Dragica; Sankin, Igor; Fang, Tian

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Finally, we will give numerical results comparing our results to known 1D simulations to demonstrate the accuracy of the solver and then show results unique to the 2D case.

  5. SOLAR POLAR X-RAY JETS AND MULTIPLE BRIGHT POINTS: EVIDENCE FOR SYMPATHETIC ACTIVITY

    SciTech Connect

    Pucci, Stefano; Romoli, Marco; Poletto, Giannina; Sterling, Alphonse C.

    2012-02-15

    We present an analysis of X-ray bright points (BPs) and X-ray jets observed by Hinode/X-Ray Telescope on 2007 November 2-4, within the solar northern polar coronal hole. After selecting small subregions that include several BPs, we followed their brightness evolution over a time interval of a few hours, when several jets were observed. We find that most of the jets occurred in close temporal association with brightness maxima in multiple BPs: more precisely, most jets are closely correlated with the brightening of at least two BPs. We suggest that the jets result from magnetic connectivity changes that also induce the BP variability. We surmise that the jets and implied magnetic connectivity we describe are small-scale versions of the active-region-scale phenomenon, whereby flares and eruptions are triggered by interacting bipoles.

  6. Self-consistent simulation of CdTe solar cells with active defects

    DOE PAGES [OSTI]

    Brinkman, Daniel; Guo, Da; Akis, Richard; Ringhofer, Christian; Sankin, Igor; Fang, Tian; Vasileska, Dragica

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations tomore » demonstrate the accuracy of the solver and then show results unique to the 2D case.« less

  7. Crop drying by indirect active hybrid solar - Electrical dryer in the eastern Algerian Septentrional Sahara

    SciTech Connect

    Boughali, S.; Bouchekima, B.; Mennouche, D.; Bouguettaia, H.; Bechki, D.; Benmoussa, H.

    2009-12-15

    In the present work, a new specific prototype of an indirect active hybrid solar-electrical dryer for agricultural products was constructed and investigated at LENREZA Laboratory, University of Ouargla (Algerian Sahara). In the new configuration of air drying passage; the study was done in a somewhat high range of mass flow rate between 0.04 and 0.08 kg/m{sup 2} s a range not properly investigated by most researchers. Experimental tests with and without load were performed in winter season in order to study the thermal behavior of the dryer and the effect of high air masse flow on the collector and system drying efficiency. The fraction of electrical and solar energy contribution versus air mass flow rate was investigated. Slice tomato was studied with different temperatures and velocities of drying air in order to study the influence of these parameters on the removal moisture content from the product and on the kinetics drying and also to determine their suitable values. Many different thin layer mathematical drying models were compared according to their coefficient of determination (R{sup 2}) and reduced chi square ({chi}{sup 2}) to estimate experimental drying curves. The Middli model in this condition proved to be the best for predicting drying behavior of tomato slice with (R{sup 2} = 0.9995, {chi}{sup 2} = 0.0001). Finally an economic evaluation was calculated using the criterion of payback period which is found very small 1.27 years compared to the life of the dryer 15 years. (author)

  8. Barriers and incentives to the adoption of innovative, energy-efficient housing: Passive and active solar and earth-sheltered

    SciTech Connect

    Conway, R.J.

    1988-01-01

    The purpose of this study was to determine intermediaries perceptions of barriers and incentives to innovative, energy-efficient housing in Iowa. Data were collected by two surveys. The questionnaire for the first survey collected data from 102 communities. The second questionnaire surveyed housing intermediaries drawn from the 102 communities included in the first survey. The sample consisted of 481 builders, building inspectors, realtors, lenders, and solar suppliers. Intermediary groups differed in their perceptions of barriers and incentives to innovative, energy-efficient housing. Significant differences were found among the intermediaries for whether state-mandated solar standards would reduce the risk of inspection of solar-energy houses and whether risky resale potential acts as a barrier to building solar energy housing. The major barriers were the first costs associated with building active solar and earth-sheltered housing and the lack of skills among subcontractors to build these types. There was not significant relationship between rate of adoption among communities and their location in the state. There was, however, a significant relationship between category of building official and rate of adoption among communities.

  9. Indian Solar Cities Programme: An Overview of Major Activities and Accomplishments; Preprint

    SciTech Connect

    Kandt, A.

    2012-05-01

    This paper details the Indian Solar City Programme, provides an overview of one city's Master Plan and implementation progress, describes NREL's support of the Indian Solar City Programme, and outlines synergies and differences between the Indian and American programs including unique challenges and opportunities India is facing.

  10. Virginia Tech Shines Light on Home Efficiency

    Energy.gov [DOE]

    Collegiate teams from around the world came to Madrid this month to present their solar-powered houses in the first biennial Solar Decathlon Europe, a competition modeled after the Energy Department's Solar Decathlon in Washington, D.C.

  11. Separable solutions of force-free spheres and applications to solar active regions

    SciTech Connect

    Prasad, A.; Mangalam, A.; Ravindra, B. E-mail: mangalam@iiap.res.in

    2014-05-10

    We present a systematic study of the force-free field equation for simple axisymmetric configurations in spherical geometry and apply it to the solar active regions. The condition of separability of solutions in the radial and angular variables leads to two classes of solutions: linear and nonlinear force-free fields (NLFF). We have studied these linear solutions and extended the nonlinear solutions for the radial power law index to the irreducible rational form n = p/q, which is allowed for all cases of odd p and cases of q > p for even p, where the poloidal flux ??1/r{sup n} and the field B?1/r {sup n+2}. We apply these solutions to simulate photospheric vector magnetograms obtained using the spectropolarimeter on board Hinode. The effectiveness of our search strategy is first demonstrated on test inputs of dipolar, axisymmetric, and nonaxisymmetric linear force-free fields. Using the best fit, we build three-dimensional axisymmetric field configurations and calculate the energy and relative helicity with two independent methods, which are in agreement. We have analyzed five magnetograms for AR 10930 spanning a period of three days during which two X-class flares occurred and found the free energy and relative helicity of the active region before and after the flare; our analysis indicates a peak in these quantities before the flare events, which is consistent with the other results. We also analyzed single-polarity regions AR 10923 and 10933, which showed very good fits to potential fields. This method provides useful reconstruction of NLFF and input fields for other numerical techniques.

  12. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  13. EMERGING DIMMINGS OF ACTIVE REGIONS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zhang Jun; Yang Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liu Yang; Sun Xudong, E-mail: zjun@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: yliu@sun.stanford.edu, E-mail: xudong@sun.stanford.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

    2012-12-01

    Using the observations from the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we statistically investigate the emerging dimmings (EDs) of 24 isolated active regions (IARs) from 2010 June to 2011 May. All the IARs show EDs in lower-temperature lines (e.g., 171 A) at their early emerging stages. Meanwhile, in higher temperature lines (e.g., 211 A), the ED regions brighten continuously. There are two types of EDs: fan-shaped and halo-shaped. There are 19 fan-shaped EDs and 5 halo-shaped ones. The EDs appear to be delayed by several to more than ten hours relative to the first emergence of the IARs. The shortest delay is 3.6 hr and the longest is 19.0 hr. The EDs last from 3.3 hr to 14.2 hr, with a mean duration of 8.3 hr. Before the appearance of the EDs, the emergence rate of the magnetic flux of the IARs is between 1.2 Multiplication-Sign 10{sup 19} Mx hr{sup -1} to 1.4 Multiplication-Sign 10{sup 20} Mx hr{sup -1}. The larger the emergence rate is, the shorter the delay time is. While the dimmings appear, the magnetic flux of the IARs ranges from 8.8 Multiplication-Sign 10{sup 19} Mx to 1.3 Multiplication-Sign 10{sup 21} Mx. These observations imply that the reconfiguration of the coronal magnetic fields due to reconnection between the newly emerging flux and the surrounding existing fields results in a new thermal distribution which leads to a dimming for the cooler channel (171 A) and brightening in the warmer channels.

  14. THE NAKED EMERGENCE OF SOLAR ACTIVE REGIONS OBSERVED WITH SDO/HMI

    SciTech Connect

    Centeno, Rebecca

    2012-11-01

    We take advantage of the HMI/SDO instrument to study the naked emergence of active regions (ARs) from the first imprints of the magnetic field on the solar surface. To this end, we followed the first 24 hr in the life of two rather isolated ARs that appeared on the surface when they were about to cross the central meridian. We analyze the correlations between Doppler velocities and the orientation of the vector magnetic field, consistent finding that the horizontal fields connecting the main polarities are dragged to the surface by relatively strong upflows and are associated with elongated granulation that is, on average, brighter than its surroundings. The main magnetic footpoints, on the other hand, are dominated by vertical fields and downflowing plasma. The appearance of moving dipolar features (MDFs, of opposite polarity to that of the AR) in between the main footpoints is a rather common occurrence once the AR reaches a certain size. The buoyancy of the fields is insufficient to lift up the magnetic arcade as a whole. Instead, weighted by the plasma that it carries, the field is pinned down to the photosphere at several places in between the main footpoints, giving life to the MDFs and enabling channels of downflowing plasma. MDF poles tend to drift toward each other, merge and disappear. This is likely to be the signature of a reconnection process in the dipped field lines, which relieves some of the weight allowing the magnetic arcade to finally rise beyond the detection layer of the Helioseismic and Magnetic Imager spectral line.

  15. Aray Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aray Solar Jump to: navigation, search Name: Aray Solar Place: Praha 1, Czech Republic Zip: 11000 Product: PV project developer with activities across Europe based in the Czech...

  16. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, LIFEP /Lisbon, IST

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  17. Performance of active solar space-heating systems, 1980-1981 heating season

    SciTech Connect

    Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

    1981-01-01

    Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

  18. Indian Solar Cities Programme: An Overview of Major Activities and Accomplishments (Presentation)

    SciTech Connect

    Kandt, A.

    2012-05-01

    Indian Solar Cities Programme supports 60 Indian cities in the development of EE and RE projects. Aims to reduce conventional energy demand by 10% by 2013, compared to a baseline year of 2008, and support is provided to municipal corporations for preparing and implementing a master plan.

  19. Solar Equipment Certification Requirement

    Energy.gov [DOE]

    All active solar space-heating and water-heating systems that are sold, offered for sale, or installed on residential and commercial buildings in Minnesota must meet Solar Rating and Certification...

  20. Solar collection

    SciTech Connect

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  1. CORONAL HEATING BY THE INTERACTION BETWEEN EMERGING ACTIVE REGIONS AND THE QUIET SUN OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zhang, Jun; Zhang, Bin; Li, Ting; Yang, Shuhong; Zhang, Yuzong; Li, Leping; Chen, Feng; Peter, Hardi E-mail: liting@nao.cas.cn E-mail: yuzong@nao.cas.cn E-mail: chen@mps.mpg.de

    2015-02-01

    The question of what heats the solar corona remains one of the most important puzzles in solar physics and astrophysics. Here we report Solar Dynamics Observatory Atmospheric Imaging Assembly observations of coronal heating by the interaction between emerging active regions (EARs) and the surrounding quiet Sun (QS). The EARs continuously interact with the surrounding QS, resulting in dark ribbons which appear at the boundary of the EARs and the QS. The dark ribbons visible in extreme-ultraviolet wavelengths propagate away from the EARs with speeds of a few km s{sup −1}. The regions swept by the dark ribbons are brightening afterward, with the mean temperature increasing by one quarter. The observational findings demonstrate that uninterrupted magnetic reconnection between EARs and the QS occurs. When the EARs develop, the reconnection continues. The dark ribbons may be the track of the interface between the reconnected magnetic fields and the undisturbed QS’s fields. The propagating speed of the dark ribbons reflects the reconnection rate and is consistent with our numerical simulation. A long-term coronal heating which occurs in turn from nearby the EARs to far away from the EARs is proposed.

  2. Solar Design Workbook

    SciTech Connect

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  3. Team Technische Universität Darmstadt's Winning House

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this podcast, team Technische Universität Darmstadt talks about the unique features of its Solar Decathlon house. This team from Germany won the overall Solar Decathlon competition. "Made in...

  4. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    DOE's Solar Decathlon - Building the Future by Kate Bannan on Mon, September 26, 2011 4361 headsdlogo.gif DOE's Solar Decathlon - Building the Future Read more about 4361 The ...

  5. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    chart or developing "Living Light", a net-zero energy home for DOE's Solar Decathlon. ... Topics: cancer, DOE EcoCar 2, DOE's Solar Decathlon, Knoxville, Mars, University of ...

  6. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  7. The behavior of measured SEU at low altitude during periods of high solar activity

    SciTech Connect

    Harboe-Sorensen, R.; Daly, E.J.; Adams, L. ); Underwood, C.I.; Ward, J. )

    1990-12-01

    The UoSAT-2 spacecraft, launched in 1984 into a polar orbit of altitude 700 km has a number of systems which have been observed to experience single-event upsets at significant rates. Geographically, the upsets are strongly concentrated in the South-Atlantic Anomaly region from which it has been deduced that in this region they are due to the products of proton-induced nuclear reactions in the devices. During the year 1989, several solar flare events occurred which elevated the upset rates at high latitudes. The October 19 event, in particular, resulted in very high high-latitude upset rates. The authors separate and analyze these data, deriving upset rates for the various memory devices under quiet cosmic-ray, South Atlantic anomaly and solar flare conditions. The authors report on the results of the heavy ion and proton testing of UoSAT memories which were undertaken in order to compare predictions and observations.

  8. 4361 | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information 1 DOE's Solar Decathlon - Building the Future Public Image File(s): head_sd_logo

  9. Team California Wins the Communications Contest at U.S. Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Solar Decathlon | Department of Energy California Wins the Communications Contest at U.S. Department of Energy Solar Decathlon Team California Wins the Communications Contest at U.S. Department of Energy Solar Decathlon October 13, 2009 - 12:00am Addthis WASHINGTON, DC - Team California today snagged the top spot in the Communications contest at the U.S. Department of Energy's Solar Decathlon. Today's contest is the third out of ten contests that make up the international competition

  10. Pervasive faint Fe XIX emission from a solar active region observed with EUNIS-13: Evidence for nanoflare heating

    SciTech Connect

    Brosius, Jeffrey W.; Daw, Adrian N.; Rabin, D. M.

