Weak charge form factor and radius of 208Pb through parity violation in electron scattering

C. J. Horowitz*
University of Tennessee, Knoxville, Tennessee 37996, and Indiana University, Bloomington, Indiana 47405, USA

Z. Ahmed, C.-M. Jen, A. Rakhman, and P. A. Souder
Syracuse University, Syracuse, New York 13244, USA

M. M. Dalton, N. Liyanage, K. D. Paschke, K. Saenboonruang, and R. Silwal
University of Virginia, Charlottesville, Virginia 22903, USA

G. B. Franklin, M. Friend, and B. Quinn
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

K. S. Kumar, D. McNulty, L. Mercado, S. Riordan, and J. Wexler
University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA

R. W. Michaels
Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

G. M. Urciuoli
INFN, Sezione di Roma, I-00161 Rome, Italy

We use distorted wave electron scattering calculations to extract the weak charge form factor $F_W(\bar{q})$, the weak charge radius R_W, and the point neutron radius R_n of 208Pb from the Lead Radius Experiment (PREX) parity-violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer $\bar{q} = 0.475$ fm$^{-1}$. We find $F_W(\bar{q}) = 0.204 \pm 0.028$ (exp) ± 0.001 (model). We use the Helm model to infer the weak radius from $F_W(\bar{q})$. We find $R_W = 5.826 \pm 0.181$ (exp) ± 0.027 (model) fm. Here the experimental error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R_W from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a “weak charge skin” where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius $R_n = 5.751 \pm 0.175$ (exp) ± 0.026 (model) ± 0.005 (strange) fm from R_W. Here there is only a very small error (strange) from possible strange quark contributions. We find R_n to be slightly smaller than R_W because of the nucleon’s size. Finally, we find a neutron skin thickness of $R_n - R_p = 0.302 \pm 0.175$ (exp) ± 0.026 (model) ± 0.005 (strange) fm, where R_p is the point proton radius.

DOI: 10.1103/PhysRevC.85.032501 PACS number(s): 21.10.Gv, 25.30.Bf, 24.80.+y, 27.80.+w

Parity-violating elastic electron scattering provides a model-independent probe of neutron densities, because the weak charge of a neutron is much larger than the weak charge of a proton [1]. In the Born approximation, the parity-violating asymmetry A_{pv}, the fractional difference in cross sections for positive and negative helicity electrons, is proportional to the weak form factor F_W. This is very close to the Fourier transform of the neutron density. Therefore the neutron density can be extracted from an electroweak measurement [1]. However, one must include the effects of Coulomb distortions, which have been accurately calculated [2], if the charge density ρ_{ch} [3] is well known. Many details of a practical parity-violating experiment to measure neutron densities, along with a number of theoretical corrections, were discussed in a long paper [4].

Recently, the Lead Radius Experiment (PREX) measured A_{pv} for 1.06-GeV electrons, scattered by about 5 deg from 208Pb, and the neutron radius R_n was extracted [5]. To do this, the experimental A_{pv} was compared to a least squares fit of R_n as a function of A_{pv}, predicted by seven mean-field models [6] (see also [7]). In the present paper, we provide a more detailed analysis of the measured A_{pv}. This analysis provides additional information, such as the weak form factor, and clarifies the (modest) model assumptions necessary to extract R_n.

We start with distorted wave calculations of A_{pv} for an electron moving in Coulomb and weak potentials [2]. We use these to extract the weak form factor from the PREX measurement. In the Born approximation, one can determine the weak form factor directly from the measured A_{pv}. However,