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Abstract (max. 2000 char.): 

This report describes the DAN-AERO MW experiments carried out 

within a collaborative, three years research project between Risø DTU 

and the industrial partners  LM Glasfiber,  Siemens Wind Power, 

Vestas Wind Systems A/S and the utility company DONG Energy.  

The main objective of the project was to establish an experimental data 

base which can provide new insight into a number of fundamental 

aerodynamic and aero-acoustic issues, important for the design and 

operation of MW size turbines. The most important issue is the 

difference between airfoil characteristics measured under 2D, steady 

conditions in a wind tunnel and the unsteady 3D flow conditions on a 

rotor. The different transition characteristics might explain some of the 

differences between the 2D and 3D airfoil data and the experiments 

have been set up to provide data on this subject. The overall 

experimental approach has been to carry out a number of coordinated, 

innovative measurements on full scale MW size rotors as well as on 

airfoils for MW size turbines in wind tunnels. Shear and turbulence 

inflow characteristics were measured on a Siemens 3.6 MW turbine 

with a five hole pitot tube. Pressure and turbulent inflow characteristics 

were measured on a 2MW NM80 turbine with an 80 m rotor. One of 

the LM38.8 m blades on the rotor was replaced with a new LM38.8 m 

blade where instruments for surface pressure measurements at four 

radial sections were build into the blade during the blade production 

process. Additionally, the outmost section on the blade was further 

instrumented with around 50 microphones for high frequency surface 

pressure measurements. The surface pressure measurements have been 

correlated with inflow measurements from four five hole pitot tubes 

and two sensors for measuring the high frequency (50 Hz to10 kHz) 

contents of the inflow turbulence. In parallel, 2D wind tunnel 

measurements on common airfoils for wind turbine applications have 

been conducted in three different wind tunnels at Delft University 

(NL), at LM Glasfiber (DK) and at VELUX (DK). Initial results from 

the different measurement set-ups are presented  in order to show the 

application areas for the total data set. 
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Preface 
The present report is the final publishable report for the project “Experimental Rotor- 
and Airfoil Aerodynamics on MW Wind Turbines”, also called the DAN-AERO MW 
project, funded by the Danish Energy Research programme EFP-2007 under contract  
Journal nr.: 33033-0074. The project was carried out in the period from March 2007 to 
December 2009 in corporation between Risø DTU and the companies LM Glasfiber, 
Vestas Wind Systems, Siemens Wind Power and DONG Energy.  

The project comprised a number of innovative and coordinated measurements on full 
scale turbines and measurements in wind tunnels on airfoil sections. This was only 
possible due to a close and fruitful corporation between technicians and engineers from 
all involved partners in the project and we would like to thank all involved persons. Also 
thank to the companies LM Glasfiber, Vestas Wind Systems A/S, Siemens Wind Power 
and DONG Energy for the considerable eigen funding contribution to the project. 

The result of the project is a considerable and unique data base, which contains data that 
research projects during the next years will benefit from. A detailed analysis of the data 
is not contained in the present project. This will be performed in a new project 
“DANAERO MW II: Influence of atmospheric and wake turbulence on MW turbine 
performance, loading and stability” funded by the Danish Energy Research Programme 
EUDP with the participants Risoe DTU, LM Glasfiber, Vestas Wind Systems A/S and 
Siemens Wind Power. 

The objective with the present report is to give a short overview of the different 
experiments carried out within the project and give an introduction to the data base by 
showing different examples of data. However, it should be noted that most data that will 
be shown are derived with preliminary calibrations of the sensors. 

 

Helge Aagaard Madsen and Christian Bak 

 

Risø DTU, March 2010 
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1 Introduction 
The background for the present project initiated in 2007 was a discussion and assessment 
in the project group of the uncertainties and shortcomings related to the reliable design of 
MW turbines. The most important issue is that the derivation of 3D airfoil data from 2D 
wind tunnel data still introduces uncertainty and conservatism in the rotor design process 
although different empirical correction methods have been developed. It is now also 
possible to extract 3D data from full 3D CFD rotor computations [1], but these complex 
simulations need further validation. One major uncertainty related to the 3D CFD rotor 
computations is that these types of simulations so far have been restricted to non-
turbulent, steady inflow conditions. Also the transition modelling is subject to 
considerable uncertainty and in particular in 3D flow cases. Therefore, measured 3D 
airfoil characteristics on a MW rotor in natural, turbulent flow environment are needed to 
be compared with standard 2D wind tunnel data. This will improve the 2D to 3D 
conversion of airfoil data and also represent a unique verification basis for 3D CFD 
computations.  

Another fundamental issue is related to the aerodynamic load variations over the swept 
area of MW rotors, which now have reached a size with a rotor diameter of 100 m or 
more. These load variations, which are due to wind shear and turbulence cause 
considerable dynamic variation in induction over the rotor and the modeling of this with 
the Blade Element Momentum (BEM) method is uncertain. Generally, there is a need for 
detailed characterization of the inflow characteristics on MW rotors and not least to get 
experimental data for the higher frequencies in the inflow which are thought to be 
important for the transition from laminar to turbulent boundary layer on the rotating 
blade. 

The new MW rotors are almost exclusively erected in wind farms which means that 
operation in wakes from upstream turbines constitutes a major part of total life time. 
Detailed measurements of flow characteristics in full scale wakes are sparse, but on the 
other hand strongly needed for further improvements of wake modeling. 

