National Library of Energy BETA

Sample records for ac electricity wind

  1. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  2. Wind farm electrical system

    DOEpatents

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  3. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC...

    Energy Saver

    Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Through the Solar ...

  4. Wind/Hybrid Electricity Applications

    SciTech Connect

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  5. Planning a Small Wind Electric System | Department of Energy

    Energy Saver

    Small Wind Electric System Planning a Small Wind Electric System Small wind electric systems require planning to determine if there is enough wind, the location is appropriate, if ...

  6. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at...

  7. Small Wind Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Small Wind Electric Systems Small Wind Electric Systems Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having

  8. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  9. Electric wind in a Differential Mobility Analyzer

    SciTech Connect

    Palo, Marus; Meelis Eller; Uin, Janek; Tamm, Eduard

    2015-10-25

    Electric wind -- the movement of gas, induced by ions moving in an electric field -- can be a distorting factor in size distribution measurements using Differential Mobility Analyzers (DMAs). The aim of this study was to determine the conditions under which electric wind occurs in the locally-built VLDMA (Very Long Differential Mobility Analyzer) and TSI Long-DMA (3081) and to describe the associated distortion of the measured spectra. Electric wind proved to be promoted by the increase of electric field strength, aerosol layer thickness, particle number concentration and particle size. The measured size spectra revealed three types of distortion: widening of the size distribution, shift of the mode of the distribution to smaller diameters and smoothing out the peaks of the multiply charged particles. Electric wind may therefore be a source of severe distortion of the spectrum when measuring large particles at high concentrations.

  10. Electric wind in a Differential Mobility Analyzer

    DOE PAGES [OSTI]

    Palo, Marus; Meelis Eller; Uin, Janek; Tamm, Eduard

    2015-10-25

    Electric wind -- the movement of gas, induced by ions moving in an electric field -- can be a distorting factor in size distribution measurements using Differential Mobility Analyzers (DMAs). The aim of this study was to determine the conditions under which electric wind occurs in the locally-built VLDMA (Very Long Differential Mobility Analyzer) and TSI Long-DMA (3081) and to describe the associated distortion of the measured spectra. Electric wind proved to be promoted by the increase of electric field strength, aerosol layer thickness, particle number concentration and particle size. The measured size spectra revealed three types of distortion: wideningmore » of the size distribution, shift of the mode of the distribution to smaller diameters and smoothing out the peaks of the multiply charged particles. Electric wind may therefore be a source of severe distortion of the spectrum when measuring large particles at high concentrations.« less

  11. Wuxi Qiaolian Wind Electricity Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Qiaolian Wind Electricity Technology Co Ltd Jump to: navigation, search Name: Wuxi Qiaolian Wind Electricity Technology Co Ltd Place: Wuxi, Jiangsu Province, China Zip: 214187...

  12. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  13. Darrieus wind turbine electric generating system

    SciTech Connect

    Schwarz, E.L.

    1984-08-07

    A wind electric system intended to provide power to a power grid, for use with a wind turbine which has no starting torque. The generator is one which can function as a motor as well. When the wind is too light to permit generation, an overriding clutch mechanically disconnects the generator shaft from the turbine shaft. The clutch has also the capability of locking the generator shaft to the turbine shaft in response to a control signal. When wind speed is great enough to permit generation and the turbine is stopped, a control signal is issued locking the generator shaft to the turbine shaft. Power from the power grid causes the generator to function as a motor and accelerate the turbine to permit it to be rotated by the wind. The clutch is then returned to overriding operation and electrical generation continues until wind speed again becomes too light.

  14. System and method for determining stator winding resistance in an AC motor

    DOEpatents

    Lu, Bin; Habetler, Thomas G.; Zhang, Pinjia; Theisen, Peter J.

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  15. Electricity for road transport, flexible power systems and wind...

    OpenEI (Open Energy Information) [EERE & EIA]

    systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power systems and wind power Country Denmark...

  16. Planning a Small Wind Electric System | Department of Energy

    Energy.gov [DOE] (indexed site)

    Small wind electric systems require planning to determine if there is enough wind, the location is appropriate, if wind systems are allowed, and if the system will be economical. | ...

  17. Optimized Hydrogen and Electricity Generation from Wind | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Optimized Hydrogen and Electricity Generation from Wind Optimized Hydrogen and Electricity Generation from Wind Several optimizations can be employed to create hydrogen and electricity from a wind energy source. The key element in hydrogen production from an electrical source is an electrolyzer to convert water and electricity into hydrogen and oxygen. 34364.pdf (337.19 KB) More Documents & Publications Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water

  18. Installing and Maintaining a Small Wind Electric System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Small Wind Electric System Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System If you went through the planning steps to evaluate whether a small wind electric system will work at your location, you will already have a general idea about: The amount of wind at your site The zoning requirements and covenants in your area The economics, payback, and incentives of installing a wind system at your site. Now, it is time to look at

  19. Multi-winding homopolar electric machine

    DOEpatents

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  20. 20% wind energy by 2030: Increasing wind energy's contribution to U.S. electricity supply

    SciTech Connect

    None, None

    2008-07-01

    Report on the requirements needed to generate twenty percent of the nation's electricity from wind energy by the year 2030.

  1. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin; Luebke, Charles John; Habetler, Thomas G.; Zhang, Pinjia; Becker, Scott K.

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  2. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Maine Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a wind resource map for the state of Maine and information about state incentives and contacts for more information.

  3. Small Wind Electric Systems: A New Hampshire Consumer's Guide

    SciTech Connect

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A New Hampshire Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a New Hampshire wind resource map and information about state incentives and contacts for more information.

  4. DOE Explores Potential of Wind Power to Stabilize Electric Grids |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Explores Potential of Wind Power to Stabilize Electric Grids DOE Explores Potential of Wind Power to Stabilize Electric Grids March 28, 2016 - 10:31am Addthis DOE’s 1.5-MW wind turbine at the National Wind Technology Center is being used to demonstrate that wind farms can provide the frequency-responsive back-up or “ancillary services” currently supplied to the electrical grid by conventional power plants. (Photo by Dennis Schroeder/National Renewable

  5. Small Town Using Wind Power to Offset Electricity Costs

    Energy.gov [DOE]

    Wind turbines will be used to supply electricity for the town hall, maintenance building, library and help power the town's water system.

  6. Illinois Rural Electric Cooperative Wins DOE Wind Cooperative...

    Office of Environmental Management (EM)

    The utility was cited for its leadership, demonstrated success, and innovation in its wind power program. "Illinois Rural Electric has been awarded for its innovation and ...

  7. Wind Energy for Rural Electric Cooperatives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    cooperatives, many rural electric utilities have been initially reluctant to embrace wind energy. Reasons for this include: Some REAs in the western Great Plains have lost...

  8. Multi-winding Homopolar Electric Machine Offers Variable Voltage...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Find More Like This Return to Search Multi-winding Homopolar Electric Machine Offers Variable Voltage at Low Rotational Speed Oak Ridge National Laboratory Contact...

  9. Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research

    SciTech Connect

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

  10. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect

    2007-08-01

    The handbook provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy.

  11. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  12. Small Wind Electric Systems: A Maryland Consumer's Guide (Revised)

    SciTech Connect

    Not Available

    2009-08-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  13. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buying & Making Electricity » Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. According to many renewable energy experts,

  14. Dielectric response of multiwalled carbon nanotubes as a function of applied ac-electric fields

    SciTech Connect

    Basu, Rajratan; Iannacchione, Germano S.

    2008-12-01

    The complex dielectric constant ({epsilon}{sup *}) is reported for multiwalled carbon nanotubes (MWCNTs) up to 10{sup 5} Hz as a function of ac-electric field amplitudes E{sub rot} (in phase and same frequency as the measurement) and E{sub ac} (different phase and fixed frequency with respect to the measurement). A slow relaxation process (mode 1) is observed, which shifts to higher frequency with increasing E{sub rot} but is independent of E{sub ac}. A fast relaxation process (mode 2) is also observed, which is independent of E{sub rot} but shifts to higher frequency with increasing E{sub ac} (opposite to that of mode 1). An ac-conductivity analysis of MWCNT reveals insights on how E{sub rot} and E{sub ac} influence the dissipation.

  15. EA-1777: Lincoln Electric's Wind Energy Project in Euclid, OH

    Energy.gov [DOE]

    Lincoln Electric proposes to construct and operate a 2.5 MW single turbine wind energy project at Lincoln Electric’s World Headquarters facility located at 22800 Saint Clair Avenue, Euclid, Ohio. The wind turbine would provide 2.5 MW of renewable energy to fulfill up to ten percent (10%) of the Lincoln Electric Headquarters’ annual electricity demand and help to reduce greenhouse gas emissions.

  16. Small Wind Electric Systems: An Ohio Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Ohio Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  17. Small Wind Electric Systems: A Montana Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  18. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  19. Small Wind Electric Systems: A Nebraska Consumer's Guide

    SciTech Connect

    Not Available

    2007-12-01

    Small Wind Electric Systems: A Nebraska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  20. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  1. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  2. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect

    Not Available

    2006-04-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Small Wind Electric Systems: A South Dakota Consumer's Guide

    SciTech Connect

    Not Available

    2007-04-01

    Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. Small Wind Electric Systems: A Washington Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Washington Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. Small Wind Electric Systems: A Michigan Consumer's Guide (revised)

    SciTech Connect

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Michigan Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. Small Wind Electric Systems: A Virginia Consumer's Guide

    SciTech Connect

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Virginia Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. Small Wind Electric Systems: A Pennsylvania Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Pennsylvania Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Small Wind Electric Systems: A Colorado Consumer's Guide

    SciTech Connect

    Not Available

    2006-12-01

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  12. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect

    Not Available

    2007-04-01

    Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  13. Small Wind Electric Systems: An Illinois Consumer's Guide

    SciTech Connect

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Illinois Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  14. Small Wind Electric Systems: A Kansas Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Kansas Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  15. Small Wind Electric Systems: A Maryland Consumer's Guide

    SciTech Connect

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  16. Small Wind Electric Systems: A Minnesota Consumer's Guide

    SciTech Connect

    Not Available

    2007-04-01

    Small Wind Electric Systems: A Minnesota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  17. Small Wind Electric Systems: A North Dakota Consumer's Guide

    SciTech Connect

    Not Available

    2007-04-01

    Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  18. Small Wind Electric Systems: A North Carolina Consumer's Guide

    SciTech Connect

    Not Available

    2005-03-01

    Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  19. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Maine Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  20. Installing and Maintaining a Small Wind Electric System | Department...

    Energy.gov [DOE] (indexed site)

    Deciding whether to connect the system to the electric grid or not. Installation and Maintenance The manufacturer of your wind system, or the dealer where you bought it, should be...

  1. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  2. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  3. Small Wind Electric Systems: A Nevada Consumer's Guide

    SciTech Connect

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  4. Small Wind Electric Systems: A Nebraska Consumer's Guide

    SciTech Connect

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  5. Small Wind Electric Systems: A Missouri Consumer's Guide

    SciTech Connect

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  6. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  7. Small Wind Electric Systems: An Indiana Consumer's Guide

    SciTech Connect

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  8. Small Wind Electric Systems: A Michigan Consumer's Guide

    SciTech Connect

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  9. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  10. Small Wind Electric Systems: A Rhode Island Consumer's Guide

    SciTech Connect

    2003-06-01

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  11. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect

    2004-10-01

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  12. Small Wind Electric Systems: A New Mexico Consumer's Guide

    SciTech Connect

    2004-08-01

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  13. Small Wind Electric Systems: A U.S. Consumer's Guide

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  14. Stator for a rotating electrical machine having multiple control windings

    DOEpatents

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  15. The role of capacitance in a wind-electric water pumping system

    SciTech Connect

    Ling, Shitao; Clark, R.N.

    1997-12-31

    The development of controllers for wind-electric water pumping systems to enable the use of variable voltage, variable frequency electricity to operate standard AC submersible pump motors has provided a more efficient and flexible water pumping system to replace mechanical windmills. A fixed capacitance added in parallel with the induction motor improves the power factor and starting ability of the pump motor at the lower cut-in frequency. The wind-electric water pumping system developed by USDA-Agricultural Research Service, Bushland, TX, operated well at moderate wind speeds (5-12 m/s), but tended to lose synchronization in winds above 12 m/s, especially if they were gusty. Furling generally did not occur until synchronization had been lost and the winds had to subside before synchronization could be reestablished. The frequency needed to reestablish synchronization was much lower (60-65 Hz) than the frequency where synchronization was lost (70-80 Hz). As a result, the load (motor and pump) stayed off an excessive amount of time thus causing less water to be pumped and producing a low system efficiency. The controller described in this paper dynamically connects additional capacitance of the proper amount at the appropriate time to keep the system synchronized (running at 55 to 60 Hz) and pumping water even when the wind speed exceeds 15 m/s. The system efficiency was improved by reducing the system off-line time and an additional benefit was reducing the noise caused by the high speed blade rotation when the load was off line in high winds.

