
UNIVERSITY OF
DEPARTMENT OF PHYSICS

NO9800013

WASAT

A graphical user interface for
visualization of wave spectrograms

Runar Jorgenscn

Department of Physics, University of Oslo
P.O.Box 1048 Blindern
N-0316 Oslo, Norway

Received: 1996-12-23UIO/PHYS/96-13

REPORT SERIES

,«»•*

2 9 - 2 3

r.

I

WASAT

A graphical user interface for
visualization of wave spectrograms

Runar Jergensen

Department of Physics, University of Oslo
P.O.Box 1048 Blindern
N-0316 Oslo, Norway

OUP
UIO/PHYS/96-13 Received: 1996-12-23

W A S A T

A graphical user interface for
visualization of wave spectrograms

Runarjorgensen
Department of Physics, University of Oslo

RO.Box 1048Blindern
N-0316 Oslo, Norway

8th January 1997

Abstract

This report describes a technique for the decoding and visualization of sounding
rocket data sets. A specific application for the visualization of three dimensional wave
HF FFT spectra obtained from the SCIFER sounding rocket launched January 25, 1995,
is made. The data set was decoded from its original data format which was the NASA
DITES I/II format. A graphical user interface, WASAT (WAve Spectrogram Analysis
Tool), using the Interactive Data Language (IDL) was created. The data set was visu-
alized using IDL image tools overlayed with contour routines. The user interface was
based on the IDL widget concept.

CONTENTS [i]

Contents

1 Introduction 1
1.1 The SCIFER Campaign 1

2 NASA TDDS DITES II Digital Telemetry System 1
2.1 Data File Format (CD-ROM DITES II) 3

2.1.1 Headers 3
2.1.2 The frame format 5
2.1.3 Binary Coded Time Format 8
2.1.4 FFT Spectrum Data Format 8

3 Interactive Data Analysis using IDL 10
3.1 Implementation of I/O routines and data structure 10

3.1.1 Common blocks 11
3.1.2 Functions and procedures 11

3.2 The Graphical User Interface 13
3.2.1 Widget Bases 13
3.2.2 Implementation of the widget hierarchy structure and event loops . 14

4 User Manual 15
4.1 Menu contents 15

4.1.1 The menu bar 16
4.1.2 The action/input area 17
4.1.3 The draw area 18

4.2 Getting started 18

5 Conclusion 19
5.1 Performance 19
5.2 Lessons learned 19

5.2.1 Variable Spectrum Length and end-of-spectras 20
5.2.2 Non-linear time positioning 20

5.3 Points for further development and adaptations 20

References 22

A Program Listing 23
A.I raw. pro 23
A.2 headers, pro 24

1 Introduction [1]

1 Introduction

The Research Section for Plasma and Space Physics, Department of Physics, University of
Oslo, is regularly involved in national and international sounding rocket projects. In NASA
payloads as SCIFER, the data flow adhere to a data format, digital telemetry system (PDP11/60)
DITES I/II, developed by Wallops Flight Facility (WFF, 1988) (see section 2.1).

1.1 The SCIFER Campaign

The sounding rocket for Studies of the Cleft Ion Fountain Energization Region (SCIFER),
was successfully launched 06:24 UT1 on January 25th, 1995 from Andoya Rocket Range
(69° 17' N, 16°01'E) into the pre-noon polar cleft and cap. The payload reached an altitude of
1452 km. The duration of the flight was« 20 minutes, i.e., 1207 seconds (UT: 06:24-06:45;
local time: 07:23-07:45). Radio contact with the payload was lost at 06:45:56 UT.

The main scientific objective of the SCIFER campaign was to study the energization and
outflow of ionospheric plasma in the dayside cusp/cleft region, which is believed to be the
most important ionospheric ion source for the magnetosphere. The aim was:

• to document the electron and ion plasmas of the cusp/cleft ionosphere, including sur-
rounding polar wind outflows,

• to determine the adequacy of factional heating to deliver the observed up welling plasma
flux,

• to determine the role of electron heating and pressure distribution in plasma energiza-
tion and outflow,

• to determine the role of Birkeland currents, including collective effects and instabilities,
in plasma heating and energetics,

• to determine the role of plasma waves in energy transfer, inheating and plasma outflow.

Scientists from the following institutions participated in the project in addition to the group
at University of Oslo: Cornell University (Principal Investigator), University of New Hamp-
shire, University of Alaska and NASA Marshall Space Flight Center, USA. The payload (see
figure 1) provided a unique data set from the dayside polar cleft and cap regions.

2 NASA TDDS DITES II Digital Telemetry System

Data from a sounding rocket are digitized, formatted into blocks of frames and transmit-
ted via a telemetry system using Bi-phase Pulse Code Modulation/Frequency Modulation
(PCM/FM). This data includes both scientific and housekeeping data.

The telemetry data from the SCIFER payload was disseminated through NASA's Teleme-
try Data Distribution System (TDDS) and stored on one CD-ROM containing 218 MByte

'Local time: 07:24

2 NASA TDDS DITES II Digital Telemetry System [2]

Nosecone
Ejection System
(LEO>

UNH HEEPS
Detectors UNH BEEPS

Detector

MSFC STICS
Detector

Booms

MSFC TECHS
Sensor

\

MSFC TECHS
Electronics

Telemetr)
Section

igniter
Housing

Nihka
Moior

V-Band
Separation

Cornell
HF Sensors

Figure 1: The SCIFER payload was designed to study the energization and
outflow of ionospheric plasma in the dayside cusp/cleft region.

