National Library of Energy BETA

Sample records for activities including consumption

  1. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  2. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  3. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  4. Consumption

    Energy Information Administration (EIA) (indexed site)

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  5. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  6. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  7. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  8. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  9. Consumption

    Energy Information Administration (EIA) (indexed site)

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  10. Consumption

    Energy Information Administration (EIA) (indexed site)

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  11. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  12. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  13. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  14. Consumption

    Energy Information Administration (EIA) (indexed site)

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  15. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  16. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  17. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  18. Consumption

    Energy Information Administration (EIA) (indexed site)

    5. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of...

  19. Consumption

    Energy Information Administration (EIA) (indexed site)

    3. Fuel Oil Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings Using Fuel Oil...

  20. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings...

  1. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  2. Chronic alcohol consumption enhances iNKT cell maturation and activation

    SciTech Connect

    Zhang, Hui Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  3. Method for including operation and maintenance costs in the economic analysis of active solar energy systems

    SciTech Connect

    Short, W.D.

    1986-08-01

    For a developing technology such as solar energy, the costs for operation and maintenance (O and M) can be substantial. In the past, most economic analyses included these costs by simply assuming that an annual cost will be incurred that is proportional to the initial cost of the system. However, in assessing the economics of new systems proposed for further research and development, such a simplification can obscure the issues. For example, when the typical method for including O and M costs in an economic analysis is used, the O and M costs associated with a newly developed, more reliable, and slightly more expensive controller will be assumed to increase - an obvious inconsistency. The method presented in this report replaces this simplistic approach with a representation of the O and M costs that explicitly accounts for the uncertainties and risks inherent in the operation of any equipment. A detailed description of the data inputs required by the method is included as well as a summary of data sources and an example of the method as applied to an active solar heating system.

  4. Diffractive laser beam homogenizer including a photo-active material and method of fabricating the same

    DOEpatents

    Bayramian, Andy J; Ebbers, Christopher A; Chen, Diana C

    2014-05-20

    A method of manufacturing a plurality of diffractive optical elements includes providing a partially transmissive slide, providing a first piece of PTR glass, and directing first UV radiation through the partially transmissive slide to impinge on the first piece of PTR glass. The method also includes exposing predetermined portions of the first piece of PTR glass to the first UV radiation and thermally treating the exposed first piece of PTR glass. The method further includes providing a second piece of PTR glass and directing second UV radiation through the thermally treated first piece of PTR glass to impinge on the second piece of PTR glass. The method additionally includes exposing predetermined portions of the second piece of PTR glass to the second UV radiation, thermally treating the exposed second piece of PTR glass, and repeating providing and processing of the second piece of PTR glass using additional pieces of PTR glass.

  5. Electrode including porous particles with embedded active material for use in a secondary electrochemical cell

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1978-04-25

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  6. A Methodology for Post Operational Clean Out of a Highly Active Facility Including Solids Behaviour - 12386

    SciTech Connect

    Edmondson, Michael J.; Ward, Tracy R.; Maxwell, Lisa J.

    2012-07-01

    The Highly Active Liquor Evaporation and Storage (HALES) plant at Sellafield handles acidic fission product containing liquor with typical activities of the order of 18x10{sup 9} Bq/ml. A strategy experimental feedback approach has been used to establish a wash regime for the Post Operational Clean Out (POCO) of the oldest storage tanks for this liquor. Two different wash reagents have been identified as being potentially suitable for removal of acid insoluble fission product precipitates. Ammonium carbamate and sodium carbonate yield similar products during the proposed wash cycle. The proposed wash reagents provide dissolution of caesium phosphomolybdate (CPM) and zirconium molybdate (ZM) solid phases but yields a fine, mobile precipitate of metal carbonates from the Highly Active Liquor (HAL) supernate. Addition of nitric acid to the wash effluent can cause CPM to precipitate where there is sufficient caesium and phosphorous available. Where they are not present (from ZM dissolution) the nitric acid addition initially produces a nitrate precipitate which then re-dissolves, along with the metal carbonates, to give a solid-free solution. The different behaviour of the two solids during the wash cycle has led to the proposal for an amended flowsheet. Additional studies on the potential to change the morphology of crystallising ZM have presented opportunities for changing the rheology of ZM sediments through doping with tellurium or particular organic acids. Two different wash reagents have been identified as being potentially suitable for the POCO of HALES Oldside HASTs. AC and SC both yield similar products during the proposed wash cycle. However, the different behaviour of the two principle HAL solids, CPM and ZM, during the wash cycle has led to the proposal for an amended flowsheet. Additional studies on the potential to change the morphology of crystallising ZM have presented opportunities for changing its rheology through doping with tellurium or certain

  7. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  8. Survey Consumption

    Annual Energy Outlook

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  9. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  10. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  11. Manufacturing Consumption of Energy 1991--Combined Consumption...

    Energy Information Administration (EIA) (indexed site)

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  12. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update

    Projections - U.S. Energy Information Administration (EIA) 2012 CBECS Preliminary Results What is a commercial building? The CBECS includes buildings greater than 1,000 square feet that devote more than half of their floorspace to activity that is neither residential, manufacturing, industrial, nor agricultural. When will energy consumption estimates be available? Energy consumption and expenditures data will be available beginning in spring 2015. CBECS data collection is currently in its

  13. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  14. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  15. State energy data report 1992: Consumption estimates

    SciTech Connect

    Not Available

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  16. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  17. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  18. Transportation sector energy consumption

    Annual Energy Outlook

    Chapter 8 Transportation sector energy consumption Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption ...

  19. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  20. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  1. Commercial Buildings Energy Consumption and Expenditures 1992...

    Energy Information Administration (EIA) (indexed site)

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  2. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  3. Residential Energy Consumption Survey:

    Annual Energy Outlook

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  4. All Consumption Tables.vp

    Energy Information Administration (EIA) (indexed site)

    4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004...

  5. Summary of the Advanced Reactor Design Criteria (ARDC) Phase 1 Activities, including the development of the Final Report and the Advanced Reactor Technology Training

    SciTech Connect

    Holbrook, Mark R.

    2015-04-01

    Provide summary of the Phase 1 activities (Develop Final Report and Conduct Advanced Reactor Technology Training) that were completed in Fiscal Year 2015.

  6. Office Buildings - Energy Consumption

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  7. ,"Total Natural Gas Consumption

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  8. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-12-31

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  9. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-01-01

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  10. Fact #839: September 22, 2014 World Petroleum Consumption Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    declined since 2007, this is offset by increasing consumption from the rest of the world. ... Not including the U.S., Europe, China, and India, petroleum consumption by the rest of the ...

  11. Manufacturing consumption of energy 1994

    SciTech Connect

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  12. Household vehicles energy consumption 1994

    SciTech Connect

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  13. Industrial sector energy consumption

    Annual Energy Outlook

    Chapter 7 Industrial sector energy consumption Overview The industrial sector uses more delivered energy 294 than any other end-use sector, consuming about 54% of the world's total ...

  14. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Annual Energy Outlook

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  15. " Column: Energy-Consumption Ratios;"

    Energy Information Administration (EIA) (indexed site)

    3 Consumption Ratios of Fuel, 2010;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ...

  16. Pump apparatus including deconsolidator

    SciTech Connect

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  17. State energy data report 1994: Consumption estimates

    SciTech Connect

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  18. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Plug-in hybrid electric vehicle (PHEV) technology may reduce fuel consumption and tailpipe emissions in many medium- and heavy- duty vehicle vocations, including school buses. ...

  19. Electric power monthly, September 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  20. Health Care Buildings: Consumption Tables

    Energy Information Administration (EIA) (indexed site)

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  1. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  2. Residential energy consumption survey: consumption and expenditures, April 1982-March 1983. Part 1, national data

    SciTech Connect

    Thompson, W.

    1984-11-01

    This report presents data on the US consumption and expenditures for residential use of natural gas, electricity, fuel oil or kerosene, and liquefied petroleum gas (LPG) from April 1982 through March 1983. Data on the consumption of wood for this period are also presented. The consumption and expenditures data are based on actual household bills, obtained, with the permission of the household. from the companies supplying energy to the household. Data on wood consumption are based on respondent recall of the amount of wood burned during the winter and are subject to memory errors and other reporting errors described in the report. These data come from the 1982 Residential Energy Consumption Survey (RECS), the fifth in a series of comparable surveys beginning in 1978. The 1982 survey is the first survey to include, as part of its sample, a portion of the same households interviewed in the 1980 survey. A separate report is planned to report these longitudinal data. This summary gives the highlights of a comparison of the findings for the 5 years of RECS data. The data cover all types of housing units in the 50 states and the District of Columbia including single-family units, apartments, and mobile homes. For households with indirect energy costs, such as costs that are included in the rent or paid by third parties, the sonsumption and expenditures data are estimated and included in the figures reported here. The average household consumption of natural gas, electricity, fuel oil or kerosene, and LPG dropped in 1982 from the previous year, hitting a 5-year low since the first Residential Energy Consumption Survey (RECS) was conducted in 1978. The average consumption was 103 (+-3) million Btu per household in 1982, down from 114 (+-) million Btu in 1981. The weather was the main contributing factor. 8 figures, 46 tables.

  3. Intermediate Energy Infobook and Intermediate Infobook Activities (29 Activities)

    Education - Teach & Learn

    The Teacher Infobook provides fact sheets about energy, the major energy sources, electricity, energy consumption, and energy efficiency and conservation. The background section includes an introduction to energy and details about individual energy sources. There are also sections on global climate change and several detailed fact sheets on electricity and energy consumption and efficiency. The companion student activities book reinforces the general information and facts about the energy sources.

  4. Reducing power consumption during execution of an application on a plurality of compute nodes

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.

    2012-06-05

    Methods, apparatus, and products are disclosed for reducing power consumption during execution of an application on a plurality of compute nodes that include: executing, by each compute node, an application, the application including power consumption directives corresponding to one or more portions of the application; identifying, by each compute node, the power consumption directives included within the application during execution of the portions of the application corresponding to those identified power consumption directives; and reducing power, by each compute node, to one or more components of that compute node according to the identified power consumption directives during execution of the portions of the application corresponding to those identified power consumption directives.

  5. Energy Consumption of Die Casting Operations

    SciTech Connect

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  6. Profiling an application for power consumption during execution on a plurality of compute nodes

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.

    2012-08-21

    Methods, apparatus, and products are disclosed for profiling an application for power consumption during execution on a compute node that include: receiving an application for execution on a compute node; identifying a hardware power consumption profile for the compute node, the hardware power consumption profile specifying power consumption for compute node hardware during performance of various processing operations; determining a power consumption profile for the application in dependence upon the application and the hardware power consumption profile for the compute node; and reporting the power consumption profile for the application.