  16. Small Wind Electric Systems | Department of Energy

    Energy.gov [DOE] (indexed site)

    lines extended to a remote location Help uninterruptible power supplies ride through extended utility outages. ... conditioning unit) Wiring Electrical disconnect switch Grounding ...

  17. Wind power forecasting in U.S. electricity markets.

    SciTech Connect

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  18. Wind power forecasting in U.S. Electricity markets

    SciTech Connect

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  19. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOEpatents

    Liu, Yan; Garces, Luis Jose

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  20. NREL: Solar and Wind Could Provide up to 30% of Electricity on...

    Office of Environmental Management (EM)

    NREL: Solar and Wind Could Provide up to 30% of Electricity on Eastern Power Grid NREL: Solar and Wind Could Provide up to 30% of Electricity on Eastern Power Grid September 1, ...

  1. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  2. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Executive summary of a report on the requirements needed to generate twenty percent of the nation's electricity from wind energy by the year 2030.

  3. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary)

    SciTech Connect

    None, None

    2008-12-01

    Executive summary of a report on the requirements needed to generate twenty percent of the nation's electricity from wind energy by the year 2030.

  4. Transmission cost minimization strategies for wind-electric generating facilities

    SciTech Connect

    Gonzalez, R.

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  5. Electrical generation using a vertical-axis wind turbine

    SciTech Connect

    Clark, R.N.

    1982-12-01

    Traditionally, windmills have been of the propeller or multiblade types, both of which have their rotational axis parallel to the flow of the wind. A vertical-axis wind turbine has its rotational axis perpendicular to the flow of wind and requires no orientation to keep the rotor in the windstream. The vertical-axis wind turbine operates on the same principle as an airfoil and produces lift and drag as any airfoil. A newly designed 100-kW vertical-axis wind turbine has been operated for one year at the USDA Conservation and Production Research Laboratory, Bushland, TX. The turbine has an induction generator and supplies power to a sprinkler irrigation system with excess power being sold to the electric utility. The turbine begins producing power at 5.5 m/s windspeed and reaches its rated output of 100-kW at 15 m/s. The unit has obtained a peak efficiency of 48% at a windspeed of 8 m/s or 81% of theoretical maximum. Using 17 years of windspeed data from the National Weather Service, the annual energy output is estimated at 200,000 kWh. The unit has experienced several operational problems during its initial testing. Guy cables were enlarged to provide greater stiffness to reduce blade stress levels, lightning shorted the main contactor, and the brake system required a complete redesign and modification. The turbine was operational about 60% of the time.

  6. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  7. Small Wind Electric Systems: A Guide for the American Corn Growers Association

    Energy Information Administration (EIA) (indexed site)

    A Guide Produced for the American Corn Growers Foundation Small Wind Electric Systems Small Wind Electric Systems U.S. Department of Energy Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program Small Wind Electric Systems Cover photo: This AOC 15/50 wind turbine on a farm in Clarion, Iowa, saves the Clarion-Goldfield Community School about $9,000 per year on electrical purchase and provides a part of the school's science curriculum. Photo credit - Robert Olson/PIX11649

  8. Modelling renewable electric resources: A case study of wind

    SciTech Connect

    Bernow, S.; Biewald, B.; Hall, J.; Singh, D.

    1994-07-01

    The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

  9. Impact of Electric Industry Structure on High Wind Penetration...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Relevant Characteristics of Wind Power for System Operators Wind power itself has four principal characteristics important to power system planning and operations: the wind ...

  10. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    SciTech Connect

    Ryu, S.K.; Kim, Y.K.; Kim, M.K.; Won, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea); Chung, S.H. [Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2010-01-15

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. (author)

  11. Winning with Wind: Electric Co-ops Providing Clean Energy to...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Winning with Wind: Electric Co-ops Providing Clean Energy to Customers March 12, 2014 - 12:02pm Addthis Mehoopany wind farm in Pennsylvania can produce enough energy to power more ...

  12. Power System Modeling of 20% Wind-Generated Electricity by 2030: Preprint

    SciTech Connect

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O'Connell, R.; Hern, T.; Miller, B.

    2008-06-01

    This paper shows the results of the Wind Energy Deployment System model used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030.

  13. DC-AC Cascaded H-Bridge Multilevel Boost Inverter With No Inductors for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Tolbert, Leon M; Ozpineci, Burak; Du, Zhong; Chiasson, John N

    2009-01-01

    This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors. Currently available power inverter systems for HEVs use a dc-dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc-ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors.

  14. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  15. Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features

    SciTech Connect

    Toole, Gasper L.

    2009-01-01

    Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

  16. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  17. Power System Modeling of 20% Wind-Generated Electricity by 2030 (Presentation)

    SciTech Connect

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O'Connell, R.; Hern, T.; Miller, B.

    2008-07-01

    This presentation describes the methods used to analyze the potential for provided 20% of our nation's electricity demand with wind energy by 2030

  18. Could Your Home Benefit from a Small Wind Electric System? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Could Your Home Benefit from a Small Wind Electric System? Could Your Home Benefit from a Small Wind Electric System? August 8, 2013 - 2:31pm Addthis A small wind electric system can be a clean, affordable way to power your home. | Photo courtesy of Thomas Fleckenstein, NREL 26476 A small wind electric system can be a clean, affordable way to power your home. | Photo courtesy of Thomas Fleckenstein, NREL 26476 Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy

  19. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)

    SciTech Connect

    Not Available

    2008-12-01

    This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

  20. Energy Department Names Two Colorado-based Electric Cooperatives as Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cooperatives of the Year for 2014 | Department of Energy Names Two Colorado-based Electric Cooperatives as Wind Cooperatives of the Year for 2014 Energy Department Names Two Colorado-based Electric Cooperatives as Wind Cooperatives of the Year for 2014 February 26, 2015 - 2:00pm Addthis The Energy Department and the National Rural Electric Cooperative Association (NRECA) today recognized the Tri-State Generation and Transmission Association (Tri-State) and San Isabel Electric Association

  1. Installing and Maintaining a Small Wind Electric System | Department...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Federal regulations (specifically, the Public Utility Regulatory Policies Act of 1978, or ... Federal tax credits for small solar and wind Wind resource maps Consumer guides for small ...

  2. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    SciTech Connect

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Both turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.

  3. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    SciTech Connect

    Not Available

    2009-06-01

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  4. NREL: Solar and Wind Could Provide up to 30% of Electricity on Eastern

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Grid | Department of Energy NREL: Solar and Wind Could Provide up to 30% of Electricity on Eastern Power Grid NREL: Solar and Wind Could Provide up to 30% of Electricity on Eastern Power Grid September 1, 2016 - 12:41pm Addthis Through high-performance computing capabilities and innovative visualization tools, the Energy Department's National Renewable Energy Laboratory (NREL) determined that the eastern United States could handle even higher penetration levels of wind and solar. The

  5. Facilitating Wind Development: The Importance of Electric Industry Structure

    SciTech Connect

    Kirby, B.; Milligan, M.

    2008-05-01

    This paper evaluates which wholesale elecricity market-structure characteristics best accommodate wind energy development.

  6. Impact of Electric Industry Structure on High Wind Penetration Potential

    SciTech Connect

    Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

    2009-07-01

    This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

  7. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to

  8. Wind and solar power electric generation to see strong growth over the next two years

    Energy Information Administration (EIA) (indexed site)

    Wind and solar power electric generation to see strong growth over the next two years The amount of electricity generated by wind in the United States is expected to increase by 15 percent this year...and grow another 8 percent in 2014. The U.S. Energy Information Administration's new monthly Short-Term Energy Outlook says the increase in wind power will be due to the new wind turbines coming online thanks to the federal production tax credit that was recently extended by Congress. Solar power

  9. Controller for controlling operation of at least one electrical load operating on an AC supply, and a method thereof

    DOEpatents

    Cantin, Luc; Deschenes, Mario; D'Amours, Mario

    1995-08-15

    A controller is provided for controlling operation of at least one electrical load operating on an AC supply having a typical frequency, the AC supply being provided via power transformers by an electrical power distribution grid. The controller is associated with the load and comprises an input interface for coupling the controller to the grid, a frequency detector for detecting the frequency of the AC supply and producing a signal indicative of the frequency, memory modules for storing preprogrammed commands, a frequency monitor for reading the signal indicative of the frequency and producing frequency data derived thereof, a selector for selecting at least one of the preprogrammed commands with respect to the frequency data, a control unit for producing at least one command signal representative of the selected preprogrammed commands, and an output interface including a device responsive to the command signal for controlling the load. Therefore, the load can be controlled by means of the controller depending on the frequency of the AC supply.

  10. Department of Energy Names Virginia and Illinois Electric Cooperatives Wind Co-ops of the Year

    Energy.gov [DOE]

    The U.S. Department of Energy and the National Rural Electric Cooperative Association (NRECA) recognized Old Dominion Electric Cooperative (ODEC) of Virginia and the Rural Electric Convenience Cooperative (RECC) of Illinois with the 2013 Wind Cooperatives of the Year Award at the TechAdvantage 2014 Conference and Expo in Nashville, Tennessee in March.

  11. Toward a 20% Wind Electricity Supply in the United States: Preprint

    SciTech Connect

    Flowers, L.; Dougherty, P.

    2007-05-01

    Since the U.S. Department of Energy (DOE) initiated the Wind Powering America (WPA) program in 1999, installed wind power capacity in the United States has increased from 2,500 MW to more than 11,000 MW. In 1999, only four states had more than 100 MW of installed wind capacity; now 16 states have more than 100 MW installed. In addition to WPA's efforts to increase deployment, the American Wind Energy Association (AWEA) is building a network of support across the country. In July 2005, AWEA launched the Wind Energy Works! Coalition, which is comprised of more than 70 organizations. In February 2006, the wind deployment vision was enhanced by President George W. Bush's Advanced Energy Initiative, which refers to a wind energy contribution of up to 20% of the electricity consumption of the United States. A 20% electricity contribution over the next 20 to 25 years represents 300 to 350 gigawatts (GW) of electricity. This paper provides a background of wind energy deployment in the United States and a history of the U.S. DOE's WPA program, as well as the program's approach to increasing deployment through removal of institutional and informational barriers to a 20% wind electricity future.

  12. If I generate 20 percent of my national electricity from wind...

    OpenEI (Open Energy Information) [EERE & EIA]

    If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  13. Technical and commercial aspects of the connection of wind turbines to electricity supply networks in Europe

    SciTech Connect

    Gardner, P.

    1996-12-31

    This paper reviews some technical and commercial issues now topical for wind energy developments in Europe. The technical issues are important because of the weak nature of the existing electricity systems in rural or upland areas. Several commercial issues are considered which may improve the economics of wind energy as market incentives are gradually withdrawn. 9 refs.

  14. Planning a Small Wind Electric System | Department of Energy

    Energy.gov [DOE] (indexed site)

    if available. Zoning, Permitting, and Covenant Requirements Before you invest in a small wind energy system, you should research potential zoning and neighborhood covenant issues....

  15. Illinois Rural Electric Cooperative Wind Farm | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Cooperative Energy Purchaser Illinois Rural Electric Cooperative Location Pike County IL Coordinates 39.6189, -90.9627 Show Map Loading map......

  16. Electric industry restructuring, ancillary services, and the potential impact on wind

    SciTech Connect

    Kirby, B.; Hirst, E.; Parsons, B.; Porter, K.

    1997-12-31

    The new competitive electric power environment raises increased challenges for wind power. The DOE and EPRI wind programs have dealt extensively with the traditional vertically integrated utility planning and operating environment in which the host utility owns the generation (or purchases the power) and provides dispatch and transmission services. Under this traditional environment, 1794 MW of wind power, principally in California, have been successfully integrated into the U.S. electric power system. Another 4200 MW are installed elsewhere in the world. As issues have arisen, such as intermittency and voltage regulation, they have been successfully addressed with accepted power system procedures and practices. For an intermittent, non-dispatchable resource such as wind, new regulatory rules affecting power transmission services, raise questions about which ancillary services wind plants will be able to sell, which they will be required to purchase, and what the economic impacts will be on individual wind projects. This paper begins to look at issues of concern to wind in a restructured electric industry. The paper first briefly looks at the range of unbundled services and comments on their unique significance to wind. To illustrate the concerns that arise with restructuring, the paper then takes a more detailed look at a single service: regulation. Finally, the paper takes a brief look at technologies and strategies that could improve the competitive position of wind.