2 NASA TDDS DITES II Digital Telemetry System [3]

Byte: msb lsb

D7 D6 D5 D4 D3 D2 Dl DO

Word: MSB LSB

bytel byte 0

msb: Most significant bit
lsb: Least significant bit
MSB: Most significant byte (byte 1)
LSB: Least significant byte (byte 0)

Table 1: The table defines some byte/word orientation and nomenclature
used in TDDS CD-ROM distribution. Numerical integer representations are
defined for Wordi:

Word 1 = Byte 1 ByteO = MSB LSB = FF FE Hex
That is, the MSB precedes the LSB (last in hexadecimal representation). D15
represents the most significant bit position; DO represents the least significant
bit position.

of reprocessed data. NASA did the reprocessing, i.e. filled gaps in the data sets and merged
time words.

The University of Oslo (UiO) experiment was a HF receiver. The frequency range for
the instrument was 10 kHz-5.0 MHz. UiO instrument sampling rate was 10 M samples per
second. The data were transmitted over Telemetry Channel #1 (TM1). Telemetry transfer
rate was 3 200 Kb/s with PCM encoding and 10 bit resolution. There was transmitted 25
complete UiO FFT processed spectras per second. Each spectrum with 128 samples.

The CD-ROM uses the DITES II format (WFF, 1988).

2.1 Data File Format (CD-ROM DITES II)

The DITES II format includes 10 microsecond time-tagging resolution and a data/time status
byte. Word 11, the number of merged time words, will therefore always be 4 (see table 3).

The format uses a 10-bit word as the smallest entity. When data is transformed to com-
mercial computers, bytes and 2-byte words are used (see section 2.1.4). In a word, the MSB
precedes the LSB, a format which is compatible with all Sun Workstations (see table 1).

The data processing at UiO was performed on a SUN SPARC station 20, HyperSPARC
(2 X 125 MHz HyperSPARC microprocessors) running Sun Microsystems' SunOS 5.5.1 (So-
laris 2.5.1).

2.1.1 Headers

The data set consists of three different types of records (see figure 2).

• The first record is a header record that contains up to 80 ASCII characters.

• The second type of record is a data descriptor record which describes the data in each file
set.

2 NASA TDDS DITES II Digital Telemetry System [4]

Header Record

(HRlength = 46 words)

I
Data Description Record

(DDHRlength = 20 words)

Data Record Header (DRprefaceJength = 10 words)

Block 1

Data record buffer size = 52 words X 76 frames = 3952 words

Data Record Header (DRprefaceJength = 10 words)

Block n

Data record buffer size = 52 words X 76 frames = 3952 words

Figure 2: The figure gives a graphical representation of the structure of the
DITES II format. The file has a total of 66 words (132 bytes) of header
(Header Record and Data Description Record). The rest of the file is orga-
nized as blocks of data. Each block is 3962 words including 10 preface words
(Data Record Header) for each block. There are > 27 000 blocks in the file
d4000611. dat. Each block is organized as 52 words in 76 frames.

2 NASA TDDS DITES II Digital Telemetry System [5]

• The third type of record is the data record.

All record headers share a common record marker which is the number FF FE Hex2. Each
record is preceded with this record marker.

The IDL program h e a d e r s . p r o is developed to read and display information con-
tained in the headers (see appendix A.2).

Header Record This record is located only once and at the beginning of the data set on
the CD-ROM distribution. The format is visualized in figure 2. Table 2 gives a breakdown
of the header record contents.

From this record the value of W2, the record header length (HRlength) is loaded to
define the data structure used by the IDL application.

Data Description Record This record is located at the beginning of each file set. That is,
for the CD-ROM distribution of the SCIFER telemetry data, the Data Description Record
(DDR) occur only once since the telemetry data is all contained in one single file named
d4000 6 1 1 . d a t (218.590Mbytes) (see figure 2).

The values of three words are copied from this header for subsequent processing (see
table 3). These are W2, the data description header length (DDHRlength); W9 (DDR-
frames) which is the number of frames per buffer; and W12 which is the total number
of words per frame including the merged time words.

In fact, each data buffer block could be defined using information in words Wl 3 and Wl 6
obtained from the data description record. All the same, this information is obtained from the
Data Record header.

Data Record Every data block has this format. The data record is made up of a standard
preface, an added preface, the data and an appendix (= 0). All measurement data is recorded
with the time words merged at the end of each frame.

W2, data buffer size (DBsize), is the number of words for each block of data including
10 preface words; W3 (block_nr) is the block number, and W6 is decoded and the value
is loaded into the p r e f ace .words variable.

2.1.2 The frame format

The frame is the smallest whole entity in the data format. One frame consists of 48 words
and 4 merged time words which makes a total of 52 words (see table 3). All experiment data
and housekeeping data are organized into a frame by the onboard PCM encoder. Only a few
words in addition to the UiO experiment are described here.

The first word in each frame is a frame counter with range 0 — 7C Hex (see figure 3). Word
2 is subcommutated alternating measurements by the two probe potentials and the rocket body
potential. Word 3 through Word 8 are aspect magnetometer data. Words 11 and 36 are the
UiO FFT experiment.

"Represented in hexadecimal notation.