  7. Profiling an application for power consumption during execution on a compute node

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Peters, Amanda E; Ratterman, Joseph D; Smith, Brian E

    2013-09-17

    Methods, apparatus, and products are disclosed for profiling an application for power consumption during execution on a compute node that include: receiving an application for execution on a compute node; identifying a hardware power consumption profile for the compute node, the hardware power consumption profile specifying power consumption for compute node hardware during performance of various processing operations; determining a power consumption profile for the application in dependence upon the application and the hardware power consumption profile for the compute node; and reporting the power consumption profile for the application.

  8. DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption

    Annual Energy Outlook

    purchase diaries from a subset of respondents comprising a Household Transportation Panel and is reported separately. * Wood used for heating. Although wood consumption data...

  9. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    Energy Information Administration (EIA) (indexed site)

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  10. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  11. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  12. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  13. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  14. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  15. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Gasoline and Diesel Fuel Update

    Survey (MECS) Steel Analysis Brief Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials

  16. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Gasoline and Diesel Fuel Update

    Survey (MECS) Steel Analysis Brief Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers,

  17. Analysis of federal incentives used to stimulate energy consumption

    SciTech Connect

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  18. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  19. Residential Energy Consumption Survey (RECS) - Energy Information

    Energy Information Administration (EIA) (indexed site)

    Administration U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption &

  20. US ENC IL Site Consumption

    Energy Information Administration (EIA) (indexed site)

    IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  1. US ENC MI Site Consumption

    Energy Information Administration (EIA) (indexed site)

    MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  2. US ESC TN Site Consumption

    Energy Information Administration (EIA) (indexed site)

    ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33%

  3. US NE MA Site Consumption

    Energy Information Administration (EIA) (indexed site)

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  4. US WSC TX Site Consumption

    Energy Information Administration (EIA) (indexed site)

    WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than

  5. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOEpatents

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  6. Toward the standard population synthesis model of the X-ray background: Evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations

    SciTech Connect

    Ueda, Yoshihiro; Akiyama, Masayuki; Hasinger, Gnther; Miyaji, Takamitsu; Watson, Michael G.

    2014-05-10

    We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ? 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ?0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.

  7. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    for 1994, will continue the 3-year cycle. The RTECS, a subsample of the Residential Energy Consumption Survey (RECS), is an integral part of a series of surveys designed by...

  8. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  9. 2014 Manufacturing Energy Consumption Survey

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by ...

  10. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  11. Manufacturing consumption of energy 1991

    SciTech Connect

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  12. A Glance at China’s Household Consumption

    SciTech Connect

    Shui, Bin

    2009-10-01

    Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide-range social marketing activities to promote energy conservation.

  13. Estimation of 1945 to 1957 food consumption

    SciTech Connect

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-03-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  14. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update

    Information Administration (EIA) Building Type Definitions In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace. A building assigned to a particular principal activity category may be used for other activities in a

  15. Building Energy Consumption Analysis

    Energy Science and Technology Software Center

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  16. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    Energy Information Administration (EIA) (indexed site)

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  17. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    Energy Information Administration (EIA) (indexed site)

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  18. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    Energy Information Administration (EIA) (indexed site)

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  19. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  20. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  1. ,"California Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","California Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: California Natural Gas Consumption by End Use" ...

  2. ,"Florida Natural Gas Lease Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Natural Gas Lease Fuel Consumption ... 10:36:21 AM" "Back to Contents","Data 1: Florida Natural Gas Lease Fuel Consumption ...

  3. ,"Florida Natural Gas Plant Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Natural Gas Plant Fuel Consumption ... 10:36:24 AM" "Back to Contents","Data 1: Florida Natural Gas Plant Fuel Consumption ...

  4. ,"Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Consumption ... 12:00:27 PM" "Back to Contents","Data 1: Virginia Natural Gas Vehicle Fuel Consumption ...

  5. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WV2" "Date","West Virginia Natural Gas Residential Consumption ...

  6. ,"Virginia Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Natural Gas Consumption by End ... 11:05:20 AM" "Back to Contents","Data 1: Virginia Natural Gas Consumption by End Use" ...

  7. ,"West Virginia Natural Gas Industrial Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035WV2" "Date","West Virginia Natural Gas Industrial Consumption ...

  8. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  9. 1999 Commercial Buildings Energy Consumption Survey Detailed...

    Energy Information Administration (EIA) (indexed site)

    Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ...... 124 Table C2. Total Energy Expenditures by ...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

  12. ,"Texas Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Texas Natural Gas Consumption by End ... 6:36:11 AM" "Back to Contents","Data 1: Texas Natural Gas Consumption by End Use" ...

  13. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand)...

  15. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using...

  16. Energy Information Administration - Transportation Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

  17. Commercial Buildings Energy Consumption and Expenditures 1992...

    Energy Information Administration (EIA) (indexed site)

    1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

  18. Vehicle Energy Consumption and Performance Analysis | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Consumption and Performance Analysis Vehicle Energy Consumption and Performance Analysis Argonne researchers have applied their expertise in modeling, simulation and control to ...

  19. ,"Oklahoma Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End ... 11:05:14 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Consumption by End Use" ...

  20. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  1. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  2. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  3. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  4. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  5. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  6. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  7. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  8. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  9. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  10. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  12. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption ... 7:09:42 AM" "Back to Contents","Data 1: Minnesota Natural Gas Vehicle Fuel Consumption ...

  13. Inconsistent Investment and Consumption Problems

    SciTech Connect

    Kronborg, Morten Tolver; Steffensen, Mogens

    2015-06-15

    In a traditional Black–Scholes market we develop a verification theorem for a general class of investment and consumption problems where the standard dynamic programming principle does not hold. The theorem is an extension of the standard Hamilton–Jacobi–Bellman equation in the form of a system of non-linear differential equations. We derive the optimal investment and consumption strategy for a mean-variance investor without pre-commitment endowed with labor income. In the case of constant risk aversion it turns out that the optimal amount of money to invest in stocks is independent of wealth. The optimal consumption strategy is given as a deterministic bang-bang strategy. In order to have a more realistic model we allow the risk aversion to be time and state dependent. Of special interest is the case were the risk aversion is inversely proportional to present wealth plus the financial value of future labor income net of consumption. Using the verification theorem we give a detailed analysis of this problem. It turns out that the optimal amount of money to invest in stocks is given by a linear function of wealth plus the financial value of future labor income net of consumption. The optimal consumption strategy is again given as a deterministic bang-bang strategy. We also calculate, for a general time and state dependent risk aversion function, the optimal investment and consumption strategy for a mean-standard deviation investor without pre-commitment. In that case, it turns out that it is optimal to take no risk at all.

  14. Building Energy Consumption Analysis

    Energy Science and Technology Software Center

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  15. Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Plant Fuel Consumption (Million Cubic Feet) Florida Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption Florida Natural Gas Consumption by End ...

  16. Florida Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Florida Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Florida Natural Gas Consumption by End Use Total ...

  17. Florida Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Florida Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Florida Natural Gas Consumption by End ...

  18. West Virginia Natural Gas Total Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) West Virginia Natural Gas Total Consumption ... Referring Pages: Natural Gas Consumption West Virginia Natural Gas Consumption by End Use ...

  19. Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Virginia Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Virginia Natural Gas Consumption by ...

  20. West Virginia Natural Gas Lease Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption West Virginia Natural Gas Consumption ...

  1. Virginia Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Virginia Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Virginia Natural Gas Consumption by End Use ...

  2. Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Nevada Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Nevada Natural Gas Consumption by End ...

  3. Nevada Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) Nevada Natural Gas Total Consumption (Million Cubic ... Referring Pages: Natural Gas Consumption Nevada Natural Gas Consumption by End Use ...

  4. Kansas Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Kansas Natural Gas Total Consumption (Million Cubic ... Referring Pages: Natural Gas Consumption Kansas Natural Gas Consumption by End Use Natural ...

  5. New York Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) New York Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption New York Natural Gas Consumption by ...

  6. New Mexico Natural Gas Lease Fuel Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption New Mexico Natural Gas Consumption by ...

  7. New Jersey Natural Gas Total Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Total Consumption (Million Cubic Feet) New Jersey Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New Jersey Natural Gas Consumption by End Use ...

  8. New York Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) New York Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New York Natural Gas Consumption by End Use ...

  9. New Mexico Natural Gas Total Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Total Consumption (Million Cubic Feet) New Mexico Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New Mexico Natural Gas Consumption by End Use ...

  10. New Mexico Natural Gas Plant Fuel Consumption (Million Cubic...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption New Mexico Natural Gas Consumption by ...

  11. North Dakota Natural Gas Lease Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption North Dakota Natural Gas Consumption ...

  12. North Carolina Natural Gas Total Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) North Carolina Natural Gas Total Consumption ... Referring Pages: Natural Gas Consumption North Carolina Natural Gas Consumption by End Use ...

  13. North Dakota Natural Gas Total Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) North Dakota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption North Dakota Natural Gas Consumption by End Use ...

  14. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  15. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  16. US ENC WI Site Consumption

    Energy Information Administration (EIA) (indexed site)

    120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to

  17. US WNC MO Site Consumption

    Energy Information Administration (EIA) (indexed site)

    WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less

  18. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  19. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  20. Housing characteristics, 1987: Residential Energy Consumption Survey

    SciTech Connect

    Not Available

    1989-05-26

    This report is the first of a series of reports based on data from the 1987 RECS. The 1987 RECS is the seventh in the series of national surveys of households and their energy suppliers. These surveys provide baseline information on how households in the United States use energy. A cross section of housing types such as single-family detached homes, townhouses, large and small apartment buildings, condominiums, and mobile homes were included in the survey. Data from the RECS and a companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are available to the public in published reports such as this one and on public use tapes. 10 figs., 69 tabs.

  1. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  2. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  3. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1959 or Before","1960 to 1989","1990 to 2003","1959 or Before","1960 to...

  4. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West North Central","South Atlantic","East South Central","West North...

  5. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  6. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 2003","1959 or Before","1960 to...

  7. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  8. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  9. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"West North Central","South Atlantic","East South Central","West North...

  10. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  11. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  12. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  13. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  14. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  15. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1959 or Before","1960 to 1989","1990 to 1999","1959 or Before","1960 to...

  16. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  17. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 1999","1959 or Before","1960 to...

  18. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  19. Consumption

    Energy Information Administration (EIA) (indexed site)

    90,1024,3251,1511,"Q",106.6,97.3,100.6 "Office ...",305,325,329,175,3012,2989,3782,2425,101.2,108.8,87,72.1 "Public Assembly ...",93,103,109,64,1048,...

  20. Consumption

    Energy Information Administration (EIA) (indexed site)

    9,60,56.7,43.1,31.4,22.1 "1990 to 1999 ...",69,87,51,93,34,1735,1988,1202,3012,1267,40,43.8,42.4,30.9,26.9 "2000 to 2003 ...",23,40,"Q",28,15,693,1086,7...

