National Library of Energy BETA

Sample records for abundant coal reserves

  1. U.S. Coal Reserves

    Energy Information Administration (EIA) (indexed site)

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  2. Coal Reserves Data Base report

    SciTech Connect

    Jones, R.W.; Glass, G.B.

    1991-12-05

    The Coal Reserves Data Base (CRDB) Program is a cooperative data base development program sponsored by the Energy Information Administration (EIA). The objective of the CRDB Program is to involve knowledgeable coal resource authorities from the major coal-bearing regions in EIA's effort to update the Nation's coal reserves data. This report describes one of two prototype studies to update State-level reserve estimates. The CRDB data are intended for use in coal supply analyses and to support analyses of policy and legislative issues. They will be available to both Government and non-Government analysts. The data also will be part of the information used to supply United States energy data for international data bases and for inquiries from private industry and the public. (VC)

  3. US coal reserves: A review and update

    SciTech Connect

    1996-08-01

    This report is the third in series of ``U.S. Coal Reserves`` reports. As part of the Administration of the Energy Information Administration (EIA) program to provide information on coal, it presents detailed estimates of domestic coal reserves, which are basic to the analysis and forecasting of future coal supply. It also describes the data, methods, and assumptions used to develop such estimates and explain terminology related to recent data programs. In addition, the report provides technical documentation for specific revisions and adjustments to the demonstrated reserve base (DRB) of coal in the United States and for coal quality and reserve allocations. It makes the resulting data available for general use by the public. This report includes data on recoverable coal reserves located at active mines and on the estimated distribution of rank and sulfur content in those reserves. An analysis of the projected demand and depletion in recoverable reserves at active mines is used to evaluate the areas and magnitude of anticipated investment in new mining capacity.

  4. Modernization of Ohio's coal reserves, Phase 1

    SciTech Connect

    Carlton, R.W.

    1991-09-27

    The objectives of this project were to determine state-level totals of the estimated economic resource, minable reserve base, and recoverable coal in Ohio, allocated to specified ranges of sulfur and heat content. In addition, resources and reserves were to be categorized by mining methods (surface and underground). Land use and environmental restrictions, needed to determine remaining minable reserves, were to be delineated and percentages of restricted coal calculated. In context of a Phase 1, one-year project, the objectives of this project were to update Ohio's coal reserves and resources for as many counties as time allowed, and to deplete production tonnages to January 1, 1991, on the remaining coal-producing counties. For the depleted counties, only estimated economic resources were required or possible with the data available. 24 refs., 9 figs., 3 tabs.

  5. Coal reserves are plentiful but unevenly distributed

    SciTech Connect

    Jeremic, M.L.

    1981-07-01

    There is plenty of coal in Canada. The estimated coal resources are more than 360,000,000,000 tons with most of this coal located in the western provinces. The estimated minable coal reserves are more than 16,000,000,000 tons and the recoverable coal is more than 6,000,000,000 tons. The latter figure reflects the lack of current development in many coalfields. Very recent and current exploration for coal as well as for oil and gas has indicated coal resources in addition to those already estimated. Incremental additions to coal resources can be expected in northern and eastern Canada. In the latter region, more than 85 percent of the total coal resources are beneath the ocean. The main coal deposits in western Canada are very far from the large industrial markets of Ontario and Quebec. They are closer, yet still quite distant, from export ports on the Pacific Ocean. Current efforts to improve coal transportation are expected to decrease the disadvantages of the unfavorable location of the western coalfields. This will increase the coal reserves in the region as further exploration will surely follow.

  6. Coal Reserves Data Base report. Final report on the Demonstrated Reserve Base (DRB) of coal in Wyoming

    SciTech Connect

    Jones, R.W.; Glass, G.B.

    1991-12-05

    The Coal Reserves Data Base (CRDB) Program is a cooperative data base development program sponsored by the Energy Information Administration (EIA). The objective of the CRDB Program is to involve knowledgeable coal resource authorities from the major coal-bearing regions in EIA`s effort to update the Nation`s coal reserves data. This report describes one of two prototype studies to update State-level reserve estimates. The CRDB data are intended for use in coal supply analyses and to support analyses of policy and legislative issues. They will be available to both Government and non-Government analysts. The data also will be part of the information used to supply United States energy data for international data bases and for inquiries from private industry and the public. (VC)

  7. Illinois coal reserve assessment and database development. Final report

    SciTech Connect

    Treworgy, C.G.; Prussen, E.I.; Justice, M.A.; Chenoweth, C.A.

    1997-11-01

    The new demonstrated reserve base estimate of coal of Illinois is 105 billion short tons. This estimate is an increase from the 78 billion tons in the Energy Information Administration`s demonstrated reserve base of coal, as of January 1, 1994. The new estimate arises from revised resource calculations based on recent mapping in a number of countries, as well as significant adjustments for depletion due to past mining. The new estimate for identified resources is 199 billion tons, a revision of the previous estimate of 181 billion tons. The new estimates incorporate the available analyses of sulfur, heat content, and rank group appropriate for characterizing the remaining coal resources in Illinois. Coal-quality data were examined in conjunction with coal resource mapping. Analyses of samples from exploration drill holes, channel samples from mines and outcrops, and geologic trends were compiled and mapped to allocate coal resource quantities to ranges of sulfur, heat content, and rank group. The new allocations place almost 1% of the demonstrated reserve base of Illinois in the two lowest sulfur categories, in contrast to none in the previous allocation used by the Energy Information Administration (EIA). The new allocations also place 89% of the demonstrated reserve base in the highest sulfur category, in contrast to the previous allocation of 69% in the highest category.

  8. Demonstrated reserve base for coal in New Mexico. Final report

    SciTech Connect

    Hoffman, G.K.

    1995-02-01

    The new demonstrated reserve base estimate of coal for the San Juan Basin, New Mexico, is 11.28 billion short tons. This compares with 4.429 billion short tons in the Energy Information Administration`s demonstrated reserve base of coal as of January 1, 1992 for all of New Mexico and 2.806 billion short tons for the San Juan Basin. The new estimate includes revised resource calculations in the San Juan Basin, in San Juan, McKinley, Sandoval, Rio Arriba, Bernalillo and Cibola counties, but does not include the Raton Basin and smaller fields in New Mexico. These estimated {open_quotes}remaining{close_quotes} coal resource quantities, however, include significant adjustments for depletion due to past mining, and adjustments for accessibility and recoverability.

  9. Documentation of the demonstrated reserve base of coal in the United States. Volume 2. Final report

    SciTech Connect

    Herhal, A J; Britton, S G; Minnucci, C A

    1982-03-01

    The purpose of this report is to document the methodologies used to develop the 1979 Demonstrated Reserve Base (DRB) of coal. The main body of this report summarizes the methodological procedures used to develop each state reserve estimate. The appendices to the report provide a detailed description of the entire DRB process for each state.

  10. Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland

    SciTech Connect

    Bialecka, Barbara

    2008-03-15

    One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis of raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.

  11. Coal references index for the Navajo Indian Reservation, Arizona, New Mexico, and Utah

    SciTech Connect

    Bliss, J.D.

    1982-01-01

    The references listed in this document represent the readily available literature about coal resources on or adjacent to the Navajo Indian Reservation. They were selected during the developmental phase of the Navajo Resource Information System (NRIS). The system contains a set of computerized data bases addressing various resource categories. The system was developed by the US Geological Survey in coordination with the Minerals Department, Navajo Nation. Funding support was provided by the Bureau of Indian Affairs. The list of approximately 70 references was selected from a reference data base entitled nref using those citations which contain coal in a keyword list attached to each citation. The main attempt was to list most of the literature published in the 1960's and 1970's for areas in, or adjacent to, the Navajo reservation.

  12. Documentation of the demonstrated reserve base of coal in the United States. Final report, Volume 1

    SciTech Connect

    Herhal, A J; Britton, S G; Minnucci, C A

    1982-03-01

    The purpose of this report is to document the methodologies used to develop the 1979 Demonstrated Reserve Base (DRB) of coal. All primary source documents used to prepare the 1979 DRB were reviewed. Using the methodologies and documentation found in the 1979 DRB published report as a guide, each of the state-level published reserve estimates were re-derived. In those cases where the estimates could not be reproduced, EIA personnel from the Eastern and Western Energy Data Offices were consulted and the differences, for the most part, were resolved. Throughout this report an attempt was made to describe the information flow that was an integral part of the DRB development. Particular attention and emphasis was given to those instances where deviations from standard, published EIA procedures were used to derive the DRB estimates. The main body of this report summarizes the methodological procedures used to develop each state reserve estimate.

  13. Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons)

    Energy Information Administration (EIA) (indexed site)

    8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons) Region and State Anthracite Bituminous Coal Subbituminous Coal Lignite Total Underground Surface Underground Surface Underground Surface Surface 1 Underground Surface Total Appalachian 4.0 3.3 68.2 21.9 0.0 0.0 1.1 72.1 26.3 98.4 Alabama .0 .0 .9 2.1 .0 .0 1.1 .9 3.1 4.0 Kentucky, Eastern .0 .0 .8 9.1 .0 .0 .0 .8 9.1 9.8 Ohio .0 .0 17.4 5.7 .0 .0 .0 17.4 5.7 23.1 Pennsylvania 3.8 3.3 18.9 .8 .0 .0 .0 22.7 4.2 26.9 Virginia .1

  14. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    SciTech Connect

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  15. U.S. Energy Information Administration | Annual Coal Report 2015

    Energy Information Administration (EIA) (indexed site)

    5. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining Method, 2015 (million short tons) Underground - Minable Coal Surface - Minable Coal Total Coal-Resource State Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves

  16. Coal Markets

    Energy Information Administration (EIA) (indexed site)

    Coal Glossary FAQS Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports ...

  17. Coal production 1988

    SciTech Connect

    Not Available

    1989-11-22

    Coal Production 1988 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1989. 5 figs., 45 tabs.

  18. U.S. Energy Information Administration | Annual Coal Report 2015

    Energy Information Administration (EIA) (indexed site)

    6. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2015 (million short tons) Continuous 1 Conventional and Other 2 Longwall 3 Total Coal-Producing State Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average

  19. Coal quality trends and distribution of Title III trace elements in Eastern Kentucky coals

    SciTech Connect

    Eble, C.F.; Hower, J.C.

    1995-12-31

    The quality characteristics of eastern Kentucky coal beds vary both spatially and stratigraphically. Average total sulfur contents are lowest, and calorific values highest, in the Big Sandy and Upper Cumberland Reserve Districts. Average coal thickness is greatest in these two districts as well. Conversely, the thinnest coal with the highest total sulfur content, and lowest calorific value, on average, occurs in the Princess and Southwest Reserve Districts. Several Title III trace elements, notably arsenic, cadmium, lead, mercury, and nickel, mirror this distribution (lower average concentrations in the Big Sandy and Upper Cumberland Districts, higher average concentrations in the Princess and Southwest Districts), probably because these elements are primarily associated with sulfide minerals in coal. Ash yields and total sulfur contents are observed to increase in a stratigraphically older to younger direction. Several Title III elements, notably cadmium, chromium, lead, and selenium follow this trend, with average concentrations being higher in younger coals. Average chlorine concentration shows a reciprocal distribution, being more abundant in older coals. Some elements, such as arsenic, manganese, mercury, cobalt, and, to a lesser extent, phosphorus show concentration spikes in coal beds directly above, or below, major marine zones. With a few exceptions, average Title III trace element concentrations for eastern Kentucky coals are comparable with element distributions in other Appalachian coal-producing states.

  20. Rail Coal Transportation Rates

    Annual Energy Outlook

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  1. Keystone coal industry manual

    SciTech Connect

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  2. Coal production 1985

    SciTech Connect

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  3. Coal industry annual 1997

    SciTech Connect

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  4. Coal industry annual 1993

    SciTech Connect

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  5. Coal production 1989

    SciTech Connect

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  6. DOE - Fossil Energy: Introduction to Coal Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Introduction An Energy Lesson Cleaning Up Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still enough coal ...

  7. Coal bed methane potential in Venezuela-The forgotten resource

    SciTech Connect

    Vasquez-Herrera, A.R.; Bereskin, S.R.; McLennan, J.D.

    1996-08-01

    In nations already possessing riches of hydrocarbons situated in conventional reservoirs, evaluation of coal-bearing sequences for potential gas is logically delayed or ignored. Nonetheless, Venezuelan coals have long been recognized as stratigraphically associated with oil accumulations, but because coalbed methane (CBM) is a relatively new worldwide phenomenon, CBM potential has not been widely assessed in the country. Two general areas contain vast accumulations of coal for potential CBM activity: (1) the Maracaibo basin, containing the Guasare (northwest), Lobatera-Santo Domingo (southwest) and Urumaco (northeast) districts; and (2) the Oficina basin in eastern Venezuela possessing abundant accumulations related to the Faja Petrolifera de Orinoco (Orinoco Oil Belt). In both basins, high volatile bituminous and lignitic coals of mostly Oligo-Miocene age are abundantly found. Older coals are also present especially in the Maracaibo area. Two factors represent powerful incentives for CBM exploitation: addition of known reserves for economic considerations, and aid in bringing heavy crude oil to the surface by additional gas lift and oil viscosity reduction. Other favorable factors important for CBM methodology include: (1) abundant coals lying above known conventional reservoir targets; (2).6 - 1% vitrinite reflectance measurements in the Orinoco Oil Belt; (3) many coals occurring above 1500 m; (4) documented mine explosions especially in the 1920s and 1930s; (5) a strong tectonic overprint to perhaps add shear fractures to already cleated coals; (6) individual coal thickness up to 12 m with averages in the .8 m range; and (7) gas shows while drilling coal-rich intervals.

  8. Appalachian recapitalization: United Coal comes full circle

    SciTech Connect

    Fiscor, S.

    2006-05-15

    The article recounts the recent history of the United Coal Co. which exited from the coal business between 1992 and 1997 and has recently returned. More coal reserves have been added by its four companies Sapphire Coal, Carter Roag Coal, Pocahontas Coal and Wellmore, bringing the grand total to 222.6 Mtons. United Coal's developments and investment strategy are discussed. The company headquarters are in Bristol, Va., USA. 1 tab., 7 photos.

  9. DOE - Fossil Energy: A Brief Overview of Coal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Overview Fossil Energy Study Guides Coal - General Info America has more coal than any other fossil fuel resource. The United States also has more coal reserves than any other ...

  10. Coal Data: A reference

    SciTech Connect

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  11. Coal Production 1992

    SciTech Connect

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  12. Quarterly Coal Report - Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  13. Coal Production 1990. [CONTAINS GLOSSARY

    SciTech Connect

    Not Available

    1991-09-12

    This report provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, and reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1991. This is the 11th annual summary on minable coal, pursuant to Section 801 of Public Law 95-620, the Powerplant and Industrial Fuel Use Act of 1978. 9 figs., 32 tabs.

  14. State coal profiles, January 1994

    SciTech Connect

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  15. U.S. Energy Information Administration | Annual Coal Report 2015

    Energy Information Administration (EIA) (indexed site)

    4. Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2015 and 2014 (million short tons) 2015 2014 Coal-Producing State Recoverable Coal Reserves Average Recovery Percentage Recoverable Coal Reserves Average Recovery Percentage Percent Change Recoverable Coal Reserves Alabama 228 49.57 228 46.00 -0.2 Alaska 51 85.00 53 85.00 -2.2 Arizona 209 90.00 216 90.00 -3.2 Arkansas 25 60.00 25 60.00 s Colorado 298 77.52 333 76.35 -10.6 Illinois 2,435 54.85 2,463 59.16

  16. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when

  17. Coal resources of Kyrgyzstan

    SciTech Connect

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A.; Harrison, C.D.; Huber, D.W.

    1995-12-31

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  18. Coal production, 1987

    SciTech Connect

    Not Available

    1988-12-05

    Coal Production 1987 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275) as amended. The 1987 coal production and related data presented in this report were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1987. This survey originated at the Bureau of Mines, US Department of the Interior. In 1977, the responsibility for taking the survey was transferred to the EIA under the Department of Energy Organization Act (P.L. 95-91). The data cover 3667 of the 4770 US coal mining operations active in 1987. These mining operations accounted for over 99 percent of total US coal production and represented 77 percent of all US coal mining operations in 1987. This issue is the 12th annual report published by EIA and continues the series formerly included as a chapter in the Minerals Yearbook published by the Bureau of Mines. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1988. This is the eighth annual summary on minable coal, pursuant to Section 801 of Public Law 95-620. 18 figs., 105 tabs.

  19. Coal production 1984. [USA; 1984

    SciTech Connect

    Not Available

    1984-01-01

    Coal Production 1984 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (PL 93-275) as amended. All data presented in this report, except the total production table presented in the Highlights section, the demonstrated reserve base data presented in Appendix A, and the 1983 coal preparation and shipments data presented in Appendix C, were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1984. These mining operations accounted for 99.4% of total US coal production and represented 76.3% of all US coal mining operations in 1984. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1984.

