National Library of Energy BETA

Sample records for acid biorefinery mysab

  1. Myriant Succinic Acid BioRefinery

    Energy.gov [DOE] (indexed site)

    confidential, or otherwise restricted information Myriant Succinic Acid BioRefinery DOE ... This presentation does not contain any proprietary, confidential, or otherwise restricted ...

  2. Myriant Succinic Acid Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Myriant Succinic Acid Biorefinery Myriant Succinic Acid Biorefinery This American Recovery and Reinvestment Act project will focus on the production of bio-succinic acid from a variety of feedstocks. ibr_arra_myriant.pdf (364.64 KB) More Documents & Publications Commercialization of Bio-Based Chemicals: A Successful Public-Private Partnership EA-1787: Final Environmental Assessment EA-1787: Finding of No Significant Impact

  3. Demonstration and Market Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstration and Market Transformation Demonstration and Market Transformation POET-DSM's Project LIBERTY Biorefinery POET-DSM's Project LIBERTY Biorefinery Aerial view of POET-DSM's Project LIBERTY biorefinery in Emmetsburg, Iowa INEOS Biorefinery INEOS Biorefinery Aerial view of the INEOS Biorefinery in Vero Beach, Florida Myriant Succinic-Acid Biorefinery Myriant Succinic-Acid Biorefinery Night-time aerial view of the Myriant succinic-acid biorefinery (MySAB) in Lake Providence, Louisiana

  4. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation

    DOE PAGES [OSTI]

    Salvachua, Davinia; Mohagheghi, Ali; Smith, Holly; Bradfield, Michael F. A.; Nicol, Willie; Black, Brenna A.; Biddy, Mary J.; Dowe, Nancy; Beckham, Gregg T.

    2016-02-02

    Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. Furthermore, SA production from biomass-derived hydrolysates has not yet been fully exploredmore » or developed.« less

  5. Alpena Biorefinery

    Energy.gov [DOE]

    The Alpena Biorefinery will be constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility.

  6. Succinic Acid as a Byproduct in a Corn-based Ethanol Biorefinery

    SciTech Connect

    MBI International

    2007-12-31

    MBI endeavored to develop a process for succinic acid production suitable for integration into a corn-based ethanol biorefinery. The project investigated the fermentative production of succinic acid using byproducts of corn mill operations. The fermentation process was attuned to include raw starch, endosperm, as the sugar source. A clean-not-sterile process was established to treat the endosperm and release the monomeric sugars. We developed the fermentation process to utilize a byproduct of corn ethanol fermentations, thin stillage, as the source of complex nitrogen and vitamin components needed to support succinic acid production in A. succinogenes. Further supplementations were eliminated without lowering titers and yields and a productivity above 0.6 g l-1 hr-1was achieved. Strain development was accomplished through generation of a recombinant strain that increased yields of succinic acid production. Isolation of additional strains with improved features was also pursued and frozen stocks were prepared from enriched, characterized cultures. Two recovery processes were evaluated at pilot scale and data obtained was incorporated into our economic analyses.

  7. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    SciTech Connect

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  8. Alpena Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alpena Biorefinery March 25, 2015 Demonstration and Market Transformation Technology Area Review Theodora Retsina American Process, Inc. This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. The project objectives and the value proposition of the

  9. Mascoma: Frontier Biorefinery Project

    Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  10. NREL: Biomass Research - What Is a Biorefinery?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery...

  11. Elevance Pilot-Scale Biorefinery

    Energy.gov [DOE]

    The Elevance biorefinery uses catalyst technology to produce fuels and chemicals from renewable, natural oils.

  12. Bioenergy Impacts: Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    POET-DSM's Project LIBERTY and Abengoa's Bioenergy Biomass of Kansas are biorefineries that convert corn stover-non-edible corn stalks, stems, and leaves-into cellulosic ethanol, a ...

  13. Alpena Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alpena Biorefinery Alpena Biorefinery Alpena Biorefinery The American Process Inc. (API) Alpena Biorefinery converts the industrial waste stream from a neighboring board manufacturing mill into a cellulosic biofuel and by-product. API's innovative conversion process has helped the mill to significantly reduce its waste treatment costs, increase its economic viability, and improve the job retention outlook for its 200 employees. In addition to assisting this major employer in Alpena, Michigan,

  14. Economy Through Product Diversity: Integrated Biorefineries

    SciTech Connect

    2010-03-01

    A general discussion of the integrated biorefinery concept, the Biomass Program's related activities and challenges and specific biorefinery projects being funded through the Program.

  15. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Economy Through Product Diversity: Integrated Biorefineries Economy Through Product Diversity: Integrated Biorefineries Achieving national energy and climate goals will require an...

  16. Albemarle Biorefinery Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biorefinery Inc Jump to: navigation, search Name: Albemarle Biorefinery Inc Place: Raleigh, North Carolina Zip: 27612 Product: A subsidiary of DFI Group that focusses on the...

  17. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Biorefineries:Biofuels, Biopower, and Bioproducts Integrated Biorefineries:Biofuels, Biopower, and Bioproducts The U.S. goal to produce 21 billion gallons of advanced ...

  18. Integrated Biorefineries | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Map Labels The interactive map above highlights biorefinery projects funded by the Bioenergy Technologies Office at pilot, demonstration, and pioneer scales. Adjust the map...

  19. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., will create a pilot-scale biorefinery ...

  20. Biochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Conversion Technologies » Biochemical Conversion » Biochemical Conversion - Biorefinery Integration Biochemical Conversion - Biorefinery Integration One of the essential elements in the economical and efficient production of cellulosic biofuels is the development of biorefineries. Similar in concept to traditional petroleum refineries, biorefineries convert various types of biomass feedstock into marketable chemicals, fuels, and products. By taking advantage of

  1. Biomass Program 2007 Accomplishments - Integrated Biorefinery Platform

    SciTech Connect

    none,

    2008-06-01

    This document details the accomplishments of the Biomass Program Integrated Biorefinery Platform in 2007.

  2. Red Shield Acquisition, LLC, Integrated Biorefinery

    Energy.gov [DOE]

    This demonstration-scale biorefinery will produce lignocellulosic sugars for biofuel feedstock from woody biomass.

  3. Sapphire Energy - Integrated Algal Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sapphire Energy, Inc. DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Sapphire Energy - Integrated Algal Biorefinery EE0002884 March 24 2015 SAPPHIRE CONFIDENTIAL 1 Original project goals (2009) SAPPHIRE CONFIDENTIAL 2 Project objectives Demonstrate the technical and economic feasibility of an algae-to-drop-in green fuels process that will form the basis for the development of a series of commercial scale biorefineries. * Deploy the algae to green fuels process at the

  4. Solazyme Pilot-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    11 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste Solazyme Integrated Biorefinery: Diesel Fuels from Heterotrophic Algae Solazyme, Inc. will build, operate and optimize a pilot-scale "Solazyme Integrated Biorefinery" (SzIBR). SzIBR will demonstrate integrated scale-up of Solazyme's novel heterotrophic algal oil biomanufacturing process, validate the projected commercial-scale economics of producing multiple advanced

  5. Integrated Biorefinery Lessons Learned and Best Practices

    Energy.gov [DOE]

    Breakout Session 1D—Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) Integrated Biorefinery Lessons Learned and Best Practices Glenn Doyle, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

  6. American Process—Alpena Biorefinery Lessons

    Energy.gov [DOE]

    Breakout Session 1D—Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) American Process—Alpena Biorefinery Lessons Theodora Retsina, Chief Executive Officer, America Process Inc.

  7. 9003: Biorefinery Assistance Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9003: Biorefinery Assistance Program 9003: Biorefinery Assistance Program Breakout Session 1D-Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) 9003: Biorefinery Assistance Program Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture cassidy_biomass_2014.pdf (418.43 KB) More Documents & Publications Project Finance and Investments Demonstration and Deployment Workshop - Day 1 American

  8. Range Fuels Commercial-Scale Biorefinery

    Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  9. Abengoa Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Biorefineries Abengoa Integrated Biorefineries Demonstration and Deployment Successes Gerson Santos, Executive Vice President, Abengoa b13_santos_ap-2.pdf (2.72 MB) More Documents & Publications 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Biomass IBR Fact Sheet: Abengoa Bioenergy Abengoa IBR Successes

  10. Commercialization of Integrated Biorefineries via Synergies between

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commodity and High Value Products | Department of Energy Commercialization of Integrated Biorefineries via Synergies between Commodity and High Value Products Commercialization of Integrated Biorefineries via Synergies between Commodity and High Value Products Breakout Session 3C: Innovative Approaches and Materials for Clean Energy Commercialization of Integrated Biorefineries via Synergies between Commodity and High Value Products Vesa Pylkkanen, Chief American Process, Inc.

  11. Biorefinery Optimization Workshop Presentations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biorefinery Optimization Workshop Presentations Biorefinery Optimization Workshop Presentations Presentations from the Biorefinery Optimization Workshop , hosted by the U.S. Department of Energy's Bioenergy Technologies Office on October 5-6, 2016. Speaker Last Name Affiliation Title Hartford Jenike & Johanson, Inc. Biomass Material Handling Considerations Kenney Idaho National Laboratory Industrial Feed Handling of Lingocellulosic Feedstocks Webb Oak Ridge National Laboratory Addressing

  12. Engineering Cellulases for Biorefinery

    SciTech Connect

    Manoj Kumar, PhD

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  13. NewPage Demonstration-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NewPage Demonstration-Scale Biorefinery NewPage Demonstration-Scale Biorefinery The NewPage biorefinery will be added to an existing pulp and paper mill to create renewable ...

  14. POET-DSM biorefinery in Iowa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    POET-DSM biorefinery in Iowa POET-DSM biorefinery in Iowa Addthis Cellulosic ethanol biorefinery 1 of 10 Cellulosic ethanol biorefinery The mechanical building (front), solid/liquid separation building (left), and anaerobic digestion building (back) at POET-DSM's Project LIBERTY biorefinery in Emmetsburg, Iowa. Image: Courtesy of POET-DSM Stacking up biomass 2 of 10 Stacking up biomass The biomass stackyard, where corn waste is stored at POET-DSM's Project LIBERTY biorefinery. Image: Courtesy of

  15. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I: ...

  16. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Biorefineries 2011 Biomass Program Platform Peer Review: Integrated ... experts at the U.S. Department of Energy Biomass Programs Integrated Biorefinery ...

  17. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics ...

  18. FOA for the Demonstration of an Integrated Biorefinery System...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels, Inc. FOA for the Demonstration of an Integrated Biorefinery System: ...

  19. Verenium Pilot- and Demonstration-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Verenium Pilot- and Demonstration-Scale Biorefinery Verenium Pilot- and Demonstration-Scale Biorefinery The Verenium facility will produce ethanol from lignocellulosic agricultural ...

  20. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue ...

  1. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Range Fuels, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels, Inc. ...

  2. Algal Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Algal Biofuels » Algal Integrated Biorefineries Algal Integrated Biorefineries The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries apply R&D to scale-up facilities to a degree relevant to commercial applications. U.S. Department of Energy funding of this work helps to advance the industry by minimizing the risk of these

  3. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production September 3, 2014 - 12:05pm Addthis News Media Contact 202-586-4940 WASHINGTON - Project LIBERTY, the nation's first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock, announced the start of production today. Once operating at full, commercial-scale, the biorefinery in Emmetsburg, Iowa will produce 25 million gallons

  4. Integrated Biorefineries: Biofuels, Bioproducts, and Biopower | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Integrated Biorefineries: Biofuels, Bioproducts, and Biopower Integrated Biorefineries: Biofuels, Bioproducts, and Biopower Achieving national energy and climate goals will require an economically viable and environmentally sustainable U.S. bioindustry. A crucial step in developing this industry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, bioproducts, and biopower. ibr_overview.pdf (713.96

  5. Integrated Biorefinery Lessons Learned and Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Biorefinery Lessons Learned and Best Practices - Breakout Session 1 Session Moderator: Glenn Doyle U.S. Department of Energy Bioenergy Technologies Office July 29 th , ...

  6. Investigation of thermochemical biorefinery sizing and environmental...

    Office of Scientific and Technical Information (OSTI)

    Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs...

  7. United Biorefineries Corp UBC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    physical & biological research. Involved in the project development of an Integrated Biorefinery Complex utilizing algae and cellulosic-based second generation biofuels technology....

  8. Integrated Biorefineries: Biofuels, Bioproducts, and Biopower...

    Energy.gov [DOE] (indexed site)

    A crucial step in developing this industry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, ...

  9. A Biorefinery Goes 'Mod' and Small

    Energy.gov [DOE]

    Minnesota-based Easy Energy Systems sells small-scale, easy-to use biorefineries. The company expects to create 100 jobs because of new orders.

  10. Algae Biorefinery Development for Biofuels and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: National Algal Biofuels Technology Review Algae Biorefinery Development for Biofuels and Bioproducts Lieve Laurens, Senior Scientist, National Renewable Energy Laboratory

  11. Fulton Cellulosic Ethanol Biorefinery

    SciTech Connect

    Sumait, Necy; Cuzens, John; Klann, Richard

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  12. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    SciTech Connect

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  13. Flambeau River Biofuels Demonstration-Scale Biorefinery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Flambeau River Biofuels Demonstration-Scale Biorefinery Flambeau River Biofuels Demonstration-Scale Biorefinery The Flambeau River biorefinery will be added to an existing pulp and paper mill to create green diesel. ibr_demonstration_flambeau.pdf (275.93 KB) More Documents & Publications NewPage Demonstration-Scale Biorefinery Flambeau_River_Biofuels.pdf Pacific Ethanol, Inc

  14. Biorefinery Optimization Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biorefinery Optimization Workshop Biorefinery Optimization Workshop October 5, 2016 8:00AM EDT to October 6, 2016 1:00PM EDT Loews Chicago O'Hare Hotel 5300 N River Road Rosemont, IL 60018 Even with years of continuous investments by the U.S. Department of Energy's Bioenergy Technologies Office (BETO) to de-risk first-of-a-kind technologies, numerous challenges still need to be addressed to achieve reliable and continuous operation of biorefineries that effectively compete with the refining and

  15. Integrated Biorefinery Research Facility | Bioenergy | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Integrated Biorefinery Research Facility NREL's Integrated Biorefinery Research Facility (IBRF) enables researchers and industry partners to develop, test, evaluate, and demonstrate processes and technologies for the production of bio-based products and fuels. Interior of industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard hats. In addition to the facility itself, NREL's world-renowned expert staff works with IBRF partners at every stage of

  16. Algae Biorefinery Development for Biofuels and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algae Biorefinery Development for Biofuels and Bioproducts Bioenergy 2016 Washington, DC July 14, 2016 Lieve Laurens 2 Reduce cost of algal biofuels: * Harness unique position of algae as highly efficient photosynthetic cell factories * Identify key targets to contribute to lowering the overall cost of algal biofuels production * Quantify impact of major components supporting a multi-product algal biorefinery model * Analogous to replacing the whole barrel paradigm; low volume product streams

  17. Biorefinery Grant Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biorefinery Grant Announcement Biorefinery Grant Announcement February 28, 2007 - 10:28am Addthis Prepared Remarks for Energy Secretary Bodman Thank you all for coming. In his State of the Union address last month, President Bush set forth an aggressive plan to reduce America's consumption of gasoline over the next ten years. The President's "20 in 10" initiative would increase the amount of renewable and alternative fuels used in the transportation sector to 35 billion gallons a year

  18. Thermochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Biorefinery Integration Thermochemical Conversion - Biorefinery Integration Fuels Synthesis Fuels can be produced from bio-oils using processes similar to those found in a petroleum refinery, including hydrotreating and hydrocracking to create green gasoline, an alternative to alcohol-based ethanol fuels. Some types of bio-oils can even be fully integrated into petroleum refining stream and infrastructure. The conversion of biomass derived syngas to products is typically an exothermic process,

  19. Multitasking mesoporous nanomaterials for biorefinery applications

    SciTech Connect

    Kandel, Kapil

    2013-01-01

    in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and selectively sequester free fatty acids (FFAs). (ii) OM-MSNs are shown to selectively sequester FFAs and convert them into diesel-range liquid hydrocarbon fuels. A similar MSN supported metal nanoparticle catalyst is demonstrated to transform FFAs into green diesel with even greater activity and selectivity. The incorporation of a different organic functional group into MSN provides a selective adsorbent for separation and purification of α-tocopherol from microalgae oil. The functional group with electron deficient aromatic rings demonstrated high sequestration capacity and selectivity of {alpha}-tocopherol.

  20. Synergistic Hydrogen Production in a Biorefinery via Bioelectrochemical Systems

    SciTech Connect

    Borole, A. P.; Hamilton, C. Y.; Schell, D. J.

    2012-01-01

    Microbial electrolysis cells are devices that use biocatalysis and electrolysis for production of hydrogen from organic matter. Biorefinery process streams contain fermentation by products and inhibitors which accumulate in the process stream if the water is recycled. These molecules also affect biomass to biofuel yields if not removed from the recycle water. The presence of sugar- and lignin- degradation products such as furfural, vanillic acid and 4-hydroxybenzaldehyde has been shown to reduce fermentation yields. In this work, we calculate the potential for hydrogen production using microbial electrolysis cells from these molecules as substrates. Conversion of these substrates to electricity is demonstrated in microbial fuel cells and will also be presented.

  1. Integrated Biorefinery Research Facility (IBRF I-II) (Post CD...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 PDF icon 000521 & ...

  2. Lignol Innovations, Inc. Demonstration-Scale Biorefinery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Lignol Innovations, Inc. Demonstration-Scale Biorefinery Lignol Innovations, Inc. Demonstration-Scale Biorefinery The Lignol Innovations, Inc., biorefinery will produce cellulosic ethanol, high purity lignin, and furfural from hardwoods. ibr_demonstration_lignol.pdf (277.26 KB) More Documents & Publications Lignol Innovations Inc Top Value-Added Chemicals from Biomass - Volume II„Results of Screening for Potential Candidates from Biorefinery Lignin Cellulosic Sugar and Lignin

  3. Nationwide: The Nations First Commercial-Scale Biorefineries

    Energy.gov [DOE]

    EERE's investment aids in the creation of the first commercial-scale biorefineries in the United States.

  4. Five Things to Know about Biorefinery Investments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Things to Know about Biorefinery Investments Five Things to Know about Biorefinery Investments October 15, 2014 - 1:46pm Addthis Five Things to Know about Biorefinery Investments Alicia Moulton Communications Specialist, Bioenergy Technologies Office This week, Abengoa's cellulosic ethanol plant in Hugoton, Kansas, will have its grand opening-right on the heels of POET-DSM's Project LIBERTY in September. Both biorefineries produce cellulosic ethanol, which has only been produced commercially in

  5. Solazyme Pilot-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solazyme Pilot-Scale Biorefinery Solazyme Pilot-Scale Biorefinery The Solazyme integrated biorefinery will use a heterotrophic algal oil biomanufacturing process to create biofuels. ibr_arra_solazyme.pdf (305.49 KB) More Documents & Publications CX-005693: Categorical Exclusion Determination Algae Biofuels Technology 2016 National Algal Biofuels Technology Review

  6. Second-Generation Biofuels from Multi-Product Biorefineries Combine

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Economic Sustainability With Environmental Sustainability | Department of Energy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Breakout Session 3B-Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic

  7. 2009 Integrated Biorefinery Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Integrated Biorefinery (IBR) platform review meeting, held on February 18–19, 2009, at the Westin National Harbor, National Harbor, Maryland.

  8. Biorefinery and Carbon Cycling Research Project

    SciTech Connect

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

    2012-06-08

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  9. Economy Through Product Diversity: Integrated Biorefineries

    Energy.gov [DOE]

    Achieving national energy and climate goals will require an economically viable and environmentally sustainable U.S. bioindustry. A crucial step in developing this industry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other products.

  10. Biorefinery and Hydrogen Fuel Cell Research

    SciTech Connect

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  11. Recovery Act : Heterogeneous Feed Biorefinery Project

    SciTech Connect

    Schofield, Richard

    2015-03-15

    To overcome the hurdles associated with introducing a new technology, Enerkem applied to the US DOE for grant assistance with its Pontotoc, Mississippi, biorefinery under the DOE’s Demonstration of Integrated Biorefinery Operations FOA. Consistent with Enerkem’s strategic approach, the project proposed uses post sorted municipal solid waste blended with other forest residue. The proposed biorefinery is to be located within the boundaries of a working landfill, thus simplifying many aspects of environmental permitting while also reducing feedstock acquisition and transportation costs. An economic impact analysis was conducted using an adaptation of the US Department of Energy’s JEDI (Jobs and Economic Development Impact) model for an ethanol-producing biorefinery. The JEDI model, which does not have a thermochemical processing option, had to be configured to reflect a biomass feedstock and was thus adapted by Enerkem to account for the unique feedstock requirements and operations of the Project. According to this model, development, construction, and 2 years of operation of the biorefinery require an investment of approximately $140 million. Also, a construction period of 18 months will create significant direct and indirect employment. Indirect employment includes steel manufacturers, construction materials manufacturers, material shipping, equipment manufacturers and fabrication, etc. During the construction phase of the Project, 210 total jobs are expected to be created, including 145 direct jobs and 72 indirect or induced jobs. During the operating period, 131 jobs would be created, 95 of which are direct. It is anticipated that the project will create at least 10 new jobs (included in the above figures and in addition to the JEDI data) in the sorting and recycling sector, since the project will require operations in sorting MSW since valuable ferrous, nonferrous and recyclable plastic materials will be sorted from MSW as part of the process that isolates

  12. MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials

    SciTech Connect

    2006-02-17

    The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

  13. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Review | Department of Energy 4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I: Progress in Advanced Biofuels 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Gerson Santos-Leon, Executive Vice President, Abengoa santos-leon_biomass_2014.pdf (4.68 MB) More Documents & Publications Abengoa IBR Successes Applicant

  14. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Integrated Biorefineries 2011 Biomass Program Platform Peer Review: Integrated Biorefineries "This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Integrated Biorefinery Platform Review meeting, held on February 1...3, 2011, at the U.S. Department of Energy, Washington, D.C." 2011_ibr_review.pdf (2.52

  15. 2013 Peer Review Presentations-Integrated Biorefineries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Integrated Biorefineries 2013 Peer Review Presentations-Integrated Biorefineries The Bioenergy Technologies Office hosted its 2013 Project Peer Review on May 20-24, 2015, at the Hilton Mark Center in Alexandria, Virginia. The presentations from integrated biorefineries session are available to view and download below. For detailed session descriptions and presentation titles, view the 2013 Project Peer Review Program Booklet. ibr_cesaek_55101.pdf (1.27 MB) ibr_cherry_5141.pdf (5.3 MB)

  16. To the Biorefinery: Delievered Forestland and Agricultural Resources Factsheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Biorefinery: Delivered Forestland and Agricultural Resources It can be challenging and costly to trans- port biomass feedstock supplies from the roadside, or farmgate, to a biorefinery. Given the geographic dispersion and low- bulk density of cellulosic feedstocks, cost- effective scaling of commercial biorefinery operations requires overcoming many challenges. The Biomass Research and Development Board's Feedstock Logistics Interagency Working Group identified four primary barriers related

  17. Nationwide: The Nation's First Commercial-Scale Biorefineries...

    Energy.gov [DOE] (indexed site)

    EERE supports 25 integrated biorefineries that are specifically focused on producing cellulosic ethanol, drop-in hydrocarbon biofuel, and bioproducts. As of July 2013, INEOS opened ...

  18. ClearFuels-Rentech Pilot-Scale Biorefinery

    Energy.gov [DOE]

    The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

  19. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect

    Not Available

    2009-03-01

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  20. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biorefinery Operations to Fuel Ethanol Award Number: DE-EE0002875 March 23, 2015 ... to refine cellulosic biomass into fuel ethanol and co-products Create an ...

  1. Integrated Biorefinery for conversion of Biomass to Ethanol,...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat March 25, 2015 ... Louis MO Subsidiary of Abengoa SA, Spain Ethanol facilities in Nebraska, Kansas, New ...

  2. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The nation's third commercial-scale cellulosic ethanol biorefinery celebrates its grand ... The plant will produce cellulosic ethanol from non-edible corn stalks, stems, and leaves ...

  3. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an ...

  4. U.S. Department of Energy Small-Scale Biorefineries Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Small-Scale Biorefineries Project Overview U.S. Department of Energy Small-Scale Biorefineries Project Overview A chart indicating round one and round two selections for the U.S. Department of Energy Small-Scale Biorefineries Project Overview. U.S. Department of Energy Small-Scale Biorefineries Project Overview (31.45 KB) More Documents & Publications U.S. Department of Energy Small-Scale Biorefineries: Project Overview

  5. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  6. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries

    Energy.gov [DOE] (indexed site)

    ... Continue with Possible Adjustments to Scope Other 7.7.2.8 Hot Water Extraction of Woodchips and ... are satisfied. 7.5.7.3 Southern Pine Based Biorefinery Center; Georgia Tech; ...

  7. New Biorefinery Will Bring Jobs to Northeastern Oregon

    Energy.gov [DOE]

    In northeastern Oregon, ZeaChem, a Colorado-based biofuel company, recently broke ground on a 250,000 gallon integrated cellulosic biorefinery. The technology development project is expected to be operating in 2011.

  8. Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policy and Politics | Department of Energy and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO b13_erickson_day2-apintro.pdf (2.18 MB) More Documents & Publications Biomass 2013 Agenda Biomass 2012 Agenda U.S. Biofuels Industry: Mind the Gap

  9. DOE Announces $160 Million for Biorefinery Construction and Highlights New

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agricultural Program to Promote Biofuels | Department of Energy 0 Million for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels DOE Announces $160 Million for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels February 22, 2006 - 12:11pm Addthis Funding Paves the Way for Diversifying America's Energy Mix DECATUR, IL - Energy Secretary Samuel W. Bodman, today announced $160 million in cost-shared funding over three years to

  10. BETO Hosts Biorefinery Optimization Workshop October 5-6 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Hosts Biorefinery Optimization Workshop October 5-6 BETO Hosts Biorefinery Optimization Workshop October 5-6 October 4, 2016 - 5:30pm Addthis BETO Hosts Biorefinery Optimization Workshop October 5–6 The Biorefinery Optimization Workshop, hosted by the U.S. Department of Energy's Bioenergy Technologies Office (BETO), is being held on October 5-6, 2016, in Chicago, Illinois. The workshop will advance the understanding of the current capabilities, barriers, and opportunities for

  11. EERE Success Story—Nationwide: The Nation’s First Commercial-Scale Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE)

    EERE's investment aids in the creation of the first commercial-scale biorefineries in the United States.

  12. Commercialization of Integrated Biorefineries via synergies between commodity and high value products

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercialization of Integrated Biorefineries via synergies between commodity and high value products Presented by: Vesa Pylkkanen Chief Technology Officer American Process Inc. American Process Inc. - a 20-year history 1995 Process Integration Studies 2011 Biorefinery Operations 2013 Global Partnerships and Licensing 2009 Biorefinery Engineering & Construction 2005 Biorefinery R&D 2015 Commercial Operations 2016 JDA/JV collaborations 2015 Nanocellulose production In the backdrop of

  13. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ethanol, Inc. | Department of Energy Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. Award No. DE-FC36-07GO17025 (14.26 MB) More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty,

  14. Controlling Accumulation of Fermentation Inhibitors in Biorefinery Recycle Water Using Microbial Fuel Cells

    SciTech Connect

    Borole, Abhijeet P; Mielenz, Jonathan R; Leak, David; Vishnivetskaya, Tatiana A; Hamilton, Choo Yieng; Andras, Calin

    2009-01-01

    Background Microbial fuel cells (MFC) and microbial electrolysis cells are electrical devices that treat water using microorganisms and convert soluble organic matter into electricity and hydrogen, respectively. Emerging cellulosic biorefineries are expected to use large amounts of water during production of ethanol. Pretreatment of cellulosic biomass results in production of fermentation inhibitors which accumulate in process water and make the water recycle process difficult. Use of MFCs to remove the inhibitory sugar and lignin degradation products from recycle water is investigated in this study. Results Use of an MFC to reduce the levels of furfural, 5-hydroxymethylfurfural, vanillic acid, 4- hydroxybenzaldehyde and 4-hydroxyacetophenone while simultaneously producing electricity is demonstrated here. An integrated MFC design approach was used which resulted in high power densities for the MFC, reaching up to 3700mW/m2 (356W/m3 net anode volume) and a coulombic efficiency of 69%. The exoelectrogenic microbial consortium enriched in the anode was characterized using a 16S rRNA clone library method. A unique exoelectrogenic microbial consortium dominated by -Proteobacteria (50%), along with -Proteobacteria (28%), -Proteobacteria (14%), -Proteobacteria (6%) and others was identified. The consortium demonstrated broad substrate specificity, ability to handle high inhibitor concentrations (5 to 20mM) with near complete removal, while maintaining long-term stability with respect to power production. Conclusions Use of MFCs for removing fermentation inhibitors has implications for: 1) enabling higher ethanol yields at high biomass loading in cellulosic ethanol biorefineries, 2) improved water recycle and 3) electricity production up to 25% of total biorefinery power needs.

  15. Membranes Key to Biorefinery Success | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Miming living organisms processes for biorefineries Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Miming living organisms processes for biorefineries Jimmy Lopez 2015.09.10 Membranes play a key role in the human body, filtering out bacteria and viruses and also ensuring cells absorb essential nutrients. They are

  16. FOA for the Demonstration of an Integrated Biorefinery System: Abengoa

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioenergy Biomass of Kansas, LLC | Department of Energy Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC. Award No. DE-FC36-07GO17028, Part 1 (1.38 MB) Award No. DE-FC36-07GO17028, Part 2 (1.66 MB) Abengoa, Mod No. M001 Contract No. DE-FC36-07GO17028 (1.57 MB) More Documents & Publications

  17. Biomass Program 2007 Peer Review - Integrated Biorefinery Platform Summary

    SciTech Connect

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Integrated Biorefinery Platform Review held on August 13-15, 2007 in Golden, Colorado.

  18. EIS-0407: Abengoa Biorefinery Project Near Hugoton, Kansas

    Energy.gov [DOE]

    The U.S. Department of Energy prepared an environmental impact statement to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton in Stevens County, southwestern Kansas.

  19. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    SciTech Connect

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data

  20. Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Game | Department of Energy Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February 9, 2011 - 1:40pm Addthis Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy How does it work? Vegetative and agricultural waste reacts with oxygen to produce synthesis

  1. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  2. Lignin conversion: Opportunities and challenges for the integrated biorefinery

    DOE PAGES [OSTI]

    Xie, Shangxian; Ragauskas, Arthur J.; Yuan, Joshua S.

    2016-06-21

    The utilization of lignin for fungible fuels and products represents one of the most imminent challenges in the modern biorefinery because most of the bioprocesses for lignocellulosic biofuels results in a lignin-containing waste stream. Considering lignin's abundance and relatively high energy content, this waste stream can be used as a feedstock for value-added products to improve the sustainability and economic feasibility of the biorefinery. Bioconversion of lignin with microbes recently emerged as an alternative lignin-valorization approach with significant potential. Typically, the microbial bioconversion of lignin requires three major steps: lignin depolymerization, aromatic compounds catabolism, and target product biosynthesis. In thismore » review, we summarize the most recent advances in lignin bioconversion to address the challenges in each of the three steps. In conclusion, we further discuss strategies and perspectives for future research to address the challenges in bioconversion of lignin.« less

  3. NREL Report Provides Documentation of the Advanced Biorefinery Landscape

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Renewable Energy Laboratory (NREL) released a report in January 2015 on the status of the non-starch ethanol and renewable hydrocarbon biofuels industry in the United States. The report, “2013 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers,” is the first of its kind to provide publically available, open source documentation on the state of the advanced biorefinery landscape.

  4. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks Development of Microalgae-produced Biofuels Utilizing Mesoporous Nanoparticle Catalysts Recent high petroleum prices and the desire for increased energy independence and security have led to the rapid development of a variety of alternative fuels. Among these fuels, biodiesel is a biodegradable, nontoxic diesel produced from various oil feedstocks, including vegetable oils, animal fats, microalgae, and restaurant waste oils.

  5. ClearFuels-Rentech Integrated Biorefinery Final Report

    SciTech Connect

    Pearson, Joshua

    2014-02-26

    The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

  6. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    SciTech Connect

    Dr. Donal F. Day

    2009-01-29

    /fermentation process yielded improvements beyond what was expected solely from the addition of sugar. In order to expand the economic potential for building a biorefinery, the conversion of enzyme hydrolysates of AFEX-treated bagasse to succinic acid was also investigated. This program established a solid basis for pre-treatment of bagasse in a manner that is feasible for producing ethanol at raw sugar mills.

  7. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    SciTech Connect

    Zhang, Y.; Goldberg, M.

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output from total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.

  8. DOE Announces up to $200 Million in Funding for Biorefineries | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy up to $200 Million in Funding for Biorefineries DOE Announces up to $200 Million in Funding for Biorefineries May 1, 2007 - 12:45pm Addthis Small- and full-scale projects total up to $585 million to advance President Bush's Twenty in Ten Initiative WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide up to $200 million, over five years (FY'07-'11) to support the development of small-scale cellulosic biorefineries in the

  9. U.S. Department of Energy Selects First Round of Small-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Projects for Up to $114 Million in Federal Funding | Department of Energy First Round of Small-Scale Biorefinery Projects for Up to $114 Million in Federal Funding U.S. Department of Energy Selects First Round of Small-Scale Biorefinery Projects for Up to $114 Million in Federal Funding January 29, 2008 - 10:53am Addthis Ten percent commercial-scale biorefineries will help the nation meet new Renewable Fuels Standard WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman

  10. DOE Selects 3 Small-Scale Biorefinery Projects for up to $86...

    Office of Environmental Management (EM)

    ... Related Articles Biomass 2008: Fueling Our Future Conference DOE to Provide up to 40 Million in Funding for Small-Scale Biorefinery Projects in Wisconsin and Louisiana U.S. ...

  11. U.S. Department of Energy Small-Scale Biorefineries: Project Overview

    Energy.gov [DOE]

    Chart that shows which small-scale biorefineries were approved to receive DOE funding in 2008, a summary of their fields of focus, their cost share, and how much DOE is investing in them.

  12. EA-1705: Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

    Energy.gov [DOE]

    The frontier Project consists of the design, construction and operation of a biorefinery producing ethanol and other co-products from cellulosic materials utilizing a proprietary pretreatment and fermentation process.

  13. Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Program eere.energy.gov Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas and Fuel Cell Workshop NREL June 11,2012 Brian Duff DOE Biomass Program 2 | Biomass Program eere.energy.gov Outline * The Importance of Anaerobic Digestion for Fuels, Products, and Power * Biomass Program Perspective * The Potential for Biogas/Fuel Cell Integration at Biorefineries o Retrofit Applications for 1st-Generation Biofuels Plants o Integration

  14. Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version

    SciTech Connect

    Gray, David; Sato, Suzanne; Garcia, Fernando; Eppler, Ross; Cherry, Joel

    2014-03-12

    The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and a basis for full-scale manufacturing processes and facility design.

  15. Improved Estimates of Air Pollutant Emissions from Biorefinery

    SciTech Connect

    Tan, Eric C. D.

    2015-11-13

    We have attempted to use detailed kinetic modeling approach for improved estimation of combustion air pollutant emissions from biorefinery. We have developed a preliminary detailed reaction mechanism for biomass combustion. Lignin is the only biomass component included in the current mechanism and methane is used as the biogas surrogate. The model is capable of predicting the combustion emissions of greenhouse gases (CO2, N2O, CH4) and criteria air pollutants (NO, NO2, CO). The results are yet to be compared with the experimental data. The current model is still in its early stages of development. Given the acknowledged complexity of biomass oxidation, as well as the components in the feed to the combustor, obviously the modeling approach and the chemistry set discussed here may undergo revision, extension, and further validation in the future.

  16. Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology

    SciTech Connect

    Borole, Abhijeet P; Mielenz, Jonathan R

    2011-01-01

    Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

  17. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  18. Refining each process step to accelerate the development of biorefineries

    DOE PAGES [OSTI]

    Chandra, Richard P.; Ragauskas, Art J.

    2016-06-21

    Research over the past decade has been mainly focused on overcoming hurdles in the pretreatment, enzymatic hydrolysis, and fermentation steps of biochemical processing. Pretreatments have improved significantly in their ability to fractionate and recover the cellulose, hemicellulose, and lignin components of biomass while producing substrates containing carbohydrates that can be easily broken down by hydrolytic enzymes. There is a rapid movement towards pretreatment processes that incorporate mechanical treatments that make use of existing infrastructure in the pulp and paper industry, which has experienced a downturn in its traditional markets. Enzyme performance has also made great strides with breakthrough developments inmore » nonhydrolytic protein components, such as lytic polysaccharide monooxygenases, as well as the improvement of enzyme cocktails.The fermentability of pretreated and hydrolyzed sugar streams has been improved through strategies such as the use of reducing agents for detoxification, strain selection, and strain improvements. Although significant progress has been made, tremendous challenges still remain to advance each step of biochemical conversion, especially when processing woody biomass. In addition to technical and scale-up issues within each step of the bioconversion process, biomass feedstock supply and logistics challenges still remain at the forefront of biorefinery research.« less

  19. FOA for the Demonstration of an Integrated Biorefinery System: POET Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Liberty, LLC | Department of Energy POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC. Award No. DE-FC36-07GO17026, Part 1 (8.63 MB) Award No. DE-FC36-07GO17026, Part 2 (8.26 MB) Technology Investment Agreement (TIA) Award No. DE-FO36-08GO18121 (7.39 MB) More Documents & Publications FOA for the Demonstration of an Integrated

  20. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  1. EERE Energy Impacts: Biorefineries Give Local Farmers Opportunities for Additional Income

    Energy.gov [DOE]

    Selling corn stover—the non-edible corn stalks, husks, and leaves of a corn plant—after the corn harvest has generated a new revenue stream for many farmers. Biorefineries buy the corn plant residue from farmers and turn it into cellulosic ethanol, allowing farmers to "add revenue without adding acres."

  2. Grand Opening of Abengoa’s Biorefinery: Nation’s Third Commercial-Scale Facility

    Energy.gov [DOE]

    The nation’s third commercial-scale cellulosic ethanol biorefinery celebrates its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic hydrolysis process which turns cellulosic biomass into fermentable sugars that are then converted into transportation fuels.

  3. EA-1865: Department of Energy Loan Guarantee to Kior, Inc., for Biorefinery Facilities in Georgia, Mississippi, and Texas

    Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to issue a Federal loan guarantee to Kior, Inc., for biorefinery facilities in Georgia, Mississippi, and Texas. This EA is on hold.

  4. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    SciTech Connect

    Pauly, Markus; Hake, Sarah

    2013-10-31

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  5. Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

    SciTech Connect

    Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

    2014-07-01

    Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

  6. Demonstration of Integrated Biorefinery Operations for Producing Biofuels and Chemical / Material Products

    SciTech Connect

    Rushton, Michael

    2011-09-01

    Lignol’s project involved the design, construction and operation of a 10% demonstration scale cellulosic ethanol biorefinery in Grand Junction Colorado in partnership with Suncor Energy. The preconstruction phase of the project was well underway when the collapse in energy prices coupled with a significant global economic downturn hit in the end 2008. Citing economic uncertainty, the project was suspended by Suncor. Lignol, with the support of the DOE continued to develop the project by considering relocating the biorefinery to sites that were more favorable in term of feedstock availability, existing infrastructure and potential partners Extended project development activities were conducted at three lead sites which offered certain key benefits to the overall biorefinery project. This work included feedstock availability studies, technical site assessment, engineering, plant design and pilot scale biorefining of feedstocks of interest. The project generated significant operational data on the bioconversion of woody feedstocks into cellulosic ethanol and lignin-based biochemicals. The project also highlighted the challenges faced by technology developers in attracting capital investment in first of kind renewable fuels solutions. The project was concluded on August 29 2011.

  7. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks

    SciTech Connect

    Pruski, Marek; Trewyn, Brian; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  8. The Impact of Biomass Feedstock Supply Variability on the Delivered Price to a Biorefinery in the Peace River Region of Alberta, Canada

    SciTech Connect

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.; Sowlati, T.; Kloeck, T.; Townley-Smith, Lawrence; Stumborg, Mark

    2010-01-01

    Agricultural residue feedstock availability in a given region can vary significantly over the 20 25 year lifetime of a biorefinery. Since delivered price of biomass feedstock to a biorefinery is related to the distance travelled and equipment optimization, and transportation distance increases as productivity decreases, productivity is a primary determinant of feedstock price. Using the Integrated Biomass Supply Analysis and Logistics (IBSAL) modeling environment and a standard round bale harvest and delivery scenario, harvest and delivery price were modelled for minimum, average, and maximum yields at four potential biorefinery sites in the Peace River region of Alberta, Canada. Biorefinery capacities ranged from 50,000 to 500,000 tonnes per year. Delivery cost is a linear function of transportation distance and can be combined with a polynomial harvest function to create a generalized delivered cost function for agricultural residues. The range in delivered cost is substantial and is an important consideration for the operating costs of a biorefinery.

  9. Continuous Succinic Acid Production by Actinobacillus succinogenes on Xylose-Enriched Hydrolysate

    SciTech Connect

    Bradfield, Michael F. A.; Mohagheghi, Ali; Salvachua, Davinia; Smith, Holly; Black, Brenna A.; Dowe, Nancy; Beckham, Gregg T.; Nicol, Willie

    2015-11-14

    Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility of microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported.

  10. Continuous Succinic Acid Production by Actinobacillus succinogenes on Xylose-Enriched Hydrolysate

    DOE PAGES [OSTI]

    Bradfield, Michael F. A.; Mohagheghi, Ali; Salvachua, Davinia; Smith, Holly; Black, Brenna A.; Dowe, Nancy; Beckham, Gregg T.; Nicol, Willie

    2015-11-14

    Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility ofmore » microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported.« less

  11. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report

    SciTech Connect

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

    2009-11-03

    This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

  12. Microsoft PowerPoint - Biorefinery Optimization - LanzaTech rev2.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Monetizing Biorefinery Residue and Waste Streams Laurel Harmon, Ph.D. VP, Government Relations 2015 LanzaTech. All rights reserved. 2 A Carbon Smart World 65% of 2°carbon budget: USED 1870-2011: 1900 GtCO 2 Remaining: 1000 GtCO 2 Must stay in the ground 3 Gas Feed Stream Gas Reception Compression Fermentation Recovery Product Tank Recycling Carbon Gas fermentation technology converts C- rich gases to fuels and chemicals Proprietary Microbe Performance milestones achieved and exceeded for

  13. EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by Old Town Fuel and Fiber to install and operate a demonstration-scale integrated biorefinery at their existing pulp mill in Old Town, Maine, demonstrating the production of n-butanol from lignocellulosic (wood) extract.

  14. EERE Success Story—Departments of Energy, Navy, and Agriculture Invest $210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military

    Energy.gov [DOE]

    In 2014, the U.S. Departments of Energy, Navy, and Agriculture announced that Emerald Biofuels, Fulcrum Energy, and Red Rock Biofuels have been awarded contracts to construct biorefineries capable...

  15. Departments of Energy, Navy, and Agriculture Invest $210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military

    Energy.gov [DOE]

    In 2014, the U.S. Departments of Energy, Navy, and Agriculture announced that Emerald Biofuels, Fulcrum Energy, and Red Rock Biofuels have been awarded contracts to construct biorefineries capable...

  16. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling

  17. Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390

    SciTech Connect

    Chapeaux, A.; Schell, D.

    2013-06-01

    The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

  18. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    SciTech Connect

    Greene, Sherrell R; Flanagan, George F; Borole, Abhijeet P

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  19. Understanding Potential Air Emissions from a Cellulosic Biorefinery Producing Renewable Diesel Blendstock.

    SciTech Connect

    Zhang, Yimin; Heath, Garvin A.; Renzaglia, Jason; Thomas, Mae

    2015-06-22

    The Energy Independence and Security Act of 2007, through the Renewable Fuel Standard (RFS), mandates increased use of biofuels, including cellulosic biofuels. The RFS is expected to spur the development of advanced biofuel technologies (e.g., new and innovative biofuel conversion pathways) as well as the construction of biorefineries (refineries that produce biofuels) using these technologies. To develop sustainable cellulosic biofuels, one of the goals of the Bioenergy Technologies Office (BETO) at the Department of Energy is to minimize air pollutants from the entire biofuel supply chain, as stated in their 2014 Multi-Year Program Plan (2014). Although biofuels in general have been found to have lower life cycle greenhouse gas (GHG) emissions compared to petroleum fuels on an energy basis, biomass feedstock production, harvesting, transportation, processing and conversion are expected to emit a wide range of other air pollutants (e.g., criteria air pollutants, hazardous air pollutants), which could affect the environmental benefits of biofuels when displacing petroleum fuels. While it is important for policy makers, air quality planners and regulators, biofuel developers, and investors to understand the potential implications on air quality from a growing biofuel industry, there is a general lack of information and knowledge about the type, fate and magnitude of potential air pollutant emissions from the production of cellulosic biofuels due to the nascent stage of this emerging industry. This analysis assesses potential air pollutant emissions from a hypothetical biorefinery, selected by BETO for further research and development, which uses a biological conversion process of sugars to hydrocarbons to produce infrastructural-compatible renewable diesel blendstock from cellulosic biomass.

  20. Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via microbial fuel cell

    SciTech Connect

    Borole, Abhijeet P; Hamilton, Choo Yieng; Schell, Daniel J

    2012-01-01

    A biorefinery process typically uses about 4-10 times as much water as the amount of biofuel generated. The wastewater produced in a biorefinery process contains residual sugars, 5-furfural, phenolics, and other pretreatment and fermentation byproducts. Treatment of the wastewater can reduce the need for fresh water and potentially add to the environmental benefits of the process. Use of microbial fuel cells (MFCs) for conversion of the various organics present in a post-fermentation biorefinery stream is reported here. The organic loading was varied over a wide range to assess removal efficiency, coulombic efficiency and power production. A coulombic efficiency of 40% was observed for a low loading of 1% (0.66 g/L) and decreased to 1.8% for the undiluted process stream (66.4 g/L organic loading). A maximum power density of 1180 mW/m2 was observed at a loading of 8%. Excessive loading was found to result in poor electrogenic performance. The results indicate that operation of an MFC at an intermediate loading using dilution and recirculation of the process stream can enable effective treatment with bioenergy recovery.

  1. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  2. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  3. Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast

    SciTech Connect

    Manoj Kumar, PhD

    2010-06-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  4. Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries

    SciTech Connect

    Hitz, William D.

    2010-12-07

    Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

  5. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    SciTech Connect

    Manoj Kumar, PhD

    2011-05-04

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  6. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    DOE PAGES [OSTI]

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a networkmore » of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.« less

  7. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    SciTech Connect

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a network of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.

  8. Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater

    DOE PAGES [OSTI]

    Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.; Borole, Abhijeet P.

    2016-05-01

    Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8±0.06 A/m2 and an ACE of 39%±4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stable achieving anmore » ACE of 30% ± 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7±0.1 A/m2 and an ACE of 57% ± 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. Finally, the results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.« less

  9. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    SciTech Connect

    Muth, jr., David J.; Langholtz, Matthew H.; Tan, Eric; Jacobson, Jacob; Schwab, Amy; Wu, May; Argo, Andrew; Brandt, Craig C.; Cafferty, Kara; Chiu, Yi-Wen; Dutta, Abhijit; Eaton, Laurence M.; Searcy, Erin

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the

  10. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    SciTech Connect

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt; Hanbury, Orion; Schuetzle, Robert; Rodriguez, Ramer; Johnson, Alex; Deichert, Fred; Jorgensen, Roger; Struble, Doug

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  11. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE PAGES [OSTI]

    Borole, Abhijeet P.

    2015-08-25

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  12. Top Value-Added Chemicals from Biomass - Volume IIResults of Screening for Potential Candidates from Biorefinery Lignin

    SciTech Connect

    Holladay, John E.; White, James F.; Bozell, Joseph J.; Johnson, David

    2007-10-01

    This report evaluates lignins role as a renewable raw material resource. Opportunities that arise from utilizing lignin fit into one of three categories: 1)power, fuel and syngas (generally near-term opportunities) 2) macromolecules (generally medium-term opportunities) 3) aromatics and miscellaneous monomers (long-term opportunities). Biorefineries will receive and process massive amounts of lignin. For this reason, how lignin can be best used to support the economic health of the biorefinery must be defined. An approach that only considers process heat would be shortsighted. Higher value products present economic opportunities and the potential to significantly increase the amount of liquid transportation fuel available from biomass. In this analysis a list of potential uses of lignin was compiled and sorted into product types which are broad classifications (listed above as powerfuelsyngas; macromolecules; and aromatics). In the first product type (powerfuelgasification) lignin is used purely as a carbon source and aggressive means are employed to break down its polymeric structure. In the second product type (macromolecules) the opposite extreme is considered and advantage of the macromolecular structure imparted by nature is retained in high-molecular weight applications. The third product type (aromatics) lies somewhere between the two extremes and employs technologies that would break up lignins macromolecular structure but maintain the aromatic nature of the building block molecules. The individual opportunities were evaluated based on their technical difficulty, market, market risk, building block utility, and whether a pure material or a mixture would be produced. Unlike the Sugars Top 10 report it was difficult to identify the ten best opportunities, however, the potential opportunities fell nicely into near-, medium- and long-term opportunities. Furthermore, the near-, medium- and long-term opportunities roughly align with the three

  13. Departments of the Navy, Energy and Agriculture Invest in Construction of Three Biorefineries to Produce Drop-In Biofuel for Military

    Energy.gov [DOE]

    As part of a 2011 Presidential directive, the Departments of Navy, Energy, and Agriculture announced today that three companies have been awarded contracts to construct and commission biorefineries capable of producing “drop-in” biofuels to meet the transportation needs of the military and private sector.

  14. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  15. DOEGO85004_1: Final Non-proprietary Technical Report, Generating Process and Economic Data for Preliminary Design of PureVision Biorefineries DOEGO85004_2: One Original Final Proprietary Technical Report to be mailed to DOE Golden.

    SciTech Connect

    Kadam, Kiran L., Ph.D; Lehrburger, Ed

    2008-01-17

    The overall objective of the project was to define a two-stage reactive fractionation process for converting corn stover into a solid cellulose stream and two liquid streams containing mostly hemicellulosic sugars and lignin, respectively. Toward this goal, biomass fractionation was conducted using a small continuous pilot unit with a nominal capacity of 100 pounds per day of dry biomass to generate performance data using primarily corn stover as feedstock. In the course of the program, the PureVision process was optimized for efficient hemicellulose hydrolysis in the first stage employing autohydrolysis and delignification in the second stage using sodium hydroxide as a catalyst. The remaining cellulose was deemed to be an excellent substrate for producing fermentation sugars, requiring 40% less enzymes for hydrolysis than conventional pretreatment systems using dilute acid. The fractionated cellulose was also determined to have potential higher-value applications as a pulp product. The lignin coproduct was determined to be substantially lower in molecular weight (MW) compared to lignins produced in the kraft or sulfite pulping processes. This low-MW lignin can be used as a feed and concrete binder and as an intermediate for producing a range of high-value products including phenolic resins. This research adds to the understanding of the biomass conversion area in that a new process was developed in the true spirit of biorefineries. The work completed successfully demonstrated the technical effectiveness of the process at the pilot level indicating the technology is ready to advance to a 2–3 ton per day scale. No technical showstoppers are anticipated in scaling up the PureVision fractionation process to commercial scale. Also, economic feasibility of using the PureVision process in a commercial-scale biorefinery was investigated and the minimum ethanol selling price for the PureVision process was calculated to be $0.94/gal ethanol vs. $1.07/gal ethanol for the

  16. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger Manager, Renewable Energy & Chemicals Development UOP, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information © Copyright 2015 UOP LLC, a Honeywell Company 2 File Number Goal Statement * Demonstrate a technically and economically viable approach for converting

  17. The Integrated Biorefinery: Conversion of Corn Fiber to Value-added Chemicals

    SciTech Connect

    Susanne Kleff

    2007-03-24

    This presentation provides a summary of Michigan Biotechnology Institute's efforts to employ the corn fiber fraction of a dry grind ethanol plant as a feedstock to produce succinic acid which has potential as a building block intermediate for a wide range of commodity chemicals.

  18. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    SciTech Connect

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the

  19. Conceptual design assessment for the co-firing of bio-refinery supplied lignin project. Quarterly report, June 23--July 1, 2000

    SciTech Connect

    Berglund, T.; Ranney, J.T.; Babb, C.L.

    2000-07-27

    The Conceptual Design Assessment for the Co-Firing of Bio-Refinery Supplied Lignin Project was successfully kicked off on July 23, 2000 during a meeting at the TVA-PPI facility in Muscle Shoals, AL. An initial timeline for the study was distributed, issues of concern were identified and a priority actions list was developed. Next steps include meeting with NETL to discuss de-watering and lignin fuel testing, the development of the mass balance model and ethanol facility design criteria, providing TVA-Colbert with preliminary lignin fuel analysis and the procurement of representative feed materials for the pilot and bench scale testing of the hydrolysis process.

  20. Strategic Biorefinery Analysis: Analysis of Biorefineries

    SciTech Connect

    Lynd, L. R.; Wyman, C.; Laser, M.; Johnson, D.; Landucci, R.

    2005-10-01

    Subcontract report prepared by Dartmouth College that identifies and discusses the advantages of producing ethanol in a biomass refinery as compared to a single-product facility.

  1. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE PAGES [OSTI]

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  2. Gasification of Biorefinery Residues

    SciTech Connect

    2006-04-01

    This project is addressing syngas clean-up by developing a better understanding of the chemical mechanisms and kinetics of trace product formation in biomass gasification.

  3. Integrated Biorefinery Process

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Concept Development Commercial Viability Technical Viability Concept Proof Commercial Sustainability Information Resources Office of Biomass Program, Web Site: http:...

  4. American Process - Alpena Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Over 48 patents pending, 7 allowed * Two technologies AVAP and Green Power+ * Built two demonstration cellulosic ethanol plants in GA and Mi USA * Recipient of DOE and Michigan ...

  5. Combined Dilute Acid and Solvent Based Pretreatment of Agricultural Wastes for Efficient Lignocellulosic Fractionation and Biofuels Production

    SciTech Connect

    Brodeur, G.; Ramakrishnan, S.; Wilson, C.; Telotte, J.; Collier, J.; Stickel, J.

    2013-01-01

    A true biorefinery for processing lignocellulosic biomass should achieve maximum utilization of all major constituents (cellulose, hemicellulose, & lignin) within the feedstock. In this work a combined pretreatment process of dilute acid (DA) and N-methyl morpholine N-oxide (NMMO) is described that allows for both fractionation and subsequent complete hydrolysis of the feedstocks (corn stover and sugarcane bagasse). During this multi-step processing, the dilute acid pretreatment solubilizes the majority (>90%) of the hemicellulosic fraction, while the NMMO treatment yields a cellulosic fraction that is completely digestible within 48 hours at low enzyme loadings. With both the cellulosic and hemicellulosic fractions being converted into separate, dissolved sugar fractions, the remaining portion is nearly pure lignin. When used independently, DA and NMMO pretreatments are only able to achieve ~80% and ~45% cellulosic conversion, respectively. Mass balance calculations along with experimental results are used to illustrate the feasibility of separation and recycling of NMMO.

  6. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    SciTech Connect

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and Postgre

  7. UOP Pilot-Scale Biorefinery

    Energy.gov [DOE]

    This project by UOP will leverage two commercially proven core technologies, pyrolysis and hydroconversion, into an integrated platform.

  8. USDA- Repowering Assistance Biorefinery Program

    Energy.gov [DOE]

    The reimbursement amounts vary and are determined by the availability of funds, the project scope, and the ability of the proposed project to meet all the scoring criteria. In particular reimburs...

  9. Integrated Corn-Based Biorefinery

    Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  10. Integrated Biorefineries | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research & Development Demonstration & Market Transformation Integrated ... funded by the Bioenergy Technologies Office at pilot, demonstration, and pioneer scales. ...

  11. Hydroxycarboxylic acids and salts

    SciTech Connect

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  12. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    SciTech Connect

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change during

  13. Characterization of Lignin Derived from Water-only and Dilute Acid Flowthrough Pretreatment of Poplar Wood at Elevated Temperatures

    SciTech Connect

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    Background: Flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. Results: In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. Conclusions: Elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  14. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  15. Fatty acid esterification process

    DOEpatents

    Austic, Greg; Burton, Rachel; Fan, Xiaohu

    2016-08-23

    The invention relates to the utilization of fatty acid feedstocks with substantial free fatty acid content in the production of biodiesel by the use of microbial enzymes.

  16. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  17. EA-1787: Finding of No Significant Impact | Department of Energy

    Energy.gov [DOE] (indexed site)

    Documents & Publications EA-1787: Final Environmental Assessment Myriant Succinic Acid Biorefinery Commercialization of Bio-Based Chemicals: A Successful Public-Private Partnership...

  18. Demonstration and Deployment Workshop Day 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lessons Learned, Challenges, and Future Needs danddworkshopspaeth.pdf (2.32 MB) More Documents & Publications Myriant Succinic Acid Biorefinery 2013 Peer Review ...

  19. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  20. Mixed Acid Oxidation

    SciTech Connect

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  1. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  2. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  3. USDA - Biorefinery Assistance Program | Department of Energy

    Energy.gov [DOE] (indexed site)

    must be an advanced biofuels Eligible advanced biofuels include: Biofuel derived from cellulose, hemicellulose, or lignin, or other fuels derived from cellulose Biofuel derived...

  4. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts

    Energy Saver

    ... and leads to conversion technologies optimized for the biomass feedstocks in each region. ... Bioprocess Algae Shenandoah, IA Pilot Algae Frontline Ames, IA Pilot Gasification Haldor ...

  5. NREL: Sustainable NREL - Integrated Biorefinery Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Efficiency Features Natural ventilation through operable windows Daylighting Open air cubicles LED lights with lighting control system Sustainability Features Composting and ...

  6. NREL: Biomass Research - Capabilities in Integrated Biorefinery...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Department of Energy. A yellow ladder is connected to the side of the right tank. A man at the far end of the room examines the pipes that lead to the tanks. In the...

  7. NewPage Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  8. Flambeau River Biofuels Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  9. Demonstration of Pyrolysis Biorefinery Concept for Biopower,...

    Energy.gov [DOE] (indexed site)

    Copyright 2015 All rights reserved. 1- Project Overview * ... - Front-end and back-end storagelogistics - Bioasphalt ... Review (based on PFDs) - Battery Limit Interface Table - ...

  10. Southern Pine Based on Biorefinery Center

    SciTech Connect

    Ragauskas, Arthur J.; Singh, Preet

    2013-12-20

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; The conversion of extracted woodchips to linerboard and bleach grade pulps; and the efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  11. 2014 DOE Biomass Program Integrated Biorefinery Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... process 11 years of technology development +100 patents ongoing +700 M USD invested 104 M USD DOE loan guarantee federal financing for Hugoton project ...

  12. NREL: Biomass Research - Integrated Biorefinery Research Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The IBRF's 27,000-ft2, high-bay biochemical conversion pilot ... into end-to-end process integration and evaluation tests ... for staged feedstock pre-processing operations in one vessel ...

  13. Economy Through Product Diversity: Integrated Biorefineries

    Office of Environmental Management (EM)

    ... Agricultural and forestry residues, algae, bagasse, corn cobs, corn stover, energy sorghum, hybrid poplar, lignocellulosic biomass, mill residues, sorted municipal solid waste, ...

  14. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts

    Energy.gov [DOE] (indexed site)

    biofuels. Developing the U.S. bioeconomy requires building many integrated biorefneries capable of converting a broad range of biomass feedstocks into affordable biofuels, ...

  15. Development of Integrated Biorefineries | Department of Energy

    Energy Saver

    utilize input from all of the other platforms as well as the existing biofuels industry. ... of efficient processes for producing biofuels from corn fiber, agricultural residues, ...

  16. DuPont Cellulosic Ethanol Biorefinery Opening

    Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy Bioenergy Technologies Office Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  17. Range Fuels Biorefinery Groundbreaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and state legislators who exhibit the kind of leadership you've shown in developing America's new energy future. ... Range Fuels are blending science and technology in order to ...

  18. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Achieving national energy and climate goals will require an economically viable and environmentally sustainable U.S. bioindustry. A crucial step in developing this industry is to ...

  19. A Second-Generation Dry Mill Biorefinery

    Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  20. Integrated Biorefinery Process | Department of Energy

    Energy.gov [DOE] (indexed site)

    At the February 12, 2009 quarterly joint Web conference of DOE's Biomass and Clean Cities ... Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 The Current ...

  1. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  2. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  3. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Nucleic acid detection compositions

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    DOE PAGES [OSTI]

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL),more » recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  7. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  8. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGES [OSTI]

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  9. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  10. Microorganisms for producing organic acids

    SciTech Connect

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  11. Recovery of organic acids

    DOEpatents

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  12. Reversible Acid Gas Capture

    ScienceCinema

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  13. Recovery of organic acids

    DOEpatents

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  14. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  15. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  16. Method for isolating nucleic acids

    SciTech Connect

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  17. Optical high acidity sensor

    DOEpatents

    Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.

    1997-07-22

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.

  18. Optical high acidity sensor

    DOEpatents

    Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.

    1997-01-01

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

  19. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  20. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  1. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  2. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  3. Acid diffusion through polyaniline membranes

    SciTech Connect

    Su, T.M.; Huang, S.C.; Conklin, J.A.

    1995-12-01

    Polyaniline membranes in the undoped (base) and doped (acid) forms are studied for their utility as pervaporation membranes. The separation of water from mixtures of propionic acid, acetic acid and formic acid have been demonstrated from various feed compositions. Doped polyaniline displays an enhanced selectivity of water over these organic acids as compared with undoped polyaniline. For as-cast polyaniline membranes a diffusion coefficient (D) on the order of 10{sup -9} cm{sup 2}/sec has been determined for the flux of protons through the membranes using hydrochloric acid.

  4. Lubrication with boric acid additives

    DOEpatents

    Erdemir, Ali

    2000-01-01

    Self-lubricating resin compositions including a boric acid additive and a synthetic polymer including those thermoset materials.

  5. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  6. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  7. Pantothenic acid biosynthesis in zymomonas

    DOEpatents

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  8. Nucleic Acid Analysis Software | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nucleic Acid Analysis Software Technology available for licensing: Nucleic Acid Analysis Software PDF icon nucleic_acid_analysis_software_oct_2016

  9. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  10. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  11. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  12. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  13. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  14. Nucleic acid detection methods

    DOEpatents

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  15. Ozone and acid rain

    SciTech Connect

    Not Available

    1987-10-09

    The roles of ozone and other oxidizing agents are discussed. The major polluting emissions are SO/sub 2/, NO, and volatile organic chemicals. In the usual ambient concentrations, these substances are relatively harmless. However, when SO/sub 2/ and NO are oxidized, they are converted into more acid, more toxic, substances. Oxidants, including OH, H/sub 2/O/sub 2/, HO/sub 2/, and organic peroxides, arise out of complex photochemistry that involves the ozone, the nitrogen oxides, and volatile organic chemicals. Were SO/sub 2/ the only pollutant, most of it would escape unchanged to the western Atlantic Ocean where it would be so diluted as to have no effect. At present about 35 percent of the SO/sub 2/ produced in the United States leaves the continent. In contrast, because of higher rates of reaction with oxidants, most of the NO is converted into nitric acid and deposited on land. The nitrogen oxides are involved in the production of ozone, some of which is naturally present. But particularly in urban settings where concentrations of NO/sub x/ are elevated and volatile organic chemicals such as those in gasoline are present, ozone concentrations may rise to levels deleterious to health. The Environmental Protection Agency has set standards for levels not to be exceeded, but nearly half of urban communities are not in compliance. The NO/sub x/ involved in the formation of urban ozone comes mostly from vehicular emissions.

  16. Comparison of silatrane, phosphonic acid, and carboxylic acid functional

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells Authors: Brennan, B.J., Llansola Portoles, M.J., Liddell, P.A., Moore, T.A., Moore, A.L., and Gust, D. Title: Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in

  17. Electrochemical destruction of organic acids

    SciTech Connect

    Gendes, J.D.; Hartsough, D.; Super, J.D.

    1994-12-31

    An electrochemical process for removing organic acids from an aqueous waste stream has been characterized. Biological treatment of aqueous organic acid waste streams has been the typical means of degrading organic acids, and the resultant biosludge is landfilled. In the electrochemical approach, aqueous organic acids may be efficiently converted to useful fuel in a one or two electron process. The possible reactions occurring are outlined here. The electrolysis of the sodium salts of acetic, propionic, and butyric acids has been studied both as single component solutions and mixtures. The reaction products as well as relative rates of destruction of the acid salts were measured. The effect of experimental variables such as current density, temperature, and anode material on the current efficiency and product distribution was investigated. Electrode stability due to platinum corrosion was identified as the major limitation to the process.

  18. ARM - Lesson Plans: Acid Rain

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Acid Rain Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Acid Rain Objective The objective is to help students understand the concept of acid rain and what impact this may have on vegetation. Materials Each group of students will need the following: 2 or 3 small plants of the

  19. Acidic gas capture by diamines

    DOEpatents

    Rochelle, Gary; Hilliard, Marcus

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  20. Carbonic Acid Pretreatment of Biomass

    SciTech Connect

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  1. Carbonic Acid Retreatment of Biomass

    SciTech Connect

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  2. Production of Butyric Acid and Butanol from Biomass

    SciTech Connect

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  3. Functional nucleic acid probes and uses thereof

    DOEpatents

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  4. Can crops tolerate acid rain

    SciTech Connect

    Kaplan, J.K.

    1989-11-01

    This brief article describes work by scientists at the ARS Air Quality-Plant Growth and Development Laboratory in Raleigh, North Carolina, that indicates little damage to crops as a result of acid rain. In studies with simulated acid rain and 216 exposed varieties of 18 crops, there were no significant injuries nor was there reduced growth in most species. Results of chronic and acute exposures were correlated in sensitive tomato and soybean plants and in tolerant winter wheat and lettuce plants. These results suggest that 1-hour exposures could be used in the future to screen varieties for sensitivity to acid rain.

  5. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  6. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  7. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  8. Nucleic acid arrays and methods of synthesis

    DOEpatents

    Sabanayagam, Chandran R.; Sano, Takeshi; Misasi, John; Hatch, Anson; Cantor, Charles

    2001-01-01

    The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.

  9. Photodissociation dynamics of hydroxybenzoic acids

    SciTech Connect

    Yang Yilin; Dyakov, Yuri; Lee, Y. T.; Ni, Chi-Kung; Sun Yilun; Hu Weiping

    2011-01-21

    Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.

  10. In vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2012-05-08

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  11. In vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2011-10-04

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  12. In vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2011-03-29

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  13. In vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2012-02-14

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  14. In vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2008-05-06

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  15. Acid soluble, pepsin resistant platelet aggregating material

    DOEpatents

    Schneider, Morris D.

    1982-08-31

    Acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid, method of isolation and use to control bleeding.

  16. Beyond Ketonization: Selective Conversion of Carboxylic Acids...

    Office of Scientific and Technical Information (OSTI)

    Title: Beyond Ketonization: Selective Conversion of Carboxylic Acids to Olefins over Balanced Lewis Acid-base Pairs Dwindling petroleum reserves combined with increased energy ...

  17. In vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason William; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan A.; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2006-05-16

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  18. In vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric; Mehl, Ryan Aaron; Pastrnak, Miro

    2009-12-29

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids

  19. Thermal Stability of Acetohydroxamic Acid/Nitric Acid Solutions

    SciTech Connect

    Rudisill, T.S.

    2002-03-13

    The transmutation of transuranic actinides and long-lived fission products in spent commercial nuclear reactor fuel has been proposed as one element of the Advanced Accelerator Applications Program. Preparation of targets for irradiation in an accelerator-driven subcritical reactor would involve dissolution of the fuel and separation of uranium, technetium, and iodine from the transuranic actinides and other fission products. The UREX solvent extraction process is being developed to reject and isolate the transuranic actinides in the acid waste stream by scrubbing with acetohydroxamic acid (AHA). To ensure that a runaway reaction will not occur between nitric acid and AHA, an analogue of hydroxyl amine, thermal stability tests were performed to identify if any processing conditions could lead to a runaway reaction.

  20. Wiki-based Techno Economic Analysis of a Lignocellulosic Biorefinery...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biofuels Biomass and Biofuels Find More Like This ... The model can be used to estimate the economic impact of various ... the economic, environmental, and energetic ...

  1. EERE Energy Impacts: Biorefineries Give Local Farmers Opportunities...

    Energy Saver

    target"blank">Watch a video segment about Bruces story at ... Watch a video segment about Bruce's story at the beginning of the film "Bioenergy: ...

  2. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact Sheet About Development of Microalgae-produced Biofuels Utilizing Mesoporous Nanoparticle Catalysts

  3. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks

    SciTech Connect

    2009-03-01

    This factsheet describes a research project whose specific goals are as follows: (1) to selectively isolate fuel-relevant hydrocarbons from live microalgae by using mesoporous material, (2) to convert microalgae-based hydrocarbons and waste oils to biodiesel in a single step using a mesoporous mixed metal-oxide catalyst, and (3) to develop this research to the point of commercialization in 3 to 5 years.

  4. 2011 Biomass Program Platform Peer Review. Integrated Biorefineries

    SciTech Connect

    Rossmeissl, Neil

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s IBR Platform Review meeting.

  5. DOE Announces $160 Million for Biorefinery Construction and Highlights...

    Office of Environmental Management (EM)

    ... American Initiative and to highlight solar tax credits made available as a result of ... Grand Rapids, and provide remarks at the Michigan Alternative and Renewable Energy Center, ...

  6. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Energy.gov [DOE] (indexed site)

    ... processing multiple biomass feedstock types * Operated pyoil stabilization and metals removal unit * PNNL completed catalytic hydrothermal gasification * Demonstrated 1 st ...

  7. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    KB) More Documents & Publications 2015 Peer Review Presentations-Algal Feedstocks Algal Biofuels Strategy Workshop - Spring Event Algal Biology Toolbox Workshop Summary Report

  8. Agricultural Mixed Waster Biorefinery Using Thermal Conversion Process

    SciTech Connect

    2006-08-01

    This Congressionally-mandated project is supporting efforts to develop a demonstration facility that will use the patented Thermal Conversion Process (TCP) to produce fuel, power and chemicals from poultry waste and agricultural wastes such as animal and vegetable grease and wastewater sludge.

  9. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by high-value Omega-3s, permits the profitable production of crude oil & animal feed at market- competitive prices based on current yields, current costs, & current prices. 3. In ...

  10. The National Bioenergy Center Laying the Foundation for Biorefineries

    SciTech Connect

    2005-08-01

    Advanced biomass conversion technology will play a major role in eliminating the need for imported oil and the generation of greenhouse gases from burning fossil fuels.

  11. Pilot-Scale MixotrophicAlgae Integrated Biorefinery(IBR)

    Energy.gov [DOE] (indexed site)

    Organization: BioProcess Algae This presentation does not contain any proprietary, confidential, or otherwise restricted information AGENDA * Project Overview * Project Approach * ...

  12. Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Demonstration and Deployment Successes Jaime Moreno, Vice President of Projects, Sapphire Energy, Inc.

  13. NREL Biorefinery Analysis Process Models | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tools Public Acceptability of Sustainable Transport Measures: A Review of the Literature Fuel Cell Economic Development Plan Hydrogen Roadmap Africa Infrastructure Country...

  14. DOE Biorefinery Plenary Warner 100416 Final Low Res

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    from concept to commercial operation Co-Product Opportunities Lessons Learned from concept to commercial operation A look back at bio-based products 2 GP Bellingham, WA (lignin source) Vanillin L-Dopa (Blood Pressure) * Plant Operated from 1946 to 1991 * Highly profitable, made ~30% of world supply in 1980's * Merck and Hershey were largest customers * Inability to consistently sell co-product caused shutdown * Replacement process was synthesis from crude oil Monsanto Seattle Vanillin Plant High

  15. Modeling Tomorrow's Biorefinery--the NREL Biochemical Pilot Plant

    SciTech Connect

    Not Available

    2008-03-01

    Brochure describing the capabilities of NREL's Biochemical Pilot Plant. In this facility, researchers test ideas for creating high-value products from cellulosic biomass.

  16. Integration of Nutrient and Water Recycling for Sustainable Algal Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    03/25/2015 ALGAE TECHNOLOGY AREA Presenters: (1) Sridhar Viamajala, The University of Toledo; (2) Brent Peyton, Montana State University; (3) Matthew Fields, Montana State University This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Goal Statement Develop the science and engineering for sustainable biomass production through use of: o Wastewater and nutrients recycled from N-

  17. Integration of Nutrient and Water Recycling for Sustainable Algal Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    05/23/2013 BETO 2013 PEER REVIEW Sridhar Viamajala The University of Toledo This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Develop the science and engineering for sustainable biomass production through use of: o Wastewater and nutrients recycled from N- and P-rich post- conversion residues. o Minimizes inputs of water and synthetic fertilizers. o High lipid-producing native alkaliphilic algae. o Cultures tolerant to high pH

  18. NREL Report Provides Documentation of the Advanced Biorefinery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the status of the non-starch ethanol and renewable hydrocarbon biofuels industry in the United States. The report, 2013 Survey of Non-Starch Ethanol and Renewable Hydrocarbon ...

  19. Advanced Biorefinery of Distriller's Grain and Corn Stover Blends

    SciTech Connect

    2006-04-01

    Fuel ethanol can be produced via the dry milling process, which converts corn grain to ethanol. The co-product, distiller’s grain (DG), is sold as a low-cost, high-protein feed source for livestock.

  20. Acid sorption regeneration process using carbon dioxide

    DOEpatents

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  1. High speed nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid. Each type of labeled nucleotide comprises an acceptor fluorophore attached to a phosphate portion of the nucleotide such that the fluorophore is removed upon incorporation into a growing strand. Fluorescent signal is emitted via fluorescent resonance energy transfer between the donor fluorophore and the acceptor fluorophore as each nucleotide is incorporated into the growing strand. The sequence is deduced by identifying which base is being incorporated into the growing strand.

  2. Identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2005-02-08

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  3. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  4. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  5. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  6. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  7. Hydrogenation using hydrides and acid

    DOEpatents

    Bullock, R. Morris

    1990-10-30

    A process for the non-catalytic hydrogenation of organic compounds, which contain at least one reducible functional group, which comprises reacting the organic compound, a hydride complex, preferably a transition metal hydride complex or an organosilane, and a strong acid in a liquid phase.

  8. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  9. Thermal Stability Of Formohydroxamic Acid

    SciTech Connect

    Fondeur, F. F.; Rudisill, T. S.

    2011-10-21

    The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}?C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}?C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}?C and thermally decomposed at 90 {degree}?C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}?C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

  10. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.

    2002-01-01

    A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.

  11. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  12. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  13. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  14. Fuel cell electrolyte membrane with acidic polymer

    DOEpatents

    Hamrock, Steven J.; Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Haugen, Gregory M.; Lamanna, William M.

    2009-04-14

    An electrolyte membrane is formed by an acidic polymer and a low-volatility acid that is fluorinated, substantially free of basic groups, and is either oligomeric or non-polymeric.

  15. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  16. Nitric acid recovery from waste solutions

    DOEpatents

    Wilson, A. S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acid, ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of ruthenium.

  17. NITRIC ACID RECPVERY FROM WASTE COLUTIONS

    DOEpatents

    Wilson, A.S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acids ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of rutheniuim.

  18. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  19. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  20. Unravelling the Mysteries of Carbonic Acid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Unravelling the Mysteries of Carbonic Acid Unravelling the Mysteries of Carbonic Acid Molecular Dynamics Simulations Carried Out at NERSC June 18, 2015 Lynn Yarris, (510) 486-5375, lcyarris@lbl.gov Saykally co2 in water When gaseous carbon dioxide is dissolved in water, its hydrophobic nature carves out a cylindrical cavity, setting the stage for the proton transfer reactions that produce carbonic acid. Blink your eyes and it's long gone. Carbonic acid exists for only a tiny fraction of a second

  1. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  2. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  3. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  4. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Martinez Sulfuric Acid Regeneration Plt Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Martinez Sulfuric Acid Regeneration Plt Biomass Facility Jump to: navigation, search Name Martinez Sulfuric Acid Regeneration Plt Biomass Facility Facility Martinez Sulfuric Acid...

  8. Sandia National Laboratories: Due Diligence on Lead Acid Battery...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

  9. Modified Microbes Tolerate 50-Fold More Organic Acid - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    UW-Madison researchers have genetically modified microorganisms to better tolerate organic acids like 3HP, acrylic acid and propionic acid. The modified microorganisms are ...

  10. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  11. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  12. Probing the Surprising Secrets of Carbonic Acid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Surprising Secrets of Carbonic Acid Probing the Surprising Secrets of Carbonic Acid Berkeley Lab Study Holds Implications for Geological and Biological Processes October 23, 2014 Contact: Lynn Yarris, lcyarris@lbl.gov, 510.486.5375 CarbonicAcid Though carbonic acid exists for only a fraction of a second before changing into a mix of hydrogen and bicarbonate ions, it is critical to both the health of the atmosphere and the human body. Though it garners few public headlines, carbonic acid, the

  13. EA-1789: Finding of No Significant Impact

    Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Biorefinery, Alpena Prototype Biorefinery, Alpena, Michigan

  14. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  15. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  16. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  17. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  18. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1999-10-12

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  19. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1996-01-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  20. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  1. Multiplexed microfluidic approach for nucleic acid enrichment

    DOEpatents

    VanderNoot, Victoria A.; Langevin, Stanley Alan; Bent, Zachary; Renzi, Ronald F.; Ferko, Scott M.; Van De Vreugde, James L.; Lane, Todd; Patel, Kamlesh; Branda, Steven

    2016-04-26

    A system for enhancing a nucleic acid sample may include a one pump, a denaturing chamber; a microfluidic hydroxyapatite chromatography device configured for performing hydroxyapatite chromatography on the nucleic acid sample, a sample collector, and tubing connecting the pump with the denaturing chamber, the hydroxyapatite chromatography device and the sample collector such that the pump may be used to move the nucleic acid sample from the denaturing chamber to the hydroxyapatite chromatography device and then to the sample collector.

  2. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  3. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  4. Acid rain information book. Draft final report

    SciTech Connect

    1980-12-01

    Acid rain is one of the most widely publicized environmental issues of the day. The potential consequences of increasingly widespread acid rain demand that this phenomenon be carefully evaluated. Reveiw of the literature shows a rapidly growing body of knowledge, but also reveals major gaps in understanding that need to be narrowed. This document discusses major aspects of the acid rain phenomenon, points out areas of uncertainty, and summarizes current and projected research by responsible government agencies and other concerned organizations.

  5. Acid Doped Membranes for High Temperature PEMFC

    Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  6. Probing the Surprising Secrets of Carbonic Acid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    carbonic acid with important implications for both geological and biological concerns. ... mixing technology in which two aqueous samples rapidly mix and flow through a finely ...

  7. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    SciTech Connect

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  8. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is .sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  9. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is .sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  10. Producing dicarboxylic acids using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  11. Producing dicarboxylic acids using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  12. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  13. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M.; Shoup, Timothy

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  14. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M.; Shoup, Timothy

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  15. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  16. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  17. 2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic Acid)s with Frozen-in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Free Volume for use in High Temperature Fuel Cells | Department of Energy Poly (p-phenylene Sulfonic Acid)s with Frozen-in Free Volume for use in High Temperature Fuel Cells 2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic Acid)s with Frozen-in Free Volume for use in High Temperature Fuel Cells A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. litt.pdf (66.97 KB) More Documents & Publications Polyphenylene Sulfonic Acid: a new PEM High Temperature

  18. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  19. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  20. Chip-based sequencing nucleic acids

    DOEpatents

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  1. Phenolic acid esterases, coding sequences and methods

    DOEpatents

    Blum, David L.; Kataeva, Irina; Li, Xin-Liang; Ljungdahl, Lars G.

    2002-01-01

    Described herein are four phenolic acid esterases, three of which correspond to domains of previously unknown function within bacterial xylanases, from XynY and XynZ of Clostridium thermocellum and from a xylanase of Ruminococcus. The fourth specifically exemplified xylanase is a protein encoded within the genome of Orpinomyces PC-2. The amino acids of these polypeptides and nucleotide sequences encoding them are provided. Recombinant host cells, expression vectors and methods for the recombinant production of phenolic acid esterases are also provided.

  2. Novel Biosynthetic Pathway for Production of Fatty Acid Derived...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    fatty acids and fatty acid derived compounds are secreted from a host cell, such as E. coli. The host cell can be modified to increase fatty acid production or export the desired...

  3. Methods for analyzing nucleic acid sequences

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid. The method provides a complex comprising a polymerase enzyme, a target nucleic acid molecule, and a primer, wherein the complex is immobilized on a support Fluorescent label is attached to a terminal phosphate group of the nucleotide or nucleotide analog. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The time duration of the signal from labeled nucleotides or nucleotide analogs that become incorporated is distinguished from freely diffusing labels by a longer retention in the observation volume for the nucleotides or nucleotide analogs that become incorporated than for the freely diffusing labels.

  4. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  5. Surfactant addition to phosphoric acid electrolyte

    DOEpatents

    Jackovitz, John F. (Monroeville, PA); Kunkle, Richard P. (Irwin, PA)

    1987-01-01

    A phosphoric acid fuel cell having an improved electrolyte comprising concentrated H.sub.3 PO.sub.4 and at least 0.5 wt. percent lauryl dimethyl amine.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  7. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  8. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  9. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  10. Primer on lead-acid storage batteries

    SciTech Connect

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  11. NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, R.A.

    1996-05-21

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of cyanuric acid, said amount and temperature being effective for the resultant lowering of the NO content of the gas stream, said cyanuric acid being particulate and having a particle size of less than 90 {micro}m. 1 fig.

  12. Amplification of trace amounts of nucleic acids

    DOEpatents

    Church, George M.; Zhang, Kun

    2008-06-17

    Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).

  13. No reduction using sublimination of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1996-01-01

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of cyanuric acid, said amount and temperature being effective for the resultant lowering of the NO content of the gas stream, said cyanuric acid being particulate and having a particle size of less than 90 .mu.m.

  14. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOEpatents

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  15. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  16. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  17. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  18. Corrosion Testing of Carbon Steel in Acid Cleaning Solutions...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Report: Corrosion Testing of Carbon Steel in Acid Cleaning Solutions Citation Details In-Document Search Title: Corrosion Testing of Carbon Steel in Acid Cleaning ...

  19. Catalytic Consequences of Acid Strength in the Conversion of...

    Office of Scientific and Technical Information (OSTI)

    examined here using density functional theory (DFT) estimates of acid strength (as ... This combination of theory and experiment for solid acids of known structure sheds ...

  20. Quantification of false positive reduction in nucleic acid purificatio...

    Office of Scientific and Technical Information (OSTI)

    reduction in nucleic acid purification on hemorrhagic fever DNA. Citation Details In-Document Search Title: Quantification of false positive reduction in nucleic acid ...

  1. Methods for separating particles and/or nucleic acids usingisotachoph...

    Office of Scientific and Technical Information (OSTI)

    Methods for separating particles andor nucleic acids using isotachophoresis Citation Details In-Document Search Title: Methods for separating particles andor nucleic acids using ...

  2. Effects of Fuel Dilution with Biodiesel on Lubricant Acidity...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion ...

  3. Mutant Fatty Acid Desaturase and Method for Directed Mutagenesis...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby...

  4. LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA Citation Details In-Document Search Title: LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA You are accessing a document from the ...

  5. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL ... DC, August 11-12, 2011. PDF icon High Temperature Fuel Cell (Phosphoric Acid) ...

  6. Acid soluble platelet aggregating material isolated from human umbilical cord

    DOEpatents

    Schneider, Morris D.

    1983-01-01

    Acid soluble, pepsin sensitive platelet aggregating material isolated from human umbilical cord tissue by extraction with dilute aqueous acid, method of isolation and use to control bleeding.

  7. X-ray crystallographic analysis of adipocyte fatty acid binding...

    Office of Scientific and Technical Information (OSTI)

    X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified ... LIFE SCIENCES; ALDEHYDES; CARBOXYLIC ACIDS; CRYSTAL STRUCTURE; IN VIVO; INFLAMMATION; ...

  8. Modeling acid-gas generation from boiling chloride brines (Journal...

    Office of Scientific and Technical Information (OSTI)

    Modeling acid-gas generation from boiling chloride brines Citation Details In-Document Search Title: Modeling acid-gas generation from boiling chloride brines This study ...

  9. A First Look at Yeast Fatty Acid Synthase

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A First Look at Yeast Fatty Acid Synthase Print Fatty acids are the major constituents of eukaryotic and bacterial cellular membranes. They are used for functionally important...

  10. Advanced Lead Acid Battery Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lead Acid Battery Consortium Jump to: navigation, search Name: Advanced Lead-Acid Battery Consortium Place: Durham, North Carolina Zip: 27713 Sector: Vehicles Product: The ALABC is...

  11. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  12. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    SciTech Connect

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R. )

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({sup 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.

  13. Asthmatic responses to airborne acid aerosols

    SciTech Connect

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  14. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  15. System for agitating the acid in a lead-acid battery

    DOEpatents

    Weintraub, Alvin; MacCormack, Robert S.

    1987-01-01

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  16. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    SciTech Connect

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  17. Energy densification of biomass-derived organic acids

    DOEpatents

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  18. Transcription factor-based biosensors for detecting dicarboxylic acids

    DOEpatents

    Dietrich, Jeffrey; Keasling, Jay

    2014-02-18

    The invention provides methods and compositions for detecting dicarboxylic acids using a transcription factor biosensor.

  19. IMPROVED PROCESSES TO REMOVE NAPHTHENIC ACIDS

    SciTech Connect

    Aihua Zhang; Qisheng Ma; William A. Goddard; Yongchun Tang

    2004-04-28

    In the first year of this project, we have established our experimental and theoretical methodologies for studies of the catalytic decarboxylation process. We have developed both glass and stainless steel micro batch type reactors for the fast screening of various catalysts with reaction substrates of model carboxylic acid compounds and crude oil samples. We also developed novel product analysis methods such as GC analyses for organic acids and gaseous products; and TAN measurements for crude oil. Our research revealed the effectiveness of several solid catalysts such as NA-Cat-1 and NA-Cat-2 for the catalytic decarboxylation of model compounds; and NA-Cat-5{approx}NA-Cat-9 for the acid removal from crude oil. Our theoretical calculations propose a three-step concerted oxidative decarboxylation mechanism for the NA-Cat-1 catalyst.

  20. Comparative genomics of the lactic acid bacteria

    SciTech Connect

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  1. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  2. Adsorption of fulvic acid on goethite

    SciTech Connect

    Filius, J.D.; Lumsdon, D.G.; Meeussen, J.C.L.; Hiemstra, T.; Riemsduk, W.H. van

    2000-01-01

    The adsorption of fulvic acid by goethite was determined experimentally as a function of concentration, pH, and ionic strength. The data were described with the CD-MUSIC model of Hiemstra and Van Riemsdijk (1996), which allows the distribution of charge of the bound fulvate molecule over a surface region. Simultaneously, the concentration, pH, and salt dependency of the binding of fulvic acid can be described. Using the same parameters, the basic charging behavior of the goethite in the absence of fulvic acid could be described well. The surface species used in the model indicate that inner sphere coordination of carboxylic groups of the fulvate molecule is important at low pH, whereas at high pH the outer sphere coordination with reactive groups of the fulvate molecule with high proton affinity is important.

  3. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  4. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  5. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  6. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  7. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  8. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  9. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    SciTech Connect

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  10. Formic acid fuel cells and catalysts

    DOEpatents

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  11. Formic acid fuel cells and catalysts

    DOEpatents

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  12. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  13. Hybridization and sequencing of nucleic acids using base pair mismatches

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  14. Probe kit for identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  15. Method of Identifying a Base in a Nucleic Acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    1999-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  16. Acid fracturing of carbonate gas reservoirs in Sichuan

    SciTech Connect

    Meng, M.

    1982-01-01

    The paper presents the geological characteristics of Sinian-furassic carbonate gas reservoirs in the Sichuan basin, China. Based on these characteristics, a mechanism of acid fracturing is proposed for such reservoirs. Included are the results of a research in acid fracturing fluids and field operation conditions for matrix acidizing and acid fracturing in Sichuan. The acid fracturing method is shown to be an effective stimulation technique for the carbonate strata in this area.

  17. A method to attenuate U(VI) mobility in acidic waste plumes using humic acids

    SciTech Connect

    Wan, J.; Dong, W.; Tokunaga, T.K.

    2011-02-01

    Acidic uranium (U) contaminated plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in-situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in-situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/y) show that desorption of U and HA were non-detectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH < 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results demonstrated that HA-treatment is a promising in-situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost effective, nontoxic, and easily introducible to the subsurface.

  18. Acid digestion demonstration (WeDID)

    SciTech Connect

    Crippen, M.D.

    1993-11-01

    Acid digestion process development began at the Hanford Site in 1972 with a beaker of laboratory acid and progressed through laboratory and pilot-scale development culminating in the Radioactive Acid Digestion Test Unit (RADTU). The RADTU was operational from 1977 through 1982 and processed over 5,000 kg of synthetic and combustible waste forms from Hanford Site operations. It routinely reacted plastics, wood, paper, cloth, ion-exchange resins, metals, and solvents. Operation of RADTU routinely gave volume reductions of 100:1 for most plastics and other combustibles. The residue was inert and was disposed of both as generated and after application of other immobilization techniques, such as calcination, addition to glass, and cement addition. The system was designed to accommodate offgas surges from highly reactive nitrated organics and successfully demonstrated that capability. The system was designed and operated under very stringent safety standards. The Weapons Destruction Integrated Demonstration (WeDID) program required a technology that could dispose of an assortment of weapon components, such as complex electronics, neutron generators, thermal batteries, plastics, cases, cables, and others. A program objective was to recycle and reuse materials wherever possible, but many unique components would need to be rendered inactive, inert, and suitable for disposal under current environmental laws. Acid digestion technology was a key candidate for treating many of the above components; it provided accepted technology for treatment of chemicals and elements that have posed disposal difficulties designated by the US Environmental Protection Agency (EPA).

  19. NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1988-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid.

  20. Nucleic acid-coupled colorimetric analyte detectors

    DOEpatents

    Charych, Deborah H.; Jonas, Ulrich

    2001-01-01

    The present invention relates to methods and compositions for the direct detection of analytes and membrane conformational changes through the detection of color changes in biopolymeric materials. In particular, the present invention provide for the direct colorimetric detection of analytes using nucleic acid ligands at surfaces of polydiacetylene liposomes and related molecular layer systems.

  1. Sulfuric acid thermoelectrochemical system and method

    DOEpatents

    Ludwig, Frank A.

    1989-01-01

    A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

  2. XPS analysis of humic and fulvic acids

    SciTech Connect

    Desbene, P.L.; Silly, L.; Morizur, J.P.; Delamar, M.

    1986-01-01

    The composition of humic and fulvic acids is examined using X-ray Photoelectron Spectroscopy (XPS). The XPS results are compared to that of elemental analyses. XPS permits an easy detection of the different chemical forms of carbon and sulfur that exist in these complex compounds.

  3. No reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1990-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with NHCO into a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid.

  4. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  5. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  6. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  7. Detection of nucleic acid sequences by invader-directed cleavage

    DOEpatents

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  8. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  9. Control organic-acid corrosion with these metals and alloys

    SciTech Connect

    Schillmoller, C.M.

    1997-02-01

    This article discusses materials selection for equipment used in the manufacture and storage of formic, acetic, and propionic acids. The author presents selected data and recommendations relating to higher-molecular-weight organic acids. In general, the corrosive action of organic acids decreases with increasing molecular weight. However, at high temperatures, the acids can dissociate, forming more aggressive ions which can cause much faster corrosion rates than might otherwise be expected. As a rule, stainless steels are attacked more violently by anhydrous organic acids than by organic acids which contain traces of water.

  10. Nucleic acids, compositions and uses thereof

    DOEpatents

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2012-02-21

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  11. Nucleic acid compositions and the encoding proteins

    DOEpatents

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  12. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  13. Lightweight, durable lead-acid batteries

    SciTech Connect

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O.; Dudney, Nancy J.; Contescu, Cristian I.; Baker, Frederick S.; Armstrong, Beth L.

    2011-09-13

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  14. PROCESS FOR PRODUCING ALKYL ORTHOPHOSPHORIC ACID EXTRACTANTS

    DOEpatents

    Grinstead, R.R.

    1962-01-23

    A process is given for producing superior alkyl orthophosphoric acid extractants for use in solvent extraction methods to recover and purify various metals such as uranium and vanadium. The process comprises slurrying P/sub 2/O/ sub 5/ in a solvent diluent such as kerosene, benzene, isopropyl ether, and the like. An alipbatic alcohol having from nine to seventeen carbon atoms, and w- hcrein ihc OH group is situated inward of the terminal carbon atoms, is added to the slurry while the reaction temperature is mainiained below 60 deg C. The alcohol is added in the mole ratio of about 2 to l, alcohol to P/sub 2/O/sub 5/. A pyrophosphate reaotion product is formed in the slurry-alcohol mixture. Subsequently, the pyrophosphate reaction product is hydrolyzed with dilute mineral acid to produce the desired alkyl orthophosphoric aeid extractant. The extraetant may then be separated and utilized in metal-recovery, solvent- extraction processes. (AEC)

  15. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  16. Closure device for lead-acid batteries

    DOEpatents

    Ledjeff, Konstantin

    1983-01-01

    A closure device for lead-acid batteries includes a filter of granulated activated carbon treated to be hydrophobic combined with means for preventing explosion of emitted hydrogen and oxygen gas. The explosion prevention means includes a vertical open-end tube within the closure housing for maintaining a liquid level above side wall openings in an adjacent closed end tube. Gases vent from the battery through a nozzle directed inside the closed end tube against an impingement surface to remove acid droplets. The gases then flow through the side wall openings and the liquid level to quench any possible ignition prior to entering the activated carbon filter. A wick in the activated carbon filter conducts condensed liquid back to the closure housing to replenish the liquid level limited by the open-end tube.

  17. IMPROVED PROCESSES TO REMOVE NAPHTHENIC ACIDS

    SciTech Connect

    Aihua Zhang; Qisheng Ma; Kangshi Wang, William A. Goddard, Yongchun Tang

    2005-05-05

    In the second year of this project, we continued our effort to develop low temperature decarboxylation catalysts and investigate the behavior of these catalysts at different reaction conditions. We conducted a large number of dynamic measurements with crude oil and model compounds to obtain the information at different reaction stages, which was scheduled as the Task2 in our work plan. We developed a novel adsorption method to remove naphthenic acid from crude oil using naturally occurring materials such as clays. Our results show promise as an industrial application. The theoretical modeling proposed several possible reaction pathways and predicted the reactivity depending on the catalysts employed. From all of these studies, we obtained more comprehensive understanding about catalytic decarboxylation and oil upgrading based on the naphthenic acid removal concept.

  18. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  19. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  20. No reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert

    1989-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid and CO or other H-atom generating species is also present or added to the gas stream.

  1. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  2. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe.

  3. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-07-21

    A method is disclosed for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe. 11 figs.

  4. Brnsted Acidity in Metal-Organic Frameworks | Center for Gas...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Brnsted Acidity in Metal-Organic Frameworks Previous Next List Jiang, Juncong and Yaghi, Omar, M. Bronsted Acidity in Metal-Organic Frameworks. Chem. Rev., 115, 6966-6997 (2015)....

  5. Nucleic acid based fluorescent sensor for copper detection

    DOEpatents

    Lu, Yi; Liu, Juewen

    2013-04-02

    A nucleic acid enzyme responsive to copper, comprising an oligonucleotide comprising a nucleotide sequence of SEQ ID NO:1, wherein the nucleic acid enzyme is not self-cleaving.