  1. ,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    10:36:09 AM" "Back to Contents","Data 1: Florida Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570SFL2" "Date","Florida Natural Gas Vehicle Fuel Consumption ...

  2. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

  3. Household energy consumption and expenditures, 1990

    SciTech Connect

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  4. Florida Natural Gas Lease and Plant Fuel Consumption (Million...

    Annual Energy Outlook

    Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 ... Natural Gas Lease and Plant Fuel Consumption Florida Natural Gas Consumption by End Use ...

  5. State Energy Data System 2014 Consumption Technical Notes

    Annual Energy Outlook

    Consumption Technical Notes U.S. Energy Information Administration | State Energy Data 2014: Consumption 3 Purpose All of the estimates contained in the state energy consumption ...

  6. Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles

    SciTech Connect

    Richard "Barney" Carlson; Matthew G. Shirk; Benjamin M. Geller

    2001-11-01

    Primary Factors that Impact the Fuel Consumption of Plug-In Hybrid Electric Vehicles RICHARD ‘BARNEY’ CARLSON, MATTHEW G. SHIRK Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA richard.carlson@inl.gov Abstract Plug-in Hybrid Electric Vehicles (PHEV) have proven to significantly reduce petroleum consumption as compared to conventional internal combustion engine vehicles (ICE) by utilizing electrical energy for propulsion. Through extensive testing of PHEV’s, analysis has shown that the fuel consumption of PHEV’s is more significantly affected than conventional vehicles by either the driver’s input or by the environmental inputs around the vehicle. Six primary factors have been identified that significantly affect the fuel consumption of PHEV’s. In this paper, these primary factors are analyzed from on-road driving and charging data from over 200 PHEV’s throughout North America that include Hymotion Prius conversions and Hybrids Plus Escape conversions. The Idaho National Laboratory (INL) tests plug-in hybrid electric (PHEV) vehicles as part of its conduct of DOE’s Advanced Vehicle Testing Activity (AVTA). In collaboration with its 75 testing partners located in 23 states and Canada, INL has collected data on 191 PHEVs, comprised of 12 different PHEV models (by battery manufacturer). With more than 1 million PHEV test miles accumulated to date, the PHEVs are fleet, track, and dynamometer tested. Six Primary Factors The six primary factors that significantly impact PHEV fuel consumption are listed below. Some of the factors are unique to plug-in vehicles while others are common for all types of vehicles. 1. Usable Electrical Energy is dictated by battery capacity, rate of depletion as well as when the vehicle was last plugged-in. With less electrical energy available the powertrain must use more petroleum to generate the required power output. 2. Driver Aggressiveness impacts the fuel consumption of nearly all vehicles but

  7. Table 5.5 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  8. Table 5.6 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  9. Table 5.7 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  10. Table 5.8 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  11. Principal Building Activities--1995 CBECS

    Energy Information Administration (EIA) (indexed site)

    Detailed Tables > Principal Building Activities Table Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities,...

  12. Residential Building Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building...

  13. Energy consumption in thermomechanical pulping

    SciTech Connect

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  14. Budget-based power consumption for application execution on a plurality of compute nodes

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Peters, Amanda E; Ratterman, Joseph D; Smith, Brian E

    2013-02-05

    Methods, apparatus, and products are disclosed for budget-based power consumption for application execution on a plurality of compute nodes that include: assigning an execution priority to each of one or more applications; executing, on the plurality of compute nodes, the applications according to the execution priorities assigned to the applications at an initial power level provided to the compute nodes until a predetermined power consumption threshold is reached; and applying, upon reaching the predetermined power consumption threshold, one or more power conservation actions to reduce power consumption of the plurality of compute nodes during execution of the applications.

  15. Budget-based power consumption for application execution on a plurality of compute nodes

    DOEpatents

    Archer, Charles J; Inglett, Todd A; Ratterman, Joseph D

    2012-10-23

    Methods, apparatus, and products are disclosed for budget-based power consumption for application execution on a plurality of compute nodes that include: assigning an execution priority to each of one or more applications; executing, on the plurality of compute nodes, the applications according to the execution priorities assigned to the applications at an initial power level provided to the compute nodes until a predetermined power consumption threshold is reached; and applying, upon reaching the predetermined power consumption threshold, one or more power conservation actions to reduce power consumption of the plurality of compute nodes during execution of the applications.

  16. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book

    1 2003 Commercial Delivered Energy Consumption Intensities, by Ownership of Unit (1) Ownership Nongovernment Owned 85.1 72% Owner-Occupied 87.3 35% Nonowner-Occupied 88.4 36% Government Owned 105.3 28% 100% Note(s): Source(s): Consumption (thousand Btu/SF) 1) Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, June 2006,

  17. 2009 Energy Consumption Per Person | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2009 Energy Consumption Per Person 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person Per capita energy consumption across all sectors of the economy. Click on a state for more information.

  18. Household energy consumption and expenditures 1993

    SciTech Connect

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  19. Table 6a. Total Electricity Consumption per Effective Occupied...

    Energy Information Administration (EIA) (indexed site)

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  20. Household energy consumption and expenditures, 1987

    SciTech Connect

    Not Available

    1989-10-10

    Household Energy Consumption and Expenditures 1987, Part 1: National Data is the second publication in a series from the 1987 Residential Energy Consumption Survey (RECS). It is prepared by the Energy End Use Division (EEUD) of the Office of Energy Markets and End Use (EMEU), Energy Information Administration (EIA). The EIA collects and publishes comprehensive data on energy consumption in occupied housing units in the residential sector through the RECS. 15 figs., 50 tabs.

  1. Commercial Buildings Energy Consumption and Expenditures 1992

    Energy Information Administration (EIA) (indexed site)

    Appendix I Related EIA Publications on Energy Consumption For information about how to obtain these publi- cations, see the inside cover of this report. Please note that the...

  2. Commercial Buildings Energy Consumption and Expenditures 1992

    Energy Information Administration (EIA) (indexed site)

    Appendix A How the Survey Was Conducted Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted by the Energy Information Administration (EIA) on a...

  3. Commercial Buildings Energy Consumption and Expenditures 1992

    Energy Information Administration (EIA) (indexed site)

    Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Energy Information Adminstration Office of Energy Markets and End Use U.S....

  4. Commercial Buildings Energy Consumption and Expenditures 1992

    Energy Information Administration (EIA) (indexed site)

    in this report were based on monthly billing records submitted by the buildings' energy suppliers. The section, "Annual Consumption and Expenditures" provide a detailed...

  5. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    Energy Information Administration (EIA) (indexed site)

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  6. Commercial Buildings Energy Consumption and Expenditures 1995...

    Energy Information Administration (EIA) (indexed site)

    fuel oil, and district heat consumption and expenditures for commercial buildings by building characteristics. Previous Page Arrow Separater Bar File Last Modified: January 29,...

  7. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  8. Chapter 4. Fuel Economy, Consumption and Expenditures

    Energy Information Administration (EIA) (indexed site)

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  9. Displacing Natural Gas Consumption and Lowering Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion System for Refinery and Chemical Plant Process Heaters ADVANCED MANUFACTURING OFFICE Displacing Natural Gas Consumption and Lowering Emissions By enabling process ...

  10. Issues in International Energy Consumption Analysis: Electricity...

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC ...

  11. Issues in International Energy Consumption Analysis: Canadian...

    Energy Information Administration (EIA) (indexed site)

    Issues in International Energy Consumption Analysis: Canadian Energy Demand June 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 ...

  12. ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES...

    Office of Scientific and Technical Information (OSTI)

    fuel-fired peak heating for geothermal greenhouses Rafferty, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES; AUXILIARY HEATING; CAPITALIZED COST; OPERATING...

  13. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  14. Derived Annual Estimates of Manufacturing Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...

  15. Household Vehicles Energy Consumption 1994 - Appendix C

    Energy Information Administration (EIA) (indexed site)

    discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on...

  16. Commercial Miscellaneous Electric Loads Report: Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial Miscellaneous Electric Loads Report: ...

  17. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use ...

  18. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update

    This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to ...

  19. Energy Information Administration - Commercial Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption Natural Gas Expenditures per Building (thousand cubic feet) per Square Foot (cubic feet) Distribution of Building-Level Intensities (cubic feetsquare foot) 25th...

  20. CBECS 1992 - Consumption & Expenditures, Detailed Tables

    Energy Information Administration (EIA) (indexed site)

    consumption by major fuel, 1992 Divider Line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  1. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update

    EIA has conducted the Residential Energy Consumption Survey (RECS) since 1978 to provide data on home energy characteristics, end uses of energy, and expenses for the four Census ...

  2. Minimize oil field power consumption

    SciTech Connect

    Harris, B.; Ennis, P.

    1999-08-01

    Though electric power is a major operating cost of oil production, few producers have systematically evaluated their power consumption for ways to be more efficient. There is significant money to be saved by doing so, and now is a good time to make an evaluation because new power options are at hand. They range from small turbo generators that can run on casing head gas and power one or two lift pumps, to rebuilt major turbines and ram-jet powered generators that can be set in a multi-well field and deliver power at bargain prices. Power industry deregulation is also underway. Opportunities for more advantageous power contracts from competitive sources are not far off. This two-part series covers power efficiency and power options. This article reviews steps you can take to evaluate the efficiency of your power use and go about improving it. Part 2 will discuss opportunities for use of distributed power and changes you can expect from decentralized power.

  3. Activation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  4. Constraining Energy Consumption of China's Largest IndustrialEnterprises Through the Top-1000 Energy-Consuming EnterpriseProgram

    SciTech Connect

    Price, Lynn; Wang, Xuejun

    2007-06-01

    Between 1980 and 2000, China's energy efficiency policiesresulted in a decoupling of the traditionally linked relationship betweenenergy use and gross domestic product (GDP) growth, realizing a four-foldincrease in GDP with only a doubling of energy use. However, during Chinas transition to a market-based economy in the 1990s, many of thecountry's energy efficiency programs were dismantled and between 2001 and2005 China's energy use increased significantly, growing at about thesame rate as GDP. Continuation of this one-to-one ratio of energyconsumption to GDP given China's stated goal of again quadrupling GDPbetween 2000 and 2020 will lead to significant demand for energy, most ofwhich is coal-based. The resulting local, national, and globalenvironmental impacts could be substantial.In 2005, realizing thesignificance of this situation, the Chinese government announced anambitious goal of reducing energy consumption per unit of GDP by 20percent between 2005 and 2010. One of the key initiatives for realizingthis goal is the Top-1000 Energy-Consuming Enterprises program. Thecomprehensive energy consumption of these 1000 enterprises accounted for33 percent of national and 47 percent of industrial energy usage in 2004.Under the Top-1000 program, 2010 energy consumption targets wereannounced for each enterprise. Activities to be undertaken includebenchmarking, energy audits, development of energy saving action plans,information and training workshops, and annual reporting of energyconsumption. This paper will describe the program in detail, includingthe types of enterprises included and the program activities, and willprovide an analysis of the progress and lessons learned todate.