2 NASA TDDS DITES II Digital Telemetry System [6]

Header Record contents

Record Marker (Wl): FF FE Hex

Header Record Length (words) (W2): 46

Header Record ID (W3): 0

Stream ID (4 characters) (W4 & W5): TDDS

CD/Tape number (W6): 1

ASCII string test (W7-W46): 40006 K i n t n e r TM#1 50 by 32
format 10 b i t wds VLDS D i r e c t

Table 2: Breakdown of the header record

Data Description Record contents

Record Marker

DDR length (words)

DDR ID
Run ID (4 characters)

Stream ID (4 characters)

Words per frame

Frames per buffer

Scaling factor

Merged words (time words in

Total words in frames

Preface words above 8

Buffer appendix size

Input buffer size [words]

Output buffer size [words]

Frames per subframe 1

Frames per subframe 2

Record Mode (0 = word; 1 =

Two ASCII blanks

(Wl):FFFEHex

(W2): 20

(W3):FFFDHex

(W4 & W5): TDDS

(W6 & W7): TDDS

(W8): 48

(W9): 76

(W10):0

record) (Wll): 4

(W12): 52

(W13): 2

(W14): 0

(W15):3952

(W16): 3962

(W17):32

(W18):0

byte) (W19): 0

(W20): 32 32

Table 3: Breakdown of the data description record

2 NASA TDDS DITES II Digital Telemetry System [7]

Data Record contents

Record Marker

Data Buffer size [words]

Block number

Stream ID

(Wl):FFFEHex

(W2): 3962

(W3): 1

(W4 & W5): TDDS
(MSB) Appendix words; Preface words (W6): 0; 10

Input buffer size (W7): 3952

TFE Status (bitflags) (MSB, W8): 0

Frame number in block (LSB, W8): 0

Magnetic Tape Write Status (W9): 1

Not used (nil) (W10): 0

Table 4: Breakdown of the data record

ne

1

2

76

0

0

0

Wl

74

78

20

2

3

3

W2

9B

D7

D7

0

0

1

W l l
E

18

DC

W36
0

0

1

18

A

41

W49

76

77

23

0

0

0

W50
50

50

50

83

83

84

W51

50

50

50

62

62

62

W52
9

9

9

2

2

2

Figure 3: Depicted in the figure is the content of the first frames and the po-
sition of the frame counter FCount (W1), UiOFFTI (Wll) , UiOFFT2 (W36),
and the timing words (W49 through W52). All entries are presented in hex-
adecimal notation.

2 NASA TDDS DITES II Digital Telemetry System

UiOFFTl

0

UiOFFT2

03 FF

UiOFFT3

0

UiOFFT4

RNG

UiOFFT5 => UiOFFT128

Data

Exponent

9 8 7 6

c c c q

Mantissa

5

q

4

q

3 2

q q

l

q

0

q

Figure 4: Upper illustration shows the organization of one complete FFT spec-
trum, while the lower illustration shows the compressed code organization
with the exponent, c, taking the upper 3 bits and the quantization, the man-
tissa, taking the 7 lower bits.

[8]

2.1.3 Binary Coded Time Format

Time is merged at the end of each frame (W49-W52). The DITES II format is designed
for 10 microsecond time-tagging resolution. At the time of the SCIFER launch, NASA had
not implemented this timing accuracy. Thus, the 10 microsecond resolution is replaced with
zeros in the excess timing words, i.e. LSB in W49 is always nil (see table 5). Therefor time
acurracy is 1 ms.

Time of launch (TOL) occurred at 06:24:48:000:00 UT on January 25, 1995. A down
telemetry site was established at Tromso Satelitte Station (69°59'N, 19°23'E). The station
did not have line-of-sight to the rocket until ss 19 seconds after launch, thus first time code
in the data set is 025:06:25:08:376:00. The launch occurred on the whole second which is
usual for NASA launches.

The time is BCD formatted and organized as described in table 5.

2.1.4 FFT Spectrum Data Format

A DSP3 unit was used to carry out on-board data analyses in real time (Brondz, 1989). A
spectral power density estimate is produced by the DSP-analyzer using 10-bit words. One
spectrum consists of 128 entries including a 4-word header (LW1 — LW4) with ID sequence,
00 03 FF 00 Hex, and Range word ahead of the data (see figure 4), thus the total number of
samples per spectrum is 124 words.

In order to achieve maximum efficiency in the available telemetry each sample is normal-
ized and compressed (Brondz, 1989). Data compression uses a modified A-law compression
algorithm, where 12-bit words are compressed into 10-bit. The floating point representation
of the measurement values is illustrated in figure 4. The exponent c of the scale factor is placed
in the msb 3 bits, while the fractional part, the mantissa, is occupying the lower (lsb) 7 bits.

The transfer of 10-bit words to commercial standard words (16 bit = 2 byte) is performed
prior to the dissemination of the data (on CD-ROM). Thus, bytes and words can be read using
standard techniques as described by IEEE standards and supported by SUN (see section 2.1).

Digital signal processor

W49

B2

MSN

100/is

LSN

10/is

Bl

MSN

10 ms

LSN

1 ms

W 5 0

B4

MSN

1 sec

LSN

100 ms

B3

MSN

1 min

LSN

10 sec

W51

B6

MSN

1 hour

LSN

10 min

B5

MSN

lday

LSN

10 hours

W52

B8

MSN

100 days

LSN

10 days

B7

MSN

status

LSN

status

1/3

'So
s
HH
hH

C/5

Byte

1

2

3

4

5

6

7

8

X

0

X

X

X

X

s

X

MSN

X

0

X

X

X

X

0

X

X

0

X

X

X

X

s

X

X

0

X

X

X

X

s

X

Units

10 ms

100/is

1 min

1 sec

1 day

1 hour

status

100 days

X

0

0

X

0

0

s

X

LSN

X

0

X

X

X

X

s

X

X

0

X

X

X

X

s

X

X

0

X

X

X

X

s

X

Units

1 ms

10/is

10s

100 ms

10 hours

10 min

status

10 days

M*

Q
1/3

Q
0
H
<J

Table 5: TDDS - Microsecond Accuracy (10~6). There are four time words (8 bytes) merged at the end of each frame. The
actual time is BCD formatted, i.e., represented as nibbles (4 bits), with 2 nibbles in each byte. (MSN = Most Significant Nibble;
LSN = Least Significant Nibble) (Bretthauser, 1994)

