

「重イオン・フォトン・Rルビームによるかンマ繳分光」

に関するワークショッフ語文集
1997年7月15日～7月16日，東海形究所，東海村
（阿）大島真造•杉田道昭－早川镸人

- 29-25

日本原子カ研究所
Japan Atomic Energy Research Institute

本しボートは，日本服子力研究所が不定期に公刊している砺究報告春です。
郡束海紂りあて，お申し越しくだせい。なお，このほかに盰団法入原子力㕕谪会资料せン
 こなっております。

This report is issued irregularly．
Inquirits about availability of the reports should be addressed to Research Information Division，Department of Intelleciual Resources．Japan Atomic Energy Research Institute， Tokai－mura，Naka－gun，Ibaraki－ken，319－1195，Japan．

O Japan Atomic Erergy Research Instiute， 1998

「重イオン・フォトン・RIビームたよるガンマ線分光」に関するワークショップ答文楝 1997年7月15日～7月16日，東海研究所，東海村

日本原子力研究所先端基鸦研究センター
（螎）大㠀 真橙•杉田 道昭•早川 庶人
（1998年2月16日受理）

我々のグループではこれまて東海研に新設されたタンデムブースターを用いた核分光研究を中心 テーマとして，「タンデムフースターによる接分光国状共同実験」訮究会を遇去 3 年問毎年行って きた。タンデムブースターでの研究が順調にスタートした現在，これまでとは研究会の性格を変 え，より将来の研究方向害探ることを企図して標駆ワークショップを附催した。

原研夕ンデムブースターは安定核重イオンビームを用いた核分光研究の国内随一の篧帏である。今回の研究会はブースター完成後初めてのものであり，タンデムブースタードおける共同研究の結果が数多く発表された。不安定核RIビームは新しい不安定校库生成する手段として期待されてお D，理研，原研中性子科学研究センター，東北大サイクロトロンからの参加者による各研究施設の R I ビーム利用の将来計画について墑演がすこなわれた。上祀のイォンビームに対して，フォトン ビームは全く新たな核分光分野を開拓守る分野として注目される。これたついてSPring 8 旅郡にあ ける逆コンプトンカンマ線発生の計再が紹介され，またこの高闌度カンマ線吥によって開拓される
 た ϕ 中間子探索の計画は，服大上原研の大きな共同研究プロジェクトとなった。ガンマ線分先の今後の大言な飛䈔を期待させる研究会となった。

本ワークショップは，平成9年7月15日，16日の両日に日本原子力吥究所東海研究所で開倡され た。33㭌の講実があり，参加者は38名だった。本報告害はワークショップ後に投稿された論文を綟樂したもめである。

Proceeding of the Workshop on Gamma-ray Spectroscopy Utilizing Heavy-ion, Photan and RI Bearns July 15 and 16, 1997, JAERI, Tokai, JAPAN
(Eds.) Mesumi OSHIMA, Michiaki SUGITA and Takehito HAYAKAWA

Advanced Science Research Center
(Thkai Site)
Japan Atomic Energy Research Institute
Tokai-mura, Naks-gun, Tharaki-ken

(Received February 16, 1998)

Three time since 1992, we have held the symposia entitled 'Joint Spectroscopy Experiments Utilizing JAERI Tandem-Booster Accelerator' at the Tokai Research Establishment. In the sympasia, we have mainly discussed the plans of experiments to be done in this joint program. The joint program started in 1994. Several experiments have been made since and some new results have wready come up.

This symposium 'Gamma-ray Spectroscopy utilizing beavy-ion, Photon and RI beams' was held at Tokai Research Establishment of JAERI. Because this symposium is the first occasion after the program started, the first purpose of the symposium is to present and discuss the experimental results so far obtained using the JAERI Tandem-Booster. The second purpose of the symposium is to discuas new possibilities of gemma-ray spectroscopy using new resources such as RI-beam and Photon-beam. The participants from RIKCSN, Tbhoku University and JAERI Neutron Science Research Center presented the future plans of experiments with RI-beam at each facility. Compared with these nuclear beams, photon beam provides a completely new tool for the γ-ray spectroscopy, which is achieved by inverse Compton scattering between high-energy electron and laser beams.

The symposium program consists of 33 presentationts. The 38 participants attended this symposium. This volume of the proceedings contains the contributed papers which were submitted after the symposium.

Keywords: Symposium Proceedings, Tandem-hooster Accelerator, Heavy Ion, High Spin, γ-ray Spectroscepy

目 次

1．原研でのガンマ線分光共同実検 1大舟 真䟚
2．${ }^{155} \mathrm{Gd}$ のクローン励起によるEnhanced Side－band Popelation 4大島 直溢
3．原研タンデム加速器とタンデムブースター 7
吉田 忠
4．Hf－W－Os領域原子核の核異榷体について 12
都間 俊行
5．${ }^{19} \mathrm{Cs}$ の高スピン状咭及びPPR実臥 14
早川 岳人
6．賀量数 130 ， 80 領域のM1バンド 17
营原 昌彦
7．The possible mass region for shears bands and chiral doublets 23 Jie Meng
8．Tilted Axis Rotational状態の角違動量射影 29
大井万紀人
9．非蚰対称核におけるTilted Axis CrankingとParticle Rotor Modelの比效 34
大坪 慣一
 38
吉田 光次•松尾 正之
 39
清水 良文
12．ガモフ・テラーとスビンダイボール状整間の電入気班移 43
佐川 弘幸
13．周期靾道とTDHF位相空間の構造 44
橎本 幸夫
14．スキルムハートレ・フォック法によるゼロスピンでの超変形研究 52高原 皆士
15．回転挍における相対論的平均場近代 57
間所 秀栱
16．レーザー電子光によろ核物理：SPring－8たあける発展と展望 60
藤原 守
17．（ ${ }^{3} \mathrm{He}, \mathrm{t} \boldsymbol{\gamma}$ ）による ${ }^{13} \mathrm{~N}$ 核のスピン・アイソスピン状態の研究 70井原 史智
18．直イオン共蔀に古けるスピン整列 74上柿 英二
19．HFB解の置子数射影法による原子核構造の解析 78

20．${ }^{8} \mathrm{CrD}$ 高スピン状態 82
田中 武志
21．Moate Carlo Shell Modelkよあpf核の統一的記述 85
水楛 高涪
22．$Z=\mathrm{N}$ 陽于迠剩核におけるエキソチック洋梨变形 91
富見 聡
23．A～60領域核の高スビン状態の輩造 97中田 上
24．Ni領域の中性子過剌核の核楼造 102石井 哲朗
25．原研ス求レーションR［利用計画 106池添 瑇
付緑 「重イオン・フォトン・RIどームによるガンマ線分光」ブロクラム 108

Contents

1. JAERI Gamma-ray Spectroscopy Project 1M. Oshima
2. Stimulated Side-band Population in Coulomb Excitation of ${ }^{255} \mathbf{G d}$ 4
M. Oshima
3. JAERI Tandem-Accelerator and Tandem-booster 7
T. Yoshida
4. Isomer States in the Hf-W-Os Region 12
T. Shizuma
5. High-spin States of ${ }^{185} \mathrm{Cs}$ 14
T. Hayakawa
6. M1 Bands in A ~ 130 and 80 Reghons 17
M. Sugawara
7. The Possible Mass Region for Shears Bands and Chiral Doublets 23
Jie Meng
8. Angular Momentum Projection of Tilted Axis Rotaional states 29
M. Oi
9. Comparizion with Tilted Axis Cranking and Particke Rotor Model for Triaxial Nuclei 34
S. Otsube
10. Shell Effect in Rotational Damping for Superdeformed Hg 38
K. Yoshida and M. Matsuo
11. Vibrational Excitations in Rotating Nuclei by Means of Coulomb Excitations 39
Y. Shimizu
12. Electromagnetic Transitions between Gamow-Teller and Spin-Dipole States 43
H. Sagawa
13. Periodic Orbits and TDHF Phase Space Structure 44S. Hashimpto
14. Study of Superdeformation at Zero Spin with Bkyrme-Hartree-Fock Method 52
T. Takahara
15. General Relativistic Mean Field Theory for Rokating Nuclei 57
H. Madokoro
16. Physics with "Laser-Electron Photons" 60M. Fujiwara
17. Study of Spin-isospin States in ${ }^{13} \mathrm{~N}$ via $\left({ }^{(3} \mathrm{He}, \mathrm{t} \gamma\right)$ 70F. Ihara
18. Spin-alignments in Heavy-ion Resonances 74E. Uegaki
19. Study of HFB Solution by Qunatum-number Projection 78
K. Enami
20. High-spin States of ${ }^{48} \mathrm{Cr}$ 82
T. Tanaka
21. Unified Description of Mid-pf-shell Nuclei by Monte Carlo Shell Model Calculation 85
T. Mizusaki
22. Exotic Octupole Deformation in Proton-rich Z=N Nuclei 91
S. Takami
23. High-spin States in the Region of $A \rightarrow 60$ 97
H. Nakada
24. Neutron-rich Nuclei in Ni Region 102T. Ishii
25. JAERI RI Beam 106
H. Ikezoe
Appendix Workshop Program 108

1．原研でのガンマ線分光共同実験
 一これまでの経緯と今後の計画－

原研 先效基䂵研究センター 大島真澄

1．重イオンカンマ線核分光共同実酫

原研のタンデム加速器と新設のブースターを用いた第 1 回カンマ線棈分光共同実鍻を 2年前に行った。期間は平成 7 年 9 月一平成 8 年 4 月の約半年間て，全国の主要な校分光実験グループガ黄加し，ガンマ線検出器としては筑波大学のガンマ線検出器 6 台と原研の同型検出器5台と合わせて11台を正12面体のフレームにセットした。検出器は大容量（ 40% ）のゲルマニウム蚞出咢とBGOサブレッサーからなるコンブトン抑止型カ ンマ線検出器である。互換性のために原研て新たに製作したBGO倹出器は筑波大学型の デザインをペースにしているが，より大型のGe检出器に対応できるより改良を施した。補助検出㛎としては九州大学にて開発された Si Ball 検出器，クーロン劯起用粒子検出器，内部酝換等子測定用磁気分析器などがある。共同実検では納半年間に，12件のカ ンマ緑分光実験を行った。この研究会の一つの目的はこの共周実跧で得られた成果につ いて討壊し今後の研究方向を探ることにある。

これまでの成果としては大きく分けて，（1）異常クーロン哣起現象，（2）$=60$ 頳域の

 ラスト状態が $\mathrm{g}_{9 / 2}$ 軌道に入っている核子の数によって分数でき，基底状㥿からその数が順

 の基底バンドの $11 / 2 \cdot 9 / 2^{\text {本枟移の内部転换電子を測定し，E } 2 / \mathrm{M1} \text { 混合比からオブレー }}$

以上の第1回共同実験はもともと日本に本格的なクリスタルボールを実現しようとい

う気摆から始まったものである。睹般の事情からその予萛化は果たせなかった。上記共同実検で準備できた 12 台規模の多重カンマ線検出装葍は欧米の 2 世代前くらいの規模 の㝨㯖にとどまっている。しかしながら，加速器・データ収集系・データ解析の総合珄能ぞおいて欧米と頝争しうる装晴であることを上記の成果は示している。第1回目の共同実教ては日本独自の上款のような 4 つのテーマの立ち上げに成功したので，第 2 回共同実験を行いこの研究を更に発展させることとした。筑波大学と原研の関保者の討溒の結果，期閊を平成 9 年 10 月から平成 10 年 4 月の約半年間とし，検出器は筑波大学 5台，原研 6 台からなる合計 1 1台の検出器を使用する。

原子妒工学部の咕力により今年度予算で後6台分の検出器を整傭できることになっ た。よって平成10年度より，12台が常時使用可能えなる。当面この规模で実軩を進 める。当面使用する検出器の規㮖が固まったことで，現在の多重カンマ線検出装賈の名前を利用者クリープの中で复集し，投票の結果GEMINLとい5名前に決定した。

2．ガンマ觨分光の新しいツール

今回の研究会ではこれまでの原砳タンデムブースターでの重イオン安定核ビーム以外 にガンマ線核分光の新たなツールたついて时譔し，ガンマ䋨分光の杍来の方向性を模索す ることを目的とする。今後期待されるがン々沝分光の新しいツールとして，（1）剒力された面イオン安定核ビーム，（2）RI（不安定核）ビーム，（3）フォトンビームが挙ぼられる。こ れらについて研究会の中で識険され，またこの報告集の中で紹介されるか，以下に蘭単に その棈要を紹介する。
（1）重イオン安定核ビームで先ず挙げられるのは，原研タンデムブースターの增方計画 である。プースターにより加速性能は大猗に㙞大したので，ビーム強度の増力が加速器へ の最大の課鬽となっている。そのためにECRイオン源をタンデム加速器のターミナルに載せ，多価イオンの引き出しを可能にする必要がある。また，既存の施設の増力計面とし ては東北大学新サイクロトロン析画，故医研高エネルギービームの利用などがある。
（2）不安定核RIヒーム利用は，原子核研究とりかけ核楎造砳究分理にとって最も期待 されているオブションである。日本においては理研RIBF計面，KEKにおなるJHF計面，原研での中性子科学研究せンターなどが淮行中，あるいは検尉段階にある。がンマ溪核分光吥究はこれらの計画の中でも最も成果が期待される分野であり，我々研究者がこ れらの計画た如何た参加していくかが問われている。特に，大型のカンマ線検出器は核搆

造研究のみならず反応機楎の研究などにも直要梘されており，GEMINIで培われた八 ード・ソフト技術はこれらの計面の中で大きく役立てられるるのである。

以上に比でて（3）フォトンビームはこれまでになく新しいツールである。高エネルギー電子ビームにレーザー光を当てると，コンプトン教乱光によって単色高エネルキ～～（ 10^{47} eV）のガンマ線ビームが得られる。このビームは縄子エネルギーを光子に㒀単に変換出来，高エネルギーが得られること，指向性が強くまざどムとして取り出せること， 100% に近い偏䒼度か得られること，単糺に軍子と光子のコングトン敬乱現象を甚にして いるため，エネルギー・方向などが棈密に訣真できることにある。現在既に蝺総研SOR TERAS，分子研UVSORにより生成真験が隼められており，西播榐において最近完成し
 よる逆コンブトンガンマ栐生成計画がスタートしようとしている。研究対象として挙げら

 うことにより，宇宙元素合成，宇宙線の起源，銀河年代测定などの宇宙核物理のテーマ考えられる。

遠考文龍

1．M．Kidera et al．，J．of the Phys．Soc．of Jpn，Letters section， 66 （1997） 285.
2．M．Oshima et al．，Int．Conf．on Nucl，Nucl．Collision at Gatlinberg，（July，1997），
3．M．Oshima et al．，submitted to Phys．Rev．C
4．K．Furutaka et al．，Z．Phys，A358（1997） 279.
5．Y．Hatsukawa et al．，Z．Phys．A 359 （1997） 3.
6．T．Hayakawa et al，，Z．Pbys．A357（1997） 349.
7．M．Sugawara，et al．，Z．Phys．A358（1997） 1.
8．M．Sugawara，et al．，Z．Phys．A（1998）in press．
9．T．Saitoh et al．．Int．Conf．on Nucl．Struct．at the Limits at Argonne，（July，1997）．
10．N．Hashimoto et al．，ibid．
11．M．Kidera et al．，Nucl，Instrum．and Meth．A397（1997） 304.
12．K．Furuno et al．，Nucl．Instrum．and Meth．（1997）to be published．

2.
 ${ }^{165}$ Gdのクローン励起によるEnhanced Side－band Population

Enhanced Population of Side Band of ${ }^{155} \mathbf{G d}$ in Heavy－Ion Coulomb Excitation

Masumi OSHIMA，Takehito HAYAKAWA，Yuichi HATSUKAWA，Michiaki SUGITA，
Kazuyoshi FURUTAKA，Masanori KIDERA＊，Jun－ichi KATAKURA，Makoto MATSUDA，Hideshige KUSAKARI，${ }^{1)}$ Kazushi TERUI，${ }^{1 /}$ Katsuhiro MYOJIN，${ }^{1)}$ Daisuke NISHIMIYA ${ }^{17}$ Masahiko SUGAWARA ${ }^{2)}$ and Toshiyuki SHIZUMA ${ }^{3)}$ Japarn Atomic Energy Research／nstitute，Tokai－mura，Maraki 3！g－11，Japan，${ }^{1)}$ Chiba University， Inage－ku，Chiba 263，Japan，${ }^{2)}$ Chiba Institute of Technology，Narashino，Chiba 275，Japan， ${ }^{\text {3）}}$ Tandem Accelerator Center，University of Toukuba，Trukuba，Ibaruki 905，Japan

Abstract

In the Coulomb excitation of ${ }^{155} \mathrm{Gd}$ with heavy projectiles，${ }^{32} \mathrm{~S},{ }^{58} \mathrm{Ni}$ and ${ }^{90} \mathrm{Zr}$ ， unexpectedly large enhancement of a positive－parity side band has been ob－ served．This enhancement could not be reproduced by a Coulomb－excitation calculation taking into account the recommended upper limits of E1 or E3 transitions，which are compiled in the whole mass region，and is proportional to the electric field accomplished in the Coulomb－scattering process． Keywords：${ }^{155} \mathrm{Gd}$ ，Coulomb excitation

In Coulomb－excitation（COULEX）experiments with heavy ions，it is well known that the $E 2$ excitation is the dominant excitation process and the ground－state rotational band （ground band），the members of which are connected with enhanced $E 2$ transitions，is the most strongly excited．So far there is no exception for this rule．In our previous paper ［1］，however，we reported a new phenomenon of exceptionally strong population of the side band of ${ }^{155} \mathrm{Gd}$ in a Coulomb excitation experiment by a heavy ${ }^{90} \mathrm{Zr}$ projectile．The low－lying
level structure of ${ }^{155} \mathrm{Gd}$ has been studied through the previous investigations [2,3]. The ground-state is known to have a configuration of a negative-parity $\nu 3 / 2[521]$ orbit and a onequasiparticle positive-parity side band based on a $\nu 3 / 2[651]$ orbit has been identified with the band head at 86 keV . Since the parities of the two bands are different, the side-band members are considered to be excited via E1 and/or E3 transitions from the ground-band members in multiple COULEX process. Ed matrix elements of intraband and interband transitions are used in evaluating the COULEX cross section. Even when such matrix elements have not been measured, we know at least their upper limita, i.e., the recommended upper limits (RUL) derived from the compilations of the experimental data in the whole mass region [4]; they are used for the calculation of COULEX cross sections. The COULEX cross section of a state can be calculated unambiguously from the $E \lambda$ matrix elements concerned using the computer code, COULEX [5]. In the previous analysis [1] which took into account the $R U L$ for $E 1$ and $E 3$ strength it was difficult to explain the enhanced populations of the side band members; in order to reproduce the measured cross section enhanced E3 strength as large as 600 Weisskopf (single particle) unit are required, which exceeds well the $R U L$. In a further experiment, we investigated the excitation process which is much dependent on the Coulomb field produced in the heavy-ion collisions, by using lighter ${ }^{32} \mathrm{~S}$ and ${ }^{58} \mathrm{Ni}$ beams. From the dependence of the Coulomb-excitation cross section on the kind of projectiles and the scattering angle, the enhancement relative to the calculation for the $R U L$ is roughly proportional to the electric field accomplished in the Coulomb-scattering process. The origin of this new experimental result has not been clarified yet; at present it can be interpreted in several ways. One is based on the inelastic scattering due to the nuclear force. The second possibility is that strongly K-mixed bands may provide many excitation pass ways to the side band. The third one is that a downward transition from the ground to side band might be enhanced in the strong photon field accomplished in the COULEX process. These possibilities will be pursued in future experiments.

REFERENCES

* On leave from Kyushu University, Hakozaki, Fukuoka 812, Japan.
[1] M. Kidera, M. Oshima, Y. Hatsukawa, K. Furutaka, T. Hayakawa, M. Matsuda, H. Iimura, H. Kusakari, Y. Igari, and M. Sugawara, J. of the Phys. Soc. of Japan 66, 285 (1997).
[2] G. Løvhøiden, J.C. Waddington, and K.A. Hagemann, Nucl. Phys. A148, 657 (1970).
[3] M.A. Riley, J. Simpson, M.A. Bentley, P. Fallon, P.D. Forsyth, J.C. Lisle, J.D. Morrison, E.S. Paul, J.F. Sharpey-Schafer, and P.M. Walker, Z. Phys. A345, 121 (1993).
[4] W. Andrejtscheff, K.D. Schil]ing, and P. Manfrass, Atom. Data Nucl. Data Tables 16, 515 (1975); P.M. Endt, it ibid 26, 47 (1981).
[5] A. Winther and J. de Boer, in Coulomb Excitation, edited by K. Alder and A. Winther (Academic, New York, 1966) p. 303.

3．原研タンデム加速器とタンデムブースター

吉田 忠

日本原子力研究所 東海研究所原子炉工学部 加速器管理室

1．はじめに゙

1982 年，新しい原子力研究の展開を目指し，原研タンデム加速器は設是された それま での 5 MV の加速器を用い，臤个才ン加速による中性子を利用した研究形喑とは，比較にならな い怆ど広䡯囲の研究䍗境が生まれたことは云うまでもない。同時に多くの研究用実験装置の整倍 と相まって，歹くの研究者により基䃏研究を推進するために利用されてきた。現在椓做中の大型 の加速器の中でも特に安定に動作することから，原研内部はもとより湓力研究により大学を始多园立研究譏関及びメーカー等加らの利用弆も多い，さらに，平成5年度にはイオンエネルギーを 2． $5 \sim 4$ 倍にする事か出来る超伝帠ブースターを什英したことにより，1000 MeV以下の
大幅に茁大し，今後の仾究に本効な加速器施設てある
以下に各加速器の仕嵄，性能を紹介し，今後の磵究の一助になることを期待している

2．タンデム加速器
 る加速器として，第1級の性能を維持しつつ稳傎している。静電型加速器の中でも特殊な形状を した加速器の一つであり，同習の加速器は米国に 1 台有るのみである。制御のしやすき，安定性 ともに像れた加速器であり，建設数年後から現在に至るまで年間4～5平時間か運転を継続して いる。第1表にタンデム加速器の緒末を示す。

生为容器	㻃㛑 8.8 .3 m 全高 26.6 m	场	2． $5 \sim 18 \mathrm{MV}$
緤䜌支柱	直経 2.74 m 全高 13.72 m	負イオン工ネルギー	220 KV
	1直㺯 3．51m 全高 4.47 m		$20 \sim 350 \mathrm{MeV}$
	六务こか㴒黄力入 $6.7 \mathrm{~kg} / \mathrm{cm} 2$	ビーム爯流	阿干
電切分制方式	口さ过イント方式		郜素，占主素 $0.5 \mathrm{P} \mu \mathrm{A}$
劬力伝这榐澵	アクリルジンフト回运式	イオン湤	負イオン源 SNICS－II 3台
制部㳖置。			正イオン源．．．（ECR）イオン屒
－タージツト空	， 6 管 15ビームライン	加速可能イオン擩	

第1表 タンデム加速器の主票禇元

タンデム加速器のイオン源は，3tのセシウムスバッターー型イオン㹉を，2基の高氟圧架台 に設周してあり，常時遇転を続けているっこれたより，常に安宗した状能でイオンを発生するこ とが地来る，第1図にタンデム朋速器で加速可能なイオン種を示す。気イオン源が主であり，希 ガスは俆イオン発生が困難であるため，この形分の改良として，平成9年费の整備において，品

第1图 タンテム的速器で刖速问能なイオン稿

 きるようになるソ起である。

 イムば住的に收り业めとなることから，大き

 るよう心掛けている。

3．タンデムプースター

 すタンデム州速器から肌速されてくるるどーーム

加速䇼囲を広くとれる2半ャップ空洞としてある。バンチャーにも同型の空洞を使用し，さらに フオンビーム利用効嗦を上げるため，2佔の周波数めバンチャーを組み合わせてある。これによ ワタンデム加速器から導かれてくる直流電流をバルス化するか，理諭的には約 60% のイオン ビームを加速することができ，それに近い性能を傕認している。加速空洞は1基のクライオス タットに4台の加速空湖を組み付けてあり，合計10台のクライオスタット，40台の加獭空洞 を設置した， $30 \mathrm{MV} / 1$ 価相当の加速器である。加速を終了したイオンビ…ムはデバンチャ… によりエネルギ一を揃えられ，実験装置に導かれる。実験㳖買は核物理関連研究専用に2本，核分光及び物性関連研究用に1本があり，それぞれの研究用に実験盐禂が設蹎されている。第3図 にタンデム加速器とプースターの構成図を示す。

タンデムプースターで引速で きるイオン䡌は，炭案より雪いけ
 はイオン速㭠が不足し，一分な抑速からできない，加逮空润はイオン
設定されてむす。10品以下は急送に扣速矨窑が哖ちるためであ る，第小夌に加速特性を豕す。第

第4國 空洞の规速持姓 5図にタンデム加速器及びタンデムブースターによる加速特性を示す。

第ら国タンデム加速器及びブースター による加速特性

加速イオン種	加速工䄍ギ $-(\mathrm{MeV}$ ）		合椋加速営压	加速位相
	入射	出力	（MV）	（deg）
35 C 1144	164	446	27.6	25
$58 \mathrm{~N} \mathrm{i} 20+$	190	658	27.7	18
$107 \mathrm{Ag} 25+$	231	798	28.3	21
127 ｜ $27+$	225	880	30.2	18
197 A u $25+$	340	912	30.7	22

第2表 プースターによる加速例
また，これまでに行われた加速試験の結果を第 2 表に示す。タンデムブーースターはイオン電価の多い方が効率的に加速できるため，荷電変換装四をタンデム加速器で加速後のビームラインにも
 ている。

1．タンデム加速器采の利用

タンデム㺫速器の運転は，24洔間を基本に傕転され実験に使用されている，各研究者は宸
験を行うことを原則としている。このような方法によるマシンタイムの期間は $3 \sim 4$ 力月本結的 に行い，約」力月間の整備期問を造く。近年の運転てはタンデム川逵器の战障によるマシンタ1
 きることから，多くの大学等の研究者により利用されている，第6図にここれで使用された表絴を示す 玉な利用は原子核物理，核化学，图休物理，原子分于，材料物性，照射損伤等，多岐

第6図 タンデム加速㗊の利用実精

5．今後の兴標

プースターを有効に使用するた か，大䨳流高多価イオンの発生が急矝 となっている。このため，冒顛にも述 べて西るが，ECRイオン源の早急な整雀を行う。これにより希ガスイオン を利用した研究が閎始てきるほか，重金属質イオンの高エネルギー大電流に よる夷験研究も可能になる。また，低速やオン加速用空洞（Low β ）の研究 を進め，将来的れはウランイオンのよ うな重けオンまで加速できるようた拡根していく予定である。第7図に各䧹 の機器をを組み合わせたときに得られ る，核子あたりのエネルキーの慨略を示す。

さらに糼率的な抽边器利月交可能 にするため，譏珹部分のみてはなく，制律系の改良も進めている。省力のた bのの改良，安全な運転を可能にする攵良，そして簡使なま法による運転方法 の椎立を目指し，制御ブログラム及び

 ハー－ドウエアーの改良を進めている。

6．おちすりりに

参考文献

1）JAERI－Tech 95－034 タンデムプー・スターの開発と建祋
2）JAFRI Revjew 95－017 JAERITANDEM \＆V．d．G．ANNUAL．REPORT

4． $\mathbf{H f}-\Pi-0$ 領域原子核の核異性体について

静間俊行 荒波大物理

质量数 ≈ 180 ，陽子数 $\approx 70 \sim 76$ をもつ原子核では，スピンの対称輛射影成分（ Ω ）が大きな軌道がフェルミ面近俊にあり，比較的大きな K 量子数をもつ状㷫がイラスト付近に現れてくる。
子数をもつ状態間の逶移ては，通常のスビン・バリティによる選択則に，K量子数による制約 （ K 選択則）から加わる。したかっって，始状態と終状恳の K 量子数の差（ ΔK ）が大きな粠移では，始状到はしばしば核異性体として観測される。このK核異性体からの崩褧がンマ線の㟟移強度 は，ガンマ線の多重度を $\lambda と し た$ 場合，禁止の度合 $\nu(=\Delta K-\lambda)$ 每に， 10 から 100 倍還移強度か嫋められるということが，経験的にわかっている［1］${ }^{\circ}$ しかしながら，近年になって，この経験則を大幅に破るような遥移が何例か観涀きれ，数多くの境論がなされている［2］－［8］。この領域の原子核の高励起•高スピン状悓の実験的研究方法として，これまでは，主に（ HI, xn ）反応が用いられてきた。しかし，入射核，標的核ともに安定同位体という制限から，ベータ多䍚安完線近傍の原子核より重い核については，K 核買性体の存在が予想されているにも関わらず， その高スピン状龍はあまり詳しく両べられていない。以下では，陽子数 70 の Yb 原子核につい て，具体例をあげて，ペータ溯脿の安定線近㑺の原子核の実軩的研究方法について紹介する。

Yb 同位体では，188，170－174，176 Yb が安定元素として天然に存在する。資量数が 169 以下の原子核は，重イオンを用いた（ HI, xn ）反応によって，その高スビン・高励起状態を作り出すこと
 できず，（ α, xn ）反応でのみ可能である。しかしながら，α ビームでは，持ち込む角運動量かな さく，残留核の最大角運動鼻はせいぜい $14 \sim 16 \hbar$ 程度である。実際，${ }^{170} \mathrm{Yb}[9] と^{177} \mathrm{Yb}[10]$ は， それでれ，${ }^{170} \mathrm{Er}(\alpha, 4 \mathrm{n}),{ }^{170} \mathrm{Er}(\alpha, 2 \mathrm{n})$ 反応でインビーム実跧がおこなわれており， 2 準粒子配位 に基づく回転帯は，スビン $13 \sim 14$ え まで観則されているが，さらに高いスビンで存在が期待 できる4準柆子配位に基づく状態は報告されていない。 ${ }^{170} \mathrm{Yb}$ ，${ }^{172} \mathrm{Yb}$ の場合，このような高 いスビン（ ≈ 20 方）をもつ状態の生成は，${ }^{13} \mathrm{C}$ か ${ }^{9} \mathrm{Be}$ のような比較的重いイオンビームを用いる ${ }^{164} \mathrm{Dy}\left({ }^{(13} \mathrm{C}, \alpha 3 \mathrm{n}\right)^{170} \mathrm{Yb},{ }^{170} \mathrm{Er}\left({ }^{9} \mathrm{Be}, \alpha 3 \mathrm{n}\right)^{172} \mathrm{Yb}$ 反応において達成できるものと思われる。しかし ながら，${ }^{164} \mathrm{Dy}\left({ }^{13} \mathrm{C}, \alpha 3 \mathrm{n}\right){ }^{170}{ }^{170} \mathrm{Er}\left({ }^{9} \mathrm{Be}, \alpha 3 \mathrm{n}\right)$ の反応断面榡は，非常に小さく $(\approx 10 \mathrm{mb})$ ，全断面積の数舞程度である。そのため，シリコンポール［11］のような荷電粒子検出器を用いて，反応 キャンネルを選別し， $10 \sim 20$ 台以上のゲルマニッム検出器を用いて， $\mathrm{p}-\gamma-\gamma$ の測定が必要で ある。このような方法が有効であることは，${ }^{176} \mathrm{Y} b\left({ }^{13} \mathrm{C}, \alpha 3 \mathrm{n}\right)^{182} \mathrm{~W}$ 反応を用いたわれわれの研究
［12］によって示されている。
つきに，質量数 173 以上の Yb 同位体であるが，これらの原子核は，入射核，標的核ともに安定同位元素の組み合せをもつ核骶合反応たおいて，有意な反応断面積をもって作り出すこと はできず，最近までは，その高スヒン状態はほとんどわかっていなかった。しかしながら，加速器技術の発達と巨大ゲルマニウム検出器システムの出現により，深部非弾性散乱を利用した中性子過剰核のインビーム室験が可能になった。深部非弾性散乱の反応過程では，標的核と入射核の間で核子の中りとりがおこなわれ，主に，標的核から入射核への中性子の移行が生じる。原研では，石井等によって，深部非弾性散乱を用いた Ni 領域の中性子過剰核の研究がすでにおろ こなわれている［13］。また，1994年に発表ざれたLee 等の報告によると［14］，${ }^{176} \mathrm{Yb}$ 標的に 250 $\mathrm{MeV}{ }^{48} \mathrm{Ca}$ ビームを照射した際，数mb／sr の反应断面皘で，${ }^{174-178} \mathrm{Yb}$ が生成され，スピンで最大 20 右の状態が観測を䋁ている。深部非弾性散乱では，入射ビームとして， $5 \sim 10 \mathrm{MeV} / \mathrm{u}$ のエネルギーをもつ中性子の比率（N／A）のできるだ \downarrow 大きい同位体を使用する。そのため，原研のタンデムナブースターを使用し，たとえば，${ }^{96} \mathrm{Z}$ 「ビームを用いて，深部非弾性散乱を利用 した質畐数 180 領域の中性子過剩核の高スピン状態の研究がおこなえるであろう。この場合あ， 20 台規模のゲルマニウム険出器があるに越したことはない。