  5. Power consumption monitoring using additional monitoring device

    SciTech Connect

    Truşcă, M. R. C. Albert, Ş. Tudoran, C. Soran, M. L. Fărcaş, F.; Abrudean, M.

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  6. Consumption & Efficiency - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey data Commercial Energy Consumption Survey data Manufacturing Energy Consumption Survey data Vehicle Energy Consumption Survey data Energy intensity Consumption summaries Average cost of fossil-fuels for electricity generation All consumption & efficiency data reports Analysis & Projections Major Topics Most popular All sectors Commercial buildings Efficiency Manufacturing Projections

  7. Table 1.6 State-Level Energy Consumption, Expenditure, and Price...

    Energy Information Administration (EIA) (indexed site)

    ... 4The U.S. consumption value in this table does not match those in Tables 1.1 and 1.3 because it: 1) does not include biodiesel; and 2) is the sum of State ...

  8. Fuel consumption of freight trains hauled by diesel electric locomotives

    SciTech Connect

    Radford, R.W.

    1983-05-01

    The cost of railway diesel fuel has become an increasingly high proportion of railway operating expenses. The paper analyzes the generation and utilization of rail horsepower in freight train operations. The effects on fuel consumption of variations in several parameters including train consist, car weight, gradient, average speed, meet strategy, throttle control, locomotive axle arrangement, and train marshalling are examined. Estimates are made of the value, in terms of fuel cost, of weight reduction of freight cars and of selective train marshalling.

  9. Activities

    Energy.gov [DOE]

    Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

  10. State energy data report 1993: Consumption estimates

    SciTech Connect

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  11. State Energy Data Report, 1991: Consumption estimates

    SciTech Connect

    Not Available

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  12. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  13. US MidAtl NJ Site Consumption

    Energy Information Administration (EIA) (indexed site)

    MidAtl NJ Site Consumption million Btu $0 $700 $1,400 $2,100 $2,800 $3,500 US MidAtl NJ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NJ Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US MidAtl NJ Expenditures dollars ELECTRICITY ONLY average per household * Average energy consumption (127 million Btu per year) in New Jersey homes and average household energy expenditures ($3,065 per year) are among the

  14. US Mnt(S) AZ Site Consumption

    Energy Information Administration (EIA) (indexed site)

    Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all

  15. US SoAtl GA Site Consumption

    Energy Information Administration (EIA) (indexed site)

    GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per

  16. US SoAtl VA Site Consumption

    Energy Information Administration (EIA) (indexed site)

    SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are

  17. Building Technologies Office: R&D Opportunities to Reduce Energy Consumption in Miscellaneous Electric Loads (MELs)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office: R&D Opportunities to Reduce Energy Consumption in Miscellaneous Electric Loads (MELs) Pat Phelan (patrick.phelan@ee.doe.gov) BTO Emerging Technologies June 3, 2016 2 Why Do We Care About MELs? Problem: Fraction of energy consumption due to MELs is rising as other building technologies become more efficient. DOE Quadrennial Technology Review (2015)  60% of remaining energy consumption after 2020 R&D targets are achieved, the majority of which are MELs. FY16 Activities: * Panel

  18. Energy Intensity Indicators: Commercial Source Energy Consumption

    Energy.gov [DOE]

    Figure C1 below reports as index numbers over the period 1970 through 2011: 1) commercial building floor space, 2) energy use based on source energy consumption, 3) energy intensity, and 4) the...

  19. Energy Intensity Indicators: Residential Source Energy Consumption

    Energy.gov [DOE]

    Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4...

  20. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy ...

  1. ,"Alabama Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas ...

  2. State energy data report 1996: Consumption estimates

    SciTech Connect

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  3. A method for evaluating transport energy consumption in suburban areas

    SciTech Connect

    Marique, Anne-Francoise Reiter, Sigrid

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by

  4. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  5. Estimates of US biomass energy consumption 1992

    SciTech Connect

    Not Available

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  6. Commercial Miscellaneous Electric Loads Report: Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Characterization and Savings Potential in 2008 by Building Type | Department of Energy Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial miscellaneous electric loads (MELs) are generally defined as all electric loads except those related to main systems for heating,

  7. SWEIS annual review - CY2002 : a comparison of CY2002 operations to projections included in the site-wide environmental impact statement for continued operation of Sandia National Laboratories/New Mexico.

    SciTech Connect

    Bayliss, Linda Sue; White, Brenda Bailey; Guerrero, Joseph Vincent; Catechis, Christopher Spyros

    2003-10-01

    The SNL/NM CY2002 SWEIS Annual Review discusses changes in facilities and facility operations that have occurred in selected and notable facilities since source data were collected for the SNL/NM SWEIS (DOE/EIS-0281). The following information is presented: {sm_bullet} An updated overview of SNL/NM selected and notable facilities and infrastructure capabilities. {sm_bullet} An overview of SNL/NM environment, safety, and health programs, including summaries of the purpose, operations, activities, hazards, and hazard controls at relevant facilities and risk management methods for SNL/NM. {sm_bullet} Updated base year activities data, together with related inventories, material consumption, emissions, waste, and resource consumption. {sm_bullet} Appendices summarizing activities and related hazards at SNL/NM individual special, general, and highbay laboratories, and chemical purchases.

  8. New Mexico Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update

    New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 ... Natural Gas Lease and Plant Fuel Consumption New Mexico Natural Gas Consumption by End Use ...

  9. New York Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update

    New York Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 ... Natural Gas Lease and Plant Fuel Consumption New York Natural Gas Consumption by End Use ...

  10. Controlled cooling of an electronic system for reduced energy consumption

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  11. A work bibliography on native food consumption, demography and lifestyle

    SciTech Connect

    Murray, C.E.; Lee, W.J.

    1992-12-01

    The purpose of this report is to provide a bibliography for the Native American tribe participants in the Hanford Environmental Dose Reconstruction (HEDR) Project to use. The HEDR Project's primary objective is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy's Hanford Site near Richland, Washington. Eight Native American tribes are responsible for estimating daily and seasonal consumption of traditional foods, demography, and other lifestyle factors that could have affected the radiation dose received by tribal members. This report provides a bibliography of recorded accounts that tribal researchers may use to verify their estimates. The bibliographic citations include references to information on the specific tribes, Columbia River plateau ethnobotany, infant feeding practices and milk consumption, nutritional studies and radiation, tribal economic and demographic characteristics (1940--1970), research methods, primary sources from the National Archives, regional archives, libraries, and museums.

  12. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  13. 1999 CBECS Principal Building Activities

    Energy Information Administration (EIA) (indexed site)

    Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy...

  14. Table C10. Electricity Consumption and Expenditure Intensities...

    Energy Information Administration (EIA) (indexed site)

    Electricity Consumption and Expenditure Intensities, 1999" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square Foot (kWh)","per...

  15. Trends in Commercial Buildings--Trends in Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    2 Part 1. Energy Consumption Data Tables Total Energy Intensity Intensity by Energy Source Background: Site and Primary Energy Trends in Energy Consumption and Energy Sources Part...

  16. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  17. Table 3a. Total Natural Gas Consumption per Effective Occupied...

    Gasoline and Diesel Fuel Update

    3a. Natural Gas Consumption per Sq Ft Table 3a. Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas...

  18. ,"West Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","West Virginia Natural Gas Vehicle Fuel Consumption ... PM" "Back to Contents","Data 1: West Virginia Natural Gas Vehicle Fuel Consumption ...

  19. ,"West Virginia Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","West Virginia Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Consumption by End Use" ...

  20. Manufacturing Energy Consumption Survey (MECS) - Data - U.S....

    Energy Information Administration (EIA) (indexed site)

    Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and ...

  1. Manufacturing Energy Consumption Survey (MECS) - Data - U.S....

    Energy Information Administration (EIA) (indexed site)

    Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census Region, ...

  2. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles Fact 861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles ...

  3. Lubricant Formulation and Consumption Effects on Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine ...

  4. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6: December 19, 2011 Vocational Vehicle Fuel Consumption Standards Fact 706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards The National Highway Traffic Safety ...

  5. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Energy.gov [DOE] (indexed site)

    published a final rule setting fuel consumption standards for heavy trucks in September ... Combination Tractor Fuel Consumption Standards, Model Years (MY) 2014-2017 Graph showing ...

  6. Fact #839: September 22, 2014 World Petroleum Consumption Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Consumption Continues to Rise despite Declines from the United States and Europe - Dataset Fact 839: September 22, 2014 World Petroleum Consumption Continues to ...

  7. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles - Dataset Fact 861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel ...

  8. Fact #840: September 29, 2014 World Renewable Electricity Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    29, 2014 World Renewable Electricity Consumption is Growing - Dataset Fact 840: September 29, 2014 World Renewable Electricity Consumption is Growing - Dataset Excel file with ...

  9. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus ... Measurement of Emissions and Fuel Consumption of a PHEV School Bus Robb Barnitt and ...

  10. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  11. Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and ...

  12. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  13. West Virginia Natural Gas Plant Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Plant Fuel Consumption ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  14. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  15. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  16. Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  17. 2002 Manufacturing Energy Consumption Survey - User Needs Survey

    Energy Information Administration (EIA) (indexed site)

    2002 Manufacturing Energy Consumption Survey: User-Needs Survey View current results. We need your help in designing the next Energy Consumption Survey (MECS) As our valued...

  18. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  19. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  20. 1991 Manufacturing Consumption of Energy 1991 Executive Summary

    Energy Information Administration (EIA) (indexed site)

    Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy...

  1. Table 2a. Electricity Consumption and Electricity Intensities...

    Energy Information Administration (EIA) (indexed site)

    Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity...

  2. Appliance Standby Power and Energy Consumption in South African...

    OpenEI (Open Energy Information) [EERE & EIA]

    Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South...

  3. Visualization of United States Energy Consumption | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Consumption Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Visualization of United States Energy Consumption AgencyCompany Organization: Energy Information...

  4. Table 5a. Total District Heat Consumption per Effective Occupied...

    Energy Information Administration (EIA) (indexed site)

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  5. Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overall consumption tends to follow population density; however, the share of natural gas consumption is usually greater in those states involved in the petroleum, gas, and mining ...

  6. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel ... Natural Gas Delivered to Vehicle Fuel Consumers North Dakota Natural Gas Consumption by ...

  7. Oil-Consumption-Weighted GDP: Description, Calculation, and Comparison

    Energy Information Administration (EIA) (indexed site)

    Oil-Consumption-Weighted GDP: Description, Calculation, and Comparison Vipin Arora, Tyler ... accounts for the relative level of oil consumption within each of the component countries. ...

  8. Use of nanofiltration to reduce cooling tower water consumption...

    Office of Scientific and Technical Information (OSTI)

    Use of nanofiltration to reduce cooling tower water consumption. Citation Details In-Document Search Title: Use of nanofiltration to reduce cooling tower water consumption. ...