  17. Energy Department Names Virginia and Illinois Electric Co-ops the 2013 Wind Cooperatives of the Year

    Office of Energy Efficiency and Renewable Energy (EERE)

    The US Department of Energy and the National Rural Electric Cooperative Association (NRECA) today recognized Old Dominion Electric Cooperative (ODEC) of Virginia and the Rural Electric Convenience Cooperative (RECC) of Illinois as the 2013 Wind Cooperatives of the Year.

  18. Causal Analysis of the Inadvertent Contact with an Uncontrolled Electrical Hazardous Energy Source (120 Volts AC)

    SciTech Connect

    David E. James; Dennis E. Raunig; Sean S. Cunningham

    2014-10-01

    On September 25, 2013, a Health Physics Technician (HPT) was performing preparations to support a pneumatic transfer from the HFEF Decon Cell to the Room 130 Glovebox in HFEF, per HFEF OI 3165 section 3.5, Field Preparations. This activity involves an HPT setting up and climbing a portable ladder to remove the 14-C meter probe from above ball valve HBV-7. The HPT source checks the meter and probe and then replaces the probe above HBV-7, which is located above Hood ID# 130 HP. At approximately 13:20, while reaching past the HBV-7 valve position indicator switches in an attempt to place the 14-C meter probe in the desired location, the HPT’s left forearm came in contact with one of the three sets of exposed terminals on the valve position indication switches for HBV 7. This resulted in the HPT receiving an electrical shock from a 120 Volt AC source. Upon moving the arm, following the electrical shock, the HPT noticed two exposed electrical connections on a switch. The HPT then notified the HFEF HPT Supervisor, who in turn notified the MFC Radiological Controls Manager and HFEF Operations Manager of the situation. Work was stopped in the area and the hazard was roped off and posted to prevent access to the hazard. The HPT was escorted by the HPT Supervisor to the MFC Dispensary and then preceded to CFA medical for further evaluation. The individual was evaluated and released without any medical restrictions. Causal Factor (Root Cause) A3B3C01/A5B2C08: - Knowledge based error/Attention was given to wrong issues - Written Communication content LTA, Incomplete/situation not covered The Causal Factor (root cause) was attention being given to the wrong issues during the creation, reviews, verifications, and actual performance of HFEF OI-3165, which covers the need to perform the weekly source check and ensure placement of the probe prior to performing a “rabbit” transfer. This resulted in the hazard not being identified and mitigated in the procedure. Work activities

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  20. Wind and Solar-Electric (PV) Systems Exemption | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    taxation, but the real property (i.e., the land on which the solar energy generating system is located) is still subject to property tax. Wind and solar energy production...

  1. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  2. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    SciTech Connect

    Vick, B.D.; Clark, R.N.; Molla, S.

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  3. WARP: A modular wind power system for distributed electric utility application

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.P.

    1996-07-01

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kilowatts each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP) Windframe, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user-friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/kWh, depending on the wind resource.

  4. WARP{trademark}: A modular wind power system for distributed electric utility application

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-12-31

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kW each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/ kWh, depending on the wind resource.

  5. Two Colorado-Based Electric Cooperatives Selected as 2014 Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    jobs across the country, provides cost- competitive energy, and eliminates more than 115 electric metric tons of carbon dioxide emissions which is equal to removing 20 million...

  6. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the storage capacity must be large enough to supply electrical needs during non-charging periods. Battery banks ... Small stand-alone home energy systems Links Federal tax ...

  7. Missing Money--Will the Current Electricity Market Structure Support High (~50%) Wind/Solar?; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Milligan, Michael

    2015-05-15

    This presentation summarizes the missing money problem and whether the current electricity market structure will support high penetration levels of wind and solar.

  8. Hedging effects of wind on retail electric supply costs

    SciTech Connect

    Graves, Frank; Litvinova, Julia

    2009-12-15

    In the short term, renewables - especially wind - are not as effective as conventional hedges due to uncertain volume and timing as well as possibly poor correlation with high-value periods. In the long term, there are more potential hedging advantages to renewables because conventional financial hedges are not available very far in the future. (author)

  9. ETA-AC004

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review of Test Results Prepared by Electric Transportation Applications Prepared by: ... Appendices Appendix A - Test Results Review and Approval Form 11 Procedure ETA-AC004 ...

  10. ETA-AC003

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Preparation and Issuance of Test Reports Prepared by Electric Transportation Applications ... Review and approval of test documentation shall be in accordance with ETA-AC004, "Review ...

  11. DOE: Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets

    SciTech Connect

    Brooks, Daniel, EPRI; Tuohy, Aidan, EPRI; Deb, Sidart, LCG Consulting; Jampani, Srinivas, LCG Consulting; Kirby, Brendan, Consultant; King, Jack, Consultant

    2011-11-29

    Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The DOE-funded project 'Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets' aims to evaluate the benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of different balancing approaches with increasing levels of inter-regional cooperation. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. The primary analysis of the project is based on unit commitment (UC) and economic dispatch (ED) simulations of the SPP-SERC regions as modeled for the year 2022. The UC/ED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as accurately as possible realizing that all such future scenario models are quite uncertain. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models

  12. Results from an investigation of the integration of wind energy into the El Paso Electric grid system

    SciTech Connect

    Moroz, E.M.; Parks, N.J.; Swift, A.H.; Traichal, P.A.

    1997-12-31

    This paper documents some preliminary results from an evaluation of the costs and benefits to be gained from the integration of wind generated electricity into the El Paso Electric grid system. The study focused on the utilization of the considerable known wind potential of the Guadalupe/Delaware Mountains region, but also looked at other energetic wind resources within 15 miles of El Paso Electric`s Grid. The original project`s goal was to identify the added value of wind in terms of jobs, line support, risk reduction etc., that wind energy could bring to El Paso Electric. Although these goals have not yet been achieved the potential for water savings and reductions in gaseous emissions have been documented. Thus this paper focuses mainly on the water consumption and criteria pollutant emissions that could be avoided by adding wind energy to El Paso Electric`s generation mix. Preliminary data from a renewables attitude survey indicates that, from the 338 respondents, there is overwhelming public support for utilizing such renewable sources of electricity. This case study, which should be of direct relevance to the arid southwestern states and beyond, was sponsored by the Environmental Protection Agency (EPA) and conducted in cooperation with El Paso Electric.

  13. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  14. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  15. Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1

    SciTech Connect

    Holz, R; Gervorgian, V; Drouilhet, S; Muljadi, E

    1998-07-01

    The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

  16. Wind Gallery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gallery Wind Gallery Addthis 1 of 17 Tower: 2 of 17 Tower: Made from tubular steel (shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity. Generator: 3 of 17 Generator: Produces 60-cycle AC electricity; it is usually an off-the-shelf induction generator. High-speed shaft: 4 of 17 High-speed shaft: Drives the generator. Nacelle: 5 of 17 Nacelle:

  17. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  18. Electronically commutated serial-parallel switching for motor windings

    DOEpatents

    Hsu, John S.

    2012-03-27

    A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

  19. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  20. AC Propulsion | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc. is a California Corporation founded in 1992 to develop, manufacture, and license system and component technology for electric vehicle drive systems. References: AC...

  1. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  2. Energy 101: Wind Turbines

    ScienceCinema

    None

    2016-07-12

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  3. Energy 101: Wind Turbines

    SciTech Connect

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  4. WINDExchange: Selling Wind Power

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  5. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    SciTech Connect

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31

    Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the

  6. Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030...

    Energy.gov [DOE] (indexed site)

    DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power ...

  7. Turbines in U.S. Waters Will Soon Spin Wind into Electricity...

    Energy.gov [DOE] (indexed site)

    Construction of offshore wind turbines on floating platforms. In 2010, DOI introduced Smart from the Start, an initiative to establish areas for potential offshore wind energy ...

  8. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  9. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  10. Wind Power Impacts on Electric Power System Operating Costs: Summary and Perspective on Work to Date; Preprint

    SciTech Connect

    Smith, J. C.; DeMeo, E. A.; Parsons, B.; Milligan, M.

    2004-03-01

    Electric utility system planners and operators are concerned that variations in wind plant output may increase the operating costs of the system. This concern arises because the system must maintain an instantaneous balance between the aggregate demand for electric power and the total power generated by all power plants feeding the system. This is a highly sophisticated task that utility operators and automatic controls perform routinely, based on well-known operating characteristics for conventional power plants and a great deal of experience accumulated over many years. System operators are concerned that variations in wind plant output will force the conventional power plants to provide compensating variations to maintain system balance, thus causing the conventional power plants to deviate from operating points chosen to minimize the total cost of operating the system. The operators' concerns are compounded by the fact that conventional power plants are generally under their control and thus are dispatchable, whereas wind plants are controlled instead by nature. Although these are valid concerns, the key issue is not whether a system with a significant amount of wind capacity can be operated reliably, but rather to what extent the system operating costs are increased by the variability of the wind.

  11. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    SciTech Connect

    Vick, B.D.; Clark, R.N.

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  12. The Inside of a Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Inside of a Wind Turbine The Inside of a Wind Turbine 1 of 17 Tower: 2 of 17 Tower: Made from tubular steel (shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity. Generator: 3 of 17 Generator: Produces 60-cycle AC electricity; it is usually an off-the-shelf induction generator. High-speed shaft: 4 of 17 High-speed shaft: Drives the generator.

  13. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Saver

    % Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply ...

  14. Wind Farm

    Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  15. EECBG Success Story: Small Town Using Wind Power to Offset Electricity...

    Energy.gov [DOE] (indexed site)

    of 412 is using that Recovery Act funding to cut costs through wind energy. Learn more. ... Efficiency EECBG Success Story: Hybrid Solar-Wind Generates Savings for South Dakota City

  16. SMART Wind Consortium Virtual Meeting on Installation: Reducing Electrical and Foundation Costs

    Energy.gov [DOE]

    This 90-minute SMART Wind Consortium virtual meeting is intended to foster dialogue on actions to improve safety and efficiency and to reduce installation costs for distributed wind turbines. Gary...

  17. AC power | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    AC power Subscribe to RSS - AC power The electricity that runs the Laboratory's experiments and facilities. "AC" stands for the alternating current that comes from large power stations. The term compares with "DC," for "direct current," which comes from sources like batteries. PPPL engineers design and build state-of-the-art controller for AC to DC converter that manages plasma in upgraded fusion machine The electric current that powers fusion experiments requires

  18. Efficacy of low level electric current (A-C) for controlling quagga mussles in the Welland Canal

    SciTech Connect

    Fears, C.; Mackie, G.L.

    1995-06-01

    The efficacy of systems (for which patents are pending) which use low-voltage A-C currents for preventing settlement and attachment by zebra mussels were tested with steel rods and plates placed near the intake of a pulp and paper plant in the Welland Canal at Thorold, Ontario. Six racks made of 16 ft. (4.9 m), 2x4s (5.1 x 10.2 cm) were placed into the Welland Canal on August 5, 1994. One rack had 1/8th in (3.2 mm) diam x 12 in (30.5 cm) long steel rods, each separated by 2 in (5.1 cm) attached to pressure treated wood and concrete blocks and an A-C current of 16 v (or 8 v/in); rack 2 had steel rods of the same configuration but 12 v (or 6 v/in) was applied; rack 3 was identical to these but no current was applied and was used as a rod control. The remaining three racks had steel plates, each plate being 3 in (7.6 cm) wide X 24 in (61 cm) long X 1/4 in (6.4 mm) thick and separated by 2 in (5.1 cm); one had 12 v applied (or 6 v/in), another had 16 v applied (or 8 v/in), and the third had no current and was used as a plate control. The racks were placed on the upstream and downstream side of the intake at a depth of about 7 ft (2.1 m) where the mussels populations were heaviest (as determined by SCUBA diving). All mussels were quagga mussels (Dreissena bugensis). The racks were pulled in mid November after settlement was complete and the results showed: (1) complete prevention of settlement of both new recruits and translocators at 8 volts/in with steel rods on both wood and concrete surfaces and with steel plate trash bars; (2) partial prevention of settlement at 6 volts/in with steel rods on both wood and concrete surfaces and steel plates; and (3) that, at current kilowatt hr rates, total efficacy at 8 volts/in would cost approximately $10.80/day/1000 sq ft using rods to protect concrete walls and about $16.32/day/1000 sq ft to protect 3 in wide x 1/4 in thick trash bars. These costs can be reduced even further with pulse dosed AC currents.

  19. Hueco Mountain Wind Ranch | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner El Paso Electric Co Developer Cielo Wind Power Energy Purchaser El Paso Electric Co...