以上，Yb 同位体のみについて述べてきたが，同様な手法を用いて，中性子過剰 $\mathrm{Lu}, \mathrm{Hf}, \mathrm{Ta}$ ， W，Re，Os原子核の高スピン状態の研究がまこなえる。

参考文献

［1］K．E．G．Lpbuer，Phys．Lett．26B（1908） 369
［2］P．Chowdhury et al．，Nuc］．Phys．A485（1988） 136
［3］T．Bengtsson et al．，Phys．Rev．Lett． 62 （1989）2448
［4］P．M．Walket et al．，Phys．Fiev．Lett． 65 （1990） 416
［5］B．Crowell et al．，Phys．Rev．Lett． 72 （1994） 1164
［6］N．L．Gjgtup et al．Nucl．Phys A582（1995） 369
［7］K．Narimatou，Y．R．Shimizu and T．Shizuma，Nucl．Phys．A601（1996）69
［8］静間梌行，理研シンボジウム＂ガンマ線分光が拓く 21 世紀の核物理＂，1996 年 12 月
［9］P．M．Walker et al．，Nucl．Phys．A365（1981） 61
［10］F．M．Walker et al．，Nucl．Phys．A343（1880） 45
［11］T．Kuroyanagi et al．，Nucl．Instrum．and Methods A316（1992） 289
［12］T．Shizume et al．，Nucl．Phys．A593（1995） 247
［13］石井哲郎，本研究会報告書
［14］J．Y．Lee et al．，Proceedings of the LBL conference 35687 （1994） 314

5．${ }^{132} \operatorname{Cs}$ の高スピン状㮩及びPEX実験

High spin states in odd－odd ${ }^{132} \mathrm{Cs}$

T．Hayakawa ${ }^{1}$ ，J．Lu ${ }^{2}$ ，K．Furuno ${ }^{2}$ ，K．Furutaka ${ }^{1}$ ，T．Komatsubara ${ }^{2}$ ，T． Shizuma 2 ，N．Hasimoto ${ }^{2}$ ，T．Saitoh ${ }^{2}$ ，M．Matsuda ${ }^{1}$ ，Y．Hatsukawa ${ }^{1}$ ，M． Oshima ${ }^{1}$
1 Japan Atomic Energy Research Institute of Technology，Tokai，Ibaraki 319－11，Japan 2 Institute of Physics and Tandem Accelerator Center，University of Tsukuba，Ibaraki 305，Japan

Abstract．Excited states with spin larger than 5 占 were newly established in the ${ }^{132} \mathrm{Cs}$ nucleus via the ${ }^{124} \operatorname{Sn}\left({ }^{11} \mathrm{~B}, 3 \mathrm{n}\right)$ reaction．Rotational bands built on the $\nu h_{11 / 2} \otimes \pi d_{5 / 2}$ ， $\nu h_{1 / 2} \otimes \pi g_{7 / 2}$ and $\nu h_{11 / 2} \otimes \pi h_{11 / 2}$ configurations were observed up to spin $l \sim 16 h$ ．The $\nu h_{\mathrm{II} / 2} \otimes \pi h_{11 / 2}$ band shows inverted signature splitting below $I<14 h_{\text {．A dipole band }}$ was firstly observed in doubly odd Cs nuclei．

Keyword：${ }^{132} \mathrm{Cs}$
Nuclei in the mass $A \sim 130$ region are known to be $\}$ soft and their shapes are jnfluenced by quasi－particles in high－j orbitals．The nuclear shapes are affected by different shape－ driving forces of low－$\Omega h_{11 / 2}$ proton and high－$\Omega h_{11 / 2}$ neutron．The signature inversion of rotational bands with $\pi h_{11 / 2} \otimes \nu h_{11 / 2}$ configuration of odd－odd nuclej has been studied both experimentally $\mid 1,2]$ and theoretically $[3,4]$ ．The spin assignment of the rotational band is important to study the mechanism of the signature inversion．In ${ }^{124} \mathrm{Cs}$ and ${ }^{126} \mathrm{Cs}$ ， the inversion states of low spin were reported using experimental method．The spin assignment of other Cs isotopes The systematics in lighter Cs and La isotopes（ $N \leq 71$ ） and the calculations suggested that the signature splitting of the low－spin states was inverted and that the inversion spin from abnommal to normal increased with increasing nentron number．The siguature of the low－spin states of ${ }^{130} \mathrm{Cs}(Z=55, N=75)$（5］was inverted．However，the normal signature in ${ }^{132} \mathrm{l}, \mathrm{a}(Z=57, N=75)[6]$ was reported．The spin assignment have been inconsistent in the higher jootopes of Cs and La．There is no data of the γ transition energies and high spin states of ${ }^{132} \mathrm{Cs}$ ．To extend the systematics of Cs isotopes，high spin states of ${ }^{132} \mathrm{Cs}(Z=55, N=77)$ have been investigated through in－beam spectroscopy．

The nucleus ${ }^{132} \mathrm{C}$ s was produced with the reaction ${ }^{124} \mathrm{Sn}\left({ }^{11} \mathrm{~B}, 3 \mathrm{n}\right){ }^{132} \mathrm{Cs}$ at a bombarding energy of 42 MeV with the Tandern accelerator at Japan Atomic Energy Research Institute（JAERI）．The target consisted of a $1 \mathrm{mg} / \mathrm{cm}^{2}$ layer of enriched ${ }^{124} \mathrm{Sn}$ on a thick Pb backing which served to stop the recoil nuclei．Gamma rays were detected with an array［7］of 10 HPGe detectors with BGO Compton suppressors and a LEPS to detect low energy photo－peak．The HPGe detectors were placed at angles of $32^{\circ}, 58^{\circ}$ ， $90^{\circ}, 122^{\circ}$ and 148° with respect to the beam direction．The LEPS was mounted at the angle of 90° ．The efficiencies of HPGe detectors were about 40% relative to $3^{\text {tn }} \times 3^{\text {in }}$ Na detector．The energy resolutions of HPGe detectors were $2.0-2.3 \mathrm{keV}$ for $1.3 \mathrm{MeV} \gamma$ ray of ${ }^{60} \mathrm{Co}$ source．The energy and timing data were written onto magnetic lapes，event by event，at two Ge detectors were fired．A total of $2 \times 10^{8} \gamma-\gamma$ coincidence events were collected．The gated spectra were constructed from $4 \mathrm{k} \times 4 \mathrm{k}$ matrix．The spin assignment was derived from DCO ratios．

While J．－S．Tasi et al．$[8,9]$ reported 17 low－spin excited states via ${ }^{133} \mathrm{Cs}(\gamma, \mathrm{n}){ }^{132} \mathrm{Cs}$ reaction，there was no information on high－spin states nor on γ transitions．Fig． 1 shows the level scheme of ${ }^{132} \mathrm{Cs}$ constructed from $\gamma-\gamma$ coincidence relationships and intensity ratios．The excitation energies of the lowest three levels of $86.2,108.3$ ，and 185.9 keV
were the same as those reported in ref. [9]. The γ rays from excited states were in coincidence with $\mathrm{Cs} \mathrm{K} \alpha$ X-rays.

In this work, three new rotational bands with signature partner (band 1-3) and a stretched dipole band (band 4) were observed. The two rotational bands have negative parity and the other positive parity. The band head of the positive parity band locates at higher excitaion energy than the others. Two decay paths from the dipole band were observed to band I and 3, although the $702 \mathrm{keV} \gamma$ ray was a doublet and the 785.3 keV γ ray was very weak.
P. R. Sala et al. [5] reported three rotational bands with signature partner in ${ }^{130} \mathrm{Cs}$. Their configurations were assigned to be $\pi h_{11 / 2} \otimes \nu h_{11 / 2}$ (positive parity band) , $\pi h_{11 / 2} \otimes \nu g_{7 / 2}$ and $\pi h_{11 / 2} / \nu d_{5 / 2}$ (negative parity bands). Fig. 2 shows the signature splittings ($E(I)-E(I-1)$) of the three bands of ${ }^{132} \mathrm{Cs}$ and ${ }^{130} \mathrm{Cs}$. The difference between odd-and even-parity members becomes smaller with increasing spin for the band 3 of ${ }^{132} \mathrm{Cs}$. The difference between odd- and even-parity members of the band 1 is larger than the other. These patterns are the same as those observed in ${ }^{130} \mathrm{Cs}$. We propose the configurations of the three bands to be $\pi h_{11 / 2} \otimes \nu h_{11 / 2}$ (Band 3), $\pi h_{11 / 2} \otimes \nu g_{7 / 2}$ (Band 2) and $\pi h_{11 / 2} \otimes \nu d_{5 / 2}$ (Band 1). The $\pi h_{11 / 2} \otimes \nu h_{1 / / 2}$ band shows the inverted signature in the low-spin states. This feature has been systematically observed in lighter odd-odd Cs nuclei [1]. Inversion from abnormal to normal in ${ }^{139} \mathrm{Cs}$ was not observed, but in ${ }^{132} \mathrm{Cs}$ the inversion occurred at spin of $14 \hbar$. This inversion spin was lower than those of ${ }^{124} \mathrm{Cs}$ and ${ }^{126} \mathrm{Cs}$ [1].

The dipole transition band has been a topic of high-spin states in this region. Some dipole transition bands were found in odd-A Cs isotopes $[9,10]$. This is the first observation for doubly odd Cs nuclei.

References

[1] Komatsubara, T., Furuno, K., Hosoda, T., Mukai, J., Hayakawa, T., Morikawa, T., Iwata, Y., Kato, N., Espino, J., Gascon, J., Gjørup, N., Hagemann, G. B., Jensen, H. J., Jerrestam, D., Nyberg, J., Sletten, G., Cederwall, B., and Tjøm, P. O.: Nucl. Phys. A557 (1993) 419c
[2] Hayakawa, T., Lu, J., Mukai, J., Saitoh, T., Hasimoto, N., Komatsubara, T., Furuno, K.: Zeit. Phys. A352 (1995) 241
[3] Tajima, N.: Nucl. Phys. 572 (1994) 365
[4] Liu, Y., Lu, J., Ma, Y., Zhou, S. and Zheng, H.: Phys. Rev. C54 (1996) 719
[5] Sala, P.R., Blasi, N., Bianco, G.L. and Mazzoleni, A.: Nucl. Phys. A531 (1991) 383
[6] Oliverira, J. R. B., Emediato, L. G. R., Rizzttto, M. A., Ribas, R. V., Seale, W. A.,
Rao, M. N., Medina, N. H., Botelho, S., and Cybulska, E. W.: Phys. Rev. C39 (1989) 2250
[7] Oshima, M., Furuno, K., Komatsubara, T., Furutaka, K., Hayakawa, T., Kidera, M., Hatsukawa, Y., Milarai, S., Shizuma, T., Saito, T., Hasirnoto, N., Kusakari, H., Sugawara, S., Morikawa, T, ,ito be published in Nucl. Instr. and Meth.
[8] Tasi, J. -S., Prestwich, W. V., and Lemnett, T. J.: Zeit. Phys. 322 (1985) 597
(9] Firestone,R.B., Shirley, V.S.'Table of Isotopes 8th, Lawrence Berkeley National Laboratory, University of California(1996)
[10] Hildingsson,L., Klamra,W., Lindblad,Th., Liden,Y., Ma R., Paul,E.S., Xu,N., Fossan,D.B., and Gascon,J.: Zeit. Phys. 340(1991) 29

Fig. 1. The level scheme of ${ }^{132} \mathrm{Cs}$.

Fig. 2. The signature splittings of three rotational bands of ${ }^{132} \mathrm{C}$ s (solid line) and ${ }^{132} \mathrm{Cs}$ (dashed line).

6．質量数 130 ， 80 領域の 11 1バンド

M1 bands in $A \sim 130$ and 80 regions

菅原昌彦 ${ }^{1}$ ，草刈英采 ${ }^{2}$ ，猪狩嘉延 ${ }^{3}$ ，照井和志 ${ }^{2}$ ，明神克弘 ${ }^{2}$ ，西宮大輔 ${ }^{2}$御手洗志郎 ${ }^{4}$ ，大島真澄，早川岳人，木寺正憲 ${ }^{5}$ ，古高和襀，初川雄一

1．なじめに

数年前軽い鉛の頒域で，励起エネルキーは回鞋バンド的であるにも関わらず
発見されM1バンドと名付けられた ${ }^{1}$ 。こ扎らのバンドは，それぞれ
 ことから，当初，弱くoblate変形した状䖩の上に形成されるproton high－Kバンド と解粘された。しかし，その後，これらのバンドに共通する待徽てある，（1）情性能率の四重挗能率の 2 乗に対する比が通常の回転バンドでの値に比べて 1 标程度大き い，（2）スピンの值が大きくなってもも指摽分㒀が見られない，等の点が，Principal Axix Cranking（PAC）模型では説明できない事が指献された2），それに対して S．Frauendorfらは，Tilted Axis Cranking（TAC）模烈を用いてこのバンド糗造を解析し，band head ではhigh－spin proton particle状䖧とhigh－spln neutron hole状菿のスビンがほぼ淔角をなしているが，この角度が次第に小さくなることによって全角運動量が増加していくバンド（＂Shears Band＂）であると解釈した ${ }^{3}$ 。 さらに，彼等はshell model 計算たおいてもこのようなバンド構造が現れうることを示し た。 4

一方同じ様な特徵を持つM1バンドはA～130領域でも見い出されており5）特に， $N=78$ 近傍の原子核では系統的に見い出されていたが，Zの大きい ${ }^{142.143} \mathrm{Gd}$ な゙はこれ までにM1バンドの報告はなかった。我々は1996年3月に行われた，原研タンデム フースターでの国内共同実験において，${ }^{111} \mathrm{Cd}\left({ }^{36} \mathrm{Cl}, 1 \mathrm{p} 3 \mathrm{n}\right),\left({ }^{35} \mathrm{Cl}, 1 \mathrm{p} 2 \mathrm{n}\right)$ 反憂を用いて ${ }^{142,143} \mathrm{Gd}$ におけるM1バンドの䬶則に成功した。また，A～80領域でもLister らに よって，N＝A6近傍の原子核においてM1 の強いcascade 㜊移て結ばれるバンド搆造 が見出されている ${ }^{\circ}$ 。このことは，Shears Band というものが決して軽い鉛領堿だ けに見られる特殊なものではなく，その完全な理解のためには，軽い鉿領域と合す せて，A～130䫀城，A～80領城のM1バンドの特徵を翮べる必要があることを示し ている。

2．A～130領域におけるM1バンドの特微について

A～130䫀域ては，A～120近傍からA～140近倍に至る広い領城で，M1バンド的

2－1 Dynamlc moment of jnertia の系統性について
関1に，それぞれA～120近慞，A～130近傍，A～140近榜で観剆されているM1 バンド的な营位について，縂軸にspinI横軸に $\mathrm{E}_{r}=\mathrm{E}(\mathrm{I})-\mathrm{E}(\mathrm{I}-1)$ をとつてプロットし たものを示す。この場合，E E_{γ} は回転の角速度ヶ ω に対忌し，このグラフにおける㥧 きはdynamic moment of Inertia を表す。それでれのデータ点はかなり直綡からず

れているのて必ずしも回俥バンドとは言えないけれども，平均的な切片と傾きを見 ると，騦转数が大きくなるにつれて切片の値は大きくなり，傾きは逆に小さくなる傾向が見らするる。

図1．A～120近傍，A～130近傍，A～140近傍で観測さ扎ているM1バンド的な準位について，維軸にspin 1 横䊖に $\mathrm{E}_{\boldsymbol{\gamma}}=\mathrm{E}(\mathrm{I})-\mathrm{E}(\mathrm{I}-1)$ をとつてプロットした図

2－2 M1バンドの崩脿経路について

図 2 た前回の原研タンデムフースター園内共同実験の結果得られた ${ }^{142} \mathrm{Gd}$ のレベル スキームを示す。これまで142 GdではE2cascade 邏移で結ばれる4つの準位詳（図 2 の＂gsb＂，＂npb＂，＂$\left(\mathrm{nh}_{11 / 2}{ }^{-2}\right)^{\prime}$ ，＂$\left(\mathrm{ph}_{11 / 2}{ }^{2}\right.$ ）＂）がそれぞれ，$\left(16^{+}\right), 13^{-}, 18^{+}, 18^{+}$まで見い

両方に顛技している。このようなdipole cascadeはN＝78の偶々核（ ${ }^{136} \mathrm{Ce}^{8)},{ }^{138} \mathrm{Nd}^{9)}$ ，$\left.{ }^{140} \mathrm{Sm}^{10}\right)$ でも観測されており，これらを，スピンIと $\mathrm{E}_{\gamma}(=\hbar \omega)$ の関佰としてプロッ トしたもの家図3に示す，スビン16から下と20から上についてはisotone毎にかなり のばらつきがみられるが，16から20の間ではほぼ同一の傾学を持っており，核構造上共通の起源を持つと考えらむる。もこでN＝78偶々核のM1バンドについてその崩壊経路を模式的に表したものを図4に示す。いずれも偶spin＋parity状整と奇spin－ parity状態の両方に崩壊するのは共通しているが，偶spin＋parity状惄をして ${ }^{136} \mathrm{Ce}$

 えられる，一方中性子奇核である ${ }^{137} \mathrm{Nd}$ ては， M 1 バンドは $v \mathrm{~h}_{11 / 288} \pi\left(\mathrm{~g}_{7 / 2} \mathrm{~h}_{11 / 2}\right)$ と $\nu \mathrm{h}_{11 / 28} \nu\left(\mathrm{~h}_{11 / 2}{ }^{-1} \mathrm{~d}_{3 / 2}^{-1}\right)$ に崩壊している ${ }^{11)}$ 。従って，これらのことから次のように類推することができる。 すなわち，A～130頜域の㑭偶核におけるM1バンドの主要
 その前壊する先の状態は故起エネルキーの相対的な関係により，$\left(\pi_{11 / 2}{ }^{2}\right)$ ， $\left(\nu \mathrm{h}_{11 / 2}^{-2}\right), \pi\left(\mathrm{g} 7 / 2_{11 / 2}\right)$ ，または $v\left(\mathrm{~h}_{11 / 2}^{-1} \mathrm{~d}_{3 / 2}{ }^{-1}\right)$ である（図5）．

図2．${ }^{142} \mathrm{Gd}$ の弾位図

図3．N＝78偶々核のM1バントについて，スビンIを回恸角速度 1ω の関数として表した図

図4． $\mathrm{N}=78$ 偶々核のM1バンドの前褧経路

図5．A～130領枝の偶偶核におけるM1バンドの主要な㥢位を その崩填経路について模式的に表した図

$2-3{ }^{143} \mathrm{Gd}$ の椦造について

図6に，前回の原研国内共同実験の結果得られた ${ }^{143} \mathrm{Gd}$ の藫位図を示す。 これまで は，図中＂$\left(\mathrm{A}\right.$ ）＂で表されるシークエンスが $31 / 2^{+}$まて，＂ B （B）で表されるシークエンス が35／2まで，＂（C）＂で表されるシークエンスが31／2＂までそれでれ見出されていた12） －今回これらのシークエンスをさらに高スピンまで拉張すると共に，dipoie cascadeを 1 つ（＂（D）＂），E2力スケードを3つ（＂（E）＂，＂（F）＂，＂（G）＂）新たに見出し た。 ${ }^{143} \mathrm{Gd}$ のイラスト状態の構造を推定するために， $11 / 2$ 状䔤からの相対的な弱起

エネルギーとスピンの増加分をそれぞれ，緱軠と横軸にプロットしたものを図7に示す。図7には，${ }^{143} \mathrm{Eu}$ のイラスト状態について行った同様のプロットを並べて示す 13），${ }^{143} \mathrm{Gd}$ 上 ${ }^{143} \mathrm{E}$（1はcoreが共通 ${ }^{144} \mathrm{Gd}$ ）なので図 7 のようなプロットをした場合よ く似た据る観い示すと考えられる。図7中には ${ }^{143} \mathrm{Eu}$ の場合を委考にして推定した ${ }^{143} \mathrm{Gd}$ のイラスト状態の唒位を書考入れてある。図7から，どちらの揚合も，イラス ト状態には $\mathrm{h}_{11 / 2}$ を占める粒子の畨数が1因ずつ増えるに従い，parityの異なる状能 が交互に現れることが分かる。さらに，我々の実験で新たに見出されたdipole
 （ $\pi \mathrm{h}_{11 / 2}{ }^{2}$ ）］を主要な配位として持つと考えられる。
（C）

${ }^{4} \mathrm{Gd}$
図6．${ }^{143} \mathrm{Gd}$ の準位図

図 7．${ }^{143} \mathrm{Eu}$ と ${ }^{143} \mathrm{Gd}$ のイラスト状裂について， $11 / 2$ 状態からの相対的な劯起エネ ルギーとスビンの増加分をそすでです，䖻倳と横軸にプロットした図

3．A～80領堿におちる M 1 バンドの特筣について
A～80擷域ではListerらの研究により， $\mathrm{N}=46$ 近篣の原子核において， $\pi\left(\mathrm{g}_{9} / 2^{2}\right) \otimes \nu\left(\mathrm{g}_{9 / 2}{ }^{-2}\right)$ 配位に基づくと者えられるM1の強いcascade 遺移で結ばれるバ ンド構造が見出さすている ${ }^{6}$ ことは前に述べた。 この䫀城ての特徽としては，Zの大
 のに対して，${ }^{81} \mathrm{Kr}$ ではそれが見られなくなるという点があげられる，Listerらは IBM＋2 broken pairsによる解析から，このM1に見ら才るスピン信存性は始状发と終状態のボソン数の違いから説明できるとしているが，今後，この領域におけるM1 バンドの系統的な研究が必票である。

参考文献

1）M．A．Deleplanque；Nucl．Phys．A557，39c（1993）
2）G．Baldsiefen et al．；Nucl．Phys．A592，365（1995）
3）S．Frauendorf；Nucl．Phys．A557，259c（1993）
4）S．Frauendorf et al．；Nucl．Phys．A601，41（1996）
5）D．B．Fossan et al．；Nucl．Phys．A520，241c（1990）
6）C．S．Lister et al．；Nucl．Phys．A557，361c（1993）
7）W．Starzecki et al．；Phys．Lett．B200，419（1988）
8）E．S．Paul et al．；Phys．Rev．C41，1576（1990）
9）G．de Angelis et al．：Phys．Rev．C49，2990（1994）
10）S．Lunardi et al．；Phys．Rev．C42，174（1990）
11）C．M．Petrache et al．；Nucl．Phys．A617，228（1997）
12）M．Lach et al．；Z．Phys．A345，427（1993）
13）M．Pitparinen et al．；Nucl．Phys．A605，191（1996）

[^0]
7. The possible mass region for shears bands and chiral doublets

J.Meng and S. Frauendorf*
The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi Saitama 351-01, JAPAN
*Institut für Kern- und Hadronepphysik, Forschungszentrum Rossendorf e.V., PF 510119, 01314 Dresden, Germany

(Nowember 18, 1997)

Abstract

The Tilted Axis Cranking (TAC) theory is reviewed. The recent progress of TAC for triaxial defonmed nuclei is reported. More emphisis has been paid to the new discocyered phenomena - chital doublets and their explaination. The possibile ptass reigon for the skears bands and chiral doublets and their experimental sigaeture are discassed.

1. INTRODUCTION

For more than thirty years, the study of high spin physics has provided us a lot of information on the rapidly rotating quantum many-body system. In the seventies, the main efforts are focused on the understanding of backbending and the the propertues of the yrast bands [1]. With the discovery of the superdeformed bands in the eighties [2], a lot of new phenomena and exciting challenges have appeared. The new concepts of the identical bands, quantized spin alignments [3] and C_{4}-staggering [4], etc have proved that high spin physics is one of the most interesting topics in physics frontier.
Since the nineties, the orientation of the deformed density distribution relative to the (space fixed) angular momentum vector becomes a hot topic in high spin physics. Tilted Axis Cranking (TAC) [5] is the version of the meanfield theory that permits the calculation of the orientation of the deformed field together with the parameters that define ins shape. Since its introduction, it has turned out to be a reliable approximation to calculate both energies and intraband transition probabilities. These applications are restricted to axial or slightly triaxial nuclei. In such cases the angular momentum lies in one of the principal planes (PP) defined by the principal axes (PA) of the density distribution. The interpretation of such pianar solutions and the quality of the semi-classical approximation are discussed in refs. (8). In triaxial nuclei there exist the possibility of nonplanar solutions, where the angular momentum vector does not lie in one of the PP. The existence of such solutions for a fixed triaxial shape has been demonstrated and interprented in ref. [7]. The exact quantal solutions are found numerically. They are compared with approximate solutions that correspond to the TAC version for this model system. Such approach has turned out to be quite instructive in the axial case, permitting a check of the accuracy and a refinement of the interpretation of the TAC approach $\mid \mathbf{6}]$. Here 1 would like to give a brief review of the planar and ronplanar solutions and the physics connected with them. The possible mass reigon to look for such planar and nonplanar rotional bands experimentally are discussed in the last section.

If. CHIRAL DOUBLETS IN TRIAXIAL DEFORMED NUCLEI

In TAC one seeks HF solutions that rotate uniformly about the angular momentumaxis $f_{\text {the }}$ that is tilted with respect to the PA 1, 2 and 3 of the deformed density distribution. The orientation of the rotational axis is described by the two polar angles \hat{v} and φ. In order to find the orientation angles one diagonalizes the single particle routhian

$$
\begin{equation*}
h^{\prime}=\boldsymbol{h}_{\mathrm{def}}-\bar{w} \cdot \bar{j} \tag{}
\end{equation*}
$$

where $h_{d * y}$ is the bamiltonian of the non rotating deformed field, containing pairing if necessary. The angular velocity is given by the vector

$$
\begin{equation*}
\vec{\omega}=\{\omega \sin \theta \sin \varphi, \omega \sin \vartheta \cos \varphi, \omega \cos \theta\rangle . \tag{2}
\end{equation*}
$$

Each configuration $\mid\}$ constructed from the single - particle or quasiparticle levels corresponde to a rotational band. Each band has its individual tilt that is determined by minimizing the total routhian $E^{\prime}(\omega, \vartheta, \varphi)$ with respect to ϑ and φ at fixed ω. At the minimum the angular momentum vector $\bar{J}=(\vec{J})$ and the angulat velocity $\bar{\omega}$ are parallel ($\$$]. These selfonsistency equations must be complemented by additional ones that determine the shape of the density distribution. In the present model study the shape is assumed to be given.
We study a model syatem consisting of a $h_{11 / 2}$ proton particle or hole and a $h_{11 / 2}$ neutron hole coupled to a triaxial notor. The bamiltonian of this PRM is

$$
\begin{equation*}
H=h_{d \in t}+\sum_{v=1}^{3} \frac{\left(I_{\nu}-j_{\nu}\right)^{2}}{2 J_{\nu}} \tag{3}
\end{equation*}
$$

For the moments of inertia the ratios of irrotational flow are assumed,

$$
\begin{equation*}
J_{\nu}=f \sin \left(\gamma-\frac{2 \mathbf{x}}{3} \nu\right)^{2} \tag{4}
\end{equation*}
$$

For $\gamma=30^{\circ}$, the moment of inertia J_{2} is the larger than $J_{1}=J_{3}$. The haniltonian of the deformed field is $h_{\text {def }}= \pm h_{p}-h_{n}$, where the plus aiga referes to particles and the minus to holes. The single particle hamiltonian is given by

$$
\begin{equation*}
h=\frac{1}{2} C\left\{\left(j_{3}^{2}-\frac{j(j+1)}{3}\right) \cos \gamma+\frac{1}{2 \sqrt{3}}\left[j_{+}^{2}+j_{-}^{2}\right] \sin \gamma\right\} . \tag{5}
\end{equation*}
$$

In the calculation we take $C=0.25 \mathrm{MeV}$ and $\mathcal{J}=40 \mathrm{MeV}^{-1}$. corresponding to a deformation of $\beta \approx 0.25$. More delails can be found in ref [6,7].
The TAC approximation to the PRM consists in two assumplions:

1. The operator \vec{I} of the total angular momentum is replaced by the classical vector \vec{J}
2. $\left.(\vec{j})^{2}\right)=(\overline{3})^{2}$

Assumplion 1) expresses the semi classical character of the TAC approximation and assumption 2) its mean field character. Correspondingly, the wave function if is the product of the proton and neutron wave functions. lmplementing 1) and 2) into the energy given by eq. (3) and minimizing with respect to $\mid\}$, results in the TAC couthian (1) determining $\mid\}$, where the angular velocity wi is given by $^{\prime}$

$$
\begin{equation*}
w_{\nu}=\frac{R_{\nu}}{J_{\nu}} \quad R_{\nu}=J_{\nu}-\left\langle j_{\nu}\right\rangle \tag{6}
\end{equation*}
$$

Here, we have introduced the classical vector \vec{R} of the roter angular momentum. . The orientation of the rotational axis is found by minimizing the energy (3) with respect to the three components J_{v} subject to the subsiduary condition that $J=\sqrt{J_{\mathrm{j}}^{2}+J_{2}^{2}+J_{3}^{2}}$ is constani. Taking into acount the stationarity of $\mid \gamma$, one obtains

$$
\begin{equation*}
\frac{J_{v}-\left\langle j_{v}\right\rangle}{J_{\nu}}=\omega_{\nu} \propto J_{v} \tag{7}
\end{equation*}
$$

i.e. the TAC condition that \bar{w} and \bar{J} must be parallel. This is equivalent with finding the orientation angles by minimizing the total routhian

$$
\begin{equation*}
E^{\prime}=\left\langle k^{\prime}\right\rangle-\frac{1}{2} \sum_{\nu=2}^{3} \mathcal{J}_{v} \omega_{v}^{2} \tag{8}
\end{equation*}
$$

with ω_{y} given by eq. (2).
In the case of substantial triaxiality of the nuclear density distribution, there exist two possibilities:
i) The rotational axis $(\vec{J} \| \overrightarrow{\|})$ lies in one of the three PP 1-2, 1-3 or 2-3. We call such a solution pianet.
ii) The rotational axis does not lie in one of the PP. We call such a solution ronplanar

The high j particles iend to align with the 1 - axis because their tonus like density distribution has the maximal overlap with the triaxial core in the $2-3$ plane. The high j boless tend align with the 3 -axis because their dumbbell like density distribution has maximal overlap if its symmetry axis is parallel to the long axis. For $\gamma=30^{\circ}, J_{2}$ is largest and it is favorable to built up the core angular momentum alotg the 2 - axis. Thus, if a proton hole and a neutron hole are coupled to the rotor the total argular momentum will lie in the 2-3 plane. The solution is planar, because \vec{J} and the PA 1 and 2 are in one plane. At the band head, where $R=0$, the angular momentum \vec{J} is paralled to the 3 - axis With increasing spin it moves out into the 2-3 plane, as illustrated in the lower panel of fig II. If a high j proton particle and high j neutron holes (or vice versa) are coupled to the rotor, \vec{j} will lie in the $1-\mathfrak{j}$ plane at the band head and then gradually turn bowards the 2-axis, as illustrated in the lower panel of fig.Il. Fig. It shows the levels obtained from a numerical diagonalization of the PRM hamittonian Eq.(3). There is rather good agreement between the PRM and TAC. The TAC energies, which are not shown in Fig. II reproduce the PRM values very well.

FIG. 1. Rotational levels of $k_{11 / 2}$ particles and holes conpled to a triaxial totor with $\gamma=30^{\circ}$. The apper panel shows the case of a proton and a neutron hole and the lower panel the case of a proton particie and a neutron hole. Fill lines correspond to even and dashed to odd spin.

JAERI-Conf 98-008

FIG. 2. The relation of symmetry and shears bands and chiral doublets: the upper panel shows the how $\delta I=2$ bands appear in axial symmetric nuctei with signature symmetry; the $\delta j=1$ bands for the axial symmetric nuclei without sigasture symmetry are shown in the middle; chiral donblets -two near degenerate $\overline{\delta i}=1$ bands appear in triaxial nuclei when the colation becomes aplanar.