  20. U.S. Energy Information Administration | Annual Coal Report 2015

    Energy Information Administration (EIA) (indexed site)

    7. Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2015 (million short tons) Underground Surface Total Mine Production Range (thousand short tons) Recoverable Coal Reserves Average Recovery Percentage Recoverable Coal Reserves Average Recovery Percentage Recoverable Coal Reserves Average Recovery Percentage Over 1,000 6,034 62.49 10,074 91.21 16,108 80.45 Over 500 to 1,000 400 49.35 82 83.76 483 55.22 Over 200 to 500 339

  1. Environmentally conscious coal combustion

    SciTech Connect

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  2. Coal - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  3. Coal sector profile

    SciTech Connect

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  4. Coal mine methane global review

    SciTech Connect

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  5. Clean coal technology demonstration program: Program update 1996-97

    SciTech Connect

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  6. The 1986-93 Clean Coal Technology Program | Department of Energy

    Energy.gov [DOE] (indexed site)

    Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant coal resources. "The ...

  7. Estimating coal production peak and trends of coal imports in China

    SciTech Connect

    Bo-qiang Lin; Jiang-hua Liu

    2010-01-15

    More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

  8. Coal Data: A reference. [Contains Glossary

    SciTech Connect

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  9. Annual Coal Report - Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    Report Release Date: November 3, 2016 | Next Release Date: October 26, 2017 | full report Previous Reports (pdf) Data year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 see all Go The Annual Coal Report (ACR) provides annual data on U.S. coal production, number of mines, productive capacity, recoverable reserves, employment, productivity, consumption, stocks, and prices. All data for 2015 and prior years are final. Highlights for 2015: In 2015, U.S. coal production dropped

  10. Coal production, 1986. [Contains Glossary

    SciTech Connect

    Not Available

    1988-01-28

    Coal Production 1986 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Aministration Act of 1974 (P.L. 93-275) as amended. The 1986 coal production and related data presented in this report were obtained from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1986. This survey originated at the Bureau of Mines, US Department of the Interior. This report also includes updated data for the demonstrated reserve base of coal in the United States on both January 1, 1986 and January 1, 1987. This is the seventh annual summry on minable coal, pursuant to Sec. 801 of Public Law 95-620. 18 figs., 105 tabs.

  11. Coal - U.S. Energy Information Administration (EIA) - U.S. Energy

    Gasoline and Diesel Fuel Update

    IHS. ALL RIGHTS RESERVED. CHINA'S COAL MARKET: Did peak demand come and go? EIA Energy Conference: World Coal Markets JULY 12, 2016 Xizhou Zhou Senior Director Head of Asia Gas, Power & Coal Research +86 10 6533 4536 xizhou.zhou@ihs.com © 2016 IHS. ALL RIGHTS RESERVED. Key implications * China's industrial economy is experiencing a "hard landing" as the economic transition accelerates, impacting major industrial fuels, with coal feeling the most pain. * This long-term

  12. EIA's Energy in Brief: What is the role of coal in the United States?

    Gasoline and Diesel Fuel Update

    What is the role of coal in the United States? Last Updated: January 19, 2016 The United States has the world's largest estimated recoverable reserves of coal, and it is a net exporter of coal. In 2014, U.S. coal mines produced about 1 billion short tons of coal, the first increase in annual coal output in three years. More than 90% of the coal produced in the United States was used by U.S. power plants to generate electricity. Although coal has been the largest source of electricity generation

  13. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is

  14. Petroleum Reserves

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the event of a commercial supply disruption, the United States can turn to the emergency stockpiles of petroleum products managed by the Department of Energy's Office of Petroleum Reserves (OPR)...

  15. NETL: Coal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines | sCO2 Technology CO2 Capture CO2 Capture NETL's CO2 Capture Program ...

  16. Coal pump

    DOEpatents

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  17. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    SciTech Connect

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in

  18. Characterization and supply of coal based fuels

    SciTech Connect

    Not Available

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  19. Coal: America's energy future. Volume I

    SciTech Connect

    2006-03-15

    Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

  20. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  1. EIA -Quarterly Coal Distribution

    Annual Energy Outlook

    - Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: March 9, 2016 Next Release Date: May 2016 The Quarterly ...

  2. Coal Markets

    Energy Information Administration (EIA) (indexed site)

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown reflect those of relatively high-Btu coal selected in each region

  3. Radionuclides in Western coal. Final report

    SciTech Connect

    Abbott, D.T.; Styron, C.E.; Casella, V.R.

    1983-09-23

    The increase in domestic energy production coupled with the switch from oil and natural gas to coal as a boiler-fuel source have prompted various federal agencies to assess the potential environmental and health risks associated with coal-fired power plants. Because it has been suggested that Western coals contain more uranium than Eastern coals, particular concern has been expressed about radioactive emissions from the increasing number of power plants that burn low-sulfur Western coal. As a result, the radionuclides in coal program was established to analyze low-sulfur coal reserves in Western coal fields for radioactivity. Samples from seams of obvious commercial value were taken from 19 operating mines that represented 65% of Western coal production. Although the present study did not delve deeply into underlying causative factors, the following general conclusions were reached. Commercially exploited Western coals do not show any alarming pattern of radionuclide content and probably have lower radioactivity levels than Eastern coals. The materials that were present appeared to be in secular equilibrium in coal, and a detailed dose assessment failed to show a significant hazard associated with the combustion of Western coal. Flue gas desulfurization technology apparently has no significant impact on radionuclide availability, nor does it pose any significant radiologic health risks. This study has also shown that Western coals are not more radioactive than most soils and that most solid combustion products have emanation powers <1%, which greatly reduce dose estimates from this pathway. In summary, the current use of mined, Western coals in fossil-fueled power plants does not present any significant radiological hazard.

  4. Pelletization of fine coals. Final report

    SciTech Connect

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  5. Salish and Kootenai Tribes, Confederated Tribes of the Flathead Reservation- 2007 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The intent of this project is to evaluate the potential to utilize the abundant biomass resources at select facilities on the Flathead Reservation.

  6. Outlook and Challenges for Chinese Coal

    SciTech Connect

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests

  7. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    SciTech Connect

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to the Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.

  8. Six University Coal Research Projects Selected to Boost Advanced Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production | Department of Energy Six University Coal Research Projects Selected to Boost Advanced Energy Production Six University Coal Research Projects Selected to Boost Advanced Energy Production September 9, 2014 - 12:14pm Addthis The U.S. Department of Energy (DOE) selected six new projects under the University Coal Research Program (UCR) that seek long-term solutions for the clean and efficient use of our nation's abundant coal resources. The selected projects support the Office of

  9. Workshop on the utilization of coal as an alternative to petroleum fuels in the Andean region. Volume 2. Contributed papers

    SciTech Connect

    Not Available

    1985-06-28

    Since the advent of the petroleum crisis in the mid-seventies, with its escalating fuel-oil prices, coal production has shown a substantial increase. Worldwide coal reserves are large, and the technology exists to exploit these reserves. Andean countries, especially Peru, are known to have significant underutilized coal reserves, which could prove socially and economically attractive for energy policy and planning and for long-term self-sufficiency. At present, many industrial operations and electric-generating facilities in Bolivia, Ecuador, and Peru are dependent on fuel-oil from diminishing domestic reserves or from imports. With current prices of coal generally about half those for residual petroleum fuels (based on energy content), the potential exists for exploitation of Andean coal as an alternative to petroleum fuels. Greater use of coal resources would help meet the demand for increased energy needed to improve living standards and for increased industrialization in the area.

  10. Successful continuous injection of coal into gasification and PFBC system operating pressures exceeding 500 PSI - DOE funded program results

    SciTech Connect

    2005-07-01

    President Bush's energy program is focussed towards commercializing power production technologies that offer improvements in efficiency and reductions in emissions while utilizing the nation's most abundant energy reserve - coal. Gasification offers such benefits. To bring this technology to full commercial acceptance, the operational issue of feeding solid fuel into the pressure environment needs to be addressed. The DOE, through the National Energy Technology Laboratory, has funded research to develop the unique Stamet 'Posimetric Solids Pump' to feed coal into current gasification operating pressures. The project comprised design and testing to feed coal into 300 PSI and a second Phase for feeding into 500 PSI. The 300 PSI target was achieved in December 2003. In January 2005, the Posimetric feeder achieved continuous injection of coal into 560 PSI, exceeding the Phase 2 target. This paper presents a review and evaluation of the design, design optimizations and test results of the successful feeder. It also presents analysis of economic benefits to pump use and results from semi-commercial testing at gasifier operating test facilities, which should have commenced by the date of the Conference. 16 figs., 6 tabs.

  11. Clean coal technology programs: program update 2006

    SciTech Connect

    2006-09-15

    The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

  12. Clean Coal Technology Programs: Program Update 2009

    SciTech Connect

    2009-10-01

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  13. Coal Market Module

    Gasoline and Diesel Fuel Update

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  14. Coal Distribution Database, 2008

    Energy Information Administration (EIA) (indexed site)

    Processing Coal Plants and Commercial and Institutional Coal Users" and Form EIA-7A, "Coal Production and Preparation Report." Appendix A Assigning Missing Data to EIA-923...

  15. Coal Fleet Aging Meeting

    Annual Energy Outlook

    Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and ... capital cost adder based on the age and type of unit (coal, oilgas steam, and nuclear). ...

  16. Coal industry annual 1994

    SciTech Connect

    1995-10-01

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  17. The Economic Impact of Coal Mining in New Mexico

    SciTech Connect

    Peach, James; Starbuck, C.

    2009-06-01

    The economic impact of coal mining in New Mexico is examined in this report. The analysis is based on economic multipliers derived from an input-output model of the New Mexico economy. The direct, indirect, and induced impacts of coal mining in New Mexico are presented in terms of output, value added, employment, and labor income for calendar year 2007. Tax, rental, and royalty income to the State of New Mexico are also presented. Historical coal production, reserves, and price data are also presented and discussed. The impacts of coal-fired electricity generation will be examined in a separate report.

  18. The 1986-93 Clean Coal Technology Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant coal resources. "The U.S. Clean Coal Technology Demonstration Program is the envy of the world." Robert W. Smock Editorial Director, Power Engineering The program's goal: to demonstrate the best, most innovative technology

  19. By Coal Origin State

    Gasoline and Diesel Fuel Update

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  20. Salish and Kootenai Tribes, Confederated Tribes of the Flathead Reservation: S&K Holding Company- 2007 Project

    Energy.gov [DOE]

    The intent of this project is to evaluate the potential to utilize the abundant biomass resources at select facilities on the Flathead Reservation.

  1. Project Reports for Salish and Kootenai Tribes, Confederated Tribes of the Flathead Reservation: S&K Holding Company- 2007 Project

    Energy.gov [DOE]

    The intent of this project is to evaluate the potential to utilize the abundant biomass resources at select facilities on the Flathead Reservation.

  2. Table 16. Coalbed methane proved reserves, reserves changes,...

    Energy Information Administration (EIA) (indexed site)

    Coalbed methane proved reserves, reserves changes, and production, 2014" "billion cubic feet" ,,"Changes in Reserves During 2014" ,"Published",,,..."New Reservoir" ...

  3. Table 7. Crude oil proved reserves, reserves changes, and production...

    Energy Information Administration (EIA) (indexed site)

    Crude oil proved reserves, reserves changes, and production, 2014" "million barrels" ,,"Changes in Reserves During 2014" ,"Published",,,..."New Reservoir" ,"Proved",,"Revision","...

  4. An assessment of the quality of selected EIA data series: Coal data, 1983--1988

    SciTech Connect

    Not Available

    1991-11-25

    The purpose of this report is to present information on the quality of some of the Energy Information Administration`s (EIA) coal data. This report contains discussions of data on production, direct labor hours, recoverable reserves, and prices from 1983 through 1988. Chapter 2 of this report presents a summary of the EIA coal data collection and identifies other sources providing similar data. Chapters 3 and 4 focus on data on coal production and direct labor hours, respectively. Detailed comparisons with data from the Mine Safety and Health Administration (MSHA) and State mining agencies are presented. Chapter 5 examines recoverable reserves. Included are internal comparisons as well as comparisons with other published reserve-related data, namely those of BXG, Inc. Chapter 6 describes how EIA obtains estimates of coal prices and discusses the variability in the prices caused by factors such as mine type, coal rank, and region. 5 figs., 5 tabs.

  5. Investigation of coal structure. Final report

    SciTech Connect

    Nishioka, Masaharu

    1994-03-01

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  6. US coal production and related data, 1986-1988. Data file

    SciTech Connect

    Balthasar, N.C.; Swann, T.C.; Young, P.F.

    1988-01-01

    The file contains comprehensive annual U.S. coal production and related data for 1986-1988 on coal production, the number of mines, prices, productivity, employment, daily productive capacity, reserves and stocks. Data are obtained annually from Form EIA-7A, Coal Production Report, a survey of companies owning and/or operating mining operations that produced, processed or prepared coal in the U.S. Each year the data are published in the Energy Information Administration's Coal Production Report (DOE/EIA-0118). The file is updated annually.

  7. Coal Industry Annual 1995

    SciTech Connect

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  8. Coal industry annual 1996

    SciTech Connect

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  9. Preparation for upgrading western subbituminous coal

    SciTech Connect

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  10. Microbial solubilization of coal

    DOEpatents

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  11. Green Colorado Credit Reserve

    Energy.gov [DOE]

    The Green Colorado Credit Reserve (GCCR) is a loan loss reserve that was created by the Colorado Energy Office (CEO) to incentivize private lenders in Colorado to make small commercial loans up to ...

  12. Naval Petroleum Reserves

    Energy.gov [DOE]

    For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a contingency source of fuel for the Nation's military.  All that changed in 1998 when Naval Petroleum Reserve No....

  13. Compute Reservation Request Form

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Compute Reservation Request Form Compute Reservation Request Form Users can request a scheduled reservation of machine resources if their jobs have special needs that cannot be accommodated through the regular batch system. A reservation brings some portion of the machine to a specific user or project for an agreed upon duration. Typically this is used for interactive debugging at scale or real time processing linked to some experiment or event. It is not intended to be used to guarantee fast

  14. Clean coal

    SciTech Connect

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  15. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  16. By Coal Destination State

    Energy Information Administration (EIA) (indexed site)

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  17. By Coal Origin State

    Energy Information Administration (EIA) (indexed site)

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  18. Coal and Coal-Biomass to Liquids

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and Coal-Biomass to Liquids program. The program also aims to reduce the cost of these low-emission fuels, and will take advantage of carbon capture and sequestration technologies to further reduce greenhouse gas emissions. Other Coal and Coal-Biomass to Liquids (C&CBTL) Program Activities: The C&CBTL Program

  19. By Coal Origin State

    Energy Information Administration (EIA) (indexed site)

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  20. By Coal Origin State

    Energy Information Administration (EIA) (indexed site)

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  1. By Coal Destination State

    Energy Information Administration (EIA) (indexed site)

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  2. By Coal Origin State

    Energy Information Administration (EIA) (indexed site)

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  3. By Coal Destination State

    Energy Information Administration (EIA) (indexed site)

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  4. By Coal Destination State

    Energy Information Administration (EIA) (indexed site)

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  5. By Coal Origin State

    Energy Information Administration (EIA) (indexed site)

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  6. By Coal Origin State

    Energy Information Administration (EIA) (indexed site)

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  7. By Coal Origin State

    Energy Information Administration (EIA) (indexed site)

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  8. By Coal Destination State

    Energy Information Administration (EIA) (indexed site)

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  9. By Coal Origin State

    Energy Information Administration (EIA) (indexed site)

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  10. Coal Distribution Database, 2006

    Energy Information Administration (EIA) (indexed site)

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  11. By Coal Destination State

    Energy Information Administration (EIA) (indexed site)

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  12. By Coal Origin State

    Energy Information Administration (EIA) (indexed site)

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  13. By Coal Destination State

    Energy Information Administration (EIA) (indexed site)

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  14. By Coal Destination State

    Energy Information Administration (EIA) (indexed site)

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  15. By Coal Destination State

    Energy Information Administration (EIA) (indexed site)

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  16. Annual Coal Distribution Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  17. Coal liquefaction

    DOEpatents

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  18. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update

    Major U.S. Uranium Reserves

  19. Hard truths: facing the hard truths about energy. Topic Paper No. 1: Coal impact

    SciTech Connect

    2007-07-18

    The United States has the largest coal reserves in the world, followed by Russia and China. Coal now provides about a quarter of the energy used in the United States. The share of US energy to be supplied by coal is projected to increase modestly to 2030. Coal use worldwide exhibits the same characteristics as in the United States. The largest increase in coal use through 2030 is projected to be in China, followed by the United States and India. Coal is consumed in large quantities throughout the United States, while most production is focussed in a few states, requiring significant quantities of coal to be transported long distances. To that end US coal consumers and producers have access to the world's most comprehensive and efficient coal transportation system. The extent to which coal is able to help meet future US energy challenges will depend heavily on the performance of coal transporters. Contents are: United States coal market; supply growth; demand growth; US coal transportation infrastructure: issues and prospects; and other factors impacting supply/demand growth. 25 figs., 12 tabs., 1 app.