In the past the aerodynamics of wind turbine rotors operating in real wind conditions 
have also been recognized to be of big importance for reliable design of turbines. In the 
period from around 1985 to 1995 this led to a number of field test measurements on 
rotors with a diameter in the range from 10-25 m conducted at National Renewable 
Energy Laboratory (NREL, US), Risø Wind Turbine Test Station (Risø, DK), 
Netherlands Energy Research Foundation (ECN, NL), Delft University of Technology 
(Delft, NL), Imperial College (IC, UK) and MIE University (MIE, JP). The Risø 
experiment [2] comprised measurements of local aerodynamic forces at three stations on 
one of the blades on the 19 m rotor and correlation with inflow measurements with a five 
hole pitot tube. The derived 3D airfoil characteristics were found to differ considerably 
from 2D wind tunnel characteristics. 

A collaborative and coordinated analysis of the different field rotor experiments was 
carried out within the IEA Annexes XIV and XVIII, which improved the insight into 3D 
airfoil characteristics on rotors considerably. However, it was also realized that the 
influence of the natural turbulence in the wind complicated the interpretation of the 
results. To overcome this NREL in US conducted the Unsteady Aerodynamics 
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Experiment (UAE) on a 10 m diameter horizontal axis wind turbine (HAWT) in the 
NASA Ames 80 ft by 120 ft (24.4 m by 36.6 m) wind tunnel in year 2000 [3]. The 
experiment was designed to provide accurate and reliable experimental measurements, 
having high spatial and temporal resolution, for realistic rotating blade geometry, under 
closely matched conditions of dynamic similarity, and in the presence of strictly 
controlled inflow conditions. Also these data were analyzed and utilized for code 
development and validation within IEA Annex XX. Later in 2006 a European team 
conducted a complementary wind tunnel turbine test designated MEXICO (Model Rotor 
Experiments In Controlled Conditions) [4]. The MEXICO Project was directed toward 
acquiring high quality experimental data, by testing a well instrumented 4.5m diameter 
rotor in the DNW 9.5 m x 9.5 m wind tunnel. This experiment comprised among other 
measurements comprehensive measurements of the flow field around the rotor using the 
PIV technique. Also this data set is now utilized in a collaborative work within IEA Task 
29 MEXNEXT. 

The above mentioned data sets from wind tunnel experiments in controlled wind 
conditions have contributed significantly to model development and validation and not 
least for validation of CFD rotor computations. On the other hand there are some serious 
limitations when the the knowledge is transferred to full scale MW rotors. The most 
important is the lack of the influence from the unsteady and turbulent inflow, which in 
the end has to be taken into account although it complicates detailed aerodynamic 
measurements as well as simulations. Another major drawback of the wind tunnel data 
sets is that the rotors are not representative for modern MW rotor designs and do not 
contain the influence of the control system. Finally, there is the unavoidable uncertainty 
from the much lower Reynolds number in the wind tunnel experiments compared with 
full-scale conditions. 

These considerations led to the decision in the present project group that it was time to 
initiate a comprehensive experimental project: the DAN-AERO MW Experiments, 
focusing on fundamental aerodynamics and aeroacoustics issues of MW turbines. The 
project was initiated in the beginning of 2007 and ended on December 31 2009. 
However, the detailed analysis of the data is not included in the present project but will 
be carried out in a new project “The DAN_AERO MW II project” initiated on March 1st 
2010 and with the same project participants as in the present project except that DONG 
Energy is not participating in the new project. 
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2 Objectives and approach 
2.1 Objectives 
The overall objective of the project has been to provide an experimental basis that can 
improve our knowledge of a number of fundamental aerodynamic, aeroelastic and 
aeroacoustic issues and in general improve the design basis for MW rotors. Specifically 
the experiments were designed to provide new insight into: 

 correlation between 2D and 3D airfoil characteristics 

 boundary layer transition characteristics in 2D wind tunnel flow environment 
compared with full scale 3D rotor flow transition characteristics 

 inflow characteristics (shear and turbulence) on MW rotors with particular focus 
on the high frequency content 

 dynamic induction characteristics 

 wake flow characteristics 

 pressure fluctuations in the boundary layer influencing turbulent inflow noise 
and trailing edge noise 

2.2 Approach 
The selected experimental approach has been to carry out a number of coordinated, 
innovative measurements on full scale MW rotors as well as on airfoils for MW turbines 
in wind tunnels. Three types of measurements have been performed: 

1. Measurements on 2D airfoil sections in three wind tunnels; at Delft University 
(NL), at LM Glasfiber (DK) and at Velux (DK) 

2. Measurement of inflow characteristics on the 3.6 MW Siemens wind turbine at 
the Høvsøre test site (DK) 

3. Pressure and inflow measurements (including high frequency kHz data) on one 
of the blades (LM 38.8 m blade) on the NM80 2 MW turbine at the small 
Tjæreborg Wind farm in Jutland (DK) 

Wind tunnel experiments 
The specific objectives with the wind tunnel experiments were the following: 

a) verify and investigate the difference in 2D airfoil characteristics measured in 
three different wind tunnels: at Delft University (NL), at LM Glasfiber (DK) 
and at Velux (DK), which in the past have been used for testing airfoils for wind 
turbines 

b) investigate the turbulence characteristics in the wind tunnels and investigate the 
correlation with boundary layer transition and surface pressure spectra 

c) measure the 2D airfoil characteristics on the four specific sections on the LM 
38.8 m blade for comparison with 3D airfoil characteristics of the NM80 rotor. 

