Accelerating Science Discovery - Join the Discussion

Published by Kathy Chambers
James Van Allen holding (Loki) instrumented Rockoon


James Van Allen’s space instrumentation innovations and his advocacy for Earth satellite planetary missions ensured his place among the early leaders of space exploration. After World War II, Van Allen begin his atmospheric research at the Johns Hopkins University Applied Physics Laboratory and Brookhaven National Laboratory. He went on to become the Regent Distinguished Professor and head of the University of Iowa (UI) Department of Physics and Astronomy. Drawing on his many talents, Van Allen made tremendous contributions to the field of planetary science throughout his career.

Van Allen used V-2 and Aerobee rockets to conduct high-altitude experiments, but the lift was limited. He devised a ‘rockoon,’ a rocket lifted by hot air balloons into the upper atmosphere where it was separated from the balloons and ignited to conduct cosmic-ray experiments. The rockoon, shown with Van Allen in the image above, achieved a higher altitude at a lower cost than ground-launched rockets. This research helped determine that energetic charged particles from the magnetosphere are a prime driver of auroras.

Published by Kathy Chambers

Thorium (232Th), the chemical element named after the Norse god of thunder, has a history that is as colorful as its namesake. Although discovered in 1828 by the Swedish chemist Jöns Jakob Berzelius, thorium had no known useful applications until 1885, when it was used in gas mantles to light up the streets across Europe and North America. Then in 1898, physicist Marie Curie and chemist Gerhard Schmidt observed thorium to be radioactive, and subsequent applications for thorium declined due to safety and environmental concerns. The scientific community would later find that the element thorium held promise for the planet to have clean, safe, cheap, and plentiful nuclear power as an alternative fuel to plutonium-based nuclear power plants.

Published by Kathy Chambers

Image credit: ARM ProgramImage credit: ARM Program

One of the research programs managed by the Department of Energy (DOE) is the Atmospheric Radiation Measurement (ARM) Program, created in 1989 to address scientific uncertainties related to global climate change.  ARM's Climate Research Facility, a DOE scientific user facility, provides the world's most comprehensive 24/7 observational capabilities to obtain atmospheric data specifically for climate change research. The ARM facility includes fixed, mobile, and aerial sites that gather continuous measurements used to study the effects and interactions of sunlight, radiant energy, clouds, and aerosols and their impacts on the global climate system.  The ARM program serves as a model and a knowledge base for climate change research endeavors across the globe.

Published by Judy Gilmore

scientific and technical informationScientific and technical information, or STI:  It's in OSTI's name.  It's in the language of our most recent statutory authority, section 982 of the Energy Policy Act of 2005:  "The Secretary, through the Office of Scientific and Technical Information, shall maintain within the Department publicly available collections of scientific and technical information resulting from research, development, demonstration, and commercial applications supported by the Department."  A DOE policy directive, DOE Order 241.1B, entitled "Scientific and Technical Information Management," requires DOE offices, contractors, and grantees "to ensure that STI is appropriately managed as part of the DOE mission to enable the advancement of scientific knowledge and technological innovation."  As provided in the directive, OSTI spearheads the DOE Scientific and Technical Information Program (STIP), a collaboration of STI managers and technical information officers from across the DOE complex responsible for identifying, collecting, disseminating, and preserving the results of DOE-funded research and development (R&D).  STI is the heart of OSTI and its mission.

Published by Sara Studwell

doe data id service

The Department of Energy (DOE) Office of Scientific and Technical Information (OSTI) is working with a researcher in the High Energy Physics (HEP) community to register scientific datasets produced by a domain collaboration, a recent blog post has reported.

OSTI offers a service for registering datasets to help increase access to digital data from DOE-funded scientific research.  Through the DOE Data ID Service, OSTI assigns persistent identifiers, known as Digital Object Identifiers (DOIs), to datasets submitted by DOE and its contractor and grantee researchers and registers the DOIs with DataCite to aid in citation, discovery, retrieval, and reuse.  OSTI assigns and registers DOIs for datasets for DOE researchers as a free service to enhance the Department of Energy's management of this important resource.