  20. Annual Coal Distribution

    Reports and Publications

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  1. Coal Data Browser

    Gasoline and Diesel Fuel Update

    ... Petroleum Hydrocarbon Gas Liquids Natural Gas Coal Nuclear Electricity Hydropower Biofuels: Ethanol & Biodiesel Wind Geothermal Solar ...

  2. Abundant Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Abundant Biofuels Place: Monterey, California Sector: Biofuels Product: Abundant Biofuels plans to develop biodiesel feedstock...

  3. Overview of Contaminant Removal From Coal-Derived Syngas

    SciTech Connect

    Layne, A.W.; Alvin, M.A.; Granite, E.; Pennline, H.W.; Siriwardane, R.V.; Keairns, D.; Newby, R.A.

    2007-11-01

    Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. DOE envisions increased use of gasification in the United States during the next 20 years. As such, the DOE Gasification Technologies Program, including the FutureGen initiative, will strive to approach a near-zero emissions goal, with respect to multiple pollutants, such as sulfur, mercury, and nitrogen oxides. Since nearly one-third of anthropogenic carbon dioxide emissions are produced by coal-powered generation facilities, conventional coal-burning power plants, and advanced power generation plants, such as IGCC, present opportunities in which carbon can be removed and then permanently stored.
    Gas cleaning systems for IGCC power generation facilities have been effectively demonstrated and used in commercial operations for many years. These systems can reduce sulfur, mercury, and other contaminants in synthesis gas produced by gasifiers to the lowest level achievable in coal-based energy systems. Currently, DOE Fossil Energy's goals set for 2010 direct completion of R&D for advanced gasification combined cycle technology to produce electricity from coal at 4550% plant efficiency. By 2012, completion of R&D to integrate this technology with carbon dioxide separation, capture, and sequestration into a zero-emissions configuration is targeted with a goal to provide electricity with less than a 10% increase in cost of electricity. By 2020, goals are set to develop zero-emissions plants that are fuel-flexible and capable of multi-product output and thermal efficiencies of over 60% with coal. These objectives dictate that it is essential to not only reduce contaminant emissions into the generated synthesis gas, but also to increase the process or system operating temperature to that of humid gas cleaning criteria conditions (150 to 370 C), thus reducing the energy penalties that currently exist as a result of lowering process temperatures (?40 to 38 C) with

  4. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    SciTech Connect

    Not Available

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  5. Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured FE-Supported

  6. Strategic Petroleum Reserve

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Reserve Test Sale 2014 Report to Congress November 2014 United States Department of Energy Washington, DC 20585 Strategic Petroleum Reserve Test Sale 2014 Final Report | Page i Message from the Secretary Section 161 of the Energy Policy and Conservation Act (42 U.S.C. 6245), as amended, requires the Secretary of Energy to provide a detailed explanation of any test of the Strategic Petroleum Reserve drawdown and sales procedures. The Department of Energy carried out such a test

  7. Pattern of state coal taxation. [Review

    SciTech Connect

    Gulley, D.A.

    1981-01-01

    This paper reviews the recent history of state coal taxation and reports an empirically-based effort at defining the key determinants of state and local coal taxation. A pattern emerges but the analysis is complicated by the empirical and conceptual difficulties typical of such studies. Perhaps as important a result as the detection of a pattern is the recognition that many seemingly important variables do not appear to have consistently influenced tax levels. For policy makers and for industry, it appears that the present concern over a coal-states cartel is excessive. One can speculate that draconian tax adjustments on the basis of a crude-indicator-like reserve base will ultimately transfer less wealth than would skillful preemption of rent. It is also noteworthy that the sign of the tax effort variable is positive, indicating that coal tax rates are consistent with other tax efforts, not a substitute for them. Accepting impacts and general tax effort variables as the best explanations of interstate variations in tax effort is a somewhat different matter than determining what any given state's tax rate ought to be; such a question lies beyond the scope of this paper. This tax-determinant study can not define the right level of coal taxation, but it can suggest that no trend is yet evident toward entrepreneurial tax rates. 20 references, 4 figures.

  8. Self Supplied Balancing Reserves

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Self-Supplied-Balancing-Reserves Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  9. Coal data: A reference

    SciTech Connect

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  10. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...

    Energy Information Administration (EIA) (indexed site)

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"06301989"...

  11. Vibration mills in the manufacturing technology of slurry fuel from unbeneficiated coal sludge

    SciTech Connect

    E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russia)

    2008-08-15

    Coal-water slurry fuel (CWSF) is economically viable provided that its ash content does not exceed 30% and the amount water in the fuel is at most 45%. Two impoundments were revealed that have considerable reserves of waste coal useful for commercial manufacture of CWSF without the beneficiation step. One of the CWSF manufacture steps is the comminution of coal sludge to have a particle size required by the combustion conditions. Vibration mills, which are more compact and energy-intensive that drum mills, can be used in the CWSG manufacture process. The rheological characteristics of CWSF obtained from unbeneficiated waste coal were determined.

  12. Annotated bibliography of coal in the Caribbean region. [Lignite

    SciTech Connect

    Orndorff, R.C.

    1985-01-01

    The purpose of preparing this annotated bibliography was to compile information on coal localities for the Caribbean region used for preparation of a coal map of the region. Also, it serves as a brief reference list of publications for future coal studies in the Caribbean region. It is in no way an exhaustive study or complete listing of coal literature for the Caribbean. All the material was gathered from published literature with the exception of information from Cuba which was supplied from a study by Gordon Wood of the US Geological Survey, Branch of Coal Resources. Following the classification system of the US Geological Survey (Wood and others, 1983), the term coal resources has been used in this report for reference to general estimates of coal quantities even though authors of the material being annotated may have used the term coal reserves in a similar denotation. The literature ranges from 1857 to 1981. The countries listed include Colombia, Mexico, Venezuela, Cuba, the Dominican Republic, Haiti, Jamaica, Puerto Rico, and the countries of Central America.

  13. Cyclotron Institute » Room Reservations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Room Reservations To make a room reservation, email unulldenull TOnullDnull unullmanullt TODnull nullpnullmocnull TA nullranulldnelnullanullcnull or call the receptionist.

  14. Solar reserve | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    reserve Jump to: navigation, search Name Solar Reserve Address 2425 Olympic Blvd. Place Santa Monica, CA Zip 90404 Country United States Sector Solar Website http:...

  15. Petroleum Reserves | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    appropriate supply of gasoline for consumers in the northeastern United States. Naval Petroleum and Oil Shale Reserves rmotchero.jpg The Naval Petroleum and Oil Shale Reserve ...

  16. U.S.Uranium Reserves

    Gasoline and Diesel Fuel Update

    Uranium Reserves Data for: 2003 Release Date: June 2004 Next Release: Not determined Uranium Reserves Estimates The Energy Information Administration (EIA) has reported the...

  17. EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

  18. Introduction of clean coal technology in Japan

    SciTech Connect

    Takashi Kiga

    2008-01-15

    Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

  19. Coal feed lock

    DOEpatents

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  20. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  1. Coal stratigraphy of deeper part of Black Warrior basin in Alabama

    SciTech Connect

    Thomas, W.A.; Womack, S.H.

    1983-09-01

    The Warrior coal field of Alabama is stratigraphically in the upper part of the Lower Pennsylvanian Pottsville Formation and structurally in the eastern part of the Black Warrior foreland basin. The productive coal beds extend southwestward from the mining area downdip into the deeper part of the Black Warrior structural basin. Because the deep part of the basin is beyond the limits of conventional coal exploration, study of the stratigraphy of coal beds must rely on data from petroleum wells. Relative abundance of coal can be stated in terms of numbers of beds, but because of the limitations of the available data, thicknesses of coals presently are not accurately determined. The lower sandstone-rich coal-poor part of the Pottsville has been interpreted as barrier sediments in the mining area. To the southwest in the deeper Black Warrior basin, coal beds are more numerous within the sandstone-dominated sequence. The coal-productive upper Pottsville is informally divided into coal groups each of which includes several coal beds. The Black Creek, Mary Lee, and Utley coal groups are associated with northeast-trending delta-distributary sandstones. The areas of most numerous coals also trend northeastward and are laterally adjacent to relatively thick distributary sandstones, suggesting coal accumulation in backswamp environments. The most numerous coals in the Pratt coal group are in an area that trends northwestward parallel with and southwest of a northwest-trending linear sandstone, suggesting coal accumulation in a back-barrier environment. Equivalents of the Cobb, Gwin, and Brookwood coal groups contain little coal in the deep part of the Black Warrior basin.

  2. A story of revival: United Coal's East Gulf preparation plant

    SciTech Connect

    2009-04-15

    Some say beauty is in the eye of the beholder, but when United Coal purchased the assets of White Mountain Mining in late 2005, the attractiveness of the acquired assets did not require much debate. Whilst the Pocahontas Coal reserves included in the acquisition were very desirable for producing coke, the East Gulf preparation plant was in poor condition. In order to minimize cost, maintenance and manpower whilst increasing production, the circuits in the existing plant were modified and the Barvoy Vessel was replaced with a single, pump fed, 30-inch Krebs HM cyclone. A spiral circuit was added as were screen bowl centrifuges. Finally the plant was given a structural upgrade and a new siding was installed. With the East Gulf restoration project complete, the United Coal Co. (UCC) and Pocahontas Coal are now considering expanding the Affinity complex. 2 figs., 6 photos.

  3. Pelletization of fine coals

    SciTech Connect

    Sastry, K.V.S.

    1991-09-01

    The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

  4. International perspectives on coal preparation

    SciTech Connect

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  5. Coal Distribution Database, 2008

    Energy Information Administration (EIA) (indexed site)

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  6. Coal Distribution Database, 2008

    Energy Information Administration (EIA) (indexed site)

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  7. "Annual Coal Report

    Energy Information Administration (EIA) (indexed site)

    Annual Coal Report Data Released: January 20, 2015 Data for: 2013 Re-Release Date: April 23, 2015 (CORRECTION) Annual Coal Report 2013 CorrectionUpdate April 23, 2015 The Annual ...

  8. Microbial solubilization of coal

    DOEpatents

    Strandberg, Gerald W.; Lewis, Susan N.

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  9. Indonesian coal mining

    SciTech Connect

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  10. Chemicals from coal

    SciTech Connect

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  11. Coal gasification apparatus

    DOEpatents

    Nagy, Charles K.

    1982-01-01

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  12. Method for fluorinating coal

    DOEpatents

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  13. Coal Fleet Aging Meeting

    Energy Information Administration (EIA) (indexed site)

    7, 2016 MEMORANDUM TO: Dr. Ian Mead Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: Notes from the Coal Fleet Aging Meeting held on June 14, 2016 Attendees (36) *Indicates attendance via WebEx. 2 Framing the question This adjunct meeting of the AEO Coal Working Group (CWG) was held as a follow up to the previous Future Operating and Maintenance Considerations for the

  14. NETL: Coal Gasification Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gasification Systems Coal Gasification is a process that can turn coal into clean power, chemicals, hydrogen and transportation fuels, and can be used to capture the carbon from the coal for storage or for enhanced oil recovery. To better understand the basic concepts behind Gasification, watch this short video: What is Gasification? The Gasification Systems Program is developing advanced technologies to reduce the cost and increase the efficiency of producing coal syngas. Click on the Graphic

  15. Flash hydrogenation of coal

    DOEpatents

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  16. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    SciTech Connect

    Not Available

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  17. Strategic Petroleum Reserve

    Energy.gov [DOE] (indexed site)

    Reserve Emergency Crude Oil Supply Requests Points of Contact Program Office - Washington Jim Gruber (202) 586-1547 James.Gruber@hq.doe.gov Patrick Willging (202) 586-4692...

  18. FE Petroleum Reserves News

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reserve in response to a request from the State of Connecticut.

    Sat, 10 Nov 2012 00:15:00 +0000 486739 at http:energy.gov Energy Department to Loan...

  19. Naval petroleum reserves

    SciTech Connect

    Not Available

    1981-01-01

    A hearing to consider two bills (S. 1744 and H.R. 3023) authorizing appropriations to operate the Naval Petroleum Reserve during fiscal 1982 brought testimony from officials of the Departments of Energy and Defense; from Chevron, USA; and from the Independent Refiners Association. Both bills authorize $228,463,000, of which $2.56 million will be available for the naval oil shale reserves and the remainder for the naval petroleum reserves. Chevron spokesmen noted that 8-11 months were required to reach full production at the Elk Hills site rather than the 60-90 days estimated by DOE, although both Chevron and the Independent Refiners Association of the west coast support the President's decision that it is in the national interest to continue the production of crude from naval petroleum reserves for the next three years.

  20. Coal recovery process

    DOEpatents

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  1. Reserve's Deputy Assistant Secretary

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5, First Quarter, 2012 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 Energy Security for the Nation A Column from the Strategic Petroleum Reserve's Deputy Assistant Secretary 3 SPR Completes Drawdown An Inside Look at the Strategic Petroleum Reserve's Operations 6 International Efforts in Clean Energy Fossil Energy Staff Participate in International Organizations to Share Energy Efforts 7 Methane Hydrate Technology Tested International Efforts to Test Technologies in Alaska's

  2. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect

    Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-07-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main tasks for this reporting period were to correlate well logs and refine coal property maps, evaluate methane content and gas composition of Wilcox Group coals, and initiate discussions concerning collection of additional, essential data with Anadarko. To assess the volume of CO{sub 2} that may be sequestered and volume of methane that can be produced in the vicinity of the proposed Sam Seymour sequestration site, we used approximately 200 additional wells logs from Anadarko Petroleum Corp. to correlate and map coal properties of the 3 coal-bearing intervals of Wilcox group. Among the maps we are making are maps of the number of coal beds, number of coal beds greater than 5 ft thick, and cumulative coal thickness for each coal interval. This stratigraphic analysis validates the presence of abundant coal for CO{sub 2} sequestration in the Wilcox Group in the vicinity of Sam Seymour power plant. A typical wellbore in this region may penetrate 20 to 40 coal beds with cumulative coal thickness between 80 and 110 ft. Gas desorption analyses of approximately 75 coal samples from the 3 Wilcox coal intervals indicate that average methane content of Wilcox coals in this area ranges between 216 and 276 scf/t, basinward of the freshwater boundary indicated on a regional hydrologic map. Vitrinite reflectance data indicate that Wilcox coals are thermally immature for gas generation in this area. Minor amounts of biogenic gas may be present, basinward of the freshwater line, but we infer that most of the Wilcox coalbed gas in the deep coal beds is migrated thermogenic gas. Analysis based on limited data suggest that sites for CO{sub 2} sequestration and enhanced coalbed gas recovery should be located basinward of the Wilcox

  3. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    SciTech Connect

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  4. EIA - Analysis of Natural Gas Exploration & Reserves

    Annual Energy Outlook

    Exploration & Reserves 2009 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2008 Annual Report Categories: Resources & Reserves (Released, 10292009, PDF, XLS, and...

  5. Massachusetts Military Reservation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Military Reservation Jump to: navigation, search Name Massachusetts Military Reservation Facility Massachusetts Military Reservation Sector Wind energy Facility Type Community Wind...

  6. Heating Oil Reserve History | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heating Oil Reserve History Heating Oil Reserve History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed ...

  7. Converting coal to liquid fuels. [US DOE

    SciTech Connect

    Not Available

    1983-07-01

    Liquid fuels play a vital role in the US economy. Oil represents about 40 percent of the energy consumed each year in this country. In many cases, it fills needs for which other energy forms cannot substitute efficiently or economically - in transportation, for example. Despite a current world-wide surplus of oil, conventional petroleum is a depletable resource. It inevitably will become harder and more expensive to extract. Already in the US, most of the cheap, easily reached oil has been found and extracted. Even under optimistic projections of new discoveries, domestic oil production, particularly in the lower 48 states, will most likely continue to drop. A future alternative to conventional petroleum could be liquid fuels made from coal. The technique is called coal liquefaction. From 1 to 3 barrels of oil can be made from each ton of coal. The basic technology is known; the major obstacles in the US have been the high costs of the synthetic oil and the risks of building large, multi-billion dollar first-of-a-kind plants. Yet, as natural petroleum becomes less plentiful and more expensive, oil made from abundant coal could someday become an increasingly important energy option. To prepare for that day, the US government is working with private industries and universities to establish a sound base of technical knowledge in coal liquefaction.

  8. Clean coal: Global opportunities for small businesses

    SciTech Connect

    1998-01-01

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

  9. Process for hydrogenating coal and coal solvents

    DOEpatents

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  10. Microbial solubilization of coals

    SciTech Connect

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.; Thomas, B.L.; McCulloch, M.; Wilson, B.W.; Bean, R.M.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal had been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.

  11. Summary of the APEC coal trade and investment liberalization and facilitation workshop: Facilitating trade and investment in Indonesia`s coal energy sector

    SciTech Connect

    Johnson, C.J.