III. SYMMETRIES

In order to discuss the consequences of the symmetries in a transparent way, it is useful to jepresent the TAC solutions in a schematical way as in Fig. (II). The deformd density distribution is given by the quadrupole moments Q_{μ}. The latter define the intrinaic frame with the PA 1,2 and 3 by the condition that the intrinsic quadrupole moments $Q_{1}^{\prime}=Q_{-1}^{\prime}$ must be equal to zero and $Q_{2}^{\prime}=Q_{-2}^{\prime}$. The triaxial shape is specified by the two moments Q_{0}^{\prime} and $\left(Q_{2}^{\prime}+Q_{-2}^{\prime}\right) / \sqrt{2}$. The orientation of the density distribution is described by the three Euler angles ψ, v and φ.

$$
Q_{\mu}=D_{0 \lambda}^{* \lambda}(\psi, \vartheta, \psi) Q_{0}^{\prime}+\left(D_{2 \mu}^{2}\left(\psi, \vartheta_{1} \varphi\right)+D_{-\lambda \mu}^{2}\left(\psi, v_{1}, \varphi\right)\right) Q_{2}^{\prime}
$$

The angles θ and φ specify the orientation of \vec{J} in the intrinsic PA frame. They take only the discrete values satifying the selfconsistency condition $(\bar{J} \| \bar{w})$. Due to the rotational symmetry of the two body hamiltonian, there is a set of degenerate TAC solutions specified by the value of the angle ψ. The whole set of degenerate TAC $\left|\psi, \vartheta_{i}, \varphi\right\rangle$ solutions is given by the different values the quadruole moments Q_{A} can take. The invariance of the of the intrinsic quadmpole moments Q_{0}^{\prime} and $\left(Q_{2}^{\prime}+Q_{-2}^{\prime}\right) / \sqrt{2}$ with respect to the rotations $\boldsymbol{R}_{1}(\pi), \boldsymbol{R}_{2}(\pi)$ and $\boldsymbol{R}_{3}(\pi)$ implies that one may restrict the Euler angles to $0 \leq \psi \leq 2 \pi$, $0 \leq \theta \leq \pi / 2$ and $0 \leq \varphi<\pi$. The other values give Q_{μ} that are already included. One may see this also directly from eq. (9) by using the symmetries of the D - functions and $Q_{2}^{\prime}=Q_{-2}^{\prime}$. States of good angular momentum $\mid I, M=I\}$ correspond to a superposition of TAC solutions $|\psi, \psi, \varphi\rangle$ with the weight function $\exp (i i \phi) / \sqrt{2 \pi}$ (angular momentum projection).
One must distinguish three cases:

1) $P A C$ solotion
$\vartheta=0, \pi / 2, \varphi=0, \pi / 2$.
Then

$$
\begin{align*}
& {\left[\begin{array}{lll}
\psi+\pi, & 0, & 0
\end{array}\right\rangle=R_{3}(\pi)|\psi, \quad 0, \quad 0\rangle=e^{-i \alpha v}|\psi, \quad 0, \quad 0\rangle,} \tag{10}\\
& \left.|\psi+\pi, \pi / 2, \quad 0\rangle=\mathcal{R}_{1}(\pi) \mid \psi_{1} \pi / 2, \quad \text { o) }=e^{-i a x} \mid \psi, \pi / 2, \quad \text { 0 }\right\rangle, \tag{11}\\
& |\psi+\pi, \pi / 2, \pi / 2\rangle=R_{2}(\pi)|\psi, \pi / 2, \pi / 2\rangle=e^{-i * \pi}|\psi, \pi / 2, \pi / 2\rangle . \tag{12}
\end{align*}
$$

The signature α is a good quantum number and the values the total spin can take are restricted to $I=\alpha+2 n$. The PAC solution represents one $\Delta I=2$ band.
2) Planar TAC solution
$\vartheta \neq 0, \pi / 2, \varphi=0, \pi / 2$ ㄷ $\vartheta=\pi / 2, \varphi \neq 0, \pi / 2$
The signature symmetry is lost and all spins are possible. The plapar TAC solution represents one $\Delta I=1$ band.
3) Nomplanar TAC solution
$\vartheta \neq 0, \pi / 2, \varphi \neq 0, \pi / 2$
The signatore symmetry is lost and all spins are possible. There are two degenerate solutions $|\psi, \psi, \varphi\rangle$ and $|\boldsymbol{\psi}, \mathcal{G}, \pi / 2-\varphi\rangle$. The nonplanar TAC solution represents two degenerate $\Delta I=1$ bands.

One may reformulate this consideration in a diffent way, considering only the orientations of \bar{J} in the intrinsic frame. It is sufficient to restrict \vec{J} to one half space.

1) If \vec{J} has the direction of the PA i, the wave function is an eigenfunction of the rotation $R_{i}(\pi)$ defining the signature of the corresponding $\Delta I=2$ band.
2) If \bar{J} lies in one of the PP, there exists another degenerate solution constructed by reflection on the PA i. They may be combined into two degenrate states of opposite signature, defined by the rotation $\boldsymbol{R}_{\ddagger}(\boldsymbol{x})$, which form one $\Delta I=1$ band.
3) If \bar{J} does not lie in one of the PP there are four dgenerate solutions constructed by reflecting \bar{J} on two of the PP. They form a rectangle with the PA i in the center. The two solutions on each diagonal can be combined into two degenerate states of opposite sigature, defined by the rotation $\boldsymbol{\mathcal { R }}_{\boldsymbol{i}}(\boldsymbol{\pi})$. Thus, two $\Delta I=1$ bands arise.
As examples for these general rules, let us discuss the triarial TAC solutions of our model system. The planar case is shown in the upper panels of figs. II. Both the proton hole and the neutron hole tend to
align with the 3 - axis. First the core angular momentum \vec{R} and, as a consequence, also \vec{J} align with the 3- axis, because this orientation is favored by the Coriclis interaction. The solution is of PAC type. The bands of different signature, defined by the rotation $\mathcal{R}_{3}(\pi)$, are separated. For higher spin it is more efficient to increase the $2-$ component of \bar{R}, and \bar{j} moves into the $2-3$ plane. Now there are two degenerate TAC solutions, symmetric to the 3-axis, which can be combined into two degenerate states of opposite signature. Correspondingly, in the PRM calculation pairs of $\Delta I=2$ sequences merge into a $\Delta I=1$ band. The reorientation of \hat{R} from the 3 - to the 2 -axis is reflected by the change of the slope of the curve $I(\omega)$, which is the $\mathcal{J}^{(\epsilon)}$ moment of inertia. The larger core moment of inertia along the 2 axis leads to the increase of $\mathcal{J}^{(\epsilon)}$.
The nonplanar solution is shown in the lower panels of fig. II. The combination of the proton particle with the neutron hole favors the 1-3 plane. At low - spin, \vec{R} and \bar{J} lie in the $1-3$ plane, because this orientation minimizes the Coriolis interaction. There are two degenerate TAC solutions obtained by reflection on the 1 axis that can be combined into two degenerate states of opposite signature, which is now defined $\mathcal{R}_{1}(x)$. Correapondingly, the low - spin PRM spectrum consists of $\Delta I=1$ bands, which differ by the wave functions of the proton and the neutron hole. For higher spin it is again more efficient to increase the 2 - component of R_{1} and \bar{J} moves out of the 1-3 plape. The two planar TAC solutions bifurcate into four nonplanar ones. When they are sufficiently separated (tunneling is small), one can combine the four degenerate TAC solutions into two degenerate states of each signature. Correspondingly, in fig. If pairs of $\Delta I=1$ bands merge into doublets. The PRM states with the same value of I are somewhat split, indicating the presence of some tunneling between the states symmetric to the 1.3 plane.

Iv. DISCUSSIONS

The discussion above is focused on the physics origin of a nonplanar TAC solution. It is not yet clear whether such a solution is stable. Since triaxial nuclei are sof with respect to γ, it is possible that a planar TAC solution with axial shape has a lower energy. This question can only be answered by microscopic 3D-TAC calculations taking inio actount the selfconsistency with respect to the deformation. But we can say:
A nomplanar TAC solaton will show ap as a parr of identecal $\Delta I=1$ bands of the same partly. A planar triaxial TAC solution may represent a band with a stgnature spliting that decreases with angalar momentam.
It seems interesting to look in regions of $\boldsymbol{\gamma}$ soft nuclei for such phenomena. These γ soft nuclei in the mass reigon $A=50,80,100,130,160,200$ with particle-hole configuration are the possible candidates to look for them. Band 1 and 2 in ${ }^{134} \mathrm{Pr}$ reported in ref. [8] might be candidates for a pair of identical $\Delta I=1$ bands.
[1] I.Harnamoto, High angular momentum phenomena in treatise on heavi-ion science, Vol. 3 (1985, Plenum).
[2] P.J. Twin, et al, Phys.Rev.Lett. 57 (1986) 811.
[3] F.S.Stephens, el al, Phys.Rev.Lett. 64 (1990) 2623. stod. 65 (1990) 301.
[4] S. Flibotte, et al, Phys.Rev.Lett. 71 (1993) 4299.
[5] S. Fuauendort, Nucl. Phys. A887 (1993) 259c
[i] S. Frapendorf, J. Meng, Z. Phys. A 356 (1996)263.
[7] S. Franendorf, J. Meng, Nucl. Phys. A 617 (1997) 131.
[8] C. M. Petrache et al. Nucl. Phys. A597 (1996) 106

8．Tilted Axis Rotational状態の角運動量射影

Angular momentum Projection of Tilted Axis Rotating States

M．Oi，N．Onishi，and N．Tajima
Institute of Physics，Graduate School of Arts and Scsences， University of Tokyo，Komaba，Meguro－ku，Tokyo， 159 Japan

T．Horibata
Department of Information System Engineering， Aomori University，Kouhata，Aomori－city 030 Japan

Abstract

Absiract We applied an exact angular momentum projection to three dimensional cranked HFB（3d－CRFB） states．Tilted axis rotating states（TAR）and principal axis rotating states（PAR）are compared．It is shown that TAR is more adequate than PAR for description of the back beading phenomena driven by tilted rotation or wobbling motion．

Studies of isotones with $\mathrm{N}=106$ around $\mathrm{A} \sim 180$ ，have lately attracted considerable attention．Fermi energy of these nuclei is in the middle of a high－j shell（ $\nu i_{13 / 2}$ ）．This situation is connected to γ－degree of freedom．An idea of γ－deformation has been helpful to understand physics of these isotones such as high－K isomers［1］．Frauendorf［2］proposed that this situation may also allow＂Fermi－alignment＂． High－K states play important roles here as well as in case of γ－deformation，but such a high－K state is taken into account in terras of＂tilted cotation＂．field．As a consequence，a new interpretation of the back tending is possible among these isotones in terms of＂tilted rotation＂．Namely，＂g－t＂band crossing（band crossing between a ground band and tilt band）．Experimentally，bigh－K rotational bands are observed in ${ }^{180} \mathrm{~W},{ }^{181} \mathrm{Re}$ ，and ${ }^{282} \mathrm{Os}$ ，and the bands are temporarily assigned as＂t－band＂（tilt band）［3－5］．Pearson et al．［5］reported that they found such a back bending for the first time in ${ }^{1613}$ Re．

For microscopic description of high spin physics like the back bending above，there has been the only one approach available to us；the cranking model．The model is based on the semiclassical intuition for nuclear rotation，that is，uniform rotation around a fixed axis such as a symmetry axis of inertia．The state produced by the cranking model is a wave packel in the angular monmentum space，and its main component is a low－K state．In usual cases where axial symmetry is assumed for the nuclear shape， an internal symmetry called＂signature＂is preserved．In this case，the wave packet is also restricted to have mainly even total angular momenta（even－I ）．In order to investigate properties of the wave packets， Hara，Hayashi and Ring［ 0 ］applied an exact angular momentum projection to the principal axis cotating （PAR）states in which angular momentum vector is along the 1 －axis in the rotating frame．They showed that the CHFB method can produce a wave packet whose main component of angular momenturn is very close to the constrained value．Islam，Mang，and Ring［7］presented a probability distribution in the wave packet with respect to even angular momentum，although they used an approximation in calculation of the overlap kernels．They showed Gausaian－like curve of the probability around the constrained value．

In these studies，signature，a symmetry with respect to π－rotation sbout the rotating axis，is preserved．
With an extension of dynamical degrees of freedom in nuclear rotation，viz．tilted rotation，deficiencies of the cranking model are revealed．Kerman and Onishi $[8 \mid$ developed three－dimensional cranking model from the time dependent variational method（TDVM）．Their idea is that general rotations can be breated by introducing an intrinsic state $|\phi\rangle$ and general rotational operator $\hat{R}(\Omega)$ ，where Ω is the Euler angles．

Namely, general rotation is expressed as $\hat{\boldsymbol{R}}(\Omega)|\phi|$. They derived the classical equation of motion for expectation value uf angular momentum and the Euler angles, and claimed the equation can treat general rotational motions such as wobbling motion, precession, etc. They proposed the constrained Hartree Fock method with a three dimensional cranking term (3d-CHFB) to evaluate the intrinsic state. The intringic coordinate is constrained to be consistent with principal axes of inertia.

3d-CHFB has advantages comparing with the conventional cranking model. The reason for this is that the model can treat even and odd angular momentum on the same footing. This is a result of a broken symmetry of sigature. In addition, high- F^{-}components are taken into account by tilting the angular momentum vector with tespect to the intrinsic axes.

We should note that this symmetry breaking can play a negative role at the same time because the concept of signature has been so useful to interpret, for example, the signature splitting or signature inversion that we would like to believe in the signature as a good quantum number as much as possible.

We propose "signature projection" onto the TAR states to understand the signature splitting in terms of the $\mathbf{3 d}$-CHFB state. The projection is achieved by,

$$
\begin{equation*}
\{ \pm\rangle=N(\mid+\theta) \pm|-\theta\rangle) \tag{1}
\end{equation*}
$$

where $\mid \pm \theta$) represents the $3 \mathbf{d}-\mathrm{CHFB}$ state (tilted axis rotating state, or TAR) with tilt angle $\pm \boldsymbol{\theta}$, and \mathcal{N} is a normalization factor. These projected states are expected to have favorable features for description of the backbending caused by tilted rotation.

In our previous work[9], we estimate numerically the signature splitting observed in ${ }^{\text {L8P }}{ }^{\circ} \mathrm{O}$ s by means of the generator coordinate method (GCM). We employed the TAR states as generating states and tilt angle as a generator coordinate. We postulated the definition of signature as a syrmmetry of π rotation about a principal axis of inertig rather than rotating axis, and we assigned (+)-sighature to even-I states and (.)-signature to odd- f. In the present work, this postulation is examined by the angular momentum projection to the signature projected TAR states.

We employed the TAR states with tilt angle $\pm 6^{\circ}$ to project them to eigenstates of signature $\mid \pm$. Our calculation shows that $\mid+$) contains much more even- I states than odd I states while $|-\rangle$ mixes odd- I states and even-I states. We think that the relation between signature and angular momentum,

$$
\begin{equation*}
r=(-1)^{t} \tag{2}
\end{equation*}
$$

where r is a signature, becomes better, if we increase the tili angle. Because of numerical difficulty, calculations of angular momentum projection for larger tilt angle than 6° is wot available now. We are improving the algorithm now.

In summary, we achieved exact angular monentum projection onto the solutions of 3d-CHFB. PAR is a 3d-CHFB solution for one-dimensional cranking, and TAR is for three-dimensional cranking. We examined properties of both states by looking at the probability distribution defined in the Appendix $(7,8)$. We found that the TAR state is adequate for description of a new type of back bending possibly caused by tilted rotation. This is because the state include even-odd I and low-high K components on the same footing. We also achieve the signatile projection onto the TAR state, which breaks the internal symmetry called signature. We confirmed that in the projected atates a relation between angular momentum and signature (2) holds to some degre. It particular, a (-)-signature state mixes even and odd angular momentum very much. We guess that the larger the tilt angle beoment, the better the relation (2) becomes.

Appendix; Angular Momentum Projection

An angular momentum projection matrix and the angular momentum projector is given as;

$$
\begin{equation*}
n_{N K^{\prime}}^{J}\left(\theta, \theta^{\prime}\right)=\langle\phi(\theta)| \hat{P}_{\kappa^{\prime} K^{-1}}^{I}\left|\phi\left(\theta^{\prime}\right)\right\rangle \quad \text { with } \quad \tilde{P}_{\kappa K^{*}}^{I}=\frac{2 I+1}{8 \pi^{2}} \int d \Omega D_{H}^{\prime I} I(\Omega) \hat{R}(\Omega) \tag{3}
\end{equation*}
$$

$\hat{R}(\Omega)$ is a cotation operator with the Euler angles, $\Omega \equiv(\alpha, \beta, \gamma)_{1} \theta$ is a tilt angle and $D_{\alpha, r}(\Omega)=\{K \mid$ $\left.\hat{\boldsymbol{R}}(\omega) \mid J K^{\prime}\right)$ is Wigner's function. A measure of integration is written as $d \Omega=d \alpha \sin \beta d \beta d \gamma$.

The overlap kernels, $(\phi|\hat{R}(\Omega)| \phi\rangle$, are evaluated by using the formulae [10],

$$
\begin{equation*}
\langle\phi| \dot{R}(\Omega)\left|\phi^{\prime}\right\rangle=\sqrt{\operatorname{det}|P(\Omega)|}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
P(\Omega)=U^{\dagger} D^{\dagger}(\Omega) U^{\prime}+V^{\dagger} D^{T}(\Omega) V^{\prime} \tag{5}
\end{equation*}
$$

Calculation of the norm kernel has to be carefully done, for the norm overlap kernel(4) is two-valued. Due to the loss of symmetries, signature, reality of intrinsic states and conjugation of bra and ket. integration (3) in the present work becomes more elaborated than the work in ref.[6]

Aecauge the intrinsic state and the projection operator can be expanded in terons of a complete orthonormal set of angular momentum ($/ K$),

$$
\begin{equation*}
|\phi\rangle=\sum_{j K_{\rho}} g_{N a}^{I}|I K \alpha\rangle \quad \text { and } \quad \hat{P}_{K h^{\prime}}^{\prime}=\sum_{\alpha}|I K \alpha\rangle\left\langle I K^{\prime} \alpha\right| \tag{6}
\end{equation*}
$$

where α indicates additional label to I and K. The probability $w \gamma_{h}$ found in ($J K$) states is written as,

$$
\begin{equation*}
w_{k^{\prime}}^{\prime}=\sum_{a}\left|g_{K_{o}}^{f}\right|^{2}=n_{k k^{\prime}}^{I} \tag{7}
\end{equation*}
$$

and therefore the probability to find states having a certain value of I, is estimated as,

$$
\begin{equation*}
W^{I}=\sum_{K^{\prime}=-1}^{I} w_{K^{\prime}}^{I}=\operatorname{Tr}\left(n^{d}\right) . \tag{8}
\end{equation*}
$$

References

[1] N.Tajima and N.Onishi, Phys. Lett. B179(1986)]87
[2] S.Frauendorf, Nuel. Phys. A557(1993)259c
[3] P.M.Walker et al., Phys. Lett. B309 (1993)14
[4] R.M.Lieder et al., Nucl. Phys. A476 (1988)545
[5] C.J.Pearson et al., Phys. Rev. Lett. 79(1997)605
[B] K.Hara, A.Hayashi, and P.Ring, Nucl. Phys. A358(1982)14
[7] S.Isiam, H.J.Mang, and P.Ring, Nuci. Phys. A326(1978)161
[8] A.Kerman and N.Onishi, Nucl. Phys. A361(1981)179
[9] T.Horibata, M.Oi, and N.Onishi, Phys. Lett. B355(1995)433
[10] N. Onishi and T. Horibata, Prog. Theor. Phys 65 (1980) 1650

Figure 1: Probability distribution with respect to total angular mornentum for PAR states. Angular momentum constraint is $6,8,13$. Even and odd components are drawn in different graphs for convenience.

Figure 2: Probability distribution with reapect to total angular momentum for TAR state and signature projected states. Angular momentum constraint is 13 . Tilt angle is 6 degrees. "s +1 " denotes (+)signature projected state and "s-1" denotes (-)-signature projected state.

Figure 3: Probability distribution with respect to K-quantum number and total angular momentum for TAR statef. Angular momentum constraint is 13. Tilt angle is 6°. Even and odd components are drawn in different graphe for convenuence.

9．非軸対称核におけるTilted Axis CrankingとParticle Rotor Modelの比较

Comparision with Tilted Axis Cranking and Particle Rotor Model for Triaxial Nuclei

Shin－Ichi Ohtsubo and Yoshifumi R．Shimizu
Department of Physics，Kyushu University，Fukuoka 812，Japan

Abstract

An extension of the cranking model in such a way to allow a rotation axis to de－ viate from the principal axes of the deformed mean－field is a promising tool for the spectroscopic study of rapidly rotating nuclei．We have applied such a＂Tilted Axis Cranking＂（TAC）method $[1,2,3,4,5]$ to a simple system of one－quasiparticle coupled to a triaxial rotor and compared it with a particle－rotor coupling calculation in order to check whether the spin－orientation degrees of freedom can be well described within the mean－field approximation．The result shows that the TAC method gives a good approximation to observable quantities and it is a suitable method to understand the dynamical interplay between the collective and single－particle angular momenta．

§1．Introduction

In order to study the quality of the tilted axis cranking approximation，we adopt a simple solvable model，the particle－rotor model，［6］consisting of one－quasiparticle in a single－j shell coupled to a triaxial rotor．We follow Ref．［7］for the description of the model except that we use the Lund convention for the triaxiality parameter $\left(-120^{\circ} \leq \gamma \leq 60^{\circ}\right)$ ．For the case of the axially symmetric deformation the comparison has been done in simple systems of the one－quasiparticle coupled to a rotor，［8］and of the one－（quasi）neutron and one－（quasi）proton coupled to a rotor，［ 9 ］where the particle－rotor model calculations can be easily performed．The study of the triaxial cases is interesting because it is suggested that the triaxial degree of freedom plays an jmportant role in realistic cases．［10］On the other hand it is already known in the usual PAC scheme that the response of the odd particle to the rotational motion strongly depend on the property of an orbit it occupies．

As for the rotor part the γ－dependence of the moment of inertia should be specified．We use that of the irrotational hydrodynamical model，［ $[7]$

$$
\begin{equation*}
\mathcal{J}_{k}^{\text {inni }}(\gamma)=\frac{4}{3} \mathcal{J}_{0} \sin ^{2}\left(\gamma+\frac{2 \pi}{3} k\right), \quad(k=1,2,3) \tag{1}
\end{equation*}
$$

One of characteristic features of the irrotational moment of inertia is that the one around the axis of intemediate length is the largest．It is，however，recently pointed out［11］that the moment of inertia which is largest around the shortest axis is favourable to under－ stand the signature－inversion phenomena．Therefore，we use the＂γ－reversed＂moment of inertia $[12,13]$ for the positive γ deformation，which is believed to be responsible for the signature－inversion phenomena：［14］

$$
\mathcal{J}_{k}(\gamma)= \begin{cases}\mathcal{J}_{k}^{\text {iratat }}(\gamma) & \gamma \leq 0, \tag{2}\\ \mathcal{J}_{k}^{\text {irrol }}(-\gamma) & \gamma>0 .\end{cases}
$$

§2. Results of calculation

We have performed systematic calculations of routhias, spin value, intraband $B(M 1)$ and $B(E 2)$ for the lowest eigenstate as functions of the rotational frequency by using the TAC scheme with wide range of the triaxiality parameter and positions of the chemical potential. The calculated results depend not only on the deformation parameters $\left(\epsilon_{2}, \gamma\right)$, but also on which orbit the quasiparticle occupies. In order to see the general trend, we will show the resull for the following choices of the chemical potential:
(a) $\lambda=e_{1}(\Omega=1 / 2)$,
(b) $\lambda=e_{2}(\Omega=3 / 2)$,
(c) $\lambda=e_{3}(\Omega=5 / 2)$,
(d) $\lambda=e_{4}(\Omega=7 / 2)$,
(e) $\lambda=e_{5}(\Omega=9 / 2)$,
(f) $\lambda=e_{8}(\Omega=11 / 2)$,
where $e_{i}(i=1 . .6)$ is the $i-t$ eigenvalue of the single-particle hamiltonian, and the corresponding Ω value (the projection of angular momentum on the symmetry axis) al $\gamma=0^{\circ}$ is denoted in parenthesis.

Fig 1 Magnetic dipole reduced transition probability as a function of the rotational frequency w for $\gamma=-20^{\circ}$. The solid (dashed) line is the result of TAC (exact particle-rotor coupling) calculation. The panels (a)-(f) are the caiculation using the chemical potential in Eq.(3).

Electric quadrupole reduced transition probability as a function of the rotational frequency ω for $\gamma=-20^{\circ}$. The solid (dashed) line is the result of TAC (exact particle-rotor coupling) calculation. The panels (a)-(f) are the calculation using the chemical potential in Eq.(3).

Fig. 3 The selfconsistent tilting angles (θ, ϕ) in the TAC calculation as functions of the rotational frequency ω for $\gamma=-20^{\circ}$. The solid, short-dash and long-dash lines denote ($\left.\theta_{\mathbf{I}}, \phi_{\mathrm{l}}\right),\left(\theta_{\mathrm{j}}, \phi_{\mathrm{j}}\right)$ and ($\left.\theta_{\boldsymbol{R},}, \phi_{\mathrm{R}}\right)$, respectively. The panels (a)-(f) ate the calculation using the chemical potential in Eq.(3).

It has been found that the agreements of these observables are very good in the axially symmetric case and reasonably good in the triaxial cases: Their rotational frequency dependence are generally nicely reproduced. It is remarkable that such a simple semiclassical approach as the TAC approximation reproduces the observables of full quantum mechanical treatment in such accuracies. This resuli suggests that the geometry of angular momentum dynamics can be well accounted tor by the mean-field approximation.

For such a simple system of one-quasiparticle coupled to a rotor, the exact particlerotor coupling calculation is possible. Note, however, that such calculations become more and more dificult when the number of excited quasiparticles increases. On the other hand, many quasiparticle excitations can be quite easily handled within the mean-field approximation. Moreover, the TAC method gives an intuitive picture which allows us to
interpret the result geometrically. Therefore the TAC scheme gives a promising alternative tool for studying the rapidly rotating nuclei where the geometry of the quasiparticle angular momenta play important roles.

References

[1] S. Frauendorf and T. Bengtsson, in Proceedings of the international Symposiom on Future Directions in Nuclear Physics with 4n Gamma Detection Systems of the new Generation, Strasbourg, 1991, edited by J. Dudek and B. Haas, AIP Coni. Proc. vol. 259 (AlP, New York, 1992), p. 223.
[2] S. Frauendorf and F. R. May, Proc. Int. Cont. on Nuclear Structure at Heigh Angular Momentum, Ottawa, May 18-21, 1992, AECL 10613, p. 177.
[3] S. Frauendorl, Nucl. Pbys. A557 (1993) 259c.
[4] T. Horibata, M. Oi, N. Onishi, Phys. Leti B355 (1995) 433.
[5] T: Horibata, N. Onishi, Nucl. Phys. A596 (1996) 499.
[6] A. Bohr and B. Mottelson, Nuclear Structure, vol.II (Benjamin, New York, 1975).
[7] J. Meyer-ter-Vebn, Nucl. Phys. A249 (1975) 111.
[8] S. -I. Ohtsubo, Master Thesis (in Japanese), Kyushu University, March, 1995.
[9] S. Frauendor and J. Meng, Z. Phys. A356 (1996) 263.
[10] I. Hamamoto, Nucl. Phys. A 520 (1990) 477 c .
[11] A. Ikeda and T. Shimano, Phys. Rev. Lett. 63 (1989) 139. Phys. Rev. C42 (1990) 149.
[12] I. Hamamoto and B. R. Mottelson, Phys. Lett. B132 (1983) 7.
[13] 1. Hamamoto, Nucl. Phys. A421 (1984) 109c.
[14] R. Bengtsson, H. Frisk and J. A. Pinston, Nucl. Phys. A415 (1984) 189.

10．${ }^{192} \mathrm{Hg}$ 超変形核の回転減哀における殻効果

Shell Effect in Rotational Damping for Superdeformed $\mathbf{H g}$

K．Yoshida and M．Matsuo ${ }^{\dagger}$
Research Center for Nuclear Physics，Osaka Unwersity，Osaka 567，Japan
${ }^{\dagger}$ Yukata Institute for Theorettcal Physics，Kyota Unversty，Kyoto 606，Japan

Damping of collective rotational motion in superdeformed well is discussed．Shell model diagonalization based on cranked Nilsson single particle basjs is done to investigate hup－ dreds of rotational states and rotational E2 transitions［1］．Due to different responses of mean－field configurations to change in spin，configuration mixing caused by residual inter－ action results in loss of collectivity in rotationdal $E 2$ transition．Thus the dispersion $4 \Delta w$ （notice that $\Delta E \sim 2 \omega_{\mathrm{rot}}$ ）is an origin of damping．The response is affected by aligoments of single particle orbits occupied in a configuration．Therefore single particle alignment structure near the Fermi surface is as important as level density．In $A \sim 190$ superde－ formed nuclei is found a particular structure in single particle alignment spectrum．There are several high Ω orbits at Fermi surface．Since they scarcely response to change in $\omega_{\text {ron }}$ ， admixture of those configurations differing in occupation of such orbits does not contribute to loss of collectivity．As a result damping of collective motion is considerably hindered compared with $A \sim 150$ superdeformed nuclei［2］．With finite temperature representation of $\Delta \omega[3],(\Delta \omega)^{2}=\frac{1}{g^{2}} \sum_{n+1} z_{n}^{2} f_{n}\left(1-f_{n}\right)$ ，we find close relation between damping and shell structure of single particle alignment density．We illustrate accumulated 2 －dimensional correlated E2 transition strength projected onto $E_{\gamma_{1}}-E_{r_{2}}$ axis．Transition strength associ－ ated with lowest states show undamped character in ${ }^{192} \mathrm{Hg}$ reflecting as many rotational bands as $N_{\text {band }}=150$ ．Even in well damped region the width in ${ }^{192} \mathrm{Hg}_{\mathrm{g}}$ is significantly narrow．

Figure 1：E2 strength distribution $S^{(2)}\left(E_{\gamma 1}, E_{\gamma 2}\right)$ from decay $I+2 \rightarrow I \rightarrow I-2$ projected onto $E_{\gamma 1}-E_{\gamma 2}$ axis．Transitions are devided according to energy regions．$I=40 \mathrm{~h}$ for Hg and $I=50 \hbar$ for others．

References

［1］M．Matsuo，T．Døssing，E．Vigezzi，R．A．Broglia，and K．Yoshida，Nucl．Phys．A817（1997）1．
［2］K．Yoshida and M．Matuso，Nucl．Phys．A612（1997）26．
［3］T．Døssing and B．Herskind ，Proc．Intern．Symp．on New Trends in Nuclear Collective Dynamics（Nishinomiya）（Springer－Verlag，1992）p239

Vibrational Motions in Rotaing Nuclei
 Studied by Coulomb Excitations
 11．クーロン励起による回転核の振動運動

Yoshifumi R．Shimizu
Department of Physics，Kyushu University，Fukuoka 812，Japan

Abstract

As is well－known Coulomb excitaion is an excellent tool to study the nuclear collective motions．Especially the vibralional excitations in rotating nuclei，which are rather difficult to access by usual heavy－ion fusion reactions，can be investigated in detail．Combined with the famous 8 －- －Spectromeler，which was one of the best γ－ray detector and had discovered some of superdeformed bands，such Coulomb excitation experimens had been carried out at Chalk River laboratory just before it＇s shutdown of physics division．In this meeting some of the experimental data are presented and compared with the results of theoretical investigations．

§はじめに

良く知られているよ5にクーロン㕆起は原子核の朰団㯰動を研楽する非庶に有力な手段

間の罜移碛率も比绞的よく測定できる。残念なととにカナダのChalk River 两究所の物理部

 の実験家虺上共网研究するととができたのて，本研究会ではその埕告を行なった。徉しいと とはRef．1），2）くあるので，ととではその結果を間単れましめるととにする。

実験は大きく分けると2つてひとつはフクチナイド碩填の ${ }^{238} \mathrm{U}$ ， 3 ひとつは劣士類の奇校 ${ }^{165} \mathrm{Ho} 亡{ }^{167} \mathrm{Er}$ を対象としたものてある。ひずれる Chalk River 研究听のTASCC

 8－Spectrometer をカンて線倹世器として用いるととて，とれたよって非常に高スビンまで
述べる。

[^1]$\S^{238} \mathrm{U}$ のクーロン励起

 らかなり最ルスビンの範囲に遮ってゆっくりと alingnment が起とっていろが（up－bending），

 は橧めてスムーズな振舞をしている。

 バント交羑を起とす。また，も5少し角速度が高く度ると（ $\left.\hbar \omega_{\text {rot }} \approx 200 \mathrm{keV}\right)$ 多くの 2 準絃
 わせであるとんを反映して，その個性を失ってしま5（掣団性の分龍）。この計算結果れ対

 いことが多いが（あくまでる実倹で見えるのは涏僌的なスビンの状憼であるととに注意）， より高々エネルギーの準粒子状熋との相互作用は一般には強くなり，电し，$\hbar \omega_{\text {rot }} \approx 200 \mathrm{keV}$ でそのような解くのバンドとの交差が起とっでいるとするとそれが夷験データに反映しない
夹らが，実験的に見えているスどンの状態ではそのととが起こっていない。とれは，理㢵的

 れる。
$\S^{165} \mathrm{Ho}$ と ${ }^{167}$ Er のクーロン励起
\＆今 一つのクーロン恸起夹倹は澓子数，中性子数それぞれが奇数の核，${ }^{265} \mathrm{H} \circ\left\llcorner{ }^{167} \mathrm{Erk}\right.$

振駆状態が亜ね合わさると $K_{>}=K_{\mathrm{gr}}+2, K_{<}=K_{\mathrm{gr}}-2$ を狩つ2つの（強結合的）回車云が ンドがあらわれる。 ${ }^{165} \mathrm{Ho}$ では雨方のバンドが $I=37 / 2,33 / 2 \hbar$ むで，${ }^{167} \mathrm{Er}_{\mathrm{I}}$ では $K_{>}$の方 が $I=37 / 2 \hbar$ まで測られた。

\[

$$
\begin{equation*}
B\left(E 2: I_{\mathrm{i}} \rightarrow I_{\mathrm{i}}\right)_{\mathrm{out}}=\left\langle I_{\mathrm{i}} K_{\mathrm{s}} 2 \Delta K \mid I_{\mathrm{I}} K_{\mathrm{i}}\right\rangle^{2}\left(Q_{1}+\left[I_{\mathrm{S}}\left(I_{\mathrm{i}}+1\right)-I_{\mathrm{i}}\left(I_{\mathrm{i}}+1\right)\right] Q_{2}\right)^{2} \tag{1}
\end{equation*}
$$

\]

ただい，

$$
\begin{gather*}
Q_{1}=\sqrt{2} Q_{\mathrm{tr}}-\Delta K\left(K_{\mathrm{i}}+K_{\mathrm{r}}\right) Q_{2} \tag{2}\\
Q_{\mathrm{tr}}=\left[\langle\mathrm{f}| Q_{22}^{(+3}|\mathrm{i}\rangle\right]_{0}, \quad Q_{2}=\frac{1}{\sqrt{2} \mathfrak{J}}\left[\frac{d\left(\mathrm{f}\left|Q_{21}^{(+)}\right| \mathrm{i}\right\}}{d \omega_{\mathrm{rot}}}\right]_{0} \tag{3}
\end{gather*}
$$

 で敦価するととを意味する。また，Jは，（角速度ぜロでの）慣性能率である。 ${ }^{165} \mathrm{Ho},{ }^{167} \mathrm{Er}$ いづれの柊合も $K_{f}=K_{\mathrm{gr}}=\frac{7}{2}$ ，従って，$K_{\mathrm{i}}=K_{>}=\frac{11}{2}$ と $K_{\mathrm{i}}=K_{<}=\frac{3}{2}$ である。式（1） から，$\left[B(E 2)_{\text {out }}\right]^{\frac{1}{2}} /\left(I_{\mathrm{i}} K_{\mathrm{i}} 2 \Delta K \mid I_{\mathrm{f}} K_{\mathrm{f}}\right)$ を $\left[I_{\mathrm{f}}\left(I_{\mathrm{F}}+1\right)-I_{\mathrm{i}}\left(I_{\mathrm{i}}+1\right)\right]$ の関数としてブロットすると （Mikhailov plot），直線に乗るととがわかるが，実験では残忿ながらE2坔移確率の絶対値は求まらず，バンド内の stretched E2適移との分㿬比のみが測られた。通常のよ5Kバンド内
模型の計算結果からは十分良い近似であるととが硡かめられる），実輇デーかから，Q_{1} / Q_{0}及び Q_{2} / Q_{0} を引き出すことがてきる。表IKそれらのデーダと計算結果の比較を輯せる。
算氏現れるバラメータはながでの実険以外のデータから决められ，との辣昧でとの実験に対しては駆加世るものがないととに注意してまく。との表から $K_{>}, K_{\text {く }}$ のモートの量異を点 め，理詨旪算がデー多を見事に説明てきているととがわかる。
実験佫の比較（文献2）より，なか，群じバラカータ等につにてはとの文献を参䏉の とと）。

nucl．	K		$\frac{Q_{1}}{Q_{0}}$	$\frac{Q_{2}}{Q_{0}}$	$Q_{0}[\mathrm{eb}]$	$Q_{\text {tr }}[\mathrm{eb}]$	$Q_{1}[\mathrm{eb}]$	$Q_{2}[\mathrm{eb}]$
${ }^{165} \mathrm{Ho}$	$\frac{11}{2}$	cal．	0.175	0.0025	2.267	0.208	0.397	0.0057
	$\frac{11}{2}$	exp．	$0.143(4)$	$0.0022(2)$	-	-	-	-
	$\frac{3}{2}$	cal．	0.110	0.0021	2.266	0.209	0.248	0.0048
	$\frac{3}{2}$	exp．	$0.086(2)$	$0.0021(1)$	-	-	-	-
${ }^{167} \mathrm{Er}_{1}$	$\frac{11}{2}$	cal．	0.142	0.0014	2.299	0.190	0.327	0.0033
	$\frac{11}{2}$	exp．	$0.143(3)$	$0.0020(2)$	-	-	-	-
	$\frac{3}{2}$	cal．	0.103	0.0013	2.299	0.188	0.236	0.0030
	$\frac{3}{2}$	exp．	-	-	-	-	-	-

子と完全に独立であれば理解できるが，上でも見たよ5れ「隼粒子•挑動結合」の効果はか
 また，実験データでは γ－掁野ベンドの signature－splitting は非营に小さいが計算ではかな り大きく出てしまら。これらは理椧をなんらかのかたらで改良しなければならないととを示喛している。

§最後に

 と韭帯に興味深に現象にナブローキできるととを見てをた。日本でも原研では重に入射核を ゆちい左類似のクーロン县起が可能であり，高分解能•高効率のガンマ絽の湌出装量があれ は，Chalk River のと問算のデータがせせるは方である。日本れはターロン矿起実鮕の車聞
 のである。

References

1）D．Ward，H．R．Andrews，G．C．Ball，A．Galindo－Uribarri，V．P．Janzen，T．Nakatsukasa， D．C．Radford，T．E．Drake，J．DeGraaf，S．Pilotte and Y．R．Shimizu，Nucl．Phys． A600（1996）， 88.
2）＂Collective γ－vibrational bands in ${ }^{165} \mathrm{Ho}$ and ${ }^{167} \mathrm{Er}^{n}$ ，G．Gervais，D．C．Radford，Y．R．Shi－ mizu，M．Cromaz，J．DeGraal，T．E．Drake，S．Fibotte，A．Galindo－Uribarri，D．S．Haslip， V．P．Janzen，M．Matsuzaki，S．M．Mullins，J．M．Nieminen，C．E．Svensson，J．C．Wadding－ ton，D．Ward and J．N．Wilson，AECL preprint，TASCC－P－97－3，Feb．1997，to be published in Nucl．Phys．A．
3）Å．Bohr and B．R．Mottelson，Nuclear Structure，Vol．II，（Benjamin，New York，1975）， Chap． 4.
4）Y．R．Shimizu and K．Matsuyanagi，Prog．Theor．Phys． 70 （1983），144； 72 （1984）， 799.

5）M．Matsuzaki，Y．R．Shimizu and K．Matsuyanagi，Prog．Theor．Phys． 79 （1988）， 836.
6）S．Mizutori，Y．R．Shimizu and K．Matsuyanagi，Prog．Theor．Phys． 85 （1991），559； 86 （1991）， 131.
7）T．Nakatsukasa，K．Matsuyanagi，S．Mizutori and Y．R．Shimizu，Phys．Rev．C53 （1996）， 2213.
8）Y．R．Shimizu and T．Nakatsukasa，Nucl．Phys．A611（1996）， 22.

12．ガモフ・テラーとスピンダイポール状態間の電気赸移

Electric Dipole Transitions between Gamow－Teller and Spin－Dipole States

H．Sagawa
Center for Mathematical Sciences，the University of Aizu
Aizu－Wakamatsu，Fukushima 965，Japan
E－mail：sagawa＠u－aizu．ac．jp

We study electric dipole transitions between Gamow－Teller（GT）and spin－ dipole（SD）states．SD and GT excitations are calculated within the Hastree－Fock （HF）＋Tamm－Dancoff approximation（TDA）for ${ }^{46} \mathrm{Sc}$ and ${ }^{90} \mathrm{Nb}$ ．The electric dipole transitions are found to be rather selective and strong E1 transitions occur to some specific spin－dipole states．Calculated E1 transition strengths between GT and SD states are compared with the analytic sum rules within 1 particle－1 hole（ $1 \mathrm{p}-1 \mathrm{~h}$ ）configeration space and within both $1 \mathrm{p}-1 \mathrm{~h}$ and $2 \mathrm{p}-2 \mathrm{~h}$ model space． Possible implications for charge－exchange reactions may help to understand the quenching problem of spin excitations．For details，see the references［？］．

References

1．H．Sagawa，T．Suzuki and Nguyen Van Giai，Phys．Rev．Lett．75， 3629 （1995）；

T．Suzuki，H．Sagawa and Nguyen Van Giai，to be published．

13，周期乾道とTDHF位相空間の構造

Periodic Orbits and TDHF Phase Space Structure

> 満本幸男（筑波大物理），津久間秀站（広島大情報），坂田文童（茨坡大情银数理），岩沢和男（筑波大物理）

1 Introduction

原子核は有限の大きさを持った量子論的な多体系であるために，裬維な进動のモー ドを数多く持っている。ながでも，集団運動の動力学を明らかにすることは，原子核 の多体労としての性筫を理解するらえで基本的で重要な課題たなっている。原子核は自己束綁系であるために，その集団運糼は核子の運動と密接に結合している。そのた めに，原子核の集団連動は非線形性を持ち，その振愊の増大とともに違動の内容が大 きく変化していく。集団運刢を内部核子の通動との結合による集団遄影の内容の変化 というタイナミックな現束の良い例は，原子核の回枟軍動である。原子核の回枟速度 の増加とともに核子のエネルギー準位が交差することにより新しい内容を伴った回忶違䡃に移っていく。

このような，内部庫造の変化を伴った集諫運動を記述する枓組みとしては，時問依存ハートレーフォック法（TDHF）が適している。TDHFでは，平均場の運動杜枝子の波㔜閉数を解いて同時に求められていく。この特長のために，TDHFは歼立有限多体菜である原子核の良いモデルとなっている。また，TDHFのパラメータ空同 はTDHF相空閒（TDHF phase space）と呼ばれ，ボソン展開法の古典的対応物であ
利である。

我々は，現在，TDHF相空䦨の持っこの特長を利用して量子系に括ける大域的な摘造を賙べる方法を作ろうとしている。すなっち，古典的なTDHF相空間に現れる非線型共㙏や分岐現象などのダイナミックな構造は是子論的な固有状態群に全体として どのように反映されているがを調べる。TDHF相空間の漛造変化を追防するために，周期缹道羘化着目しそれらがエネルキーとともに分妓して行く過程をモノドロミー行列により表現する方法を採用する $[1,2]$ 。また，㫫子系との対応を兒るために笴単な3
 わすとともに，Husimi 開数を利用して古典的な相空問の柦造との関係も調べて
 る＂Hus 1 m 1関数を持つ固有状態群はエバンド構造図の中に大城的なパターンを形作る。このバターンは古典的な周期乾道群と密接に関係していると考えられる。

今回のレボートは，3レベル模型のバント構造図に現れる大域的なパターンとTD HF相空問内の周期軌道群との対応に関して行う。

2 Husimi 関数とバンド構造図

3 レベル模型は畕考文献3）で用いられているものと同じである。

$$
\begin{align*}
\hat{H} & =\hat{H}_{0}+\hat{H}_{V} \tag{1}\\
\hat{H}_{0} & =\varepsilon_{0} \hat{K}_{00}+\varepsilon_{1} \hat{K}_{11}+\varepsilon_{2} \hat{K}_{22}, \\
\hat{H}_{V} & =\frac{V_{1}}{2}\left(\tilde{K}_{10} \hat{K}_{10}+\text { h.c. }\right)+\frac{V_{2}}{2}\left(\hat{K}_{20} \hat{K}_{20}+\text { h.c. }\right)
\end{align*}
$$

ここで，バラメータは，$\varepsilon_{0}=0, \varepsilon_{1}=1, \varepsilon_{2}=2, V_{1}=V_{2}=-0.020$ である。 実婃の対角化は，Husimi閔数应作るためにボソン空問で行う。

$$
\begin{equation*}
\left.\mathbf{H} \mid \lambda)=E_{\lambda} \mid \lambda\right), \lambda=1,2, \cdots . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left.|m, n\rangle=\frac{1}{\sqrt{m!}} \frac{1}{\sqrt{n!}}\left(B_{1}^{\dagger}\right)^{m}\left(B_{2}^{\dagger}\right)^{n}|0\rangle, \quad B_{4} \mid 0\right)=0, m+n \leq N, \tag{3}
\end{equation*}
$$

内の状岸であり，Hはハミルトニアン（1）のボソン表現である［3］
さて，Husim！関数 $\mathcal{F}^{\lambda}\left(q_{1}, p_{1}, q_{3}, p_{2}\right)$ は

$$
\begin{equation*}
\mathcal{F}^{\lambda}\left(q_{1}, p_{1}, q_{2}, p_{2}\right) \equiv\left|\left(c_{1}, c_{2} \mid \lambda\right)\right|^{2}, \tag{4}
\end{equation*}
$$

で導入される［3］。ここで，

$$
\begin{align*}
\left.\mid q_{1}, p_{1}, q_{2}, p_{2}\right) & \left.\left.=\mid c_{1}, c_{2}\right) \equiv \exp \left\{\sum_{i=1}^{2} c_{i} B_{i}^{t}-\text { h.c. }\right\} \mid 0\right), \tag{5}\\
q_{i} & \equiv \frac{1}{\sqrt{2}}\left(c_{i}^{*}+c_{i}\right), \quad p_{i}=\frac{i}{\sqrt{2}}\left(c_{i}^{*}-c_{i}\right) .
\end{align*}
$$

である。古典険のPoincaré断面図に対応させるために $F^{\lambda}\left(q_{1}, p_{1}\right)$ を

$$
\begin{equation*}
F^{\lambda}\left(q_{1}, p_{1}\right)=\int d p_{2} \mathcal{F}^{\lambda}\left(q_{1}, p_{1}, q_{2}=0, p_{2}\right) \tag{6}
\end{equation*}
$$

 ま給さえているように，$F^{\lambda}\left(q_{1}, p_{1}\right)$ の形は古典論のPoincare断面図と密接な対応関係 が見られる［3］。

このようにして作ったHusimi 関数は対応するそれぞれの固有状㮷の＂形＂に ついての情報を持っている。一方，固有状想群が全体として持っている大坡的な傾向 は＂バンド構造图＂で得られる。バント構造図は次のようにして作る；

1）各固有状㮩の主要成分を怘え，そのm—成分（ B_{1}^{\dagger} と B_{1} に関する空間）と n ー成分（ $B_{2}^{\dagger} と B_{2}$ に関する空間）のそれぞれだっいての重なりの大きさを，輖られ た固有状態のすべての対について計算する。固有状䡯は，互いに大きな重なりの值を持つ幾つかのグループに分けちれる。

2）それぞれのグループの中セエネルギーの順に状效を並べ，そえでれの状虚でボソン数 $B_{i}^{\dagger} B_{i}(i=1,2)$ の期待位 N_{i} を計算する。

3）それそれのグルーブの中で最も小さなエネルギーを持つ状䕀についての期待值 N_{i} の大きさの順にグループを配監し，それぞれのグループのメンバーである状㤫を そのエネルギーと期待值 N_{i} とに従って並かる。

こうして作られたバンド構造図を図1に示す。
このバンド構造図によると，上の固有状繒群には主に
i） N_{2} は小変化で N_{1} が変化する。
ij）N_{1} は小変化で N_{2} 犃変化する。
iii）N_{2} と N_{2} とが一定の揢合で同時に変化する。
 バンドとしてまとめられることに対応し，傾向 ii1）洔バンド間を横断的に貫く相閉で ある。図1から，傾向 ii）と傾向 iii）と忙䗼接に関保した性先であることがすかる。す なわち，エネルギーの小さいほうからこれらの倕向を持つ一連の状覑をたどっていく と（例えば，匈1中の黒丸と白丸て夜される状逅群），あるエネルギーの值の領域で対消減＂をしていて，それ以上のエネルギーを持った状熟には傾向ii）と傾向 iii）を持った状就汒現れないことがすかる。このことは，Husimi関数の形に現れでい る。対消堿の前嗀でのHusimi関数の形をみると，図1中の黒丸や白丸よ対応し た形はそれでれが一連の極めてよく似た構造を持っているのに，対消諴後の形はそれ らとはまったく違う榫造を持っている。そこて，エネルギーの大きいこれらの状㥎は

これらの大域的な䫅向を定量的に表現するために，文献4）にならって図1のバン ド糬造図に対して＂E—T図＂ 1 ，2］を作る。EとTは，各バンドの中の；で指定さえ る状想のエネルギー E

$$
\begin{equation*}
E \equiv\left(E_{i+1}+E_{i}\right) / 2, \quad T \equiv \frac{2 \pi}{\left(E_{i+1}-E_{i}\right) / k}, \quad(\hbar=1) \tag{7}
\end{equation*}
$$

で定義する。ただし，匈1aでば $k=1$ であり，図1bでは $k=2$ である。このEー T図を図2に示す。このEーT図から，バンド構造を作っている固有状㷫詳はE—T図の中では一連のよく似た曲線群として表されることがわかる。また，煩向 iii）に対応する相関はこえらの類似した曲絩群とはまったく異質な曲線群を形成していること がわかる。

3 TDHF軌道とE—T図

量子諗的な固有状眦群をE—T図を用いて整理することにより，内在する大域的な

対応を考えれば，量子給では上記のようなバンド棈造を持つ固有状㥋のグル～プに対応して，古典論では一適の周期乾道咩が存在する。いまのろレバル模型でのTDHF軷道の方程式は，

$$
\begin{align*}
i \frac{\partial C_{j}}{\partial t} & =\frac{\partial H}{\partial C_{j}^{\prime}} \quad \text { and } C . C ., \quad j=1,2 \tag{8}\\
H & =\langle\phi(f)| \bar{H}] \phi(f)\rangle
\end{align*}
$$

で与えられる。ここて，TDHF波朝関数 $|\phi(f)\rangle は$

$$
\begin{equation*}
|\phi(f)\rangle=e^{f_{(t)} \mid}\left|\phi_{0}\right\rangle, \quad \hat{F}(t)=\sum_{t=1}^{2}\left(f_{i}(t) \hat{K}_{w b}-h . c\right), \tag{9}
\end{equation*}
$$

 TDHFパラメータ（ $f_{j}^{*}, f_{j} ; j=1,2$ ）と

$$
\begin{equation*}
C_{j}=\sqrt{N} f_{j} \frac{\sin \sqrt{\sum_{i} f_{i} f_{i}}}{\sqrt{\Sigma_{i} J_{i} f_{i}}} \text { and C.C., } j=1,2 \tag{10}
\end{equation*}
$$

の関保がある。方程式（8）は，

$$
\begin{equation*}
x_{j} \equiv\left(C_{j}+C_{j}\right) / \sqrt{2}, \quad p_{j} \equiv i\left(C_{j}-C_{j}\right) / \sqrt{2}, \quad j=1,2 \tag{11}
\end{equation*}
$$

を用いて

$$
\begin{equation*}
\dot{x}_{j}=\frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j}=-\frac{\partial H}{\partial x_{j}}, \quad j=1,2 \tag{12}
\end{equation*}
$$

の形で数値稍分する。
これらの正潅方程式を解いて周期乾道群を求めるために，Baranger 等のモノドロ ミー行列の方法を用いた［1，2］。この方法により求めた周期就道のなかから，特徽的な軌道群を選び，それらを用いてE—T図と T_{r}－T図（ $\mathrm{T}_{\boldsymbol{r}}$ はモノドロミー行列のト レースの値を表すす）を書いた（閣3）。

図3にみられる特徵的な点は，
1）横县の弓形のようなEーT曲線上の2個所（B1とB2）のそれぞれから倿近して分歧している2組の別のE—T曲線があり，

2）その 2 組の曲線は，エネルギーの小さい方からたどっていくとき，あるエネルギー の值のところで対消滅する，

ことである。これは，すでに剪記の量子詻的な固有状超詳の分類の際に見つけた現象 に対応する。その対応は，量子論の時のE—T図から黒丸と白丸を付けた状㥕群た対応する曲線を抜き出すことで明らがこ見ることができる（図4）。すなわち，これらの

 ることが $\mathrm{T}_{\mathbf{r}}$－T図と Poincare 断面とからみでとれる。一方，上記の古典的な周期軌

道群と量子部的な図 1 にみられる分蚑現象との対応を明らがとするために，次のよう な穏分を評価する。

$$
\begin{equation*}
I_{i} \equiv \oint d t p_{i} d q_{i},(i=1,2) \tag{13}
\end{equation*}
$$

峨分は，周期乹道の一周期について行う。図3に用いた周期乾道に対応する＂ $\mathrm{E}-\mathrm{I}_{2}$図＂を図5に示す。図5は，図1aの县子耣的な分枝状態眻の大域的な性筷（生成，持続，対消减）をよく再現している。従って，晋子猃でのボソン数 $B_{i}^{\dagger} B_{i}(i=1,2)$ の期待值は，今の場合の古典的な积分量 $I_{i}(i=1,2)$ に対応することがわがる。

4 まとめと今後の方向

今回の報告では，3 レベル模型の量子論的な固有状意群の大域的な性質が，TDH F相空間内の周期䌾道群の性筫を調べることで予測できることがわかってきた。特に，周期䡛道群に付酭する分岐現象を追跡することで量子嵞的な固有状能群の分岐現象の理解を深めることができる可能性が示晙されてた。今回の計算は相互作用か強さが強く ない（chootic な軌道の領域が十分獭い）場合について行って，着目すべき量を絞りこ むことに重点を跙いた。今回の計算を跨まえて，より相互作用の強い，chaotic な軌道
 を訽べることが今後の課果であり，現在進行中である。

参考文献

［1］M．Baranger and K．T．R．Davies，Ann．Phys．117，330（1987）；
M．Baranger，K．T．R．Davies and J．H．Mahoney，Ann．Phys．168，95（1988）．
［2］K．Arite，Prog．Theor．Phys． 90 （1993）， 747 ．；
K．Arita and K．Matsuyanagi，Prog．Theor．Phys．91（1994）， 723.
（3］H．Tsukuma，F．Sakata，T．Marumori，K．Iwasawa，H．Itabashi，Y．Hashimoto and T．Tanaka，Prog．Theor．Phys．91，I135（1994）．
［4］C．P．Malta，M．A．M．de Aguiar and A．M．Ozorio de Almeida，Phys．Rev．43， 1625（1993）．

図4 図2aと図2bのなかって，図1aの用丸と白丸とた対応するEーT

녕 $5 \mathrm{E}-\mathrm{I}_{2}$

14．スキルムハートレ・フォック法によるゼロスピンでの超変形研究

Study of Superdeformation at zero spin with Skyrme－Hartree－Fock method

S．Takahara，N．Tajima，and N．Onishi

1 Introduction

Superdeformed（SD）bands have been studied extensively both experimentally and the－ oretically in the last decade．Since the first observation in ${ }^{152} \mathrm{Dy}$ in 1986 ［l］，SD bands have been found in four mass regions，i．e．，$A \sim 80[2], 130[3,4], 150$ and 190 ［5］．While these SD bands have been observed only at high spins so far，they may also be present at zero spin like fission isomers in actinide nuclei：The familiar generic argument on the strong shell effect at axis ratio $2: 1[6]$ does not assume rotations．

If non－fissile SD isomers exist at zero spin，they may be utilized to develop new ex－ perimental methods to study exotic states，in a similar manner as short－lived high－spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high－spin near－yrast states［7］．They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare－earth nuclei without further complications due to rotations．

In this report，we employ the Skyme－Hartree－Fock method to study the SD states at zero spin．First，we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of ${ }^{198} \mathrm{Hg}$ ．Second， we systematically search large－deformation solutions with the $\mathrm{SkM}{ }^{*}$ force．

The feature of our calculations is that the single－particle wavefunctions are expressed in a three－dimensional－Cartesian－mesh representation［8］．This representation enables one to obtain solutions of various shapes（including SD）without preparing a basis specific to each shape．Solving the mean－field equations in this representation requires，however，a large amount of computation which can be accomplished only with present supercomputers．

2 Comparison of various Skyrme forces for ${ }^{194} \mathbf{H g}$

Recently，Khoo et al．［9］determined the excitation energies and the spins of a SD band in ${ }^{194} \mathrm{Hg}$ down to $I^{\pi}=8^{+}$．By extrapolating the spectrum to $I=0$ ，they could predict reliably the excitation energy of the band head to be 6.017 MeV ．

Comparisons with theoretical predictions are presented in Table 1．For the right－hand portion of the table，we performed calculations with various Skyrme parameter sets．The corresponding PES are plotted in Figure 1.

From macroscopic point of view，the softness to deformation is determined by the smallness of the surface energy coefficient \boldsymbol{a}_{s} specific to each force．The SkM^{+}is a force adjusted so as to reproduce the fission barrier height of ${ }^{240} \mathrm{Pu}$ and thus expected to have
the correct surface energy coefficient. Indeed, the SkM^{*} as well as the SkP forces are the best ones to reproduce the experimental value of E^{*}. On the other hand, the SIII and the SkSC4 forces seem to be too stiff against deformation, while the SGII is too soft.

	$E^{*}[\mathrm{MeV}]$			force
	$E^{v}(\mathrm{MeV}]$			
experiment[9]	6.017		SIII	8.2
Woods-Saxon-Strutinsky[10]	4.6		SkSC4	7.4
Woods-Saxon-Strutinsky[11, 9]	4.9		SkM	6.3
HF+BCS with SkM ${ }^{*}[12]$	5.0		SkP	6.0
HFB with Gogny D1 [13]	6.9		SGII	3.9
Nilsson-Strutinsky [14]	7.5			

Table 1: Comparison of excitation energies of SD states at zero-spins for ${ }^{184} \mathrm{Hg}$. In the left portion, various theoretical methods are compared. In the right portion, comparisons of Skyrme parameters are presented using HF+BCS method. The different values of $E^{\prime \prime}$ for SkM ${ }^{\text {- force between left and right portions are due to a difference in the pairing force }}$ strength.

A different strength of the pairing force was used by Krieger et al.[12] to calculate the SD band head in ${ }^{164} \mathrm{Hg}$. Their strength G was given by an empirical formula of their own,

$$
\begin{equation*}
G_{N}=\frac{16.5}{11+N}, \quad G_{Z}=\frac{17.5}{11+Z}[\mathrm{MeV}] \tag{1}
\end{equation*}
$$

On the other hand, our strength G is determined such that the so-called classical empirical formula of the average pairing gap,

$$
\begin{equation*}
\bar{\Delta}=\frac{12}{\sqrt{A}}[\mathrm{MeV}] \tag{2}
\end{equation*}
$$

is reproduced for shell-effect-averaged level density obtained by the Thomas-Fermi approximation. The pairing-active space is the same between their treatment and ours: Single-particle levels below "the Fermi level plus 5 MeV " are taken into account in the BCS calculations.

The effect of the variation of pairing strength on deformation is presented in Figure2. Though the PES curves (bottom) are similar for small deformation, they are different in saddle region by as much as 2 MeV . Krieger's strength G gives a rather large pairing gap ($\Delta_{\mathrm{n}}<1.8 \mathrm{MeV}$), while our strength produces a reasonable size of gap ($\Delta_{\mathrm{n}}<1.2 \mathrm{MeV}$) for deformations less than 0.6 .

As a consequence, they obtained $E^{*}=5.0 \mathrm{MeV}$, which is lower than our value (given in Table 1) by 1.3 MeV . The height of the barrier preventing the decay into the normaldeformation (ND) well is also different: They found it to be 1.8 MeV , while we obtained a larger value 3.5 MeV . Note that the partial halflife of the SD band head for the decay into the ND well is longer for higher barriers. We have estimated the halflife in a simple WKB approximation. The resulting halflife is $6 \times 10^{-17} \mathrm{sec}$ for Krieger's pairing force strength while it is $1 \times 10^{-13} \mathrm{sec}$ for our strength. The difference amounts to a factor of order 10^{3}.

Figure 1: Potential Energy Surfaces of ${ }^{194} \mathrm{Hg}$ for various Skyrme forces. The abcissa is the deformation parameter δ. The ordinate is the energy measured from the sphericity. In parenthesis are the excitation energies (in MeV) of the superdeformed minima from the ground states.

Figure 2: Comparison of the results with $\mathrm{HF}+\mathrm{BCS}$ with SkM^{*} between different pairing treatments. The solid curves are calculated with our method(pairing strength G is determined so as to reproduce $\bar{\Delta}=12 / \sqrt{A}$ for smeared level density). The dot curves are calculated with the method adopted by Kriger et al. [12]. The abcissa is the deformation parameter δ. The bottom portion presents the potential energy surfaces. The middle(top) portion presents the proton(neutron) pairing gap.

3 Systematics of the zero-spin SD

With the Skyrme SkM* force, we have explored a wide area of the nuclear chart ranging from ${ }_{40} \mathrm{Ca}$ to ${ }_{82} \mathrm{~Pb}$ in order to study systematically the SD states at zero spin.

To specify that the spin is zero, we do not perform the angular momentum projection but simply do not rotate or crank the mean field.

An early microscopic attempt to explore SD at zero spin was made by Bonche et al. for $\mathrm{Os}-\mathrm{Pt}-\mathrm{Hg}$ region using the $\mathrm{HF}+\mathrm{BCS}$ with the SIII force. Later, Krieger et al. changed the force to SkM^{*} and performed an extensive calculation covering from ${ }_{62} \mathrm{Sm}_{126}$ to ${ }_{92} \mathrm{U}_{146}$ to abtain SD minima for 148 nuclei.

We employ the same Skyrme force as Krieger et al. used. However, the results of calculations are significantly different because their pairing strength is too strong as demonstrated clearly for ${ }^{194} \mathrm{Hg}$.

Our calculation does not cover very neutron-rich nuclei, unlike the calculation by Krieger et al. It is because the pairing correlation of neutrons cannot be correctly described within the HF +BCS scheme for these nuclei: When the Fermi level approached to zero from below, the continuum single-particle states are coupled strongly to the ground state in the pairing channel. This coupling cannot be treaterd in the HF+BCS scheme, which relies on an assumption that the pair-scattering matrix elements are constant, i.e., independent of the orbitals. For the correct description of the coupling, one has to switch from the HF+BCS to the HFB scheme, of which computer programs we are developing presently.

In order to explain how we search the SD solutions, let us define the quadrupole deformation parameter δ,

$$
\begin{equation*}
\delta \equiv \frac{3\left\langle\hat{Q}_{z}\right\rangle}{4\left\langle\hat{r}^{2}\right\rangle} \tag{3}
\end{equation*}
$$

where Q_{z} is the axially symmetric mass quadrupole moment,

$$
\begin{equation*}
\hat{Q}_{z} \equiv 2 \hat{z}^{2}-\hat{x}^{2}-\hat{y}^{2} \tag{4}
\end{equation*}
$$

and \tilde{r}^{2} is the squared mass radius,

$$
\begin{equation*}
f^{2} \equiv \hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2} \tag{5}
\end{equation*}
$$

We take the following procedures:

1. We prepare an initial wavefunction by either using the solution for a neighboring nucleus or taking the wavefunction of the eigenstate of the Nilsson potential of appropriate deformation.
2. If the quadrupole deformation parameter δ of the initial wavefunction is smaller than 0.6 , we exert an external potential proportional to \hat{Q}_{x} on the initial wavefunction until δ exceeds 0.6. Then, we switch of the external potential.
3. We let the wavefunction evolve by itself. If it converges to a local minimum with $\delta>0.35$, we regard that the nucleus has a $S D$ isomeric state. If the deformation parameter becomes less than 0.35 in the course of the self-evolution, we conclude that the nucleus does not have a SD state.
4. If the nucleus has a SD minimum, we calculate the potential energy curve for $0 \leq$ $\delta \leq 0.6$ by imposing a constraint on \hat{Q}_{z}. This step requires more than ten times as long computation time as the previous three steps. It is necessary, however, to estimate the half-life of the isomer.

Following the above prescription, we have explored 642 nuclei and found SD minima in 155 nuclei[15].

References

[1] P. J. Twin et al., Phys. Rev. Lett. 57 (1986) 811.
[2] C. Baktash, Phys. Rev. Lett. 74 (1995) 1946.
[3] P. J. Nolan et d. , J. Phys. G11 (1985) L17.
[4] V. F. Kirwan et al., Phys
[5] R. V. F. Janssens and T. L. Khoo, Annu. Rev. Nucl. Part. Sci. 41 (1991) 321.
[6] A. Bohr and B. R. Mottelson, Nuclear Strueture, vol. 2, (Benjamin, New York, 1975) and references therein.
[7] Y. Gono et al., Nucl. Phys. A588 (1995) 241 c .
[8] N. Tajima, S. Takahara, and N. Onishi, Nucl. Phys. A603 (1996) 23.
[9] T. L. Khoo et al., Phys. Rev. Lett. 76 (1996) 1583.
[10] W. Satula et al., Nucl. Phys. A529 (1991) 289.
[11] R. Chasman, Phys. Lett. B219 (1989) 227.
[12] S. J. Krieger, P. Bonche, M. S. Weiss, J. Meyer, H. Flocard, P. -H. Heenen, Nucl. Phys. A542 (1992) 43.
[13] J. P. Delaroche et al., Phys. Lett. B232 (1989) 145.
[14] M. Riley et al., Nucl. Phys. A512 (1990) 178.
[15] S. Takahara, N. Tajima, and N. Onishi, in preparation.

15．回車核における相対論的平均場近似

General Relativistic Mean Field Theory for Rotating Nuclei

Hideki Medokoro ${ }^{1}$ and Masayuki Matsuzaki ${ }^{2}$
${ }^{1}$ Department of Physics，Kywahy University，Fukuota 819－81，Japan
${ }^{2}$ Department of Physics，Fukuoka University of Education，Munakata，
Fubsoka 811－41，Japan

Abstract

The σ－ω model Lagrangion is generalized io an accetetated frame by using the tectnique of general relativity which is known as tetrad Eromalism．We apply this model to the description of rotating nuclei within the meas field approximation，which we call General Relativistic Mean Field Theory（GRMFT）for rotating anclei．The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic trans－ formation property of the spinor fiekd．Some numerical restils are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the $A \sim 60$ masa region．

1 Introduction

In receat years，relativistic approaches to the nuclear many－body problers have been done by many groups with great successes．In the simplest version，the meson fields are treated as classical mean fields．This Helativistic Mean Field Theory（RMFT）has been successful in describing various properties of nuclear matter and ground states of finite nuclei．It is now considered as a new and reliable way，alternative to the traditional non－relativistic Fartree－Fock approaches，to describe the nuclear properties．Applications to the excited states in fixite nuclei are also examined．As one of such applications，we here consider the description of rotating nuclé．Such work was first done by Munich group $(1,2)$ ．They combined RMFT and the cranking assumption，that i ，the effective Lagrangian was translormed from the laboratory to the unifornly rotating frame，from which the equations of motion were derived．In their formulation，however，the tratsformation property of the spinor fields was based on special relativity，which was inadequate becanse the cotating frame was not an inertial one．Therefore，in this work，we reformulate in a filly covariant manner using the tecbrique of general relativity known as tetrad formalism［3］，and apply it to the description of rotating nuclei within the mean feld approximation，which we call General Relativistic Mean Field Theory（GRMFT）for rotating nuclei．As a first systematic application of this model to the light mass nuclei，we calculate the yrast states of the Mg isotapes and the superdeformed rotational bands in the $A \sim 60$ mass region．

2 Formulation

Following tetrad formalism，we can write down the Lagrangian in the non－inertial frame repre－ sented by the metric tensor $g_{y y}(x)$ ．From the variational principle applied to this Lagrangian，the equations of motion can be derived．Then we can obtain the equations of motion in the uniformly rotating frame by substituting the metric tensor in this frame．For detail，see［4］．The resulting stationary equations of motion are

$$
\begin{align*}
\left(\alpha \cdot\left(\frac{1}{i} \nabla-g_{\psi} \omega(x)\right)+\beta\left(M-g_{\sigma} \sigma(x)\right)+g_{\omega} \omega^{0}(x)-\Omega\left(L_{ \pm}+\Sigma_{z}\right)\right) \psi_{i}(x) & =\epsilon_{i} \psi_{j}(x), \tag{1}\\
\left(-\nabla^{z}+m_{\sigma}^{2}-\Omega^{2} L_{z}^{2}\right) \sigma(x) & =g_{\sigma} \rho_{s}(x), \tag{2}\\
\left(-\nabla^{2}+m_{\omega}^{2}-\Omega^{2} L_{z}^{2}\right) \omega^{0}(x) & =g_{\omega} \nu_{v}(x), \tag{3}\\
\left(-\nabla^{2}+m_{\omega}^{2}-\Omega^{2}\left(L_{z}+S_{z}\right)^{2}\right) \omega(x) & =g_{\omega} j_{t}(x), \tag{4}
\end{align*}
$$

Note that these equations of motion in fact coincide with those of Munich group．Why they could obtain the correct result was also clarifed in our formulation［4］．

3 Numerical Results

The eqs. of motion are solved by the standard iterative diagonalization method using the three dimensional harmonic oscillator eigenfunctions. The cutoff parameters for nucleon and mebon fields are taken as $N_{\mathrm{F}}=8$ and $N_{\mathrm{B}}=10$, respectively. As a parameter set, we adopt the one called NL-SH which is adjusted to the properties of ouclear matter and some spherical nuclei. Note that, although ouly the σ and ω-meson are explicitly written in the formulation, the $\boldsymbol{\rho}$-meson and the photon fiedds, which are incorporated in a same way as the u-meson, together with the non-linear seff-interactions of the σ-meson are also included in the numerical calculation.

3.1 A systematic calculation of the Mg isotopes

The Mg isotopes have been so far well examined both in theoretical and experimental studies. Recently, special attentions are given to these isotopes in connection with the vanishing of the $N=20$ shell gap in ${ }^{32} \mathrm{Mg}$. While the experimentofs] and the shell model calculations[6] support the varishing of the $N=\mathbf{2 0}$ shell gap in ${ }^{32} \mathbf{M g}$, both Skyrme-Hartree-Fock(-Bogoliubov) $[7]$ and Relativistic Mean Field $(+B C S)[8]$ calculations failed to reproduce this result.

In this work, we celculate the systematics of the excited states in the Mg isotopes induced by collective cotation as well as the ground states, where the triaxial degree of freedom are also included which were not considered in [8]. Our numerical resulte show that some isotopes such as ${ }^{28} \mathrm{Mg}$ and ${ }^{30} \mathrm{Mg}$ seem to have triaxial shapes in the ground atates. We can not conclude, however, that these nuclei have surely triaxial ground states because there still remains the arobiguity concerning the fact that the pairing correlations are neglected.
Fig. 1 shows the syatematice of the 1 st excited 2+ states in the Mg isotopes. As can be seen from this figure, the calculated energies seem to be too small compared to the experimental ones except for ${ }^{32} \mathrm{Mg}$. This means that the colculated moments of inertia are too large. For ${ }^{32} \mathrm{Mg}$, we find slightly prolate ($\beta \sim 0.11$) ground state, and two local minima, one is slightly oblate($\beta \sim-0.06$) and another is prolate $(\beta \sim 0.44)$. These are 0.6 MeV and 2.7 MeV higher than the ground state, respectively. This is consistent with [8]. where the pairing correlations are taken into account which leads to almost spherical ground state. The 1st 2+ state built on the prolate local minimum $(\beta \sim 0.44)$ is 0.3 MeV higher than this local minimum(denoted by the single black circle in Fig. 1 at $A=32$), while if mesured from the

Figure 1: 1st excited 2+ states in the Mg isotopes. ground state, the excitation energy is 3.0 MeV .

3.2 Superdeformed rotational bands in the $A \sim 60$ mass region

Since the experimental discovery of the superdeformed rotational bands in ${ }^{152} \mathrm{Dy}$, many superdeformed bands have been observed in the $A \sim 130,150,190$ and 80 mass regions. There are no observations, however, in the $A \sim 60$ mass region up to now in spite of some experimental efforts. From the theoreticel point of view, it is expected that there may be stable largely deformed states built on the $N, Z=28,30,32$ deformed shell gaps. Ragnarsson et al. predicted that the saperdeformed minimum become yrast at $I=22$ for ${ }^{60} \mathrm{Zn}[9]$. A relativistic investigation on the nucleí in this mass region, on the other hand, have not been done. Therefore, we calculate the superdeformed bands in this mase region osing GRMFT to give a theoretical prediction which will be useful for the experimental investigations.

We find that the groond state of ${ }^{60} \mathrm{Zn}$ is axially symmetric prolate with $\beta \sim 0.21$. The superdefomed second minimum is also fonnd with $\beta \sim 0.54$, which is built on the $N=Z=30$ shell gaps as is seen from Fig. 2 , at 8.3 MeV higher than the ground atate. In Fig. 3 the total energies for the
ground state and superdeformed rotational bands in ${ }^{60} \mathrm{Z}$ are shown. The superdeformed states seem to become yrast at $I \sim 20(\Omega \sim 1.0 \mathrm{MeV})$, which is consistent with the prediction of [9].

Figure 2: Single neutron routhian of the superdeformed atates in ${ }^{30} \mathrm{Zn}$ as functions of rotational frequency Ω.

Figere 3: Total energies in ${ }^{40} \mathrm{Zn}$ for ground state and superdeformed rotational bands as functions of spin I.

4 Summary

We have formulated a general celativistic mean field theory for rotating nuclei adopting the tetrad formalism. The results were the same as those of Munich group who started from a special relativistic transformation property of the spinor fields. Why they could obtain a correct result was also clarified in our formulation.

As a first systematic investigation of the present model on the light mass muclei, we calculated the yrast states of the Mg isotopes and the superdeformed rotational bands in the $\mathrm{A} \sim 60$ mass region. For the Mg isotopes, some isotopes beemed to be triaxial in the ground states. The calculated moments of inertia were somewhat too large compared to the experimental ones. ${ }^{32} \mathrm{Mg}$ seemed to be slightly prolate in the ground states. The calculation of the superdeformed rotational bands in ${ }^{60} \mathrm{Zn}$ showed that the superdefonmed states becone yrast at $I \sim 20$, which was consistent with [9]. A more systematic investigation with the paining correlations is now in progress.

References

|1] W.Koept and P.Ring, Nucl. Phys. A 493(1989) 61; ibid. A $\$ 11$ (1990) 279.
[2] J.König and P.Ring, Phys. Rev. Lett. 71(1993) 3079; A.V.Afanasjev, J.König and P.Ring, Phys, Lett. B 307(1996) 11; Nuc. Phys. A 608(1996) 107; J.König, Ph.D.thesis, 1996 (unpublished).
[3] S.Weinberg, Gravitation and Cosmology: Principles and Applications of The General Theory of Relativity (John Willy and Sons, New York, 1972) p. 365; N.D.Birell and P.C.W.Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, London, 1982) p. 81.
[4] H.Madokoro and M.Matsuzaki, preprint, nucl-th/9702021.
[5] C.Détraz et al., Nucl. Phys. A 394(1983) 378; T.Motobayashi et al., Phys. Lett. B 346(1995) 9.
[6] E.K.Warburton, J.A.Becker and B.A.Brown, Phys. Rev, C 41(1990) 1147; N.Fukunisbi, T.Otsuka and T.Sebe, Phys. Lett. B 298(1992) 279.
[7] J.Terasaki et al., preprint, nucl-th/9612058.
[8] Z.Ren et al., Phys. Lett. B 380(1996) 241.
[9] I.Ragnarson, preptiat, Lund-MPh-90/09 \{1990\}.

16．レーザー電子光による核物理：SPring－8における発展と展望

Nuclear Physics with Laser－Electron－Photons：Developments and Perspectives at SPring－8

䓠原 守
Mamoru Fujiwara

大服大针桋物理刊究センター
Research Center for Nuclear Physics，Osaka University，Mihogaoka 10－1，Ibaraki， 567 Osaka Japan

1 はじめに

䫀域で100\％近く何顿したフォトンビームか得られる。この旅敵でのクォーク核物理研究は世界でもエ ニークであり，侾画中の現時点てる世界の研究者の聞むをひきつけつつある。1～3．5 GeV 願城は核子の謜
完に决定的な威力を発揮すると期待出来る［2］。
SPring－8での実験では，偏理した高エネルギーガンマ線と核子内のクォークとの街突現象，及びクォー

本はクォーク核物理のレブトンはよる硎宅て世界のトッブに立つことが出来る。

幅広く応用されるであるう。
程度の高強度，高偏電がンマ䊾が茀生した時に展閉されると期待される㧡物理に゙いいて撞跲する。

1．核子中の $s \bar{s}$ 成分の検出
隣子と中性子の磁気モーメント比（ μ_{n} / μ_{p} ）をタォータ模型で估算すると $-2 / 3$ となり，実験値 -0.685

椦造について，「㧡子スピンには， 10% 以下のクォークスビンの筒与が存在するのみ，ストレンジ クォークの寄与が 10% から 20% 存在する。」という需くべき粕詥をもたらした $[3,4,5]$ 。

態として核子を記述する方が現実に近いのではないか，という諉倹心ある。

中中間子（質量1020 MeV）はssの波動関数を持ち，理想的な反ストレンジ・クォーターストレン
 ことにより発生する s S 中間子。 ϕ を测定することにより，「核子内部のストレシジネス密度」を林定することがてきる。特に，光子－核子間のヘリシティ平行鹘乱と反平行散乱の断面積の非対称度な

a）

b）

 ンて筫はよる吅き出し過程（knock－out process）。

この実験の有用性をより易しく理䏬してもらうため！，1～3．5 GeVの伍擂がンマ袙を用いて，ϕ 中間子を生成する時の2つの典型的な婦合を図1に示す。图12）は，光子が中性ベクトル中間子ゅに変化し，その後，核子とのボメロン交換（多重タッーオン交換）によって散乱をれる過程てある。ボメ
子には影量を与えない事加容易に趩像出来ふ。

 s タッーク系の量子数はuudクォークの量子数と合わせて全体で核子の量子数に等しくならなけれ
遏程である。但し，ガンマ編による \downarrow 中間子生成では図1a）の過程が支眍的であると予想きれるため，如何はして過程 b）の存在を検轿するかに焦点が較られる。

 ふ。

 $0.3 \% \sigma s \bar{s}$ 成分を抽出も可能である楽を示している。

2．Baryonの変形とハリオン・スベクトル（クォーク波缜開数）の研究

クォークの閉じ込めを引き起こす QCD 真空から作られるハドロンの徝起状態を明らかにする分光学的研究は，ハドロン搆造，QCD 真空を理解するコニークな手法である。
 している可在性がある。この客形幼果による特有交バリオン駆起状賏がスベクトラムに現れている。

 の大きな情報となる［7］。

3．GDH（Gerasimov，Drell－Hearn）和則の険䲞

㙁合について眮定する。この時に予測されるGDH 和則值 $[8,9]$ は「核子のスビンの起源」と䦎係し
 にせまり，QCDの理解を深める研究となる。また，1．5～3．5 GeVの光子によ を実験値はクォーク を基綎とした理論のモデルの楼密な子ェックとなる［10］。

 サイス（ $\left.1.2 \times 10^{-13} \mathrm{~cm}\right)$ よりもっと小さくなった時，ガンマ線は限子内の冝荷分市の詳細を見名こと はなる。したがって，1．5～3．5 GeV 領城でのコンブトン散乱の断面特，㣂框分解能溂定は核子の微梘㗢造の詳絾な㷌報を与えることになる。

4．メソンの㯖造
メソンの励起状感の研究は，高エネルキー研宛所・フェルミ研究所などであ行なわれて来六重要 な研究デーマの一つである。光を核子に吸収きせた後，メソン欮垓によって作り出せを。同べたいメ

 QCDモノボール辢子が千㝻されている。このQCDモノボール溺維効果によって予想きれる新教子 の発見は，クォータ閉じ込め機楼解明の键となる［12］。

 あるとックス機綪の豪付けをあたえることにもなる。

さんには，す中墹子，K中周子等の希前儛モードを調べることは物理の根本原理である「対称性 の破れ」の研究に製がる。

5．重䧑子の光分解によるクォーク模型のテスト

重要な反応である。脡史的にも古く加ら実験が行なわれている。但し，エネルギーが GeV 以上の領

城ては精密実験は無い。1．5～3．5GeVのエネルキー镇域は，核力の古具的なメソン措像からQCDの必要となるクォーラ描像へと移行する領城である。偏䅉現象㴬定の実験桔果は，2つの描像の接点を
 はよる実験が可能な旅設は世界中でSPring－8のみであり，特敬の方石実験となる。

重陽子分献反応は重蝔子がガンマ袢により阴子と中性子に分解する反応である。この反応は核子核子閊相互作用（自然果に存在する四つの基本的な相豆作用の一つである強い相互作用）の本質を見捙める意昧で究めて重要な反応である。基本的に二体問題であり，縄料にその相互作用を用らかにで きうる。

6．Glue ball（DGL 理論：Dual Ginzburg－Landau 理祫）の探索
クォーク核物珪にとって最大の菲䂆は，クォークがいかにして八ドロン内部に開じ込あられているか

出現し，そのグルーホールは約 1.5 GeV の資豆をあち $J^{P}=1^{+}$の量子教を持つ 116$]$ 。 さらに QCD ヒッダズ粒子として0＋のタッーボールの存在も于言坴れる。これら閉じ込め機棈に間わる柆子の探索は閏し込め機搆の解明に本質的に直要でする。

7．枝媒留における中間子留量，溦る舞いの研充
$\rho(770), ~ \omega(782), ~ \phi(1020)$ 等のベクター中間子は，原子核の中で強くガンマ線とカッブルす ふ。ベクター・ドミナンスのモデルに従えば，入射光子の作整（レーザー䨋子光の场合：ベクター编権率，テンサー㣂㗐率共に 1）をほとんど引き維ぐ。このことは。（770）については10\％の精度で確かめられている。

核子や中間子は原子核中でその筑至を変北するとチ想されている。これは，カイラル対栋性の自発的
 することにより，ほとんとのハドロンの賴量加変化することになる ${ }^{(17,18)}$ 。ベクトル中間子 ρ と ω の質量加原子核内の温度によってどのように変化する加は，あまりはっきりとはしていない。先量が大言くなる場合もあるし，小さくなる场合も予想ざすしている［19］。
ベッター粒子である GeV 光子を原子核に照射すれは，光生成反応はより原子核内でベクトル中開子

宏はハドロン・ビームを用いた中周子生成真験でも可能であるが，実験条件としてカンママ紿によるね のが方利か，ハドロンはよるものがより夜利かどうかは明らかでは䡎い。 光の実験の場合は，核子密
 トル中間子発生の密度が大きく変化する。穹度変化の小さい量を溂定しようとする時には测定量の不定性を生み，不利に鯆く町能性がある。

カンマ袙による，核内でのベクター中网子生成の機搆が核内での核子の影翌を頩く受けていると
的子の角度相网办ら決定できる。
 きれいなカイラル対标性の自発的葡れの機模の跴挺を与文られる可能性に若目し，SPring－8での研究計目を推進している。

8．作極フォトンによるハイバー原子核の研究
高エネルギー GeV 光は（ γ, K ）反応によりハイバー核を作ることが出来る。この方法は従来の（ π, K ）， （ K, π ）反応と相補的である。光の侕光を利用して，何梗八イバー核を作る。そこからの届朔垓の研究 は原于核内部てのフレーバー変化䲱相互作用を明らかにする。カイラル対称性の回後，原子核内での クォーク閉じ込め算の于期現象を明らかにすることが出来る。

2 原子移のM1，E1矿起

2.1 逆コンブトン寏程によるガンマ楾発生

SPring－8のリングに著较され直径 0.3 mm 以下に絞り込まれた高エネルギー軍子ビーム（8GeV）にレー ザー光（光子）を正面街突させると，光子は後方にコンプトン散乱きれる（Compton Back Scat erering）。教乱の際，レーザー光は带子からエネルギーを受け取り，高エネルキーガンマ線に変換をれる。この散乱過程の機舍学を図2に示す。

図 2：遡コンプトン㪚乱によるレーザー慗子光
入射レーザー光のエネルキー（ k_{1} ）とレーザー西子包のエネルギー $\left(k_{2}\right)$ の明係は， 4 元エネルギー・違動量保存則によって

$$
\begin{equation*}
k_{2}=\frac{k_{1}\left(1-\beta \cos \theta_{1}\right)}{1-\beta \cos \theta_{2}+\frac{k_{1}\left(1-\cos x_{1}\right.}{E_{*}}} \tag{1}
\end{equation*}
$$

のようはあらわされる。ここで $x=\theta_{2}-\theta_{1}, ~ E_{e}$ は菓子ビームのエネルギー，β は高子の速度である（光速 $\subset=1$ ）。

光によるレーザー雷子光の作桓度（右䜿）。
返された時，最大値

$$
\begin{equation*}
k_{2}=\frac{4 k_{1} E_{e}^{2}}{m_{e}^{2}+4 k_{1} E_{e}} \tag{2}
\end{equation*}
$$

をとる。上式から唓子ビームのエネルギー，またはレーザー光のエネルギーが高い（波長が繥い）ほど高 いエネルギーのレーザー露子光が得られることがあかる。特に，電子のエネルギーは重要なファクターで，例えば，レーザー光として351．1am（3．53 eV）のテルゴンレーザーを用いると，電子エネルギーが 2.5 GeV ，
 GeV の時には， 2.4 GeV のカンンマ結得られる。
 3 标すように，円侕先の倳合， 100% 短光したレーザーを用いると最大エネルギ点でガンマ線は完全に
 る。

円倔框ガンマ線は偏極簐子ビムの制動呚射によっても得られるが，出の場合の偏極度は最大でも0．5～0．7

逆コンプトン蜰乱で作られるガンマ縞のエネルキキーと発生角度には

$$
\begin{equation*}
k_{2}=\frac{4 k_{1} E_{e}^{2}}{m_{e}^{2}+4 k_{1} E_{e}}\left(\frac{1}{1+\left(\frac{E^{2}}{m_{e}^{2}+4 k_{1} E_{4}}\right) \theta_{2}^{2}}\right) \tag{3}
\end{equation*}
$$

で与えられる関倸がある。甬子エネルギーが高くなると，ガンて線は電子の進行方向の狭い隹度に集中す るようになる（図4）。式3て容易に理遅できるが，注目すべきことは，ガンマ線の広がりは，菅子ビーム のエネルギーにのみ依存し，入时レーザーのエネルギーにはほとんど依存しないことである。

『 4：レーザー電子光と散乱間度の関係。

レーザー光として 6 eV （波長 200 nm ）の紫外レーサーを用い，電子エネルギーが 8 GeV の時には， 0.1 mrad の敬乱角度のなが， 1.5 GeV から 3.5 GeV までのエネルギーをめつレーサー電子光が集中
 りはせいぜい 1 cm 程度である。この閉係は，レーザー光の波長が梗媸に長くなっでも保たれる。つまり，
得られるということを意味する。
但し，MeV 領城エネルギーのレーザー旐子光を得るためには，きわめて低いエネルギー（長い波長）の

遠赤外領域のレーザーはレーサー出力が1Wクラスです，通常のレーザーに輯べて，術逗いに多くの光子を8 GeV電子ビームに照射することか出来る。発生するガンマ線のエネルギーが低いので，反跣された 8 GeV 電子は弯積リングのなかを十分に周回することがてきる。このため，䉓子ビーム量がしーザ一照射 かために减少することは無い。

波長 $120 \mu \mathrm{~m}$ のレーザー光子の光量子エネルギーは $0.0103 \mathrm{eV}, ~ 240 \mu \mathrm{~m}$ のレーザー光量子エネルギーは $0.00517 \mathrm{eV}, ~ て ゙ あ り, ~ 8 \mathrm{GeV}$ 奄子と道コンブトン散乱させることで，それぞれ最大エネルギー 10.11 MeV ， 5.07 MeV のガンマ棈を得ることがで変る。出力 $2 \sim 3 \mathrm{~W}$ 級の分子レーザーは紫外線レーザーに較べ， 10 0 倍以上あの部合で逆コンブトン酸乱㣫突を起こさせられるのて，MeV級かンマ線が強度 10^{9} 图ノ秒の得

験が可能となる。

2.2 原子蚿の M 1 謜起

図5に nuclear resonance fluorecenceによる励起過程と崩㮦楧式を示す。原子核は光吸収によって励起
 orecence による実験はよって原子核のM1肋起に開しての，いくつかの貫重な英験戎果が達或されてきた $[20]_{\mathrm{a}}$ ここさ，SPring－8で高強度のガンマ線が楊られれは，とれくらいの制合で原子核加励起をれるのが

を知っでおくことあ必要であるう。

 をれる。

励起葉位の幅こは励起強度に以下の式で閱候づけられる。

$$
\begin{equation*}
\Gamma_{i}=8 \pi \sum \frac{L+1}{L((2 L+1)!!)^{2}}\left(\frac{E_{0}-E_{i}}{\hbar c}\right)^{2 L+1} \cdot\left(\frac{2 J_{0}+1}{2 J_{i}+1}\right) \cdot B(\pi L) \dagger \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
I_{a b s}=\pi^{2} \cdot\left(\frac{2 J+1}{2 J_{0}+1}\right) \cdot\left(\frac{h c}{E_{x}}\right)^{2} \cdot \Gamma_{0} \tag{5}
\end{equation*}
$$

上なる。

$$
\begin{align*}
& \Gamma_{0}\left(0^{+} \rightarrow 1^{+}\right)=8 \pi \cdot \frac{2}{9} \cdot\left(\frac{E_{x}}{h e}\right)^{3} \cdot \frac{1}{3} \cdot B(M 1) \dagger \tag{6}\\
& \frac{\Gamma_{0}}{\left(0^{+} \rightarrow 1^{+}\right) m e V}=3.8 \cdot\left(\frac{E_{x}}{M e V}\right)^{3} \cdot \frac{B(M 1) \dagger}{\mu_{N}^{2}} \tag{7}
\end{align*}
$$

となる。 $\mu_{N}^{2}=0.011 e^{2} \cdot f m^{2}$ であるのた，次の䧁係式を得す。

$$
\begin{equation*}
\frac{I_{a b s}\left(0^{+} \rightarrow 1^{+}\right)}{M e \bar{V} \cdot \mathrm{fm}^{2}}=1.2 \cdot 10^{-3} \cdot\left(\frac{M e V}{E_{x}}\right)^{2} \cdot \frac{E_{0}\left(0^{+} \rightarrow 1^{+}\right)}{m e V} \tag{8}
\end{equation*}
$$

 $\mathrm{MeV} \cdot f \mathrm{~m}^{2}$ となる。瓷料ターゲットの厚さを $10^{22} / \mathrm{cm}^{2}\left(\mathrm{~A}=100\right.$ の原子㧡で 1 g 鋉度），ガンマ絸強度を $10^{8} /(5$
$\mathrm{MeV}) / \mathrm{s}$ とした場合，每袙26カウントの収量をえる。カンーマ綿蚞出器の検出効率を 2% と仮定しても一日当たり，約45，000個の実験叹量をえる。
最近，BGOシンチレーターと高分解能カンマ線ケルマニウム検出器を組み合わせたコンプトン・サフ

 か出来る。
現在まて，nuclear resonance fuorecenceによる実験はトイノタルーブを中心として賏子棱のE1，M1 謜
 らね棈䖍な研究へと発展することか可能となる。

3 おわりに

逆コンプトン斁乱による高エネルキー光子を核物理研究に用いるアイデアは1980年代に欧川原子核
䛾峇号れている［22］。1991年には，イタリア・フランスのダルーブかフランス・タルノーフルに完应 するESRF（最大電子エネルキー 6 GeV ）ての高エネルキーカンマ線による実験を拢案し，現時卢て実験
 SPring－8ての35 GeVには，およはない。
MeV 頒域のカンマ線発生は遠赤外レーサーを用いることにより可能となる。「原子挨のカンマ總共呤喛

 かか園，日本て完成しようとしている。
GeV 偏括光による，タォータ核物理の新しい発展と，原子核のカンマ裸分光字分野，特に，原子核のM1，E1
 る。

4 䛨辞

本研究は，大阪大学㧡物理研究センター「レーサー䇦子光によるクォーク核物理」フロンェクトの成果て
士との有搤な諘佮に感对します。また，本計画の進行に当たっては，大型放璟兆施確の多くの方々，特に，能谷教考，大榙﨏二，伊達伸，大能春男博士ばは共同研究として加ねっていたたいている。この機会を借 りて感詂したい。なぁ，本研究の大部分は文部省の科字研究䟺の研究助成による成果である。

参考文献

［1］H Kamitsubo，in Procceedings of FRONTIER96，edited by H Toki，T．Kishimoto and M Fujı wara，Word Scientific，March 7．9，1996，pp 147
［2］M．Fujiwara，T．Kinashi，and T．Hotta，Jaournal of the Japanese Scciety for Synchrotron Radia－ tion Research 10 （1997） 23.
［3］EMC Collaboration，J．Ashman et al．，Phys．Lett．B206（1988） 364.
［4］SMC，D．Adams et al．，Phys．Lett．B329（1994） 399.
［5］若松正志，日本物理学余読 45 （1990）580．
［6］A．I．Titov，Shin Nan Yang，Y．Oh，JINR，preprint（1996）：A．I．Titov，private communication．
［7］H．Fujimura，H．Toki and H．Ejiri，in Procceedings of Frontier96，edited by H．Toki，T． Kishimoto and M．Fujiwara，Word Scientific，March 7．9，1996，pp． 110.
［8］S．B．Gerasimov，Sov．J．Nucl．Phys． 2 （1966） 430.
［9］S．D．Drell and A．C．Hearn，Phys．Rev．Lett． 16 （1966） 908.
［10］A．M．Sandorfi，in Procceedings of FRONTIER96，edited by H．Toki，T．Kishimoto and M． Fujiwara，Word Scientific，March 7－9，1996，pp． 17.
［11］M．Gell－Mann，M．Goldberger，and W．Thirring，Phys．Rev． 96 （1954） 1612.
［12］H．Toki and H．Suganuma，private communication．
［13］Z．F．Ezawa and A．Jwazaki，Phys．Rev．D25（1982） 2681.
［14］Y．Nambu，Phys．Rev．Dl0（1974） 4262.
［15］T．Suzuki，Prog．Theor．Phys． 80 （1988） 929.
［16］H．Suganuma，S．Sasaki and H．Toki，Nucl．Phys．B435（1995） 207.
［17］T．Hatsuda and T．Kunihiro，Phys．Rev．Lett． 55 （1985） 158.
［18］G．E．Brown，Nucl．Phys．A488（1988） 689.
［19］T．Hatsuda et al．，Nucl．Phys．B394（1993） 221.
［20］U．E．P．Berg and U．Kneissl，Ann．Rev．Nucl．Part．Sci． 37 （1987）33－69．
［21］P．von Brentano，A．Zilges，R．－D．Herzberg，U．Kneissl，J．Margraf，and H．H．Pitz，Nucl．Phys． A577（1994）191c．
［22］R．Chrien，A．Hofmann and A．Molinari，Physics Reports 64（1980） $249-389$.
［23］GRAAL collaboration report，M．Anghinolfi et．al．， 1991 ．

17．（ $\left.{ }^{3} \mathrm{He}, \mathrm{t} \gamma\right)$ ） ）${ }^{13} \mathrm{~N}$ 核のスピン・アイソスピン状態の研究
γ Decay of Spin－Isospin States in ${ }^{13} \mathrm{~N}$ via $\left({ }^{3} \mathrm{He}, t \gamma\right)$ Reaction
F．Thara，H．Akimune，I．Daito，H．Fujimura，Y．Fujita ${ }^{\text {a }}$ ，M．Fujiwara，T．Inomata， K．lshibashi，and H．Yoshida
Research Center for Nuclear Physics，Osaka University
${ }^{a}$ Department of Physics，Osaka University

Spin－isospin states in ${ }^{13} \mathrm{~N}$ have been studied by means of the ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, t\right)$ reaction at and near zero degree，at $E\left({ }^{3} \mathrm{He}\right)=450 \mathrm{MeV}$ ．Decayed γ－rays from each state were measured at backward angle in coincidence with the ejectile tritons．The branching ratio of γ decay for some of spin－isospin states were determined and were compared to those from previous data

1 INTRODUCTION

From a point of view that nucleus consists of protons and neutrons，nucleus is excited via various modes which are specified spin transler ΔS ，isospin transfer ΔT and angular momentam transter ΔL ．Spin－Isospin excitation are charactarized as $\Delta S=1$ and $\Delta T=1, \Delta L$ is arbitrary．Nucleus can be selectivly or predominantly excited via specific modes，if the suitable probe is closen．The（ $\left.{ }^{3} \mathrm{He}, t\right)$ reaction at and near $\theta_{t}=0^{\circ}$ at $E\left({ }^{3} \mathrm{He}\right)=450 \mathrm{MeV}$ is a good tool for investigating the nature of Spin－Isospin states．Since ejectile triton is charged particle，high detection efficiency and high energy resolution experiment can be performed ratlee than（ p, n ）reaction．The reaction mechenism of（ ${ }^{3} \mathrm{He}, t$ ）reaction is simpler than that of other heavy ion reactions．Measuring decayed γ－rays in coincidence with（ ${ }^{3} \mathrm{He}, \mathrm{t}$ ）reaction provide the information of nuclear structure for Spin－Isospin states in details．

Excited states in ${ }^{13} \mathrm{~N}$ has been studied by meams of various probes and recently proton decay from states in ${ }^{13} \mathrm{~N}$ was measured in coincidence with ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, t\right)$ reaction．The praticle thresholds for proton，neution and alpha particle in ${ }^{13} \mathrm{~N}$ are $2 \mathrm{MeV}, 20 \mathrm{MeV}$ and 12.7 MeV ，tespectively．As the coulornb barriar hinder the alpha decay，the proton decay and the γ decay aje permitted up to about 15 MeV ．Therefor decay processes can be completely determined by measurment of the ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, t \gamma\right)$ ．Decaved $\gamma-$ rays via ${ }^{12} \mathrm{C}\left(p_{1} \gamma\right)$ reaction was measured by Marrs et al．［1］in 1975．In order to investigate the decayed γ－rays from each state，changing the projectil proton energy was needed to excite each state．But（ ${ }^{3} \mathrm{He}$, ， $\boldsymbol{\gamma}$ ） reaction dose not need changing energy．

2 EXPERIMENTAL PROCEDURE

The experiments were performed at the Research Center for Nuclear Physics（RCNP） Osaka－University． $\mathrm{A}^{3} \mathrm{He}^{++}$beam was accelerated $u p$ to 450 MeV with the ring cyclotron and transporied onto a ${ }^{13} \mathrm{C}$ target with the thickness of $1.72 \mathrm{mg} / \mathrm{cm}^{2}$ in the scatering chamber．

The ejectile tritons were momentum analyzed with the magnetic spectrograpl＂＂Grand Raiden＂［2］，and detected by the focal－plane counter system，which has two 2 －dimensional position－sensitive multi－wire drift chambers（MWDC），and two ΔE－scintillation counters for particle identification．The schematic pictures of the spectrograph and the counter system were shown in the top of Fig 1．The spectrograph was set at zero degree with verticaly and horizontal opening angles of ± 40 mrad each．The ${ }^{3} \mathrm{He}^{++}$beam which passed through the target was stopped by a Faraday cup in the first dipole magnet（D1）of the spectrograph．

Figure 1: Top) the schematic view of the spectrometer Grand Raiden. The ${ }^{3} \mathrm{He}^{++}$beam was stopped at the Faraday cup placed at the inside wall of the D1 magnet. The γ detector Hermes was located at a backward angle of 125° with beam direction, and at a distance of 68 cm from a target. Bottonn) schematic pictures of the configuration of the Hermes from a back view (left) and from an end view (light). Hermes consist of a cylindrical NaI (Central) and four quarter cylindrical ones (Anaulat).

The γ-rays were detected with the high energy gamma radiation measuring system "HERMES" which was a large cylindrical NaI detector; $11^{\prime \prime} \phi \times 11^{\prime \prime}$. A schematic picture of RERMES was shown in the bottom of Fig 1. The HERMES is composed of two parts; one is a central $6^{\prime \prime} \phi \times 11^{\prime \prime}$ cylindrical NaI crystal, another is $11^{\prime \prime} \phi \times 11^{\prime \prime}$ annular NaI crystal surround. ing the central one. The annular NaI is divided into four segments, each being a quarter cylinder. Each NaI crystal was opticaly isolated by magnesium oxide powder.
The HERMES was located at a backward angle of 125° with beam direction and at a distance of 68 cm from a target, and was surounded by boric acid pellets so as to reduce the background caused by thermal neutrons. For reducing the background γ-rays, the shields which was consisted of lead blocks and paraffin blocks were placed in front of the first quadra pole magnet and the first dipole magnet.

Annular Nal was used as a compton suppressor, that is, the events observed photons escaped from the central NaI on the Annular NaI were discarded in the analysis stage. NaI signals only from the central Na_{a} was used as γ-rays event trigger.

3 ANALYSIS AND RESULTS

Fig 3 show the timing spectra for triton- γ-rays coincidence measurements. Prominent peak at the center of histogram and other small peaks corresponds to prompt coincidence events and random ones, respectively. The ratio of prompt to random coincidences was about 3. The interval between peaks are same as the interval between beam bursts. The γ-rays detected as prompt events are included the delayed γ-rays, which were radiated from excited states followed by particles decay from excited states in ${ }^{13} \mathrm{~N}$, as well as the direct γ-rays transited between the same ${ }^{13} \mathrm{~N}$ nuclei. The direct and the delayed γ-rays dose not separate form each other in the timing spectra.
A position spectrum of tritons obtained with the focal plane detector system was converted to an energy spectrum; the convertion coefficients were determined by using the peak position for well-known excited states in ${ }^{13} \mathrm{~N}$. The true coincidence spectra were obtained by subtracting the random coincidence spectra from the prompt one. The singles energy spectra (dotted line) and the coincidence one (real line) were shown in the bottom of Fig 3. The singles spectra show that the states whose spin-parity are $1 / 2^{-}$and $3 / 2^{-}$were excited

Figure 2: Timing spectrum for the riton- γ coincidence measurements. The prominet peak corresponds to prompt coincidence events. The hatched peahs corespond to random coincidence events. Small peahs around 1300 ch and 1700 ch are random coincidence events due to γ rays from other than target.

Figure 3: Top) two-dimensional scatter plot for prompt events of γ evergy versus triton energy. Events observed in the upper regeon beyond the border line (dotted) are direct- γ-rays events. Delayed γ rays events were contained in the lower regeon. Arrow γ_{0} indicate the loci of direct decay to the ground state in ${ }^{13} \mathrm{~N}$. The loci can be seen at $E_{\gamma}=4.4 \mathrm{MeV}$ all over excitation energy region due to delayed γ rays from the first excited state in ${ }^{12} \mathrm{C}$. Bottorn) triton energy spectra from ${ }^{13} \mathrm{C}$ $\left({ }^{3} \mathrm{He}, t\right)$ reaction at $E\left({ }^{3} \mathrm{He}\right)=450 \mathrm{MeV}$ and at $\theta=0^{\circ}$; singles spectrum (dotted line), and coincidence spectrom (solid line) gated on γ decay after subtraction of random coincedences. Counts for singles spectrum is arbitrary unit.
via $\Delta S=1, \Delta T=1$ and $\Delta L=0$ mode. The peak located at $E_{\mathbf{x}}=-2 \mathrm{MeV}$ coresponds ${ }^{3} \mathrm{He}^{+}$peak which were produced on the target by mean of the atomic process. A magretic rigidity of ${ }^{3} \mathrm{He}^{+}$is nearly same as that of triton. Other obvious particle were not detected experimentaly. A typical energy resolution of the ${ }^{3} \mathrm{He}^{++}$was 430 keV .
Fig 3 shows a two-dimensional scatter plot of excitation energy in residual ${ }^{13} \mathrm{~N}$ nucleus versus decayed γ-rays energy for prompt events. The energy calibration has been done by using the peah positions for γ rays source; ${ }^{137} \mathrm{Cs}(667 \mathrm{keV})$ and ${ }^{60} \mathrm{Co}(1174 \mathrm{keV}, 1334 \mathrm{keV})$. The strong $4.44 \mathrm{MeV} \gamma$-rays could be seer all of the excitaion energy region beyond 6.5 MeV . This γ ray corresponds delayed γ ray from first excited state (4.44 MeV) in ${ }^{12} \mathrm{C}$ to ground state followed by proton decay from excited state in ${ }^{13} \mathrm{~N}$ First excited state (4.44 MeV) in ${ }^{12} \mathrm{C}$ can decay by means of only γ decay because the particle threthold dose not open. The events can be seen in the upper region from the dotted line in the top of Fig 3 are only direct γ rays events, except for random coincidence events. In the case of the delayed γ rays events followed by proton decay, maximum γ energy is smaller than the excitation energy in ${ }^{13} \mathrm{~N}$

Table 1: Branching Ratio for γ decay in ${ }^{13} \mathrm{~N}$.

Initial state		Final state		Branching Ratio (\%)	
$E_{\mathrm{i}}(\mathrm{MeV})$	J_{i}^{*}	$E_{\mathrm{f}}(\mathrm{MeV})$	J_{1}^{π}	This work	Previons [3]
15.06	$3 / 2^{-}$	0.0	$1 / 2^{-}$	(1.8 ± 0.7)	(2.2 ± 0.2)
15.06	$3 / 2^{-}$	3.51	$3 / 2^{-}$	(1.5 ± 0.8)	(1.8 ± 0.2)
11.74	$3 / 2^{-}$	0.0	$1 / 2^{-}$	$(5.4 \pm 3.5) \times 10^{-2}$	$(1.9 \pm 0.5) \times 10^{-3}$

by proton shreshold energy in ${ }^{13} \mathrm{~N}$.
The branching ratio can be obtain from the ratio of the coincidence double-differential cross section to the singles cross section, $\frac{r_{\gamma}}{\gamma}=\int \frac{d^{2} \sigma_{\gamma}}{d \Omega_{\gamma} d \Omega_{\gamma}} d \Omega_{\gamma} / \frac{d o}{d \Omega_{R}}$. The branching ratios for γ_{0} and γ_{2} transitions from $3 / 2^{-} 15.06 \mathrm{MeV}$ state and for γ_{0} from $3 / 2^{-} 11.8 \mathrm{MeV}$ were derived. In those case the angular correlation pattern can be written in a simple form, $I_{\gamma}\left(\theta_{\gamma}\right)=\Gamma_{\gamma}^{0}\left[1+P_{2}\left(\cos \theta_{\gamma}\right)\right]$. Since $P_{2}\left(\cos \theta_{\gamma}\right)=0$ at $\theta_{\gamma} \approx 125^{\circ}$, it is straightforward to determine the angle-integrated cross section. Total efficiency including the soljd angle for γ detector was determined by using the Monte Calro simutation codes GEANT for a number of γ-rays energeis and checked experimentaly with γ source.

The derived branching ratios are given in Table 1, and also previous experimental values $[1,3]$ are listed. $\Gamma_{\gamma_{0}} / \Gamma(15.06 \mathrm{MeV})$ and $\Gamma_{\tau_{2} /} / \Gamma(15.06 \mathrm{MeV})$ are $(1.8 \pm 0.7) \%$ and $(1.5 \pm 0.8) \%$ respectively. This larger error mainly attribute to stastical error. Hence previous values are $(2.2 \pm 0.2) \%$ and $(1.8 \pm 0.2) \%$, and are bigger than present ones by 30%. But those values are in agreement with previous ones within the error.
$\Gamma_{m} / \Gamma(11.8 \mathrm{MeV})$ is $(5.4 \pm 3.5) \times 10^{-2} \%$. The previous value of $\Gamma_{\mathrm{ro}} / \Gamma(11.74 \mathrm{MeV})$ is $(1.9 \pm 0.5) \times 10^{-3} \%$. According to the leves assignment in Table of Isotope [4], there are two $3 / 2^{-}$states at 11.74 MeV and 11.88 MeV . The derived branching ratio contain the contribution from both states since those states could not experimentaly separated from each other.

4 CONCLUSION

The ${ }^{19} \mathrm{C}\left({ }^{3} \mathrm{He}, 6 \gamma\right)$ reaction was performed and the branching ratios for γ_{0} and γ_{2} trantisitions from $3 / 2^{-} 15.06 \mathrm{MeV}$ state and for γ from 11.74 MeV were derived. The branching ratios for γ_{0} and γ_{2} transitions from $3 / 2^{-} \quad 15.06 \mathrm{MeV}$ state were in agreement with previous one within error. More large stastics were needed to decrease the error for branching ratios. A technique of meausering decayed γ-rays in coincidence with (${ }^{3} \mathrm{He}, t$) was established.
Theoreticaly, spin dipole resonance (SDR) which was populated from the ground state with $J^{\sharp}=0^{+}$via $\Delta S=1, \Delta T=1$ and $\Delta L=1$ mode, has three spin components $\left(J^{\pi}=0^{-}\right.$, $1^{-}, 2^{-}$). Experimentaly, however it has not yet been possible to resolve the SDR into the different $s p i n$ components. We can expect that the γ decay pattern will be different for each components. Thus, these spin components will be identified by useing same coincidence technique.

References

[1] R.E. Marrs et al, Phys. Rev. Lett 35, 202 (1975).
[2] M. Fujiwara, IONICS 20-6, 113 (1994).
[3] F. Ajzenberg-Selove, Nucl. Phys. A288, 1 (1976).

18．重イオン共鳴におけるスピン整列

Spin Alignment in Heavy－ion Resonances

E．Uegaki \dagger

1．Introduction

Very recently，${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ scattering and fragments－gamma experiment has been done at IReS（CRN）Strasbourg，and disalignment was clearly shown．［1］Corresponding to this new experimental results，in this talk，high－spin molecular resonances and spib－aligrments are taken up．First，structure of the resonance states of ${ }^{29} \mathrm{Si}+{ }^{28} \mathrm{Si}$ system and their normal modes around a stable configuration are briefly revisited．Second，experimental results at Strasbourg by Nouicer and Beck by the Vivitron accelerator and EUROGAM Phase II are discussed．A nature of the resonance states with respect to spin－aligaments is considered in connection with the normal mode motions．

Narrow high－spin resonances observed in heavy－ion scattering of ${ }^{24} \mathrm{Mg}+{ }^{24} \mathrm{Mg}$ ，${ }^{28} \mathrm{Si}+$ ${ }^{28} \mathrm{Si}$ ，etc．are striking phenomena，because they are in high excitation of $60 \sim 70 \mathrm{MeV}$ in the compound nuclei［2］．Their origin is still an open question．Fig．1（a）shows angle－integrated yields of the elastic scattering and inelastic excitations versus E_{cm} ，in which many joolated resonances with very narrow widths of about 150 keV are observed correlatingly among the decay channels of the elastc，single and mutual excitations．Fig．1（b）shows the decay strengths in those channels on resonance．Level density of the resonances is more than one per MeV ．Hence it is expected that the resonances are eigenstates of the whole compound system，and many other degrees of freedom other than the relative motion participate in their formation．

On the study of reaction mechanism，such heavy－ion resonances might be a novel phebomenon．Figure 2 displays classification on the reaction types，where the system is in the weak coupling regime at the upper illustrations，while that is in the strong coupling regime at the lowers．From the viewpoint of the strong coupling regime，the author and Y．Abe have studied those high－spin resonances and proposed a new molecular model， The physical idea is that due to highspin of about 40 h ，rather elongated but stable system must be formed by the strong centrifugal force，and then normal modes around the stable configuration are responsible for the high－level depsity．The model has successfully applied to the ${ }^{24} \mathrm{Mg}+{ }^{24} \mathrm{Mg}$ system（prolate－prolate system）［3］．Characteristics of the ${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ molecular states are also clarified in ref． 4.

2．Di－Nuclear Molecular States in the ${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ System：molecular normal modes

In the following，we firstly revisit ${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ nuclear molecules．Assuming a constant deformation and axial symmetry of the constituent nuclei，for simplicity，we have seven degrees of freedom as illustrated in Fig．3（a），

$$
\begin{equation*}
\left(g_{i}\right)=\left(\theta_{1}, \theta_{2}, \theta_{3}, R, \alpha+\beta_{1}, \beta_{2}\right) \tag{1}
\end{equation*}
$$

where α_{1} and α_{2} of Fig． $3(\mathrm{a})$ are combined into $\theta_{3}=\left(\alpha_{1}+\alpha_{2}\right) / 2$ and $\alpha=\left(\alpha_{1}-\alpha_{2}\right) / 2$ ． θ_{i}＇s are the Euler angles of the molecular frame（its z^{\prime}－axis is taken to be parallel to the relative vector \boldsymbol{R} ）and four other variables are those of internal degrees．

Consistently with the coordinate system，we introduce a rotation－vibration type wave function as basis one，

$$
\begin{equation*}
\Psi_{\lambda} \sim D_{M K}^{J}\left(\theta_{i}\right) \chi_{K}\left(R, \alpha, \beta_{1}, \beta_{2}\right) \tag{2}
\end{equation*}
$$

\dagger Department of Physics，Akita University

Fig. 1

Fig. 3

Fig. 1 (a) Angle-integrated yields of the elastic scattering $\mathbf{2}^{+}$, mutual 2^{+}, and mutual ($4^{+}, 2^{+}$) excitations. (b) Total-energy spectrum of coincident fragments obtained at a bombarding energy of 110 MeV .
Fig, 2 Reaction dynamics is illustrated. From upper to lower, the whole system gradually alternate to strong coupling regime.
Fig. 3 (a) The coordinates in the rotating molecular frame. (b) Equator-equator configuration.

In order to know dynamical aspects of multi-dimensional internal motions of ($R, \alpha, \beta_{1}, \beta_{2}$), we investigate an effective potential with specified $\operatorname{spin} J$ and K,

$$
\begin{equation*}
V_{J K}\left(R, \alpha, \beta_{1}, \beta_{2}\right)=V_{\mathrm{in} 1}\left(R, \alpha, \beta_{1}, \beta_{2}\right)+T_{\mathrm{rot}}^{\prime}(J, K) \tag{3}
\end{equation*}
$$

where $V_{\text {int }}$ denotes the nucleus-nucleus interaction calculated by density double-folding, and $T_{\text {rol }}^{\prime}(J, K)$ denotes the rotational kinetic energy with specified spin J and K. In Fig. 4, an $R-\beta\left(\beta_{1}=\beta_{2}\right)$ energy surface, i.e., $V_{J K}(R, \pi / 2, \beta, \beta)$ is displayed for $J=38$ and $K=0$. We find a local minimum point at $\beta_{1}=\beta_{2}=\pi / 2$ and $R=7.6 \mathrm{fm}$ with a rather deep potential well around the equilibrium. Thus the stable configuration is an equator-equator(E-E) one as illustrated in Fig. 3(b). We solve vibrational motion around this E-E configuration by introducing new coordinates of butterffy and anti-butterfly as

$$
\begin{align*}
& \beta_{+}=\left(\Delta \beta_{1}+\Delta \beta_{2}\right) / \sqrt{2}=\left(\beta_{1}+\beta_{2}-\pi\right) / \sqrt{2} \\
& \beta_{-}=\left(\Delta \beta_{1}-\Delta \beta_{2}\right) / \sqrt{2}=\left(\beta_{1}-\beta_{2}\right) / \sqrt{2}, \tag{4}
\end{align*}
$$

where $\Delta \beta_{i}=\beta_{i}-\pi / 2$. In contrast to such a stability against R and β degrees, α dependence of $V_{J K}$ in the equilibrium E-E configuration is extremely weak. Therefore it is expected that vibrational modes and internal rotational modes coexist.

In Fig. 5, molecular normal modes of ${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ with spin 38 is displayed, where a pair of quanta (n_{+}, n_{-}) for the butterfly and anti-butterfly vibrations is given below the levels. Also given at the upper right-hand-side of the levels is a dominant quantum number ν for α-motion, which means α-motion is approximately described by $\cos \nu \alpha$ (ot $\sin \nu \alpha$). Apparently K-excitation and twisting rotational modes appear to be lower than β-vibrational modes. The excitation energy for $K=2$ is very small, smaller than 1 MeV , and even those for $K=4$ or $\nu=4$ are smaller than 3 MeV . By an analysis of the wave functions with respect to α, we are able to classify the levels in Fig. 5 into two groups, i.e., twisting mode and butterfly mode (or anti-butterfly). Corresponding (t) or (b) mark is assigned in the lower part of the figure, respectively.

3. Spin-Alignments: disalignments by the butterfly motion

The angular distributions of the ${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ scattering are fitted by the Legendrepolynomials, for the elastic, single and mutual excitations. The results clearly show disalignment (not shown here).[1] This is a surprise, because we usually see alignments in the reactions. A question "why disalignments?" is considered in the light of normal mode motion. In Fig. 6, spin coupling in the butterfly motion is illustrated, which leads us to a good intuitive understanding about disalignments. Figure 7 shows theoretical calculations by the molecular model, which confirms our understanding. For ${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ we obtain good correspondence to disalignments. For ${ }^{24} \mathrm{Mg}+{ }^{24} \mathrm{Mg}$ we don't obtain. Some reasons expected for the ${ }^{24} \mathrm{Mg}+{ }^{24} \mathrm{Mg}$ results of "not disalign" are as follows: (1) Dominant probabilities of ${ }^{24} \mathrm{Mg}+{ }^{24} \mathrm{Mg}$ exist in the ($4^{+}, 2^{+}$) channel, and ($2^{+}, 2^{+}$) channel components are small fluctuations. (2) A difference may be existent between the oblate-oblate and prolate prolate systems.

4. Concluding Remarks

The differnce of the spin coupling between the butterfly and anti-butterfly modes are clarified. The results for the butterfly modes are qualitatively in good agreement with new ${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ data.

Analysis on the differences between the oblate-oblate system($\left.{ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}\right)$ and the prolate-prolate system (${ }^{24} \mathrm{Mg}+{ }^{24} \mathrm{Mg}$) is now in progress. Further experimental study is strongly desired.

References

1) R. Nouicer and C. Beck, Contributions to the Sixth Conference on Nucleus-Nucleus Collisions (Gatlinsburg, June 2-6, 1997), and private comunications.
2) R.R. Betts, in: Proc. 4th Intern. Conf. on Clustering Aspects of Nuclear Structure and Nuclear Reactions (Chester, July 1984), p. 133 and references therein.
3) E. Uegaki and Y. Abe, Prog. Theor. Phys. 90 (1993) 615.
4) E. Uegaki and Y. Abe, Phys. Lett. B340 (1994) 143.

Fig. 4

$$
\begin{aligned}
& { }^{28}{ }_{5 i}+{ }^{28} \mathrm{~S}_{\mathrm{i}} \quad \mathrm{~J}=38
\end{aligned}
$$

Fig. $5 \quad k-K=0+n-K=1 \rightarrow n-K=2 \rightarrow-K=3-n-K=4 \rightarrow$

Fig. 4 Effective potential energy $V_{J K}(R, \pi / 2, \beta, \beta)$ for the ${ }^{28} \mathrm{Si}^{28}{ }^{28} \mathrm{Si}$ system with $J=38$ and $K=0$.
Fig. 5 Molecular normal modes for the ${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ system for $J=38$. The quantum states are specified by ($n, n_{+}, n_{-}, K,\left(\nu, \pi_{\alpha}\right)$), where $n=0$ except for one level $(n=1, v=$ 0) displayed with dashed line.

Fig. 6 a) Butterfly configuration and motions of two constituent nuclei. b) Orientations of the angular-momentum vectors \boldsymbol{I}_{1} and \boldsymbol{I}_{2} due to the butterfly motion of a).
Fig. 7 Probability distributions of the ${ }^{28} \mathrm{Si}+{ }^{28} \mathrm{Si}$ and ${ }^{24} \mathrm{Mg}+{ }^{24} \mathrm{Mg}$ systems versus channel spin I.

19．HFB解の量子数射影法による原子核構造の解析

Exact Angular Momentum Projection based on Cranked HFB solution

Ken＇ichi Enami，Kosai Tanabe and Naotaka Yosinaga

Depariment of Physics，Saitama University，Urawa S98，Japara

Abstract

Exact angular momentum projection of cranked HFB solutions is carried out．it is reconfirmed from this calculation that cranked HFB solutions reproduce the intrinsic structure of deformed nucleus．The result also indicates that the energy correction from projection is important for further investigation of nuclear structure．

51．Introduction

It has been shown that superdeformed yrast band as well as \boldsymbol{s}－and s－bands for nuclei in $A=130$ region is reproduced by the Cranked Hartree－Fock－Bogoliubov（CHFB）approximation ${ }^{1,2)}$ ．However the self－consistent mean field approximation，such as CHFB approximation，violates various sym－ metries of the system．As a result，the nucleon number and angular momentum are no longer good quantum zumbers of the system．For further investigation，symmetry violation within mean field theory has to be restored by a projection method．We carry out exact three－dimensional angular momentum projection for triaxial CHFB solutions of ${ }^{132} \mathrm{Ce}$ ．For simplicity the nucleon number projection is not taken into account since it is not considered to be essential at high spins．

\＄2．Outline of projection method

The CHFB solution is selfconsistently determined from

$$
\begin{equation*}
\delta<\hat{H}^{\prime}>=\delta<\hat{H}-\lambda_{p} \hat{Z}-\lambda_{n} \hat{N}-\omega \hat{j}_{x}>=0, \tag{2.1}
\end{equation*}
$$

with three constraints

$$
\begin{equation*}
\left.\left\langle\hat{J}_{x}\right\rangle=\sqrt{I_{c}\left(I_{c}+1\right)},\langle\hat{Z}\rangle=Z_{c},<\hat{N}\right\rangle=N_{c}, \tag{2.2}
\end{equation*}
$$

where｜$>$ is the CHFB quasiparticle vacuum，or CHFB solution．
Angular Momentum Projection Operator is given by

$$
\begin{equation*}
\hat{P}_{M K}^{\prime}=\frac{2 I+1}{8 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin \beta \int_{0}^{2 \pi} d \gamma D_{M K}^{\prime} \mathcal{K}^{\bullet}(\alpha, \beta, \gamma) \hat{R}(\alpha, \beta, \gamma) \tag{2.3}
\end{equation*}
$$

where $\hat{R}(\alpha, \beta, \gamma)$ is rotation operator and $D_{M K}^{\prime}(\alpha, \beta, \gamma)$ is D -function. The deformed states determined from CHFB solutions are necessarily triaxial except for the solution with spin constraint $I_{c}=0$ so that we need to use the full rotation operator. Using projection operator, the wave function with good angular momentum is obtained from CHFB solution

$$
\begin{equation*}
\left|\Psi_{I M}>=\sum_{K} F_{K}^{J} \hat{P}_{M K}^{J}\right|> \tag{2.4}
\end{equation*}
$$

where the CHFB solutions $\left(I_{c} \neq 0\right)$ are no longer axially symmetric so that some K-values contribute to the surn. The coefficients $F_{K^{\prime}}^{\prime}$, are the solutions of the generalized eigenvalue equation

$$
\begin{equation*}
\sum_{K^{\prime}}\left\{<\hat{H} \hat{P}_{K^{\prime}}^{J}>-E_{I}<\hat{P}_{\boldsymbol{K} K^{\prime}}^{J}>\right\} F_{K^{\prime}}^{I}=0 . \tag{2.5}
\end{equation*}
$$

At the same time, the projected energy E_{I} is obtained from this eigenvalue equation. Frorn this expression we see that Hamiltonian \hat{H} is diagonalized in the space spanned by the state $\hat{P}_{K K^{\prime}}^{l} \mid>$. We have to calculate the terms in the Hamiltonian kernel

$$
\begin{array}{r}
\frac{\langle\hat{H} \hat{R}(\alpha, \beta, \gamma)\rangle}{\langle\hat{R}(\alpha, \beta, \gamma)\rangle}=H_{0}+\sum_{\mu \nu t}\left(H_{02}\right)_{\mu \nu} \frac{\left\langle\beta_{\mu} \beta_{\nu} \hat{R}(\alpha, \beta, \gamma)\right\rangle}{\langle\hat{R}(\alpha, \beta, \gamma)\rangle} \\
+\sum_{\mu \nu \beta \sigma}\left(H_{04}\right)_{\mu \nu \rho \sigma} \frac{\left\langle\beta_{\mu} \beta_{\nu} \beta_{\rho} \beta_{\sigma} \hat{R}(\alpha, \beta, \gamma)\right\rangle}{\langle\hat{R}(\alpha, \beta, \gamma)\rangle} \tag{2.6}
\end{array}
$$

where β_{μ} is quasiparticle anibilation operator. The first term is constant, CHFB energy, the second and third terms contain the remaining higer order correlations which are neglected in the mean field approximation, CHFB scheme.

§3. Numerical result

9. 1 Single-particle space and Model Hamitonian

In our calculation we take about 2.5 major shells for each kind of nucleons as the spherical singleparticle space outside the assumed core. This space matches the number of levels anticipated from the Nilsson diagram. All the single-particle levels taken into the calculation are listed in reference ${ }^{1)}$.

We take the Hauniltonian consisting of singleparticle energies and phenomenological two body residual interactions of the monopole-pairing(MP), quadrupole-pairing(QP) and quadrupolequadrupole($\mathbf{Q Q}$) forces. We use a set of parameters for these interactions through all the range of spin. The parameters of MP for both proton and neutron are about 10 percent smaller than the values which are appropriate for CHFB (without exchange terms) calculation ${ }^{1 \text { 1 }}$. In order to keep exactly the rotational symmetry of the Hamiltonian, we take into account the exchange terms of the above separable forces through botb the CHFB and the projection stage.

3.2 Energy Level

In the following calculation we replace (2.5) with

$$
\begin{equation*}
E_{I}^{\prime}=\frac{\left\langle\hat{H} \hat{P}_{C_{0}}\right\rangle}{\left\langle\hat{P}_{00}\right\rangle} \tag{3.1}
\end{equation*}
$$

so as to simplify the evaluation of the effect from projection. This approximation is considered meaningful if the CHFB solution bas fairly good axial symmetry. Under this approximation experimental yrast level is roughly described by only three CHFB solutions ($\mid>$ for $I_{c}=0,20,36$) and I in (3.1) is varied from 0 to 40 . This procedure is based on the fact that CHFB solution includes the large number of suprious spin components due to the strong rotational symmetry violation. These solutions express three characteristic bands corresponding to g-band $\left(I_{c}=0\right)$, s-band $\left(I_{c}=20\right)$ and superdeformed band ($I_{0}=36$). The solution $I_{c}=36$ is characterized by vanishing pairing gap for both protons and neutrons. We also calculate projected energy levels whose spin components are identical to those of constraint spin in CHFB. We call these levels projected CHFB here. In Fig.-1 theoretical levels are compared with experimentai ones. A good agreement especially in yrast level is seen between experimental and theoretical levels. This result also indicates that the intrinsic structure of ${ }^{132} \mathrm{Ce}$ is well described by CHFB solutions.

Fig. 1. Comparien of theoretical energy leyels with experimental ones

9.9 Energy Correction from Projection

It is interesting to check the energy correction from projection method. Here we consider roonopole-pairing force as an example. For this purpose we compare the binding energy of CHFB (with and without exchange term) with that of projected CHFB. In Fig.-2 these quantities are shown. We see that in the low spin region the difference between CHFB and projected CHFB is about 1 MeV . Hence it is considered that projection is essential in this region. In contrast to low
spin region the difference in the high spin region is small due to vanishing pairing gap. Accordingly projection is not essential as far as monopole-pairing force is concerned. We see that the difference in binding energy varies drastically at the region such as backbending region in which intrinsic structure of nucleus changes. We also calculate the difference in total binding energy between CHFB and projected CHFB and this feature is also the same in this case.

Fig- 2. Binding energy for MP interaction

84. Conclusion

The exact angular monmenturn projection of triaxial CHFB solution of ${ }^{132}$ Ce seems to work well along the yrast level. This result strongly demonstrates that nuclear structure of ${ }^{132} \mathrm{Ce}$ is already reproduced by the CHFB solutions. Accordingly we consider that the CHFB solutions are good candidates for the solutions from which good angular momoentum is projected out. This simplified method (without diagonalization of Hamiltonian) is not good enougb to reproduce more detailed character of nucleus such as moment of inertia. These shortcomings are expected to be improved by the diagonalization of Hamiltonian within the spaces of some K-quantum numbers and if neccesary some multi-quasiparticle states. Slnce the energy correction from projection correction is sensitive to structure change, we expect this correction is amplified at the structure change such as from normal to superdeformed state.

§5. Acknowledgements

We would like to express our gratitude to Riken where a part of this work has been done using the supercomputer VPP500.

1) K. Tamabe and K. SugawararTanaby: Prog. Theor. Phys. 88 (1990) 1148.
2) K. Tanabe and K. Sugawara-Tanabe: Phys Lett. B 259 (1991) 12.

20．${ }^{48} \mathrm{Cr}$ の高スピン状態

High Spin States of ${ }^{48} \mathrm{Cr}$

田中武志，岩沢和男 ${ }^{A}$ ，坂田文彦 ${ }^{B}$ ，丸秝表夫 ${ }^{C}$
素粧子原子核研究所，先波大物理A，茨坡大理 ${ }^{B}$ ，東京理科大理 ${ }^{C}$

1997年7月16日

 を変えて行くのか，と云う間題は，現代の物理学におい

找々は与えてくれるあのである。何故ならは平均場近似

 ああ。

古事が出来る。これがクシンキング模型と㭔ばれるもの てある。しかしながら，集団回庑冓教は，バンド交荎に間偍しているバックベンティィング瑅象の漛な場合には学 しい非悢形栍を示す。

 ませ求められているが价，このイラストバンドは $\mathbf{1 0}_{1}^{+}$
 いるめが知られでいる。嘢近，Caurier 等たよって敖模

Tol．Ene．
$[\mathrm{MeV}]$

 ある事を示職している。

このバンドの搆造変化をより群しく副べる为に，我か
 ンクトーハートリー・フォック（以下クテンクト HF）方程式及びクシンクト HFB 方桯式を解き，イラスト及び， ハックベンディング間保した3本の謜起 $\mathrm{HF}(\mathrm{B})$ バン トをなバンドターミネーション $[7,8,9]$ 䓗求めた。

図1及ど図2は示す両り，イラストバンド及び2p－2h

 の原因は㥀の全エネルギーは対する対相限力からの寄与 か，イラストハンドの $\left\{S_{x}\right\}=0$ の状意如ら $\left\{J_{x}\right\}=4$ 付近崇し加存在せず，それ以上期起工承ルギーの高い状㤨
 ストバンドのバックバンチィングか良く再現されている直を示している。これらの享加ら，イチストバンドゃ各
 いない事が分かる。

原子核多体問越の立㘯からこの間题か詨してアプロー

イラストバンドに詅いては，滑子及び中性子嫥の，最
あフェルミ面に近い（バリディ，シダネチャー）＝（ー，＋）

Δv,
 ［b］

 $\Delta J_{s}=\left(\left(\hat{f_{t}}\right)-\left(\hat{J}_{t}\right)^{2}\right)^{1 / 2}$ Cああ。

 ミ面に2番目に近い同しパリティとシグホキャーを揞っ

 を哃ぐる事たよって，イラストバンドのパックバンディ

 ルミ面に近い占有状驚からフェルミ面に2素目に゙近い非
回灰バンドの挰舞いを見ると，$\left\langle\jmath_{x}\right\rangle=10$ 付近の钼域は
 なる（医4）

この様な，クランキング槙型に赺なる，バックベン ディングを起こしているイラスト状䜿加らの劯起がンド

 3） 4 これは，Marshalek と Goodmanが自己無造羊だ
 Marshalek 違か計蕉結果と我々の計算結褁との阴にある

挜らきのどークを持うが，我ヶの矿算絠果ではその様な ビークは一切得られ交かった享である。もの理由は佊ら が計算している中直核のバックベンヂィンクと，${ }^{81} \mathrm{Cr}$ の

 れる。

肺起そせる事にようて作られる。園1，国2及び图ふを

 であると見做す事が出来呂事が分かる。また，これらの バンド住（ \hat{S}_{x} ）＝ 12 付近加らノ゚ンドターミキーションを起こす $\left\{f_{x}\right\}=14$ 迄バックベンディンダしている。

城て他のろつのバンドめバックベンデインジを起こして いる事が分かる。产た，圆2学見天と，この創城は 2p－2h

状照の一校子ルーシアンが考占有状歪の一䢂子ルーシア

磉もフェルミ西に近い占有状䡯と2番目にフェルミ面 に近い非占有狱撃との間の相互作用がこれらのパックく゚
 ている。

 なバックベンディングに奶する物五的な洞霊が得られる だあろう。

参考文就

［1］J．A．Cameron et al．Phys．Lett．B $\mathbf{3 8 7} 266$（1996）．
［2］E．Caurier et al．Phys．Rev，Lett． 78 2466（1995）．
［3］K．lwneawe，F．Sakata，Y．Hashimoto and J．Terasaki，Prog．Theor．Plysa，92， 1119 （1994）．

K．Iwesawa，F．Saketa，T．Tanaken Y．Hashimoto and T．Marumori，to be published in Progress of Particle and Nuciear Physics 38，（Elsevier Sci－ ence）．
（4）D．Gogny，Naclear Self－consistent Fields，edited by G．Riple and M．Porneuf， （Narth－Holland，Amsterdam，1973）p． $\mathbf{3 3 3}$ ．
［5］J．Decharge and D．Gogay，Phys．Rev．C 21， 1568 （1980）．
（6）M．Girod and B．Grammaticos，Phys．Rev．C 27， 2317 （1983）．

F7］A．Bohr and B．R．Mottelson，Phys．Scr．10A， 13 （1974）．
［8］A．Bohr，Varenne Lectures，69， 3 （1976）．
［9］T．Tanaka，F．Sakate，T．Marumori and K．Iwasawa， Phys．Rev．C 56，180（1997）．
［10ㅇ I．Hamamoto，Nucl．Phys．A．271， 15 （1976）．
［11］E．R．Marshalek and A．L．Goodman，Nucl．Phys． A294， 92 （1978）．

21．Monte Carlo Shell Modelによるpf核の統一的記述

UNIFIED DESCRIPTION OF PF－SHELL NUCLEI BY THE MONTE CARLO SHELL MODEL CALCULATIONS

水峙高浩a，大垠孝治 ${ }^{\text {a }}$ ，本間道堆 ${ }^{\text {b }}$

＂東京大举理学部物理学较室，b会津大学格合数理センター

Abstract

量子もンカルロ対角化（QMCD）法による敬掑型时算によって ${ }^{56} \mathrm{Ni}$ 核

1 はじめに

原子核綪造の分野に於ける究亟的な目的の一つに核力を基にした璣視的方法
 れてない原子核の棈造を予言することであるう。₹のためには，二段階の理謫的なステップがある。一つは，核力加ら殼模型空間での有奻相互作用を渻くこ とであり，もう一つは，その有効相互作用を用いて殻模型空間における核子の多体間眼を可能な限り正確に解くことである。前者は，タオ等か鐴木等によっ て微視的理踰が権筧されつつある。しかるに，後者の䧓題は最近までほとんど方法論の進展はなかった。確かに勀算棬の進歩とともた脕密対角化の適用範囲 は拡大してきたのであるか，そしてその発共［1］は確がに著しいものであった が，バレンス核子の作るヒルベルト空間の次元の組み合わせ的な增大の前では明らが交限界があった。この限界を越えるために，この発展著しい獖算栱の能力を活かした新しい方法跲で殻㷬型を解く試み［2，3，4］が昨今二，三のダルー ブによっで行われて来た。一つは，クーニン答による補助場量子モンテカルロ法を用いた㪍棋型［2］であるが，負符合間題たより䂥算適用可能性が著しく限
 る蛙力的な方法論ではあるが実祭の噯構造の計算には十分であるとはいえない。子れた対し，我々か提案した量子モンカルロ対角化（QMCD）法［4］による款模
 ルロ法と比輅した場合にも十分良い教度で解くことができることもわかったき な。方法辁の㧹細は参考文献［4］を参照していただくことにし，本報告では，方法活的には去年から用いている角運動五の新しい扱いたるいで陠単に述べ，最近行った計算結果としては ${ }^{58} \mathrm{Ni}$ 核にみられる $\mathrm{Z}=\mathrm{N}=28$ の閉㪍の硬度について述べる。特に $\mathrm{Z}=\mathrm{N}=28$ の開設の硬度は最近実験［5］が行われ，破れていること が示唆されているものであるが，対応さる殻模型姑算は，その次元が非常に大 きいために沎密対角化では不可能である。また，クーニン等の補助場量子モン テカルロ法を用いた钤䒨型では問教の硬度は研究てきない。このような状況の中て，今回，我々の方法論たよって初めて理論的に明らかんすることができた。

2 角運動量の扱い

敖摸型空間は，力学的に決まる空間とスビン，アインスピンの空間の直積で出来ている。颜模型の儆密対角化ではよく，スピン，アイソスビンを指定した
量子数まで指定した基底（Mスキーム）とランチョス法の性留を併用して叶算す ることが多い。一般にJスキームの計算では次元は減るが行列要素の計算が大麥なので大次元咕簣には適きない。

きて，我々の方法では，deformed Slater determinant を基底として用いる ので角遇動量の固有状態にするには射影演算子を用いる。一方，力学的に決ま る空間は主にストカスチックに扱い，その結果生成された基底による多体の工 ネルギーを評価して取捨造択する方法を取る。大雜把にいえば，我々の方法は このような棹組である。（参照［4］）

次の対称性のついて考えてみよう。アインスヒン対称性は，㹲横型のハミル
 ることによりアインスカラーの一体渔算子のみにより表せることを利用して简略化［2］できる。しかしなから，角運動亘に関しては数値的に射影演算子を用い た計算をするしかない。これまで原子核構造で知られていた方法では，intrinsic な最虺化をしたのちに角運動量射影をする方法（VBP）か，角運的量射影をした後に最䢙化する方法（VAP）が知られているが，マルチ基底で対角化する場合 は，前者では intrinsic な計算は意味をなきないし，後者では角罟堛量射影に伴 う三重棲分が数値計算上非常は困敬で実際の計算は行えない。これまでは，マ ル于基底の場合は波蚛開数を特殊なものに限るか，棟対标性を伩定することに よって啇単化した㖕算が行われてきた。

我々の方法は，教模型の固有状態を求めることを目指したものであり，波動間数の自由度を一切制䭆せずに計算する必要がある。し加しながら，そのまま マルチ基底のVAPをストカスチックに英現するのは数值計睢上不可能である。 それを解決するなぁに，致摸型空間を力学的は決まる空間とスヒン，アインス ビンの空間の稿に疑北的に分解することを考案した。実㢳には，力学的な空周 てサンブリングしマル于基底を決めるブロセスでは傃気冝子数だけ射影をして おこない，その花に得られた少数基底加ら角運䑤量射影による対角化を行うと いう前に述べた2つの方法の中間のような扱いを行うのである。その結果，そ れ以前たおこなった力学的なサンブリンダと角䢱動量のサンブリンクを区別し ない方法に比べ著しく浢算耕度が向上しな。図 1 た ${ }^{50} \mathrm{Mn}$ 核の例で計算渦程を示 す。 40 次元までは $M=5$ の M 射影でストカスチックサンフリングによって基底を生成し，更にこのように生成した基底をストカスチックにimprove した ものである。1基底目は殻模型空間でのタランクをしたハートリーフォック近俱の解のエネルギーに近いものである。そこから如何にエネルギーが下がるか が，マルチ基底の相関による勃果である。図をみるとストカスチックに决まる
 がわがる。しかるは，角運䡃量の期待値はこの時点ではあまり良くない。この 40 次元の基底で力学的効果の大半は考慮きれたと帊定し，次の段階として息

ら角䕗動量の宪全な回復を考える。それは，J射影による対角化でねこなう。こ のブロセスで角㯰動亚は完全に回復するとともに，回復に伴ない更に相䦎エネ ルギーを稼く。

角運動量のようにキネマチカルに知られた奶枌性は基底で考盧すると非常に たくさん必要とし，一つ一つの基底のエネルギーゲインは権めて小さいものと なるのでこの過程をストカスキックに行うには試算物理的にはいい方法とはい えない。一方，力学的な効果は，対称性を破った空間でら考慮することができ，系の性䍒や甚底の形にもよるが比較的少ない葉底で表現することができる場合 はおおい。このようにストカスチックな取扱いをおおよそ力学的に決まる空間 に集中させることが我々の姑萛手法の要である。

Proccess of the QMCD method

Figure 1：QMCD 故䈯の収束の様子
図1では，他の方法と比敏をしてはいないが，このような方法で，exactの エネルギーの知られた，${ }^{48} \mathrm{Cr}$ のレヘル構造を計算するとエネルギー固有値の赖対推が $100-200 \mathrm{KeV}$ 以内の糖度で侾算加可能である。また，exact の知られて いない場合，クーニン穅の補助場量子モンテカルロ法を用いた教櫒型の解と比較しでみると，彼らの見種もったエネルギーよりもしばしば低くなることが多 く，変分原理的な顴点からみれば，我々の方法の样の方が優れているといえる。 まむ，このような角邏動と力学的な姆果の扱いは，これまでぐ行われなかっ た蒌しい方法であり，般模型㐖算以外の核搌造の計算れも応用可能であると考 えられる。最後た，角運動量射影をおこなうマルま基底対角化は非㗬に並列化

に問いたものであり，容易にCPUの数ざけ計算速度を増すことが可能であり， このような計算は最近進歩が著しい超並列㖕算機ば向いているを指摘しておく。

$3{ }^{56} \mathrm{Ni}$ 核にみられる $\mathrm{Z}=\mathrm{N}=28$ の閉㪍の硬度

${ }^{56} \mathrm{Ni}$ 核は $\mathrm{Z}=\mathrm{N}=28$ の self－conjugate な核であり，ナイーフに考えると， $\mathrm{f}_{\frac{7}{2}}$ が完全に詰まり閉㪍になると考えられ，その閉变の硬度が絬題となっている。9 4年のPHYS．REV．LETT．において㱭告［5］それたように実験が最近行われ たものである。我々は ${ }^{56} \mathrm{Ni}$ 核の核横造を研究するために ${ }^{40} \mathrm{Ca}$ を開狡と考え，
 ているが，その次元の大きざから切断きれた架間で対角化がな岂れている。そ の結果とも比較する。

Figure 2：${ }^{56} \mathrm{Ni}$ のレべルの実験値とをt算值

この研究んまず必要となるの加 fp 教領域の核搆造をよく誈述する教模琹相互作用である。fp教䫀域の軽い核せは，躍密対角化が行えることからボベス等 ゃフラウン等によってある程度研究がなされている。前者はクオノブラウンた よる G －行列の方法で求められた相互作用（ KB ）$[7]$ を基に現象謗的に変更し， fp
權型を㤆定し現象編的な fitting を繰り返し同様によい相互作用（fpd6）［9］を作っ た。ます，我々は，これらの相互作用を基に，もともとのfitに使われてないfp敬の重い核の核摶造の計算を行った。例えば，${ }^{64} \mathrm{Ge}$ をみると，fpd6相互作用の

核を含吉広い能囲にわたりいい記述を与えるのでこの相互作用を用いて ${ }^{56} \mathrm{Ni}$ 核 の構造を考えることは相互作用の観点からみても意味があるといえる。

さて，図2に ${ }^{56} \mathrm{Ni}$ 核の権造をこの 2 つの相互作用，及び，切断された空周 での設摸型計算で単一粒子エネルギーを合わせ直した相互作用を使った研算結果を示した。中央に示したレべルは実験値である。左钢には，KB 相互作用を用 いた結果を示した。左加ら，KB 相互作用を切断された空間で対觕化した結果 ［6］，KB 相互作用の QMCD 法による結果，KB3 相互作用の QMCD 法による結果である。一見KB相互作用は切断された空聞では䍚さをうてはあるが，全空問で対角化すると变形しすぎるようである。KB 相互作用のこの性質は，${ }^{56} \mathrm{Ni}$以外の核でも指捕をれており，ホーベス運はそれを monopole 力等を尃入するこ とで改善し，KB3相互作用［8］を作った。₹れは，倣密対角化により fitに使わ れた fp 韧の軽い原子核に対しては非常に成功しているものである。しかしなが ら，QMCD 法で56Ni の場合学計算してゐると，あまりうまくいかないようであ る。また，Niより重い核にもあまりうまくいかないこともわ加った。次た右側 には，fpd6 相互作用の䊅果を示した。最も右は前述のPHYS．REV．LETT．$の$実験値［5］の解析で示されたフララン達の杸模型計算である。切断空間での栕模型計算を行ったために単一粒子エネルギーを俊正している。右から2番目は， その修正された fpd6 相互作用を QMCD 法て解いたものである。この結果から この場合，空閒の切断が適当でなかったことがわかる。次に右から3番目のレ ベルであるが，これはもともとの「pd6相互作用を QMCD 法によって解いた耛果である。この䊀果からもともとの fpd 相互作用は非带によく ${ }^{56} \mathrm{Ni}$ のレベル を再現していることがわがる。

次に， $\mathrm{Z}=\mathrm{N}=28$ の用敬の硬度を示す指相としてとして $\mathrm{B}(E 2)$ と $\left(f_{7}\right)^{16}$ と のオーバーラッブを示そう。 $0^{+} \rightarrow 2^{+}$の B（E2）は，真験で示されているように ${ }^{40} \mathrm{Ca}$ などの閣毅の原子核に比べて大きい。我々の粘果では，B（E2； $\left.0^{+} \rightarrow 2^{+}\right)$は $6 \times 10^{2} e^{2} f m^{4}$ になった。これは実酫值［5］と合っている。計算に用いた effective charge はfpd6 相互作用［9］でよく用いられるあのである。より直接的に，開殼 の硬度を見るのは，QMCD 法で得られた 0_{1}^{+}の波動間数と $\left(f_{\frac{1}{2}}\right)^{16}$ という配位と のオーバーラッブをとってみることであるう。これ杜，我かの幛算では， 53% で あった。 ${ }^{40} \mathrm{Ca}$ の閉敨は 80% 程度良いことか知られているのは此べると非常に破 れていることがわかる。これようた QMCD 法では亶接波的閉数を得ることが出来るのでこのような群細な研究も可能であることも再度指掄しておきない。

4 まとめと今後の展立

本研究は，被模型を数値的ね゙解く新しい方法の研究であり，2年前に始めため のである。この 2 年間の方法詥の本䚂的な改良と本格的な並列計算機の利用で
 れた ${ }^{56} \mathrm{Ni}$ 核にみられる $\mathrm{Z}=\mathrm{N}=28$ の開毅の硬度について龍模型計算の立場加ら解积を示し，${ }^{40} \mathrm{Ca}$ の門敦に此べるとかなり破れていることを明ら加にすること ができた。しかしながら，本研究は，教模型の数値的解法の研究の面のみを劳力的ね行ったものであり，これだけでは未知の核棒造を予言できない。椥梘的

に校力加ら導かれた有効相互作用が必要である。部分的には現象険的にも研究 できると孝えられるが，有効相互作用の研究ダルーブと連係して，当初の目的 である核力をインプットにした䣄模型計頶を完成させたいと考えている。この ような方法て，${ }^{32} \mathrm{Mg}$ などの中性子過桠核の研究や $A \sim 100$ 销堿の $\mathrm{Z}=\mathrm{N}$ 核など の構造の研究を隼めている。また，本款模型鄙第に用いた方法酸は㪍模型以外
 てある量子ドットにも適用できると考えていて物性のグルーブと覌力した研究 も進めている。

References

［1］E．Caurier and A．P．Zuker，A．Poves and G．Martinez－Pinedo，Phys．Rev． C50， 225 （1994）．
［2］S．E．Koonin，D．J．Dean，and K．Langanke，Phys．Repts．278， 1 （1997）．； W．E．Ormand，D．J．Dean，C．W．Johnson，G．H．Lang and S．E．Koonin， Phys．Rev．C49， 1422 （1994）．；K．Langanke，D．J．Dean，P．B．Radha，Y． Alhassid，and S．E．Koonin，Phys．Rev．C52， 718 （1995）．
［3］M．Horoi，B．A．Brown and V．Zelevinsky，Phys．Rev．C50，R2274（1994）．
［4］M．Honma，T．Mizusaki and T．Otsuka，Plys．Rev．Lett．75， 1284 （1995）； T．Mizusaki，M．Honma and T．Otsnka，Phys．Rev．C53， 2786 （1996）．； M．Honma，T．Mizusaki and T．Otsuka，Phys．Rev．Lett．77， 3315 （1996）
［5］G．Kraus，et al．Phys．Rev．Lett．73， 1773 （1994）
［6］H．Nakada，T．Sebe and T．Otsuka，Nucl．Phys．A571， 467 （1994）．
［7］T．T．S．Kuo and G．E．Brown，Nucl．Phys．A114， 241 （1968）．
［8］A．Poves and A．Zuker，Phys．Rep．70， 235 （1981）．
［9］W．A．Richter，M．G．van der Merwe，R．E．Julies and B．A．Brown，Nucl． Phys．A523 325 （1991）．

22． $\mathrm{Z}=\mathrm{N}$ 陽子過剩核におけるエキゾチック洋梨変形

Exotic Octupole Deformation in Proton－Rich $Z=N$ Nuclei

S．Takami，K．Yabana and M．Matsuo＊
Graduate School of Science and Technology，Niigata Univessity，Niigata 950－21
－Yukawa Institute for Theoretical Physics，Kyoto University，Kyoto 606

Abstract

We study static non－axial octupole deformations in proton－rich $Z=N$ nuclei， ${ }^{64} \mathrm{Ge},{ }^{68} \mathrm{Se},{ }^{72} \mathrm{Kr},{ }^{78} \mathrm{Sr},{ }^{80} \mathrm{Zr}$ and ${ }^{84} \mathrm{Mo}$ ，by using the Skyrme Hartree－Fock plus BCS method with no restrictions on the nuclear shape．The calculation predicts that the oblate ground state in ${ }^{68}$ Se is extremely soft for the Y_{33} triangular deformation，and that in ${ }^{80} \mathrm{Zr}$ the low－lying local minimum state coexisting with the prolate ground state has the Y_{32} tetrahedral deformation．

Recently，the nuclear deformations violating the reflection symmetries have been at－ tracted much experimental and theoretical attentions［1］．The experimental indications for a static octupole deformation with axial symmetry have been found in light lanthanide and actinide mass regions，such as local lowering of the excitation energies of the first 3^{-} state［2］and parity doublet bands［3］．Such static octupole deformation is considered to be caused by the shell effect，that is，$\Delta j=3$ coupling between the orbitals in the same major shell．Strutinsky－type potential－energy calculation assuming the axial symmetry predicts that the energy gain caused by the static octupole deformation amounts to several han－ dred $\mathrm{KeV}[4,8]$ ．It is also of great interest to see whether exotic octupole deformations violating both the reflection and axial symmetries realize in heavier systems．However， only a few studies including the non－axially symmetric octupole deformation degree of freedorn have been performed for the ground state［5，6］．

For nuclei in a $A \sim 80$ region，the static octupole deformation would also be ex－ pected because of octupole correlation between the $2 p_{3 / 2}$ and $1 g_{9 / 2}$ orbitals in the major pf g－shell［7］．Especially in proton－rich $Z=N$ nuclei，both proton and neutron config－ urations cooperatively operate to develop the static octupole deformation．Strutinsky－ type potential－energy calculations assuming axial symmetry predict that octupole driving forces is weak in comparison with those in light actinide and lantanide mass regions［8］． In the present talk，we present the result that the refection asymmetric shapes violating axial symmetry are more favored in proton－rich $Z=N$ nuclei in this mass region than that with axial symmetry．

For even－even nuclei in a wide mass region，the Skyrme Fartree－Fock（SHF）method succeeds in describing the global features of the ground state．The usage of a three－ dimensional（3D）Cartesian mesh［9］without any assumptions on the nuclear shape allows us to deal with any multipole deofrmation．We have applied this approach to proton－rich $Z=N$ nuclei，${ }^{64} \mathrm{Ge},{ }^{68} \mathrm{Se},{ }^{72} \mathrm{Kr},{ }^{75} \mathrm{Sr},{ }^{80} \mathrm{Zr}$ and ${ }^{84} \mathrm{Mo}$ ．To reduce a numerical calculation time，we have used the mesh within spherical box．The spherical box size and the length of the 3D mesh are set to 13 fm and 1 fm ，respectively．By imposing the constraints which diagonalizes the mass inertia tensor，we shoose the axis so that the principal inertia axes coincide with x, y and z axes in the 3D mesh．The Skyrme force SIII is used as effective

	Oblate		Spherical	Prolate	
${ }^{54} \mathrm{Ge}$		$\begin{gathered} \beta, \gamma=0.27,25^{\circ} \\ \beta_{3}=\alpha_{33}=0.01 \end{gathered}$		$\begin{gathered} 0 . \overline{62} \\ \beta, 7=0.24,6^{\circ} \\ \beta_{3}=0.00 \end{gathered}$	$\begin{aligned} & 4.00 \\ & \beta, \gamma=0.38,0^{\alpha} \\ & \beta_{3}=0.00 \end{aligned}$
${ }^{88} \mathrm{Se}$		$\begin{aligned} & \beta, \gamma=0.25,60^{\circ} \\ & \beta_{3}=\alpha_{33}=0.15 \end{aligned}$		$\begin{gathered} 0.32 \\ \beta, \gamma=0.25,0^{\circ} \\ \beta_{3}=\alpha_{31}=0.06 \end{gathered}$	$\begin{gathered} 2.42 \\ \beta_{1} \gamma=0.40,18^{\circ} \\ \beta_{3}=\alpha_{31}=0.02 \end{gathered}$
${ }^{72} \mathrm{Kr}$	$\begin{gathered} \text { g.s. } \\ \beta_{+} \gamma=0.34,60^{\circ} \\ \beta_{3}=0.00 \end{gathered}$	$\begin{gathered} 1.12 \\ \beta, \gamma=0.27,58^{\circ} \\ \beta_{3}=\alpha_{33}=0.05 \end{gathered}$		$\begin{gathered} 1.74 \\ \beta_{1} \gamma=0.42,1^{10} \\ \beta_{3}=\alpha_{31}=0.03 \end{gathered}$	
${ }^{76} \mathrm{Sr}$		$\begin{gathered} 2.58 \\ \beta_{1} \gamma=0.13,60^{\circ} \\ \beta_{3}=\alpha_{33}=0.16 \end{gathered}$	$\begin{gathered} 3.25 \\ \beta_{1} \gamma=0.02,0^{\circ} \\ \beta_{3}=\alpha_{32}=0.12 \end{gathered}$		$\begin{gathered} \text { g.s. } \\ \beta, \gamma=0.49,0^{\circ} \\ \beta_{3}=0.00 \end{gathered}$
${ }^{\text {80 }} \mathrm{Zr}$		$\begin{gathered} 1.58 \\ \beta_{1}=0.20,59^{\circ} \\ \beta_{3}=\alpha_{32}=0.04 \end{gathered}$	$\begin{gathered} 0.90 \\ \beta_{1} \gamma=0.00,0^{\circ} \\ \beta_{3}=\alpha_{32}=0.24 \\ \hline \end{gathered}$		$\begin{gathered} \text { g.s. } \\ \beta, \gamma=0.50,0^{\circ} \\ \beta_{3}=0.00 \end{gathered}$
${ }^{84}$ Mo		$\begin{gathered} \text { g.s. } \\ \beta, \gamma=0.20,56^{\circ} \\ \beta_{9}=0.00 \end{gathered}$	$\begin{gathered} 0.24 \\ \beta_{1} \gamma=0.05,60^{\circ} \\ \beta_{9}=\alpha_{30}=0.13 \end{gathered}$		$\begin{gathered} 0 . \overline{85} \\ \beta_{,}, \gamma=0.64,0^{\circ} \\ \beta_{3}=0.00 \end{gathered}$

Table 1: The ground states and the local minimum states obtained in the present SHF +BCS calculation. The energy difference (MeV) between the ground state and the local minimum state (the ground state is refered as g.s), the qudrupole and octupole deformatoin parameters and the dominant symmetry indicated by the octupole deformation parameters are shown. Each solutions are classified into the three groups, oblate, spherical and prolate by their quadrupole deformation parameter, except for the ground state of ${ }^{84} \mathrm{Ge}$. The ground state of ${ }^{\mathrm{E4}} \mathrm{Ge}$ which shows the triaxial deformation is classified into the group oblate.
interaction. As for the pairing strength of proton, we use the same parameterization $G_{p}=16.5 /(11+Z) \mathrm{MeV}$ as in Ref. [9] together with the same truncation of the singleparticle space. The neutron pairing strength is taken the same as $G_{p}[10]$.

To characterize deformation of the obtained solutions, we have calculated the mass multipole moments,

$$
\begin{equation*}
\alpha_{l m} \equiv \frac{4 \pi\langle\Phi| \sum_{i}^{A} r_{i}^{!} X_{l m}(i)|\Phi\rangle}{3 A R^{l}},(m=-l, \cdots, l) \tag{1}
\end{equation*}
$$

where A is the number of nucleon and $R=1.2 A^{1 / 3}$ fm. Here $X_{i m}$ is a real basis of the spherical harmonics,

$$
\begin{align*}
X_{i 0} & =Y_{i 0} \\
X_{i|m|} & =\frac{1}{\sqrt{2}}\left(Y_{i-|m|}+Y_{t-|m|}^{*}\right) \\
X_{i-|m|} & =\frac{-i}{\sqrt{2}}\left(Y_{i|m|}-Y_{i|m|}^{*}\right)_{i} \tag{2}
\end{align*}
$$

where the quantization axis is chosen as the largest and smallest principal inertia axes
for prolate and oblate solutions, respectively. To represent magnitude of the octupole deformation, we define

$$
\begin{equation*}
\beta_{3} \equiv\left(\sum_{m=-3}^{3} \alpha_{3 m}^{2}\right)^{\frac{1}{2}} . \tag{3}
\end{equation*}
$$

For nuclei around $A \sim 80$, existence of three local energy minimum states showing oblate, nealy spherical and prolate deformations is reported in the SHF +BCS calculation by Tajima et. al.[11]. To search for all minimum states close energetically to the ground state, we generate initial states by solving a deformed Wood-Saxon potential model. The five initial states with different quadrupole deformations are used : (1) $\beta=0.7, \gamma=60^{\circ}$, (2) $\beta=0.3, \gamma=60^{\circ}$, (3) $\beta=0.0, \gamma=0^{\circ}$, (4) $\beta=0.3, \gamma=0^{\circ}$, (5) $\beta=0.7, \gamma=0^{\circ}$. For all initial configurations, the distortion of the octupole deformation, $\alpha_{3 m}=0.1$ ($\mathrm{m}=$ $-3, \cdots, 3$), is added.

In table 1, we summarize the calculated binding energies, quadrupole and octupole deformation parameters of the obtained solutions. The solutions are classified into three groups, oblate, spherical and prolate, by their quadrupole deformations, where we do not denote states higher than the third minimum. The octupole deformations violationg the axial symmetry are found in the ground state or local minimum states in all nuclei, except ${ }^{64} \mathrm{Ge}$ (where the obtained $\beta_{3}=0.01$ is not sizable). Among them, the ${ }^{68} \mathrm{Se}$ is noticeable since it has the large octupole deformation $\left(\beta_{3}=0.15\right)$ in the ground state. As shown in the density distribution plotted in Fig.1(a), it has Y_{33} triangular distortion superposed on the oblate quadrupole deformation, which obeys the $D_{3 h}$ symmetry seen in the regular triangular prism shape. The potential energy surface is quite flat up to $\alpha_{33} \sim 0.2$ as shown in Fig.2. It should be noted that octupole instability emerges only for the α_{33} direction.

Instability of the oblate states toward the triangular Y_{33} deformation can also be related to the single-particle shell structure formed in the oblate deformed potential. Figure 4 shows the neutron Nilsson diagram as a function of quadrupole deformation obtained in the constrained SHF +BCS method, in which axial and refection symmetries are imposed. In the oblate configuration of ${ }^{68} \mathrm{Se}$, the $N, Z=34 \mathrm{Fermi}$ surfaces are located between the positive parity orbitals with $\Omega=9 / 2,7 / 2, \ldots, 1 / 2$ stemming from the $19_{9 / 2}$ and the negative parity orbitals with $\Omega=3 / 2,1 / 2$ arising from the $2 p_{3 / 2}$ (those just below the Fermi surface, See Fig.4). Among the possible couplings associated with the octupole deformations, the $\Delta \Omega=3$ coupling between the positive parity $\Omega=9 / 2$ and negative parity $\Omega=3 / 2$ orbitals, and also the one between the positive parity $\Omega=7 / 2$ and negative parity $\Omega=1 / 2$ orbitals have the smallest energy difference, and give enhanced softness toward the triangular Y_{33} deformation.

Among the solutions showing the octupole deformation, the second minimum state of ${ }^{80} \mathrm{Zr}$ shows the largest octupole deformation of $\beta_{3}=\alpha_{32}=0.24$ without having a quadrupole deformation. The density profile of this solution shown in Fig. 1 (b) indicates a tetrahedral deformation, which violates the both reflection and axial symmetries, but obeys the symmetry of the point group T_{d}. Figure 3 shows the potential energy surfaces of ${ }^{80} \mathrm{Zr}$ with respect to the $\alpha_{30}, \alpha_{31}, \alpha_{32}$ and α_{33} deformations. The potential energy surface of the α_{32} deformation has the minimum point at $\alpha_{32}=0.24$ which corresponds to the calculated lowest minimum, and the energy gain measured from the spherical solution is as large as 0.71 MeV . Octupole instability towards the α_{32} direction (the tetrahedral
deformation) is quite contrasting to the other types $\left(\alpha_{3 m}(|m| \neq 2)\right.$) of the octupole deformations.

Instability of the spherical configuration at $Z=N=40$ for the tetrabedral deformation can be ascribed to the shell effect formed in the potential having the T_{d} symmetry. In Fig. 3 (b), we display the neutron single particle energies as a function of the tetrahedral deformation parameter α_{32}. As developing the tetrahedral α_{32} deformation of ${ }^{80} \mathrm{Zr}$, the orbitals stemming from $2 p_{3 / 2}$ and $2 p_{1 / 2}$ decrease in energy and those stemming from $1 g_{9 / 2}$ increase with holding high degeneracy of orbitals. The sub-shell gap at nucleon number 40 enhanced by addition of α_{32} distortion field stabilizes the strongly tetrahedral deformed solution. It is known that high degeneracy of irreducible representation of the T_{d} symmetry tends to produce a significant bunch in the single particle level spectrum as has been demonstrated for electrons in a metallic cluster potential by Hamamoto et. al. [12, 6]. This tendency exists in nuclear potential with spin-orbit force. Appearance of the tetrahedral deformation due to similar shell effect will not be confined in this neutron/proton number as discussed by Li and Dudek for light actinide isotopes[5]. It should be mentioned that the measured excitation energies of the fist 3^{-}levels in Ge and Se isotopes have the minimum points at $N=40[2]$, which may be a fingerprint of octupole instability.

References

[1] P. A. Butler and W. Nazarewicz, Rew. Mod. Phys. 68(1996)349.
[2] P. D. Cottle and D. A. Bromley, Phys. Lett. B182(1986)129. N. V. Zamfir, R. F. Casten and P. Von Brentano, Phys. Lett. B226(1989)11.
[3] J. Fernande-Niello, H. Puchta, F. Riess and W. Trautmann, Nucl. Phys. A391(1982)221. D. Ward, et. al. Nucl. Phys. A406(1983)591. P. Schüler, et. al., Phys. Lett. B174(1986)241. W. R. Phillips, et. aL., Phys. Rev. Lett. 57(1986)3257.
[4] G. A. Leander, et. al., Nucl. Phys. A388(1982)452.
[5] X. Li and J. Dudek, Phys. Rev. C94(1994)R1250. J. Skalski, P. -H. Heenen, P. Bonche, H. Flocard and J. Meyer, Nucl. Phys. A551(1993)109.
[6] F. Frisk, I. Hamamoto and F. R. May, Phys. Scr. 50(1994)628.
[7] W. Nazarewicz, et. al., Nucl. Phys. A429(1984)269.
[8] W. Nazarewicz, Nucl. Phys. A520(1990)333c.
[9] P. Bonche, et. al., Nucl. Phys. A443(1985)39.
[10] P.-H.Heenen, J.Skalski, P. Bonche, and H. Flocard, Phys. Rev. C50(1994)802.
[11] N. Tajima, S. Takahara and N. Onishi, Nucl. Phys. A603(1996)23.
[12] I. Hamamoto, B. Mottelson, H. Xie and X. Z. Zhang, Z. Phys. D - Atoms, Molecules and Clusters 21(1991)163.

Figure 1: Density distributions of proton in the $x y, y z$ and $z x$ planes where x, y and z axes represent the principal inertia axes. (a) and (b) show those of the ground state of ${ }^{68} \mathrm{Se}$ and the second minimum state of ${ }^{80} \mathrm{Zr}$, respectively.

Figure 2: Potential energy surface with respect to the different types of octupole deformations, calculated for the oblate ground state of ${ }^{88} \mathrm{Se}$. The energy is measured in relative to the reflection symmetric solution. The quadrupole deformations are set to $\beta=0.25, \gamma=60^{\circ}$.

Figure 3: (a) The potential energy surfaces of ${ }^{80} \mathrm{Zr}$ with respect to the different types of the octupole deformations, where the energy is measured in relative to the spherical solution. The potential energy is calculated as a function of $\alpha_{3 m}(m=0,1,2,3)$ by imposing the constraints of $\beta=0, \gamma=0^{\circ}$ and $\alpha_{3 \nu}=0(\nu \neq m)$.(b) The single particle energy of neutron as a function of the tetrahedral α_{32} deformation.

Figure 4: The neutron single-particle levels for ${ }^{80} \mathrm{Zr}$ as a function of the quadrupole deformation parameter β_{2} calculated with the quadrupole constraint and the axial and reflection symmetries. For each orbitals, we put the value of Ω, the projection of the angular momentum along the symmetry axis. The arrows indicate the $\Delta \Omega=3$ coupling associated with the triangular Y_{33} deformation as discussed in the text.

23． $\mathrm{A} \sim 60$ 頜域核の高スピン状態の構造

Structure of high－spin states in $A \sim 60$ region

H．Nakada ${ }^{2}$ ，K．Furutaka ${ }^{2}$ ，Y．Hatsukawa ${ }^{2}$ ，T．Hayakawa ${ }^{2}$ ，M．Matsuda ${ }^{2}$ ，T． Ishii 2 ， M．Oshima ${ }^{2}$ ，M．Kidera ${ }^{3}$ ，S．Mitarai ${ }^{3}$ ，T．Komatsubara ${ }^{4}$ ，K．Furuno ${ }^{4}$ ，H．Kusakari ${ }^{1}$ and M．Sugawara ${ }^{5}$

${ }^{1}$ Chiba Univ．，${ }^{2}$ JAERI，${ }^{3}$ Kyushu Univ．，${ }^{4}$ Tsukuba Univ．，${ }^{5}$ Chiba Inst．of Tech．

The nuclei in the $A \sim 60$ region is useful in investigating global nature of nuclear quadrupole collective motion．We have studied the structure of the proton－rich Cu and Zn nuclei by experiments and shell－model calculations，focusing on the role of the unique－parity orbit $0 g_{g / 2}$ in high－spin（ $J \gtrsim 10$ ）states．
The ${ }^{61,69} \mathrm{Cu}$ and ${ }^{61-64} \mathrm{Zn}$ nuclei are produced by the ${ }^{40} \mathrm{Ca}+{ }^{28} \mathrm{Si}$ reaction．The Ca target is sandwiched with the Au layers and irradiated by the $120 \mathrm{MeV} \mathrm{Si}_{\mathrm{i}}$ beam from the tandem accelerator at JAERI．γ－rays have been detected by the particle－ $\gamma-\gamma$ coincidence measurement，whose array［1］is composed of 10 Ge detectors with BGO suppressors（for γ^{\prime}＇s）and a Si－ball（for charged particles）．The $\gamma-\gamma$ events of $\sim 10^{8}$ have been accumulated．As an example，the $\gamma-\mathrm{ray}$ spectrum of ${ }^{61} \mathrm{Cu}$ is shown in Fig．1．The DCO ratio analysis has been made to derive multipolarities of the γ－rays；we take the ratio of the simultaneous intensity of γ_{1} at $\theta=32^{\circ}$ and γ_{2} at 90° relative to that of γ_{1} at $\theta=90^{\circ}$ and γ_{2} at 32° ．This ratio tells us whether γ_{2} is dipole（ $E 1 / M 1$ ）or quadrupole（ $E 2$ ），if we know the multipolarity of γ_{1} ．Thereby spin and／or parities of yrast states can be indicated．

Figure 1：γ－ray spectrum of ${ }^{61} \mathrm{Cu}$ ．
A shell－model calculation is also carried out for the $\mathrm{Cu}-\mathrm{Zn}$ nuclet，by using the code VECSSE［2］．We assume the $k \leq 3$ model space of $\left(0 f_{5 / 2} l p_{3 / 2} l p_{1 / 2}\right)^{A-56-k}\left(0 g_{g_{j / 2}}\right)^{k}$ ， on top of the ${ }^{56} \mathrm{Ni}$ inert core．The effective hamiltonian is fixed from the data around
${ }^{56} \mathrm{Ni}$: the single-particle energies are taken from the ${ }^{57} \mathrm{Ni}$ data a_{4} while the residual two-body interaction is modified, based on the folded-diagram calculation[3], with respective overall factors for the $T=1$ and $T=0$ matrix elennents including $\varphi_{9 / 2}$, so as to reproduce $E_{ \pm}\left(3^{-}\right)$of ${ }^{58} \mathrm{Ni}$ and $E_{x}\left(9 / 2^{+}\right)$of ${ }^{59} \mathrm{Cu}$. Note that the isospin symmetry is maintasned in this calculation. As will be shown below, both the positive- and negative-parity levels are well reproduced.
The experimental level scheme of ${ }^{62,64} \mathrm{Zn}$ is depicted in Fig. 2 (see also Ref [4]). As well as new levels are identified, spin-parities are suggested for some of them. The present J^{P} assignments are consistent with those of the previous works[5]. In ${ }^{64} \mathrm{Zn}$, we have found that the previously reported $1316 \mathrm{keV} \gamma$-ray is a doublet; $4_{1}^{+} \rightarrow 2_{1}^{+}$ and $9_{1}^{-} \rightarrow 7_{1}^{-}$. Although these two γ-rays are not resolved in energy, the 808 keV $\left(2_{2}^{+} \rightarrow 2_{1}^{+}\right)$and $937 \mathrm{keV}\left(4_{2}^{+} \rightarrow 2_{2}^{+}\right)$peaks emerge when we gate the high-energy portion of the 1315 keV peak. There may be a room to reconsider the previous analysis of $J \geq 7$ states without noticing the doublet[6]. By taking the doublet into account, we observe a similarity in the level scheme between ${ }^{62} \mathrm{Zn}$ and ${ }^{64} \mathrm{Zn}$. For instance, there occurs a parity-change in the yrast sequence at $J=7$ for both nuclei.

Figure 2: Level scheme of ${ }^{62,84} \mathrm{Zn}$.

The shell-model results are compared with the data for the yrast states in Fig. 3.

The solid points indicate the observed yrast levels, while the lines show calculated levels dominated by each of the $\left(0 g_{g / 2}\right)^{k}(k=0,1,2,3)$ configurations. Even (odd) k confgurations have positive-parity (negative-parity). It is noted that, according to the calculation, the coupling is weak among the different k configurations. An important role of the $0 g_{0 / 2}$ orbit is clear now. It is remarked that crossing of different k 's occurs in Fig. 3. Since these nuclei are nearly spherical, (in low-spin region) seniority comes larger as J increases. On the other hand, high-spin states can be produced with relatively low seniority if a nucleon is excited to $g_{9 / 2}$, at the cost of the single-particle energy. In competition to the loss of the pairing correlation, this configuration becomes lower at a certain spin; $J=7$ in ${ }^{62} \mathrm{Zn}$ and ${ }^{64} \mathrm{Zn}$. This parity-change is reproduced by the calculation.

Figure 3: Excitation energies of ${ }^{62,64} \mathrm{Zn}$ as a function of J.
The above parity-change mechanism may remind us of the band-crossing in heavier rotational nuclei. Whereas the unique-parity orbit plays a similar role, contribution of the pairing correlation seems different. In low-spin region of the rotational nuclei, J grows because of the rotation, not breaking the pairing. High spin can be composed if we have an alignment of 2-quasiparticles in the unique-parity orbit, at the cost of the pairing correlation. It is noted that the single-particle energy of the unique-parity orbit is not so significant in deformed even-even nuclei, and the alignment does not invert the parity. Therefore the parity-change in yrast sequence of even-even nuclei may be characteristic to spherical or nearly spherical nuclei.

Another parity change in the yrast sequence is predicted around $J=14$ for ${ }^{62} \mathrm{Zn}$ and $J=12$ for ${ }^{64} \mathrm{Zn}$. Though such parity change has not been confirmed in the present experiment, it will be an interesting subject in the near future.

We next turn to ${ }^{61,63} \mathrm{Cu}$. The level scheme of ${ }^{61} \mathrm{Cu}$ obtained in the current experiment is presented in Fig. 4 (see also Ref. [7]). Plenty of γ-rays have newly been observed. J^{P} and energies shown with italics are newly assigned ones. The yrast levels are compared with the shell-model results in Fig. 5, and the good agreement is established. A remarkable point in ${ }^{61} \mathrm{Cu}$ is that most γ-ray intensities concentrates at the $17 / 2_{1}^{+}$level. With assistance of the shell-model calculation, this γ-ray concentration is accounted for as follows. The yrast $17 / 2^{+}$state is dominated by the stretched 3-quasiparticle configuration of $\left(\pi 1 p_{3 / 2}\right)\left(\nu 0 f_{5 / 2} 0 g_{g / 2}\right)$. This configuration is stabilized by the two-body attractive force for ($\left.1 p_{3 / 2} 0 g_{9 / 2}\right)_{J_{=6, T}=0}$ as well as for $\left(0 f_{5 / 2} 0 g_{9 / 2}\right)_{J=T, T=1}$. On the other hand the lowest $19 / 2^{+}$and $21 / 2^{+}$states consist mainly of 5-quasiparticles. Thus the $17 / 2_{1}^{+}$state is relatively stable, and is favored in the sequential γ-decays because of large E_{γ} 's. This mechanism is very similar to some isomers. Though the data is not so abundant, ${ }^{63} \mathrm{Cu}$ seems to share some features with ${ }^{61} \mathrm{Cu}$. According to the calculation, $17 / 2_{1}^{+}$is relatively stable by the same stretched 3 -quasiparticle configuration. Though not confirmed, second paritychange in the yrast sequence is predicted around $J=23 / 2$ both for ${ }^{61} \mathrm{Cu}$ and ${ }^{63} \mathrm{Cu}$.

Figure 4: Level scheme of ${ }^{61} \mathrm{Cu}$.
Whereas several γ-rays are newly observed also in ${ }^{61,63} \mathrm{Zn}$, their intensities are not sufficient for the DCO analysis. Despite the prediction, not a single parity-change has been established.

In summary, high-spin states in the proton-rich $\mathrm{Cu}-\mathrm{Zn}$ nuclei are investigated by the experiments at JAERI. New levels and γ-rays are identified by the particle- γ γ coincidence, and J^{P} assignments are made via the DCO ratio analysis. Yrast sequences are observed up to $J \sim 18$ for ${ }^{62} \mathrm{Zn}$, and ${ }^{64} \mathrm{Zn}, J \sim 27 / 2$ for ${ }^{61} \mathrm{Cu}$ and $J \sim 23 / 2$ for ${ }^{63} \mathrm{Cu}$. Though we cannot settle new J^{P} values for ${ }^{61,63} \mathrm{Zn}$, their yrast sequence is also extended. In ${ }^{64} \mathrm{Zn}$, a doublet of γ-rays is discovered at 1315 keV , clarifying the similarity in the level scheme between ${ }^{62} \mathrm{Zn}$ and ${ }^{64} \mathrm{Zn}$. We reproduce

Figure 5: Excitation energies of ${ }^{61} \mathrm{Cu}$ as a function of J.
the yrast levels by a shell-model calculation, by which structure of the high-spin states is further studied. A parity change in the yrast sequence is established, in which the unique-parity orbit $0 g_{0 / 2}$ plays an essential role; one nucleon excitation to $g_{9 / 2}$ gains high angular momenturn with low seniority, at the cost of the singleparticle energy. Second parity-change is also suggested by the calculation. Such parity change seems characteristic to spherical or nearly spberical nuclei. In ${ }^{61} \mathrm{Cu}$, concentration of the γ-ray intensity is observed. This happens because a stretched 3-quasiparticle configuration including $0 g_{9 / 2}$ is celatively stable, similarly to some isomers. Thus, by studying the structure of the high-spin states of the $A \sim 60$ nuclei, we have clarified the role of unique-parity orbit in high-spin states, which may be generic to spherical and nearly spherical nuclei.

References

[1] M. Oshima et al, to be published in Nucl. Instrum. Method Phys. Res. (1997).
[2] T. Sebe et al., VECSSE, Program library of Computer Center, University of Tokyo (1994).
[3] T.T.S. Kuo, private communication.
[4] K. Furutaka et al., Z. Phys. A358(1997)279.
[5] J.F. Bruandet et al., Z. Phys. A279(1976)69; L. Mulligan et al., Phys. Rev, C19(1979) 1295 ; D.N. Simister et al., J. Phys. (London) G6(1980)81; N.J. Ward et al., J. Phys. (London) G7(1981)815.
[6] B. Crowell et al., Phys. Rev. C50(1994)1321.
[7] Y. Hatsukawa et al., Z. Phys. A, in press.

24． Ni 領域の中性子過剰核の核構造

Isomer－scope

原研 石井哲朗

中性子過絯の高スピン状憼は，これまでほとんと研究されていない。これは，中性子崌制核を生成する際に多核追が同時に生成されるため，インビーム が困業であったことが大意な原因となっている。しかし最近，大型のクリスタルボールの出現
高スビン状想から国べられるようになってきた［1］。 さらに，6MeV／A 以下のビームエネルギー・
 4］。ところか，激部非弾性数乱ではビームエネルギーを上げるにつれて生成核稚の分布がさら に広がり，大型のクリスタルボールを使用しても，なぁ実検が困嚾になってくることが予想き そる。

原研夕ンデムでは趯伝羊ブースターが完成L［5］，Geで $10 \mathrm{MeV} / \mathrm{A}$ 程度のビームが傳

上の矣命のアインマーだけに対䓪を絞ることにより，アイソマーから逪移する γ 線の検出感度

 する。

時間を検出する。 γ 絈逥佼はタングステンと鉛から樽成し，ターグットで放出される prompt－ γ 線を遮蔽する。Ge 敛出器は，Si 検出器の周囲に $4 \sim 5$ 台酉監し， Si 検出器で止まった㟲子核から放出される γ 線を検出する。PLF $\gamma(-\gamma)$ 同時計数をとることにより，アイソマーから の人線を高感度で測定を豆る。ターゲットからSi 検出器までの飛行時間は約 1ns であり， isomerrope ではナノ秒以上の青命をもつ準这からの一綡が対象とな る。
 2（a）に示す。㔼性敬乱のビークとエネルギーを大きく失った深部非弾性散乱の種やかなビーク
 ル・スヘクトルでは弾性散乱の暗分が約一衔大きくなっている。図2（b）には図2（a）で示した A．B．Cのエネルギーと同時諸數すると線スペクトルを示した。B の部分のエネルギーと同時抿

示す。この手法により，原子番号を摬别することが何能である。

foil ol＇copjer． shiekl．Al：aluminum disk，and Ab ：absorber Si：Si detector．W：tungsten shield．Pb：lead wo observe inomers of PLF produced in DIC． Q 1 A new instrument，isomer－scope．

COUNT／CHANNEL（arb．unil）
coincidence with PLF of different energies．

知のものであり，校㕍を同定することができた。
 ヘクトル中に現九る偶の γ 綒は，核反応時に放出される中性子に起因したものである。PLF

図3（a）Energy distribution curves of PLF for the ${ }^{69} \mathrm{Cu}$ isomer．They were deduced from the intensities of the $1871 \mathrm{keV} \gamma$ ray in the PLF．γ coincident data with／without an absorber foil．The energy loss $\Delta \mathrm{E}$ is defined as the difference between these peak energies．（b）Peak energy of PLF vs．tranaferred mass．Two solid lines are drawn so that all the isomers identiffed in the present experiment are jucluded between them．（c）A plot of $\Delta \mathrm{E} v \mathrm{vs}$ ．peak energy of PEF．Cakculated energy loss is depicted by solid lines for the elemonte of Ni to Ga ．

Isomer－scope を用いることにより，${ }^{69} \mathrm{Cu}$ および ${ }^{\text {ºAs }}$ に新アイソマーを発見した。こ

可能性が讲营に㯖い。

图 4 Decay scheme of the 2741 keV isomer of ${ }^{69} \mathrm{Cu}$

 が，ナノ移程度のものは，anisotropy を泪定できた。こらた，absorber foil の代わりに Si 検出器を使用することを計再じている。テレスコーブすることにより，単に原子無号の

 こと，安定核に比較的近い原子核ても竧外なほど分かっていない。今後，${ }^{6} \mathrm{Ni}$ 近傍の原子核を

この研究は，伊東䉽庣（東工大），婊井雅人（名大），Imam Hossain（柬工大），牧墑章泰（防衡医大），市川進一（原研），石井三咅（原研），小川雅生（東工大）の方々と共同で行ったものです。

参考文韩

［1］I．Ahmat and W．R．Phillips．Rep．Prog．in Phys．58，1415（1995）．
［2］R．Broda et al，Phys．Lett．251B， 245 （1990）．
［3］B．Fornal etal，Phys．Rev．C 55． 762 （1997）．
［4］J．F．C．Cocks et al．，Phys．Rev．Lett．78， 2920 （1997）．
［5］S．Takeuchi et al，Nucl．Instrum．Methods．Phys．Res．A 382， 169 （1996）．
［b］T．Inluii et al，Nucl．Instrum．Methods．Phys．Res．A 395， 210 （1997）．

25．原研スポレーションRI利用計画

池添 搏（原研）

扣遠器の建設を計国している。この計画の一部として，限子ビームによる核破䂨反応中中性子によるウランなどの核分裂反応て生成される中性子過制な放射性同位体（RI）を夕 ンデム加遗器て再加速して核物理や核化学等の基碟研究に利用すること老えている。こ の中性子科学研宛施設（図1）ては1．5GeVで数mAの第子ヒームを加速する。RI

後，既存のタンデム加適器 ナ ブースター加速器で加逻する（図2）。
性子による核分裂反応で買量数が 60－160の中性子過制核が大量に生成される（今n のアイソト一プ分布を匈3に示す）。この内，タンデムで加嗃できる紋子圤刍イオンにな るものでなければならない。Cu，Ge，As，Ag，Sn，Pb等が高率良く加退て言
部とイオン源部を分旅し，生成されたRIはガスシェット缎送法でイオン源に移送してイ

このスボレーションRI（核破砕 R I ）利用动画には中性子過剩核を使った直元素领城

于欠風核がGSI（ドイツ量イオン研究所）で合成に成功しているが中性子数社 165 て

 とも予想されている。皿元美の核化学では，核が重くなることによる軍子の相対觘的圽果 で元素の性質が変化する可能性が票なれている。現在，量元满の核化軣は106番程度ま

中性子尳制核の崩鎄特性か中性子吸収断面援の䢞定なとが可能になる。また，中性子が多
待されている。

この中性子科学研究咶画は平成19年度の完成を自指している。加速器の入射系•低工 ネルキ一加速部のR\＆Dはすでに進行中である。スホレーションRI利用関䢜でも，正イ

図1 粚設召管萦
図2 R リビームの取り出しと辺嗦

図31． 5 GeVRFビーム て茏化ウランを思时したとあの Snのアイソトーブ分布の計算結果。

「鲁イオン・フォトン・R！ビームによるサンマ線分光」プロダラム（紧）
旦篞：7月15日（火）•16日（水）
場所：日本原子力研究所 束海研究所 研究1楝 第5全硔室
July 15，（Tue．）
10：40－11：55 座長：草刈英策（千薬大）
相鮞正和（原研）， 5 min ．
はじめは

原研カンマ缐分光咶画 $/{ }^{155} \mathrm{Gd}$ の異常クーロン別起
吉田忠（原研）， 20 min ．
タンデム加速器とタンデムブースター
榆問俊行（筑波大）， 20 min 。
Hf－W－Os 領城原子核の核县性体について
11：55－13：00 Lunch
13：10－14：40 座兵：坂田 文音（茨城大）
早川 岳人（妳坧）， 20 min ．
${ }^{132} \mathrm{C} 8$ の高スビン状若 及びPEX 寄联
曾原 皿産（千薬工大）， 30 min ．
M1 bands in $A \sim 130$ and 80 regions
Jie Meng（理研）， 20 min．
The possible mass region for shears bends and chiral doublets
大井 万紀人（東大大举院絡合）， 20 min ．
Angular Momentum Projection of Tilted Axis Rotaional states
14：50－16：20 座長：杉田道昭（原研）
大评䍚一（九大）， 20 min ．
Comparision with Tilted Axis Cranking and Particle Rotor Model for Triaxial Nuclei
水贯正二郎（京大）， 20 min ．
Equilibrium shapes and bigh－spin properties of the neutron－rich $A \sim 100$ nuelei
吉田 光次（阪大㤥物理センタ）•松臨正之（京大基研）， 30 min ．
 number dependence of rotional damping effect－
消水良文（九大）， 20 min 。
Vibrational excitations in rotating nuclei by means of Coulomb excitations
16：30－18：10 座长：扮尾 正之（京大基研）
佐川 弘弆（会淮大）， 40 min 。
Electromagnetic Transitions between Spin－Dipole and Gamow－Teller States
摘本 巷夫（筑派大） 20 min 。
Periodic Orbits and TDHF Phase Space Structure
高原哲士（東大大举院絡合）， 20 min ．
Study of Superdeformation at zero spin with Skyme－Hartree－Fock metbod
（次頁に続く）

間所 秀椦（九大）， 20 mid ．
General Relativistic Mean Field Theory for Rotating Nuclei
18：30－バスて東诲会管へ程動
18：50－20：30 意親会（東浢会馆）
20：30－バスで宿舎／原研に移䣦
July 16，（Wed．）
9：10－10：50 座長：消水 良文（九大）

Scissors Mode in Nuclei
藤原 守（阪大核物理センタ）， 40 min 。
Physics with＂Laser－Electron Photons＂
野木伸令（傆研•関西理）， 20 min 。
逆コンブトンガンワ總の節生

井原 史智（䧚大忮物理センタ） 20 min 。
Study of spin－jsospin states in ${ }^{13} \mathrm{~N}$ via $\left({ }^{(3} \mathrm{He}, \mathrm{t} \gamma\right)$
上揇英二（敌田大），20 min．
Spin－alignments in heavy－ion resonances
须逆 害一（埼玉大）， 20 min．

12：00－13：00 Lunch
13：10－14：20 座長：营原 昌産（干葉工大）
田中 武志（高エ＊凋•東京田無）， 20 min 。
High－Spin states of ${ }^{48} \mathbf{C r}$
水萿 高诰（真大），30 min．
Unified Description of Mid－pl－shell Nuclei by Monte Carlo Shell Model Calculation

Exotic Octupale Deformation in Proton－Rich $Z=N$ Nuclei

14：30－16：00 座長：田场画嘲（真大大業院㻌合）

御手洗 志郎（九大）， 20 min 。
$N=Z$ 近傍核の高スビン状雔
中田仁（千窒大）， 30 min．

岩沢 和男（筑波大）， 20 дin．
Cranked HFB Bands for Ge Isotopes
石井新期（敌研） 20 min 。
Ni 領城の中性子過転核の搆造
16：10－17：40 座長：大我真港（原研）
池添 博（际粸） 30 min 。
（㤆題）原研 RI ビーム計画
㴖田 臨（理研）•谷㚼 䎡夫（理研），30 min．
理研将来計画「RIビームファタトリー」とガママ綵检出器・コタント

性台になりな原子㧡分光か現状と捋来

国蔡単位系（SI）と換算表

4	名 标	
㙊 言	入－	m
新［it	韦口サ＊	kg
暔 掏	姌	s
		A
然力覀目还	ケルビン	K
物安成	も	mol
光 度		od
平一而角	シージアース	red
过体 角	ス＊ッジメン	sr

tit	名 \％	支乐	お的のS1年拉 によ き教哯
周 浣 故	$\cdots \cdots$ ハ＊	Hz	s^{-1}
t	＊－2	N	$\mathrm{m}+\mathrm{kg} / \mathrm{s}^{2}$
不力，応力	人スカ儿	Pa	$\mathrm{N} / \mathrm{m}^{2}$
	¢－小	」	$\mathrm{N} \cdot \mathrm{m}$
工率，如 如柬	7 少	w	J／s
	$ク$－ロ	C	A．s
	ボ 4 ト	v	W／A
		F	CJ
亚 岛 掝 抗	±-2	D	W／A
	ジーメンス	S	A / N
作朱	$\geqslant x-ハ$	W＇b	V． 5
	7 大 \Rightarrow	T	Wb／mi
	へンリー	H	Wh／A
せルジ目相	せルシンス管	${ }^{\circ} \mathrm{C}$	
光 果	ル－	1 m	cd．gr
顛 莚	ヶ \quad ス	1 x	$\mathrm{lm} / \mathrm{m}^{x}$
	スタじム	Bq	s^{-1}
	ダレ イ	¢Y	J／kg
洨 点 等 堂	シースル	\＄	J／kg

名 你	21 13
分，囹，［	min， h_{1} d
且，分，出	＊．
」ットへ	J，L
ト ン	1
电てがルト	ev
	u
$1 \mathrm{eV}=160818 \times 10^{-5 \mathrm{~J}}$	
	$\times 10{ }^{-1 / 8}$

ほを共に密実的に 		$\begin{aligned} & 10^{6} \\ & 10^{-1} \\ & 10^{12} \end{aligned}$		a n p
名 婇	313	10^{-17}	7ェムト	1
オンダメトローム	λ	［0 ${ }^{\text {i4 }}$	71	a

（i）

近はよった。

 こだは少車もした。

 ω_{0}

一に入れている。

j	$\mathrm{N}\left\{=10^{\top} \mathrm{dyn}\right.$ ）	kgt	Jtt
	1	0.101972	0.224808
	9.80665	1	2.20462
	4.44822	0.453592	1

的䋨应 $\mathrm{Im}^{*} / \mathrm{s}=10^{4} \mathrm{~S}$（ストータオ）$\left(\mathrm{cm}^{2} / \mathrm{s}\right)$

H	MPag＝Ithber）	$\mathrm{kgI} / \mathrm{cm}^{2}$	atm	mmHgtTorr，	lbf／in ${ }^{2}$（psi）
力	1	10.1072	9.86923	7.500052×10^{7}	145.038
	0.0980665	1	0.967841	735559	14．2233
	0.101325	1.08323	1	760	14．6959
	1.33322×15^{-1}	1.35951×10^{-2}	1.31579×10^{-3}	1	1.93368×10^{-2}
	6.89476×10^{-4}	7.03070×10^{-6}	6.80460×10^{-8}	51.7149	1

$\underset{7}{ }$	$\left.\mathrm{J}=10^{7} \mathrm{erg}\right)$	kgI•m	kW－h	cal\｛活量洼\}	Btu	ft．］he	ev	
少	1	0.101972	2.77778×10^{-1}	0.238889	9.47813×10^{1}	0.737562	6． $24150 \times 10^{1 / 1}$	＝4．184J（矮比学）
1	0.80665	1	2.72407×10^{-6}	2.34270	9.29487×10^{-7}	7.23301	6．12012 $\times 10^{\prime \prime}$	$=4.1855 \mathrm{~J}(15 \mathrm{C})$
［	$3.6 \times 10^{\text {r }}$	3.67098×10^{5}	1	8.59999×10^{5}	3412．13	2.65522×10^{6}	2.24694×10^{95}	＝4．1868」（国咸武気鈢）
－	4.18605	0.426858	1.16279×10^{-6}	1	3.96759×10^{-3}	3.08747	2.61272×10^{11}	世平如 1 PS（出用す）
冝	1055．06	107．586	2.93072×10^{-4}	252.142	1	778.172	6.58515×10^{2}	$75 \mathrm{~kg}{ }^{4} \mathrm{~m} / \mathrm{s}$
	1． 35588	0.138255	3.76516×10^{5}	0.323890	1.28506×10^{-2}	1	8.46233×10^{18}	$=735.499 \mathrm{~W}$
	1.60218×10^{-41}	1.63377×10^{-20}	4.45050×10^{-74}	3.82743×10^{-20}	$1.51857 \times 10^{-\frac{2}{2}}$	1.18171×10^{-19}	1	

放射能	Bq	Ci
	1	2.70270×10^{-14}
	3.7×10^{4}	」

	Gy	rad
	t	100
	0.01	I

䯝	C／kg	A
	1	3876
	2.58×10^{4}	1

	Sv	rem
	1	100
	0.01	I

[^0]: 1干葉工荣大学 自然系 物理
 2千葉大学 教育学部
 ${ }^{3}$ 千葉大学 理学部
 4九州大学 理学部
 ${ }^{5}$ 理化学研究所

[^1]:

