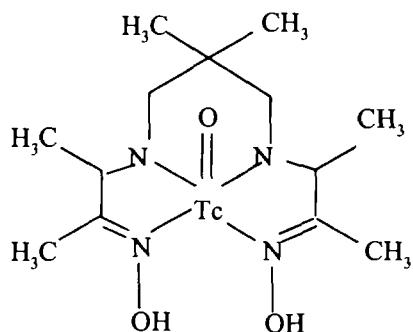
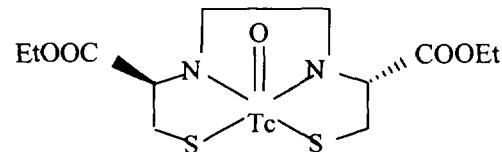


Synthesis, Preparation and Quality Control of 99m Tc-ECD

**Soontree Laohawilai, Jatupol Sangsuriyan, Nipawan Poramatikul, Chuchat Thongyoi,
Taweesak Thantawiwatananon and Tippanan Ngamprayad**


Isotope Production Division (OAEPI, Chatuchak, Bangkok 10900 Tel.5795230, Fax.5613013

ABSTRACT


L,L-ethyl cysteinate dimer or ECD is one of the diamine dithiol (DADT) derivatives of which Tc-99m complex shows good potential as a brain perfusion imaging agent. The ECD ligand was synthesized by the method of P.Blondeau et al (1967) which gave average yield of 22.8% (3.89 g./batch) of purified ECD dihydrochloride. The ready-to-use kit of ECD was prepared in two formulations. Sterile water for injection and 0.025 M phosphate buffer(pH 6) were used as solvent in formulation A and B, respectively. Then the kits were lyophilized and subsequently labeled with Tc-99m. The radiochemical purity was evaluated by various chromatographic systems (TLC, ITLC and HPLC) and obtained the value of 95% or higher as well as good *in vitro* stability up to 5 hours after labeling for both formulations. The radiochemical purity analysis by HPLC provided one peak of 99m Tc-ECD at retention time of 25 min. The biodistribution studies of 99m Tc-ECD in normal rats showed significant activity uptake in brain.

บทนำ

ตั้งแต่ได้มีการนำเครื่องมือ single photon emission computed tomography (SPECT) มาใช้ในงานเวชศาสตร์นิวเคลียร์ นับว่ามีประโยชน์อย่างยิ่งต่อการตรวจวินิจฉัยสาเหตุการผิดปกติในระบบต่างๆ ของร่างกาย โดยเฉพาะอย่างยิ่งในระบบประสาทส่วนกลาง (central nervous system) ซึ่งการศึกษา brain perfusion imaging โดยเครื่อง SPECT นั้นต้องใช้ สารเภสัชภัณฑ์รังสี (radiopharmaceuticals) ที่มีคุณสมบัติพิเศษ คือ เป็นกลางทางไฟฟ้า (neutral) และมีความสามารถในการละลายในไขมัน (lipophilic) ได้ดี ซึ่งจะทำให้สารพวกนี้สามารถแพร่ผ่าน blood brain barrier (BBB) เข้าไปได้ และจะต้องคงอยู่ในเนื้อเยื่อสมองนานพอที่จะสามารถถ่ายภาพได้ สารเภสัชภัณฑ์รังสีเหล่านี้มีทั้งพวกที่ติดคลากด้วย radioiodine เช่น I-123 IMP¹, I-123 HIPDM² และพวกที่ติดคลากด้วย Tc-99m แต่สารเภสัชภัณฑ์รังสีของ Tc-99m จะได้รับความนิยมมากกว่า เนื่องจากเตรียมได้ง่ายและสะดวกต่อการใช้งาน สารเภสัชภัณฑ์รังสี Tc-99m ที่ใช้จะอยู่ในรูปของสารประกอบเชิงช้อน Tc-99m กับ ligand ต่างๆ ที่สำคัญมีอยู่ 2 กลุ่ม ligand กลุ่มแรกจะเป็นอนุพันธ์ต่างๆ ของ propyleneamine oxime (PnAO)³ ซึ่งตัวล่าสุดที่ยังคงใช้กันอย่างแพร่หลายคือ HMPAO⁴ ส่วนกลุ่มหลังเป็นอนุพันธ์ต่างๆ ของ diamine dithiol (DADT)⁵ ECD หรือ L,L- ethyl cysteinate dimer หรือ N,N'-1,2- ethylenediyil-bis-L- cysteine diethyl ester ที่เป็นตัวหนึ่งในกลุ่มหลังนี้ที่กำลังได้รับการศึกษาวิจัยกันอยู่^{6,7,8}

^{99m}Tc-d,l-HMPAO

^{99m}Tc-L,L-ECD

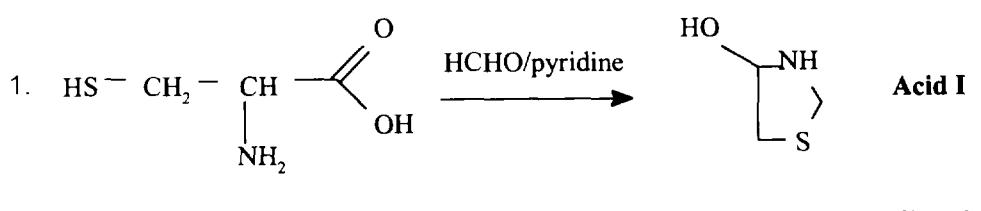
รูปที่ 1 โครงสร้างทางเคมีของ ^{99m}Tc-d,l-HMPAO และ ^{99m}Tc-L,L-ECD

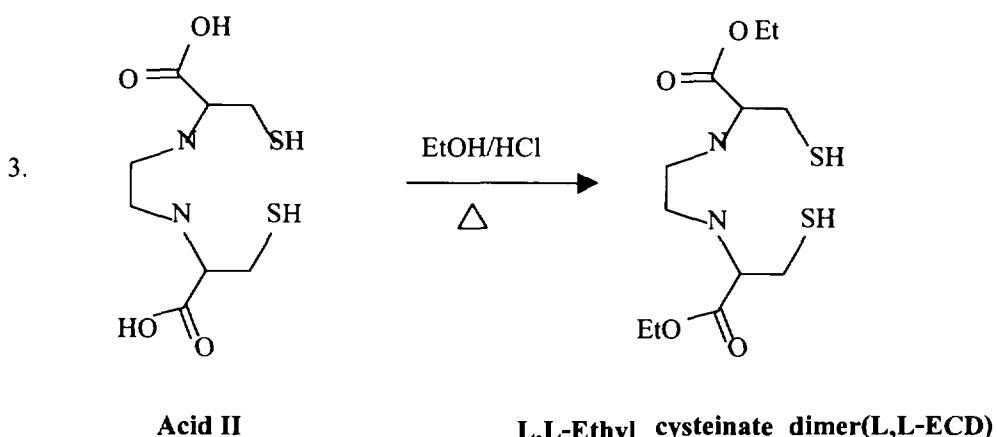
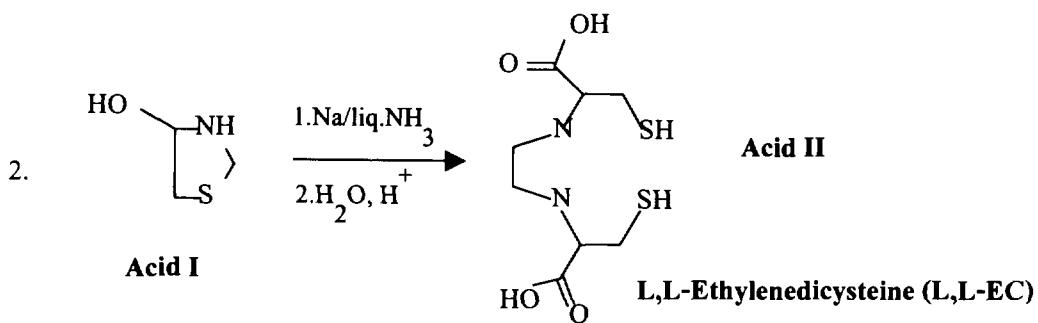
ข้อดีของการนำอนุพันธ์ของ diamine dithiol มาใช้เนื่องจาก ligand ตัวนี้สามารถสังเคราะห์ได้ง่ายโดยใช้เทคนิคทางเคมีทั่วๆ ไป^{9,10} ไม่ยุ่งยากซับซ้อนเหมือน HMPAO และเมื่อนำมาติดคลากด้วย ^{99m}Tc ก็ให้ค่าเปอร์เซ็นต์ radiochemical purity สูงเกิน 95% และมี *in vitro* stability นานกว่า 4-5 ชั่ว. ในขณะที่ ^{99m}Tc-HMPAO ให้ค่า radiochemical purity ประมาณ 85-90 % และมี stability เพียงแค่ 30 นาที

นอกจากนั้นเมื่อนำสารตัวนี้มาศึกษาในสัตว์ทดลอง^{5,8} และในร่างกายมนุษย์^{7,11,12} พบว่าสารตัวนี้มีการกระจายตัวไปที่เนื้อเยื่อสมองและสามารถสะสมอยู่นานพอสมควร บ่งชี้ว่าสารตัวนี้อาจจะนำมาใช้เป็น brain perfusion imaging agent ได้เช่นเดียวกับ ^{99m}Tc-HMPAO ด้วยเหตุผลตั้งกล่าว ทำให้เป็นที่คาดหมายกันว่า ^{99m}Tc-ECD คงจะมีประโยชน์อย่างมากต่อการศึกษาที่เกี่ยวกับ brain perfusion ต่อไปในอนาคต แต่ทั้งนี้ก็ต้องขึ้นอยู่กับผลการศึกษาทดลองทางชีวิทยา ทั้งในสัตว์ทดลองและในร่างกายมนุษย์นั้นกว่าจะได้ผลเป็นที่น่าพอใจ งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาทดลองการสังเคราะห์ L, L-ECD, การเตรียม ECD ในรูปผงแห้ง (one component freeze dried kit) รวมถึงการตรวจสอบคุณภาพที่สำคัญทั้งทางเคมีและชีวิทยา

วัสดุอุปกรณ์และวิธีการ

สารเคมี


Technetium-99m pertechnetate (^{99m}TcO₄) (กองผลิตไอโซโทป พปส.), L-cysteine hydrochloride monohydrate (Sigma), pure hydrochloric acid gas (TIG), pure ammonia gas (TIG), formaldehyde (Merck), sodium metal (Fluka), EDTA disodium salt dihydrate, D-mannitol



เครื่องมือและอุปกรณ์

FT-IR (Perkin Elmer), HPLC (Waters, Millipore), ¹H-NMR (Varian), Freeze Dryer (Virtis), Radiochromatogram scanner (Raytest), ITLC-SG (Gelman), TLC (Whatman), และหนูทดลองพันธุ์ Sprague-dawley

วิธีการสังเคราะห์ L, L-ECD^{9,10}

การเตรียม ECD เริ่มจากสารตั้งต้น L-cysteine ดังแสดงในปฏิกริยาเคมี 3 ขั้นตอน

นำ cysteine hydrochloride monohydrate (60 กรัม) ละลายในน้ำ 150 มล. เติม 37% formaldehyde 44 มล. ภาชนะปั่นให้เกิดปฏิกิริยาที่อุณหภูมิห้องประมาณ 18 ชม. แล้วจึงค่อยๆ เติม pyridine 50 มล. จะเกิดตะกอนขาวของ Acid I คือ L-thiazolidine-4-carboxylic acid ตกออกมา กรองแยกแล้วนำมาทำให้บริสุทธิ์ด้วยการตกรดลึกในน้ำร้อน แยกผลลัพธ์ไปทำให้แห้งใน desiccator (vacuum) จากนั้นนำ Acid I มา reduced ด้วย sodium metal (Na) ใน liquid ammonia (liq. NH₃) โดยการละลาย Acid I (33 กรัม) ใน liq.NH₃ (300 มล.) ที่ได้จากการควบแน่นของแก๊ส NH₃ ใน flask ที่เชื่อมต่ออยู่ใน liq. N₂ หลังจากเติม Na ที่ละน้ำบ่นปฏิกิริยาเกิดสมบูรณ์ แล้วปล่อยให้ liq.NH₃ ระเหยจนแห้ง จึงละลาย residue ที่เหลือด้วยน้ำ (300 มล.) กรองตะกอนที่ไม่ละลายออกไปแล้วปรับ pH ของ filtrate ให้ได้ pH 2 จะได้ตะกอนของ Acid II หรือ L, L-ethylene dicysteine ตกออกมา กรองแยกและล้างด้วยน้ำเย็น แล้วนำมาทำให้บริสุทธิ์โดยละลายในน้ำปรับ pH เป็น 9 แล้วตกรดซ้ำในสารละลายกรดที่ pH 2 ทำซ้ำ 2-3 ครั้ง จะได้ตะกอน Acid II ที่บริสุทธิ์ ทิ้งให้แห้งใน desiccator (vacuum) หลายวัน จากนั้นนำ Acid II มา esterify โดยละลายใน absolute ethanol (saturated ด้วย HCl gas) 200 มล. แล้วจึง reflux ที่อุณหภูมิประมาณ 80°C นาน 2.5 ชม. จะได้ L, L-ECD ตกตะกอนออกมา ทำให้บริสุทธิ์ด้วยการตกรดลึกใน absolute ethanol ได้ผลลัพธ์บริสุทธิ์ของ L,L-ECD hydrochloride salt รูปเข็มเด็กๆ สีขาว

วิธีการเตรียมสารประกอบสำเร็จรูป ECD

การเตรียมสารประกอบสำเร็จรูป ECD ได้ทดลองเตรียม 2 แบบ คือ

Formulation A เตรียมในน้ำกลั่นยาฉีด ปรับ pH ให้ได้ pH 6.0 ด้วย HCl หรือ NaOH

Formulation B เตรียมใน 0.025 M. phosphate buffer ปรับ pH ให้ได้ pH 6.0 ด้วย phosphate buffer

ทั้ง 2 formulation จะมีส่วนประกอบต่างๆ เมม่อนกัน คือ แต่ละ kit จะประกอบด้วย L,L-ECD 1 มก. D-mannitol 24 มก., EDTA disodium salt dihydrate 0.5 มก. และ SnCl_2 144 ไมโครกรัม หลังจาก เตรียมสารละลายตาม formulation A และ formulation B กรองผ่าน millipore filter ขนาด 0.22 ไมครอน จากนั้นแบ่งคงไว้ในขวดยาฉีดที่ปราศจากเชื้อ แล้วจึงนำไปทำแห้งด้วยวิธี Freeze dry นำสารประกอบสำเร็จรูปในรูปผงแห้งไปทดสอบคุณภาพทางเคมีและชีววิทยา

การตรวจสอบคุณภาพสารประกอบสำเร็จรูป ECD

นำสารประกอบสำเร็จรูป ECD มาติดฉลาก (labeled) ด้วย $^{99m}\text{TcO}_4^-$ ความแรงรังสีประมาณ 7-8 mCi/ml จำนวน 2 มล ทึ้งให้เกิดปฏิกิริยาที่อุณหภูมิห้อง 20 นาที จากนั้นจึงนำตัวอย่าง ^{99m}Tc -ECD มา ตรวจสอบ radiochemical purity โดยวิธีต่างๆ ดังนี้

1. วิธี TLC โดยใช้ TLC Whatman KC 18F หยดตัวอย่าง 1 หยด (ประมาณ 2.5 μl) แล้วนำมาร develop ใน 75% methanol เสร็จแล้วนำไปวัดรังสีบนแผ่น TLC ด้วยเครื่อง radiochromatogram scanner

2. วิธี ITLC-SG. โดยใช้แผ่น ITLC-SG. 2 แผ่น หยดตัวอย่างแล้ว develop ใน 20% NaCl และ 85% methanol เพื่อที่จะแยก $^{99m}\text{TcO}_4^-$ และ ^{99m}Tc -colloid หรือ hydrolyzed-reduced ^{99m}Tc (^{99m}Tc -HR) ตามลำดับ

3. วิธี HPLC ใช้ column : μ -Bondapak C-18, mobile phase : 0-10 นาที 0.0125 M phosphate buffer และ 10-30 นาที ethanol, detector : NaI(Tl), flow rate : 0.8 ml./min detector ตรวจ ที่ retention time ของ ^{99m}Tc -ECD และ $^{99m}\text{TcO}_4^-$

การหาเปอร์เซ็นต์ Radiochemical purity ของสารประกอบสำเร็จรูป ECD

นำสารประกอบสำเร็จรูป ECD formulation A และ formulation B มาติดฉลากด้วย $^{99m}\text{TcO}_4^-$ ความแรงรังสีประมาณ 15 mCi ปริมาตร 2 มล. ทึ้งให้เกิดปฏิกิริยา 20 นาที แล้วนำตัวอย่างไปตรวจสอบ radiochemical purity ด้วยวิธี ITLC-SG/20% NaCl และ ITLC-SG/85% methanol (วิธีที่ 2) เพื่อตรวจสอบ หาเปอร์เซ็นต์ของสารปนเปื้อน คือ $^{99m}\text{TcO}_4^-$ และ ^{99m}Tc -colloid หรือ hydrolyzed-reduced ^{99m}Tc (^{99m}Tc -HR) ตามลำดับ แล้วคำนวณหาเปอร์เซ็นต์ radiochemical purity จาก

$$\% \text{ Radiochemical purity} = 100 - \% {}^{99m}\text{TcOc}^- - \% {}^{99m}\text{TcO}_4^- - \% {}^{99m}\text{Tc-HR}$$

เก็บสารประกอบสำเร็จรูปทั้ง 2 formulation นี้ ที่อุณหภูมิ 2-8 °C พร้อมทั้งทดสอบ Radiochemical purity เป็นระยะเวลา 5 เดือน

การตรวจสอบ *in vitro* stability ของ ${}^{99m}\text{Tc-ECD}$

นำสารประกอบสำเร็จรูป ECD ติดฉลากด้วย TcO_4^- แล้วตรวจสอบ radiochemical purity ตามวิธีที่ 2 ที่ช่วงเวลา 3, 10, 20, 60 และ 300 นาที ตามลำดับ

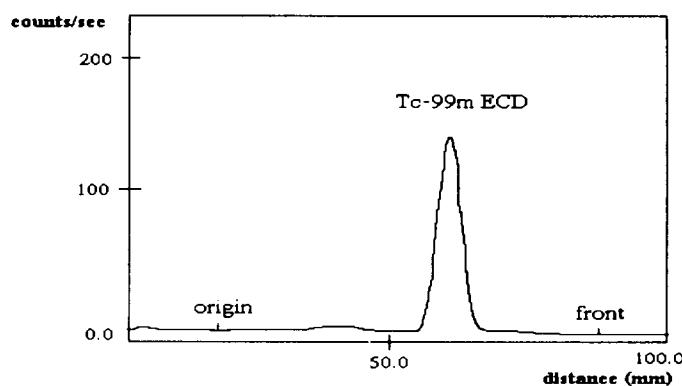
การทดสอบทางชีววิทยา

ศึกษา biodistribution ของ ${}^{99m}\text{Tc-ECD}$ ในหนู น้ำหนัก 140-180 กรัม โดยฉีด ${}^{99m}\text{Tc-ECD}$ ความแรงรังสีตัวละ 500 μCi เข้าเส้นเลือดดำที่หาง หลังจากฉีด 5 นาที, 20 นาที และ 1 ชั่วโมง. จึงนำໄไปปั่นและผ่าตัดแยกอวัยวะต่างๆ ไปตรวจวัด ความแรงรังสี แล้วนำໄไปคำนวณหา % injected dose ที่อวัยวะนั้นๆ

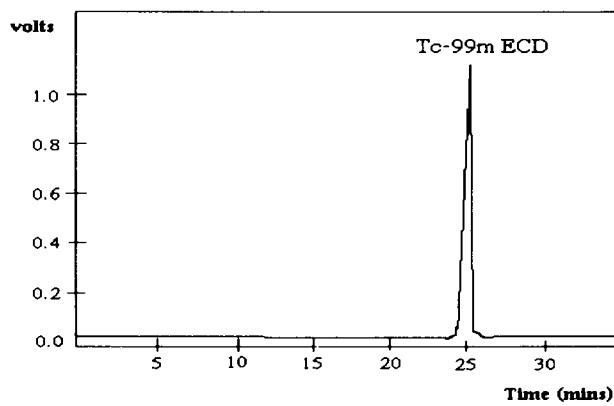
ผลการทดลองและวิจารณ์ผลการทดลอง

ผลการสังเคราะห์ L, L-ECD พบว่าสามารถเตรียม L, L-ECD ที่มีความบริสุทธิ์สูงได้ โดยเริ่มจากสารตั้งต้น L-cysteine

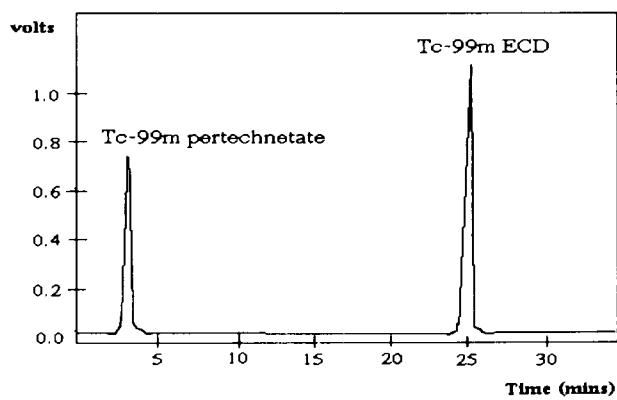
ขั้นตอนที่ 1 ได้สารประกอบ Acid I หรือ L-thiazolidine-4-carboxylic acid บริสุทธิ์ mp.197-199°C, yield 76-87% (17-39 กรัม / batch)


ขั้นตอนที่ 2 ได้สารประกอบ Acid II หรือ L, L-Ethylene dicysteine mp. 251-254°C, yield 38.8% (10.6-14.4 กรัม / batch)

ขั้นตอนที่ 3 ได้ L, L-ECD หรือ L, L-ethyl cysteinate dimer ในรูปของ dihydrochloride, yield 22.4 % (3.89 กรัม) mp. 195-197°C (Ref. 197-198 °C)⁹


IR : 3100-2200 cm^{-1} amine hydrochloride, 1735.8 cm^{-1} C=O ของ ethyl ester, 1551 cm^{-1} NH, 1227.7 cm^{-1} C-O-C ของ -COOET

$^1\text{H-NMR}$ (ppm.) : -CH- 4.6 (s), COOCH_2 4.35 (q), $\text{CH}_2\text{-CH}_2$ 3.6 (s), CH_2S 3.2 (d), CH_3 1.3 (t)


ผลการตรวจสอบ radiochemical purity ของ ${}^{99m}\text{Tc-ECD}$ ที่เตรียมได้จากสารประกอบสำเร็จรูป ECD พบว่าได้ ${}^{99m}\text{Tc-ECD}$ มี radiochemical purity สูงมาก ดังแสดงผลในรูปที่ 2-4 และ ตารางที่ 1

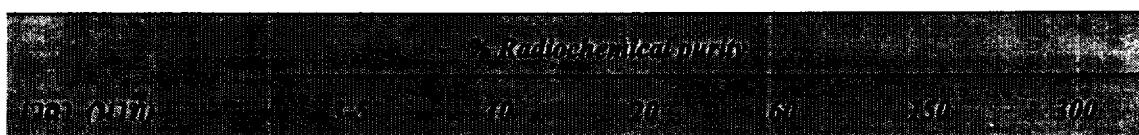
รูปที่ 2 Radiochromatogram ของ ^{99m}Tc -ECD ที่ตรวจสอบโดยวิธี Whatman TLC-KC18F/75% MeOH

รูปที่ 3 Radiochromatogram ของ ^{99m}Tc -ECD ที่ตรวจสอบโดยวิธี HPLC

รูปที่ 4 Radiochromatogram ของ ^{99m}Tc -ECD ที่ตรวจสอบโดยวิธี HPLC ของ formulation A
(3 เดือนหลังผลิต)

จากทั้ง 3 วิธีการให้ผลการทดลองใกล้เคียงกัน แต่วิธีที่ 2 สามารถแยกองค์ประกอบต่างๆ ออกจากกันได้อย่างชัดเจน โดยใช้เวลาอ่านอยู่ที่สุด ดังนั้นในการทดลองขั้นต่อไปจึงเลือกการตรวจสอบ radiochemical purity ตามวิธีที่ 2

ตารางที่ 1 Radiochemical purity analysis ของ 99m Tc-ECD ที่เตรียมจากสารประกอบสำเร็จรูป ECD


Method	Retention Time (min)	Range	Range	Range	Result (%)
1. TLC, KC 18/75% MeOH		~0.9	0.0-0.1	0.54-0.63	96%
2. ITLC-SG/85% MeOH		0.9-1.0	0.0-0.1	0.9-1.0	98%
ITLC-SG/20% NaCl		0.9-1.0	0.0-0.1	0.0-0.1	
3. HPLC, retention time (min)	3.6	-		26 min	96%

* RCP : Radiochemical purity

จากการตรวจสอบ radiochemical purity ของสารประกอบสำเร็จรูป ECD formulation A และ formulation B ที่ติดฉลากด้วย 99m TcO₄⁻ โดยวิธีที่ 2 พบว่า radiochemical purity ของสารประกอบสำเร็จรูป ECD ทั้ง 2 formulation มีค่าสูงกว่า 95% หลังจากติดฉลาก 20 นาที โดยที่ *in vitro* stability ของ 99m Tc-ECD ที่เตรียมจาก formulation B ค่อนข้างจะดีกว่าที่เตรียมจาก formulation A ดังแสดงในตารางที่ 2

แต่หลังจากเก็บสารประกอบสำเร็จรูปทั้ง 2 formulation ไว้ที่อุณหภูมิ 2-8 °C พบว่า formulation A จะให้ค่า radiochemical purity ลดลงเรื่อยๆ และต่ำกว่า 90 % เมื่อเก็บไว้นานกว่า 1 เดือน ในขณะที่ formulation B สามารถเก็บได้นานถึง 5 เดือน โดยที่ radiochemical purity มีค่าไม่เปลี่ยนแปลง ดังแสดงในตารางที่ 3

ตารางที่ 2 *in vitro* stability ของ 99m Tc-ECD

kit formulation	74.9	92.3	97.5	97.2	97.1	96.7
kit formulation B	88.8	93.5	98.2	99.5	99.0	99.0

ตารางที่ 3 % Radiochemical purity ของ ^{99m}Tc -ECD ที่ช่วงระยะเวลาต่างๆ หลังผลิต

	1 hr	2 hr	4 hr	24 hr	48 hr	72 hr
Formulation A	98.6	97.4	97.1	55.3	-	-
Formulation B	98.8	98.7	98.2	99.4	98.3	-

ผลการศึกษาการกระจายตัวของ ^{99m}Tc -ECD ในหนู พบว่า ^{99m}Tc -ECD จะให้ค่าการกระจายตัวไปที่อวัยวะต่างๆ ดังแสดงในตารางที่ 4

ตารางที่ 4 การกระจายตัวของ ^{99m}Tc -ECD ในหนูทดลอง

Organ/Tissue	1 hr	4 hr	24 hr
Blood	$11.5 \pm .80$	$6.32 \pm .98$	$2.11 \pm .26$
Brain	$1.09 \pm .30$	$0.80 \pm .17$	$0.23 \pm .04$
Liver	22.61 ± 2.17	17.64 ± 1.70	12.39 ± 1.19
Spleen	$0.29 \pm .02$	$0.09 \pm .30$	$0.04 \pm .02$
Muscle	26.99 ± 7.12	14.38 ± 1.89	$6.40 \pm .57$
Lungs	$1.24 \pm .14$	0.00	0.00
Heart	$0.41 \pm .05$	0.00	0.00
Kidney	6.22 ± 1.03	19.19 ± 1.14	24.44 ± 2.92
Urine	$1.22 \pm .71$	8.19 ± 4.90	15.11 ± 6.05
Stomach	$1.07 \pm .38$	$0.42 \pm .10$	1.06 ± 1.09
total GI	9.43 ± 1.39	15.57 ± 1.02	22.33 ± 2.69
Tail	$1.82 \pm .34$	$1.35 \pm .19$	3.05 ± 2.64
Skull	$0.14 \pm .30$	0.09 ± 0.3	$0.04 \pm .01$
Carcass	15.91 ± 1.43	15.96 ± 1.35	12.79 ± 1.42

* n = 5

สรุป

งานศึกษาวิจัยนี้สามารถสังเคราะห์สารประกอบ ECD และการเตรียมสารประกอบสำเร็จรูป ECD สารประกอบ ECD ที่ผลิตได้มีความบริสุทธิ์สูง และสามารถนำมาเตรียมเป็นสารประกอบสำเร็จรูป (ready-to-use kit) แล้วนำมา ติดฉลากด้วย Tc-99m และได้เบอร์เช็นต์ radiochemical purity สูงมาก และมี *in vitro* stability ดี โดยพบว่าสารประกอบสำเร็จรูป ECD ที่เตรียมในสารละลายน 0.025 M phosphate buffer จะเป็นสารประกอบสำเร็จรูปที่มีคุณภาพดี ให้เบอร์เช็นต์ radiochemical purity สูง เม้มีเก็บไว้นานหลายเดือน เมื่อศึกษาการกระจายตัวของ ^{99m}Tc-ECD ในหนูพบว่า ^{99m}Tc-ECD สามารถกระจายตัวไปที่สมองได้ต่ำกว่าที่เคยมีผู้ทดลองในสิ่งมีชีวิตครรภูมิ primate ทั้งในลิง และในร่างกายคน (4.65 % และ 6.5% I.D. ที่ 5 นาที โดย SPECT ตามลำดับ)^{5,7,8,11,12} คือ ซึ่งคงจะได้ศึกษาวิจัยในโอกาสต่อไป

เอกสารอ้างอิง

1. Kuhl DE, Barrio JR, Huang S. et al: Quantifying local cerebral blood flow by N-isopropyl-p-[123I] iodoamphetamine (IMP) tomography. *J nucl Med* 1982,23 : 196 -203.
2. Holman BL, Lee RGL, Hill TC, et al : A Comparison of two cerebral blood flow tracer, N-Isopropyl- [I-123]-p-iodoamphetamine and I-123 HIPDM . *J Nucl Med* 1984,25 : 25-30.
3. Volkert WA, Hoffman TJ , et al :99mTc-propylene amine oxime (99m Tc-PnAO) a potential brain radiopharmaceutical . *Eur J Nucl Med* 1984,9,511-516.
4. Sharp PF, Smith FW, Gemmell HG, et al :Technetium-99m HM-PAO stereoisomer a potential agents for imaging regional cerebral blood flow : human volunteer studies. *J Nucl Med* 1986, 27 : 171-177.
5. E.H. Cheesman, M.A. Blanchette, et al : Technetium-99m complexes of ester derivatized diamine-dithiol ligand for imaging brain perfusion. *J Nucl Med* 1988, 29 ; 788.
6. Lever SZ, Burns LH, Kervitsky ,et al: Design, preparation and biodistribution of a technetium 99m triaminedithiol complex to assess regional cerebral blood flow. *J Nucl Med* 1985, 26 : 1287-1294.
7. S. Wallabhajosula, P. Strizke ,et al: Tc-99m ECD, A new brain agent; in vivo kinetics and biodistribution in normal human subjects. *J Nucl Med* 1989. 30 ; 599-604.
8. R.C. Walovitch,et al: Pharmacological characterization of 99m Tc-ECD in non-human primates as a new agent for brain perfusion imaging. *J Nucl Med* 1988, 29 ; 788.
9. P. Blondeau, C-Berse and D. Gravel : Dimerization of an intermediate during the sodium in liquid ammonia reduction of L-thiazolidine-4-carboxylic acid. *Canadian J of Chem* 1976,45; 49-52.
10. Sarag Ratner nad H.T. Clarke : The action of Formaldehyde upon Cysteine, *J Am Chem Soc* 1937,59 ; 200-206.
11. Walovitch RC, Franeeschi M, Picard M, et al: Metabolism of 99mTc-L,L-ethyl cysteinate dimer in healthy volunteers. *Neuro pharmacology* 1991, 30 ; 283-292.
12. Alberto Pupi, Antonio Castagnoli, et al.: Quantitative Comparison between 99mTc-HMPAO and 99mTc-ECD : measurement of arterial input and brain retention. *Eur J Nucl. Med.* 1994, 21 : 124-130.