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ABSTRACT

The interaction forces between the partial dislocations forming 

an extended dislocation node are calculated using elasticity theory 

for anisotropic media. The calculations are carried out for nodes of 

screw, edge and mixed character in Ag, which has an anisotropy ratio 

A equal to 3, and in a hypothetic material with A = 1 and the same 

shear modulus as Ag. The results are compared with three previous 

theories using isotropic elasticity theory by Brown and Tholen, Siems 

and Jtissang et al. As expected, in Ag the influence of anisotropy is of 

the same order as the uncertainty due to the dislocation core energy.
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INTRODUCTION

As mentioned by Brown and Tholen [l ] (1 964) one weakness of 

their formula for calculating the SFE from extended dislocation nodes 

is that the formula is only valid for elastically isotropic media. The 

elastic properties of the material only appear through the shear modu

lus p.and Poisson's constant v. In recent years, the theory of dislocations 

in elastically anisotropic media has been developed far enough to allow a 

calculation of the SFE in much the same way as done by Brown and Tholen, 

but with the use of the proper elastic constants c^, c^ ^ etc. This of course 

makes the calculations more complicated and it is not possible to give 

a simple analytic expression to be used together with quantities mea

sured on the extended node. Instead these quantities must be used as 

input in a computer program evaluating the SFE. However, since the 

SFE might be of interest for a material close to a phase boundary, 

where the material can be highly anisotropic, the possibility of avoid

ing the approximation of isotropy is valuable.

THEORY

In order to clarify the aim of the following review of the basic the

ory we first look at the equilibrium condition for a node. The SFE acts 

as a surface energy and gives rise to a force on the partial disloca

tion which tends to shrink the node. This force is balanced by the elas

tic interaction between the partials. This interaction depends on the 

elastic constants of the medium and on the dislocation configuration.

Since all parts of the node interact with each other the configuration 

dependence is quite complicated and simplifications must be made in 

order to render the evaluation of the elastic interaction force in an ani

sotropic medium manageable.

An expression for the elastic interaction force, the Peach-Koehler 

force, may be derived as follows (e. g. Hirth and Lothe [2]).

The force per unit length on a straight dislocation is

|= (b • cr) x T (1 )

where t is the dislocation direction and y the stress tensor.

We want an expression for the force in the glide plane normal to 

the dislocation. (The glide plane is the plane containing both the dislo

cation line and the Burgers vector. ) Choose m so that



- 4 -

m = n x r (2)

where n is the unit vector normal to the dislocation glide plane. Then

y- • m = (£• o) x r • m = (b- ct) • T x m = (b* o) • n

where

(b- a) ' n = b-cj-n.

(Through out this paper the Einstein convention is used, i. e. the repeated 

Roman indices implies summation. )

Thus

F = b.CT..n.
1 iJ J

where F is the force per unit dislocation length in the glide plane and 

normal to the dislocation.

The present problem is to find the stress field o from the three 

partial dislocations forming a node. 5 from a straight dislocation may

be found by solving a sextic equation (c. f. Stroh |_3 J). Using the forma

lism developed by Malen and Lothe [4 ], this problem is transferred 

to a standard eigenvalue problem. They introduce (c. f. Stroh [3 ]) vec

tors A and JL with components and and matrices ab with com

ponents

VijkA 7 <ab>jk

where a and b is a pair of the vectors m, n and t in eqn. (2). Using 

Hooke ' s law

(4)

(3)

a ^
op opqs $Xg (5)

where u^ is the displacement and expressing the stresses in functions

cp.. so that 
YiJ

a.. = (curl cp).. 
iJ v T,iJ

e.
ikl dxk

(6)

they finally obtain
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N

where

(7)

N = -
(nn) * nm 

mn(nn )nm mm

(nn) 1 

mn(nn) -1
(8)

This is a standard eigenvalue problem with six eigenvalues p and six
. - - o!

eigenvectors (A , L^) in pairs of complex conjugates.

From Malen and Lothe [4] we find the stress from a straight dislo

cation through the origin, in the T-direction, expressed in the x-cordi- 

nates:

1 6 m + p n
°ij " Cijk-t 27n S Ahy (* 1 )Lsabs - - ”

cy=l u m- x + p^n- x
(9)

where the eigenvectors are normalized.

From the stress in the plane x- n = 0 at unit distance from the dis

location (m. x = 1 ) we obtain the stress factor Z.. (c. f. Brown [ 5 ])

z
ij

1
Cijk-L 2ni «=i Ato ')Ls«bs(mt + p»nV (10)

The angular factor

a (9)$-• (cp) = (9) + —-4>--------

IJ IJ
(11)

3cp

where Z.. (cp) is the stress factor for a straight dislocation in the direc

tion specified by cp, can be used to evaluate the elastic field from a 

curved dislocation loop (Malen and Lothe [4])

(r = 0) = j (cp) r'1 dcp (12)

r and cp are the polar coordinates for the dislocation element dcp which 

is integrated over. The second derivative of (cp) with respect to cp 

may easily be obtained from eqn. (l 0) (c.f. Malen and Lothe [4]).

Expression (1 2) is used in the present paper to find the stress from 

the three partials forming an extended node. It might be evaluated by 

calculating (cp) for several directions and using numerical integration.
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In order to avoid this time-consuming treatment of the problem, we 

choose to expand £ (cp) up to second order around a given direction.

hj M = (0) + q> sr. (0) + 2-e;: (o) +
ij ij 2 Aij (13)

The nodes in fee materials are situated on the (l 1 1 )-planes which possess 

3-fold symmetry. If the series expansion is carried out for cp up to y, 

we cover the whole node plane by only one calculation of £„ and its de

rivatives. Realizing that

ZV (cp) = (-1 )i+j S.. (cp + n) (14)

w e can restrict ourselves to expand up to cp = ^
ij

Instead of finding the derivatives of £ . by direct differentiation of 

expression (l 0), let us carry out some simplifications. Inserting f =

= nxT + pn into eq. (2. 9) in the paper of Malen and Lothe [4 ] gives

T£Llj ~nicijUAk^pni + (15)

Using c.., „ = c.., . and T. L„ . = L. (by definition) and exchanging the po-
6 ijkT Jik-t l Tj J ' ' 66 ^

sitions of i and j, eq. (15) becomes:

Li = -njcijHVmt + PV (16)

Multiplying both sides of eq. (l 0) by n. we obtain

! 6
sijnj = cijkl 2m ^ ^Lsabs^mT + panVnj (17)

Hence, by eqs. (l 6) and (1 7)

6
h = zijnj = zk b <* 1

a=l
(18)

Define b A . = E., giving
s si 1 & 6

Asi " 2^i E 1)Lo.L4

Of=l
sa ia

(19)

Since = 0 and b is a constant we obtain the derivatives of £..n. by
Sep s ij J

differentiation of the rather short expression (19):
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Af . = -jXr 
si 2 m

6
Z

a=l
1 )(LsaLia + L'saLia) (20)

A".
si

1
2 m

6
Z

a=l
(f 1)(L L" + L" L. + 2L’ L’ ) 

sot sa sa i# sa ia'
(21)

The derivatives of L are expressed in eqs. (3. 8) and (3.11) in ref. [4].

The 

through

The functions A . are explicitly related to the stress factors Z..
si ^ * ij

Z. .n. = b A . (22)
ij J s si x '

Multiplying eq. (l 2) with n and using eqs. (1 1 ), (1 3) and (22) we obtain 

the stress field

2CTijnj = bg{ [Asi(°) + Asi(°)^ fr ldcp + AV(0)Jcpr“ldcp+

+ j A”i<°)# cp2r~l dcp} .... (23)

Combined with eq. (3) this gives us the force per unit dislocation 

length in the glide plane and normal to the dislocation. However, eq.

(23) is insoluble at the points in which we are interested, namely on the 

partial dislocation itself. The reason is that r, the distance between the 

field point and the source point, approaches zero as we perform the 

integration if the field point and the source point are situated on the 

same partial. (The field point is the point where we wish to calculate 

the stresses, the source point is the position of the dislocation segment 

giving rise to the stresses. ) The field point must be moved away from 

the partial, and, using Brown's [6 ] definition of the self stress, the 

force per unit length on any dislocation element due to the configuration 

of which it is a part is

F(r) = j [F(; + i) + F(? - e)] (24)

where e is a vector of length approximately equal to the inner cut-off 

radius and normal to the dislocation line, j e | is in the present work 

chosen to be 5 A.
The dependence of r * upon cp is determined by the specific disloca

tion configuration for which the calculations are carried out. In the pre
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sent work three different shapes of the partials at the node are tested, 

a hyperbolic, a parabolic and a circular shape. The latter two second 

degree curves are smoothly joined to straight lines describing the partials 

forming the node legs. Since the parabolic assumption is found to give 

the most evenly distributed force on the partials at the node, the par

tials in the present work are assumed to consist of two infinite straight 

lines joined to a part of a parabola. The vertex of the parabola is sym

metrically placed with respect to the two straight segments of the par

tial. Thus, the appearance of a node is fully determined by:

1) The parameters of the three parabolas at the node

2) The position of the foci of the parabolas relative to each other

3) The angles between the node legs

4) The orientation of the node in the lattice

Let us summarize the procedure to find the SFE from a stacking 

fault node, photographed in an electron microscope. The node must be 

observed in three different orientations each with one of the node legs 

out of contrast. (A node leg does not give any contrast when its Burgers 

vector is contained in the reflecting plane.) Using standard electron dif

fraction technique we are then able to fully determine the node plane, 

the orientation of the node, the angle between the node plane and the 

electron beam, and the Burgers vectors of the partials forming the node.

The eigenvalue problem (eq. (7)) is then solved and the A-factors 

are determined for the node plane. This is done using a slightly modi

fied version of a computer programme written by K. Malen [7]. The 

A-matrix is then used together with the measured quantities of the node 

(points 1 - 4 above) as input in another computer programme which 

solves eq. (23) and calculates the force per unit length on a dislocation 

by eq. (3). This programme makes use of eq. (24) and the symmetry 

of a (1 1 1 )-plane in fee. (See ref. [l 3 ]).

CALCULATIONS

The series expansion of the stress factors is of interest not only 

for the present work, but is of use in many problems involving disloca

tion interactions. Fig. 1 shows the degree of validity of the expansion of 

A„ around the [l Of ]-direction on the |_1 f 1 J-plane in Ag. A_ is related 

to the stress factors through eq. (22). The numbers in the figures are
11 zgiven in 1 0 dyn/cm .

The expansion gives almost exact values for cp = 1 0°. When <p = 20°
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the greatest absolute deviation is ~ 0. 01 5 • 10^ dyn/cm^ for A^. 

greatest relative deviation, 1 2 per cent, is shown by Aj This devia

tion has risen to more than 50 per cent when <p = 30°.

In the present work the SFE is calculated from node measurements 

in an anisotropic material. The material chosen is Ag, which has an 

anisotropy ratio A = 3. 0. In order to compare the anisotropic calcula

tions with an isotropic average, we have constructed an elasticity ma

trix for Ag with A = 1.05. (A = 1 , the fully isotropic value, can not be 

used owing to limitations in the computer programme. )

The following relations are valid for an isotropic material:

C44 = F<C11 - c12> (25)

x = c1 2 (26)

where p is the shear modulus and X the Lam£ constant. The Voigt mean 
values of p and X for Ag are 3. 38 • 10^ dyn/cm^ and 8.11 • 10^ dyn/cm 

respectively (ref. 2). From this c^ = X + 2p = 1 4. 87. We put c^ = p 

and determine c^ ^ so as to give A = 1.05 which gives

Cjj =14.87* 10^ dyn/cm^

Cj 2 = 8. 43 • 10^ dyn/cm^ 

c^ = 3.38 * 10^ dyn/cm^

Let us call this material IS (isotropic silver). For Ag the elastic con

stants are (ref. 2):

Cj j = 1 2. 40 • 1 0* * dyn/cm^

C] 2 = 9. 34 • 1 0^ * dyn/cm^ 

c^^ = 4.61 * 10^ dyn/cm^

For a given stacking fault node, equations using isotropic elasticity

theory will give the same SFE whether the node is in IS or in Ag. In order

to extract the influence of anisotropy on the SFE value one obtains from
2

measurements of a certain node, we have assumed a SFE = 21 erg/cm 

in both Ag and IS, calculated the node appearance in Ag and IS, and com

pared the results. This is done for screw (a = 0), edge (a = tt/2) and
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mixed (a = tt/4) nodes, (a is the angle between a node leg and its Burgers 

vector. ) The force per unit length is calculated for six points on one 

partial, situated as shown in fig. 2 (v = 1 /7 • (2tt - 4u)).

The result is shown in table 1 - 6. A, D and P in table a) are para

meters specifying the node appearance. A gives the curvature of the pa

rabolic segments of the partials (see fig. 2) and D and $ give the relative 

positions of the three partials (see fig. 3). The indices I, II and III spe

cify to which partial a certain parameter belongs. As shown in fig. 2 

the partial dislocations are called I, II and III. The field points are al

ways situated on partial III. Table a) also gives the mean value of the 

SFE for the six field points together with the standard deviation. The se

paration s of the partials and the radius of the inscribed circle found in 

the calculations are also shown in table a). Table b) gives not only the 

total force F^, in each field point but also the contributions Fj> F^. and 

Fjjj from each partial. F^ is generally called the self force.

Table 7 compares the values of the SFE in the present work with the 

■values found for the same nodes with three previous formulas for SFE- 

de termination. Brown and TholSn [l ], Siems [8 ] and Jos sang et al. [9 ].

Calculations have also been carried out for two real nodes in Ag, 

shown in fig. 4. Since the plane perpendicular to the electron beam was 

(1 01 ), the nodes are seen projected on that plane. Node A is a rather 

symmetric* node deviating ~1 0° from pure screw character, while node 

B is asymmetric with the out of contrast leg having pure screw charac

ter. The results of the calculations are shown in table 8-13. The field 

points 1 - 4 in those tables correspond to the points 2 - 5 in fig. 2. The 

outer points have been omitted since the force at these points depends 

strongly on the separation of the partials. Hence, contrast displacement 

from the true dislocation position will be important.

ERROR DISCUSSION

Let us estimate the error in the calculations introduced by using a 

series expansion of A., over as much as 30°. Using eqs. (3) and (23) we 

obtain:

F = b.b R(A,., r, cp)

* The word "symmetric" refers to the node appearance. All nodes in 
this report are symmetric in the sense that the node legs are of the 
same character.



- 11

where R is a function of A„, and the derivatives of A„, r and cp. However, 

the Burgers vectors must be expressed in the same system as A.., i. e. 

the (m, n, T)-system, and they are situated in the (m, t)-plane (the glide 

plane). Hence equals zero and the only A-factors contributing to F 

are A^, A^, A^ and A^^. With cp = 30° the deviation for Aj ^ is 23 per 

cent of the true value, but the total effect of the series expansion will 

be considerably less.

The relative error introduced by integrating the series expansion 

instead of using the true values of A., is:

jA.j(cp) dcp - J'LA.j(cp) - v(cp)]dcp

jA.^cp) dcp

where v(cp) are the deviation between A_(cp) and the series expansion. Thus

p is found by dividing the area under the difference curve by that under

the A_(cp) curve. This gives p^ ^ ~ 1 1 per cent, p^ < 1 per cent and p^ <

< 1 per cent. If these percentual errors are weighted with the absolute

values of the relevant A.., the total error in F will be about 2 per cent.
ij

The main weakness in the calculations is the assumption of a para

bolic form of the partial dislocations. This prevents the calculations 

from being carried out for a dislocation in its proper equilibrium state. 

The difference between the values obtained in various field points is a 

measure of the validity of the parabolic form. As can be seen from 

tables 1-6, the greatest error is introduced for the edge nodes, while 

the parabolic form is a rather good assumption for screw nodes. How

ever, a programme using the parabolic form is found to be superior to 

programmes using either a circular or a hyperbolic form.

The calculations are based on elasticity theory and the dislocations 

are assumed to have zero width. No attention is paid to core energies 

which may amount to some tenth of the total dislocation energy. How

ever, by varying the core radius e in eqn. (24) we can achieve some 

correction for the core energy. Using e equal to 3 A instead of 5 A 

changes the values obtained for a edge node in IS by up to 7 per cent.

The sign and amount of the change differs for the various field points.

If we choose e to be smaller than is justified from the point of view 

of linear elasticity theory, we obtain a contribution to F(r) from the 

core region. The magnitude of this contribution depends on the choice 

of e. The value e = 5 A used in this report is chosen from two criteria:
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1 ) e must be smaller than the true core radius in order to give some 

correction for the core energy, and, 2) e must not be too small, since 

F(r + e) and F(r - e ) increase with decreasing e and the formula (24) 

may also become dependent on the numerical exactitude of the computer.

The assumption of zero dislocation width implies that the calcula

tions is spoiled as the separation of the dislocations becomes compar

able with the core radius.

DISCUSSION

From tables 1 - 6 we are able to draw some conclusions on the in

fluence of anisotropy on the node appearance. Comparing Ag with IS, 

the radius of curvature R (R = 2A) for the partial dislocations at the 

node are almost unchanged for a node of screw or mixed character. 

However, for a node of pure edge character, R decreases by about 1 0 

per cent when the anisotropy ratio is increased from 1 . 05 to 3. 02. The 

radius of a circle inscribed in the node, w, is more seriously affected. 

For a screw node, w decreases by 21 per cent, for an edge node by 9 

per cent. As can be seen from the values of @, a mixed node with a = 45° 

becomes only slightly more asymmetric when the anisotropy ratio in

creases.

It is interesting to compare the various contributions to the force 

from the three partials. The contribution to the force at the vertex of 

the parabola from the self stress is for a screw node in IS 70 per cent 

and in Ag 80 per cent, for an edge node in IS it is 35 per cent, in Ag 15 

per cent, for a mixed node in IS it is 60 per cent, in Ag 62 per cent. 

Hence, in Ag an isotropic approximation tends to overestimate the self

stress for edge nodes but to slightly underestimate it for screw nodes. 

For the edge node in Ag we obtain negative self-stress in four points,

i. e. the self-stress actually tries to reduce the size of the node at these 

points. However, such a result is expected, since an infinite straight 

Shockley partial of edge character in the noble metals Cu, Ag and Au 

has negative line tension. (For Cu c.f. Clarebrough and Head [l 0 ] and 

Pettersson and Malen |_1 4 J, for Ag and Au c. f. ref. [l 4 ]. ) The bent 

shape of the partials forming a node causes the negative value of the 

selfstress to occur at points where the dislocation is not of pure edge 

character.

Table 7 compares the present theory with previous theories. A com

parison between the theory of Brown and Tholen and that of Siems has 

been made by Ruff [l 1 ]. The theories do agree well for screw nodes, 

while for a given shape of an edge node, the theory of Siems gives much
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lower SFE values than that of Brown and Thdl€n. This is also evident 

from table 7.

Before making any comparison between the present and previous 

theories, it should be pointed out that the present theory is believed to 

give higher accuracy for the SFE in Ag than in IS. IS is a constructed 

material and as such it implies an assumption.

The values for SFE for a screw node in Ag obtained by all three 

isotropic theories are significantly higher than the values from the pre

sent theory. However, even in IS the same disagreement is apparent 

when using the radius of curvature formulas or the Jos sang et al. for

mula. This disagreement can not be explained by elastic anisotropy, 

but must depend on the mathematical treatment of the entire problem. 

Jos sang et al. assumes the node to consist of straight dislocation parts 

and this assumption together with the uncertainty in the core energy, 

are believed to be the main cause of the deviations between the result 

of their theory and the result from the present report. However, the 

deviation for a screw node is increased as anisotropy is taken into ac

count. This is due to shrinkage of the node as the anisotropy ratio is 

increased. The same effect also causes the difference between the 

values of the SFE for an edge node, obtained by the Jos sang et al. 

method.

Brown and Thtilen do not assume any particular shape of the partial 

dislocations, but, using an iterative process, they find the shape which 

minimizes the total stresses at various points on the partials. The 

stresses are said to be minimized if they are less than 1 per cent of 

the stresses caused by the stacking fault. As can be seen in tables 1 - 

6 the same accuracy is obtained for screw nodes in the present report, 

while the accuracy for mixed and edge nodes is reduced by fixing the 

partial to a parabolic shape. This implies that the partials surrounding 

a node of screw character, are properly described by the parabolic as

sumption, and the parameters A and w in table la and 2a are accurate.

However, although the same cut-off radius is used in all formulas 

except the one of Jossang et al. we still have an unspecified energy con

tribution from the core in the different formulas. This contribution pro

bably amounts to about ten per cent of the value of the force on the par

tial. Keeping the above-mentioned uncertainties in mind, the following 

comparison between the present theory and the theory of Brown and 

Tholen may be made. Starting with the formula using R in the isotropic 

material, we find that the present theory does not show the same strong
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dependence of R on the node character, specified by a. The present 

theory in fact gives a higher value to R for a mixed node than for a 

screw node, while the Brown and Tholen formula gives a decreasing 

R as O' increases. The same discrepancy between the theories is found 

for the inscribed radius w. Increasing anisotropy tends to raise the 

differences in w. This is probably due to over estimation of the forces 

from the other partials of the screw node, when performing isotropic 

calculations. For the edge node, the negative self-stress causes the 

node to shrink more than in the isotropic case. The formula of Brown 

and Tholen using R seems to be slightly less dependent on anisotropy 

than the formula using w.

The theory of Siems (see also Siems et al. [l 2 ]) minimizes the total 

energy of the node in order to find the equilibrium shape. However, these 

authors only take into account the interaction energy between those parts 

of the partials which comprise the same node leg, i. e. they neglect, 

for example, the force 1 0. 87 dyn/cm and partly the force 7. 64 dyn/cm 

at point 4 in table 6b. This causes their theory to yield wrong values 

for the radius of curvature, and the error is increased as the devia

tion of the node character from pure screw is increased. The values 

obtained by using w in the theory of Siems are not so seriously affected 

by neglecting part of the interaction energy, however, and we conclude 

that this parameter is superior to R when using the theory of Siems.

The real node A (fig. 4) in Ag appears at first glance to be very 

symmetric. The values of the forces at various points, shown in tables 

8-10, also confirm this impression. From these tables we see that the 

size of the node seems to be almost entirely determined by the self
stress. However, since this node deviates only 1 0° from pure screw 

character, a comparison with tables 2 and 6 shows that the force con

tribution from partials 1 and 2 are too low in tables 8-10. The con

trast from the partials have made the node appear larger than its true 

size. Point 1 on partial 2 and point 3 on partial 3 both show high values 

of the force, indicating that the parabola approximation cannot properly

represent a true node. The mean value of the SFE achieved from the
2

present theory is 15.2 erg/cm . The Brown and Thtilen formula gives
2 2 18. 0 erg/cm using the radius of curvature R and 14.4 erg/cm using

the inscribed radius w. As for the constructed screw nodes, an iso

tropic theory using R gives too high a value of SFE. The number 14.4 is 

rather close to 15. 2, but the inscribed radius is overestimated owing 

to the false node contrast.
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Node B (fig. 4) has the node leg consisting of partials 2 and 3 tied 

at point P, rendering the node rather asymmetric. Tables 11 -13 show 

how this affects the forces at various points on the node. Although par

tial 1 is less curved than partial 2, it is affected by stronger forces.

The force from partial 2 on partial 1 (Fj in table 11) is enhanced owing 

to the relatively sharp curvature of partial 2. Since partial 1 is the only 

partial in node B of pure screw character at the vertex of the parabola

it has also relatively high self-stress. The mean value of the SFE from
2 2 tables 11 - 13 is 22. 8 erg/cm . Brown and ThtilSn give 26. 6 erg/cm

using R and 21.2 using w.

The SFE for nodes A and B obtained from the present anisotropic 

calculations differ as much as the values obtained by the Brown and 

Tholen formulas. This indicates that the large deviations from the mean 

values of the SFE, shown by certain nodes when using the node method, 

are not caused by the isotropic approximation in the equations used. 

Forces from the specimen surfaces and from surrounding dislocations 

almost entirely determine these deviations.

SUMMARY

For a material with a certain SFE, the present theory does not pre

dict such a strong dependence of the SF node size on the node character 

as previous theories. In fact, nodes of mixed character are found to be 

bigger than screw nodes even in a material with an anisotropy ratio 

A = 1 .05. This result is more pronounced when A is increased to 3.

The error introduced by using isotropic theories to calculate the 

SFE in Ag is overshadowed by disturbances from the specimen surfaces 

and from surrounding dislocations. However, certain effects of aniso

tropy on the node appearance are found, and these effects may become 

important when measuring the SFE in an alloy system close to a phase 

limit where A may be high.
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Table 1. Screw node in isotropic Ag

a) *

**
b)

AI-III DI-II SEE S w

180 470 2.618 3.665 20.9+0.2 55 92

Point FI FII FIII ft

1 6.87 1.46 12.60 20.93
2 4.99 1.93 14.14 21.06
3 3.58 2.61 14.61 20.80
4 2.61 3.58 14.39 20.58
5 1.93 4.99 14.08 21.00
6 1.46 6.87 12.52 20.85

Table 2. Screw node in Ag

a)

b)

AI-III DI-II gII SFE S w

177.5 433 2.618 3.665 20.7±0.2 23 72.5

Point FI FII FIII ft

1 5.15 0.93 14.37 20.45
2 3.46 1.26 16.20 20.92
3 2.46 1.76 16.51 20.73
4 1.76 2.48 16.60 20.84
5 1.25 3.48 16.10 20.83
6 0.93 5.21 14.26 20.40

. . 2* A, D, S and w in Angstrom, g in radians, SEE in erg/cm 
** F in dyn/cm



Table 3. Edge node in isotropic Ag

a)

b)

AI-III DI-II 6I HH
C
Q SEE S ' w

155 430 2.618 3.665 20.9+0.9 71 93

Point FI FII FIII ft

1 14.50 3.32 4.00 21.82
2 11.20 4.29 4.21 19.70
3 7.95 5.71 7.48 21.14
4 5.71 7.95 7.43 21.09
5 4.29 11.20 4.23 19.72
6 3.32 14.50 4.03 21.85

Table 4. Edge node in Ag

a)

b)

AI-III DI-II 6I 6II SEE S w

140 390 2.618 3.665 20.8+1.7 66 85

Point FI FII FIII ft

1 18.88 4.25 -1.33 21.80
2 14.79 5.51 -1.75 18.55
3 10.88 7.64 3.40 21.92
4 7.64 10.87 3.18 21.69
5 5.51 14.77 -1.68 18.60
6 4.25 18.88 -1.20 21.93



Table 5. Mixed node in isotropic Ag (a = 7t/4)

AI-III DI-II 6II SEE S w

210 555 2.524 3.5712 20.9±0.4 68 112

Point FI FII FIII ft

1 6.44 3.20 11.29 20.93
2 3.44 4.13 12.83 20.40
3 2.15 5.52 12.70 20.37
4 1.43 7.29 12.74 21.46
5 1.08 10.02 10.04 21.14
6 0.83 13.00 7.10 20.93

Table 6. Mixed node in Ag (a = tt/4)

a)

b)

AI-III di-h 6I 6II SEE S w

210 550 2.498 3.545 20.7+0.9 61 112

Point FI hr
j

H H FIII ft

1 3.50 4.03 12.56 20.09
2 1.25 5.33 14.10 20.68
3 0.42 6.49 13.45 20.36
4 0.01 9.21 13.25 22.47
5 0.01 10.95 9.24 20.20
6 0.00 15.00 5.29 20.29



Table 7.

a Mate
rial

Present
work

Brown & Thblen Siems Jos sang 
et al.

0
IS 20.9 25.7 21.5 23.7 20.8 24.0

Ag 20.7 25.8 27.3 24.0 25.8 29.5

45
IS 20.9 17.5 19.3 14.3 16.4 14.0

Ag 20.7 17.5 19.3 14.3 16.4 14.0

90
IS 20.9 17.0 24.2 9.5 17.3 15.0

Ag 20.8 18.3 26.1 10.9 18.8 16.0

Table 8. Partial 1, node A

a)

b)

A DI DII 6I 6II SFE

257 641 715 2.593 3.615 14.1

Point FI hr
]

H 1—
1 FIII ft

1 2.33 0.13 12.14 14.60
2 1.91 0.15 12.35 14.41
3 1.61 0.15 12.21 13.97
4 1.23 0.12 12.02 13.37



Table 9. Partial 2, node A

a)

b)

Table

a)

b)

A DI DII 6I eil SFE

223 672 641 2.460 3.628 15.6

Point FI FII FIII ft

1 1.86 0.20 15.32 17.38
2 1.60 0.23 13.44 15.27
3 1.35 0.23 13.62 15.20
4 1.10 0.22 13.24 14.56

Partial 3, node A

A Dt Dtt 6t btt SFEI II I II

257 715 672 2.545 3.505 15.4

Point Ft Ftt Fttt FmI II III T

1 2.26 0.23 11.97 14.43
2 1.90 0.28 12.60 14.78
3 1.43 0.32 16.85 18.60
4 1.13 0.20 12.27 13.60



Table 11. Partial 1, node B

a)

b)

A DI HH
Q 6I SII SFE

151 387 482 2.575 3.62 27.9

Point FI H H FIII ft

1 8.70 0.60 18.38 27.68

2 7.50 0.70 19.12 27.32

3 5.82 0.85 19.28 25.95
4 4.66 0.93 25.25 30.84

Table 12. Partial 2, node B

a)

b)

A DI DII 6I 6II SFE

126 429 387 2.505 3.75 24.4

Point FI hd H H FIII ft

1 4.26 0.70 15.24 20.20
2 3.43 1.00 21.74 26.17
3 2.73 1.28 22.38 26.39
4 2.13 1.63 21.12 24.88



Table 13. Partial 3, node B

A BII SFE

185 482 429 2.690 3.61 16.2

b) Point FI FII FIII ft

1 1.46 -0.25 14.92 16.13
2 1.36 -0.42 15.00 15.94
3 1.20 -0.27 14.74 15.67
4 1.05 1.07 14.75 16.87
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Fig. 2. Position of points of calculations. A and u specify the shape 
of the partial dislocation.

Fig. 3. D and 6 specify relative position of the partial dislocations.





Fig. 4. Extended nodes in Ag.
Magnification: 285 000
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