  20. Comparison of a synergetic battery pack drive system to a pulse width modulated AC induction motor drive for an electric vehicle

    SciTech Connect

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-06-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and as a battery charger. In this paper, the performance of a Synergetic Battery Pack during motor drive operation is compared via computer simulation with a conventional motor drive which uses sinusoidal pulse width modulation (SPWM) to determine its effectiveness as a motor drive. The study showed that the drive efficiency was compatible with the conventional system, and offered a significant advantage in the lower frequency operating ranges. The voltage total harmonic distortion (THD) of the SBP was significantly lower than the PWM drive output, but the current THD was slightly higher due to the shape of the harmonic spectrum. In conclusion, the SBP is an effective alternative to a conventional drive, but the real advantage lies in its battery management capabilities and charger operation.

  1. Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  2. A Novel Inductor-less DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Du, Zhong; Ozpineci, Burak; Tolbert, Leon M; Chiasson, John N

    2007-01-01

    This paper presents an inductorless cascaded H- bridge multilevel boost inverter for EV and HEV applications. Currently available power inverter systems for HEVs use a DC- DC boost converter to boost the battery voltage for a traditional 3-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. An inductorless cascaded H-bridge multilevel boost inverter for EV and HEV applications is proposed in this paper. Traditionally, each H-bridge needs a DC power supply. The proposed inductorless cascaded H-bridge multilevel boost inverter uses a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the DC power source. Fundamental switching scheme is used to do modulation control and to produce a 5-level phase voltage. Experiments show that the proposed inductorless DC-AC cascaded H-bridge multilevel boost inverter can output a boosted AC voltage.

  3. Brown County Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Brown County Wind Facility Brown County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric...

  4. Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.

    SciTech Connect

    United States. Bonneville Power Administration.

    2006-11-01

    The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

  5. Feasibility of electric power generation by the wind on the University of New Orleans campus

    SciTech Connect

    Hilbert, L.B. Jr.; Janna, W.S.

    1982-03-01

    Recent advances in wind energy technology have led to the point where it may be feasible to use windmills to generate amounts of energy to supplement present energy demands. This paper presents a study of the feasibility of using wind as an alternative or supplemental energy source for the campus of the University of New Orleans. 10 refs.

  6. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  7. Lincoln Electric | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Lincoln Electric Developer Lincoln Electric Energy Purchaser Lincoln...

  8. Wind Tunnel Specifications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Tunnel Specifications Wind Tunnel Specifications This document shows the basic wind tunnel configuration. Please use these specifications when designing test turbines for the Collegiate Wind Competition. Wind Tunnel Specifications (191.74 KB) More Documents & Publications Collegiate Wind Competition 2014 Rules and Regulations Team roster: Tanzila Ahmed, Electrical Engineering; Lawryn Edmonds, Electrical Engineering; Jacob Meyer, Electrical Engineering; Michael Banowetz, Electrical

  9. Chapter 4: Advancing Clean Electric Power Technologies | Wind Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Wind Power Chapter 4: Technology Assessments NOTE: The 2015 U.S. Department of Energy

  10. Buying and Making Electricity | Department of Energy

    Energy.gov [DOE] (indexed site)

    Planning renewable systems Solar electric systems Wind electric systems Hybrid wind and solar Microhydropower systems. Follow Us followontwitter.png...

  11. Performance of a stand-alone wind-electric ice maker for remote villages

    SciTech Connect

    Davis, H.C.; Brandemuehl, M.J.; Bergey, M.L.S.

    1995-01-01

    Two ice makers in the 1.1 metric tons per 24 hours (1.2 tons per day) size range were tested to determine their performance when directly coupled to a variable-frequency wind turbine generator. Initial tests were conducted using a dynamometer to simulate to wind to evaluate whether previously determined potential problems were significant and to define basic performance parameters. Field testing in Norman, Oklahoma, was completed to determine the performance of one of the ice makers under real wind conditions. As expected, the ice makers produced more ice at a higher speed than rated, and less ice at a lower speed. Due to the large start-up torque requirement of reciprocating compressors, the ice making system experienced a large start-up current and corresponding voltage drop which required a larger wind turbine that expected to provide the necessary current and voltage. Performance curves for ice production and power consumption are presented. A spreadsheet model was constructed to predict ice production at a user-defined site given the wind conditions for that location. Future work should include long-term performance tests and research on reducing the large start-up currents the system experiences when first coming on line.

  12. Wind Energy Integration: Slides

    WindExchange

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  13. EECBG Success Story: Small Town Using Wind Power to Offset Electricity Costs

    Energy.gov [DOE]

    Carmen, Oklahoma, is not your average small town. It was the first recipient of an Energy Efficiency and Conservation block grant – and the small town of 412 is using that Recovery Act funding to cut costs through wind energy. Learn more.

  14. Variable-Speed Wind Power System with Improved Energy Capture...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Wind Energy Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Variable-Speed Wind Power ...

  15. Microsoft PowerPoint - Sandia CREW 2013 Wind Plant Reliability...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Security Administration under contract DE-AC04-94AL85000. Wind Plant Reliability Benchmark September 2013 Continuous Reliability Enhancement for Wind (CREW)...

  16. Two Colorado-Based Electric Cooperatives Selected as 2014 Wind Cooperatives of the Year.

    Energy.gov [DOE]

    Tri-State Generation and Transmissions Association (Tri-State) and San Isabel Electric Association (San Isabel) of Colorado have been recognized by the Energy Department and the National Rural...

  17. Simultaneous distribution of AC and DC power

    SciTech Connect

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  18. Technical Progress Report, Phase II Inventory of Wind Green Pricing report Fact Sheets Liability Insurance for Small Wind Energy Systems Zoning Issues for Small Wind Systems Small Wind System Slideshow Small Wind State by State Information Wind Power and Electric transmission Policy: Constructs, Constraints and Critical Path

    SciTech Connect

    Swisher, Randall Holt, Edward Wooley, David

    2002-05-08

    Status report on Green power Factsheets and product database. Small wind turbines as a distributed power

  19. Gamesa Wind to Market | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind energy Product: Represents the interests of wind project owner clients in the Spanish electricity market References: Gamesa Wind to Market1 This article is a stub. You...

  20. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  1. NREL: Wind Research - Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    view of electrical power towers combined with wind machines. Photo Illustration by Raymond David NREL At the National Wind Technology Center (NWTC), partners can study the ...

  2. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  3. Ramping and Uncertainty Prediction Tool - Analysis and Visualization of Wind Generation Impact on Electrical Grid

    Energy Science and Technology Software Center

    2014-03-03

    RUT software is designed for use by the Balancing Authorities to predict and display additional requirements caused by the variability and uncertainty in load and generation. The prediction is made for the next operating hours as well as for the next day. The tool predicts possible deficiencies in generation capability and ramping capability. This deficiency of balancing resources can cause serious risks to power system stability and also impact real-time market energy prices. The toolmore » dynamically and adaptively correlates changing system conditions with the additional balancing needs triggered by the interplay between forecasted and actual load and output of variable resources. The assessment is performed using a specially developed probabilistic algorithm incorporating multiple sources of uncertainty including wind, solar and load forecast errors. The tool evaluates required generation for a worst case scenario, with a user-specified confidence level.« less

  4. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision Wind Vision Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050. With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with

  5. Electric utility value determination for wind energy. Volume II. A user's guide. [WTP code; WEIBUL code; ROSEN code; ULMOD code; FINAM code

    SciTech Connect

    Percival, David; Harper, James

    1981-02-01

    This report describes a method for determining the value of wind energy systems to electric utilities. It is performed by a package of computer models available from SERI that can be used with most utility planning models. The final output of these models gives a financial value ($/kW) of the wind energy system under consideration in the specific utility system. This volume, the second of two volumes, is a user's guide for the computer programs available from SERI. The first volume describes the value determination methodology and gives detailed discussion on each step of the computer modeling.

  6. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnels, performance testing, aerodynamics, turbulence, fatigue, electric generators, wind loads, horizontal axis turbines, vertical axis turbines, Darrieus rotors, wind-powered pumps, economics, environmental impacts, national and international programs, field tests, flow models, feasibility studies, turbine blades, speed regulators, and airfoils.

  7. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect

    2014-05-06

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  8. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema

    None

    2016-07-12

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  9. 189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500

    Energy Information Administration (EIA) (indexed site)

    189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500 189,"Alabama Electric Coop Inc",2,"Chatom","Waynesboro",42.7,32.11,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",469 189,"Alabama Electric Coop

  10. 189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500

    Energy Information Administration (EIA) (indexed site)

    189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500 189,"Alabama Electric Coop Inc",2,"Chatom","Waynesboro",42.7,32.11,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",469 189,"Alabama Electric Coop

  11. Baltimore Gas & Electric Company (Electric) - Residential Energy...

    Energy.gov [DOE] (indexed site)

    AC: 30 Recycling RefrigeratorFreezer: 50 ACDehumidifier: 25 Summary The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the...

  12. ACS | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ACS Jump to: navigation, search Name: ACS Place: Madrid, Spain Zip: 28036 Sector: Solar Product: Madrid based construction company involved in the development of solar thermal...

  13. WINDExchange: What Is Wind Power?

    WindExchange

    What Is Wind Power? A three-bladed wind turbine with the internal components visible. Six turbines in a row are electrically connected to the power grid. Wind Power Animation This aerial view of a wind turbine plant shows how a group of wind turbines can make electricity for the utility grid. The electricity is sent through transmission and distribution lines to homes, businesses, schools, and so on. View the wind turbine animation to see how a wind turbine works or take a look inside. Wind

  14. 2016 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2016 News Below are news stories related to Wind. RSS Learn about RSS. September 13, 2016 Survey Reveals Projections for Lower Wind Energy Costs The cost of producing electricity ...

  15. Biglow Canyon Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Scale Wind Facility Status In Service Owner Portland General Electric Developer OrionPortland General Electric Energy Purchaser Portland General Electric Location Sherman...

  16. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  17. 2006 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 News Below are news stories related to Wind. RSS Learn about RSS. December 14, 2006 NREL and Xcel Energy Dedicate Wind-Powered Hydrogen Generator DOE's National Renewable Energy Laboratory (NREL) and Xcel Energy dedicated a new system to convert wind power into hydrogen on December 14th. The system, located at NREL's National Wind Technology Center, links two wind turbines to devices called electrolyzers, which pass the electricity through water to split the liquid into hydrogen and oxygen.

  18. WINDExchange: Wind Energy Market Sectors

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  19. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  20. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  1. AVEC's Village Wind Projects

    Office of Environmental Management (EM)

    Village Wind Projects By Meera Kohler Alaska Village Electric Cooperative Tribal Energy Conference Denver, Colorado October 28, 2010 New turbines in Hooper Bay AVEC is a ...

  2. Talkin Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  3. Overview of wind technologies

    SciTech Connect

    None, None

    2009-01-18

    The wind overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  4. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  5. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  6. Tackling the Challenges of Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tackling the Challenges of Offshore Wind Tackling the Challenges of Offshore Wind January 10, ... Charlestown, Massachusetts-While electricity produced by land-based wind farms in the ...

  7. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  8. Wind Siting Rules and Model Small Wind Ordinance

    Energy.gov [DOE]

    In September 2009, the Governor of Wisconsin signed S.B. 185 (Act 40) directing the Wisconsin Public Service Commission (PSC) to establish statewide wind energy siting rules. PSC Docket 1-AC-231...

  9. Your wind driven generator

    SciTech Connect

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  10. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Supply | Department of Energy : Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply The report considers some associated challenges, estimates the impacts and considers specific needs and outcomes in various areas associated with a 20% Wind Scenario. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (9.09 MB) More Documents &

  11. Daqing Deta Electric | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Daqing Deta Electric Jump to: navigation, search Name: Daqing Deta Electric Place: Daqing, Heilongjiang Province, China Sector: Wind energy Product: China-based wind power...

  12. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    SciTech Connect

    Nydahl, J.E.; Carlson, B.O.

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  13. WINDExchange: Utility-Scale Wind

    WindExchange

    Utility-Scale Wind Photo of two people standing on top of the nacelle of a utility-scale wind turbine. Wind is an important source of affordable, renewable energy, currently supplying nearly 5% of our nation's electricity demand. By generating electricity from wind turbines, the United States can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

  14. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY

  15. Patterson Pass Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Companies Developer International Wind Companies Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347, -121.652 Show Map...

  16. Southwest Mesa Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power Energy Purchaser American Electric Power Location McCamey TX Coordinates...

  17. Guide to Small Wind Energy Systems

    SciTech Connect

    2010-10-01

    Wind is one of the great renewable energy resources on the planet because it is in limitless supply. Using wind energy to generate electricity can have environmental benefits.

  18. Solar and Wind Rights | Department of Energy

    Energy.gov [DOE] (indexed site)

    - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State...

  19. Wessington Springs Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  20. Wind Resource Assessment Handbook: Fundamentals for Conducting...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... viability of selected wind turbines * Screen for potential wind turbine installation sites. ... Both prevent ambient electrical noise from affecting your measurements. Normal ...

  1. Eco-Snap AC - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Eco-Snap AC National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Air conditioning of building spaces consumes large amounts of energy in the United States, drives electricity usage during peak electricity demand, and is the single largest user of electricity in U.S. buildings. Thus, reducing our nation's energy consumption requires innovative and

  2. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Authors: Timothy Martin ; Paytsar Muradyan ; Richard Coulter Publication Date: 2014-07-25 OSTI Identifier: 1256091 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation

  3. Energy in the Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced

  4. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity ...

  5. Property:ElectricalCurrentMeasurement | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Description MHK Electrical Current Measurement Categories Used in FormTemplate MHKSensor Allows Values AC (Electric Current);DC (Electric Current) Retrieved from "http:...

  6. Wind Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Wind Energy Basics Wind Energy Basics Wind Energy Basics Once called windmills, the technology used to harness the power of wind has advanced significantly over the past ten years, with the United States increasing its wind power capacity 30% year over year. Wind turbines, as they are now called, collect and convert the kinetic energy that wind produces into electricity to help power the grid. Wind energy is actually a byproduct of the sun. The sun's uneven heating of

  7. Enabling Wind Power Nationwide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enabling Wind Power Nationwide Enabling Wind Power Nationwide The cover of the 2015 report Enabling Wind Power Nationwide with a wind turbine on the right side, surrounded by trees. This report shows how the United States can unlock the vast potential for wind energy deployment in all 50 states-made possible through the next-generation of larger wind turbines. It highlights wind energy's potential to generate electricity even in states with no utility-scale wind energy development today. Through

  8. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  9. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0% Wind Energy by 2030 Increasing Wind Energy's Contribution to U.S. Electricity Supply DOEGO-102008-2578 * December 2008 More information is available on the web at: ...

  10. 20% Wind Energy by 2030

    SciTech Connect

    Not Available

    2008-07-01

    This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

  11. Floating Offshore Wind in Hawaii: Potential for Jobs and Economic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contract No. DE-AC36-08GO28308 Floating Offshore Wind in Hawaii: Potential for Jobs and ... April 2016 Floating Offshore Wind in Hawaii: Potential for Jobs and Economic ...

  12. Western Wind and Solar Integration Study: Hydropower Analysis...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Western Wind and Solar Integration Study: Hydropower Analysis October 2007 - October 2010 ... DE-AC36-08GO28308 Western Wind and Solar Integration Study: Hydropower Analysis T. Acker ...

  13. ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Wind and Moment Averages Title: ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages Authors: Timothy Martin ; Paytsar Muradyan ; Richard Coulter Publication Date: 2012-12-06 OSTI Identifier: 1095573 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory

  14. Renaissance for wind power

    SciTech Connect

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  15. Wind Energy Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Text Version Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent

  16. The War of the Currents: AC vs. DC Power

    Energy.gov [DOE]

    Nikola Tesla and Thomas Edison played key roles in the War of the Currents. Learn more about AC and DC power -- and how they affect our electricity use today.

  17. Capacity Adequacy and Revenue Sufficiency in Electricity Markets...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Title Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Publication...

  18. Wind Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy » Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Wind energy is a result of the sun's uneven heating of the atmosphere, the earth's irregular surfaces (mountains and valleys), and the planet's

  19. Wind Vision Testimonials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testimonials Wind Vision Testimonials Addthis Description Five years after its initial release, wind industry leaders reflect on the impacts of the 2008 20% Wind Energy by 2030 study. Video from the Wind Energy Foundation. Text Version The video opens with the "Wind Energy Foundation" logo. The first slide shows the first report published and its cover: 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply July 2008 Five years later... The Impacts of

  20. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department of Energy's Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department of Energy's Wind Program-Lasting Impressions State of the Industry Wind power has the potential to provide vast amounts electricity for the nation with more than 66,000 MW of installed power capacity delivering clean energy to homes and businesses. Wind power is expanding across the United States with utility-scale turbines deployed in 39 states and territories. Texas alone has more installed wind power than all but five countries around the

  1. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  2. West Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Non-vanishing ponderomotive AC electrophoretic effect for particle trapping

    SciTech Connect

    Guan, Weihau; Park, Jae Hyun nmn; Krstic, Predrag S; Reed, Mark A

    2011-01-01

    We present here a study on overlooked aspects of alternating current (AC) electrokinetics AC electrophoretic (ACEP) phenomena. The dynamics of a particle with both polarizability and net charges in a non-uniform AC electric trapping field is investigated. It is found that either electrophoretic (EP) or dielectrophoretic (DEP) effects can dominate the trapping dynamics, depending on experimental conditions. A dimensionless parameter gamma is developed to predict the relative strength of EP and DEP effects in a quadrupole AC field. An ACEP trap is feasible for charged particles in salt-free or low salt concentration solutions. In contrast to DEP traps, an ACEP trap favors the downscaling of the particle size.

  4. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Supply | Department of Energy 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply This page contains information about the 20% Wind Energy by 2030 report, which was published in 2008 by the U.S. Department of Energy (DOE), including an overview, the reports, and related workshops. Over the past two years, an elite team of researchers, academics,

  5. AC Transit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Validation » AC Transit AC Transit AC Transit logo AC Transit (or the Alameda-Contra Costa Transit District) is based in Oakland, California, and provides transportation services to the East Bay of San Francisco. The 360-square-mile service area includes 13 cities and adjacent unincorporated areas in Alameda and Contra Costa counties. AC Transit's approximately 638 vehicles serve more than 65 million annual passengers. Photo of zero emission hydrogen fuel cell bus at AC Transit.

  6. Enabling Wind Power Nationwide

    SciTech Connect

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  7. Wind Energy 101.

    SciTech Connect

    Karlson, Benjamin; Orwig, Kirsten

    2010-12-01

    This presentation on wind energy discusses: (1) current industry status; (2) turbine technologies; (3) assessment and siting; and (4) grid integration. There are no fundamental technical barriers to the integration of 20% wind energy into the nation's electrical system, but there needs to be a continuing evolution of transmission planning and system operation policy and market development for this to be most economically achieved.

  8. ACS Symposium Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    224th ACS National Meeting Division of Analytical Chemistry Symposium on Chemical Science Using Synchrotron Radiation Wednesday, August 21, 2002 Sheraton, Boston, MA This symposium has been organized by the Division of Analytical Chemistry and co-sponsored by the Divisions of Biological Chemistry, Environmental Chemistry, Chemical Education, Geochemistry, and Inorganic Chemistry as part of the ACS Division of Analytical Chemistry Meeting held this year from August 18-22 in Boston, MA. Organized

  9. Testing of a direct drive generator for wind turbines

    SciTech Connect

    Sondergaard, L.M.

    1996-12-31

    The normal drive train of a wind turbine consists a gearbox and a 4 to 8 poles asynchronous generator. The gearbox is an expensive and unreliable components and this paper deals with testing of a direct drive synchronous generator for a gearless wind turbine. The Danish company Belt Electric has constructed and manufactured a 27 kW prototype radial flux PM-generator (DD600). They have used cheap hard ferrite magnets in the rotor of this PM-generator. This generator has been tested at Riso and the test results are investigated and analyzed in this paper. The tests have been done with three different load types (1: resistance; 2: diode rectifier, DC-capacitor, resistance; 3: AC-capacitor, diode rectifier, DC-capacitor, resistance). 1 ref., 9 figs., 5 tabs.

  10. Electricity 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like? Who

  11. Energy 101: Wind Turbines - 2014 Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines - 2014 Update Energy 101: Wind Turbines - 2014 Update Addthis Description See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Topic Wind Text Version Below is the text version for the

  12. Renewable Electricity Generation

    SciTech Connect

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  13. Electricity Advisory Committee

    Office of Environmental Management (EM)

    Indians Robert Gramlich American Wind Energy Association The Honorable Dian Grueneich California Public Utilities Commission Michael Heyeck American Electric Power Hunter Hunt ...

  14. Wyoming Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Wyoming Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity ...

  15. Iowa Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Iowa Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity ...

  16. Kansas Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Kansas Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity ...

  17. Indian Mesa Wind Farm I | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power; Orion Energy Energy Purchaser TXU Electric & Gas- Lower Colorado...

  18. Ponderosa High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  19. Juneau School District Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  20. Skyline High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  1. Montana State University Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  2. Eudora High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  3. Western Illinois University Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  4. Pocatello Community Charter School Wind Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Elkton Schools District Wind Project

  5. Walsh High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  6. USD 440 Halstead Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  7. Norris Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  8. Little Singer Community School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  9. Flinthills Tech College Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  10. Leupp Schools Inc Wind Project 1 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  11. Watauga High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  12. Rigby High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  13. Grassfield High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  14. Memorial Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  15. Appanoose Elementary School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  16. USD 393 Solomon High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  17. USD 307 Ell-Saline Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  18. Wellington Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  19. North Wilkes Middle and High School Wind Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  20. Burlington High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  1. McKenna Charter School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  2. USD 375 Circle High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  3. Superior Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  4. USD 345 Seaman High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  5. Meridian Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  6. Henley Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  7. Jerome Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  8. Yankton School District Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  9. Southeast Community College Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  10. Alleghany High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  11. Mt. Edgecumbe High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  12. Gilpin County School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  13. Hastings Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Elkton Schools District Wind Project

  14. Oshkosh Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  15. Pleasanton Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  16. Research and Development Needs for Wind Systems Utilizing Controllable...

    Energy.gov [DOE] (indexed site)

    of Wind Power to Stabilize Electric Grids Setting the Stage for Greater Renewable Energy Penetration Study Shows Active Power Controls from Wind May Increase Revenues and ...

  17. Installer Issues: Integrating Distributed Wind into Local Communities (Presentation)

    SciTech Connect

    Green, J.

    2006-06-01

    A presentation for the WindPower 2006 Conference in Pittsburgh, PA, regarding the issues facing installer of small wind electric systems.

  18. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its challenges, and path forward 20percent_summary_chap2.pdf (1.31 MB) More Documents & Publications 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects Offshore Wind Projects

  19. Wind Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  20. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  1. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  2. Solar and wind power advancing

    Energy Information Administration (EIA) (indexed site)

    Solar and wind power advancing U.S. electricity generation from wind and solar energy show no signs of slowing down. In its new monthly forecast, the U.S. Energy Information Administration expects wind-powered generation to grow by 19 percent this year and rise another 8 percent in 2014. Congress's extension in January of a tax credit for electricity producers that use renewables is behind the wind power boost. Solar generation in the electric power sector is expected to grow even more, rising

  3. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  4. Survey Reveals Projections for Lower Wind Energy Costs | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Survey Reveals Projections for Lower Wind Energy Costs September 13, 2016 The cost of producing electricity via wind power is expected to fall 24-30 percent by 2030 and 35-41 percent by 2050, according to a survey of the world's foremost wind power experts. Cost reductions are anticipated as a function of continued advancements in wind energy technology. These findings are detailed in new study published in the journal Nature Energy and conducted by the Energy Department's National Renewable

  5. Prairie Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  6. A Chronological Reliability Model Incorporating Wind Forecasts to Assess Wind Plant Reserve Allocation: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    * NREL/CP-500-32210 A Chronological Reliability Model Incorporating Wind Forecasts to Assess Wind Plant Reserve Allocation Preprint Michael Milligan To be presented at the American Wind Energy Association WindPower 2002 Conference Portland, Oregon June 3 - June 5, 2002 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle * Bechtel Contract No. DE-AC36-99-GO10337

  7. NREL: Energy Analysis - Wind Technology Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind and Hydropower Technology Analysis Wind and hydropower analysis supports advanced technologies that convert more of the nation's wind into electricity. Grid Operational Impact Analysis The wind program will address the variable, normally uncontrollable nature of wind power plant output, and the additional needs that its operation imposes on the overall grid. At present, the generation and transmission operational impacts that occur due to wind variability are not well quantified. This

  8. Engineering innovation to reduce wind power COE

    SciTech Connect

    Ammerman, Curtt Nelson

    2011-01-10

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  9. Renewable Electricity Grid Integration Roadmap for Mexico. Supplement to the IEA Expert Group Report on Recommended Practices for Wind Integration Studies

    SciTech Connect

    Parsons, Brian; Cochran, Jaquelin; Watson, Andrea; Katz, Jessica; Bracho, Ricardo

    2015-08-19

    As a recognized leader in efforts to mitigate global climate change, the Government of Mexico (GOM) works proactively to reduce emissions, demonstrating strong political will and capacity to comprehensively address climate change. Since 2010, the U.S. government (USG) has supported these efforts by partnering with Mexico under the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program. Through the program, the USG has partnered with Mexico’s Ministry of Energy (SENER), as well as other government agencies, to support GOM in reaching its clean energy and climate change goals. Specifically, the EC-LEDS program is supporting GOM’s clean energy goal of generating 35% of its electricity from renewable energy (RE) by 2024. EC-LEDS, through the U.S. Agency for International Development (USAID) and the U.S Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL), has been collaborating with SENER and GOM interagency working group—the Consejo Consultivo para las Energías Renovables (Consultative Council on Renewable Energy)—to create a grid integration roadmap for variable RE. 1 A key objective in creating a grid integration roadmap is assessing likely impacts of wind and solar energy on the power system and modifying planning and operations accordingly. This paper applies best practices in conducting a grid integration study to the Mexican context.