  9. Table E7.1. Consumption Ratios of Fuel, 1998

    Energy Information Administration (EIA) (indexed site)

    ... Consumption Division, Form EIA-846, '1998 Manufacturing" "Energy Consumption Survey,' and the Bureau of the Census," "data files for the '1998 Annual Survey of Manufactures.'" ...

  10. ,"New Mexico Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","New Mexico Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Consumption by End Use" ...

  11. Electrochemical system including lamella settler crystallizer

    DOEpatents

    Maimoni, Arturo

    1988-01-01

    A crystallizer which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as will as in other elecrochemical systems requiring separation for phases of different densities.

  12. Topic A Note: Includes STEPS Subtopic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Topic A Note: Includes STEPS Subtopic 33 Total Projects Developing and Enhancing Workforce Training Programs...

  13. International energy outlook. Volume 2. Europe (including USSR)

    SciTech Connect

    Jablonski, D.M.

    1982-01-01

    Europe, like the rest of the globe, still is reeling from the blows of energy crises. European countries are finding energy a critical bottom line to their development and future well-being. To reduce energy dependency and improve fiscal balance, the countries are placing increasing emphasis on exploiting their indigenous energy sources. This volume, Volume 2 is a compilation of official US government intelligence reports examining energy trends and related data in 10 European countries: France, Greece, Italy, Netherlands, Norway, Spain, Sweden, West Germany, Yugoslvania and the Soviet Union. The range and detail of country coverage vary, dut to availability of reports. Although the book details current energy situations, its main emphasis is on the future, including estimates of future production and consumption, and descriptions of energy-development plans. The countries not endowed with large petroleum resources are moving toward non-oil sources. 5 references, 65 tables.

  14. Household energy consumption and expenditures 1987

    SciTech Connect

    Not Available

    1990-01-22

    This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

  15. Reducing power consumption while performing collective operations on a plurality of compute nodes

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.

    2011-10-18

    Methods, apparatus, and products are disclosed for reducing power consumption while performing collective operations on a plurality of compute nodes that include: receiving, by each compute node, instructions to perform a type of collective operation; selecting, by each compute node from a plurality of collective operations for the collective operation type, a particular collective operation in dependence upon power consumption characteristics for each of the plurality of collective operations; and executing, by each compute node, the selected collective operation.

  16. US MidAtl NY Site Consumption

    Energy Information Administration (EIA) (indexed site)

    MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in

  17. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  18. US MidAtl PA Site Consumption

    Energy Information Administration (EIA) (indexed site)

    MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also

  19. US Mnt(N) CO Site Consumption

    Energy Information Administration (EIA) (indexed site)

    Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in

  20. US SoAtl FL Site Consumption

    Energy Information Administration (EIA) (indexed site)

    FL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl FL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl FL Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US SoAtl FL Expenditures dollars ELECTRICITY ONLY average per household * Electricity accounts for 90% of the energy consumed by Florida households, and annual electricity expenditures are 40% more than the U.S. average. Florida is second only

  1. State energy data report 1995 - consumption estimates

    SciTech Connect

    1997-12-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  2. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  3. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information

    Energy Information Administration (EIA) (indexed site)

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Preliminary estimates show that U.S. manufacturing energy consumption increased between 2010 and 2014 Graph showing manufacturing energy consumption has increased for the first time since 2002 Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 2010

  4. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Preliminary estimates show that U.S. manufacturing energy consumption increased between 2010 and 2014 Graph showing manufacturing energy consumption has increased for the first time since 2002 Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 2010

  5. Table 5.1 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  6. Table 5.3 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  7. Sample design for the residential energy consumption survey

    SciTech Connect

    Not Available

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  8. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  9. Organotin intake through fish consumption in Finland

    SciTech Connect

    Airaksinen, Riikka; Rantakokko, Panu; Turunen, Anu W.; Vartiainen, Terttu; Vuorinen, Pekka J.; Lappalainen, Antti; Vihervuori, Aune; Mannio, Jaakko; Hallikainen, Anja

    2010-08-15

    Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performed in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.

  10. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  11. Communications circuit including a linear quadratic estimator

    SciTech Connect

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  12. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  13. Energy Consumption Series: Assessment of energy use in multibuilding facilities

    SciTech Connect

    Not Available

    1993-08-01

    This study originally had two primary objectives: (1) to improve EIA`s estimates of district heat consumption for commercial buildings in the CBECS sample that lacked individual metering and (2) to provide a basis for estimating primary fuel consumption by central plants serving commercial buildings. These objectives were expanded to include additional questions relating to these central plants. Background information is provided on the CBECS and on district heating and cooling, which is the most important type of energy-related service provided by multibuilding facilities with central physical plants. Chapters 2 and 3 present data results on multibuilding facilities from the 1989 CBECS and the pilot Facility Survey. Chapter 2 presents the characteristics of multibuilding facilities and the individual buildings located on these facilities. Chapter 3 provides estimates of energy inputs and outputs of multibuilding facilities with central physical plants. Chapter 4 assesses the quality of the pilot Facility Survey and includes recommendations for future work in this area. The appendices provide more detailed information on the Facility Survey itself, in particular the limitations on the use of these results. Appendix B, ``Data Quality``, provides detailed information relating to the limitations of the data and the conclusions presented in this report. As a pilot study, the 1989 Facility Survey has some serious flaws and limitations which are recognized in this report.

  14. Energy consumption series: Lighting in commercial buildings

    SciTech Connect

    Not Available

    1992-03-11

    Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy`s (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration`s (EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

  15. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  16. Scramjet including integrated inlet and combustor

    SciTech Connect

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  17. Household and environmental characteristics related to household energy-consumption change: A human ecological approach

    SciTech Connect

    Guerin, D.A.

    1988-01-01

    This study focused on the family household as an organism and on its interaction with the three environments of the human ecosystem (natural, behavioral, and constructed) as these influence energy consumption and energy-consumption change. A secondary statistical analysis of data from the US Department of Energy Residential Energy Consumption Surveys (RECS) was completed. The 1980 and 1983 RECS were used as the data base. Longitudinal data, including household, environmental, and energy-consumption measures, were available for over 800 households. The households were selected from a national sample of owner-occupied housing units surveyed in both years. Results showed a significant( p = <.05) relationship between the dependent-variable energy-consumption change and the predictor variables heating degree days, addition of insulation, addition of a wood-burning stove, year the housing unit was built, and weighted number of appliances. A significant (p = <.05) relationship was found between the criterion variable energy-consumption change and the discriminating variables of age of the head of the household, cooling degree days, heating degree days, year the housing unit was built, and number of stories in the housing unit.

  18. Maine Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  19. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Consumption (Million Cubic Feet) Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. Fact #704: December 5, 2011 Fuel Consumption Standards for New...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans Fact 704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans In September ...

  1. Washington Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) Washington Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  2. Virginia Natural Gas Lease and Plant Fuel Consumption (Million...

    Energy Information Administration (EIA) (indexed site)

    and Plant Fuel Consumption (Million Cubic Feet) Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. Delaware Natural Gas Lease and Plant Fuel Consumption (Million...

    Energy Information Administration (EIA) (indexed site)

    Lease and Plant Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  4. Wyoming Natural Gas Lease and Plant Fuel Consumption (Million...

    Energy Information Administration (EIA) (indexed site)

    and Plant Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. West Virginia Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update

    and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  6. Kansas Natural Gas Lease and Plant Fuel Consumption (Million...

    Energy Information Administration (EIA) (indexed site)

    and Plant Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  7. Kentucky Natural Gas Lease and Plant Fuel Consumption (Million...

    Energy Information Administration (EIA) (indexed site)

    and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  8. Washington Natural Gas Lease and Plant Fuel Consumption (Million...

    Energy Information Administration (EIA) (indexed site)

    Lease and Plant Fuel Consumption (Million Cubic Feet) Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  9. Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. Indiana Natural Gas Lease and Plant Fuel Consumption (Million...

    Energy Information Administration (EIA) (indexed site)

    and Plant Fuel Consumption (Million Cubic Feet) Indiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Lease and Plant Fuel Consumption (Million Cubic Feet) Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  12. SEP Request for Approval Form 7 - Other Situations for Consumption...

    Energy Saver

    7 - Other Situations for Consumption Adjustment SEP Request for Approval Form 7 - Other Situations for Consumption Adjustment SEP-Request-for-Approval-Form-7Other-Situations-for-C...

  13. Trends in U.S. Residential Natural Gas Consumption

    Reports and Publications

    2010-01-01

    This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census division (1998 through 2009).

  14. ,"North Dakota Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","North Dakota Natural Gas Consumption by End ... 10:31:27 AM" "Back to Contents","Data 1: North Dakota Natural Gas Consumption by End Use" ...

  15. ,"North Carolina Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","North Carolina Natural Gas Consumption by End ... 10:31:26 AM" "Back to Contents","Data 1: North Carolina Natural Gas Consumption by End ...

  16. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  17. Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  18. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  19. New Hampshire Natural Gas Total Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) New Hampshire Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  20. Photoactive devices including porphyrinoids with coordinating additives

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  1. Subterranean barriers including at least one weld

    DOEpatents

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  2. Rotor assembly including superconducting magnetic coil

    DOEpatents

    Snitchler, Gregory L.; Gamble, Bruce B.; Voccio, John P.

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  3. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  4. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  5. Appliance Energy Consumption in Australia | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ?viewPublicatio Equivalent URI: cleanenergysolutions.orgcontentappliance-energy-consumption-australi DeploymentPrograms: Industry Codes & Standards Regulations:...

  6. Canada's Fuel Consumption Guide Website | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentcanadas-fuel-consumption-guide-websit Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This website...

  7. Estimating Methods for Determining End-Use Water Consumption | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Facilities » Water Efficiency » Estimating Methods for Determining End-Use Water Consumption Estimating Methods for Determining End-Use Water Consumption The Federal Building Metering Guidance specifies buildings with water using processes and whole building water consumption that exceeds 1,000 gallons per day must have a water meter installed. Below are methods for estimating daily water use for typical end-uses that drive building-level, end-use water consumption. Plumbing

  8. Visualization of United States Renewable Consumption | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Visualization of United States Renewable Consumption AgencyCompany Organization: Energy Information Administration Sector: Energy Resource Type: Softwaremodeling tools User...

  9. Residential Lighting End-Use Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Publications » Market Studies » Residential Lighting End-Use Consumption Residential Lighting End-Use Consumption The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3)

  10. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    SciTech Connect

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  11. Compare All CBECS Activities: Electricity Use

    Energy Information Administration (EIA) (indexed site)

    Electricity Use Compare Activities by ... Electricity Use Total Electricity Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 908 billion...