One problem often encountered in the design of a new wind turbine rotor is that the 
airfoil data from different wind tunnels deviate. It was therefore decided to include the 
test of two airfoils, the Risø-B1-18 and the NACA 633-418 airfoil, in the three wind 
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tunnels mentioned above. The turbulence characteristics in the tunnels are an important 
parameter with influence on the transition characteristics on the airfoils and 
measurements with hotwires have been performed to determine the turbulence spectra in 
two of the tunnels. 

Position of transition has been determined by analyzing the PSD spectra of the high 
frequency surface pressure fluctuations measured with microphones mounted close to the 
blade surface, Figure 1. In total around 80 microphones were positioned around the  

 

 
 

Figure 1 Microphones with a diameter of around 4 mm installed about 1 mm below the 
blade section surface and connected through a boring of 1.5 mm. 

 

 
 

Figure 2 To the left one of the airfoil sections with pressure taps and microphones 
mounted in the LM wind tunnel. To the right a view into the inlet to the test section with 
a turbulence grid installed. 

surface of the airfoil section at one spanwise position, both on the pressure and suction 
side. However, the microphone positions were shifted slightly in spanwise direction in 
order to avoid disturbance from one microphone to the next. The tests performed in the 
LM wind tunnel, Figure 2 were carried out at a number of different Reynolds numbers 
from 1.6 million to 6 million. Influence of increased turbulence from a turbulence grid in 
the inlet to the test section in the LM wind tunnel was also measured, Figure 2. 

 

Inflow measurements on the Siemens 3.6 MW turbine 
The increase in wind turbine rotor size with rotor diameters up to above 120 m has led to 
bigger variations of inflow characteristics over the rotor plane. Considerable wind shear 
gives higher rotor moments and influences the aerodynamic performance of the turbine. 
It also complicates the measurement of rotor performance as the standard so far has been 
to use a hub height cup anemometer some distance upstream the turbine which does not 
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necessarily result in a wind speed that is a good measure of the average wind speed over 
the rotor area. There is thus a need for detailed information of inflow characteristics 
(shear as well as turbulence characteristics) over the rotor plane. The standard technique 
for obtaining such information has for a long time been a meteorology mast with a 
suitable instrumentation of anemometers, wind direction vanes and sonics. Within the 
last few years sodar and lidar techniques have been introduced and this seems to be 
promising techniques although still expensive [5].  

In the past we have investigated an approach which is based on the measurement of the 
inflow on the rotating blade of a rotor. So far a five hole pitot tube is used, which gives 
the magnitude of the flow velocity and two flow angles. The main advantages with this 
measurement technique are; 1) the flow sensor scans along a circular path on the swept 
rotor area; 2) the measurement is performed at exactly the position of the operating rotor 
and 3) the instrumentation is relatively cheap. The main disadvantage is that the 
measured data have to be corrected for the influence of the rotor forces if it shall 
correspond to free inflow conditions.  

In the present project wind shear and turbulence data have been investigated on basis of 
inflow measurements on the Siemens 3.6 MW turbine at the Høvsøre Test site for MW 
turbines, Jutland (DK). In March 2007 a five hole pitot tube was installed at a radius of 
36 m on the 107 m diameter rotor, Figure 3, for measurement of local inflow angle and 
relative velocity. This position corresponds to r/R=0.673. The Høvsøre test site is the 
Danish centre for testing MW turbines and is situated a few kilometres from the west 
cost of Jutland. In total five turbines are installed along a row at the test site and the 
Siemens turbine is situated in the middle of this row so the turbine will operate in wake 
of other turbines for some wind directions, Figure 4. The signals from the pitot tube have 
been sampled at 35 Hz together with a number of signals from the turbine such as 
electrical power and rotor rotational speed.  

 
 
 

 

Figure 3 The five hole pitot tube mounted in radius 36 m on the blade in a distance of 
about 0.80 m in front of the leading edge of the blade. Rotor diameter is 107 m. 
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Figure 4 The Høvsøre test site in Jutland. The Siemens 3.6 MW turbine is situated as the 
middle turbine in the row of 5 turbines. 

Inflow and surface pressure measurements on the 2MW NM80 turbine at 
the Tjæreborg wind farm 
The specific objectives with this part of the project have been to:  

a) derive and investigate 3D airfoil characteristics from a full scale MW rotor on 
basis of blade surface pressure measurements at four radial stations in 
combination with local inflow measurements with five hole pitot tubes at the 
same radial positions. Compare the 3D airfoil characteristics with 2D wind 
tunnel data and use the data sets for validation and further development of 
models for 2D to 3D conversions.  

b) investigate the influence of different aerodynamic devices such as vortex 
generators, gurney flaps and roughness/transition elements on the pressure 
distributions. 

A new LM38.8 m blade was manufactured for the NM80 80m diameter turbine and 
during the production process, equipment for measuring surface pressure profiles and 
inflow at four radial stations was placed inside the blade, Figure 5 and Figure 6. 
Additionally, the most outboard blade section was instrumented with around 50 
microphones to measure high frequency surface pressure spectra, Figure 7. These data 
are used for determination of position of transition and for aeroacoustic characterization 
of inflow noise and trailing edge noise from the turbulent boundary layer. At a radial 
position close to the microphones, high frequency inflow has in a few campaigns been 
measured with a hot wire probe and with a pitot tube with microphones. Local inflow 
was measured at four radial positions with five hole pitot tubes, Figure 8. 
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Figure 5 Radial position of the instrumentation of the LM38.8 blade.
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Figure 6 Sketch of the instrumented LM38.8 m blade to the left and to the right the 
NM80 turbine with the test blade installed on May 13 2009. 