  10. SERI Wind Energy Program

    SciTech Connect

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  11. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  12. Western Wind and Solar Integration Study | Grid Modernization...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Can we integrate large amounts of wind and solar energy into the electric power system of the ... Development of Regional Wind Resource and Wind Plant Output Datasets Phase 2 Research ...

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  14. Sales Tax Exemption for Wind Energy

    Energy.gov [DOE]

    A wind power facility must be new or an expansion of an existing facility and placed in service on or after July 1, 2009. It must generate electricity using wind turbines that have a capacity of...

  15. Wind Energy Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Transmission Jump to: navigation, search Photoshop art created from two NREL-PIX photos (10929 & 15185) of a sunset view of electrical power towers combined with wind...

  16. Kaheawa Wind II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Owner First Wind Developer First Wind Energy Purchaser Maui Electric Co Location Wailuku HI Coordinates 20.80811344, -156.547451 Show Map Loading map... "minzoom":false,"mappi...

  17. ETA-AC006

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Revision 2 Effective: March 1, 1997 Vehicle Verification Prepared by Electric Transportation Applications Prepared by: ... Date:... Jude M. ...

  18. electricity | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    electricity Wind farm generating more renewable energy than expected for Pantex The Texas Panhandle has some of the world's best winds for creating renewable energy, and the Wind Farm at the Pantex Plant is taking advantage of those winds, generating up to 60% of the energy needs of the plant in an inaugural program, mandated by the White House. Back in 2013,

  19. Distributed Wind Energy in Idaho

    SciTech Connect

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. • Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. • Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. • Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind’s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level

  20. NREL: Electric Infrastructure Systems Research - Distributed...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    project, which uses electricity from wind turbines and solar panels to produce hydrogen. ... Electricity Integration Research Home Distributed Grid Integration Transmission Grid ...

  1. Iowa Lakes Electric Cooperative | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Iowa Lakes Electric Cooperative Jump to: navigation, search Name: Iowa Lakes Electric Cooperative Place: Estherville, Iowa Zip: 51334 Sector: Wind energy Product: Iowa-based...

  2. Biglow Canyon Phase II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR...

  3. Biglow Canyon Phase III Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR...

  4. Top of Iowa III Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Scale Wind Facility Status In Service Owner Madison Gas & Electric Developer Midwest Renewable Energy Projects Energy Purchaser Madison Gas & Electric Location Worth County IA...

  5. Golden Spread Panhandle Wind Ranch | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Facility Status In Service Owner Golden Spread Electric Cooperative Developer Cielo Energy Purchaser Golden Spread Electric Cooperative Location Wildarado TX Coordinates...

  6. Cherokee Nation - Wind Power Generation Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wyatt, CNE 24 October 2006 - Tribal Energy Program Denver, Colorado Presented by: Carol Wyatt, CNE 24 October 2006 - Tribal Energy Program Denver, Colorado Cherokee Wind Project Synopsis Cherokee Wind Project Synopsis Financially Feasible Wind Resource Electrical Load for all Cherokee Entities is $8 million 100 megawatt (40 Wind Turbines) Offset Entire $8 million Tribal Electrical costs Recover Initial Project Investment in 5 Years Gross $198,764,490.00 in Years 6 - 20 Other Commercial,

  7. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    OpenEI (Open Energy Information) [EERE & EIA]

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  8. Compact portable electric power sources (Technical Report) |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    AREAS; ELECTRIC BATTERIES; FUEL CELLS; CAPACITORS; THERMOPHOTOVOLTAIC CONVERTERS; THERMOELECTRIC GENERATORS; WIND TURBINES; FLYWHEEL ENERGY STORAGE; MICRO-SCALE HYDROELECTRIC ...

  9. Wind Turbine Testing | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Turbine Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry

  10. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  11. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Saver

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of ...

  12. Wind energy in Portugal

    SciTech Connect

    da Fonseca, E.

    1980-12-01

    Windmills are a common element of the Portuguese country landscape for more than a thousand years. The use of wind generated electricity was very common 40 to 50 years ago, but protective legislation of local power networks put it out of the scene. Today, interest in W.G.E. is revived and some prototypes of wind energy converters of advanced design were made. A unique automatic variable pitch system was developed.

  13. Superconducting electromechanical rotating device having a liquid-cooled, potted, one layer stator winding

    DOEpatents

    Dombrovski, Viatcheslav V.; Driscoll, David I.; Shovkhet, Boris A.

    2001-01-01

    A superconducting electromechanical rotating (SER) device, such as a synchronous AC motor, includes a superconducting field winding and a one-layer stator winding that may be water-cooled. The stator winding is potted to a support such as the inner radial surface of a support structure and, accordingly, lacks hangers or other mechanical fasteners that otherwise would complicate stator assembly and require the provision of an unnecessarily large gap between adjacent stator coil sections. The one-layer winding topology, resulting in the number of coils being equal to half the number of slots or other mounting locations on the support structure, allows one to minimize or eliminate the gap between the inner radial ends of adjacent straight sections of the stator coilswhile maintaining the gap between the coil knuckles equal to at least the coil width, providing sufficient room for electrical and cooling element configurations and connections. The stator winding may be potted to the support structure or other support, for example, by a one-step VPI process relying on saturation of an absorbent material to fill large gaps in the stator winding or by a two-step process in which small gaps are first filled via a VPI or similar operation and larger gaps are then filled via an operation that utilizes the stator as a portion of an on-site mold.

  14. Illinois Wind Workers Group

    SciTech Connect

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  15. Analysis of wind power ancillary services characteristics with German 250-MW wind data

    SciTech Connect

    Ernst, B.

    1999-12-09

    With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

  16. Wind Simulation

    Energy Science and Technology Software Center

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  17. 2008 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    8 News Below are news stories related to Wind. RSS Learn about RSS. December 9, 2008 Extra-High-Voltage Line from AEP Would Connect Wind-Rich Dakotas American Electric Power is evaluating the feasibility of building a multi-state, extra-high-voltage transmission project across the Upper Midwest. December 9, 2008 Colorado Study Confirms Low Grid Integration Costs for Wind A new study released this week once again adds to the body of peer-reviewed literature confirming that the cost of integrating

  18. ETA-AC002

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "Control of Test Conduct" Prepared by Electric Transportation Applications Prepared by: ... The objective of this procedure is to identify a common protocol for the conduct of test ...

  19. Solano County Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Facility Status In Service Developer Kenetech Windpower Energy Purchaser Pacific Gas & Electric Co Location Solano County CA Coordinates 38.1535, -121.858 Show Map...

  20. Meridian Way Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Developer Horizon Wind Energy Energy Purchaser Westar EnergyEmpire District Electric Location Cloud County KS Coordinates 39.43274, -97.545217 Show Map Loading map......

  1. Kumeyaay Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Superior Renewable Energy Energy Purchaser San Diego Gas & Electric Location...

  2. Advanced horizontal axis wind turbines in windfarms

    SciTech Connect

    None, None

    2009-01-18

    The wind turbine section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  3. NREL: Wind Research - News Release Archives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Data Book illustrates United States and global energy statistics, including renewable electricity generation, ... of Domestic Offshore Wind Industry Several researchers ...

  4. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate

  5. Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during ...

  6. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  7. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  8. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Wind-turbine blade growth continues to have the largest impact on energy capture and ...

  9. Wind Resource Assessment | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and ...

  10. Venture Wind I Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347, -121.652 Show Map...

  11. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy.gov [DOE] (indexed site)

    Executive summary of a report on the requirements needed to generate twenty percent of the nation's electricity from wind energy by the year 2030. 20percentwindenergy2030 (2.76 ...

  12. Distributed Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  13. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  14. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  15. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  16. Wind Vision: A New Era for Wind Power in the United States

    SciTech Connect

    U.S. Department of Energy

    2015-03-12

    With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a future where wind continues to provide key contributions to the nation’s energy portfolio. Building on and updating the 2008 20% Wind Energy by 2030 report, the new Wind Vision Report quantifies the economic, environmental, and social benefits of a robust wind energy future and the actions that wind stakeholders can take to make it a reality.

  17. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and market features 20percent_summary_chap6.pdf (249.2 KB) More Documents & Publications 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary Slides 20% Wind Energy by

  18. Wind Vision: A New Era for Wind Power in the United States | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a

  19. NREL: Wind Research - U.S. Virgin Islands Begins Collecting Wind...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Virgin Islands Begins Collecting Wind Resource Data: A Wind Powering America Success Story March 25, 2013 In the U.S. Virgin Islands (USVI), electricity is so expensive that ...

  20. Offshore Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A photo of several rows of wind turbines standing in the ocean with the sun overhead. Capabilities NREL's offshore wind turbine research capabilities focus on critical areas that ...

  1. WINDExchange: U.S. Installed Wind Capacity

    WindExchange

    Installed Wind Capacity The amount of wind energy available in the United States is continuously growing bringing the nation closer, bit by bit, to the wind energy goals set out in the Wind Vision Report-35% of the nation's end-use electricity demands coming from wind energy by 2050. Use this page to track the United States' installed wind capacity by state and its progression. On the installed capacity map, move the slider below to see the changes in wind energy availability in the states over

  2. Wind energy: An engineering survey

    SciTech Connect

    Nahas, M.N.; Mohamad, A.S.; Akyurt, M.; El-Kalay, A.K.

    1987-01-01

    This paper presents an extensive survey of literature about wind energy and wind machines, their design and their applications. The paper intends to provide those who plan for energy policy with thorough information about this renewable type of energy and the available machines that convert wind energy into useful mechanical or electrical work. The machines which are available at present range from the simple Savonius rotor to the powerful multi-blade windmills. The advantages and shortcomings of all types are discussed here.

  3. Dynamometer Test Facilities | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynamometer Test Facilities Dynamometers test wind turbine drivetrains by replacing the rotor and blades of a turbine with a powerful motor. The National Wind Technology Center features dynamometers that can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). Photo of large blue and red test machinery with a man looking up at it. Capabilities Perform steady-state testing to determine a turbine's "power curve": how its electrical production relates to the input

  4. Microsoft Word - Increased Strength in Wind Turbine Blades through...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DE-AC04-94AL85000 Increased Strength in Wind Turbine Blades through Innovative Structural ... It is believed that the issue of noise emanating from the flat-back airfoils should be ...

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  6. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  7. Western Employee Presents Wind Award to Minnkota

    Energy.gov [DOE]

    More than 8,000 electric utility professionals attended the National Rural Electric Cooperative Association's annual Tech Advantage Conference, where North Dakota's Minnkota Power Cooperative received the 2011 Wind Cooperative of the Year Award.

  8. Alternative Fuels Data Center: Electricity Research and Development

    Alternative Fuels and Advanced Vehicles Data Center

    ... In the cases of hydro and wind power, turbine blades are moved directly by flowing water and wind, respectively. PV panels convert sunlight directly to electricity using ...

  9. Development of an AC Module System: Final Technical Report

    SciTech Connect

    Suparna Kadam; Miles Russell

    2012-06-15

    The GreenRay Inc. program focused on simplifying solar electricity and making it affordable and accessible to the mainstream population. This was accomplished by integrating a solar module, micro-inverter, mounting and monitoring into a reliable, 'plug and play' AC system for residential rooftops, offering the following advantages: (1) Reduced Cost: Reduction in installation labor with fewer components, faster mounting, faster wiring. (2) Maximized Energy Production: Each AC Module operates at its maximum, reducing overall losses from shading, mismatch, or module downtime. (3) Increased Safety. Electrical and fire safety experts agree that AC Modules have significant benefits, with no energized wiring or live connections during installation, maintenance or emergency conditions. (4) Simplified PV for a Broader Group of Installers. Dramatic simplification of design and installation of a solar power system, enabling faster and more efficient delivery of the product into the market through well-established, mainstream channels. This makes solar more accessible to the public. (5) Broadened the Rooftop Market: AC Modules enable solar for many homes that have shading, split roofs, or obstructions. In addition, due to the smaller building block size of 200W vs. 1000W, homeowners with budget limitations can start small and add to their systems over time. Through this DOE program GreenRay developed the all-in-one AC Module system with an integrated PV Module and microinverter, custom residential mounting and performance monitoring. Development efforts took the product from its initial concept, through prototypes, to a commercial product sold and deployed in the residential market. This pilot deployment has demonstrated the technical effectiveness of the AC Module system in meeting the needs and solving the problems of the residential market. While more expensive than the traditional central inverter systems at the pilot scale, the economics of AC Modules become more and more

  10. Wind farm array wake losses

    SciTech Connect

    Baker, R.W.; McCarthy, E.F.

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  11. ANUEADflM-31 Electric Power High-Voltage Transmission Lines:

    Office of Scientific and Technical Information (OSTI)

    ......... 42 26 Underground Configuration for 230-kV ac ... Empire State Electric Energy Research .Gorp. Energetics, Inc. Florida Electric Power ...

  12. OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS

    SciTech Connect

    Cutler, Roy I; Peplov, Vladimir V; Wezensky, Mark W; Norris, Kevin Paul; Barnett, William E; Hicks, Jim; Weaver, Joey T; Moss, John; Rust, Kenneth R; Mize, Jeffery J; Anderson, David E

    2011-01-01

    SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

  13. Wind Energy Developments: Incentives In Selected Countries

    Reports and Publications

    1999-01-01

    This paper discusses developments in wind energy for the countries with significant wind capacity. After a brief overview of world capacity, it examines development trends, beginning with the United States - the number one country in wind electric generation capacity until 1997.

  14. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  15. N.A.T.I.V.E. District Kayenta Wind Project 2 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  16. Penn State HyRES Laboratory Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  17. 2015 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 News Below are news stories related to Wind. RSS Learn about RSS. December 17, 2015 Inventive Thinkers at NREL Reach Record Number Researchers register ideas on everything from wave power to methane use. December 9, 2015 2014 Data Book Shows Increased Use of Renewable Electricity The 2014 Renewable Energy Data Book shows that U.S. renewable electricity grew to 15.5 percent of total installed capacity and 13.5 percent of total electricity generation. Published annually by the National Renewable

  18. Workplace Charging: Safety and Management Policy For AC Level 1 Charging Receptacles

    Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at AC Level 1 charging receptacles, or wall outlets, can ensure a safe and successful workplace charging experience by considering the...

  19. Cisco Wind Energy Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. DOE Fundamentals Handbook: Electrical Science, Volume 4

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive transformers; and electrical test components; batteries; AC and DC voltage regulators; instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  1. DOE Fundamentals Handbook: Electrical Science, Volume 3

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  2. DOE Fundamentals Handbook: Electrical Science, Volume 1

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  3. Wind Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe ...

  4. Wind Easements

    Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  5. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 101: Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern

  6. 2013 Wind Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Wind Report 2013 Wind Report 1 of 9 #DidYouKnow: The U.S. ranks 2nd in the world for installed wind capacity, equal to nearly 4.5 percent of its total electrical demand. | Photo courtesy of Ruth Baranowski, NREL. 2 of 9 Last year, the wind industry invested $1.8 billion in America's clean energy future, bringing the total of wind energy investments to $125 billion since the 1980s. | Photo courtesy of Casey Joyce, RMT, Inc. 3 of 9 The price of wind energy for new contracts signed in 2013 is at

  7. 2013 Wind Week | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Wind Week 2013 Wind Week Addthis 1 of 9 #DidYouKnow: The U.S. ranks 2nd in the world for installed wind capacity, equal to nearly 4.5 percent of its total electrical demand. | Photo courtesy of Ruth Baranowski, NREL. 2 of 9 Last year, the wind industry invested $1.8 billion in America's clean energy future, bringing the total of wind energy investments to $125 billion since the 1980s. | Photo courtesy of Casey Joyce, RMT, Inc. 3 of 9 The price of wind energy for new contracts signed in 2013 is

  8. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. This video highlights the various parts and mechanisms of a modern wind turbine. Text Version Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as

  9. Vertical axis wind turbine

    SciTech Connect

    Kutcher, H.R.

    1984-05-15

    A Darrieus-type vertical axis wind turbine is disclosed which includes a vertically extending rotor tube mounted on a support structure with two or three rotor blades of troposkein configuration on the rotor tube for rotating the tube in response to wind energy and thereby drive a generator to produce electrical power. The turbine includes an erection hinge which permits assembly of the rotor tube and blades at close to ground level followed by upward hinging of the rotor assembly to a vertical position. It also includes a system for automatically lubricating the top bearing upon erection and a system for visually tensioning the guy cables.

  10. Tornado type wind turbines

    DOEpatents

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  11. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure...

    Alternative Fuels and Advanced Vehicles Data Center

    ... when their source of electricity comes from nonpolluting resources like wind and sunlight. ... Because PEVs rely in whole or part on electric power, their fuel economy is measured ...

  12. Qinghai Solar Energy Electric Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Energy Electric Co Ltd Jump to: navigation, search Name: Qinghai Solar Energy Electric Co Ltd Place: Xining, Qinghai Province, China Zip: 810008 Sector: Solar, Wind energy...

  13. Ac traction gets on track

    SciTech Connect

    O`Connor, L.

    1995-09-01

    This article describes inverter-based ac traction systems which give freight locomotives greater adhesion, pulling power, and braking capacity. In the 1940s, dc traction replaced the steam engine as a source of train propulsion, and it has ruled the freight transportation industry ever since. But now, high-performance ac-traction systems, with their unprecedented levels of pulling power and adhesion, are becoming increasingly common on America`s freight railroads. In thousands of miles of demonstration tests, today`s ac-traction systems have outperformed traditional dc-motor driven systems. Major railroad companies are convinced enough of the benefits of ac traction to have integrated it into their freight locomotives.

  14. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect

    Baring-Gould, I.

    2009-05-01

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  15. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  16. Next Generation Wind Turbine

    SciTech Connect

    Cheraghi, S. Hossein; Madden, Frank

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually benficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT'w mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  17. A survey on wind power ramp forecasting.

    SciTech Connect

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  18. ARM: 1290-MHz Radar Wind Profiler, precipitation moments data (Dataset) |

    Office of Scientific and Technical Information (OSTI)

    Data Explorer ARM: 1290-MHz Radar Wind Profiler, precipitation moments data Title: ARM: 1290-MHz Radar Wind Profiler, precipitation moments data 1290-MHz Radar Wind Profiler, precipitation moments data Authors: Timothy Martin ; Paytsar Muradyan ; Richard Coulter Publication Date: 2014-03-05 OSTI Identifier: 1256461 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory

  19. EIS-0374: Klondike III/ Bigelow Canyon Wind Integration Project, OR

    Energy.gov [DOE]

    This EIS analyzes BPA's decision to approve an interconnection requested by PPM Energy, Inc. (PPM) to integrate electrical power from their proposed Klondike III Wind roject (Wind Project) into the Federal Columbia River Transmission System (FCRTS).

  20. The Western Wind and Solar Integration Study: The Effects of...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind and Solar Power- Induced Cycling on Wear-and-Tear Costs and Emissions Results From the Western Wind and Solar Integration Study Phase 2 The electric grid is a highly complex, ...

  1. Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings...

    Energy.gov [DOE] (indexed site)

    Below is the text version of the webinar titled "Wind-to-Hydrogen Cost Modeling and ... Low-cost wind electricity could provide regional solutions to this, and Chris and his team ...

  2. DOE Wind Vision Community | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    content Wind technology roadmap Total Cost Per MwH for all common large scale power generation sources If I generate 20 percent of my national electricity from wind and solar...

  3. First wind turbine blade delivered to Pantex | National Nuclear...

    National Nuclear Security Administration (NNSA)

    owned wind farm in the country and will provide approximately 60 percent of the average annual electricity need for the Pantex Plant. First wind turbine blade delivered to Pantex

  4. San Clemente Island Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Community Wind Facility Status In Service Owner U.S. Navy Developer Pacific Industrial Electric Energy Purchaser U.S. Navy Location San Clemente...

  5. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect

    Janet.twomey@wichita.edu

    2010-04-30

    EXECUTIVE SUMARRY This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  6. Wind Power Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind power currently provides more than 4% of the nation's electricity, and more wind-powered electricity generation capacity was installed in the United States in 2012 than that ...

  7. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  8. Performance testing of small interconnected wind systems

    SciTech Connect

    Park, G.L.; Krauss, O.; Miller, J.

    1984-05-01

    There is a need for performance information on small windmills intended for interconnected operation with utility distribution service. The owner or prospective buyer needs the data to estimate economic viability and service reliability, while the utility needs it to determine interconnection arrangements, maintain quality of power delivered by its line, and to answer customer inquiries. No existing testing program provides all the information needed, although the Rocky Flats test site comes close. To fill this need for Michigan, Consumers Power Company and the Michigan Electric Cooperative Association helped support a two-year program at Michigan State University involving extensive performance testing of an Enertech 1500 and a 4-kW Dakota with a Gemini inverter. The performance study suggested measurements necessary to characterize SWECS for interconnected operation. They include SWECS energy output to a-c line, miles of wind passing the rotor, var-hour metering for average var consumption, and recording watt, current, and voltmeters to assess SWECS output variability. Added instruments for waveform measurement (to assess power quality) are also needed. Typical data taken at the MSU test site are used to illustrate the techniques and preliminary data from a current project is given. Finally, conclusions about SWECS performance are listed.

  9. Wind Energy Projects | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy ...

  10. Wind Program Newsletter: First Quarter 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Wind Program Newsletter: First Quarter 2012 Turbines in U.S. Waters Will Soon Spin Wind into Electricity In the News Current R&D Funding Opportunities Recent Publications Turbines in U.S. Waters Will Soon Spin Wind into Electricity DOE releases Offshore Demonstration Project Solicitation The U.S. Department of Energy Wind Program is joining forces with other federal and state government agencies, international partners, industry, technology leaders, and the interested public to address the

  11. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  12. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  13. Wind Power Forecasting Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  14. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  15. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  16. Offshore Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  17. wind turbines

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  18. Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  19. Wind Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  20. Wind Power Partners '94 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Wethersfield Wind Power Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  2. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  3. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  4. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  5. Stetson Wind Expansion Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  6. DOE Fundamentals Handbook: Electrical Science, Volume 2

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  7. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    Energy Information Administration (EIA) (indexed site)

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  8. NREL: Wind Research - Offshore Wind Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  9. NREL: Wind Research - Offshore Wind Turbine Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens ... NREL's offshore wind turbine research capabilities focus on critical areas that reflect ...

  10. NREL: Wind Research - Offshore Wind Resource Characterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  11. NREL: Wind Research - Wind Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special ... to anticipate wind generation levels and adjust the ...

  12. 807,"Arkansas Electric Corp",11,"Fitzhugh","OG&E North",100,0.67,"OH","AC",69,161,954,"ACSR","Other",1,1,"Wooden H-Frane",300,1100,86600,46000,90000,223700,"application/vnd.ms-excel"

    Energy Information Administration (EIA) (indexed site)

    ,"LAND_LAND RIGHT_COSTS(DOLLARS)","POLE_TOWER_FIXTURE_COSTS(DOLLARS)","CONDUCTOR_DEVICE_COSTS(DOLLARS)","CONSTRUCTION_OTHER_COSTS(DOLLARS)","TOTAL_LINE_COST(DOLLARS)","IN_SERVICE_DATE" 807,"Arkansas Electric Corp",11,"Fitzhugh","OG&E North",100,0.67,"OH","AC",69,161,954,"ACSR","Other",1,1,"Wooden

  13. ELECTRONIC BIVANE WIND DIRECTION INDICATOR

    DOEpatents

    Moses, H.

    1961-05-01

    An apparatus is described for determining and recording three dimensional wind vectors. The apparatus comprises a rotatably mounted azimuthal wind component sensing head and an elevational wind component sensing head mounted to the azimuthal head and adapted to rotate therewith in the azimuthal plane and independently in the elevational plane. A heat source and thermocouples disposed thereabout are mounted within each of the sensing heads, the thermocouples providing electrical signals responsive to the temperature differential created by the passage of air through the sensing tuhes. The thermocouple signals are applied to drive mechanisms which position the sensing heads to a null wind position. Recording means are provided responsive to positional data from the drive mechanisms which are a measurement of the three dimensional wind vectors.