3 Interactive Data Analysis using IDL [10]

The fifth word (LW5) in the FFT spectrum data format is the measuring range, which
can take values 0 to 15. The value of the range is valid through each spectrum and gives a dy-
namic range of > 60 dB. The actual values of the measurement is obtained using the following
algorithm.

log2 10 • log10 • m a n t i s s a + exponent + (15 - RNG) (1)

The IDL implementation for extracting the exponent and mantissa, and calculating the value
is presented in section 3.1 .

3 Interactive Data Analysis using IDL

The group have invested in Research Systems' Interactive Data Language (IDL) which was
used for the purpose of data visualization of the SCIFER data set. IDL's powerful graphical
user interface toolkit is used for creating the interactive graphical display.

The program structure is made up of functions and procedures preceding two event-
handling procedures and a procedure which sets up, creates and initializes the widgets (see
section 3.2). Then the control is handed over to the window manager.

All event driven widget programs are structured in this same manner. There are two parts:
a definition module and an event handler module. In the WASAT application structure there
are additional functions and procedures, a definition procedure, and two event handling pro-
cedures in the event handler module (see section 3.2.2).

3.1 Implementation of I/O routines and data structure

Referring to the DITES data structure (see figure 2) it seems natural to implement a design
that reflects this structure in the application. The purpose is to make the data sets easy to
handle. The steps leading up to viewing of the spectrograms are the following:

• Open and examine the SCIFER data set file i.e. initialize some values.

• Create a structure based on the values obtained.

• Reposition the file pointer to the desired location.

• Read the requested amount of data.

• Run through these data and select, convert and store UiOFFT words together with
time information.

• Recalculate (i.e. to the proper range) UiOFFT words.

• Prepare and plot spectra.

Several procedures and functions are created to facilitate these steps. One important step
which is not implemented as a procedure or function is the positioning of the file pointer.

The task is fairly simple. Since the DITES format is block oriented, input values
(s t a r t - V a l u e and s top_va lue in seconds) needs to be converted to the appropriate
block numbers. And then subtracted to obtain the number of blocks to read.

3 Interactive Data Analysis using IDL [11]

By inspection one block stores data for a ~ 48.87 ms time slot. A number based on print-
ing the timing information for the first and final frame in blocks positioned randomly through-
out the data file. The positioning of the file position pointer, c, thus given by the following
algorithm:

delta.sec = 4.8877e-02
start_value = f ix (start_value/delta_sec)
stop.value = f ix (stop_value/delta-sec)
no = stop.value - start-value
c = long(HRlength*2) + long (DDHRlength*2) + long {dr.buf.size*2) *start.value

;;Position the pointer and
;;read into the data structure

openr,dtafile,file,/getJLun
point-lun, dtaf ile, c
readu, dtafile, data

close, dtafile
free.lun, dtafile

3.1.1 Common blocks

First we have to set up four common blocks in order to make variables available throughout
the program.

was at-common contains variables used to handle the IDL data structure and its parameters.

DITES-struct_common contains variables obtained from the original DITES II format,

i n f o_common contains variables for widget message handling

plot_common contains variables for plot window id and output filenames.

For the complete description of the content of these common blocks, please refer to the source
code.

3.1.2 Functions and procedures

To make maintenance and future enhancements easier, the program structure is divided into
functions and procedures. The subsequent list is a short description of the functionality of the
functions and procedures used.

HEADERS This procedure reads and displays the information contained in the header struc-
ture of the DITES II format. Information is displayed as described in section 2.1.1.

READ.HEADERS This procedure reads and sets the critical values obtained from the headers.
The values set here are used globally.

TIME This function converts eight time bytes, where the timing information is coded ac-
cording to the scheme outlined in table 5, into readable time values in a structure and
return this structure to the caller.

3 Interactive Data Analysis using IDL [12]

TOSEC This function uses a structure of time information to calculate and return a floating
point value which is the number of seconds after lift of.

RANGE this function re-scales a signal value. Referring to the floating point representation
outlined in figure 4 this routine extracts the exponent and the mantissa from the com-
pressed signal value and does the numerical computation of the signal value to be pre-
sented.

First the range value for the spectrum is found. It can have up to 64 values, thus, is bit
shifted 6 positions to the right. The range value is common for all samples in every
spectrum.

Each signal value is also bit shifted. The IDL function i s h f t (s , p) where s is the
scalar to be shifted, and p is the number of bit positions and the direction of the shift.
Thus, i s h i f t (1 ,1) will give the scalar value 2 since the first bit is shifted one po-
sition to the left. The signal value is checked to see if it is nil in which case its value is
set to the range value.

for j = 0, t o t . spec t r a—1 do begin
RNG(j) = i s h f t (f i x (p l a i t (4 , j)) , - 7)
for i = 0 , samples — 1 do begin

if (p l a i t (i , j) EQ '0000'X) then $
p l a i t (i , j) = 0 $

else begin
EXP = i s h f t (f i x (p l a i t (i , j)) , - 7)
MAN = p l a i t (i , j) AND '007F'X
p l a i t (i , j) = 3.32193*aloglO(MAN) $

+ f loa t (EXP) + (1 5 - f loa t (RNG(j)))
endelse

endfor
endfor

The algorithm oudined is consistent with the algorithm presented in equation 1 on
page 10.