  12. User-needs study for the 1992 Commercial Buildings Energy Consumption Survey. [Energy Consumption Series

    SciTech Connect

    Not Available

    1992-09-01

    The Commercial Buildings Energy Consumption Survey (CBECS) that is conducted by the Energy Information Administration (EIA) is the primary source of energy data for commercial buildings in the United States. The survey began in 1979 and has subsequently been conducted in 1983, 1986, and 1989. The next survey will cover energy consumption during the year 1992. The building characteristic data will be collected between August 1992 and early December 1992. Requests for energy consumption data are mailed to the energy suppliers in January 1993, with data due by March 1993. Before each survey is sent into the field, the data users' needs are thoroughly assessed. The purpose of this report is to document the findings of that user-needs assessment for the 1992 survey.

  13. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  14. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  15. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " ","

  16. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  17. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  18. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  19. Thermovoltaic semiconductor device including a plasma filter

    DOEpatents

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  20. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  1. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  2. Drapery assembly including insulated drapery liner

    DOEpatents

    Cukierski, Gwendolyn (Ithaca, NY)

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  3. Table 6.2 Consumption Ratios of Fuel, 2002

    Energy Information Administration (EIA) (indexed site)

    2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value

  4. " Column: Energy-Consumption Ratios;"

    Energy Information Administration (EIA) (indexed site)

    3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  5. " Column: Energy-Consumption Ratios;"

    Energy Information Administration (EIA) (indexed site)

    3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  6. Household energy consumption and expenditures, 1990. [Contains Glossary

    SciTech Connect

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  7. Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency

    Education - Teach & Learn

    The NEED Project and the U.S. Department of Energy have collaborated to bring you this educational four-page guide to energy, electricity, consumption and efficiency. It includes, on the last page, a home energy survey to help you analyze your home energy use.

  8. Power to the Plug: An Introduction to Energy, Electricity, Consumption and Efficiency

    SciTech Connect

    DOE / EERE / NEED Project

    2011-06-07

    The NEED Project and the U.S. Department of Energy have collaborated to bring you this educational four-page guide to energy, electricity, consumption and efficiency. It includes, on the last page, a home energy survey to help you analyze your home energy use.

  9. PIA - Form EIA-475 A/G Residential Energy Consumption Survey...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Form EIA-475 AG Residential Energy Consumption Survey PIA - Form EIA-475 AG Residential Energy Consumption Survey PIA - Form EIA-475 AG Residential Energy Consumption Survey PIA ...

  10. Articles including thin film monolayers and multilayers

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.

  11. Engine lubrication circuit including two pumps

    DOEpatents

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  12. Dynamic stall simulation including turbulence modeling

    SciTech Connect

    Allet, A.; Halle, S.; Paraschivoiu, I.

    1995-09-01

    The objective of this study is to investigate the two-dimensional unsteady flow around an airfoil undergoing a Darrieus motion in dynamic stall conditions. For this purpose, a numerical solver based on the solution of the Reynolds-averaged Navier-Stokes equations expressed in a streamfunction-vorticity formulation in a non-inertial frame of reference was developed. The governing equations are solved by the streamline upwind Petrov-Galerkin finite element method (FEM). Temporal discretization is achieved by second-order-accurate finite differences. The resulting global matrix system is linearized by the Newton method and solved by the generalized minimum residual method (GMRES) with an incomplete triangular factorization preconditioning (ILU). Turbulence effects are introduced in the solver by an eddy viscosity model. The investigation centers on an evaluation of the possibilities of several turbulence models, including the algebraic Cebeci-Smith model (CSM) and the nonequilibrium Johnson-King model (JKM). In an effort to predict dynamic stall features on rotating airfoils, first the authors present some testing results concerning the performance of both turbulence models for the flat plate case. Then, computed flow structure together with aerodynamic coefficients for a NACA 0015 airfoil in Darrieus motion under stall conditions are presented.

  13. Fact #894: October 12, 2015 U.S. Petroleum Production and Consumption for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    All Sectors, 1973 through 2040 | Department of Energy 4: October 12, 2015 U.S. Petroleum Production and Consumption for All Sectors, 1973 through 2040 Fact #894: October 12, 2015 U.S. Petroleum Production and Consumption for All Sectors, 1973 through 2040 SUBSCRIBE to the Fact of the Week Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all sectors, including industrial, residential and

  14. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book

    4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished

  15. Tunable cavity resonator including a plurality of MEMS beams

    DOEpatents

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  16. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    SciTech Connect

    Not Available

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  17. Methods of producing adsorption media including a metal oxide

    SciTech Connect

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  18. Energy Intensity Indicators: Industrial Source Energy Consumption

    Energy.gov [DOE]

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  19. Video game console usage and US national energy consumption: Results from a field-metering study

    DOE PAGES [OSTI]

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; et al

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates.more » We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.« less

  20. Video game console usage and US national energy consumption: Results from a field-metering study

    SciTech Connect

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; Ganeshalingam, Mohan

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates. We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.

  1. Activation detector

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-12-08

    A method of detecting an activator, the method including impinging with an activator a receptor material lacking a photoluminescent material and generating a by-product of a radioactive decay due to the activator impinging the reeptor material. The method further including, generating light from the by-product via the Cherenkov effect and identifying a characteristic of the activator based on the light.

  2. Fact #840: September 29, 2014 World Renewable Electricity Consumption is

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Growing - Dataset | Department of Energy 40: September 29, 2014 World Renewable Electricity Consumption is Growing - Dataset Fact #840: September 29, 2014 World Renewable Electricity Consumption is Growing - Dataset Excel file with dataset for Fact #840: World Renewable Electricity Consumption is Growing fotw#840_web.xlsx (19.51 KB) More Documents & Publications Quarterly Analysis Review February 2015 Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide -

  3. SEP Request for Approval Form 7 - Other Situations for Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Adjustment | Department of Energy 7 - Other Situations for Consumption Adjustment SEP Request for Approval Form 7 - Other Situations for Consumption Adjustment SEP-Request-for-Approval-Form-7_Other-Situations-for-Consumption-Adjustment.docx (36.48 KB) More Documents & Publications SEP Request for Approval Form 6 - Non-Routine Adjustments SEP Request for Approval Form 5 - Model Does Not Satisfy 3.4.1-3.4.10 Requirements SEP Request for Approval Form 4 - Alternative Adjustment Model

  4. Impact of Extended Daylight Saving Time on National Energy Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report to Congress | Department of Energy Report to Congress Impact of Extended Daylight Saving Time on National Energy Consumption, Report to Congress This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption. Report to Congress (285 KB) More Documents & Publications Impact of Extended Daylight Saving Time on National Energy Consumption, Technical

  5. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration (EIA) RECS data show decreased energy consumption per household RECS 2009 - Release date: June 6, 2012 Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units

  6. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  7. Trends in Commercial Buildings--Energy Sources Consumption Tables

    Energy Information Administration (EIA) (indexed site)

    ** estimates adjusted to match the 1995 CBECS definition of target population Energy Information Administration Commercial Buildings Energy Consumption Survey Table 2....

  8. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Plant Fuel Consumption South Dakota Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

  9. Manufacturing Energy Consumption Survey (MECS) - Data - U.S....

    Energy Information Administration (EIA) (indexed site)

    Data Methodology & Forms 2006 Data Tables Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy Information Administration (EIA) Revision notice (November 2009): ...

  10. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...

    Energy.gov [DOE] (indexed site)

    Mass Correlation of Engine Emissions with Spectral Instruments Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Chemical and Physical Characteristics ...

  11. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  12. Manufacturing-Industrial Energy Consumption Survey(MECS) Historical...

    Energy Information Administration (EIA) (indexed site)

    reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring...

  13. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grades: All Topics: Biomass, Wind Energy, Hydropower, Solar, Geothermal Owner: The NEED Project Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...

  14. Table 2b. Relative Standard Errors for Electricity Consumption...

    Energy Information Administration (EIA) (indexed site)

    2b. Relative Standard Errors for Electricity Table 2b. Relative Standard Errors for Electricity Consumption and Electricity Intensities, per Square Foot, Specific to Occupied and...

  15. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    Energy Information Administration (EIA) (indexed site)

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  16. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report to Congress Impact of Extended Daylight Saving Time on National Energy Consumption, Report to Congress This report presents the detailed results, data, and analytical ...

  17. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications

    2008-01-01

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  18. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Gasoline and Diesel Fuel Update

    Relationship of CBECS Coverage to EIA Supply Surveys The primary purpose of the CBECS is to collect accurate statistics of energy consumption by individual buildings. EIA also ...

  19. Comparison of Real World Energy Consumption to Models and DOE...

    Energy.gov [DOE] (indexed site)

    It first identifies and prioritizes the appliances to be evaluated. Then, the study determines whether real world energy consumption differed substantially from predictions and ...

  20. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy ...

  1. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document ...

  2. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Office of Environmental Management (EM)

    Technical Documentation Impact of Extended Daylight Saving Time on National Energy Consumption, Technical Documentation This report presents the detailed results, data, and ...

  3. ,"New Hampshire Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire ...

  4. ,"Rhode Island Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island ...

  5. Life Cycle Water Consumption and Water Resource Assessment for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects ...

  6. Trends in Renewable Energy Consumption and Electricity - Energy...

    Gasoline and Diesel Fuel Update

    Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation ... Wind was the source of 11 percent of total renewable energy consumption, and solar and ...

  7. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    Energy Information Administration (EIA) (indexed site)

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  8. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  9. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers North Dakota Natural Gas Consumption by End Use Vehicle Fuel ...

  10. "Table A10. Total Consumption of LPG, Distillate Fuel Oil...

    Energy Information Administration (EIA) (indexed site)

    ... Form EIA-846, '1991" "Manufacturing Energy Consumption Survey,' and the Bureau of the Census, Industry" "Division, data files for the '1991 Annual Survey of Manufactures.'

  11. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  12. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    SciTech Connect

    Elcock, D.

    2010-09-17

    , would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.

  13. Energy Information Administration - Commercial Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    500,000 ... 8 3 1 Q Q 3 Q Principal Building Activity Education ... 386 360 21 Q N N N Food Sales...

  14. Energy Information Administration - Commercial Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    ... 4,859 2,586 948 810 261 147 74 26 8 Principal Building Activity Education ... 386 162 56 60 48 39 16 5 Q Food Sales...

  15. Energy Information Administration - Commercial Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    ... 8 Q 2 1 Q 2 Q Q Q 1 Principal Building Activity Education ... 386 Q 21 34 29 87 Q 56 39 97 Food Sales...

  16. An Integrated Geovisual Analytics Framework for Analysis of Energy Consumption Data and Renewable Energy Potentials

    SciTech Connect

    Omitaomu, Olufemi A; Maness, Christopher S; Kramer, Ian S; Kodysh, Jeffrey B; Bhaduri, Budhendra L; Steed, Chad A; Karthik, Rajasekar; Nugent, Philip J; Myers, Aaron T

    2012-01-01

    We present an integrated geovisual analytics framework for utility consumers to interactively analyze and benchmark their energy consumption. The framework uses energy and property data already available with the utility companies and county governments respectively. The motivation for the developed framework is the need for citizens to go beyond the conventional utility bills in understanding the patterns in their energy consumption. There is also a need for citizens to go beyond one-time improvements that are often not monitored and measured over time. Some of the features of the framework include the ability for citizens to visualize their historical energy consumption data along with weather data in their location. The quantity of historical energy data available is significantly more than what is available from utility bills. An overlay of the weather data provides users with a visual correlation between weather patterns and their energy consumption patterns. Another feature of the framework is the ability for citizens to compare their consumption on an aggregated basis to that of their peers other citizens living in houses of similar size and age and within the same or different geographical boundaries, such as subdivision, zip code, or county. The users could also compare their consumption to others based on the size of their family and other attributes. This feature could help citizens determine if they are among the best in class . The framework can also be used by the utility companies to better understand their customers and to plan their services. To make the framework easily accessible, it is developed to be compatible with mobile consumer electronics devices.

  17. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  18. Commercial Buildings Energy Consumption and Expenditures 1992

    Energy Information Administration (EIA) (indexed site)

    in CBECS. In addition, the same customer may be classified differently by each of its energy suppliers. Activities with Large Amounts of Hot Water: One of the energy-related space...

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    ... 77,419 93.60 834.8 1.01 10.78 Principal Building Activity Education ... 5,223 116.63 Q Q Q Food Sales...

  20. Energy Information Administration - Commercial Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    ... 7,660 2,756 800 Q Q 3,274 Q Principal Building Activity Education ... 9,874 8,714 946 Q N N N Food Sales...

  1. Energy Information Administration - Commercial Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    500,000 ... 8 7,660 937.6 700.0 Principal Building Activity Education ... 386 9,874 25.6 7.0 Food Sales...

  2. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  3. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  4. Optimization Under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  5. Optimization under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect

    Juan M. Salazar; Stephen E. Zitney; Urmila Diwekar

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  6. Commercial Buildings Energy Consumption and Expenditures 1992

    Energy Information Administration (EIA) (indexed site)

    at the national level as well as State level in several EIA reports, including State Energy Data Report (SEDR) and the Monthly Energy Review (MER). When comparing the CBECS totals...

  7. 1999 CBECS Summary Table for All Building Activities

    Energy Information Administration (EIA) (indexed site)

    Tables 1999 Commercial Buildings Consumption Survey SUMMARY TABLES FOR ALL PRINCIPAL BUILDING ACTIVITIES Number of Buildings (thousand) Floorspace (million square feet) Square...

  8. End use energy consumption data base: transportation sector

    SciTech Connect

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  9. U.S. gasoline consumption highest in 8 years

    Energy Information Administration (EIA) (indexed site)

    U.S. gasoline consumption highest in 8 years U.S. gasoline consumption this year is expected to be at the highest level since the record fuel demand seen back in 2007 as lower gasoline prices and more people finding jobs means more sales at the gasoline pump. In its new monthly forecast, the U.S. Energy Information Administration said gasoline consumption increased by 2.7% during the first eight months of 2015 and should rise by an average of 190,000 barrels per day this year to 9.1 million

  10. Missouri Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Missouri Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 1990's 0 0 1 0 0 0 1 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Lease Fuel Consumption

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    201 412 431 13,124 31,858 25,200 15.3 12.9 17.1 Principal Building Activity Education ... 9 55 45 806 5,378 3,687 11.1 10.2 12.2 Food...

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ... 63 423 334 808 5,378 3,687 78.3 78.6 90.7...

  13. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    467 882 688 7,144 21,928 19,401 65.4 40.2 35.5 Principal Building Activity Education ... Q 137 101 419 3,629 2,997 53.9 37.6 33.7...

  14. Energy Information Administration - Commercial Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    7,660 Q 1,451 1,192 Q 1,572 Q Q Q 1,119 Principal Building Activity Education ... 9,874 Q 1,384 1,990 552 2,445 341 1,198 640...

  15. Energy Information Administration - Commercial Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    71,658 6,922 7,033 12,659 9,382 10,291 10,217 7,494 7,660 Principal Building Activity Education ... 9,874 409 399 931 1,756 2,690 2,167 1,420 Q...

  16. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    254 132 Q 1,073 1,766 1,966 1,573 1,282 Q 153.8 129.4 83.9 Q Principal Building Activity Education ... 141 238 131 186 123 1,537 2,800 1,403 2,435...

  17. U.S. Natural Gas Average Consumption per Industrial Consumer...

    Gasoline and Diesel Fuel Update

    Industrial Consumer (Thousand Cubic Feet) U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  18. Impact of Extended Daylight Saving Time on national energy consumption

    SciTech Connect

    Belzer, David B.; Hadley, Stanton W.; Chin, Shih -Miao

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption.

  19. Impact of Extended Daylight Saving Time on national energy consumption

    SciTech Connect

    Belzer, David B.; Hadley, Stanton W.; Chin, Shih -Miao

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the national energy consumption.

  20. Reducing fuel consumption on the field, by continuously measuring...

    Energy.gov [DOE] (indexed site)

    Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation On Board Fuel Quality Sensor BioDiesel Content On-board ...

  1. Manufacturing Energy Consumption Survey (MECS) - Data - U.S....

    Energy Information Administration (EIA) (indexed site)

    Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and ...

  2. Manufacturing Energy Consumption Survey (MECS) - Data - U.S....

    Energy Information Administration (EIA) (indexed site)

    Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes ... Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLSPDF Table 1.5 ...

  3. Manufacturing Energy Consumption Survey (MECS) - Data - U.S....

    Energy Information Administration (EIA) (indexed site)

    Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) ... XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLS PDF ...

  4. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    Reports and Publications

    2015-01-01

    The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site energy consumption. Between 1990 and 2009, Canadian household energy consumption grew by less than 11%. Nonetheless, households contributed to 14.6% of total energy-related greenhouse gas emissions in Canada in 2009 (computed from NRCan 2012). This is the U.S. Energy Information Administrations second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in North America (mainly the United States and Canada) by using similar methodology for analyses in both countries.

  5. Estimates of U.S. Biomass Energy Consumption 1992

    Reports and Publications

    1994-01-01

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass derived primary energy used by the U.S. economy. It presents estimates of 1991 and 1992 consumption.

  6. ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report

    Office of Scientific and Technical Information (OSTI)

    USE AND DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK ... operating data on combined domestic hot water @HW) and heating systems to be used in ...

  7. New Water Booster Pump System Reduces Energy Consumption by 80...

    Energy.gov [DOE] (indexed site)

    As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual 11,255 in pumping costs. With a capital investment of ...

  8. Smart Meters Help Balance Energy Consumption at Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clouds, rain, thunderstorms… at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's teams, thanks to smart grid technology that is helping them monitor their energy consumption.

  9. South Dakota Natural Gas Industrial Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    South Dakota Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 513 451 449 370 329 253 260 259 287 329 343 367 2002 ...

  10. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This case study outlines how General Motors (GM) developed a highly efficient pumping ... As a result, the company reduced pumping system energy consumption by 80 percent (225,100 ...

  11. Energy consumption series: Development of the 1991 Manufacturing Energy Consumption Survey

    SciTech Connect

    Not Available

    1992-05-18

    The implementation and results of the proceedings concerning the Energy Information Administration assessment of the Manufacturing Energy Consumption Survey (MECS) are documented in this report. The text and Appendices C, D, and E summarize the background of the MECS data system, the events that led to the MECS redesign, the major issues address during the review process, and the eventual 1991 MECS design that resulted. For many readers, the most useful part of the report may be Appendices A and B, which contain overall summaries of the users' groups and the industrial roundtables. These appendices capture the rationale for additional data needs as provided by the users. Also, they are a rich source of information on how manufacturers deal with energy use day-to-day, how they have addressed the need for energy efficiency improvement in the past, and the opportunities and problems associated with future efforts to improve efficiency. (VC)

  12. Energy consumption series: Development of the 1991 Manufacturing Energy Consumption Survey

    SciTech Connect

    Not Available

    1992-05-18

    The implementation and results of the proceedings concerning the Energy Information Administration assessment of the Manufacturing Energy Consumption Survey (MECS) are documented in this report. The text and Appendices C, D, and E summarize the background of the MECS data system, the events that led to the MECS redesign, the major issues address during the review process, and the eventual 1991 MECS design that resulted. For many readers, the most useful part of the report may be Appendices A and B, which contain overall summaries of the users` groups and the industrial roundtables. These appendices capture the rationale for additional data needs as provided by the users. Also, they are a rich source of information on how manufacturers deal with energy use day-to-day, how they have addressed the need for energy efficiency improvement in the past, and the opportunities and problems associated with future efforts to improve efficiency. (VC)

  13. Impact of Extended Daylight Saving Time on National Energy Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Documentation | Department of Energy Technical Documentation Impact of Extended Daylight Saving Time on National Energy Consumption, Technical Documentation This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the national energy consumption in the United States. Technical Documentation for Report to Congress (3.65 MB) More Documents & Publications Impact of Extended

  14. Assessment of Vehicle Sizing, Energy Consumption and Cost through Large

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scale Simulation of Advanced Vehicle Technologies | Argonne National Laboratory Assessment of Vehicle Sizing, Energy Consumption and Cost through Large Scale Simulation of Advanced Vehicle Technologies Title Assessment of Vehicle Sizing, Energy Consumption and Cost through Large Scale Simulation of Advanced Vehicle Technologies Publication Type Report Year of Publication 2016 Authors Moawad, A, Kim, N, Shidore, N, Rousseau, A Institution Argonne National Laboratory City Argonne, IL USA

  15. Life Cycle Water Consumption and Water Resource Assessment for

    Office of Scientific and Technical Information (OSTI)

    Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects (Technical Report) | SciTech Connect Technical Report: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects Citation Details In-Document Search Title: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and

  16. International Energy Outlook 2016-Transportation sector energy consumption

    Gasoline and Diesel Fuel Update

    - Energy Information Administration 8. Transportation sector energy consumption print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption increases at an annual average rate of 1.4%, from 104 quadrillion British thermal units (Btu) in 2012 to 155 quadrillion Btu in 2040. Transportation energy demand growth occurs almost entirely in regions outside of the Organization for Economic Cooperation and Development

  17. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration (EIA) How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. This information is combined with data from energy suppliers to these homes to estimate

  18. Hydraulic HEV Fuel Consumption Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydraulic HEV Fuel Consumption Potential Hydraulic HEV Fuel Consumption Potential 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss071_rousseau_2012_o.pdf (1.07 MB) More Documents & Publications Evaluation of Powertrain Options and Component Sizing for MD and HD Applications on Real World Drive Cycles Roadmap and Technical White Papers for 21st Century Truck Partnership Fuel Displacement & Cost Potential of CNG,

  19. Smart Meter Driven Segmentation: What Your Consumption Says About You

    SciTech Connect

    Albert, A; Rajagopal, R

    2013-11-01

    With the rollout of smart metering infrastructure at scale, demand-response (DR) programs may now be tailored based on users' consumption patterns as mined from sensed data. For issuing DR events it is key to understand the inter-temporal consumption dynamics as to appropriately segment the user population. We propose to infer occupancy states from consumption time series data using a hidden Markov model framework. Occupancy is characterized in this model by 1) magnitude, 2) duration, and 3) variability. We show that users may be grouped according to their consumption patterns into groups that exhibit qualitatively different dynamics that may be exploited for program enrollment purposes. We investigate empirically the information that residential energy consumers' temporal energy demand patterns characterized by these three dimensions may convey about their demographic, household, and appliance stock characteristics. Our analysis shows that temporal patterns in the user's consumption data can predict with good accuracy certain user characteristics. We use this framework to argue that there is a large degree of individual predictability in user consumption at a population level.