  6. Lubrication from mixture of boric acid with oils and greases

    DOEpatents

    Erdemir, A.

    1995-07-11

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  7. Brnsted Acidity in Metal-Organic Frameworks | Center for Gas...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    List Jiang, Juncong and Yaghi, Omar, M. Bronsted Acidity in Metal-Organic Frameworks. Chem. Rev., 115, 6966-6997 (2015). DOI: 10.1021acs.chemrev.5b00221 Bronsted Acidity in MOFs...

  8. A First Look at Yeast Fatty Acid Synthase

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A First Look at Yeast Fatty Acid Synthase Print Wednesday, 28 November 2007 00:00 Fatty acids are the major constituents of eukaryotic and bacterial cellular membranes. They are...

  9. PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update Presentation at the MCFC and PAFC R&D ...

  10. Lubrication from mixture of boric acid with oils and greases

    DOEpatents

    Erdemir, Ali

    1995-01-01

    Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  11. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    SciTech Connect

    Liu, Jie; Lu, Yuan-Fu; Zhang, Youcai; Wu, Kai Connie; Fan, Fang; Klaassen, Curtis D.

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  12. Sandia National Laboratories: Due Diligence on Lead Acid Battery Recycling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US Geological Survey estimated that 95% of lead in the United States is recycled, primarily from used lead acid batteries. A broader 2009 European study estimated that globally about 52% of lead is recycled, and a 2008 Asian study estimated a global recycle rate of 68%. Unfortunately, many incidents over the past decade

  13. Method for removing fluoride contamination from nitric acid

    DOEpatents

    Pruett, David J.; Howerton, William B.

    1982-01-01

    Fluoride ions are removed from nitric acid solution by contacting the vaporized solution with alumina or zirconium.

  14. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  15. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  16. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Applications of Carboxylic Acid Reductases in Oleaginous Microbes Citation Details In-Document Search Title: Applications of Carboxylic Acid Reductases in Oleaginous Microbes Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to

  17. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2008-04-01

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  18. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-10-12

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  19. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2009-05-05

    The present invention provides an endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  20. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2015-04-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  1. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-06-06

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  2. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-16

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  3. EGVIII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-23

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl8, and the corresponding EGVIII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVIII, recombinant EGVIII proteins and methods for producing the same.

  4. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-10-05

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  5. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2013-07-16

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  6. Production of methyl-vinyl ketone from levulinic acid

    DOEpatents

    Dumesic, James A.; West; Ryan M.

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  7. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  8. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  9. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  10. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  11. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2014-02-25

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  12. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2012-02-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  13. Method for nucleic acid isolation using supercritical fluids

    DOEpatents

    Nivens, David E.; Applegate, Bruce M.

    1999-01-01

    A method for detecting the presence of a microorganism in an environmental sample involves contacting the sample with a supercritical fluid to isolate nucleic acid from the microorganism, then detecting the presence of a particular sequence within the isolated nucleic acid. The nucleic acid may optionally be subjected to further purification.

  14. Method for nucleic acid isolation using supercritical fluids

    DOEpatents

    Nivens, D.E.; Applegate, B.M.

    1999-07-13

    A method is disclosed for detecting the presence of a microorganism in an environmental sample involves contacting the sample with a supercritical fluid to isolate nucleic acid from the microorganism, then detecting the presence of a particular sequence within the isolated nucleic acid. The nucleic acid may optionally be subjected to further purification. 4 figs.

  15. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2008-11-11

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  16. Nucleic acid analysis using terminal-phosphate-labeled nucleotides

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-04-22

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  17. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  18. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  19. Nucleic Acid Database: a Repository of Three-Dimensional Information about Nucleic Acids

    DOE Data Explorer

    Berman, H. M.; Olson, W. K.; Beveridge, D. L.; Westbrook, J.; Gelbin, A.; Demeny, T.; Hsieh, S. H.; Srinivasan, A. R.; Schneider, B.

    The Nucleic Acid Database (NDB) provides 3-D structural information about nucleic acids.  It is a relational database designed to facilitate the easy search for nucleic acid structures using any of the stored primary or derived structural features. Reports can then be created describing any properties of the selected structures and structures may be viewed in several different formats, including the mmCIF format, the NDB Atlas format, the NDB coordinate format, or the PDB coordinate format. Browsing structure images created directly from coordinates in the repository can also be done. More than 7000 structures have been released as of May 2014. This website also includes a number of specialized tools and interfaces. The NDB Project is funded by the National Institutes of Health and has been funded by the National Science Foundation and the Department of Energy in the past.

  20. Nucleic Acid Database: a Repository of Three-Dimensional Information about Nucleic Acids

    DOE Data Explorer

    Berman, H. M.; Olson, W. K.; Beveridge, D. L.; Westbrook, J.; Gelbin, A.; Demeny, T.; Hsieh, S. H.; Srinivasan, A. R.; Schneider, B.

    The Nucleic Acid Database (NDB) provides 3-D structural information about nucleic acids. It is a relational database designed to facilitate the easy search for nucleic acid structures using any of the stored primary or derived structural features. Reports can then be created describing any properties of the selected structures and structures may be viewed in several different formats, including the mmCIF format, the NDB Atlas format, the NDB coordinate format, or the PDB coordinate format. Browsing structure images created directly from coordinates in the repository can also be done. More than 7000 structures have been released as of May 2014. This website also includes a number of specialized tools and interfaces. The NDB Project is funded by the National Institutes of Health and has been funded by the National Science Foundation and the Department of Energy in the past.

  1. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon ...

  2. Demonstration and Deployment Successes: Sapphire Integrated Algal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes Jaime Moreno, ...

  3. Acid rain legislation and local areas

    SciTech Connect

    Jones, G.H.B.

    1992-01-01

    This study explores the local economic impacts of the phase I requirements of the 1990 acid rain legislation. This legislation allows electric utilities to adopt least cost ways of reducing sulfur dioxide pollution. The impact on employment, income and size distribution of income due to a switch to low sulfur coal is examined for a selected number of high sulfur coal producing counties in southern Illinois. In order to achieve the above objectives a generalized non-survey input-output model, IMPLAN (Impact Analysis for Planning), is employed to estimate first- and second-order employment and income effects of a switch to low sulfur coal. Two models, I and II, are constructed to provide these estimates. In Model I, income is generated and adjusted to reflect income retained and spent within the four county region. In Model II, no adjustment is made for flows into and out of the region. In addition to adjustments in income, adjustments in direct employment impacts were made in both models to account for retirements. Scenarios reflecting different degrees of coal switching, low and high switching options, were examined under both models. With regards to size distribution impacts, a newly developed operational model compatible with IMPLAN and developed by Rose et al (1988) was employed. This model is a member of a class of models collectively termed extended input-output models. As in the case of employment and income, allowance was made for income generated, retained and spent within the four counties in the assessment of income distribution impacts. The findings indicate that the adverse effects of a switch to low sulfur coal under the 1990 acid rain legislation will primarily hurt the coal mining industry. Coal mining employment and income will be adversely affected. Employment and income declines in other industries in the region will be fairly slight. Second, income distribution becomes slightly more equal for the local area due to acid rain control.

  4. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  5. Detection of nucleic acids by multiple sequential invasive cleavages 02

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann D.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  6. Detection of nucleic acids by multiple sequential invasive cleavages

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann D.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  7. Detection of nucleic acids by multiple sequential invasive cleavages

    DOEpatents

    Hall, Jeff G; Lyamichev, Victor I; Mast, Andrea L; Brow, Mary Ann D

    2012-10-16

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  8. Role of acid catalysis in dimethyl ether conversion processes

    SciTech Connect

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Acidity plays an important role in the conversion of methanol and dimethyl ether (DME) to hydrocarbons and oxygenates. In the conversion to hydrocarbons over zeolite catalyst, Broensted acidity is the main contributor to the first hydrocarbon formed. Here, acidity is also an important factor in determining olefin, paraffin, and aromatic content in the final product distribution. Catalyst life has also been found to be related to acidity content in zeolites. DME conversion to oxygenates is especially dependent on high acidity catalysts. Superacids like BF{sub 3}, HF-BF{sub 3}, and CF{sub 3}COOH have been used in the past for conversion of DME in carbonylation reactions to form methyl acetate and acetic acid at high pressures. Recently, heteropoly acids and their corresponding metal substituted salts have been used to convert DME to industrially important petrochemicals resulting in shorter reaction times and without the use of harsh operating conditions.

  9. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  10. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the snythesis methods of the prior art.

  11. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  12. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  13. Nucleic acid amplification using modular branched primers

    DOEpatents

    Ulanovsky, Levy; Raja, Mugasimangalam C.

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  14. Acidic magnetorheological finishing of infrared polycrystalline materials

    DOE PAGES [OSTI]

    Salzman, S.; Romanofsky, H. J.; West, G.; Marshall, K. L.; Jacobs, S. D.; Lambropoulos, J. C.

    2016-10-12

    Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however,more » surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.« less

  15. Bioreactor for acid mine drainage control

    DOEpatents

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  16. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    SciTech Connect

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  17. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, Helena L. (Arvada, CO); Sopher, David W. (Maarssenbroek, NL)

    1984-01-01

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  18. Synthesis of alpha-amino acids

    DOEpatents

    Davis, J.W. Jr.

    1983-01-25

    A method is described for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R[sub 1]R[sub 2]C(OSOCl)CN, R[sub 1]R[sub 2]C(Cl)CN and [R[sub 1]R[sub 2]C(CN)O][sub 2]SO wherein R[sub 1] and R[sub 2] are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art. No Drawings

  19. Fatty Acid Biosynthesis Caught in the Act | Stanford Synchrotron Radiation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lightsource Fatty Acid Biosynthesis Caught in the Act Monday, March 31, 2014 The Escherichia coli (E. coli) proteome consists of 5993 proteins, of which 853 are involved in primary metabolic processes critical for the survival and functioning of the cell1. Fatty acid biosynthesis is at the core of primary metabolism responsible for the synthesis of fatty acids, essential metabolites that are the major components of cellular membranes and energy storage. Due to the high prevalence of

  20. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  1. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  2. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  3. Molecular recognition of nitrated fatty acids by PPAR[gamma

    SciTech Connect

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  4. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview...

    Energy.gov [DOE] (indexed site)

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell ...

  5. Applications of Carboxylic Acid Reductases in Oleaginous Microbes...

    Office of Scientific and Technical Information (OSTI)

    Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will ...

  6. DOE - Office of Legacy Management -- Acid Pueblo Canyon - NM 03

    Office of Legacy Management (LM)

    Acid Pueblo Canyon - NM 03 FUSRAP Considered Sites Acid/Pueblo Canyon, NM Alternate Name(s): Radioactive Liquid Waste Treatment Plant (TA-45) Acid/Pueblo and Los Alamos Canyon NM.03-3 Location: Canyons in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.03-3 Historical Operations: Late 1943 or early 1944, head of the south fork of Acid Canyon received untreated liquid waste containing tritium and isotopes of strontium, cesium, uranium, plutonium, and americium discharged from

  7. Polyphenylene Sulfonic Acid: a new PEM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Polyphenylene Sulfonic Acid: a new PEM Polyphenylene Sulfonic Acid: a new PEM "Summary of Case Westernミs highly sulfonated polymers research presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003 " hi_tem_pems_talk.pdf (646.89 KB) More Documents & Publications 2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic Acid)s with Frozen-in Free Volume for use in High Temperature Fuel Cells High Temperature Polymer Membrane Development at Argonne

  8. A First Look at Yeast Fatty Acid Synthase

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    how this fatty acid factory works will contribute to the development of antimicrobial, antifungal, antiobesity, and anticancer compounds. Determining the yeast FAS...

  9. Self Assembly of Boronic Acid-Functionalized Peptides. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Self Assembly of Boronic Acid-Functionalized Peptides. Abstract not provided. Authors: Jones, Brad Howard ; Martinez, Alina Marissa ; Wheeler, Jill S. ; McKenzie, Bonnie B. ...

  10. Hydrogenation of Glutamic Acid to Pyroglutaminol and Prolinol...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Hydrogenation of Glutamic Acid to Pyroglutaminol and Prolinol...

  11. Regulating for the long term: SMCRA and acid mine drainage

    SciTech Connect

    Shea, C.W.

    1995-12-31

    With the passage of the Surface Mining Control and Reclamation Act of 1977 (SMCRA), regulators and industry representatives expected to solve the problem of pollution of the Nation`s waterways caused by acidic discharges from coal mines. Eighteen years after the passage of SMCRA, hard issues of predicting, regulating and treating acid mine drainage remain. Acid mine drainage is most common in the coal seams of the Midwest and Appalachia: Pennsylvania, West Virginia, Maryland, Ohio, Illinois, and Tennessee. This article discusses regulation of coal mines and acid mine drainage for the long term.

  12. Producing a trimethylpentanoic acid using hybrid polyketide synthases...

    Office of Scientific and Technical Information (OSTI)

    The present invention also provides for a host cell comprising the PKS and when cultured ... acid, comprising: providing a host cell of the present invention, and culturing ...

  13. Conversion of Levulinic Acid to Methyl Tetrahydrofuran - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    acid is a highly desirable renewable chemical platform, which, using this process, can be converted into Methyl Tetrahydrofuran (Me-THF) with reasonable yield. The...

  14. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Pickenheim, B.; Bibler, N.

    2010-06-08

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be

  15. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V.

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  16. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  17. A First Look at Yeast Fatty Acid Synthase

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and bacterial cellular membranes. They are used for functionally important post-translational protein modifications, and chains of fatty acids are the main storage compartments...

  18. Novel Approaches to Immobilized Heteropoly Acid Systems for High...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low Relative Humidity Polymer-Type Membranes Novel Approaches to Immobilized Heteropoly Acid Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes A ...

  19. Production of anteiso-branched fatty acids in Escherichia coli...

    Office of Scientific and Technical Information (OSTI)

    Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties Citation Details In-Document Search Title: Production of ...

  20. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.