FIND_SPECTRAS This function selects two words, UiOFFTl and UiOFFT2, in addition
to the eight time bytes from each frame. The following is an excerpt of the selection
and plaiting part of this algorithm.

for j = 0 , n — 1 do begin
for i = 0, DDRframe—1 do begin

FFT1 = f i x (da t a (j) . dr . record (*, i) , (uiof f t l - 1) *2)
FFT2 = f i x (da t a (j) . dr_record (* , i) , (uiof f tl+FFTW2OFZ- 1) *2)

•
•

plait(spectcount,h) = sync(0)
plait(spectcount + l,h)= sync(l)
plait(spectcount + 2,h)= FFT1
plait(spectcount + 3,h)= FFT2
spectcount = spectcount + 4

3 Interactive Data Analysis using IDL [13]

TAL = data(j) .dr.record((DDRmwords*2 - timebytes) :*,i)
endfor

endfor

The signal values are plaited and stored in a two-dimensional spectrum array,
p l a i t (x, y) , where x is the number of samples per spectrum and y is the number of
spectrums specified by the user. The time bytes are stored in a separate one-diminsional
array. Both the plaited signal values and the time bytes are returned to the caller.

The select loop starts with a search for the first occurence of a spectrum synchroniza-
tion sequence (refer to the soruce code). All of the timing information at this point is
discarded. A check is made for the entire sequence (see section 2.1.4 and figure 4). Af-
ter a match, all subsequent signal values and corresponding timing information is stored
in their respective arrays.

DISPLAY This procedure sets up the proper display routines, selects the requested plotting
device, and displays the content of the three-dimensional spectrogram. The spectra are
displayed in the preferred manner by the use of two predefined IDL routines t r a n s -
p o s e and r e v e r s e . The spectrogram is presented as an grey-scale intensity im-
age overlaid with a contour plot which supplies the enumerations and labeling of the
axis (IUG, 1995, p. 15-8, method 2).

3.2 The Graphical User Interface

The WASAT 'S GUI interface is created using the IDL widget toolkit. A «widget» is de-
fined to be a graphical element used in a widget program (ITC, 1996). Widget programs are
organized hierarchically (see figure 5). A widget can for example be such things as buttons,
text fields, draw area (graphics window), etc. The application is controlled via this graphical
interface.

Each widget is required to have a specific relationship to other widgets as they are created,
a socalled family tree of widgets.

3.2.1 Widget Bases

Referring again to figure 5, the top-level widgetis namedMAIN13 orTop_base. A «base» is
a widget which can contain or hold numerous other widgets including other base widgets. All
widget programs start with a top-level base widget, which holds all the other widgets. Thus,
Top _base has three children; BASE2 (Mainjmenu.base), BASE3 (info_base) and
DRAW3 0 (d i s p l a y - a r e a) . All three children are created with Top _base as parent iden-
tifier. The top-level base widget is the start of all widget hierarchies, thus, this special widget
is created without a parent identifier parameter.

It is essential to understand the purpose of each of the three children of the Top_base.
The d i s p l a y _ a r e a is the «canvas» for the display of processed spectras. All spectro-

grams will be displayed within this region. It is not resizable nor can it be scrolled. It trans-
parendy handles mundane tasks such as refreshing the window after it was occluded and then
exposed.

3 Interactive Data Analysis using IDL [1 4]

i.

. - . . . I . 1 K ' •.•"C» •

• • : • : • • ' :> •" . i - r . t :

* ' : . • ? : v t . i r <

r i •• - J . . • i - - -

i •

i '
I >

ii

Figure 5: This illustration is a screen-dump from the IDL widget editorwided
which show the application base structure. The extensive use of bases is pri-
marily to obtain the desired visual appearence of the application.

' !

The i n f o_base is subdivided into a command base, cmdJoase, for actions and input
and a t e x t _ b a s e for messages from the application. Nor size or appearence are affected by
entering new values into the cmd_base or by manipulating the tools in the menu bar.

3.2.2 Implementation of the widget hierarchy structure and event loops

Widget programs are event driven, that is, they spend most time in an event loop doing noth-
ing but waiting for the next event to occur. An «event» is normally some kind of user in-
teraction (e.g., pressing a button). This is also the case for the WASAT application, but in
addition avents are created by some of the previously described procedures.

When an event occurs the event driven program is supposed to process the event as quickly
as possible (prefferably do something useful), return to the event loop and wait for the next
event to appear.

There are two event handeling procedures in the WASAT application; Menu_bar_event
and Root_event , in the event handler module, and one widget definition procedure, wasa t ,
in the definition module. The code in the definition procedure is executed once while the

4 User Manual [15]

code in the event handeling procedures, at least in the case of Root_event procedure, are
executed every time an event occurs in the program.

Menu_bar.event This procedure handles all events which originates from manipulating
the menu bar in the application. Events to be processed here are handed over from the
Roo t -even t .

Root_event This procedure handles all events for the application. Events originating from
the menu bar is passed by this event handler to the Menu_bar_event for detailed
processing. The purpose of using two event handlers is to enhance efficiency in the
countinous running event handeling processing. Thus, events not originating from the
menu bar will not execute the event handeling code of the menu bar. Thus, saving
processing time.

w a s a t This procedure defines and creates all the widgets in the application. Widgets are
not displayed automatically after they are created, they are only stored in IDL's memory.
Widgets are realized by executing:

; Realize top-level base and all its children

widget-control, Root, /realize

Also, default values are initialized and the data structure is created.

A widget event is a message returned from the window system as a result of interaction
with the widget program. The IDL routine XManager registers the program with
the window system, setting up the event loop, and monitoring the program for widget
events that occur within it. Thus, before leaving the definition part a call to XManager
is made:

; Hand things over to the X manager:

XManager, 'Root', Root, group-leader = group

4 User Manual

WASAT is written in IDL V e r s i o n 4 . 0 . 1 (sunos s p a r e) and contains ~ 1100 lines
of code (including comments), 10 functions and procedures and some 30 global variables in
four «common blocks». The purpose of the WASAT user interface is to provide the ana-
lyst with easy-to-use software tools to manipulate and display spectrograms from VLF wave
experiments.

The current version of the document applies to the WASAT version 2. WASAT is the
property of the Research Section for Plasma and Space Physics, Department of Physics, Uni-
versity of Oslo and can only be acquired with explicit permission.

4.1 Menu contents

The WASAT application uses the available window manager, preferable the X window sys-
tem and looks accordingly (see figure 6). It contains a single window with a menubar, an
action/input area and a display area. This window is not resizable.

4 User Manual [1 6]

- s i , ' - . . - . j ; t , . „ • . - , • ; ; ; ' , , •

««i'#A# ' - y *i • • 4»#. i1 - l i i ^ ' " W i

Figure 6: The WASAT application appearence when using the X window man-
ager.

4.1.1 The menu bar

The menu bar contains four pull-down menus. The F i l e menu is for manipulating files,
saving plots in various graphical formats and Qu i t to terminate the application. Graphical
formats is provided for rendering of the views in the display area. The implemented for-
mats are encapsulated postscript, GIF4 and JPEG5. The postscript format facilitates the use
of WASAT generated illustrations/spectrograms in documents, reports and articles using e.g.
ET£X2£-/Word, etc. An example of a postscript rendering is given in figure 7.

Some color routines are provided in the Tools menu. The tools provided are the stan-
dard IDL procedures X loadc t which contains ~ 42 predefined color tables, a n d X p a l e t t e
for the detailed manipulation of the tables themself. These predefined procedures provides a

4GIF (Graphics Interchange Format): A standard defining a mechanism for the storage and transmission of
raster-based graphics information.

'JPEG (Joint Photographic Experts Group): A standardized image compression mechanism. JPEG is designed
for compressing either full-color or gray-scale images of natural, real-world scenes.

4 User Manual [1 7]

IV

V- t

722 728

243 complete spectros

Figure 7: The figure shows an example of a postscript rendering.

widget interface to optimize the appearence of the current spectrogram. All changes due to
the manipulation will be reflected automaticaOy in the display area and in the rendering of a
view by the use of the s ave option in the f i l e menu in the menu bar.

Xloadct: This procedure provides a widget interface to routines with pre-defmed color ta-
bles that can be loaded and manipulated using this tool. Tables can be stretched and
Gamma corrected interactively.

Xpalette: This widget procedure allows the user to create own color tables using a set of
three sliders. This procedure can interpolate the space between color indices {to create
«smooth» color transitions) or edit individual colors.

A Help menu is placed to the far right as customed in most window systems. When
the user selects «Help»from the menu bar a list of topics is presented. Clicking on an item
brings up any available help.

4.1.2 The action/input area

In the action/input area are placed text fields, and several buttons placed in two groups. The
two text fields are for submission of the start point and end point, in seconds, of a sequence in
the rocket flight to be examined. Underneath is an area called « D i s p l a y mode». Pressing
one of the buttons gives a different display. For example, pressing the button labeled « lower

4 User Manual [18]

5 0%» displayes only the lower half og the spectrum, i.e., up to ~ 2.5 MHz. Default value is
full spectrum.

After the submission of approriate values, the « P l o t » button must be pressed to generate
a spectrum. Also some central information, e.g., the number of spectrums plotted is displayed
in the message window to the far right.

Whenever the display, for any reason, is cluttered or misaligned it should be sufficient to
restore the visual appearence by pressing the «Redraw» button.

4.1.3 The draw area

All spectras are displayed in the graphical area which occupies most of the application space.

4.2 Getting started

There is no need for actual typing of any code to run the WAS AT application.
A detailed description of the construction and maintanence is provided is sections 2 and 3

in addition to the extensive documentation within the program itself. The purpose here is to
outline the basic steps used to create and manipulate a spectrogram. The below discussion is
completely generic.

There are four steps that needs to be performed:

1. cd to the proper directory where the datafile(s) and the application is stored

setenv WASAT /mn/aurora/ground/pc/rockets/scifer/wasat
cd $WASAT/

where the environment variable SWASAT is the directory where the program and the
datafile are located. A permanent solution should be made by entering the first line
into the $HOME/ .user_cshrc-fde.

2. Start up idl.
i d l

3. Run the IDL interpreter on the WASAT application.
IDL> . compi l e wasa t

4. Start up the application.
IDL> wasa t

The first two steps is not actually an application necessity, only that of the current operating
system. Step 3, the WASAT module compilation, compiles the WASAT application and stores
it in IDL's memory. The 4. step activates the application.

The user do not need to know any of the details of the WASAT compilation, initialization
or how WASAT processes X window events or other interfacing routines. The application is
controllable by either keyboard or mouse.

When creating a spectrogram the user will have to supply two values (in seconds) which
represent respectively the beginning and the end point of the time slot to be investigated.

5 Conclusion [19]

These two values must be given either as integer seconds or as floting point numbers. No
other entries will be accepted.

After supplying the two values, press the « P l o t » button. Appropriate messages will be
displayed in the message area.

If the display by any reason appear cluttered or misaligned press the «Redraw» button.
The displayed spectrogram can easily be saved for subsequent printing to e.g., paper by

using the «Save» option under the « F i l e » menu in the menu bar.

5 Conclusion

Scientific researchers have a clear need for the capability of visualizing their numerical datasets
quickly and efficiently. Results should be apparent at first view, and the time needed to pro-
duce the visualization should not be excessive. The crusial part of the visualization process is
association of visual images with the numerical data.

The WASAT application provides a easy-to-use graphical interphase to the analysis of
spectrogram data, tailored to handle two-dimensional spectrograms from the SCIFER sound-
ing rocket campaign (see section 1.1). Also WASAT provides a suite of tools for visual manip-
ulation of these spectrograms. The application is runnable under window systems for IDL.
Preferably the X window system under which this application has been created.

5.1 Performance

There has not been any speed tests nor benchmark tests to measure WASAT's performance.
The calculation tasks performed are simple and not specifically time consuming. On the

other hand, the data file is quite large, 218 Mbytes, and the search for correct words in each
frame is a very time consuming task. A more thorough understanding of IDL array handeling
routines will most certainly provide for a more efficient search routine (i.e., replacement of
the FIND.SPECTRAS procedure) and ultimetly speed things up quite a bit.

Plotting is fairly simple and is assumed that not much gain in speed is worth the effort.
However, blank plottings and annoying misalignments should be dealt with.

There are some noise in the spectras mainly due to drop-outs and not having implemented
windowing in the original hardware design. On some occations, changing from full spectro-
gram to lower 50% will change the appearence of the displayed spectrogram. Thus, some
improvements can be made to enhance the visual appearence of the spectrograms.

5.2 Lessons learned

The intention of creating such an application as WASAT was to

• allow the user to produce and manipulate spectrograms with ease

• make it robust enough so it doesn't crash when someone does something unexpected.

An ancient law of computer programming states that a 100% robust program is not able to
perform anything. WASAT has a few caveats, and thus, is not very robust. Unfortunatly, due
to the lack of manpower WASAT is not insured to do something reasonable with unsuspected
actions or events.

5 Conclusion [20]

5.2.1 Variable Spectrum Length and end-of-spectras

One of these caveats are due to the variable length of a spectrum. The application can crash
if the spectriims are found to be much longer than 128 samples including the syncronization
sequence.

Also, the last data stored on the CD-ROM file are from around 990 seconds time of flight.
This is around 16 minutes in flight, Telemetry lost contact with the rocket around this point.

The only remedy existing when this application crashes is to restart the application, and
alter, prefferably reduce the time slot requested.

Nevertheless, most of the data of interest has been test run several times without such
sideefFects. Should the application crash, enter to the IDL-prompt the following sequence,
and replace the numbers in the text fields.

IDL> retail
IDL> xmanager

5.2.2 Non-linear time positioning

Ideally the time elapsed between each successive block, e.g., between two data record headers,
in the DITES format should be constant. That is, each data block containes an amount of data
collected of equal amount of time for each block. Based on this assumption a simple algorithm
was implemented to allow for the positioning of a file pointer (see section 3.1). There is an
enormous time saving in not having to read through the entire file to find the appropriate
place to start obtaining and processing data.

Tests has proven that the assumption of a linear time lapse per block throughout the data
file unfortunately is false.

Depending on which part of the rocket flight that is examined the spectrograms generated
can be premature or too late. An example is the time slot 760 —770 seconds after liftoff. When
entering these numbers the algorithm places the position pointer at block nr. 15 550 which
contains data from 759.008 seconds into the flight. That is, one whole second, w 50 spectrums
premature. On the other hand, if the desired time slot is 360-370 seconds, the displayed data
are from the 370.2-379.9 time slot. That is, ten seconds too late.

One immediate solution is to run through all the data once, store in an array the time
information from the first frame in each block together with the block number and use this
array as a lookup table to be able to place the file pointer correctly. Such a scheme has not
been implemented yet.

5.3 Points for further development and adaptations

This application was designed with the intent to be used by subsequent flights adhering to the
DITES format. To tailor the program code some global values needs to be replaced, such as:

file = '../d4000611.dat'
uiofftl = 11
fftw2ofz= 25
samples = 128

5 Conclusion [21]

Time .o f_ l i f t _o f f = [0 , 2 , 5 , 0 , 6 , 2 , 4 , 4 , 8 , 0 , 0 , 0 , 0 , 0]

However there might be necessary to do additional changes then just changing the above
mentioned global constants.

Acknowledgement

This work was performed at the Research Section for Plasma and Space Physics, Department
of Physics, University of Oslo. The author wish to thank Efim Bronz, Lars T. Lyngdal, Uni-
versity of Oslo for their thorough insight into the SCIFER campaign technical obscurities
and Bard Krane for his insight into the world of IDL.

REFERENCES [22]

References

Andersen, B. and Sorensen, B. (1996). Space Research in Norway 1995, annual report, Nor-
wegian Space Centre, Oslo, Norway.