  20. Nonresidential-building energy-consumption survey, 1979. Final report, Part II and Part III

    SciTech Connect

    Not Available

    1981-06-01

    The Utility Survey component of the Nonresidential Building Energy Consumption Survey was designed to provide data on the quantity and costs of energy consumed during 1979 by each building represented in the Building Survey data. To this end, 13,386 consumption and cost reporting forms were mailed to 1509 companies/organizations/agencies who supplied some type of energy to the 6222 buildings represented in the data from the earlier Building Survey. Part II, Section 2 discusses the step-by-step process of building the computer and manual files that were needed in order to conduct the Utility Survey. How the files were actually used in order to implement, control, and manage the Utility Survey was also discussed. Section 3 discusses the reporting forms and the accompanying instructional material used to collect data from the energy suppliers and Section 4 discusses the various operations for implementing the data collection task. The proessing of the data is described in Section 5 and the method of keeping the data confidential is described in Section 6. Part III, Section 7 presents several analyses of the costs associated with the Interim Nonresidential Building Energy Consumption Survey. Tables included reflect costs incurred through April 25, 1981. Administrative correspondence, record sheets, and explanatory notes are included in appendices. (MCW)

  1. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-07-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  2. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project: Draft

    SciTech Connect

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-03-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  3. A work bibliography on native food consumption, demography and lifestyle. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Murray, C.E.; Lee, W.J.

    1992-12-01

    The purpose of this report is to provide a bibliography for the Native American tribe participants in the Hanford Environmental Dose Reconstruction (HEDR) Project to use. The HEDR Project`s primary objective is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s Hanford Site near Richland, Washington. Eight Native American tribes are responsible for estimating daily and seasonal consumption of traditional foods, demography, and other lifestyle factors that could have affected the radiation dose received by tribal members. This report provides a bibliography of recorded accounts that tribal researchers may use to verify their estimates. The bibliographic citations include references to information on the specific tribes, Columbia River plateau ethnobotany, infant feeding practices and milk consumption, nutritional studies and radiation, tribal economic and demographic characteristics (1940--1970), research methods, primary sources from the National Archives, regional archives, libraries, and museums.

  4. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  5. DOE/EIA-0318/1 Nonresidential Buildings Energy Consumption Survey...

    Energy Information Administration (EIA) (indexed site)

    Nonresidential Buildings Energy Consumption Survey: 1979 Consumption and Expenditures D Part I: Natural Gas and Electricity March 1983 Energy Information Administration ...

  6. Fact #894: October 12, 2015 U.S. Petroleum Production and Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Production and Consumption for All Sectors, 1973 through 2040 - Dataset Fact 894: October 12, 2015 U.S. Petroleum Production and Consumption for All Sectors, 1973 ...

  7. Table 35. U.S. Coal Consumption at Manufacturing Plants by North...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification ... Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry ...

  8. Fact #895: October 19, 2015 U.S. Petroleum Production and Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Petroleum Production and Consumption: The Changing Landscape - Dataset Fact 895: October 19, 2015 U.S. Petroleum Production and Consumption: The Changing Landscape - ...

  9. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  10. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square...

    Annual Energy Outlook

    Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion...

  11. Table 1.3 Primary Energy Consumption Estimates by Source, 1949...

    Gasoline and Diesel Fuel Update

    ... hydroelectric power, geothermal, solar thermal, photovoltaic, and wind. ... Notes: * See "Primary Energy Consumption" in Glossary. * See Table E1 for estimated energy consumption ...

  12. Analysis of energy conversion systems, including material and global warming aspects

    SciTech Connect

    Zhang, M.; Reistad, G.M.

    1998-12-31

    This paper addresses a method for the overall evaluation of energy conversion systems, including material and global environmental aspects. To limit the scope of the work reported here, the global environmental aspects have been limited to global warming aspects. A method is presented that uses exergy as an overall evaluation measure of energy conversion systems for their lifetime. The method takes the direct exergy consumption (fuel consumption) of the conventional exergy analyses and adds (1) the exergy of the energy conversion system equipment materials, (2) the fuel production exergy and material exergy, and (3) the exergy needed to recover the total global warming gases (equivalent) of the energy conversion system. This total, termed Total Equivalent Resource Exergy (TERE), provides a measure of the effectiveness of the energy conversion system in its use of natural resources. The results presented here for several example systems illustrate how the method can be used to screen candidate energy conversion systems and perhaps, as data become more available, to optimize systems. It appears that this concept may be particularly useful for comparing systems that have quite different direct energy and/or environmental impacts. This work should be viewed in the context of being primarily a concept paper in that the lack of detailed data available to the authors at this time limits the accuracy of the overall results. The authors are working on refinements to data used in the evaluation.

  13. Lifestyle Factors in U.S. Residential Electricity Consumption

    SciTech Connect

    Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

    2012-03-30

    A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

  14. Electricity in US energy consumption. [Percentages for 1973 to 1982

    SciTech Connect

    Studness, C.M.

    1984-09-13

    The share of US energy consumption devoted to electric generation rose sharply again in 1983. Of 70.573 quadrillion Btu consumed nationally last year, 35.4% or 24.975 quadrillion Btu were used for electric generation. This represented an increase from 34.3% in 1982. Significantly, the share of the nation's energy consumption accounted for by electric generation has risen just as rapidly during the ten years since the Arab oil embargo in 1973 as it did during the decade leading up to the embargo. Electricity's share of energy consumption rose 7.3 percentage points from only 19.5% in 1963 to 26.8% in 1973 and another 8.6 percentage points during the last ten years to 35.4% in 1983. Moreover, electricity's share of energy consumption has grown in each of the ten years since the embargo. The nation's energy consumption actually fell 0.4% in 1983, and it declined 4.9% or roughly 0.4% per year during 1973 to 1983. By contrast, energy consumed in electric generation rose 2.9% last year and grew 2.3% per year during the last decade.

  15. Nuclear Arms Control R&D Consortium includes Los Alamos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as ...

  16. Should Title 24 Ventilation Requirements Be Amended to include...

    Office of Scientific and Technical Information (OSTI)

    include an Indoor Air Quality Procedure? Citation Details In-Document Search Title: Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? ...

  17. Natural Gas Delivered to Consumers in California (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    California (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in California (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel ...

  19. Solar Energy Education. Reader, Part II. Sun story. [Includes...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reader, Part II. Sun story. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Reader, Part II. Sun story. Includes glossary You are ...

  20. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods including porous polymer monoliths Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods ...

  1. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths ...

  2. Newport News in Review, ch. 47, segment includes TEDF groundbreaking...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnewport-news-review-ch-47-segment-includes-tedf-groundbreaking-event Newport News in Review, ch. 47, segment includes TEDF groundbreaking event...

  3. Property:Number of Plants included in Capacity Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  4. Property:Number of Plants Included in Planned Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  5. FEMP Expands ESPC ENABLE Program to Include More Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Expands ESPC ENABLE Program to Include More Energy Conservation Measures FEMP Expands ESPC ENABLE Program to Include More Energy Conservation Measures November 13, 2013 - 12:00am...

  6. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  7. Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu)

    Energy Information Administration (EIA) (indexed site)

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education 15 74 83 11 113 2 16 4 32 21 371 Food Sales 6 12 7 Q 46 2 119 2 2 10 208 Food Service 10 28 24 10 42 13 70 2 2 15 217 Health Care 6 34 42 2 105 1 8 4 10 36 248 Inpatient 3 25 38 2 76 1 4 2 7 21

  8. Tennessee Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113 153 138 98 93 60 45 1990's 68 41 39 49 44 47 37 45 31 26 2000's 29 48 80 47 46 68 66 109 161 235 2010's 214 231 335 335 278 225 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  9. Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 6 3 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 148 145 150 142 128 125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Plant Fuel

  10. Issues in International Energy Consumption Analysis: Electricity Usage in

    Energy Information Administration (EIA) (indexed site)

    India's Housing Sector - Energy Information Administration Canadian Energy Demand Electricity Usage in India's Housing Sector SERIES: Issues in International Energy Consumption Analysis Canadian Energy Demand Release date: June 2, 2015 The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site

  11. Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 158 171 148 171 205 191 218 1990's 156 159 341 235 116 181 217 253 222 274 2000's 208 272 251 343 395 483 549 495 575 599 2010's 881 963 2,529 9,200 11,602 3,478 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  12. South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61 76 93 70 125 123 112 1990's 158 393 451 452 437 404 424 911 848 864 2000's 1,003 538 495 553 562 545 508 573 545 568 2010's 562 594 866 916 799 759 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  13. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 5 7 5 4 4 10 8 10 2000's 10 13 13 16 18 0 W 0 0 0 2010's 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Delivered

  14. Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 2 1 1 2 1 1 1990's 1 0 0 1 1 1 3 3 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Lease Fuel

  15. Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 439 457 542 437 449 474 519 1990's 557 518 423 295 206 168 168 188 208 235 2000's 218 396 249 512 606 697 820 816 788 771 2010's 800 604 612 645 657 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  16. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Consumption (Million Cubic Feet) Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 2 4 6 8 13 40 31 38 2000's 43 53 54 66 74 4 2 1 1 1 2010's 1 0 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Delivered to

  17. Nebraska Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Nebraska Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 70 57 40 43 26 21 1990's 26 17 31 56 86 58 43 38 37 29 2000's 31 29 295 286 302 236 176 182 395 359 2010's 331 287 194 194 64 73 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  18. Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 35 30 19 31 21 13 1990's 0 14 9 0 3 2 3 7 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Plant Fuel

  19. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 1 3 8 8 12 15 41 40 49 2000's 54 67 68 83 93 3 1 1 1 2010's 1 1 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas

  20. Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 50 63 71 69 96 88 87 1990's 14 14 16 20 36 32 37 39 40 42 2000's 43 40 37 17 18 12 8 5 0 0 2010's 0 0 127 202 468 3,464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: