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NUMERICAL ANALYSIS OF SINGLE-PHASE,
NATURAL CIRCULATION IN A SIMPLE CLOSED LOOP
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RESUMEN

Las propiedades numéricas inherentes a los
grandes programas para sistemas termo-
hidraulicos pueden ser usualmente verificadas
por medio de programas mas simples, que
consideran casos de aplicacion practica res-
tringida. Los autores proveyeron un ejemplo de
esta metodologia en su trabajo previo, en rela-
cién a la serie de cédigos RELAPS. El proble-
ma considerado fue el del flujo por conveccién
natural en una sola fase en un circuito cerrado,
bajo condiciones inestables de flujo. Se deriva-
ron las curvas de estabilidad neutral para el
sistema. El efecto del numero de nodos en el
comportamiento esperado del sistema fue
consecuentemente analizado. Los cédigos ad
hoc previamente desarrollados fueron refina-
dos adicionalmente, para analizar el problema
bajo dos aproximaciones: a) una forma nodal,
basada en una aproximacién por diferencias
finitas y, b) una forma modal, basada en una
descomposicién modal de las ecuaciones de
gobiemo en series de Fourier. Se obtuvieron
los parametros del estado estacionario del
sistema para las dos aproximaciones. El cdi-
go nodal fue utilizado como aproximacion
standard y se usaron diferentes esquemas de
precision variable. Luego, e! efecto del numero
de nodos fue determinado cuantitativamente.
El codigo modal, con un nimero de modos
entre 30 y 100, fue utilizado como una aproxi-
macioén libre de difusién numérica. En este
caso, la ecuacion de la energia fue resuelta
también considerando un término con difusion
constante, que permitid simular parcialmente
el efecto de la difusion numérica de la aproxi-
macién nodal. En esta forma, el andlisis per-
mitié efectuar el analisis modal incluyendo un
valor promedio de la difusién que surgia del
upwinding en la solucién nodal. Los resultados
muestran que {a inclusiéon de esta difusién da
cuenta razonablemente de la amortiguacion de
la solucién, permitiendo una recuperacién cua-
litativa del comportamiento nodal. La no-
linealidad del sistema no permite la exacta
coincidencia de los resultados obtenidos. Un
analisis similar puede ser utilizado para evaluar
el efecto de la discretizacién sobre la dinamica
de sistemas termo-hidraulicos mas complejos.

ABSTRACT

The inherent numerical properties of large
thermal-hydraulic system codes may be usually
verified by means of simpler codes, dealing
with selected cases of restricted practical
application. The authors provided an example
of such methodology in their previous work, in
relation with the RELAPS series of codes. The
problem considered was the single-phase,
natural circulation flow in a simple loop, under
unstable flow conditions. Neutral stability cur-
ves were derived for the system. The effect of
the number of nodes in the expected behavior
of the system was consequently analyzed. The
ad hoc codes previously developed have been
further refined, to analyze the problem under
two approaches: a) a nodal one, based on a
finite-difference approximation and, b) a modal
one, based in a modal decomposition of the
governing equations in Fourier series. Theore-
tical values for the steady state parameters are
obtained for both approximations. The nodal
code was used as the standard approximation
and different schemes of different order have
been used. Then, the effect of the number of
nodes in the damping of the system was quan-
titatively determined. The modal code, with the
number of modes ranging from 30 to 100, was
used as an approximation free of numerical
diffusion. In this case, the energy equation was
solved considering also a constant diffusion
term, allowing a partial simulation of the nume-
rical diffusion of the nodal approximation. In
this way the analysis allowed the modal analy-
sis to be pertormed including an average value
of the diffusion arising from the upwinding in
the nodal solution. Results show that the inclu-
sion of this diffusion reasonably accounts for
the damping of the solution, allowing a qualita-
tive recovering of the nodal behavior. System
non-linearity naturally precludes the exact
coincidence of the results obtained. A similar
analysis may be used to assess the effect of
the number of nodes of a given discretization
on the dynamics of more complex thermal-
hydraulic systems.
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ABSTRACT

The inherent numerical properties of large thermal-hydraulic system codes may be usually verified by
means of simpler codes, dealing with selected cases of restricted practical application. The authors
provided an example of such methodology in their previous work, in relation with the RELAPS5 series
of codes. The problem considered was the single-phase, natural circulation flow in a simple loop,
under unstable flow conditions. Neutral stability curves were derived for the system and the effect of
the number of nodes in the expected behavior of the system was consequently analyzed. The ad hoc
codes previously developed have been further refined, to analyze the problem under two approaches:
a) a nodal one, based on a finite-difference approximation and, b) a modal one, based in a modal
decomposition of the governing equations in Fourier series, Theoretical values for the steady state
parameters are obtained for both approximations. The nodal code was used as the standard
approximation and different schemes of different order have been used. Then, the effect of the
number of nodes in the damping of the system was quantitatively determined. The modal code, with
the number of modes ranging from 30 to 100, was used as an approximation free of numerical
diffusion. In this case, the energy equation was solved considering also a constant diffusion term,
allowing a partial simulation of the numerical diffusion of the nodal approximation. In this way the
analysis allowed the modal analysis to be performed including an average value of the diffusion
arising from the upwinding in the nodal solution. Results show that the inclusion of this diffusion
reasonably accounts for the damping of the solution, allowing a qualitative recovering of the nodal
behavior. System non-linearity naturally precludes the exact coincidence of the results obtained. A
similar analysis may be used to assess the effect of the number of nodes of a given discretization on
the dynamics of more complex thermal-hydraulic systems.

L. INTRODUCTION

The theoretical results given by Pierre Welander [1]
in a pioneering paper have been used by the authors in a
previous paper [2] to test the capability of the RELAPS
series of codes [3] to predict instabilities in single-phase
flow. These results were related to single-phase, natural
circulation flow in a loop made of two parallel, adiabatic
circular tubes with a point heat sink at the top and a point
heat source at the bottom. A stability curve [1] may be
defined for laminar flow and was extended to consider
turbulent flow, now reported in {4]. Despite its restrictions,

the problem of natural circulation in single-phase flows is
quite common in many situations of interest in the nuclear
industry. In [2], the analysis in [1] was generalised in order
to keep strictly the same hypotheses of the original
derivation. Then, an unstable flow condition was defined to
check the effect of the nodalization on the appearance of
oscillations. In this way it was possible to define the limits
of applicability of a coarse nodalization using RELAPS. In
this paper the results in [1] are revisited once again, to
show the results of further developments of the ad hoc
codes used to verify the effects of the nodes number in the
stability maps. To comply with this purpose, finite-



differences schemes of various orders have been used.
Also, a modal decomposition approach in terms of Fourier
series was implemented. The results are presented in a non
usual way, defining maps of departure from neutral
stability. The sections to follow define the problem, some
of the different schemes adopted, some trend plots and
stability maps for the system under analysis.

II. THEORETICAL ANALYSIS

Fig. 1 shows the geometry of this simple hydraulic
system, adapted from [1]. The vertical legs are adiabatic,
smooth circular tubes of length L/2 and diameter D. The
length of both the heat source and the heat sink is S. The
cross section of the tubes is A. When S tends to zero, the
heat transfer coefficient from/to the heat source/sink is
increased to keep constant the total heat transferred. The
reader is referred to [2] for a detailed description of the
governing equations.
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Figure 1. Sketch of the loop geometry.

The resulting dimensionless equations are:

dq

1
— = T-ds -e-q" t>0), (1
- a! q t>0), (1)

for momentum and

0<s<1,t>0) 2)

for energy balance, in which o and € measure the driving
(buoyancy) forces and the friction in the loop respectively.

To obtain Equations (1) and (2) it was taken
advantage of the observed anti-symmetry of temperature
distribution along the loop, allowing for solving the
problem only in the interval s € (0,1), provided that
appropriate boundary conditions are specified for the
dimensionless temperature in s = 0* and s = 1. Welander,
solving the energy equations in the source and the sink for
steady state conditions, gave these boundary conditions.
This is justified by the small length of both, and assuming
anti-symmetry of temperature distribution along the loop:

T, + T(1™,0) = (1+ T(r,t))[l - e'”‘*] :q20(t>0)
(3)

TOY,t)+ T, ) = (-1 + T(O*,t))[l - e“"ql] ;q<0(t>0)
4
Initial conditions are also needed for uniquely

identifying the specific addressed transient evolution. These
are in the form:

q(0) = q, &)

T, 0)=Ty(s) (0<s<l) (6)

Stability of the positive flow fixed point can be
studied, in similarity with the original treatment by
Welander and current practice in this field, through
linearisation of the equations by perturbation [1,4].

Figure 2 reports the neutral curve obtained for v =
1.75 coherently with the adoption of the Blasius law for
wall friction, also showing the location of a reference
unstable case.
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Figure 2 The neutral stability curve for the
system of Fig. 1 [1], considering turbulent flow

Adopting Blasius friction law irrespectively of the



flow rate does not account for the transition between
laminar and turbulent flow, which would require the
calculation of a Reynolds number in place of the above
defined dimensionless flow rate. However, the reference
value adopted for v reflects a parametric choice that is
useful in discussing the behaviour of system codes when
applied to Welander's problem under turbulent flow
conditions. Hence, this choice will be kept throughout the
whole paper.

III. NUMERICAL RESULTS

In order to get a reference solution for the problem,
free from the effects of truncation error arising from
numerical discretization in the space co-ordinate, a modal
expansion has been adopted for temperature along the
thermosyphon loop. The following series is used for
representing the temperature distribution along the loop:

T(s, t) = Z Soy +1(1)-sin[2k + Drs] +
k=0 Q)

+ D Cop 41 (t)-cos[(2k + Iyms]
k=0

It includes only odd numbered terms due to the above
mentioned anti-symmetry. Since imposing the boundary
conditions (5-6) would be difficult in the present case, the
energy equation along the whole loop is solved introducing
an appropriate mathematical representation for the source
and the sink. The following form of the energy equation is
therefore adopted:

——_g— =
ot qas

= Frnod (@[ 8(9(1=T) +3(s=1(~1-T) ]

(0<s<2) 8
where 8(s) and 8(s-1) are Dirac's delta function centred on
the location of the source (s=0) and the sink (s=1)
respectively. The function F,4(q) is introduced to have
perfect matching between the steady-state conditions
calculated by the modal expansion and the ones obtained
by the theoretical developments shown above (Ref. 5 gives
a detailed analysis of the equivalent source definition and it
was also used in [2]).

It can be seen that, due to a symmetrical treatment of
the source and the sink in the modal expansion the source
average fluid temperature is just the arithmetic mean of the
inlet and outlet temperature. Since this is not the case in
Welander's treatment, it is necessary to include a source-
sink heat transfer multiplier having the following form:

1-eVa 2
T ®)
1/q 1+e™ 4
It can be noted that for increasing dimensionless flow rate

Froa (@ =

the value of the multiplier tends to 1.

If the effect of diffusion must be also accounted for
(as it will be necessary in the following sections), a second
order term is included in the energy balance equations,
leading to:

oT oT

2l o4 g2 =
a5
*T

= ~‘f?(Q)BS—2- + Fnod(@)(8(s)- (1-T) +8(s - 1)-(~1-T))
(0<s<2) (10)

where ../(q) is an appropriate diffusion coefficient, here
assumed to be a function of the dimensionless flow rate.

Putting: 9=Y,, Syai(t) = Yaer and Cyy (1) = Yapup
(k=0. 1, .)

and applying the usual weighting in the integration domain,
orthogonality of the trigonometric functions adopted in the
expansion leads to the following system of ODEs

- o0

2 v
=a ————. - 8
Yo |§=o 21+ Dn Y2141 - €Y0

Yoker = @K+ DT Yg Yorez - o) @k+ 12 1% yous

Yoksz = ~QK+Dyg yarer - 4v0) @k+1? 12 yyra

+2 Fo()’o)[l -> )’2|+2]

1=0
(k=0,1,..., ) (11)

It may be noted that in the case of the rectangular loop
with a point source and sink it is not possible by this
expansion to reach a finite-dimensional set of equations
governing the complete dynamics of the system. Anyway, a
reliable truncated solution is feasible, with a reasonable
computational effort, by considering a sufficient number of
modes. Actually, the presence of the Dirac's delta function
in the energy balance equation raises the problem of
convergence of the series expansion to the exact solution,
since &(s) excites at the same extent all the modes.
Nevertheless, as it is found that the series converges to the
exact solution in steady state conditions, it is simply
assumed that the same holds also for transient conditions.
The ODEs system has been solved using a classical 4-th
order Runge-Kutta method, adopting different numbers of
modes. The results showed the expected projection of the
chaotic attractor as obtained for an unstable case without
diffusion (the conspicuos isolated point in Fig. 2)

Now the simplest scheme for the solution of the
governing equations will be analysed (see [6] for more



schemes and details). This is the forward-time, upwind-
space differencing or FTUS. The algebraic equations
expressing the energy balance are the following;:

° qu

Tin+l = (1 - C) Tin + CTirzl (i=2, ... , N-1)

| At At
TI?I+ = (l"'c—_A;Fnod(qn))Tl?l +CTT?I-1 _EFnod(qn)
T]n+l — —TTG+1 (12)
. q<0
Tin+] =(1+0OT"-CTY,  (=2,..,N-1)

At At
™! = (1+C“X5—Fnod(qn)jT1n -C13 +A—an°d(qn)

(13)
T+l = _n+!
where C is the Courant number:
C= qi‘ (14)
and
As = _Nl-—l 15)

with N being the number of nodes. The function F,,(q) is a
source-sink heat transfer multiplier, similar to the one
adopted for the nodal expansion, introduced in order to
calculate the steady-state conditions in coincidence with the
exact solution.

The momentum equation is discretised in time as
follows:

N-lon n
n+1 n a T +Tiy nyv
= + - & At
Q™' =q (N_l é : @" }
(16)
The steady-state conditions calculated by the method
are:
T =T5 = ... = TR, =-Tn =Tig
S
F
l%,g =— nod (@7) < a7
2q +Fnod (q )
where:
S S
Fot (@) = a° (1-¢15°) /e (18)

Thus, the result is:

o 1-e-W) 2 No2

v g 1ee

It can be easily shown that for N — <« the above
equation becomes coincident with the exact formulation

Syv+l _
Q) e N1

given by Egs. (1-3).

A different method has been adopted in the present
paper to study the stability of the numerical solution of
Welander's problem. This approach can be considered an
extension of methods adopted for assessing stability of
numerical schemes, in similarity with the usual techniques
for linear stability analysis of PDEs. The main reasoning
behind the methodology is shortly summarised in what
follows. A finite-difference numerical method for a time-
marching problem can been written as an algebraic "-vector
equation relating the . values of the unknown function at
the n-th and (n+l1)-th time level (y" and y™'), grid
parameters (in the present case, As and At) and physical
parameters (o, €). This algebraic equation represents the
discretised form of the original PDEs together with the
related boundary conditions. In our specific case for the
above-described numerical methods it is:

E(y",y™' At As,0,8) =0 (19)

It wil be now shown that:

e studying stability of steady-state solutions of a
mathematical problem by numerical means is feasible
and the effect of truncation error can be clearly pointed
out;

e care must be taken in avoiding numerical instabilities
or in recognising them in the obtained stability maps.

The vector function F is generally non-linear. Therefore,
determining the steady state conditions (i.e., the fixed
points) may require the iterative solution of the equation:

F(y" =y%,y™' =y, At,45,0,8) =0 (20)

Once the fixed points have been determined, their
stability can be studied through linearisation by
perturbation. Then, considering small deviations from the
selected fixed point

Xn =XS +(SX)n Xn+l =XS +(Sz)n+l @n

and substituting into Eq. (19), second order terms can be
neglected and Eq. (20) can be used to reach the following
relationship between perturbations at the n-th and at the
(n+1)-th time levels:

Gy™ =-ggh™ 126" 22)
where Joand J 2+l denote the Jacobian matrices of F with

respect to y"andy™!

respectively, calculated at the
selected fixed point. It is clearly understood that the inverse

of J 'S”l must exist for any meaningful time-marching

numerical scheme; in particular, l's‘” is equal to the

identity matrix for explicit numerical methods and



boundary conditions. It is then argued that stability can be
discussed considering the eigenvalues of the matrix
expressing the amplification of perturbations

A=-QrhTIg (23)

as results assuming exponential growth or decay of
perturbation vectors. In particular, given the spectral radius

of the matrix, p(A), it is useful to consider the quantity:

Ap=p(A)-1 (24)
as a margin in excess to neutral stability, which takes
negative values for stable conditions and positive values for
unstable ones. This quantity can be therefore used to find
neutral stability conditions and to set up stability maps.
Then, it is here preferred to calculate Ap throughout a
selected a—¢ rectangular domain, thus identifying with the
aid of contour plots regions with a different degree of
stability. This method is easier to implement in computer
programs and has the advantage to provide a greater deal of
information, at the price of a reasonable increase in
computing effort.

Figure (3) reports the results obtained for the FTUS

method with 30, 40, 50 and 100 nodes and At=10". It can
be noted that almost no unstable region is found within the
addressed domain with 30 nodes, whereas increasing the
detail of discretization unstable conditions are predicted for
lower and lower values of o. This clearly explains the
behaviour observed in [2] and shows the dramatic
quantitative impact of truncation error on the prediction of
stability.

Figure 4 illustrates the map for 100 nodes. It is
interesting to compare the results obtained for the explicit
upwind method with the results of the modal solution with
a second order term simulating numerical diffusion. With
this aim, the diffusion coefficient is defined as:

A At
%q) J"%[p%s—} (25)

as resulting from the analysis of truncation error for the
FTUS method. It may be shown that the predicted stability
conditions are very similar for the nodal and the modal
solution with equivalent dissipative effects and the
agreement is improved by increasing the number of nodes.
This confirms the overwhelming importance of the second
order term alone in determining the overall truncation error
effect on stability predictions. Figure 2 shows the linear
stability curve obtained by the modal solution with no
diffusion (#(q)=0). It shows, as expected, its close
agreement with the stability curve obtained by the
conventional linear stability analysis.

Finally, Figure 5 shows the stability maps for
various first and 2nd order methods obtained with At=10",
It is clearly visible that these methods provide relatively
very accurate predictions of the stability boundary. The

changes observed in the maps increasing the number of
nodes up to 100 are minimal, supporting the conclusion that
in the present case the effect of truncation error on stability
prediction is due almost exclusively to the second order
dissipative term. The low Courant number used makes the
FTUS results almost as diffusive as the ITUS ones.

NEUTRAL CURVES USING 100 NODES
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Figure 5 Comparison of the neutral curves obtained with
different approximations (ITUS: implicit-time, Upwind-
Space, MCCOR: Mac Cormack)

IV. CONCLUSIONS

The results obtained in the present work allowed
assessing the ability of numerical methods in predicting
stability in single-phase natural circulation. Although the
considered specific problem is representative of a particular
class of fluid-dynamic instabilities, a fundamental
similarity exists with other stability phenomena
considerably extending the validity of the obtained
conclusions.

a) Though most of the observed qualitative trends were
expected on the basis of previous knowledge about the
properties of the numerical schemes considered, the results
give quantitative information on nodalization effects.

b) The results shown support the use of higher order
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Figure 3 The effect of the number of nodes on the
Neutral stability curve using the FTUS scheme.
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Figure 4 Stability map for the FTUS scheme, 100 nodes

numerical schemes in all the cases in which stability
prediction is the relevant objective. However, feasibility of
this choice should be demonstrated considering that a
certain degree of diffusion is generally considered desirable
in code applications since it helps increasing "robustness”.

¢) The methodology adopted in this work for setting up
stability maps shows that a linear stability analysis based on
numerical methods is feasible and, if the appropriate
nodalization detail and/or higher order schemes are
adopted, it can even result as reliable as the usual

frequency-domain techniques.
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