    1997-08-01

    The Workshop brought together experts from APEC economies to discuss important issues related to coal development, trade and consumption in the APEC region, with a focus on Indonesia. Papers ranged from broad regional coal-related issues to specific policy and contract terms. The host, Indonesia, was selected as the focus of the workshop because it: (a) has APEC`s fastest growing electricity sector, (b) is in the process of switching from oil based electricity generation to coal and natural gas-based generation, (c) is among the fastest growing coal exporters in APEC, and (d) has a contract system for coal development that has been widely accepted by foreign investors. In addition, Indonesia is in the process of revising its coal policies, and might benefit from the timely discussions in this workshop. The papers presented in the workshop spanned the coal chain from coal resources and reserves, conversion technologies, economics and markets, legal and policy issues, to community and cultural concerns. Participants represented government, industry and academic interests, and provided perspectives of coal and technology suppliers, consumers, energy policy makers and legal experts.

  12. Coal and nuclear power: Illinois' energy future

    SciTech Connect

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  13. Table 8. Lease condensate proved reserves, reserves changes,...

    Energy Information Administration (EIA) (indexed site)

    ...ustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",41639,"(+,-)","(+)","(-)","(-)",...

  14. Coal combustion products (CCPs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an

  15. Pulverized coal fuel injector

    DOEpatents

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  16. Integrated coal liquefaction process

    DOEpatents

    Effron, Edward

    1978-01-01

    In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

  17. Coal and Coal-Biomass to Liquids FAQs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... For further information, see: Coal and Coal-Biomass to Liquids. For additional information: Gasifipedia is a gasification resource that includes history, state-of-the art ...

  18. US coal market softens

    SciTech Connect

    Fiscor, S.

    2007-01-15

    The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

  19. Annual Coal Distribution Tables

    Energy Information Administration (EIA) (indexed site)

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  20. Coal Distribution Database, 2006

    Energy Information Administration (EIA) (indexed site)

    Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is...

  1. Coal liquefaction quenching process

    DOEpatents

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  2. Coal | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Assuming no additional constraints on CO2 emissions, coal remains the largest source of electricity generation in the AEO2011 Reference case because of continued reliance on...

  3. Coal Distribution Database, 2006

    Energy Information Administration (EIA) (indexed site)

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  4. WCI Case for Coal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and storage, and the production of hydrogen from coal, ... countries, global energy consumption will continue to ... Other fuels will have to provide the great bulk of the ...

  5. By Coal Destination State

    Annual Energy Outlook

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  6. British coal privatization procedures

    SciTech Connect

    Not Available

    1994-06-01

    The form in which British Coal is to be privatized has finally been announced. Offers are to be invited for the operating underground and opencast mines which will be grouped into five regionally based companies. Additionally, offers will be invited for a number of collieries which are currently under care and maintenance. The five Regional Coal Companies to be formed are Central North, which will comprise the assets in the Yorkshire and Durham coalfields, including the five collieries in the Selby Complex; Central South, which will contain the assets located in the Nottinghamshire, Leicestershire, Derbyshire, and Warwickshire coalfields; North East, which has four opencast sites, Scotland, which has nine operating open-cast sites and a single underground mine, Longannet; and South Wales with its nine operating opencast sites. Tower colliery, the last underground mine in South Wales, was finally put on care and maintenance on April 20, 1994. Details of the five Regional Coal Companies are given. A new public sector body, the Coal Authority will be set up to which all British Coal's title to unworked coal and coal mines will be transferred. All the relevant property rights and liabilities of British Coal will be transferred into the Regional Coal Companies prior to their sun.

  7. Balancing coal pipes

    SciTech Connect

    Earley, D.; Kirkenir, B.

    2009-11-15

    Balancing coal flow to the burners to optimise combustion by using real-time measurement systems (such as microwave mass measurement) is discussed. 3 figs.

  8. Coal Market Module

    Gasoline and Diesel Fuel Update

    The use of coals with sub- optimal characteristics carries with it penalties in operating efficiency, maintenance cost, and system reliability. Such penalties range from the...

  9. Coal Gasification Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... (Btu) coal "that is combined with wind and other renewable sources, ... The Kentucky Pioneer EIS notes that "noise levels inside the turbine buildings would be very high, ...

  10. Strategic Petroleum Reserve

    Office of Energy Efficiency and Renewable Energy (EERE)

    With a capacity of more than 700 million barrels, the U.S. Strategic Petroleum Reserve (SPR) is the largest stockpile of government-owned emergency crude oil in the world. Established in the aftermath of the 1973-74 oil embargo, the SPR provides the President with a powerful response option should a disruption in commercial oil supplies threaten the U.S. economy. It is also the critical component for the United States to meet its International Energy Agency obligation to maintain emergency oil stocks, and provides a national defense fuel reserve.

  11. Strategic Petroleum Reserve quarterly report

    SciTech Connect

    Not Available

    1990-08-15

    The Strategic Petroleum Reserve Quarterly Report is submitted in accordance with section 165(b) of the Energy Policy and Conservation Act, as amended, which requires that the Secretary of Energy submit quarterly reports to Congress on Activities undertaken with respect to the Strategic Petroleum Reserve. This August 15, 1990, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1990, through June 30, 1990. 3 tabs.

  12. Cooperative research program in coal liquefaction

    SciTech Connect

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  13. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    DOE PAGES [OSTI]

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; Lerch, Harry; Olea, Ricardo A.; Suitt, Stephen E.; Kolker, Allan

    2010-01-01

    Indoormore » air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM 2.5 concentration in 20 homes was 36.0  μ g/ m 3 . This is the first time that PM 2.5 has been quantified and characterized inside Navajo reservation residents' homes.« less

  14. Clean coal technologies market potential

    SciTech Connect

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  15. NEMS Modeling of Coal Plants

    Annual Energy Outlook

    NEMS Modeling of Coal Plants Office of Electricity, Coal, Nuclear, and Renewable Analysis ... oil and gas steam plants, and 23 for nuclear plants regardless of age - Beyond 30 ...

  16. Hydroprocessing catalysts for heavy oil and coal

    SciTech Connect

    Satriana, M.J.

    1982-01-01

    Hydroprocessing catalysts, as described in over 230 processes covered in this book, are hydrogenation catalysts used in the upgrading of heavy crudes and coal to products expected to be in great demand as the world's primary oil supplies gradually dwindle. The techniques employed in hydroprocessing result in the removal of contaminants, the transformation of lower grade materials such as heavy crudes to valuable fuels, or the conversion of hydrocarbonaceous solids into gaseous or liquid fuel products. All of these techniques are, of course, carried out in the presence of hydrogen. Some of the brightest energy prospects for the future lie in heavy oil reservoirs and coal reserves. Heavy oils, defined in this book as having gravities of < 20/sup 0/API, are crudes so thick that they are not readily extracted from their reservoirs. However, processing of these crudes is of great importance, because the US resource alone is enormous. The main types of processing catalysts covered in the book are hydrorefining catalysts plus some combinations of the two. Catalysts for the conversion of hydrocarbonaceous materials to gaseous or liquid fuels are also covered. The primary starting material for these conversions is coal, but wood, lignin, oil shale, tar sands, and peat are other possibilities. The final chapter describes the preparation of various catalyst support systems.

  17. Method for coal liquefaction

    DOEpatents

    Wiser, Wendell H.; Oblad, Alex G.; Shabtai, Joseph S.

    1994-01-01

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  18. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  19. Coal liquefaction process

    DOEpatents

    Carr, Norman L.; Moon, William G.; Prudich, Michael E.

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  20. Coal. [Great Plains Project

    SciTech Connect

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  1. Dry piston coal feeder

    DOEpatents

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  2. Advanced coal technologies in Czech heat and power systems

    SciTech Connect

    Noskievic, P. Ochodek, T.

    1998-07-01

    Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently, necessary steps in making coal utilization more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. preparatory steps have been taken in building an advanced combustion unit fueled by pulverized coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper than coal) do not result in an increased efficiency of the standing equipment by applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalization of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in the near future.

  3. Status Report: USGS coal assessment of the Powder River Basin, Wyoming

    SciTech Connect

    James A. Luppens; Timothy J. Rohrbacher; Jon E. Haacke; David C. Scott; Lee M. Osmonson

    2006-07-01

    This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized. 7 refs.

  4. Coal in China

    SciTech Connect

    Minchener, A.J.

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  5. Underground Coal Thermal Treatment

    SciTech Connect

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  6. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  7. Apparatus and method for feeding coal into a coal gasifier

    DOEpatents

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  8. New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook

    Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion ... Coalbed Methane Proved Reserves as of Dec. 31 New Mexico Coalbed Methane Proved Reserves, ...

  9. New Mexico Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Proved Reserves (Billion Cubic Feet) New Mexico Shale Proved Reserves (Billion Cubic Feet) ... Shale Natural Gas Proved Reserves as of Dec. 31 New Mexico Shale Gas Proved Reserves, ...

  10. North Dakota Shale Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Shale Proved Reserves (Billion Cubic Feet) North Dakota Shale Proved Reserves (Billion ... Shale Natural Gas Proved Reserves as of Dec. 31 North Dakota Shale Gas Proved Reserves, ...

  11. Louisiana--North Shale Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Shale Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion ... Shale Natural Gas Proved Reserves as of Dec. 31 North Louisiana Shale Gas Proved Reserves, ...

  12. Coal in a changing climate

    SciTech Connect

    Lashof, D.A.; Delano, D.; Devine, J.

    2007-02-15

    The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

  13. Coal market momentum converts skeptics

    SciTech Connect

    Fiscor, S.

    2006-01-15

    Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

  14. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    SciTech Connect

    Ferris, D.D.; Bencho, J.R.

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  15. ARM - Measurement - Ozone Column Abundance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Column Abundance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Column Abundance The vertically integrated amount of ozone (commonly measured in Dobson Unit, 1 DU = 134 mmol/m^2) Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  16. Coal leasing and taxation. Coal policy paper

    SciTech Connect

    Brody, S.E.; DeVries, A.H.

    1981-01-01

    The paper presents background information on current and proposed approaches to coal leasing and taxation, at both the State and federal levels. In addition, it discusses both the governmental objectives and probable economic effects of various combinations of leasing and taxation policies.

  17. Strategic Petroleum Reserve quarterly report

    SciTech Connect

    Not Available

    1991-08-15

    This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

  18. The Strategic Petroleum Reserve

    SciTech Connect

    Not Available

    1991-01-01

    The Strategic Petroleum Reserve program was set into motion by the 1975 Energy Policy and Conservation Act (EPCA). By 1990, 590 million barrels of oil had been placed in storage. Salt domes along the Gulf Coast offered ideal storage. Both sweet'' and sour'' crude oil have been acquired using various purchase options. Drawdown, sale, and distribution of the oil would proceed according to guidelines set by EPCA in the event of a severe energy supply disruption. (SM)

  19. Coal liquefaction process

    DOEpatents

    Wright, C.H.

    1986-02-11

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  20. Aqueous coal slurry

    SciTech Connect

    Berggren, M.H.; Smit, F.J.; Swanson, W.W.

    1989-10-30

    A principal object of the invention is the provision of an aqueous coal slurry containing a dispersant, which is of low-cost and which contains very low or no levels of sodium, potassium, sulfur and other contaminants. In connection with the foregoing object, it is an object of the invention to provide an aqueous slurry containing coal and dextrin as a dispersant and to provide a method of preparing an aqueous coal slurry which includes the step of adding an effective amount of dextrin as a dispersant. The invention consists of certain novel features and a combination of parts hereinafter fully described, and particularly pointed out in the appended claims. 6 tabs.

  1. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  2. Coal liquefaction process

    DOEpatents

    Wright, Charles H.

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  3. Chapter 4 - Coal

    Gasoline and Diesel Fuel Update

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 4 Coal Overview In the International Energy Outlook 2016 (IEO2016) Reference case, coal remains the second-largest energy source worldwide- behind petroleum and other liquids-until 2030. From 2030 through 2040, it is the third-largest energy source, behind both liquid fuels and natural gas. World coal consumption increases from 2012 to 2040 at an average rate of 0.6%/year, from 153 quadrillion Btu in 2012 to 169

  4. The relativity ability to tax coal in the western states

    SciTech Connect

    Fain, J.R.; Gade, M.N.

    1995-07-01

    Over the past decade, state governments have begun to acknowledge an implicit relationship between states in the tax-setting process. The recent taxation literature suggests that differences in tax burdens do affect economic decisions and that states do compete with each other when designing tax policy. Moreover, there has been a growing interest in the theoretical models of strategic interactions between regions as they compete for tax revenues. Natural source-laden states enjoy an advantage in the collection of own-source revenues. Reserves of coal, oil, copper, or other natural resources with a national market provide states with an opportunity to exploit their advantage through the imposition of severance taxes. The purpose of this study is to examine the relationship between the western states in their relative power to tax the extraction of coal. In section II of this paper we examine earlier work on the taxation of western coal. Section III contains the details of the coal model we use. In section IV we determine the composition of the western coal market and the strategic tax-setting behavior of the state governments involved. In section V we discuss our empirical results. 17 refs., 2 tabs.

  5. DOE - Fossil Energy: Coal Mining and Transportation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mining Fossil Energy Study Guides Coal Mining and Transportation Coal Miners - One type of mining, called "longwall mining", uses a rotating blade to shear coal away from the ...

  6. Coal Gasification and Transportation Fuels Magazine

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 3 (April 2016) Archived Editions: Coal ...

  7. Table 13. Coal Production, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ... (Washington, DC, September 25, 2014), Table 6.1, Coal Production and Waste Coal Supplied

  8. Puda Coal Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Puda Coal Inc Jump to: navigation, search Name: Puda Coal, Inc Place: Taiyuan, Shaanxi Province, China Product: Specializes in coal preparation by applying a water jig washing...

  9. Influence of physiography and vegetation on small mammals at the Naval Petroleum Reserves, California

    SciTech Connect

    Cypher, B.L.

    1995-02-13

    Influence of physiography and vegetation on small mammal abundance and species Composition was investigated at Naval Petroleum Reserve No. 1 in California to assess prey abundance for Federally endangered San Joaquin kit foxes (Vulpes macrotis mutica) and to assess the distribution of two Federal candidate species, San Joaquin antelope squirrels (Ammospermophilus nelsoni) and short-nosed kangaroo rats (Dinodomys nitratoides brevinasus). The specific objectives of this investigation were to determine whether small mammal abundance and community composition varied with north-south orientation, terrain, ground cover, and Cypher shrub density, and whether these factors influenced the distribution and abundance of San Joaquin antelope squirrels and short-nosed kangaroo rats.

  10. Restoration of abandoned mine lands through cooperative coal resource evaluations

    SciTech Connect

    Hoskins, D.M.; Smith, M.

    1996-12-31

    The public reclamation cost of reclaiming all of Pennsylvania`s abandoned mine lands is estimated at $15 billion. Drainage from abandoned mines poses another $5 billion water pollution clean-up problem. Although it is unlikely that public reclamation alone could ever tackle these problems, much can be done to alleviate the nuisances through the remining of previously mined areas to recover remaining reserves, restore the land and improve water quality in the same process. Remining of priority areas is encouraged through a new Pennsylvania policy which provides incentives to mining companies. One incentive, initiated under Pennsylvania`s comprehensive mine reclamation strategy, is to identify and geologically map reminable coal resources in selected watersheds, and then to expedite mine permitting in these watersheds. At present, two such priority watersheds, Little Toby Creek in Elk County and Tangascootak Creek in Clinton County, are the focus of geologic map compilation based on recent quadrangle mapping, or new, directed, geologic mapping, including new research core drilling to establish the geologic stratigraphic framework. In order to maximize environmental benefits the comprehensive mine reclamation strategy identifies watersheds which are affected by acid mine drainage (AMD), but that are reasonably capable of restoration, if sufficient coal reserves remain. Pennsylvania`s geochemical quality database of rock overburden, in combination with detailed coal resource mapping by the Pennsylvania Geological Survey, and the cooperation of coal companies and leaseholders, is being used by the Department of Environmental Protection (DEP) to identify and design remining projects which will not only allow the recovery of coal resources, but will also improve the water quality through a variety of innovative mining techniques.

  11. Alaska coal gasification feasibility studies - Healy coal-to-liquids plant

    SciTech Connect

    Lawrence Van Bibber; Charles Thomas; Robert Chaney

    2007-07-15

    The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

  12. Coal markets squeeze producers

    SciTech Connect

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  13. COAL & POWER SYSTEMS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The low- Btu combustion work supports ex- panding the fuel flexibility of gas turbines by developing the capabil- ity to operate on gases derived from gasification of coal, biomass...

  14. Delineating coal market regions

    SciTech Connect

    Solomon, B.D.; Pyrdol, J.J.

    1986-04-01

    This study addresses the delineation of US coal market regions and their evolution since the 1973 Arab oil embargo. Dichotomizing into compliance (low sulfur) and high sulfur coal deliveries, market regions are generated for 1973, 1977, and 1983. Focus is restricted to steam coal shipments to electric utilities, which currently account for over 80% of the total domestic market. A two-stage method is used. First, cluster analyses are performed on the origin-destination shipments data to generate baseline regions. This is followed by multiple regression analyses on CIF delivered price data for 1983. Sensitivity analysis on the configuration of the regions is also conducted, and some thoughts on the behavior of coal markets conclude the paper. 37 references, 6 figures, 2 tables.

  15. Proximate analysis of coal

    SciTech Connect

    Donahue, C.J.; Rais, E.A.

    2009-02-15

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

  16. Aqueous coal slurry

    DOEpatents

    Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

    1993-01-01

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  17. Aqueous coal slurry

    DOEpatents

    Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

    1993-04-06

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  18. Quarterly coal report

    SciTech Connect

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  19. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  20. Coal liquefaction process

    DOEpatents

    Skinner, Ronald W.; Tao, John C.; Znaimer, Samuel

    1985-01-01

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  1. Method for coal liquefaction

    DOEpatents

    Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

    1994-05-03

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

  2. Coal liquefaction process

    DOEpatents

    Karr, Jr., Clarence

    1977-04-19

    An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

  3. American coal imports 2015

    SciTech Connect

    Frank Kolojeski

    2007-09-15

    As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

  4. Coal Liquefaction desulfurization process

    DOEpatents

    Givens, Edwin N. (Bethlehem, PA)

    1983-01-01

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  5. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  6. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  7. Coal repository. Final report

    SciTech Connect

    Not Available

    1983-11-01

    The Coal Repository Project was initiated in 1980 by the Department of Energy/Pittsburgh Energy Technology Center to provide a centralized system for the collection of well characterized coal samples, and distribution to organizations involved in the chemical beneficiation of coal and related research. TRW Energy Development Group, together with its subcontractor Commercial Testing and Engineering Company, established the Coal Repository at the TRW Capistrano Chemical Facility, which is the location of the DOE-owned Multi-Use Fuel and Energy Processes Test Plant (MEP). Twenty tons each of three coals (Illinois No. 6, Kentucky No. 11 (West), and Pittsburgh No. 8 (from an Ohio mine)) were collected, characterized, and stored under a nitrogen atmosphere. Ten tons of each coal are 3/8-inch x 0, five tons of each are 14-mesh x 0, and five tons of each are 100-mesh x 0. Although TRW was within budget and on schedule, Department of Energy funding priorities in this area were altered such that the project was terminated prior to completion of the original scope of work. 9 figures, 3 tables.

  8. Advanced Coal Wind Hybrid: Economic Analysis

    SciTech Connect

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW

  9. U.S. DOE indirect coal liquefaction program: An overview

    SciTech Connect

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R.; Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  10. Economics of coal fines utilization

    SciTech Connect

    Hathi, V.; McHale, E.; Ramezan, M.; Winslow, J.

    1995-12-31

    In the twentieth century, coal has become the major fuel for electric power generation in the U.S. and most of the nonpetroleum-producing countries of the world. In 1998, the world coal-fired capacity for electric power generation was about 815 GW, consuming large quantities of coals of all ranks. Today, coal provides a third of the world`s energy requirements. In fact, coal use for power generation has grown steadily since the oil embargo in 1973 and has seen an even faster rate of growth in recent years. It has been reported that the global demand for new coal will increase by more than 1500 million tons by the year 2000. However, this increased production of coal has its drawbacks, including the concomitant production of coal waste. Reported estimates indicate that billions of tons of coal waste have already been disposed of in waste impoundments throughout the U.S. Further, in the U.S. today, about 20-25 % of each ton of mined coal is discarded by preparation plants as gob and plant tailings. It appears that the most economical near-term approach to coal waste recovery is to utilize the waste coal fines currently discarded with the refuse stream, rather than attempt to recover coal from waste impoundments that require careful prior evaluation and site preparation. A hypothetical circuit was designed to examine the economics of recovery and utilization of waste coal fines. The circuit recovers products from 100 tons per hour (tph) of coal waste feed recovering 70 tph of fine coal that can be used in coal-fired boilers. The present analysis indicates that the coal waste recovery is feasible and economical. In addition, significant environmental benefits can be expected.

  11. DOE - Fossil Energy: Clean Coal Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2-Clean Coal Technology An Energy Lesson Cleaning Up Coal The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada ...

  12. EIA projections of coal supply and demand

    SciTech Connect

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  13. STEO November 2012 - coal supplies

    Energy Information Administration (EIA) (indexed site)

    Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to

  14. The Oak Ridge Reservation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oak Ridge Reservation 41,1EsEiiS WORKING GROUP July, 1998 This report was written and edited by members of the Stewardship Committee with the assistance of Phoenix Environmental Corporation of Alexandria, Virginia. Additional copies and information can be found on the DOE Oak Ridge Operations site on the world wide web: ornl.gov/doe~oro/em/emhome.html or by calling the Information Resource Center at 423-241-4582 Stakeholder R e ~ o r t on stewards hi^ TABLE OF CONTENTS 1 . 0 INTRODUCTION

  15. Finding Hidden Oil and Gas Reserves

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas...

  16. Booking Geothermal Energy Reserves | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Booking Geothermal Energy Reserves Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Booking Geothermal Energy Reserves Abstract Formal booking...

  17. Electric Transportation Applications All Rights Reserved ETA...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Objectives ... Electric Transportation Applications All Rights Reserved 1.0 Objective The objective of ...

  18. Teanaway Solar Reserve | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Solar Product: Washington State-based privately-held developer of the Teanaway Solar Reserve PV plant project. References: Teanaway Solar Reserve1 This article is a...

  19. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  20. Underground Coal Gasification Program

    Energy Science and Technology Software Center

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large,more » almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.« less

  1. Abundant Renewable Energy ARE | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Abundant Renewable Energy ARE Jump to: navigation, search Name: Abundant Renewable Energy (ARE) Place: Newberg, Oregon Zip: 97132 Sector: Solar, Wind energy Product: Oregon-based...

  2. Operating Reserves and Variable Generation

    SciTech Connect

    Ela, E.; Milligan, M.; Kirby, B.

    2011-08-01

    This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

  3. Weekly Coal Production by State

    Gasoline and Diesel Fuel Update

    ... Electricity Hydropower Biofuels: Ethanol & Biodiesel Wind Geothermal ... and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & ...

  4. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  5. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  6. Coal combustion system

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  7. Coal production, 1991

    SciTech Connect

    Not Available

    1992-10-01

    Coal production in the United States in 1991 declined to a total of 996 million short tons, ending the 6-year upward trend in coal production that began in 1985. The 1991 figure is 33 million short tons below the record level of 1.029 billion short tons produced in 1990 (Table 1). Tables 2 through 33 in this report include data from mining operations that produced, prepared, and processed 10,000 or more short tons during the year. These mines yielded 993 million short tons, or 99.7 percent of the total coal production in 1991, and their summary statistics are discussed below. The majority of US coal (587 million short tons) was produced by surface mining (Table 2). Over half of all US surface mine production occurred in the Western Region, though the 60 surface mines in this area accounted for only 5 percent of the total US surface mines. The high share of production was due to the very large surface mines in Wyoming, Texas and Montana. Nearly three quarters of underground production was in the Appalachian Region, which accounted for 92 percent of underground mines. Continuous mining methods produced the most coal among those underground operations that responded. Of the 406 million short tons, 59 percent (239 million short tons) was produced by continuous mining methods, followed by longwall (29 percent, or 119 million short tons), and conventional methods (11 percent, or 46 million short tons).

  8. Low-rank coal research

    SciTech Connect

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  9. 2008 Coal Age buyers guide

    SciTech Connect

    2008-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  10. 2009 Coal Age Buyers Guide

    SciTech Connect

    2009-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  11. Sustainable development with clean coal

    SciTech Connect

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  12. NEMS Modeling of Coal Plants

    Energy Information Administration (EIA) (indexed site)

    NEMS Modeling of Coal Plants Office of Electricity, Coal, Nuclear, and Renewable Analysis Laura Martin June 14, 2016 Washington, DC 2 EMM Structure EFD ECP EFP ELD Laura Martin Washington, DC, June 14, 2016 Electricity Load and Demand Submodule Liquid Fuels Market Module Model inputs for coal plants 3 * Existing coal plants - plant specific inputs - Fixed and variable operating and maintenance costs, annual capital additions - Retrofit costs (capital and O&M) - FGD, DSI, SCR, SNCR, CCS, FF -

  13. Pyrolysis of coal

    DOEpatents

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  14. Hydroliquefaction of coal

    DOEpatents

    Sze, Morgan C.; Schindler, Harvey D.

    1982-01-01

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  15. Healy Clean Coal Project

    SciTech Connect

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  16. Coal Market Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

  17. Underground coal gasification. Presentations

    SciTech Connect

    2007-07-01

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  18. Clean Coal Power Initiative

    SciTech Connect

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  19. PNNL Coal Gasification Research

    SciTech Connect

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  20. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  1. Process for coal liquefaction employing selective coal feed

    DOEpatents

    Hoover, David S.; Givens, Edwin N.

    1983-01-01

    An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

  2. Loan Loss Reserve Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Loan Loss Reserve Agreement Loan Loss Reserve Agreement Loan Loss Reserve Agreement, from the Tool Kit Framework: Small Town University Energy Program (STEP). B2 Loan Loss Reserve Agreement.pdf (59.68 KB) More Documents & Publications Energy Efficiency Loan Program Agreement Template Energy Efficiency Loan Program Agreement-Template Energy Efficiency Loan Program Agreement Template

  3. California Shale Gas Proved Reserves, Reserves Changes, and Production

    Energy Information Administration (EIA) (indexed site)

    2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 855 777 756 44 2011-2014 Adjustments 1 1 -1 -710 2011-2014 Revision Increases 912 258 68 3 2011-2014 Revision ...

  4. Virginia Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    2012 2013 2014 View History Proved Reserves as of Dec. 31 135 126 84 2012-2014 Adjustments -1 3 14 2012-2014 Revision Increases 0 3 0 2012-2014 Revision Decreases 0 12 76 ...

  5. LA, South Onshore Shale Gas Proved Reserves, Reserves Changes...

    Energy Information Administration (EIA) (indexed site)

    2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 0 0 10 181 2011-2014 Adjustments 0 2 91 2012-2014 Revision Increases 0 0 22 2012-2014 Revision Decreases 0 0 6 ...

  6. CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update

    2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 855 777 756 15 2011-2014 Adjustments 1 1 -1 -740 2011-2014 Revision Increases 912 258 68 1 2011-2014 Revision ...

  7. Alabama Shale Gas Proved Reserves, Reserves Changes, and Production

    Energy Information Administration (EIA) (indexed site)

    2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 1 2 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 2 0 2009-2010 Sales ...

  8. Mississippi Shale Gas Proved Reserves, Reserves Changes, and...

    Gasoline and Diesel Fuel Update

    2012 2013 2014 View History Proved Reserves as of Dec. 31 19 37 19 2012-2014 Adjustments 21 23 -26 2012-2014 Revision Increases 0 0 4 2012-2014 Revision Decreases 0 0 3 2012-2014 ...

  9. Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production

    Annual Energy Outlook

    5 2006 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 1 1 1 0 0 2005-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 1 0...

  10. Pennsylvania Lease Condensate Proved Reserves, Reserve Changes, and

    Energy Information Administration (EIA) (indexed site)

    Production 1980 1981 1982 1983 1984 1985 View History Proved Reserves as of Dec. 31 0 0 0 2 2 2 1979-1985 Estimated Production 0 0 0 0 0 0 1979-1985

  11. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales...

  12. LA, South Onshore Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    2011 2012 2013 View History Proved Reserves as of Dec. 31 0 0 10 2011-2013 Adjustments 0 2 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0...

  13. CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update

    2011 2012 2013 View History Proved Reserves as of Dec. 31 855 777 756 2011-2013 Adjustments 1 1 -1 2011-2013 Revision Increases 912 258 68 2011-2013 Revision Decreases 0 248 0...

  14. Virginia Shale Gas Proved Reserves, Reserves Changes, and Production

    Energy Information Administration (EIA) (indexed site)

    2012 2013 View History Proved Reserves as of Dec. 31 135 126 2012-2013 Adjustments -1 3 2012-2013 Revision Increases 0 3 2012-2013 Revision Decreases 0 12 2012-2013 Sales 0 0...

  15. Mississippi Shale Gas Proved Reserves, Reserves Changes, and...

    Energy Information Administration (EIA) (indexed site)

    2012 2013 View History Proved Reserves as of Dec. 31 19 37 2012-2013 Adjustments 21 23 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0...

  16. Alabama Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 1 2 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 2 0 2009-2010 Sales...

  17. California Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    2011 2012 2013 View History Proved Reserves as of Dec. 31 855 777 756 2011-2013 Adjustments 1 1 -1 2011-2013 Revision Increases 912 258 68 2011-2013 Revision Decreases 0 248 0...

  18. Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production

    Energy Information Administration (EIA) (indexed site)

    5 2006 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 1 1 1 0 0 2005-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 1 0 ...

  19. Pretreatment of coal during transport

    DOEpatents

    Johnson, Glenn E.; Neilson, Harry B.; Forney, Albert J.; Haynes, William P.

    1977-04-19

    Many available coals are "caking coals" which possess the undesirable characteristic of fusing into a solid mass when heated through their plastic temperature range (about 400.degree. C.) which temperature range is involved in many common treatment processes such as gasification, hydrogenation, carbonization and the like. Unless the caking properties are first destroyed, the coal cannot be satisfactorily used in such processes. A process is disclosed herein for decaking finely divided coal during its transport to the treating zone by propelling the coal entrained in an oyxgen-containing gas through a heated transport pipe whereby the separate transport and decaking steps of the prior art are combined into a single step.

  20. Annual Coal Distribution Report - Energy Information Administration

    Gasoline and Diesel Fuel Update

    current Coal Distribution Report Annual Coal Distribution Report Release Date: April 8, 2016 | Next Release Date: December 2016 | full report Archive Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin Foreign distribution of

  1. National Coal Quality Inventory (NACQI)

    SciTech Connect

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  2. Lignin-assisted coal depolymerization

    SciTech Connect

    Lalvani, S.B.

    1991-01-01

    Previous research has shown that addition of lignin-derived liquids to coal stirred in tetralin under mild reaction conditions (375{degree}C and 300--500 psig) results in a marked enhancement in the rate of coal depolymerization. A mathematical model was developed to study the kinetics of coal depolymerization in the presence of liquid-derived liquids. In the present study, a reaction pathway was formulated to explain the enhancement in coal depolymerization due to lignin (solid) addition. The model postulated assumes that the products of lignin obtained during thermolysis interact with the reactive moieties present in coal while simultaneous depolymerization of coal occurs. A good fit between the experimental data and the kinetic model was found. The results show that in addition to the enhancement in the rate of coal depolymerization, lignin also reacts (and enhances the extent of depolymerization of coal) with those reaction sites in coal that are not susceptible to depolymerization when coal alone is reacted in tetralin under identical reaction conditions. Additional work is being carried out to determine a thorough materials balance on the lignin-assisted coal depolymerization process. A number of liquid samples have been obtained which are being studied for their stability in various environments. 5 refs., 4 figs., 1 tab.

  3. Coal combustion research

    SciTech Connect

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  4. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  5. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal. The IBM PC version contains two auxiliary programs, DATAPREP and FORLIST. DATAPREP is an interactive preprocessor for creating and editing COALPREP input data. FORLIST converts carriage-control characters in FORTRAN output data to ASCII line-feed (X''0A'') characters.« less

  6. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal.« less

  7. Coal liquefaction process

    DOEpatents

    Maa, Peter S.

    1978-01-01

    A process for liquefying a particulate coal feed to produce useful petroleum-like liquid products which comprises contacting; in a series of two or more coal liquefaction zones, or stages, graded with respect to temperature, an admixture of a polar compound; or compounds, a hydrogen donor solvent and particulate coal, the total effluent being passed in each instance from a low temperature zone, or stage to the next succeeding higher temperature zone, or stage, of the series. The temperature within the initial zone, or stage, of the series is maintained about 70.degree. F and 750.degree. F and the temperature within the final zone, or stage, is maintained between about 750.degree. F and 950.degree. F. The residence time within the first zone, or stage, ranges, generally, from about 20 to about 150 minutes and residence time within each of the remaining zones, or stages, of the series ranges, generally, from about 10 minutes to about 70 minutes. Further steps of the process include: separating the product from the liquefaction zone into fractions inclusive of a liquid solvent fraction; hydrotreating said liquid solvent fraction in a hydrogenation zone; and recycling the hydrogenated liquid solvent mixture to said coal liquefaction zones.

  8. Annual Coal Distribution Tables

    Energy Information Administration (EIA) (indexed site)

    and Foreign Distribution of U.S. Coal by State of Origin, 2001 State Region Domestic Foreign Total Alabama 14,828 4,508 19,336 Alaska 825 698 1,524 Arizona 13,143 - 13,143...

  9. Kinetics of coal pyrolysis

    SciTech Connect

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. ); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. ); Jenkins, R.; Mallin, J.; Espindola-Merin, B. ); Essenhigh, R.; Misra, M.K. )

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  10. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  11. Catalytic coal hydroliquefaction process

    DOEpatents

    Garg, Diwakar (Macungie, PA)

    1984-01-01

    A process is described for the liquefaction of coal in a hydrogen donor solvent in the presence of hydrogen and a co-catalyst combination of iron and a Group VI or Group VIII non-ferrous metal or compounds of the catalysts.

  12. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  13. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  14. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  15. Coal-oil slurry preparation

    DOEpatents

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  16. FE Petroleum Reserves News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Reserves News FE Petroleum Reserves News RSS September 7, 2016 DOE Announces Release of Long-Term Strategic Review of Strategic Petroleum Reserve The Department of Energy announced today the release of the Long-Term Strategic Review of the Strategic Petroleum Reserve (SPR). The congressionally-mandated study provides an overview of the SPR and addresses key challenges that will impact the Reserve's ability to carry out its energy security mission. April 9, 2015 Contracts Awarded to

  17. Filling the Strategic Petroleum Reserve

    Energy.gov [DOE]

    Established in 1975 in the aftermath of the OPEC oil embargo, the Strategic Petroleum Reserve was originally intended to hold at least 750 million barrels of crude oil as an insurance policy...

  18. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  19. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  20. The changing structure of the US coal industry: An update, July 1993

    SciTech Connect

    Not Available

    1993-07-29

    Section 205(a)(2) of the Department of Energy Organization Act of 1977 requires the Administrator of the Energy Information Administration (EIA) to carry out a central, comprehensive, and unified energy data and information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. The purpose of this report is to provide a comprehensive overview of changes in the structure of the US coal industry between 1976 and 1991. The structural elements examined include the number of mines, average mine size, the size distribution of mines, and the size distribution of coal firms. The report measures changes in the market shares of the largest coal producers at the national level and in various regions. The Central Appalachian low-sulfur coal market is given special attention, and the market for coal reserves is examined. A history of mergers in the coal industry is presented, and changes in the proportions of US coal output that are produced by various types of companies, including foreign-controlled firms, are described. Finally, the impact of post-1991 mergers on the structure of the industry is estimated. The legislation that created the EIA vested the organization with an element of statutory independence. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high-quality information and to perform objective, credible analyses in support of deliberations by both public and private decisionmakers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  1. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Saver

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  2. Florida Dry Natural Gas Reserves Revision Decreases (Billion...

    Annual Energy Outlook

    Decreases (Billion Cubic Feet) Florida Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases Florida Dry Natural Gas Proved Reserves Dry ...

  3. Florida Natural Gas Liquids Lease Condensate, Proved Reserves...

    Annual Energy Outlook

    Liquids Lease Condensate, Proved Reserves (Million Barrels) Florida Natural Gas Liquids ... Lease Condensate Proved Reserves as of Dec. 31 Florida Lease Condensate Proved Reserves, ...

  4. Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Florida Coalbed Methane Proved Reserves, Reserves Changes, and ...

  5. Florida Dry Natural Gas Reserves Revision Increases (Billion...

    Annual Energy Outlook

    Increases (Billion Cubic Feet) Florida Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases Florida Dry Natural Gas Proved Reserves Dry ...

  6. Florida Crude Oil Reserves in Nonproducing Reservoirs (Million...

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Florida Crude Oil Reserves in ... Referring Pages: Proved Nonproducing Reserves of Crude Oil Florida Proved Nonproducing

  7. Florida Dry Natural Gas Reserves Estimated Production (Billion...

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production Florida Dry Natural Gas Proved Reserves Dry ...

  8. Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Sales (Billion Cubic Feet) Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet) ... Referring Pages: Dry Natural Gas Reserves Sales Florida Dry Natural Gas Proved Reserves ...

  9. West Virginia Dry Natural Gas Reserves Extensions (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Extensions (Billion ... Dry Natural Gas Reserves Extensions West Virginia Dry Natural Gas Proved Reserves Dry ...

  10. West Virginia Dry Natural Gas Reserves Adjustments (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Adjustments ... Dry Natural Gas Reserves Adjustments West Virginia Dry Natural Gas Proved Reserves Dry ...

  11. Virginia Dry Natural Gas Reserves New Field Discoveries (Billion...

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) Virginia Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves Virginia Dry Natural Gas Proved Reserves ...

  12. Virginia Dry Natural Gas Reserves Revision Increases (Billion...

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases Virginia Dry Natural Gas Proved Reserves Dry ...

  13. Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) ... Referring Pages: Dry Natural Gas Reserves Sales Virginia Dry Natural Gas Proved Reserves ...

  14. Virginia Dry Natural Gas Reserves Estimated Production (Billion...

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production Virginia Dry Natural Gas Proved Reserves Dry ...

  15. Virginia Dry Natural Gas Reserves Revision Decreases (Billion...

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases Virginia Dry Natural Gas Proved Reserves Dry ...

  16. West Virginia Dry Natural Gas Reserves Revision Increases (Billion...

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases West Virginia Dry Natural Gas Proved Reserves ...

  17. Petroleum Reserves Vision, Mission and Goals | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Reserves Vision, Mission and Goals Petroleum Reserves Vision, Mission and Goals The mission of the Office of Petroleum Reserves is to protect the United States from...

  18. Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic...

    Gasoline and Diesel Fuel Update

    company data. Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alaska Shale Gas Proved Reserves, Reserves...

  19. Kansas Dry Natural Gas Reserves New Field Discoveries (Billion...

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) Kansas Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves Kansas Dry Natural Gas Proved Reserves ...

  20. Kansas Dry Natural Gas Reserves Revision Increases (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Revision Increases (Billion ... Dry Natural Gas Reserves Revision Increases Kansas Dry Natural Gas Proved Reserves Dry ...

  1. Kansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Revision Decreases (Billion ... Dry Natural Gas Reserves Revision Decreases Kansas Dry Natural Gas Proved Reserves Dry ...

  2. Kansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Sales (Billion Cubic Feet) ... Referring Pages: Dry Natural Gas Reserves Sales Kansas Dry Natural Gas Proved Reserves Dry ...

  3. New York Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update

    Estimated Production (Billion Cubic Feet) New York Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New York Dry Natural Gas Proved Reserves Dry ...

  4. New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million...

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico Crude Oil Reserves in ... Referring Pages: Proved Nonproducing Reserves of Crude Oil New Mexico Proved Nonproducing

  5. New York Natural Gas Liquids Lease Condensate, Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    New York Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade ... Lease Condensate Proved Reserves as of Dec. 31 New York Lease Condensate Proved Reserves, ...

  6. New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update

    Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves ...

  7. New York Dry Natural Gas Reserves Revision Decreases (Billion...

    Annual Energy Outlook

    Decreases (Billion Cubic Feet) New York Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases New York Dry Natural Gas Proved Reserves Dry ...

  8. New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook

    Sales (Billion Cubic Feet) New York Dry Natural Gas Reserves Sales (Billion Cubic Feet) ... Referring Pages: Dry Natural Gas Reserves Sales New York Dry Natural Gas Proved Reserves ...

  9. New Mexico Dry Natural Gas Reserves Revision Increases (Billion...

    Annual Energy Outlook

    Increases (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases New Mexico Dry Natural Gas Proved Reserves Dry ...

  10. New Mexico Natural Gas Plant Liquids, Proved Reserves (Million...

    Gasoline and Diesel Fuel Update

    Proved Reserves (Million Barrels) New Mexico Natural Gas Plant Liquids, Proved Reserves ... Natural Gas Liquids Proved Reserves as of Dec. 31 New Mexico Natural Gas Liquids Proved ...

  11. New York Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 New York Coalbed Methane Proved Reserves, Reserves Changes, ...

  12. New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update

    Sales (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet) ... Referring Pages: Dry Natural Gas Reserves Sales New Mexico Dry Natural Gas Proved Reserves ...

  13. New York Dry Natural Gas Reserves Revision Increases (Billion...

    Gasoline and Diesel Fuel Update

    Increases (Billion Cubic Feet) New York Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases New York Dry Natural Gas Proved Reserves Dry ...

  14. New Mexico Dry Natural Gas Reserves Revision Decreases (Billion...

    Annual Energy Outlook

    Decreases (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases New Mexico Dry Natural Gas Proved Reserves Dry ...

  15. North Dakota Dry Natural Gas Reserves Estimated Production (Billion...

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production North Dakota Dry Natural Gas Proved Reserves ...

  16. North Dakota Dry Natural Gas Reserves Revision Increases (Billion...

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases North Dakota Dry Natural Gas Proved Reserves ...

  17. North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million...

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) North Dakota Crude Oil Reserves in ... Referring Pages: Proved Nonproducing Reserves of Crude Oil North Dakota Proved ...

  18. North Dakota Dry Natural Gas Reserves Revision Decreases (Billion...

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases North Dakota Dry Natural Gas Proved Reserves ...

  19. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM Historical Northeast Home Heating Oil Reserve Trigger Mechanism Charts ...

  20. Northeast Home Heating Oil Reserve (NEHHOR) | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Northeast Home Heating Oil Reserve (NEHHOR) Northeast Home Heating Oil Reserve (NEHHOR) The Northeast Home Heating Oil Reserve (NEHHOR) is a one million barrel supply of ultra low ...

  1. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) ...

  2. Releases from the Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Releases from the Heating Oil Reserve Releases from the Heating Oil Reserve The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur ...

  3. Moist caustic leaching of coal

    DOEpatents

    Nowak, Michael A.

    1994-01-01

    A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

  4. Summary of coal export project

    SciTech Connect

    Not Available

    1987-01-01

    Through the international coal project and related activities, SSEB has called attention to the problems and potential of the US coal industry. The program has provided an excellent format for frank discussions on the problems facing US coal exports. Every effort must be made to promote coal and its role in the southern economy. Coal is enjoying its best years in the domestic market. While the export market is holding its own, there is increased competition in the world market from Australia, Columbia, China and, to a lesser extent, Russia. This is coming at a time when the US has enacted legislation and plans are underway to deepen ports. In addition there is concern that increased US coal and electricity imports are having a negative impact on coal production. These limiting factors suggest the US will remain the swing supplier of coal on the world market in the near future. This presents a challenge to the US coal and related industry to maintain the present market and seek new markets as well as devote research to new ways to use coal more cleanly and efficiently.

  5. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  6. ,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production...

    Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6302007" ...

  7. ,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production...

    Energy Information Administration (EIA) (indexed site)

    Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. Process for changing caking coals to noncaking coals

    DOEpatents

    Beeson, Justin L. (Woodridge, IL)

    1980-01-01

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  9. Coal Research FAQs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data Browser - Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade,

  10. Flotation and flocculation chemistry of coal and oxidized coals

    SciTech Connect

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  11. Assessment of underground coal gasification in bituminous coals: catalog of bituminous coals and site selection. Appendix A. National coal resource data system: Ecoal, Wcoal, and Bmalyt. Final report, Phase I. [Bituminous coal; by state; coal seam depth and thickness; identification

    SciTech Connect

    1982-01-31

    Appendix A is a catalog of the bituminous coal in 29 states of the contiguous United States which contain identified bituminous coal resources.

  12. Coal-Producing Region

    Energy Information Administration (EIA) (indexed site)

    . Coal Production by State (thousand short tons) Year to Date Coal-Producing Region and State April - June 2016 January - March 2016 April - June 2015 2016 2015 Percent Change Alabama 2,223 2,446 3,504 4,669 7,561 -38.2 Alaska 228 310 345 538 610 -11.9 Arizona 1,235 1,335 1,912 2,569 3,667 -29.9 Arkansas 15 11 27 27 48 -44.9 Colorado 3,081 2,482 5,078 5,564 10,341 -46.2 Illinois 11,125 11,312 13,391 22,437 30,221 -25.8 Indiana 6,963 7,224 8,577 14,187 18,040 -21.4 Kansas - 27 49 27 102 -73.9

  13. Coal mine subsidence

    SciTech Connect

    Rahall, N.J.

    1991-05-01

    This paper examines the efficacy of the Department of the Interior's Office of Surface Mining Reclamation and Enforcement's (OSMRE) efforts to implement the federally assisted coal mine subsidence insurance program. Coal mine subsidence, a gradual settling of the earth's surface above an underground mine, can damage nearby land and property. To help protect property owners from subsidence-related damage, the Congress passed legislation in 1984 authorizing OSMRE to make grants of up to $3 million to each state to help the states establish self-sustaining, state-administered insurance programs. Of the 21 eligible states, six Colorado, Indiana, Kentucky, Ohio, West Virginia, and Wyoming applied for grants. This paper reviews the efforts of these six states to develop self-sustaining insurance programs and assessed OSMRE's oversight of those efforts.

  14. Coal Bed Methane Primer

    SciTech Connect

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  15. Exploration for deep coal

    SciTech Connect

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  16. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  17. COAL & POWER SYSTEMS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM

  18. Environmental development plan: coal liquefaction

    SciTech Connect

    Not Available

    1980-08-01

    This Environmental Development plan (EDP) examines environmental concerns that are being evaluated for the technologies in DOE's Coal Liquefaction Program. It identifies the actions that are planned or underway to resolve these concerns while the technologies are being developed. Research is scheduled on the evaluation and mitigation of potential environmental impacts. This EDP updates the FY 1977 Coal Liquefaction Program EDP. Chapter II describes the DOE Coal Liquefaction Program and focuses on the Solvent Refined Coal (SRC), H-Coal, and Exxon donor solvent (EDS) processes because of their relatively advanced R and D stages. The major unresolved environmental concerns associated with the coal liquefaction subactivities and projects are summarized. The concerns were identified in the 1977 EDP's and research was scheduled to lead to the resolution of the concerns. Much of this research is currently underway. The status of ongoing and planned research is shown in Table 4-1.

  19. Iron catalyzed coal liquefaction process

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  20. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect

    MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

    1998-09-30

    The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

  1. Pulmonary retention of coal dusts

    SciTech Connect

    Morrow, P.E.; Gibb, F.R.; Beiter, H.; Amato, F.; Yuile, C.; Kilpper, R.W.

    1980-01-01

    The principal objectives of this study were: to determine, quantitatively, coal dust retention times in the dog lung; to test the appropriateness of a pulmonary retention model which incorporates first order rate coefficients obtained from in vitro and in vivo experiments on neutron-activated coal; to acquire a temporal description of the pulmonary disposition of the retained coal dust, and to compare the behavior of two different Pennsylvania coals in the foregoing regards. The principal findings include: retention half-times for both coals of approximately 2 years following single, hour-long exposures; a vivid association of the retained coal dust with the pulmonic lymphatics; and a general validation of the retention model.

  2. Zero emission coal

    SciTech Connect

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  3. Volatile coal prices reflect supply, demand uncertainties

    SciTech Connect

    Ryan, M.

    2004-12-15

    Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

  4. Clean Coal Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of harmful pollutants from coal, including mercury, sulfur and coal tars. References: Clean Coal Technologies1 This article is a stub. You can help OpenEI by expanding it....

  5. U.S. Coal Supply and Demand

    Gasoline and Diesel Fuel Update

    U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous Editions 2009 ...

  6. Carbon Dioxide Emission Factors for Coal

    Reports and Publications

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  7. Hydrotreating of coal-derived liquids

    SciTech Connect

    Lott, S.E.; Stohl, F.V.; Diegert, K.V.

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  8. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  9. Spinning Reserve From Responsive Loads

    SciTech Connect

    Kirby, B.J.

    2003-04-08

    Responsive load is the most underutilized reliability resource available to the power system today. It is currently not used at all to provide spinning reserve. Historically there were good reasons for this, but recent technological advances in communications and controls have provided new capabilities and eliminated many of the old obstacles. North American Electric Reliability Council (NERC), Federal Energy Regulatory Commission (FERC), Northeast Power Coordinating Council (NPCC), New York State Reliability Council (NYSRC), and New York Independent System Operator (NYISO) rules are beginning to recognize these changes and are starting to encourage responsive load provision of reliability services. The Carrier ComfortChoice responsive thermostats provide an example of these technological advances. This is a technology aimed at reducing summer peak demand through central control of residential and small commercial air-conditioning loads. It is being utilized by Long Island Power Authority (LIPA), Consolidated Edison (ConEd), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The technology is capable of delivering even greater response in the faster spinning reserve time frame (while still providing peak reduction). Analysis of demand reduction testing results from LIPA during the summer of 2002 provides evidence to back up this claim. It also demonstrates that loads are different from generators and that the conventional wisdom, which advocates for starting with large loads as better ancillary service providers, is flawed. The tempting approach of incrementally adapting ancillary service requirements, which were established when generators were the only available resources, will not work. While it is easier for most generators to provide replacement power and non-spinning reserve (the slower response services) than it is to supply spinning reserve (the fastest service), the opposite is true for many loads. Also, there is more financial

  10. Improvements in Measuring Sorption-Induced Strain and Permeability in Coal

    SciTech Connect

    Eric P. Robertson

    2008-10-01

    Total worldwide CBM in-place reserves estimates are between 3500 Tcf and 9500 Tcf. Unminable coal beds have been recommended as good CO2 sequestration sites as the world prepares to sequester large amounts of greenhouse gases. In the U.S., these coal seams have the capacity to adsorb and sequester roughly 50 years of CO2 emissions from all the U.S. coal-fired power plants at todays output rates. The amount and type of gas ad-sorbed in coal has a strong impact on the permeability of the coal seam. An improved mixed gas adsorption iso-therm model based on the extended-Langmuir theory is discussed and is applied to mixed gas sorption-induced strain based on pure gas strain data and a parameter accounting for gas-gas interactions that is independent of the coal substrate. Advantages and disadvantages of using freestanding versus constrained samples for sorption-induced strain measurements are also discussed. A permeability equation used to model laboratory was found to be very accurate when sorption-induced strain was small, but less accurate with higher strain gases.

  11. Potential for Coal-to-Liquids Conversion in the United States-Fischer-Tropsch Synthesis

    SciTech Connect

    Patzek, Tad W. Croft, Gregory D.

    2009-09-15

    The United States has the world's largest coal reserves and Montana the highest potential for mega-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create a major source of domestic transportation fuels from coal, and some prominent Montanans want to be at the center of that effort. We calculate that the energy efficiency of the best existing Fischer-Tropsch (FT) process applied to average coal in Montana is less than 1/2 of the corresponding efficiency of an average crude oil refining process. The resulting CO{sub 2} emissions are 20 times (2000%) higher for CTL than for conventional petroleum products. One barrel of the FT fuel requires roughly 800 kg of coal and 800 kg of water. The minimum energy cost of subsurface CO{sub 2} sequestration would be at least 40% of the FT fuel energy, essentially halving energy efficiency of the process. We argue therefore that CTL conversion is not the most valuable use for the coal, nor will it ever be, as long as it is economical to use natural gas for electric power generation. This finding results from the low efficiency inherent in FT synthesis, and is independent of the monumental FT plant construction costs, mine construction costs, acute lack of water, and the associated environmental impacts for Montana.

  12. Process for electrochemically gasifying coal

    DOEpatents

    Botts, T.E.; Powell, J.R.

    1985-10-25

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  13. On-Site Coal Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Coal Research Advanced Energy Systems Advanced Energy Systems research conceives, analyzes, and develops energy technologies that can minimize the environmental impact of fossil ...

  14. Microsoft Word - SEC J_Appendix H - RESERVED

    National Nuclear Security Administration (NNSA)

    H, Page 1 SECTION J APPENDIX H RESERVED

  15. Microsoft Word - SEC J_Appendix R - RESERVED

    National Nuclear Security Administration (NNSA)

    R, Page 1 SECTION J APPENDIX R RESERVED

  16. Extractive reserves in Brazilian Amazonia

    SciTech Connect

    Fearnside, P.M )

    1989-06-01

    In 1985 an opportunity arose for maintaining tracts of Amazonian forest under sustainable use. Brazil's National Council of Rubber Tappers and the Rural Worker's Union proposed the creation of a set of reserves of a new type, called extractive reserves. The first six are being established in one of the Brazilian states most threatened by deforestatation. The creation of extractive reserves grants legal protection to forest land traditionally used by rubber tappers, Brazil-nut gatherers, and other extractivists. The term extrativismo (extractivism) in Brazil refers to removing nontimber forest products, such as latex, resins, and nuts, without felling the trees. Approximately 30 products are collected for commercial sale. Many more types of forest materials are gathered, for example as food and medicines, for the extractivists' own use. The reserve proposal is attractive for several reasons related to social problems. It allows the rubber tappers to continue their livelihood rather than be expelled by deforestation. However, it is unlikely that sufficient land will be set aside as extractive reserves to employ all the tappers. Displaced rubber tappers already swell the ranks of urban slum dwellers in Brazil's Amazonian cities, and they have become refugees to continue their profession in the forests of neighboring countries, such as Bolivia.

  17. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.-H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Venkatadri, R.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Perez, L.

    1990-01-01

    The progress achieved in leading to effective surface control for selective agglomeration processes was summarized. Several analytical techniques developed in Task 3 were utilized during this quarter to characterize coal samples obtained from agglomeration tests. Surface and near surface (1 {mu}m depth) functional groups were analyzed using Diffuse Reflectance Infrared Fourier Transform spectroscopy. Surface composition analyses were conducted using Laser Microprobe Mass Analyzer. The results of these analysis are being used to relate the agglomeration results with surface modifications to the properties of coal samples. The development of a method a for direct determination of pyrite using X-ray diffraction was continued. The sample preparation technique was improved in order to increase the reproducibility of the analysis. The contact angle of n-heptane droplets on coal pellets immersed in water were measured. The results of these measurements suggest that high shear mixing is necessary for wetting coal surfaces with n-heptane. Agglomeration tests using n-heptane as agglomerant were carried out this quarter. For Pittsburgh {number sign}8 coal, better performance was obtained using n-heptane than using n-pentane. For Upper Freeport coal, however, lower pyritic sulfur rejection was obtained with n-heptane. A n-heptane to coal ratio between 1.25 and 1.5 was found to produce the best performance results for Illinois {number sign}6 coal. A study of the effect of agglomeration time on the agglomeration process performance for Illinois {number sign}6 coal using n-pentane and n-heptane as agglomerants indicates that no significant gains in performance are possible using agglomeration times longer than 60 seconds. The addition of tall oil as a binding agent after the high shear agglomeration step resulted in a large increase in overall coal yield and energy recovery for Illinois {number sign}6 coal. 27 figs., 13 tabs.

  18. Quarterly Coal Distribution Report - Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    Quarterly Coal Distribution Report Release Date: August 17, 2016 | Next Release Date: December 22, 2016 | full report The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. All quarterly data are preliminary and will be superseded by the release of the corresponding "Annual Coal Distribution Report." Highlights for the fourth quarter 2015: Total

  19. Hydrogen Production: Coal Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coal Gasification Hydrogen Production: Coal Gasification The U.S. Department of Energy (DOE) Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically through the process of coal gasification with carbon capture, utilization, and storage. DOE anticipates that coal gasification for hydrogen production with carbon capture, utilization, and storage could be deployed in the mid-term time frame. How Does It Work? Chemically, coal is a complex and highly

  20. Coal Combustion Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. Fossil Energy Research Benefits - Coal Combustion Products (508.89 KB) More Documents & Publications EIS-0146: Final Programmatic Environmental Impact Statement Guide

  1. Regional price targets appropriate for advanced coal extraction. [Forecasting to 1985 and 2000; USA; Regional analysis

    SciTech Connect

    Terasawa, K.L.; Whipple, D.W.

    1980-12-01

    The object of the study is to provide a methodology for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed for the study is a supply and demand model that focuses on underground mining, since the advanced technology is expected to be developed for these reserves by the target years. The supply side of the model is based on coal reserve data generated by Energy and Environmental Analysis, Inc. (EEA). Given this data and the cost of operating a mine (data from US Department of Energy and Bureau of Mines), the Minimum Acceptable Selling Price (MASP) is obtained. The MASP is defined as the smallest price that would induce the producer to bring the mine into production, and is sensitive to the current technology and to assumptions concerning miner productivity. Based on this information, market supply curves can then be generated. On the demand side of the model, demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. This last step is accomplished by allocating the demands among the suppliers so that the combined cost of producing and transporting coal is minimized.

  2. Coal: can't live with it, but Not without it, either

    SciTech Connect

    2010-01-15

    The future of coal in the U.S. is very much dependent on two key factors, both uncertain for now: the fate of climate legislation in the U.S. Congress after Copenhagen, and future prospects for a major breakthrough in carbon capture and sequestration (CCS) technology. The near-term prospects for coal in the U.S. have been described as bleak. Longer-term, the industry has to come to terms with new emission restrictions and new technologies. Blessed with the largest reserves of coal, the U.S. finds this fuel to be the cheapest option for power generation -- unless a price is placed on carbon. The EIA, in its 2009 Outlook, says the price of carbon has to rise to $50 per ton by 2020 and $110 by 2030 to meet the agency's targets.

  3. FMI NewCoal | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    developer focused on upgrading low rank coals to improve combustion efficiency and reduce production of greenhouse emissions for coal fired utility and industrial power generation...

  4. American Clean Coal Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    American Clean Coal Fuels Retrieved from "http:en.openei.orgwindex.php?titleAmericanCleanCoalFuels&oldid768408" Categories: Organizations Energy Generation Organizations...

  5. DOE's Advanced Coal Research, Development, and Demonstration...

    Energy Saver

    ... hold promise for integration with coal-based or combined coal and biomass energy plants. ... such as advanced integrated gasification combined cycle, advanced hydrogen ...

  6. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  7. SciTech Connect: "clean coal"

    Office of Scientific and Technical Information (OSTI)

    clean coal" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "clean coal" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  8. EIA - Weekly U.S. Coal Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    rounding. Bituminous and Lignite Total includes bituminous coal, subbituminous coal, and lignite, and Anthracite Total includes Pennsylvania anthracite. The States in...

  9. Jamestown Oxy Coal Alliance | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oxy Coal Alliance Jump to: navigation, search Name: Jamestown Oxy-Coal Alliance Place: New York Product: The Jamestown Alliance has been formed to develop a CCS demonstration...

  10. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. ... organic base catalysts for arene hydrogenation and the hydrotreating of the coal liquids. ...

  11. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. ... organic base catalysts for arene hydrogenation and the hydrotreating of the coal liquids. ...

  12. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. ... Task 2, organic base-catalyzed arene hydrogenation and hydrotreating of the coal liquids. ...

  13. Colorado Shale Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Shale Proved Reserves (Billion Cubic Feet) Colorado Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

  14. Michigan Shale Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Shale Proved Reserves (Billion Cubic Feet) Michigan Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  15. Kentucky Shale Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook

    Proved Reserves (Billion Cubic Feet) Kentucky Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 20...

  16. Arkansas Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Proved Reserves (Billion Cubic Feet) Arkansas Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,460...

  17. Miscellaneous States Coalbed Methane Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  18. Strategic Petroleum Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Strategic Petroleum Reserve Strategic Petroleum Reserve Crude oil pipes at SPR Bryan Mound site near Freeport, TX. Crude oil pipes at SPR Bryan Mound site near Freeport, TX. The ...

  19. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S-H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Venkatadri, R.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.

    1990-01-01

    Research continued on surface control of coal. This report describes Task 7 of the program. The following topics are discussed: quantitative distribution of iron species; surface functional groups; comparison of wet and dry ground samples; study of Illinois No. 6 coal wet ground using additives; study of wet grinding using tall oil; elemental distribution of coal samples wet ground without additives; elemental distribution of coal samples wet ground with tall oil; direct determination of pyrite by x-ray diffraction; electron microprobe measurements; morphology; zeta potential measurements; pyrite size distribution; statistical analysis of grinding study data; grinding using N-pentane; cyclohexane, and N-heptane; study of the effects of the grinding method and time; study of the effects of the agglomeration time; and the pentane to coal ratio. 13 refs.

  20. Categorical Exclusion Determinations: Strategic Petroleum Reserve Field

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office | Department of Energy Strategic Petroleum Reserve Field Office Categorical Exclusion Determinations: Strategic Petroleum Reserve Field Office Categorical Exclusion Determinations issued by Strategic Petroleum Reserve Field Office. DOCUMENTS AVAILABLE FOR DOWNLOAD March 1, 2016 CX-014628: Categorical Exclusion Determination Big Hill Remote Control for Pipeline Valve BH-3 CX(s) Applied: B1.3 Date: 03/01/2016 Location(s): Multiple Locations Offices(s): Strategic Petroleum Reserve Field

  1. Strategic Petroleum Reserve: Nitrogen Monitoring & Integrity...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Petroleum Reserve: Nitrogen Monitoring & Integrity Testing of SW Louisiana Caverns - ... Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae Thermochemical Conversion ...

  2. History of the Strategic Petroleum Reserve

    Energy.gov [DOE]

    This timeline explores the history of the Strategic Petroleum Reserve, or SPR, from conception through current events.

  3. Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    2009 2010 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 9,070 12,526 14,808 9,779 12,231 11,695 2007-2014 Adjustments 2 63 655 -754 7 -21 2009-2014 Revision ...

  4. North Louisiana Shale Gas Proved Reserves, Reserves Changes,...

    Annual Energy Outlook

    2009 2010 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 9,307 20,070 21,950 13,523 11,473 12,611 2007-2014 Adjustments 131 2,347 -172 241 70 57 2009-2014 Revision ...

  5. Alaska Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    2009 2010 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 0 0 0 0 0 0 2007-2014 Adjustments 0 0 0 0 0 0 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision ...

  6. Colorado Shale Gas Proved Reserves, Reserves Changes, and Production

    Energy Information Administration (EIA) (indexed site)

    2009 2010 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 4 4 10 53 136 3,775 2007-2014 Adjustments 1 -1 0 31 49 3,649 2009-2014 Revision Increases 0 1 4 13 56 1,104 ...

  7. Kansas Shale Gas Proved Reserves, Reserves Changes, and Production

    Energy Information Administration (EIA) (indexed site)

    2012 2013 2014 View History Proved Reserves as of Dec. 31 2 3 4 2012-2014 Adjustments 0 0 8 2012-2014 Revision Increases 0 0 3 2012-2014 Revision Decreases 0 0 6 2012-2014 Sales 0 ...

  8. Basin Shale Play State(s) Production Reserves Production Reserves

    Energy Information Administration (EIA) (indexed site)

    shale gas plays: natural gas production and proved reserves, 2013-14 2013 2014 Change 2014-2013 Basin Shale Play State(s) Production Reserves Production Reserves Production Reserves Marcellus* PA,WV 3.6 62.4 4.9 84.5 1.3 22.1 TX 2.0 26.0 1.8 24.3 -0.2 -1.7 TX 1.4 17.4 1.9 23.7 0.5 6.3 TX,LA 1.9 16.1 1.4 16.6 -0.5 0.5 TX, OK 0.7 12.5 0.8 16.6 0.1 4.1 AR 1.0 12.2 1.0 11.7 0.0 -0.5 OH 0.1 2.3 0.4 6.4 0.3 4.1 Sub-total 10.7 148.9 12.3 183.7 1.4 34.8 Other shale gas 0.7 10.2 1.1 15.9 0.4 5.7 All

  9. EIS-0034: Strategic Petroleum Reserve, Expansion of Reserve, Supplemental

    Energy.gov [DOE]

    The Strategic Petroleum Reserve (SPR) developed this SEIS to address the environmental impacts of expanding the SPR to store 1,000 million barrels of oil. The final programmatic EIS (FEA-FES-76-2), addressed the environmental impacts of storing 500 million barrels of oil.

  10. Nebraska Lease Condensate Proved Reserves, Reserve Changes, and...

    Energy Information Administration (EIA) (indexed site)

    2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 7 7 8 6 2011-2014 Adjustments 4 1 2 -1 2011-2014 Revision Increases 0 0 0 0 2011-2014 Revision Decreases 0 0 0 0 ...

  11. North Louisiana Shale Gas Proved Reserves, Reserves Changes,...

    Gasoline and Diesel Fuel Update

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 858 9,307 20,070 21,950 13,523 11,473 2007-2013 Adjustments 131 2,347 -172 241 70 2009-2013 Revision...

  12. Colorado Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 0 4 4 10 53 136 2007-2013 Adjustments 1 -1 0 31 49 2009-2013 Revision Increases 0 1 4 13 56 2009-2013...

  13. Alaska Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 0 0 0 0 0 0 2007-2013 Adjustments 0 0 0 0 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision...

  14. Kansas Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    2012 2013 View History Proved Reserves as of Dec. 31 2 3 2012-2013 Adjustments 0 0 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0 2012-2013...

  15. TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 395 1,692 4,743 5,595 2010-2013 Adjustments 6 237 494 40 2010-2013 Revision Increases 6 388 326 839 2010-2013...

  16. Centrifuge treatment of coal tar

    SciTech Connect

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  17. Coal: Energy for the future

    SciTech Connect

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  18. Great Plains Coal Gasification Project:

    SciTech Connect

    Not Available

    1988-01-29

    This progress report on the Great Plains Coal Gasification Project discusses Lignite coal, natural gas, and by-products production as well as gas quality. A tabulation of raw material, product and energy consumption is provided for plant operations. Capital improvement projects and plant maintenance activities are detailed and summaries are provided for environmental, safety, medical, quality assurance, and qualtiy control activities.

  19. Commercialization of clean coal technologies

    SciTech Connect

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  20. Coal Age buyers guide 2007

    SciTech Connect

    2007-07-15

    The buyers guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  1. Coal Age buyers guide 2005

    SciTech Connect

    2005-07-01

    The Buyers Guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  2. Coal Age buyers guide 2006

    SciTech Connect

    2006-07-15

    The Buyers Guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  3. Land reclamation beautifies coal mines

    SciTech Connect

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  4. 2009 coal preparation buyer's guide

    SciTech Connect

    2009-04-15

    The guide contains brief descriptions and contact details of 926 US companies supplying coal preparation equipment who exhibited at the 26th annual Coal Prep exhibition and conference, 28-30 April - May 2009, in Lexington, KY, USA. An index of categories of equipment available from the manufacturers is included.