  14. Danielson Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  15. Kawailoa Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  16. Palouse Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  17. Harbor Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  18. Kahuku Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  19. Wiota Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  20. Bravo Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  1. Auwahi Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  2. Traer Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  3. Sheffield Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  4. Rollins Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  5. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  6. Smoothing Renewable Wind Energy in Texas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smoothing Renewable Wind Energy in Texas Smoothing Renewable Wind Energy in Texas April 9, 2013 - 10:57am Addthis The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in December. It shows how energy storage can moderate the intermittent nature of wind by storing excess energy when the wind is blowing and making it available later to the electric grid to meet customer demand. The Notrees

  7. 2015 Distributed Wind Market Report Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Fact Sheet 2015 Distributed Wind Market Report Fact Sheet 2015-Distributed-Wind-Market-Report-Fact-Sheet_Page_1.jpg Wind turbines in distributed applications are found in all 50 states, Puerto Rico, and the U.S. Virgin Islands to provide energy locally, either serving on-site electricity needs or a local grid. Distributed wind is defined by the wind project's location relative to end-use and powerdistribution infrastructure, rather than turbine or project size. Fact Sheet: 2015

  8. National Offshore Wind Strategy Supporting Technical Reports | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Offshore Wind Strategy Supporting Technical Reports National Offshore Wind Strategy Supporting Technical Reports Below are the four technical reports, published by the National Renewable Energy Laboratory, that helped to inform the National Offshore Wind Strategy: 2016 Offshore Wind Energy Resource Assessment for the United States Quantifying the Opportunity Space for Future Electricity Generation: An Application to Offshore Wind Energy in the United States A Spatial-Economic

  9. EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Helping Policymakers Evaluate Distributed Wind Options EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options is helping policymakers, utilities, advocates, and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut

  10. Western Wind and Solar Integration Study | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Western Wind and Solar Integration Study Can we integrate large amounts of wind and solar energy into the electric power system of the West? That's the question explored by the Western Wind and Solar Integration Study, one of the largest such regional studies to date. Phase 1 Research During its first phase, the Western Wind and Solar Integration Study (WWSIS) investigated the benefits and challenges of integrating up to 35% wind and solar energy in the WestConnect subregion and, more broadly,

  11. Wind energy in 1996: Looking forward, looking back

    SciTech Connect

    Swisher, R.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. A brief review of progress in wind energy is given. The impact of world market forces and restructuring of the electric industry in the U.S. on the wind energy market are discussed. An outline of the American Wind Energy Association`s Renewables Portfolio Standard is presented. Legislative activities in wind energy are also reviewed.

  12. EERE Success Story-Two Colorado-Based Electric Cooperatives Selected as

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2014 Wind Cooperatives of the Year. | Department of Energy Two Colorado-Based Electric Cooperatives Selected as 2014 Wind Cooperatives of the Year. EERE Success Story-Two Colorado-Based Electric Cooperatives Selected as 2014 Wind Cooperatives of the Year. March 24, 2015 - 10:55am Addthis Huerfano River Wind project; Photo courtesy of San Isabel Electric Association , Inc. Huerfano River Wind project; Photo courtesy of San Isabel Electric Association , Inc. Tri-State Generation and

  13. Madison Gas & Electric- Clean Power Partner Solar Buyback Program

    Energy.gov [DOE]

    Annual green energy purchases must be at least as large as the AC output of the PV system. This arrangement requires that the customer have two electricity meters: one to measure electricity...

  14. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery On-Board Battery Charger Bi-directional Converter Electric Motor Inverter DC-DC Converter Ancillary Loads 120 V AC 240 V AC Fast Charger 6 | Vehicle Technologies ...

  15. Iwasaki Electric Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Co Ltd Jump to: navigation, search Name: Iwasaki Electric Co Ltd Place: Tokyo, Tokyo, Japan Zip: 108-0014 Sector: Solar, Wind energy Product: Japanese manufacturer of lighting...

  16. Flying Electric Generators | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by this Institute of Electrical and Electronics Engineers paper handle high power density winds, and are theoretically capable of delivering a constant 30 MW to the grid. At...

  17. Renewable Electricity Generation (Fact Sheet) (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    electricity generation technologies including solar, water, wind, and geothermal. ... Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 24 POWER ...

  18. Delaware Electric Cooperative- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Delaware Electric Cooperative (DEC) provides incentives for solar photovoltaic (PV), solar thermal, wind, fuel cells, and geothermal installed by DEC member-owners. Eligibility is limited to ...

  19. AVTA: Aerovironment AC Level 2 Charging System Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Aerovironment AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

  20. AVTA: Clipper Creek AC Level 2 Charging System Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the ClipperCreek AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

  1. AVTA: Blink AC Level 2 Charging System Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Blink AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

  2. AVTA: Eaton AC Level 2 Charging System Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Eaton AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

  3. Property:Incentive/WindResPercMax | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    I Independence Light & Power - Renewable Energy Rebates (Iowa) + 25% + L Local Small Wind Rebate Programs (Colorado) + 50% + M Maquoketa Municipal Electric Utility - Renewable...

  4. Tres Vaqueros I Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Status In Service Developer International Wind Companies Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347, -121.652 Show Map...

  5. Model Examines Cumulative Impacts of Wind Energy Development...

    Energy.gov [DOE] (indexed site)

    ... Source: Sandia EERE Success Story-Percussive Hammer Enables Geothermal Drilling New Approach to Determine the Need for Operating Reserves in Electricity Markets with Wind Power

  6. Property:PotentialOffshoreWindCapacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric...

  7. US DOE Wind Powering America | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    for American farmers, Native Americans, and other rural landowners, and meet the growing demand for clean sources of electricity. "Wind Powering America is a commitment to...

  8. Eastern Wind Integration and Transmission Study (EWITS) (Revised)

    SciTech Connect

    Not Available

    2011-02-01

    EWITS was designed to answer questions about technical issues related to a 20% wind energy scenario for electric demand in the Eastern Interconnection.

  9. Blue Canyon II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Horizon Wind Energy Energy Purchaser American Electric Power Location North of Lawton OK Coordinates 34.8582, -98.54752 Show Map Loading map... "minzoom":false,"mappingserv...

  10. Buena Vista Wind Farm Repower | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Babcock & Brown Energy Purchaser Pacific Gas & Electric Co Location Altamont...

  11. ANL Study Shows Wind Power Decreases Power Sector Emissions ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    increases, pollutant emissions decrease overall due to the replacement of fossil fuels. "Our study clearly shows that using wind to generate electricity has a discernible ...

  12. Community Wind Handbook/Research Interconnecting behind Your...

    OpenEI (Open Energy Information) [EERE & EIA]

    your local utility. Most utilities and other electricity providers require you to enter into a formal agreement with them before you are allowed to interconnect your wind...

  13. Microsoft Word - Horizon Wind Energy Comments.docx

    Office of Environmental Management (EM)

    and operates power plants that generate electricity using renewable energy sources. ... construction of billions of dollars of new wind farms and other renewable energy sources. ...

  14. Hawaii Solar and Wind Integration Studies | Grid Modernization...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... operate the island grids with interisland wind integration. A technical review committee of regional, national, and international technical experts with experience in electric ...

  15. Community Wind Handbook/Understand Your Energy Use and Costs...

    OpenEI (Open Energy Information) [EERE & EIA]

    "U.S. Department of Energy. 2012 Market Report on Wind Technologies in Distributed Applications" "Energy Information Administration. How much electricity does an...

  16. Wyoming Wind Power Project (generation/wind)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  17. Modeling Sensitivities to the 20% Wind Scenario Report with the WinDS Model

    SciTech Connect

    Blair, N.; Hand, M.; Short, W.; Sullivan, P.

    2008-06-01

    In May 2008, DOE published '20% Wind Energy by 2030', a report which describes the costs and benefits of producing 20% of the nation's projected electricity demand in 2030 from wind technology. The total electricity system cost resulting from this scenario was modestly higher than a scenario in which no additional wind was installed after 2006. NREL's Wind Deployment System (WinDS) model was used to support this analysis. With its 358 regions, explicit treatment of transmission expansion, onshore siting considerations, shallow- and deep-water wind resources, 2030 outlook, explicit financing assumptions, endogenous learning, and stochastic treatment of wind resource variability, WinDS is unique in the level of detail it can bring to this analysis. For the 20% Wind Energy by 2030 analysis, the group chose various model structures (such as the ability to wheel power within an interconnect), and the wind industry agreed on a variety of model inputs (such as the cost of transmission or new wind turbines). For this paper, the analysis examined the sensitivity of the results to variations in those input values and model structure choices. These included wind cost and performance improvements over time, seasonal/diurnal wind resource variations, transmission access and costs, siting costs, conventional fuel cost trajectories, and conventional capital costs.

  18. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (EVSE) Testing Data | Department of Energy Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as Electric Vehicle Supply Equipment - EVSE) are a fundamental part of the plug-in electric vehicle system. Currently, there are three major types of EVSE: AC Level 1, AC Level 2, and DC Fast Charging. For an overview of the types of EVSE, see the Alternative Fuel Data Center's

  19. Offshore Wind Power USA

    Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  20. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Colorado Renewable Electricity Profile 2010 Colorado profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,777 100.0 Total Net Summer Renewable Capacity 2,010 14.6 Geothermal - - Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 Wood/Wood Waste - - MSW/Landfill Gas 3 * Other Biomass 10

  1. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Illinois Renewable Electricity Profile 2010 Illinois profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 44,127 100.0 Total Net Summer Renewable Capacity 2,112 4.8 Geothermal - - Hydro Conventional 34 0.1 Solar 9 * Wind 1,946 4.4 Wood/Wood Waste - - MSW/Landfill Gas 123 0.3 Other Biomass - -

  2. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Indiana Renewable Electricity Profile 2010 Indiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,638 100.0 Total Net Summer Renewable Capacity 1,452 5.3 Geothermal - - Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 Wood/Wood Waste - - MSW/Landfill Gas 53 0.2 Other Biomass s *

  3. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Iowa Renewable Electricity Profile 2010 Iowa profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,592 100.0 Total Net Summer Renewable Capacity 3,728 25.5 Geothermal - - Hydro Conventional 144 1.0 Solar - - Wind 3,569 24.5 Wood/Wood Waste - - MSW/Landfill Gas 11 0.1 Other Biomass 3 *

  4. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Minnesota Renewable Electricity Profile 2010 Minnesota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,715 100.0 Total Net Summer Renewable Capacity 2,588 17.6 Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 Wood/Wood Waste 177 1.2 MSW/Landfill Gas 134 0.9 Other

  5. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Mexico Renewable Electricity Profile 2010 New Mexico profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,130 100.0 Total Net Summer Renewable Capacity 818 10.1 Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 6 0.1

  6. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Dakota Renewable Electricity Profile 2010 North Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10

  7. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  8. EIA - Renewable Electricity State Profiles

    Energy Information Administration (EIA) (indexed site)

    Texas Renewable Electricity Profile 2010 Texas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 108,258 100.0 Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood/Wood Waste 215 0.2 MSW/Landfill Gas 88 0.1 Other Biomass 28

  9. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Colorado Renewable Electricity Profile 2010 Colorado profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,777 100.0 Total Net Summer Renewable Capacity 2,010 14.6 Geothermal - - Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 Wood/Wood Waste - - MSW/Landfill Gas 3 * Other Biomass 10

  10. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Illinois Renewable Electricity Profile 2010 Illinois profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 44,127 100.0 Total Net Summer Renewable Capacity 2,112 4.8 Geothermal - - Hydro Conventional 34 0.1 Solar 9 * Wind 1,946 4.4 Wood/Wood Waste - - MSW/Landfill Gas 123 0.3 Other Biomass - -

  11. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Indiana Renewable Electricity Profile 2010 Indiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,638 100.0 Total Net Summer Renewable Capacity 1,452 5.3 Geothermal - - Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 Wood/Wood Waste - - MSW/Landfill Gas 53 0.2 Other Biomass s *

  12. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Iowa Renewable Electricity Profile 2010 Iowa profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,592 100.0 Total Net Summer Renewable Capacity 3,728 25.5 Geothermal - - Hydro Conventional 144 1.0 Solar - - Wind 3,569 24.5 Wood/Wood Waste - - MSW/Landfill Gas 11 0.1 Other Biomass 3 *

  13. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Minnesota Renewable Electricity Profile 2010 Minnesota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,715 100.0 Total Net Summer Renewable Capacity 2,588 17.6 Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 Wood/Wood Waste 177 1.2 MSW/Landfill Gas 134 0.9 Other

  14. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Mexico Renewable Electricity Profile 2010 New Mexico profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,130 100.0 Total Net Summer Renewable Capacity 818 10.1 Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 6 0.1

  15. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Dakota Renewable Electricity Profile 2010 North Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10

  16. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  17. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update

    Texas Renewable Electricity Profile 2010 Texas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 108,258 100.0 Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood/Wood Waste 215 0.2 MSW/Landfill Gas 88 0.1 Other Biomass 28

  18. How Do Wind Turbines Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Basics » How Do Wind Turbines Work? How Do Wind Turbines Work? Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click on the image to see an animation of wind at work. Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main

  19. 2014 Wind Technologies Market Report

    SciTech Connect

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  20. WINDExchange: Motivations for Buying Wind Power

    WindExchange

    Photo of a wind turbine taken looking through a field of grains. Motivations for Buying Wind Power Electricity consumers may have a variety of motivations for buying wind power, including helping the environment, capturing long-term price stability, securing lower-cost energy, improving public relations, and reducing the need for imported fuels in remote communities. In general, however, the decision is usually based on the following three motivations. Voluntary Purchases Voluntary renewable