    2014-08-01

    We present spatially resolved EUV spectroscopic measurements of pervasive, faint Fe XIX 592.2 Å line emission in an active region observed during the 2013 April 23 flight of the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectral resolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 Å (formed at temperature T ≈ 8.9 MK) and Fe XII at 592.6 Å (T ≈ 1.6 MK). The Fe XIX line emission, observed over an area in excess of 4920 arcsec{sup 2} (2.58 × 10{sup 9} km{sup 2}, more than 60% of the active region), provides strong evidence for the nanoflare heating model of the solar corona. No GOES events occurred in the region less than 2 hr before the rocket flight, but a microflare was observed north and east of the region with RHESSI and EUNIS during the flight. The absence of significant upward velocities anywhere in the region, particularly the microflare, indicates that the pervasive Fe XIX emission is not propelled outward from the microflare site, but is most likely attributed to localized heating (not necessarily due to reconnection) consistent with the nanoflare heating model of the solar corona. Assuming ionization equilibrium we estimate Fe XIX/Fe XII emission measure ratios of ∼0.076 just outside the AR core and ∼0.59 in the core.

  11. 9REN Group formerly Gamesa Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group (formerly Gamesa Solar) Place: Madrid, Spain Zip: 28002 Sector: Solar Product: Spanish company active in PV and solar passive system installation and PV project...

  12. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  13. Module greenhouse with high efficiency of transformation of solar energy, utilizing active and passive glass optical rasters

    SciTech Connect

    Korecko, J.; Jirka, V.; Sourek, B.; Cerveny, J.

    2010-10-15

    Since the eighties of the 20th century, various types of linear glass rasters for architectural usage have been developed in the Czech Republic made by the continuous melting technology. The development was focused on two main groups of rasters - active rasters with linear Fresnel lenses in fixed installation and with movable photo-thermal and/or photo-thermal/photo-voltaic absorbers. The second group are passive rasters based on total reflection of rays on an optical prism. During the last years we have been working on their standardization, exact measuring of their optical and thermal-technical characteristics and on creation of a final product that could be applied in solar architecture. With the project supported by the Ministry of Environment of the Czech Republic we were able to build an experimental greenhouse using these active and passive optical glass rasters. The project followed the growing number of technical objectives. The concept of the greenhouse consisted of interdependence construction - structural design of the greenhouse with its technological equipment securing the required temperature and humidity conditions in the interior of the greenhouse. This article aims to show the merits of the proposed scheme and presents the results of the mathematical model in the TRNSYS environment through which we could predict the future energy balance carried out similar works, thus optimizing the investment and operating costs. In this article description of various technology applications for passive and active utilization of solar radiation is presented, as well as some results of short-term and long-term experiments, including evaluation of 1-year operation of the greenhouse from the energy and interior temperature viewpoints. A comparison of the calculated energy flows in the greenhouse to real measured values, for verification of the installed model is also involved. (author)

  14. THE KINEMATICS AND PLASMA PROPERTIES OF A SOLAR SURGE TRIGGERED BY CHROMOSPHERIC ACTIVITY IN AR11271

    SciTech Connect

    Kayshap, P.; Srivastava, Abhishek K. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 129 (India)] [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 129 (India); Murawski, K., E-mail: kmur@kft.umcs.lublin.pl [Group of Astrophysics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin (Poland)

    2013-01-20

    We observe a solar surge in NOAA AR11271 using the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly 304 A image data on 2011 August 25. The surge rises vertically from its origin up to a height of Almost-Equal-To 65 Mm with a terminal velocity of Almost-Equal-To 100 km s{sup -1}, and thereafter falls and fades gradually. The total lifetime of the surge was Almost-Equal-To 20 minutes. We also measure the temperature and density distribution of the observed surge during its maximum rise and find an average temperature and a density of 2.0 MK and 4.1 Multiplication-Sign 10{sup 9} cm{sup -3}, respectively. The temperature map shows the expansion and mixing of cool plasma lagging behind the hot coronal plasma along the surge. Because SDO/HMI temporal image data do not show any detectable evidence of significant photospheric magnetic field cancellation for the formation of the observed surge, we infer that it is probably driven by magnetic-reconnection-generated thermal energy in the lower chromosphere. The radiance (and thus the mass density) oscillations near the base of the surge are also evident, which may be the most likely signature of its formation by a reconnection-generated pulse. In support of the present observational baseline of the triggering of the surge due to chromospheric heating, we devise a numerical model with conceivable implementation of the VAL-C atmosphere and a thermal pulse as an initial trigger. We find that the pulse steepens into a slow shock at higher altitudes which triggers plasma perturbations exhibiting the observed features of the surge, e.g., terminal velocity, height, width, lifetime, and heated fine structures near its base.

  15. Solar Energy Technologies Program: Photovoltaics

    SciTech Connect

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  16. THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2012-05-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  17. Solar resources

    SciTech Connect

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  18. Solar photocatalytic activities of porous Nb-doped TiO{sub 2} microspheres by coupling with tungsten oxide

    SciTech Connect

    Kou, Yanqiang; Yang, Jikai; Li, Bing; Fu, Shencheng

    2015-03-15

    Highlights: • Nb-TiO{sub 2}/WO{sub 3} was prepared by USP method combined impregnation method. • Nb-doping extend the spectral absorption of TiO{sub 2} into visible spectrum. • Nb-TiO{sub 2}/WO{sub 3} has a similar optical band gap as Nb-TiO{sub 2}. • PL spectra indicate WO{sub 3} can accept the photoexcited electrons from Nb-TiO{sub 2}. • Nb-TiO{sub 2}/WO{sub 3} shows higher activity than TiO{sub 2} and Nb-TiO{sub 2} under solar light. - Abstract: Nb doped TiO{sub 2} microspheres modified with WO{sub 3} (Nb-TiO{sub 2}/WO{sub 3}) was prepared by ultrasonic spray pyrolysis method combined with impregnation method. The microspheres were characterized with SEM, TEM, XRD, BET, photoluminescence and UV–vis absorption spectra. The Nb-doping was observed to extend the spectral absorption of TiO{sub 2} into visible spectrum, and the absorption onset was red-shifted for about 88 nm compared to pristine TiO{sub 2} microspheres. Nb-TiO{sub 2}/WO{sub 3} microspheres do not display a red-shifted absorption edge compared with Nb doped TiO{sub 2} microspheres. Under solar irradiation, Nb-TiO{sub 2}/WO{sub 3} microspheres showed higher photocatalytic activity for methylene blue degradation compared with that of pure TiO{sub 2} microspheres and Nb doped TiO{sub 2} microspheres, which could be ascribed to the extended light absorption range and the suppression of electron-hole pair recombination.

  19. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

    SciTech Connect

    Deng, Yehao; Peng, Edwin; Shao, Yuchuan; Xiao, Zhengguo; Dong, Qingfeng; Huang, Jinsong

    2015-03-25

    Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperature to guide the nucleation and grain growth process. The domain size reached 80250 ?m in 1.52 ?m thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4'-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)N4,N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Furthermore, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 ?m which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.

  20. THE EFFECT OF ACTIVITY-RELATED MERIDIONAL FLOW MODULATION ON THE STRENGTH OF THE SOLAR POLAR MAGNETIC FIELD

    SciTech Connect

    Jiang, J.; Cameron, R. H.; Schmitt, D.; Schuessler, M.; Isik, E.

    2010-07-01

    We studied the effect of the perturbation of the meridional flow in the activity belts detected by local helioseismology on the development and strength of the surface magnetic field at the polar caps. We carried out simulations of synthetic solar cycles with a flux transport model, which follows the cyclic evolution of the surface field determined by flux emergence and advective transport by near-surface flows. In each hemisphere, an axisymmetric band of latitudinal flows converging toward the central latitude of the activity belt was superposed onto the background poleward meridional flow. The overall effect of the flow perturbation is to reduce the latitudinal separation of the magnetic polarities of a bipolar magnetic region and thus diminish its contribution to the polar field. As a result, the polar field maximum reached around cycle activity minimum is weakened by the presence of the meridional flow perturbation. For a flow perturbation consistent with helioseismic observations, the polar field is reduced by about 18% compared to the case without inflows. If the amplitude of the flow perturbation depends on the cycle strength, its effect on the polar field provides a nonlinearity that could contribute to limiting the amplitude of a Babcock-Leighton type dynamo.

  1. DOE Solar Training and Education for Professionals

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Solar Training and Education for Professionals (STEP) funding opportunity will support many activities in solar training and education.

  2. Concentrating Solar Power (Revised) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  3. Solar Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  4. Solar Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  5. A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    SciTech Connect

    Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.

    2014-08-10

    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.

  6. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

    DOE PAGES [OSTI]

    Deng, Yehao; Peng, Edwin; Shao, Yuchuan; Xiao, Zhengguo; Dong, Qingfeng; Huang, Jinsong

    2015-03-25

    Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperaturemore » to guide the nucleation and grain growth process. The domain size reached 80–250 μm in 1.5–2 μm thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4'-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)–N4,N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Furthermore, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 μm which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.« less

  7. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

    SciTech Connect

    Deng, Yehao; Peng, Edwin; Shao, Yuchuan; Xiao, Zhengguo; Dong, Qingfeng; Huang, Jinsong

    2015-03-25

    Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperature to guide the nucleation and grain growth process. The domain size reached 80–250 μm in 1.5–2 μm thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4'-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)–N4,N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Furthermore, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 μm which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.

  8. How to fill the EXPOSURE REQUEST FORM

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to Win a Solar Decathlon How to Win a Solar Decathlon October 1, 2015 - 3:01pm Addthis The finals of the U.S. Department of Energy Solar Decathlon 2015 are upon us. Not familiar with the competition? Here’s everything you need to know ahead of the big event, <a href="http://www.solardecathlon.gov/2015/visit.html">happening Oct. 8-18 in Irvine, California</a>. | Photo by Stefano Paltera, Solar Decathlon. The finals of the U.S. Department of Energy Solar Decathlon 2015

  9. Solar Water Heater Basics | Department of Energy

    Energy Saver

    Water Heating Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel ...

  10. Optical electric fields as wavelength function within active layer of graphene/Si heterojunction solar cell – An analysis

    SciTech Connect

    Rosikhin, Ahmad Winata, Toto

    2015-09-30

    The optical electric field characteristics of graphene/Si heterojunction thin film solar cell as the function of wavelength photons incident have modeled and calculated. There is ITO/TiO{sub 2}/C-Si/TiO{sub 2} device configuration in which p-n junction represented by C-Si and viewed as active layer for excited electrons production. The dependent of such electric field on wavelength can be understood by solving scattering matrix obtained from the interface matrix and layer matrix operation, in this report we have calculated the electric field distribution for several active layer thickness (d{sub AL}) conditions and each of them examined in the cases of x position are equal to zero, half and full of d{sub AL} while for the entire taking into account we used 250 – 840 nm wavelength range. However, this calculation is restricted by idealization assumption such as the complex refraction index is doesn’t change significantly by the thickness in hundred nanometer range, linear optical response described by scalar refraction complex index and the interface are parallel and flat compared to the wavelength of the light.

  11. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    SciTech Connect

    Rossander, Lea H.; Zawacka, Natalia K.; Dam, Henrik F.; Krebs, Frederik C.; Andreasen, Jens W.

    2014-08-15

    The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find that the formation of textured and untextured crystallites seems uncorrelated, and happens at widely different rates. Untextured P3HT crystallites form later in the drying process than expected which may explain previous studies speculating that untextured crystallization depends on concentration. Textured crystallites, however, begin forming much earlier and steadily increases as the film dries, showing a development similar to other in situ studies of these materials.

  12. Solar America Cities Awards: Solar America Initiative Fact Sheet

    SciTech Connect

    Not Available

    2008-03-01

    This fact sheet provides an overview of the Solar America Cities activities within the Solar America Initiative and lists the 25 cities that have received financial awards from the U.S. Department of Energy.

  13. Progress in solar engineering

    SciTech Connect

    Yogi Goswami, D.

    1987-01-01

    This book presents reviews of various areas of solar energy technology, including wind energy technology and ocean thermal energy conversion (OTEC). It also identifies and suggests needs and future directions of research and development. The subjects covered in this book include solar thermal power technology, solar thermal storage, solar ponds, industrial process heat, solar water heating, active and passive solar cooling methods, low-cost collector development, photovoltaic research and applications, wind energy technology, and OTEC. Also covered are the status of the technology, basic and applied research, design and analysis methods, and performance and operational experiences of various systems. The book will thus be helpful as a review of various solar, wind, and OTEC technologies.

  14. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO{sub 3} photocatalyst and its photocatalytic activity under simulated solar light

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-15

    Simulated solar light responsive Ag/AgCl/WO{sub 3} composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO{sub 3} nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: Black-Right-Pointing-Pointer Successful synthesis of Ag/AgCl/WO{sub 3} nanocomposite. Black-Right-Pointing-Pointer Photocatalytic experiment was performed under simulated solar light. Black-Right-Pointing-Pointer Nanocomposite photocatalyst was very active as compared to WO{sub 3} commercial powder. Black-Right-Pointing-Pointer SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  15. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup –1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvén waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvén wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvén waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  16. Solar Easements

    Energy.gov [DOE]

    New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

  17. 2010 Solar Program Peer Review Report: An Independent Evaluation of Program Activities for FY2009 and FY2010

    SciTech Connect

    DOE Solar Energy Technologies Program

    2010-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the DOE Solar Energy Technologies Program's 2010 Program Review meeting, held on May 24?27, 2010, in Washington, D.C.

  18. Solar Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Newsletter pvworkshopoct24 Permalink Gallery Register for the PV Performance Modeling and Monitoring Workshop, October 24-25, 2016 News, News & Events, Photovoltaic, Solar, ...

  19. First Solar Manufacturing Solar Modules

    Energy.gov [DOE]

    In this photograph, a First Solar associate handles photovoltaic materials at the company's Ohio manufacturing plant. First Solar is an industry partner with the U.S. Department of Energy Solar...

  20. This Month on Energy Savers: September 2011 | Department of Energy

    Energy.gov [DOE] (indexed site)

    Spotlight: Structural Insulated Panels See you Friday at the Solar Decathlon? ... Weekly Questions-Did You Share Your Answer? What Do You Wish You Knew About Home Solar ...

  1. Concentrating Solar Power Projects | Concentrating Solar Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Projects SolarPACES Snapshot SolarPACES, an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of concentrating solar power plants. Activities include testing large-scale systems and developing advanced technologies, components, instrumentation, and analysis techniques. Founded in 1977, SolarPACES now has 13 members: Algeria, Australia, Egypt, the European Commission, France, Germany, Israel, Mexico, South Africa, South Korea,

  2. Region Solar Inc Solar Inc California Renewable Energy Solar...

    OpenEI (Open Energy Information) [EERE & EIA]

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  3. Aspen Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Solar Product: Design, installation & maintenance of active, passive, and photovoltaic energy systems Website: www.aspensolar.com Coordinates: 39.649755, -106.617574...

  4. Publications | Concentrating Solar Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    develops publications-including technical reports, journal articles, and conference papers-about its research and development (R&D) activities in concentrating solar power (CSP). ...

  5. Solar Circuitry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (light/electromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic particles) Grade Level: Middle or High School Size: Small groups, depending on ability level. Time: 4 to 5 class periods Summary: Students will learn how the solar cell changes light energy to electrical energy. Students will work in small groups and construct different solar panel configurations to see the

  6. Solar Energy Science Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resource Center Solar Energy Resource Center Sub Program Topic Resource Search Results Title Date Author SubProgram Topic Description

    Science Projects Curriculum: Solar Power -(thermodynamics, light/electromagnetic, radiation, energy transformation, conduction/convection, seasons, trigonometry) Grade Level: Middle or High School Size: Whole class or small groups (3 to 4) Time: Activities range from 2 to 5 class periods, depending on abilities of students. Summary: The first three activities

  7. Solar Energy Technologies Program: Systems Integration

    SciTech Connect

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram

  8. Solar Energy Technologies Program: Market Transformation

    SciTech Connect

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram

  9. Nevada Solar One Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  10. Mojave Solar Park Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  11. Starwood Solar I Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  12. Solar Newsletter | Solar Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Market Pathways Solar Market Pathways The Solar Market Pathways program supports 15 SunShot projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties. Awardees use a wide range of tools, including special financing mechanisms like commercial property assessed clean energy, and the integration of solar energy

  13. Solar Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade

  14. ImagineSolar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Workforce training, Corporate consulting - Solar projects, Solar sales, Solar marketing, Solar business development, Solar policy, Solar advocacy, Solar government...

  15. Research & Development Needs for Building-Integrated Solar Technologie...

    Energy.gov [DOE] (indexed site)

    and cooling, water heating, hybrid photovoltaic-thermal systems (PVT), active solar ... Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America ...

  16. Solar EnerTech Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Corporation Place: Menlo Park, California Zip: CA 94025 Sector: Solar Product: Solar cell manufacturer with manufacturing activities in Shanghai and a head office in Menlo Park,...

  17. Renewable Energy Finance, Solar Securitization: A Status Report (Fact Sheet)

    SciTech Connect

    Not Available

    2013-10-01

    This fact sheet was designed to introduce solar securitization and the activities of NREL and the Solar Access to Public Capital (SAPC) working group to the investment community.

  18. Photovoltaics and Solar Energy: Science Projects in Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaics and Solar Energy (Two Activities) Grades: 5-8 Topic: Solar Authors: Derek Nalley and Scott Pinegar Owner: National Renewable Energy Laboratory This educational ...

  19. Solar Policy Environment: New Orleans

    Office of Energy Efficiency and Renewable Energy (EERE)

    To use unprecedented rebuilding of the city of New Orleans is an opportunity for the Office of Recovery Management and its partners to encourage solar in New Orleans’ energy marketplace. While all Solar Cities grantees are undertaking market transformation activities that will both remove barriers to the adoption of solar technologies and reduce the cost of solar technologies, the reconstruction process affords New Orleans a window of opportunity to structurally alter the ways in which solar technologies are regulated, incentivized, produced, and consumed in the Greater New Orleans area.

  20. Implementing Solar Technologies at Airports

    SciTech Connect

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  1. Solar Rights

    Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  2. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    96426 Solar Blog en Solar Energy Jobs Outpace U.S. Economy http:energy.govarticlessolar-energy-jobs-outpace-us-economy

  3. Solar Rights

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  4. Solar Rights

    Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  5. Solar Forecasting

    Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  6. Solar collectors

    SciTech Connect

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  7. Junior Solar Sprint - So.. You Want To Build A Model Solar Car

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 Revised 8/23/01 So... You Want To Build A Model Solar Car 2 TABLE OF CONTENTS TOPIC PAGE SOLAR ENERGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Teacher Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Activity One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Activity Two . . . . . . . . . . . . . . . . .

  8. Sandia Energy - Past Market Transformation Activities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Past Market Transformation Activities Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Past Market Transformation...

  9. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  10. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  11. NREL: Energy Analysis - Solar Technology Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate

  12. Solar Energy - It's Growth, Development, and Use

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Resources with Additional Information Solar Energy Courtesy of National Renewable Energy Laboratory Credit-Robb Williamson The Department of Energy has played a major role in solar energy development through previous research and ongoing activities. As a result of research and development, the "cost of solar energy has been reduced 100-fold over the past two decades." 1 Concentrating Solar Power (CSP) systems use reflective materials that concentrate the sun's heat energy

  13. Enhanced photocatalytic hydrogen evolution activity of CuInS{sub 2} loaded TiO{sub 2} under solar light irradiation

    SciTech Connect

    Li, Changjiang; Xi, Zhenhao; Fang, Wenzhang; Xing, Mingyang; Zhang, Jinlong

    2015-03-15

    In this paper, p–n type CuInS{sub 2}/TiO{sub 2} particles were prepared in ethylenediamine by the solvothermal method. The microstructural properties of the synthesized p–n type catalysts were characterized by X-ray diffraction (XRD) in order to confirm the existence of crystalline CuInS{sub 2} on the surface of TiO{sub 2}, which was also confirmed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) images provided the detailed morphological properties about the CuInS{sub 2}/TiO{sub 2} heterostructure. UV–vis diffuse reflectance spectroscopy (UV–vis DRS) was used to investigate the optical properties of the CuInS{sub 2}/TiO{sub 2} particles. The DRS results indicated that both the p–n type structure and CuInS{sub 2} acting as a sensitizer can enhance significantly the absorption of UV and visible light. The photocatalytic activities of the CuInS{sub 2}/TiO{sub 2} particles were evaluated by hydrogen evolution reactions using Xe-lamp irradiation as a simulated solar light source. The greatly enhanced photocatalytic activity of hydrogen evolution under simulated solar light is about ~7 fold higher than that of pure commercial TiO{sub 2} (Degussa P25). - Graphical abstract: The heterojunction structure of CuInS{sub 2}/TiO{sub 2} promoted the efficiency of photoinduced charge carrier transfer and highly inherited the recombination of activated electrons and holes. - Highlight: • CuInS{sub 2}/TiO{sub 2} was prepared by a one-step solvothermal method. • 2.5% CuInS{sub 2}/TiO{sub 2} has the highest activity and keeps the activity stable. • Heterojunction structure of sample promoted the separation of electrons and holes.

  14. Fullerene surfactants and their use in polymer solar cells

    SciTech Connect

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  15. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  16. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect

    Not Available

    2009-07-01

    Summarizes the activities that the DOE Solar Energy Technologies Program conducts to collaborate with and benenfit utilities with the goal of accelerating solar technologies adoption by removing barriers to solar deployment.

  17. Purchasing Solar Collectively with Solarize

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video provides an overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy...

  18. Solar Newsletter | Solar Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an electronic newsletter that provides information on NREL's research and development of solar technologies. To receive new issues by email, subscribe to the Solar Newsletter. SUBSCRIBE Golden Rays - November 2016 Hot Topics Graphic of the DuraMAT logo New Consortium to Improve Solar Module Reliability and Performance NREL is leading the DuraMat Consortium to develop PV module materials for reliable, low-cost solar electricity. Photo of three individuals behind two clear beakers in a lab

  19. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOEpatents

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  20. Solar Energy Partners | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: W1K 4ND Sector: Solar Product: London-based firm active in investments in photovoltaic and thermal solar energy projects for pension funds, private equity, specialist...

  1. Solar: A Clean Energy Source for Utilities

    SciTech Connect

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  2. Deming Solar Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  3. SES Calico Solar One Project Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  4. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  5. Solar Millenium Palen Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  6. SES Solar Two Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  7. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  8. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  9. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  10. ARM: Baseline Solar Radiation Network (BSRN): solar irradiances...

    Office of Scientific and Technical Information (OSTI)

    Baseline Solar Radiation Network (BSRN): solar irradiances Title: ARM: Baseline Solar Radiation Network (BSRN): solar irradiances Baseline Solar Radiation Network (BSRN): solar ...

  11. El Dorado Solar Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  12. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation Energy Sources Renewable Energy Solar Solar How much do you know about solar power? Take our quiz and test your solar energy IQ. | Photo courtesy of ...

  13. Active stewardship: sustainable future

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating

  14. Stewardship

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contests at U.S. Department of Energy Solar Decathlon | Department of Energy Stevens Institute of Technology Wins Both Architecture and Communications Contests at U.S. Department of Energy Solar Decathlon Stevens Institute of Technology Wins Both Architecture and Communications Contests at U.S. Department of Energy Solar Decathlon October 16, 2015 - 4:37pm Addthis Stevens Institute of Technology took first place in both the Architecture and Communications Contests at the U.S. Department of

  15. Powering Our Sustainable Future (Fact Sheet)

    SciTech Connect

    Not Available

    2014-07-01

    One of the Energy Department's most successful outreach efforts, the Solar Decathlon provides sponsors with rich opportunities for recognition - from naming rights to signage and speaking opportunities to special events. Support from the business community is crucial to the success of the competition and the experience of thousands of student decathletes. This sponsorship brochure reveals reasons why sponsors support the U.S. Department of Energy Solar Decathlon and how organizations can become involved as Solar Decathlon sponsors.

  16. D.C. Community Comes Together in the Name of Sustainability, Affordability

    Energy.gov [DOE] (indexed site)

    | Department of Energy Community leaders and members of the The New School for Design and Stevens Institute of Technology Solar Decathlon team.| Courtesy of Lisa Bleich Community leaders and members of the The New School for Design and Stevens Institute of Technology Solar Decathlon team.| Courtesy of Lisa Bleich Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs What are the key facts? This 2011 Solar Decathlon team is partnering with D.C.

  17. Energy Department Secretary Ernest Moniz Signs Memorandum of Understanding

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    with Morocco for Solar Decathlon Africa Competition in 2019 | Department of Energy Department Secretary Ernest Moniz Signs Memorandum of Understanding with Morocco for Solar Decathlon Africa Competition in 2019 Energy Department Secretary Ernest Moniz Signs Memorandum of Understanding with Morocco for Solar Decathlon Africa Competition in 2019 November 14, 2016 - 7:17pm Addthis Today, U.S. Department of Energy (DOE) Secretary Ernest Moniz and Minister Moulay Hafid Elalamy, Ministry of

  18. University Teams to Showcase Affordable, Energy Efficient Living in U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Solar Decathlon 2011 | Department of Energy to Showcase Affordable, Energy Efficient Living in U.S. Department of Energy Solar Decathlon 2011 University Teams to Showcase Affordable, Energy Efficient Living in U.S. Department of Energy Solar Decathlon 2011 September 22, 2011 - 10:32am Addthis WASHINGTON, DC - Collegiate teams featuring over 4,000 students from around the world have descended on the National Mall's West Potomac Park to showcase the highly energy efficient

  19. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  20. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  1. NREL: Concentrating Solar Power Research - Concentrating Solar...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  2. Comparison of physical properties of quiet and active regions through the analysis of magnetohydrodynamic simulations of the solar photosphere

    SciTech Connect

    Criscuoli, S.

    2013-11-20

    Recent observations have shown that the photometric and dynamic properties of granulation and small-scale magnetic features depend on the amount of magnetic flux of the region they are embedded in. We analyze results from numerical hydrodynamic and magnetohydrodynamic simulations characterized by different amounts of average magnetic flux and find qualitatively the same differences as those reported from observations. We show that these different physical properties result from the inhibition of convection induced by the presence of the magnetic field, which changes the temperature stratification of both quiet and magnetic regions. Our results are relevant for solar irradiance variations studies, as such differences are still not properly taken into account in irradiance reconstruction models.

  3. Solar Car

    SciTech Connect

    2010-01-01

    Des Moines Central Academy Middle School students compete in the Solar Car Challenge at the National Science Bowl, May 2 in Washington D.C.

  4. Solar Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  5. Solar Mapper

    Energy.gov [DOE]

    Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

  6. Solar Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  7. Solar Rights

    Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values (...

  8. Solar Ready Vets: Preparing Our Veterans to Join the Growing Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workforce | Department of Energy Ready Vets: Preparing Our Veterans to Join the Growing Solar Workforce Solar Ready Vets: Preparing Our Veterans to Join the Growing Solar Workforce April 6, 2015 - 2:27pm Addthis Last Friday at Hill Air Force Base in Utah, President Obama announced the expansion of the Solar Ready Vets program, a joint effort between the Department of Energy and Department of Defense to train active military personnel for careers in the solar energy industry. | White House

  9. STILE | Department of Energy

    Energy.gov [DOE] (indexed site)

    Sort by: Random | Alphabetical | Rating (High to Low) | Rating (Low to High) CASA DEL SOL With the 2015 Solar Decathlon taking place in Irvine, California, Team Orange County --...

  10. CASA DEL SOL | Department of Energy

    Energy.gov [DOE] (indexed site)

    CASA DEL SOL With the 2015 Solar Decathlon taking place in Irvine, California, Team Orange County -- made up of the University of California, Irvine; Chapman University; Irvine...

  11. OSTIblog Articles in the biomass Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information biomass Topic DOE's Solar Decathlon - Building the Future by Kate Bannan 26 Sep, 2011 in Science Communications 4361 head_sd_logo.gif DOE's Solar Decathlon - Building the Future Read more about 4361 The Solar Decathlon is being held September 23-October 2, 2011, at the National Mall's West Potomac Park in Washington, DC. The event is free and open to the public. The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build and

  12. OSTIblog Articles in the collegiate Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information collegiate Topic DOE's Solar Decathlon - Building the Future by Kate Bannan 26 Sep, 2011 in Science Communications 4361 head_sd_logo.gif DOE's Solar Decathlon - Building the Future Read more about 4361 The Solar Decathlon is being held September 23-October 2, 2011, at the National Mall's West Potomac Park in Washington, DC. The event is free and open to the public. The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design,

  13. OSTIblog Articles in the green Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Topic DOE's Solar Decathlon - Building the Future by Kate Bannan 26 Sep, 2011 in Science Communications 4361 head_sd_logo.gif DOE's Solar Decathlon - Building the Future Read more about 4361 The Solar Decathlon is being held September 23-October 2, 2011, at the National Mall's West Potomac Park in Washington, DC. The event is free and open to the public. The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build and operate

  14. OSTIblog Articles in the hydro Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information hydro Topic DOE's Solar Decathlon - Building the Future by Kate Bannan 26 Sep, 2011 in Science Communications 4361 head_sd_logo.gif DOE's Solar Decathlon - Building the Future Read more about 4361 The Solar Decathlon is being held September 23-October 2, 2011, at the National Mall's West Potomac Park in Washington, DC. The event is free and open to the public. The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build and

  15. OSTIblog Articles in the synthetic fuels Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information synthetic fuels Topic DOE's Solar Decathlon - Building the Future by Kate Bannan 26 Sep, 2011 in Science Communications 4361 head_sd_logo.gif DOE's Solar Decathlon - Building the Future Read more about 4361 The Solar Decathlon is being held September 23-October 2, 2011, at the National Mall's West Potomac Park in Washington, DC. The event is free and open to the public. The U.S. Department of Energy Solar Decathlon challenges collegiate teams to

  16. OSTIblog Articles in the wave Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information wave Topic DOE's Solar Decathlon - Building the Future by Kate Bannan 26 Sep, 2011 in Science Communications 4361 head_sd_logo.gif DOE's Solar Decathlon - Building the Future Read more about 4361 The Solar Decathlon is being held September 23-October 2, 2011, at the National Mall's West Potomac Park in Washington, DC. The event is free and open to the public. The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build and

  17. EERE Fiscal Year 2011 Website Annual Report

    Energy.gov [DOE] (indexed site)

    ...startupamericawidget 86,888 17. DOE Solar Decathlon: Teams solardecathlon.govteams.html 80,774 18. Wind Powering America: Michigan 50-Meter Wind Resource Map ...

  18. Universities Across the United States Make Strides in Energy...

    Energy.gov [DOE] (indexed site)

    at the University of Central Florida called UCF Sustainability and Energy Management. ... Solar Decathlon University of Central Florida Students' Energy Saving Work Showcased in ...

  19. Building America Building Science Education Roadmap

    Energy Saver

    ... Guidebook PATH ToolBase Solar Decathlon Education ... Educator's Toolkit History of Failures Immediate ... technologies such as fuel cells and plug-in hybrid cars 12. ...

  20. Recognizing Innovation in Green Building | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recognizing Innovation in Green Building Recognizing Innovation in Green Building February 6, 2013 - 8:45am Addthis Visitors tour the U.S. Department of Energy Solar Decathlon 2011 in Washington, D.C., Friday, Sept. 30, 2011. | Photo by Stefano Paltera/U.S. Department of Energy Solar Decathlon Visitors tour the U.S. Department of Energy Solar Decathlon 2011 in Washington, D.C., Friday, Sept. 30, 2011. | Photo by Stefano Paltera/U.S. Department of Energy Solar Decathlon Erik Hyrkas Erik Hyrkas

  1. Team California Wins the Communications Contest at U.S. Department...

    Office of Environmental Management (EM)

    Team California Wins the Communications Contest at U.S. Department of Energy Solar Decathlon ... strategies, promotional materials, and people skills the team displayed ...

  2. State Energy Advisory Board October 2007 Meeting | Department...

    Office of Environmental Management (EM)

    State Energy Advisory Board October 2007 Meeting The agenda, minutes, presentations, and other materials from this ... Technologies (1.37 MB) Solar Decathlon (2.12 MB) ...

  3. Stevens Institute of Technology Wins Both Architecture and Communicati...

    Energy.gov [DOE] (indexed site)

    Contests at the U.S. Department of Energy Solar Decathlon 2015. | Photo by Thomas ... electronic communications, public exhibit materials and public exhibit presentations. ...

  4. REFLECT HOME | Department of Energy

    Energy.gov [DOE] (indexed site)

    so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team's Reflect Home does just that by...

  5. ALF HOUSE | Department of Energy

    Energy.gov [DOE] (indexed site)

    so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team's Reflect Home does just that by...

  6. News & Blog | Department of Energy

    Energy Saver

    Solar Decathlon Announced today before an enthusiastic crowd at the Orange County Great Park, Irvine, CA, Stevens Institute of Technology of Hoboken, NJ, took first place in both...

  7. CASA DEL SOL | Department of Energy

    Energy.gov [DOE] (indexed site)

    With the 2015 Solar Decathlon taking place in Irvine, California, Team Orange County -- made up of the University of California, Irvine; Chapman University; Irvine Valley College; ...

  8. INHOUSE | Department of Energy

    Energy.gov [DOE] (indexed site)

    INhouse, the 2015 Solar Decathlon project from the California Polytechnic State University ... Sacramento is nicknamed the City of Trees, so it made sense for the California State ...

  9. 25 People x 4 Days + 1 Manual = Team Belgium’s E-Cube

    Energy.gov [DOE]

    No, it's not an Ikea manual; it's the instructions for how to construct Team Belgium's "E-Cube" home for the 2011 Solar Decathlon.

  10. Four Minority Serving Institutions Selected to Compete in the...

    Energy.gov [DOE] (indexed site)

    For the complete list of schools, site map, and more information about the Solar Decathlon, check out http:www.solardecathlon.gov Addthis Related Articles Energy Department ...

  11. Thoughts on a Two-Year Race

    Energy.gov [DOE]

    If you were in Washington, D.C. this past week, you probably heard about or even attended our biannual Solar Decathlon.

  12. Purpose and Need: CEQ Exchange of Letters with Secretary of Transportation

    Energy Saver

    Purdue's "INhome" Rallies for the Solar Decathlon Purdue's "INhome" Rallies for the Solar Decathlon May 5, 2011 - 3:13pm Addthis Purdue's INhome team at their recent "Topping Out" party (note the little tree on the roof of the house). | Photo Courtesy of the Purdue INhome Solar Decathlon team Purdue's INhome team at their recent "Topping Out" party (note the little tree on the roof of the house). | Photo Courtesy of the Purdue INhome Solar Decathlon team

  13. University Teams to Showcase Affordable, Energy Efficient Living...

    Energy Saver

    collegiate teams to design, build, and operate houses powered by the sun that are affordable, energy efficient, attractive, and easy to live in. "The Solar Decathlon ...

  14. University of Maryland Wins Architecture Prize, Pulls Into Lead in 2011

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Decathlon | Department of Energy Maryland Wins Architecture Prize, Pulls Into Lead in 2011 Solar Decathlon University of Maryland Wins Architecture Prize, Pulls Into Lead in 2011 Solar Decathlon September 28, 2011 - 6:04pm Addthis The University of Maryland's "WaterShed" house won first prize in the 2011 Solar Decathlon architecture contest. | Photo courtesy of the <a href="http://2011.solarteam.org">University of Maryland team<a/>. The University of

  15. CHIP House Takes Design to Different Heights (Literally)

    Energy.gov [DOE]

    Check out the SCI-Arc/Caltech 2011 Solar Decathlon team's house to find out more about their net-zero energy use home -- the CHIP House.

  16. Student-Built Appliances Made to Do More with Less | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office of Energy Efficiency and Renewable Energy Although today's home appliances are ... Teams for Solar Decathlon 2015 Team Austria of the Vienna Institute of Technology ...

  17. Solar Newsletter | Solar Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    September 2016 Hot Topics NREL Researchers Leading Perovskite Research A method was developed to improve perovskite solar cells, making them more efficient and reliable with higher reproducibility. Supercomputing Model Provides Insights from Higher Solar Generation NREL Super Computing model provides insights from higher wind and solar generation in the Eastern Power Grid. How Much Storage to Achieve 50% PV in California? NREL analysis examines the role of flexibility and storage in new report.

  18. Unified Solar

    Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  19. Sandia Energy - Solar Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  20. Sandia Energy - Solar Market Transformation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  1. Solar America Cities Awards, Solar Energy Technologies Program, Fact Sheet, March 2009

    SciTech Connect

    Not Available

    2009-03-01

    This publication represents an ongoing effort to support outreach activities through the Solar America Cities program. The two-page fact sheet offers an overview of the SAC program and lists specific resources for more information on developing solar programs.

  2. Variations in the Solar Neutrino Flux

    DOE R&D Accomplishments

    Davis, R. Jr.; Cleveland, B. T.; Rowley, J. K.

    1987-08-02

    Observations are reported from the chlorine solar neutrino detector in the Homestake Gold Mine, South Dakota, USA. They extend from 1970 to 1985 and yield an average neutrino capture rate of 2.1 +- 0.3 SNU. The results from 1977 to 1985 show an anti-correlation with the solar activity cycle, and an apparent increased rate during large solar flares.

  3. Solar-Geophysical Data Number 557, January 1991. Part 2 (comprehensive reports). Data for July 1990 and miscellaneous

    SciTech Connect

    Coffey, H.E.

    1991-01-01

    ;Contents: Detailed index for 1990; Data for July 1990--Solar flares, Solar radio bursts at fixed frequencies, Interplanetary solar particles and plasma, Solar x-ray radiation from GOES satellite, Mass ejections from the sun, Active prominences and filaments.

  4. Solar-Geophysical Data Number 537, May 1989. Part 1 (prompt reports). Data for April, March 1989, and late data

    SciTech Connect

    Coffey, H.E.

    1987-07-01

    Solar data are presented for March and April, 1989. The data include sunspot activity indices; solar flares in the H-alpha line; solar radio emissions at 3, 10, 21, and 43 cm; and mean solar magnetic fields.

  5. Solar Cell Simulation

    Education - Teach & Learn

    Students model the flow of energy from the sun as it enters a photovoltaic cell, moves along a wire and powers a load. The game-like atmosphere involves the younger students and helps them understand the continuous nature of the flow of energy. For a related lesson, please see the activitySolar Powered System” (PDF 430 KB).

  6. Photovoltaic Solar Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects LPO_Utility-Scale_PV_Solar_Report_Thumbnail_180.png

  7. Solar Two

    SciTech Connect

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  8. Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type...

  9. SES Solar Three Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  10. Renewable Energy Concepts Solar Inc REC Solar | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Concepts Solar Inc REC Solar Jump to: navigation, search Name: Renewable Energy Concepts Solar Inc (REC Solar) Place: San Luis Obispo, California Zip: 93401 Sector: Solar Product:...

  11. Solar Ready Vets: Preparing Veterans for the Solar Workforce...

    Office of Environmental Management (EM)

    Solar Ready Vets: Preparing Veterans for the Solar Workforce Solar Ready Vets: Preparing Veterans for the Solar Workforce Addthis Description Solar Ready Vets, created by the ...

  12. Linda Silverman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Linda Silverman About Us Linda Silverman - Director, Solar Decathlon Linda Silverman is the Director of the U.S. Department of Energy Solar Decathlon. Most Recent Solar-Powered Houses Take Starring Role in Denver's Community of Tomorrow October 5 Running the Race for Clean Energy September 16 Roaming Mars and Space: 3D Technology Exploration from Home November 5

  13. Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report

    SciTech Connect

    1980-09-01

    A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

  14. Solar Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    They are popular in climates prone to freezing temperatures. Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is ...

  15. Solar Equipment Certification | Department of Energy

    Energy.gov [DOE] (indexed site)

    Certification Summary Minnesota law requires that all active solar space-heating and water-heating systems, sold, offered for sale, or installed on residential and commercial...

  16. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  17. Solar Rights

    Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  18. solar energy

    National Nuclear Security Administration (NNSA)

    8%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  19. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  20. Akeena Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Akeena Solar Jump to: navigation, search Logo: Akeena Solar Name: Akeena Solar Address: 16005 Los Gatos Blvd. Place: Los Gatos, California Zip: 95032 Sector: Solar Product: Solar...

  1. Adobe Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  2. Climatic Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  3. Tejas Solares | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tejas Solares Jump to: navigation, search Name: Tejas Solares Place: Spain Sector: Solar Product: Tejas Solares is a Spain-based company focused on providing solar solutions for...

  4. Oxford Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oxford Solar Jump to: navigation, search Name: Oxford Solar Place: Randolph, New Jersey Zip: 7869 Sector: Solar Product: Oxford Solar provides solar energy consulting and...

  5. SBM Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: SBM Solar Place: North Carolina Sector: Solar Product: SBM Solar is a solar panel manufacturer based in North Carolina. References: SBM Solar1 This article is...

  6. Solar Training | Department of Energy

    Energy.gov [DOE] (indexed site)

    Solar Business Innovation Networking and Solar Technical Assistance Solar Training Solar DATA ANALYSIS Solar jobs have risen rapidly since the start of the SunShot Initiative. ...

  7. Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  8. Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

  9. Market Transformation: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  10. Solar Resource Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  11. NREL: Solar STAT Blog -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Outreach Policy Basics Publications Request Assistance Technical Assistance Project Map Solar STAT Blog The Solar STAT blog discusses state and local efforts to develop solar...

  12. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  13. Solar-Geophysical Data Number 556, December 1990. Part 1 (prompt reports). Data for November, October 1990, and late data

    SciTech Connect

    Coffey, H.E.

    1990-12-01

    ;Contents: Detailed Index for 1990; Data for November 1990--Solar-Terrestrial Environment, IUWDS Alert Periods (Advance and Worldwide), Solar Activity Indices, Solar Flares, Solar Radio Emission, Standford Mean Solar Magnetic Field; Data for October 1990--Solar Active Regions, Sudden Ionospheric Disturbances, Solar Radio Spectral Observations, Cosmic Ray Measurements by Neutron Monitor, Geomagnetic Indices; Late Data--Cosmic Rays Huancayo August 1990, Geomagnetic Activity Indices September 1990, International Geophysical Calendar 1991 with recommended scientific programs.

  14. Multiple Exciton Generation Solar Cells

    SciTech Connect

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  15. Boston solar retrofits: studies of solar access and economics

    SciTech Connect

    Shapiro, M.

    1980-11-01

    Studies of solar access and solar retrofit economics are described for residential applications in the City of Boston. The study of solar access was based upon a random sample of 94 buildings; the sample was stratified to ensure a broad geographic representation from the city's various sections. Using available data on the heights and orientations of the sampled structures and surrounding buildings, each building's hourly access to sunlight was computed separately for the roof and south facing walls. These data were then aggregated by broad structural classifications in order to provide general measures of solar access. The second study was a comparative analysis of the economics of several solar heating and hot water systems. An active hot water system, installed using pre-assembled, commercially purchased equipment, was selected as a reference technology. A variety of measures of economic performance were computed for this system, with and without existing tax credits and under various financing arrangements. Next, a number of alternative approaches for solar space and water heating were identified from interviews with individuals and groups involved in solar retrofit projects in the Boston area. The objective was to identify approaches that many of those interviewed believe to be low-cost means of applying solar energy in residential settings. The approaches selected include thermal window covers, wall collectors, bread box water heaters, and sun spaces. Preliminary estimates of the performance of several representative designs were developed and the economics of these designs evaluated.

  16. 2012 News | Solar | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL and Solar Junction outsmart the solar spectrum and set a world record with a 44%-efficient solar cell. December 4, 2012 NREL Teams with Berkeley Lab to Analyze Solar Pricing ...

  17. Solar Equipment Certification

    Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  18. Solar Neutrinos

    DOE R&D Accomplishments

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  19. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    SciTech Connect

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R. E-mail: dnandi@iiserkol.ac.i E-mail: anthony@maths.dundee.ac.u

    2010-09-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  20. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.