  5. Analysis of some potential social effects of four coal technologies

    SciTech Connect

    Walker, C.A.; Gould, L.C.

    1980-09-01

    This is an analysis of the potential social impacts of four coal technologies: conventional combustion, fluidized-bed combustion, liquifaction, and gasification. Because of their flexibility, and the abundance and relatively low costs of coal, the potential benefits of these technologies would seem to outweigh their potential social costs, both in the intermediate and long term. Nevertheless, the social costs of a coal industry are far more obscure and hard to quantify than the benefits. In general, however, it maybe expected that those technologies that can be deployed most quickly, that provide fuels that can substitute most easily for oil and natural gas, that are the cheapest, and that are the most thermally efficient will minimize social costs most in the intermediate term, while technologies that can guide energy infrastructure changes to become the most compatable with the fuels that will be most easily derived from inexhaustible sources (electricity and hydrogen) will minimize social costs most in the long run. An industry structured to favor eastern over western coal and plant sites in moderate sized communities, which could easily adapt to inexhaustible energy technologies (nuclear or solar) in the future, would be favored in either time period.

  6. Strategic petroleum reserve. Quarterly report

    SciTech Connect

    1995-08-15

    The Strategic Petroleum Reserve reduces the Nation`s vulnerability to oil supply disruptions. Its existence provides a formidable deterrent to the use of oil as a political instrument and an effective response mechanism should a disruption occur. The Strategic Petroleum Reserve was created pursuant to the Energy Policy and Conservation Act of December 22, 1975 (Public Law 94-163). Its purposes are to reduce the impact of disruptions in supplies of petroleum products and to carry out obligations of the United States under the Agreement on an International Energy Program. Section 165(a) of the Act requires the submission of Annual Reports and Section 165(b)(1) requires the submission of Quarterly Reports. This Quarterly Report highlights activities undertaken during the second quarter of calendar year 1995, including: inventory of petroleum products stored in the Reserve; current and projected storage capacity, analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

  7. Strategic petroleum reserve annual report

    SciTech Connect

    1996-02-15

    Section 165 of the Energy Policy and Conservation Act (Public Law 94- 163), as amended, requires the Secretary of Energy to submit annual reports to the President and the Congress on activities of the Strategic Petroleum Reserve (SPR). This report describes activities for the year ending December 31, 1995.

  8. Reservations | Argonne Leadership Computing Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    smith R.smith smith Mon Aug 18 09:00:00 2013 -0500 (CDT) 24:00 Allowed MIR-00000-73FF1-16384 > qsub -q R.smith -t 60 -n 1024 myprog.exe Once the reservation is...

  9. Coals and coal requirements for the COREX process

    SciTech Connect

    Heckmann, H.

    1996-12-31

    The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

  10. Coal Technology '80. Volume 5. Synthetic fuels from coal. Volume 6. Industrial/utility applications for coal

    SciTech Connect

    Not Available

    1980-01-01

    The 3rd international coal utilization exhibition and conference Coal Technology '80 was held at the Astrohall, Houston, Texas, November 18-20, 1980. Volume 5 deals with coal gasification and coal liquefaction. Volume 6 deals with fluidized-bed combustion of coal, cogeneration and combined-cycle power plants, coal-fuel oil mixtures (COM), chemical feedstocks via coal gasification and Fischer-Tropsch synthesis. Thirty-six papers have been entered individually into EDB and seven also into ERA; three had been entered previously from other sources. (LTN)

  11. Systematic Comparison of Operating Reserve Methodologies: Preprint

    SciTech Connect

    Ibanez, E.; Krad, I.; Ela, E.

    2014-04-01

    Operating reserve requirements are a key component of modern power systems, and they contribute to maintaining reliable operations with minimum economic impact. No universal method exists for determining reserve requirements, thus there is a need for a thorough study and performance comparison of the different existing methodologies. Increasing penetrations of variable generation (VG) on electric power systems are posed to increase system uncertainty and variability, thus the need for additional reserve also increases. This paper presents background information on operating reserve and its relationship to VG. A consistent comparison of three methodologies to calculate regulating and flexibility reserve in systems with VG is performed.

  12. Earth-abundant semiconductors for photovoltaic applications ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

  13. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes

    SciTech Connect

    Doyle, F.M.

    1992-01-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  14. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.

    1991-01-01

    The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 90% pyrite sulfur rejection at an energy recovery greater than 90% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning, method for analysis of samples, development of standard beneficiation test, grinding studies, modification of particle surface, and exploratory R D and support. 5 refs., 22 figs., 34 tabs.

  15. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. )

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  16. Formation and retention of methane in coal

    SciTech Connect

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  17. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  18. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  19. Coal Study Guide for Elementary School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Elementary School Coal Study Guide for Elementary School Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns. Fossil Energy Study Guide: Coal (for Elementary School) (777.35 KB) More Documents & Publications Coal Study Guide - Middle School Coal Study Guide - High School Secondary Energy Infobook and Secondary Infobook Activities (19 Activities)

  20. Clean coal technologies: A business report

    SciTech Connect

    Not Available

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  1. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  2. Mechanism of instantaneous coal outbursts

    SciTech Connect

    Guan, P.; Wang, H.Y.; Zhang, Y.X.

    2009-10-15

    Thousands of mine workers die every year from mining accidents, and instantaneous coal outbursts in underground coal mines are one of the major killers. Various models for these outbursts have been proposed, but the precise mechanism is still unknown. We hypothesize that the mechanism of coal outbursts is similar to magma fragmentation during explosive volcanic eruptions; i.e., it is caused by high gas pressure inside coal but low ambient pressure on it, breaking coal into pieces and releasing the high-pressure gas in a shock wave. Hence, coal outbursts may be regarded as another type of gas-driven eruption, in addition to explosive volcanic, lake, and possible ocean eruptions. We verify the hypothesis by experiments using a shock-tube apparatus. Knowing the mechanism of coal outbursts is the first step in developing prediction and mitigation measures. The new concept of gas-driven solid eruption is also important to a better understanding of salt-gas outbursts, rock-gas outbursts, and mud volcano eruptions.

  3. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  4. Annual Coal Distribution Report - Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    Distribution Report Release Date: November 14, 2016 | Next Release Date: November 2017 | full report The Annual Coal Distribution Report (ACDR) provides detailed information on U.S. domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for 2015 are final and this report supersedes the 2015 quarterly coal distribution reports. Highlights for 2015:

  5. Coal competition: prospects for the 1980s

    SciTech Connect

    Not Available

    1981-03-01

    This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

  6. Sustainable Coal Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sustainable Coal Use Sustainable Coal Use Coal is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world. Finding ways to use coal cleanly and more efficiently at lower costs is a major R&D challenge, and an ongoing focus of activities by the DOE's Office of Fossil Energy. Fossil Energy Research Benefits - Sustainable Coal Use (591.9 KB) More Documents & Publications Heating Ventilation and Air Conditioning

  7. STEO December 2012 - coal demand

    Energy Information Administration (EIA) (indexed site)

    coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in 2012 for the fourth year in a row. Domestic coal consumption is on track to total 829 million tons this year. That's the lowest level since 1992, according to the U.S. Energy Information Administration's new monthly energy forecast. Utilities and power plant operators are choosing to burn more lower-priced natural gas

  8. Interest in coal chemistry intensifies

    SciTech Connect

    Haggin, J.

    1982-08-09

    Research on coal structure has increased greatly in recent years as the future role of coal as a source of gaseous and liquid fuels, as well as chemicals, becomes more apparent. This paper reviews in some detail work being carried out in the US, particularly in the laboratories of Mobil and Exxon, and in the universities. New ideas on the chemical and physical structure of coal are put forward, and a proposal for a new classification system based on the fundamental properties of the vitrinite macerals is introduced.

  9. Assessing Coal Unit Retirement Risk

    Energy Information Administration (EIA) (indexed site)

    Ventures Analysis 1901 N. Moore St. Arlington, VA 22209 (703) 276 8900 A S S E S S I N G C O A L U N I T R E T I R E M E N T R I S K Tom Hewson Principal June 14, 2016 Presentation for the US Energy Information Administration Workshop Coal Fleet Aging 1 COAL CAPACITY CHALLENGES E N E R G Y V E N T U R E S A N A L Y S I S , I N C .  Environmental Regulatory Risk-- Compliance often requires coal units to make large capital investment in additional retrofit control measures and/or increase their

  10. Clean coal technology. Coal utilisation by-products

    SciTech Connect

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  11. Automated remote control of fuel supply section for the coal fired power plant

    SciTech Connect

    Chudin, O.V.; Maidan, B.V.; Tsymbal, A.A.

    1996-05-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 {times} 180) electrical and 780 (3 {times} 260) Gkal an hour thermal capacity with steam productivity of 2010 (3 {times} 670) tons per hour at 540 C. Coal fired thermal electric power plants rely on the equipment of the fuel supply section. The mechanism of the fuel supply section includes: conveyor belts, hammer crushers, guiding devices, dumping devices, systems for dust neutralizing, iron separators, metal detectors and other devices. As a rule, the fuel path in the power plant has three main directions: from the railroad car unloading terminal to the coal warehouse; from the coal warehouse to the acceptance bunkers of the power units, and the railroad car unloading terminal to the acceptance bunkers of power units. The fuel supply section always has a reserve and is capable of uninterruptible fuel supply during routine maintenance and/or repair work. This flexibility requires a large number of fuel traffic routes, some of which operate simultaneously with the feeding of coal from the warehouse to the acceptance bunkers of the power units, or in cases when rapid filling of the bunkers is needed, two fuel supply routes operate at the same time. The remote control of the fuel handling system at Power Plant 3 is described.

  12. DOE/EIA-M060(2007) Coal Market Module

    Gasoline and Diesel Fuel Update

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  13. Coal Market Module of the Energy Modeling System Model Documentation...

    Gasoline and Diesel Fuel Update

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  14. Coal Market Module of the National Energy Modeling System Model...

    Gasoline and Diesel Fuel Update

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  15. Table 13. Coal Production, Projected vs. Actual Projected

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 ... (Washington, DC, September 25, 2014), Table 6.1, Coal Production and Waste Coal Supplied

  16. Coal Gasification and Transportation Fuels Magazine | netl.doe...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 3 (April 2016) Archived Editions: Coal ...

  17. Southern Coal finds value in the met market

    SciTech Connect

    Fiscor, S.

    2009-11-15

    The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

  18. Domestic Distribution of U.S. Coal by Origin State,

    Energy Information Administration (EIA) (indexed site)

    of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary...

  19. Domestic Distribution of U.S. Coal by Destination State,

    Energy Information Administration (EIA) (indexed site)

    of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary...

  20. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update

    and Institutional: Form EIA-3, "Quarterly Coal Consumption and Quality Report, Manufacturing and TransformationProcessing Coal Plants and Commercial and Institutional Coal...

  1. Coal gasification vessel

    DOEpatents

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  2. U.S. coal outlook in Asia

    SciTech Connect

    Johnson, C.J.

    1997-02-01

    Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies.

  3. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  4. Effectiveness factors for hydroprocessing of coal and coal liquids

    SciTech Connect

    Massoth, F.E.; Seader, J.D.

    1990-03-29

    The aim of this project is to develop a methodology to predict, from a knowledge of feed and catalyst properties, effectiveness factors for catalytic hydroprocessing of coal and coal liquids. To achieve this aim, it is necessary to account for restrictive diffusion, which has not hitherto been done from a fundamental approach under reaction conditions. The research entails a study of hydrodenitrogenation of model compounds and coal-derived liquids using three NiMo/alumina catalysts of different pore size to develop, for restrictive diffusion, a relationship that can be used for estimating reliable effectiveness factors. The research program includes: Task A - measurement of pertinent properties of the catalysts and of several coal liquids; Task B - determination of effective diffusivities and turtuosities of the catalysts; Task C - development of restrictive diffusion correlations from data on model N-compound reactions; Task D - testing of correlations with coal-liquid cuts and whole coal-liquid feed. Results are presented and discussed from Tasks B and D. 9 refs., 6 figs., 4 tabs.

  5. Effectiveness factors for hydroprocessing of coal and coal liquids

    SciTech Connect

    Massoth, F.E.; Seader, J.D.

    1990-01-01

    The aim of this research project is to develop a methodology to predict, from a knowledge of feed and catalyst properties, effectiveness factors for catalytic hydroprocessing of coal and coal liquids. To achieve this aim, it is necessary to account for restrictive diffusion, which has not hitherto been done from a fundamental approach under reaction conditions. The research proposed here entails a study of hydrodenitrogenation of model compounds and coal-derived liquids using three NiMo/alumina catalysts of different pore size to develop, for restrictive diffusion, a relationship that can be used for estimating reliable effectiveness factors. The program is divided into four parts: measurements of pertinent properties of the catalysts and of a coal liquid and its derived boiling-point cuts; determination of effective diffusivities and tortuosities of the catalysts; development of restrictive diffusion correlations from data on model N-compounds at reaction conditions; and testing of correlations with coal-liquid cuts and whole coal-liquid feed, modifying correlations as necessary.

  6. Strategic Petroleum Reserve annual/quarterly report

    SciTech Connect

    Not Available

    1993-02-16

    During 1992 the Department continued planning activities for the expansion of the Strategic Petroleum Reserve to one billion barrels. A draft Environmental Impact Statement for the five candidate sites was completed in October 1992, and a series of public hearings was held during December 1992. Conceptual design engineering activities, life cycle cost estimates and geotechnical studies to support the technical requirements for an Strategic Petroleum Reserve Plan Amendment were essentially completed in December 1992. At the end of 1992, the Strategic Petroleum Reserve crude oil inventory was 574.7 million barrels and an additional 1.7 million barrels was in transit to the Reserve. During 1992 approximately 6.2 million barrels of crude oil were acquired for the Reserve. A Department of Energy Tiger Team Environmental, Safety and Health (ES&H) Assessment was conducted at the Strategic Petroleum Reserve from March 9 through April 10, 1992. In general, the Tiger Team found that Strategic Petroleum Reserve activities do not pose undue environmental, safety or health risks. The Strategic Petroleum Reserve`s Final Corrective Action Plan, prepared in response to the Tiger Team assessment, was submitted for Department approval in December 1992. On November 18, 1992, the Assistant Secretary for Fossil Energy selected DynMcDennott Petroleum Operations Company to provide management and operating services for the Strategic Petroleum Reserve for a period of 5 years commencing April 1, 1993. DynMcDermott will succeed Boeing Petroleum Services, Inc.

  7. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect

    Doyle, F.M.

    1992-01-01

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  8. Strategic Petroleum Reserve quarterly report

    SciTech Connect

    Not Available

    1993-08-15

    This Quarterly Report highlights activities undertaken during the second quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the current quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

  9. Process for low mercury coal

    DOEpatents

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  10. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  11. Which route to coal liquefaction

    SciTech Connect

    Nene, R.G.

    1981-11-01

    Two main methods for producing liquid fuels from coal are currently undergoing intensive evaluation. One, direct liquefaction (e.g., SRC-II, Exxon Donor Solvent (EDS), and H-Coal) produces liquid fuels directly from coal; the other, indirect liquefaction (e.g., Lurgi gasifier followed by Fischer-Tropsch, and Shell-Koppers gasifier followed by methanol synthesis and Mobil's MTG process) first gasifies coal and then converts the gaseous material into liquid products. This paper compares both routes basing its assessment on yields, thermal efficiencies, elemental balances, investment, complexity, and state of development. It is shown that direct liquefaction is more efficient and produces more product per investment dollar. Higher efficiency for direct liquefaction is verified bY stoichiometric and thermodynamic analysis. All approaches require about the same capital investment per unit of feed. Indirect liquefaction can be either more or less complex than direct liquefaction, depending upon the process. Direct liquefaction is least developed. 8 refs.

  12. Coal beneficiation by gas agglomeration

    DOEpatents

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  13. Coal Beneficiation by Gas Agglomeration

    SciTech Connect

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  14. Clean Coal Diesel Demonstration Project

    SciTech Connect

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  15. Two stage liquefaction of coal

    DOEpatents

    Neuworth, Martin B.

    1981-01-01

    A two stage coal liquefaction process and apparatus comprising hydrogen donor solvent extracting, solvent deashing, and catalytic hydrocracking. Preferrably, the catalytic hydrocracking is performed in an ebullating bed hydrocracker.

  16. Coal Data Publication Revision Policy

    Annual Energy Outlook

    impact: WHAT happens next to the database and in our coal reports: Respondent provides data that are clearly incorrect or revised data for any period in the current reporting year. ...

  17. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  18. Process for low mercury coal

    DOEpatents

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  19. Upgrading coal plant damper drives

    SciTech Connect

    Hood, N.R.; Simmons, K.

    2009-11-15

    The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

  20. Oxy-coal Combustion Studies

    SciTech Connect

    Wendt, J.; Eddings, E.; Lighty, J.; Ring, T.; Smith, P.; Thornock, J.; Y Jia, W. Morris; Pedel, J.; Rezeai, D.; Wang, L.; Zhang, J.; Kelly, K.

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.