 
 
 

 

 

Figure 7 To the left: about 50 microphones were installed about one mm below the blade 
surface at the outboard section at radius 37 m for high frequency surface pressure 
measurements. The boring from the microphones to the blade surface has a diameter of 
1.5 mm. To the right: every evening all pressure taps, microphones and five hole pitot 
tubes were covered with tape to protect against moisture and rain. 
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Figure 8 The local inflow at four radial positions was measured with four five hole pitot 
tubes sticking out from the leading edge of the blade. 

 

 

Figure 9 Map of the site (maps.google.dk). The site is app. 10 km east-south-east of 
Esbjerg. The site has eight wind turbines of the size around 2MW. The position of the 
NM80 is shown together with the other 7 turbines on the site. Also the position of the 
meteorology mast is shown. 

 

The test turbine is situated in a small wind farm at Tjaereborg close to the west cost of 
Jutland about 1 km from the North Sea, Figure 9. In total the wind farm has 8 turbines 
placed in two rows which gives different single and multiple wake situations with the 
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closest spacing about 3.5 turbine diameters, Figure 10, provided by Vestas, N.A.Olesen 
Vestas [6]. 

 

 
Figure 10 Illustration of the wake situations occurring from different wind directions. 
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3 Results from wind tunnel experiments 
 

During the project a number of wind tunnel measurements were carried on different 
airfoil sections, with different instrumentation and in three different wind tunnels: the 
VELUX wind tunnel (DK), the LM Glasfiber Low Speed Wind Tunnel (DK) and the 
Delft Low Speed Low Turbulence wind tunnel (NL). 

Velux 

 measurement of polars using pressure taps and a wake rig 

 measurement of turbulence in the tunnel with hot wire equipment and a pitot 
tube with microphones  

 measurement of high frequency surface pressure fluctuations for studying 
transition and  aeroacoustic source terms 

 

LM 

 measurement of polars using pressure taps and a wake rig 

 measurement of turbulence in the tunnel with hot wire equipment and a pitot 
tube with microphones  

 measurement of high frequency surface pressure fluctuations for studying 
transition and  aeroacoustic source terms 

 modifying tunnel turbulence by introducing a turbulence grid 

 

Delft 

 measurement of polars using pressure taps and a wake rig 

A considerable amount of data has been measured during these measurement campaigns 
but most of the data have not yet been analyzed in details. However, a few examples of 
processed data will be presented below. 

3.1 Comparison of polars from different wind tunnels 
One of the main objectives of the wind tunnel part of the project was to investigate the 
difference in polars for the same airfoil section measured in different wind tunnels. 
Results on this have been presented by Bak et al.[7] and a short summary of the data is 
presented below. 

The NACA 633-418 airfoil originally designed for airplanes but commonly used on wind 
turbines and the wind turbine dedicated high lift airfoil Risø-B1-18 were the two airfoils 
used in the investigation. One NACA 633-418 airfoil model and one Risø-B1-18 airfoil 
model with chord length 0.60 m were used in both the VELUX tunnel and the Delft 
tunnel. For the LM Glasfiber tunnel new models were manufactured with a chord length 
of 0.90 m. Tests were carried out at Re=1.5x106 and 1.6x106. For the Delft and LM 
tunnel Re=3x106 was also tested. Different configurations were tested such as clean 
surface and leading edge roughness in terms of zigzag tape at the leading edge. 
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The polars for the NACA 633-418 airfoil at Re=1.5x106/1.6x106 in clean configuration 
and with leading edge roughness are shown in Figure 11 and Figure 12, respectively. The 
best correlation between the data from the different tunnels is seen for the case with 
leading edge roughness. 

 

Figure 11 Polars for NACA633-418 airfoil at Re=1.5x106 to 1.6x106 in clean 
configuration. 

 

Figure 12 Polars for NACA633-418 airfoil at Re=1.5x106 to 1.6x106 with leading edge 
roughness (LER). 

The comparison of the data from the different tunnels for the Risø-B1-18 airfoil shown 
in Figure 13 and Figure 14 at Re=1.5x106/1.6x106 reveals bigger deviations for the 
maximum lift as seen for the NACA633-418 profile. The Risø-B1-18 airfoil has a higher 
maximum lift coefficient than the NACA633-418 airfoil and this probably makes it more 
sensitive to the specific test conditions in the different wind tunnels. 

 

 
Figure 13 Polars for Risø-B1-18 airfoil at Re=1.5x106 to 1.6x106 in clean configuration. 
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Figure 14 Polars for Risø-B1-18 airfoil at Re=1.5x106 to 1.6x106 with leading edge 
roughness. 

For both the NACA 633-418 and the Risø-B1-18 airfoil it should be noted that the 
applied leading edge roughness (LER)  (zigzag tape mounted on suction side at x/c=0.05 
from the leading edge and on pressure side at x/c=0.10 from the leading edge) in the test 
case presented in Figure 12 and Figure 13 does not decrease the maximum lift coefficient 

maxlC but even increases maxlC slightly, in particular for the measurements in the Delft 
tunnel. Other more severe leading edge roughness configurations were tested in the 
project where the expected decrease in maxlC was observed. The mechanism behind the 
slightly increase in maxlC in the present case could be that the zigzag tape, which 
simulates the roughness, works as small vortex generators thereby strengthening the 
boundary layer with an increase in clmax as result.  
 

3.2 Polars for sections of the LM38.8 blade 
Another important objective with the wind tunnel measurements was to test airfoil 
sections with the same geometry as the four instrumented sections on the full-scale 
LM38.8 blade on the NM80 turbine in Tjæreborg. The section geometry on the LM38.8 
blade was measured with a laser instrument and afterwards four wind tunnel airfoil 
sections were manufactured and tested in the LM wind tunnel. Again the tests were 
performed for different Reynolds numbers and for different configurations of leading 
edge roughness. As an example, results for the three inner sections, sec. 03 at radius 13.0 
m (32.5%  of  rotor radius), sec. 05 at radius 19.0 m (47.5% of rotor radius) and sec. 08 
at radius 30.0 m (75.0% of rotor radius) are shown in Figure 15. The airfoil thicknesses 
for the three sections are 33.3% for sec. 03, 24.0% for sec. 05 and 18.9% for sec. 08, 
respectively. 

The polars for the three different airfoils differ in particular for their different 

dependency on the roughness. The lC curve for the 33% airfoil for the two most severe 

roughness conditions has a slope much lower than for the clean airfoil and indicates 
separated flow. Also the maximum lift coefficient for 24% thick airfoil is considerable 
lower when roughness is applied while the 18.9% thick airfoil has only a low 
dependency on the roughness.  
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Figure 15 Polars for the three inner sections of the LM38.8 blade measured in the LM 
wind tunnel. Top figure:  sec.03 at 33% of rotor radius; mid figure: sec.05 at 48 % of 
rotor radius and bottom figure: sec. 08 at 75% of rotor radius. 
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3.3 Surface pressure fluctuations measured with microphones 
The measurements of high frequency surface pressure fluctuations with microphones 
have two main objectives: 

 detection of position of transition 

 determining acoustic noise sources  

The power spectra of the surface pressure fluctuations are quite different for a laminar 
and a turbulent boundary layer. In particular in the frequency range from e.g. 1 kHz to 10 
kHz the difference is considerable and this is illustrated in Figure 16 where the PSD 
spectrum for the microphone at position 13.8% from the leading edge is much higher 
than the spectrum for the microphone at position 10.2%. So, the transition has been 
detected to be within these two positions. 
 

 
Figure 16  Test of the outboard section of the LM38.8 blade in the LM wind tunnel. The 
figure shows the power spectrum of the signal from four microphones in the leading edge 
region of the airfoil, and the transition is detected to be between position 10.2% from the 
leading edge and position 13.8%. 

The surface pressure fluctuations close to the trailing edge are the source of the trailing 
edge noise and thus also an important intermediate result in a noise prediction model for 
prediction of the far field noise. Measurements of the power spectrum of the pressure 
fluctuations can thus be used to validate and tune noise prediction models. An example 
of this type of measurement is shown in Figure 17, where the spectrum for a microphone 
at about 85% from the leading edge is shown for different angle of attacks. The general 
tendency in the spectrum for an increasing angle of attack is that the energy increases at 
the lower frequencies and decreases in the other end of the spectrum due to the 
increasing thickness of the boundary layer. The considerable peak at around 5 kHz is a 
distinct noise from the wind tunnel. 
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Figure 17 Power spectrum for the microphone around 85% position from the leading 
edge at three different angle of attack.  

 



 

Risø-R-1726(EN)  21 

4 Inflow measurements on the Siemens 3.6 MW 
turbine at Høvsøre 
4.1 General description 
The pitot tube was mounted in the beginning of March 2007, but at that time the Risø 
data acquisition system was not connected to the data channels from the turbine. Later it 
was decided to connect a few of the turbine parameters (e.g. rpm., pitch,  electrical 
power) to the Risoe data acquisition system. This has been in operation from spring 2009 
to the end of the project period. 

During the whole measurement period, the pitot system has been purge manually several 
times. Calibration of the pressure transducers has also been carried out. 

To summarize there are the following two main measuring periods: 

1. From March 2007 to the end of 2008 only the pitot tube channels were sampled 
with the Risoe data acquisition system. The turbine data and meteorological data 
were sampled with the Siemens system and it is possible to synchronize the two 
set of data files. However, it seems to be difficult to carry out an exact 
synchronization of the signals during time and even within the time frame of 
one day.  

2. Data from week 20 to week 43 2009, where the pitot channels and the turbine 
channels are in the same files. A statistical analysis (10 min. statistics) of these 
data has been performed and summarized in graphs covering one week. See an 
example below in Figure 18 for hub wind speed and inflow angle. It should be 
noted that the off-set of the measured local inflow angle has not been calibrated 
in this first analysis. 

 

Figure 18 10 min. average values of wind speed at hub height from the meteorology mast 
west of the Siemens 3.6 MW turbine and the local inflow angle (off-set not calibrated) 
measured with the pitot tube on the blade of the Siemens turbine, shown as function of 
hub wind speed. 

4.2 Example of inflow measurements 
The following figures are intended to show the quality of the inflow measurements with 
the five hole pitot tube. The presented data set was arbitrarily selected from May 18 
2009, where the wind speed and wind direction from one of the met masts at Høvsøre are 
shown in Figure 19. 
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Figure 19 Wind speed and wind direction at Høvsøre on May 18 2009, where the inflow 
data presented Figure 20 are from 11 o’clock this day. Graph is from 
http://veaonline.risoe.dk/.  

The measured inflow angle and relative velocity for a 10 min. period is shown in Figure 
20. In order to illustrate the major 1p content in the signals due to wind shear and the 
instantaneous yaw error, the low pass filtered signals with a cut-of frequency of 0.2 Hz 
are shown in Figure 21. Finally the good correlation between the measured relative 
velocity, low pass filtered in this case with a cut of frequency of 0.1 Hz, is compared 
with the generator speed in Figure 22. 
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Figure 20 Local inflow angle (top) and relative velocity (bottom) measured with the five 
hole pitot tube on May 18 2009 at 11 o´clock. 

 

 
Figure 21 The same data as shown in Figure 20 but now low pass filtered with a cut off 
frequency of 0.2 Hz in order to show the 1p variations in the signals. 

 
Figure 22 The relative velocity low pass filtered with a cut-off frequency of 0.1 Hz and 
shown in comparison with the generator speed. 



 

24  Risø-R-1726(EN) 

4.3 Derivation of wind shear and turbulence from inflow data  
One major application of inflow data is the derivation of wind shear and turbulence 
characteristics from the data. A method for this has been presented by Madsen and 
Fischer [8] and a few results from this work will be presented here. 

The data presented are all from one day on March 28 2007. In a longer time period 
around this day the weather was clear and sunny with temperatures around 15 °C during 
daytime and close to 0°C in the night. These weather conditions caused a very stable 
boundary layer to develop during the night with a strong shear and low turbulence. An 
example of measured inflow angle at night and at daytime, respectively, is shown in 
Figure 23. During night a considerable 1p variation is seen in the inflow signal, whereas 
the pattern is much more stochastic during daytime.  

 

Figure 23 A comparison of inflow angle measured at night and at day, respectively, 
showing the influence of strong wind shear and low turbulence during night. 

The method for derivation of the wind shear profile from inflow data is based on an 
aerodynamic simulation (in this case the HAWC2 code), where shear is superposed on 
the inflow to the simulation and adjusted to give the same azimuthal variation in local 
inflow angle as measured, Figure 25. The shear applied in the simulation is then the 
shear derived from the inflow measurements and can be compared with the shear 
measured in a met mast. As seen in Figure 24 the correlation is quite good. 
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Figure 24 Wind shear profile derived from inflow data and compared with profiles from 
different masts nearby. 

 

 
Figure 25 The inflow pofiles (inflow angle as function of azimuth position) used for 
derivation of the wind shear profiles in Figure 24. 

Likewise the turbulence can be derived from inflow data by correlating the standard 
deviation of the computed local inflow angle with the measured ones and in this case 
adjusting the local turbulence intensity in the inflow to the simulation, Figure 27. The 
applied local turbulence intensity in the simulations can then be compared with the 
turbulence measured in the nearby meteorology masts, Figure 26. For the night case the 
correlation is good, whereas the deviations are bigger for the case during daytime. 
However, there is also a big deviation between the turbulence data measured in two 
masts at that time as can be seen in Figure 26. 
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Figure 26 Turbulence profiles derived from inflow data and compared with profiles from 
different masts nearby. 
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 Figure 27 The inflow pofiles of standard deviation as function of azimuth position used 
for the turbulence profiles in Figure 26. 
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5 Pressure and inflow measurements on the 
NM80 turbine in the Tjæreborg wind farm 
5.1 Types of data 
Measurement campaigns were conducted from late June 2009 to mid September 2009. 
Sensors on the turbine and in the meteorology mast were sampled with one separate data 
acquisition system with 35 Hz for 10 min., while the pressure taps were sampled with 
100 Hz for 9 min and 30 sec and started at the same time as the 35Hz measurements. The 
microphones were sampled with 50 kHz over a 10 sec. period and with a new sampling 
started each minute. Besides the pressure, inflow and microphone sensors a considerable 
number of strain gauges and accelerometers mounted on the blades, the shaft and the 
tower were sampled, also with a frequency of 35 Hz. Finally a number of meteorological 
sensors mounted in a 90 m mast close to the turbine were also sampled with a frequency 
of 35 Hz. 

The data were thus sampled with three different systems and three different scan rates. 
However, one trigger signal was sampled in all three systems so an exact merging of the 
files can be performed afterwards. An example of this is shown below in Figure 28, 
where a microphone signal sampled with 50 kHz is merged together with a signal from 
the five hole pitot tube sampled with 35 Hz. It is seen that the microphone positioned at 
x/c=0.056 from the leading edge of the blade shows reduced response (laminar flow) 
when reducing the inflow angle and increased response (turbulent flow) when increasing 
the inflow angle. 

 

Figure 28 An example of merging different file types. In this case a microphone signal 
(blue curve) scanned with 50 kHz and the inflow angle (red curve) scanned with 35 Hz.  

5.2 Example of data for studying 2D/3D airfoil characteristics 
An initial comparison of 2D pressure distributions (from the LM wind tunnel) and 3D 
pressure distributions (measured on the NM80 rotor) for the root and tip section of the 
LM38.8 m blade at 13% radius and 93% radius, respectively, has been presented by 
Madsen et al. [9] and Bak et al. [10] and a few results from this work will be shown 
here. The pressure distributions from the rotor were averaged over a period of 30 sec. 
with the turbine operating at 10-12 m/s. The raw voltage data from the pitot tubes has not 
yet been converted to inflow angle, which therefore was estimated from BEM 
simulations. The dynamic pressure used for non-dimensionalization was derived from 
the velocity triangle with the rotational blade section velocity and a local axial velocity 
assuming an induction factor of 1/3. However, for the inboard section an additional 
factor of 1.25 was applied on the dynamic pressure in order to obtain a reasonable 
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correlation of the rotor pressure distribution with the 2D data and the 3D CFD pressure 
distributions. One cause of this deviation could be the contribution to the relative 
velocity from the swirl which was not included. However, in the future analysis the 
dynamic pressure will be derived from the inflow velocities from the adjacent five hole 
pitot tubes. Finally, the mean level of the pressure distributions were chosen to fit the 
pressure peak on the pressure side of the airfoil to the 2D pressure distributions. 

Comparing now the pressure distributions in Figure 29 it is seen that for sec. 4 at 93% 
radius there is a close correlation with the 2D wind tunnel data and with the 3D CFD 
data at 11 m/s. It should be noted that the CFD blade geometry data are based on the 
exact NACA 634xx geometry whereas the wind tunnel section model is a copy of the 
measured geometry of the rotor section. In the leading edge region and up to around 25% 
position there is an indication in both the rotor and 2D pressure distribution of a slightly 
modified airfoil geometry.  

For the inboard section at 33% radius a systematic deviation between the 3D pressure 
distributions from the rotor and the 2D pressure distributions are seen. In particular the 
deviations are found on the front part of the airfoil section with attached flow. However, 
the 3D CFD pressure distributions are generally closer to the pressure distributions 
measured on the rotor than in the wind tunnel. Further the CFD simulations show 
considerable flow separation on the inboard part of the blade as seen in the streamline 
plot in Figure 30. 

  

Figure 29 Measured pressure distributions, on the rotor and in the LM wind tunnel, on 
two sections of the LM38.8 blade, the most outboard section of the blade named sec. 4 
and the most inboard section named sec. 1, in comparison with pressure distributions 
computed with the CFD code EllipSys3D. 

 
Figure 30 Computed streamlines with the ElliSys3D code at a wind speed of 10 m/s 
showing separation at the inboard section at radius 13 m. 
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5.3 Example of comparing transition on the rotor with transition 
in the LM wind tunnel and influence of turbulence in inflow 
From the same study as referenced above, Madsen et al. [9] and Bak et al. [9a], spectra 
of surface pressure fluctuations measured on the rotor, measured on the section in the 
wind tunnel and measured in the wind tunnel with a turbulence grid are compared for 
different microphone positions, Figure 31. The turbulence grid mounted in the inlet of 
the LM tunnel created a turbulence level of between 1 to 2% in the test section. The 
measured spectra close to the leading edge are a good indicator of the turbulence in the 
inflow as the boundary layer on the airfoil only has developed over a short distance. 
Comparing the spectra at 0.6% from the leading edge it is seen that up to about 500 Hz 
the spectrum measured on the rotor indicates much higher inflow turbulence in this 
frequency range. It is also seen that the turbulence grid raises the turbulence in a 
frequency interval, where the rotor spectrum correlates better with the spectrum 
measured in the clean tunnel. However, it is seen that for the 4.7% position there is a 
good correlation between the rotor spectrum and the spectrum measured in the wind 
tunnel with the grid. For the cases at 2.3% and 4.7% chordwise positions the boundary 
layer is turbulent at the rotor, whereas it is still laminar in the tunnel without grid. 
Proceeding further downstream to position 13.8% all three boundary layers are now 
turbulent, but the energy in the rotor spectrum is considerable lower except at 
frequencies below 50 Hz. 

The spectra measured close to the leading edge at the rotor indicate thus a much higher 
turbulence or unsteadiness in the inflow than seen in the wind tunnel flow for 
frequencies up to about 500 Hz. This appears also clearly when time traces of the surface 
pressure fluctuations are compared as shown in Figure 32. The scales in the figures are 
identical and the inflow velocity on the rotor and in the wind tunnel is almost the same. It 
is clear from the comparison in Figure 32 that the scales of the turbulence caused by the 
grid are too small. In future analysis of the pressure fluctuation data a key question will 
be to investigate what influence the much higher energy content in the inflow below 500 
Hz has on transition when compared with wind tunnel conditions. 

 

 

Figure 31 A comparison of spectra of surface pressure fluctuations for four positions, 
0.6% (top left), 2.3% (bottom left), 4.7% (top right) and 13.8% (bottom right) from the 
leading edge for the airfoil section corresponding to the outermost section at the rotor in 
the wind tunnel without and with turbulence grid and on the rotor. 
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Figure 32  Time trace of surface pressure signal at 0.6% position from the leading edge 
measured on the rotor (top), in the wind tunnel without turbulence grid (mid) and in the 
wind tunnel with turbulence grid (bottom). 

5.4 Example of data from wake operation 
One of the objectives with the experiments was to get improved insight into the wake 
flow characteristics as most turbines operate close to other turbines and thus experiences 
inflow which is the wake flow from another turbine. As there are seven other turbines on 
the site, the NM80 turbine with the test blade will operate in wakes from many wind 
directions as shown in Figure 10. Below a number of figures will illustrate the influence 
of wake situations with the wind direction in an interval around 200°, where the 
upstream turbine is around 3.5 rotor diameters away. 

During the measurement day of September 1 2009, the wind direction increased slowly 
from around 180° at 12 o’clock to about 220° at 16 o’clock, Figure 33. The wind speed 
was in the range of 10-13 m/s. First is shown inflow data from the pitot tube at 31 m 
radius and the flapwise moment at 19 m radius (r/R=47.5%) for the half wake situation 
at 14:30, Figure 34. Severe 1p variations are seen in both signals as the blade passes in 
and out of the wake. At 14:00, where the turbine is almost in a full wake it can be seen 
that the 1p variations are less severe, and only in short periods there are big 1p variations 
when parts of the blades passes somewhat outside the wake, Figure 35. In fact the blade 
fatigue (material constant m = 12) for the flapwise load is about 50% less in the full 
wake situation than in the half wake. 
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Figure 33 Wind direction on September 1 2009, resulting in a full wake situation for a 
wind direction of about 200 deg. at 14:00 and a half wake situation half an hour later, 
14:30. 

 

 
Figure 34 Data from 14:30 when the NM80 turbine operates in half wake. The blue 
curve is the inflow angle signal for the pitot tube at a radius of about 31 m and the red 
curve is the blade moment flapwise signal at a radius of 19 m.  
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Figure 35 Data from 14:00 when the NM80 turbine operates in almost full wake. The 
blue curve is the inflow angle signal for the pitot tube at a radius of about 31 m and the 
red curve is the blade moment flapwise signal at a radius of 19 m. 

5.5 Example of measurements in yawed flow 
Operation in yaw causes a complex flow and induction around the rotor. Several yaw test 
cases were therefore contained in the test plan and it is expected that with the detailed 
instrumentation of the rotor new insight in yaw aerodynamics will be obtained from the 
present data set.  

In Figure 36 the wind direction and yaw position is shown and a yaw error of about 40° 
can be derived from this figure. The electrical power and the inflow angle signal from 
the pitot tube at radius 20.3 m is shown and a severe 1p variation is present in this signal 
due to the yaw error. The flapwise moment at the root and at a section close to the tip is 
shown as a function of azimuth angle in Figure 38. Finally the blade root moment is 
shown for two yaw errors in Figure 39. 
 

 
Figure 36  Yaw position (blue curve) and wind direction (red curve). 

 



 

Risø-R-1726(EN)  33 

 
Figure 37  The Blue curve is inflow signal from pitot tube at  radius 20.3 m and the red 
curve is the turbine electrical power. 

 

 
Figure 38 Top plot shows the variation of the flapwise blade root moment (radius 3 m, 
r/R=7.5%) as function of azimuth position  and the bottom plot is for the flapwise blade 
moment in a cross section close to the tip (radius 37.0m, r/R=92.5%). 0° is for the blade 
pointing vertical upwards. 

 

 
Figure 39 Comparison of the flapwise blade root moment (radius 3 m) for two cases with 
a yaw error of around 50 deg and -70 deg.  



 

34  Risø-R-1726(EN) 

 

5.6 Example of pitch step 
During a few runs the turbine was configured to make step changes in pitch with +/-1°. 
These measurements were carried out to provide important information for tuning the 
dynamic induction constants in the engineering BEM type models. 

An example is presented below from measurements on September 9 at 16:20. In Figure 
40 is shown the local inflow angle signal from the pitot tube at radius 31 m and the 
flapwise response at a cross section close to the tip (r=37.0m, r/R=92.5%) is shown next 
in Figure 41. Finally, a low pass filtered inflow angle is compared with the rotor power 
in Figure 42.  

 

 
Figure 40 Local inflow angle from pitot tube at 31 m radius. 

 
Figure 41 Flapwise moment at a cross section close to the tip, r=37.0 m. 

 
Figure 42 The local inflow angle as shown in Figure 40 (blue curve), but low pass 
filtered with a cut-off frequency of 0.2 Hz in comparison with the electrical power (red 
curve).  
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5.7 Example of trailing edge noise source measurements 
As mentioned before the measurements of high frequency surface pressure fluctuations 
with the microphones are used; 1) to detect position of transition and 2) to study 
aeroacoustic noise sources, mainly turbulent inflow noise and turbulent boundary layer 
trailing edge noise. An example of the last application is shown below in Figure 43. 

 

 

Figure 43 PSD spectra of signal from microphone 32 which is about 0.8 chord lengths 
from the leading edge for measurements on September 9 at 10:14 and 12:50 , 
respectively. Each line in the figures represents the spectrum of 1 sec. of the total time 
trace of 10 sec.  

Spectra of the signal from microphone 32 which is situated about 0.8 chord lengths from 
the leading edge were derived for each 1 second block of the total length of 10 seconds. 
It is seen from Figure 43 that the spectra vary considerably from one period to the next 
and it is expected that variations in local inflow angle is the main cause. Therefore, the 
spectra will be correlated with the local inflow angle and it is expected that this will give 
a detailed picture of the trailing edge noise source. 
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6 Final remarks 
The experiments conducted within the DAN-AERO MW project have briefly been 
described and a number of application examples of the experimental data have been 
presented. It is the hope that this will inspire readers of the present report to start using 
the data and perform much more detailed analysis of the data. As mentioned in the 
Preface section a new project has been funded by the Danish Energy Agency, EUDP, 
and a detailed analysis and utilization will be performed within this project.  

It should also be noted that the data sets from the DAN-AERO MW project are not in 
general available for people outside the project group and the reporting on the project 
comprises a number of confidential, internal reports [11], [12], [13], [14]. However, 
specific requests on specific data sets will be evaluated by the project partners to assess 
the possibility of releasing the requested data sets.  
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