Bretthauser, J. W (1994). Telemetry Data Distribution System; Distribution Media Formats.
NASA/GSFC/WFF Code 622.3/Telemetry Systems Section. Draft.

Brondz, E. (1989). A two-channel wave analyzer for sounding rockets and satellites, Report
Scries; UiO/PHYS/89- 03, Department of Physics, University of Oslo, Norway.

IRG (1995). IDL Reference Guide. Version 4, Volume 1 - 2 .

ITC (1996). Learning IDL; An interactive training course.

IUG (1995). IDL User's Guide. Version 4.

Jorgensen, R. (1995). Study of the Small Computer System Interface (SCSI) in Ground Based Space
Research Equipment, Master's thesis, Department of Physics, University of Oslo, Norway.

Kintner (1995). Cornell 1.6 MB PCM format/PCM measurement list, Cornell University,
USA. SCIFER - 40.006 Internal notes. Draft.

WFF (1988). Sounding Rocket User's Handbook, Reference manual, NASA Goddard Space
Flight Center, Wallops Flight Facility, USA.

A Program Listing [23]

A Program Listing

In this section are listed some useful IDL programs for examination of the DITES II format
headers.

A.I r a w . p r o

; Routine for printing the headers
; without any formating in raw form

; Data are printed either as ASCII or HEX coded.
; Created by Runar Jrgensen
; Date: Fri Jun 28 11:19:26 1996

HRlength =46
DDRlength=20
DRprelength=10
TWR = 52 ; Total words in Record
Frames_per_buffer = 7 6

a=bytarr<132+(3962*2)+20+52*2)

file = '/mn/aurora/ground/pc/rockets/scifer/rockets2/d4000611.dat'
openr,df,file,/get_lun
readu,df, a
close,df
free_lun,df

print,'Header Record'
print,format = '(18A4)',a(0:(HRlength*2)-1) ;46 words in Header Record

print,'Data Description Record'
print,format = '(18A4)',$;20 words in Data Description Record

a(HRlength*2:{(HRlength+DDRlength)*2)-l)

print,'Data Record'
data_block= ((HRlength+DDRlength)*2+DRprelength*2)-1
print,format = '(18A4)',$
a(((HRlength+DDRlength)*2):data_block)

print,' '
for i=0, Frames_per_buffer-1 do begin

print, 'Frame no:',i + 1, '

print,format = '(18Z4)',$
a(data_block+l+(Total_Words_in_Records*2)*i:data_block+(TWR*2)*

END

A Program Listing [24]

A.2 heade r s . p ro

; Routine for printing header information
; contained in NASA/GSFC/WFF DITES II formats

file = '../d4000611.dat'
;HRlength=46
testbytes = BYTARR(400)

; Header Record

openr,dtafile, file, /get_lun ;openr for reading only
f=fstat(dtafile) ;Get some file information
readu,dtafile,testbytes ;Read the first bytes to check
close,dtafile
free_lun,dtafile

;Extract relevant fields (byte) from the header
HRM1B = byte(testbytes,0) ;Should be FFx
HRM2B = byte(testbytes,1) ;Should be FDx
HRlength = fix(testbytes,2) ;Number of words in Header Record

print, " "
print,' Printing Header Information '
print,' File: ',f.name,' Size:',f.size/1000000.,' MBytes'
print,' Header Record'
print,' '
print, format = '("Record Marker (Wl) :" , 2Z3)',HRM1B, HRM2B
print, format = '{"Header Record Length (W2):", 13)', HRlength
print, format = '("Header Record ID (W3):",I3)', fix(testbytes,4)
print, format = '("Stream ID (4 characters; W4 & W5): ",2A1,2A1)', $

string(byte(testbytes,6)), string(byte(testbytes,7)), $
string(byte(testbytes,8)), string(byte(testbytes,9))

print, format = '("CD/Tape number (W6):",I3)', fix(testbytes(11))
print, format = '("ASCII string test (W7-W46): ",A0)', $

string(byte(testbytes(12:*)))

raw=testbytes
new_point=HRlength*2
testbytes= testbytes(new_point:*)
DDRlength=fix(testbytes,2)

print,' '
print,'Data Description Record'
pjrxnt., •

print, format = '{"Record Marker (Wl):", 2Z3)',$
byte(testbytes,0),byte(testbytes,1)

print, format = '("Data Description Record Length (W2):", 14)', $
fix(testbytes,2)

print, format = '("Data Description Record ID (W3):", 2Z3)',$
byte(testbytes,4), byte(testbytes, 5)

print, format = '("Run ID (4 characters; W4 & W5): ", 2A1,2A1)',$
string(byte(testbytes,6)),string(byte(testbytes,7)),$
string(byte(testbytes,8)),string(byte(testbytes, 9))

A Program Listing [25]

print, format = '("Stream ID (4 characters; W6 & W7): ", 2A1,2A1)',$
string(byte(testbytes,10)),string(byte(testbytes,11)) , $
string(byte(testbytes,12)),string(byte(testbytes,13))

print, format = '("Words per frame (W8):", 14)', fix(testbytes,14)
format = '("Frames per buffer (W9):", 14)', fix(testbytes,16)

'("Scaling factor (W10):", 13)', fix{testbytes,18)
'("Merged words (time words in record; Wll):", 13)',$

fix(testbytes,20)
print, format = '("Total words in record (W12):", 13)

Preface words above 8 (W13):", 13)

print,
print, format =
print, format =

print, format =
print, format = '("Buffer appendix size (W14):", 13)
print, format =

fix(testbytes,
print, format =

fix(testbytes,
print, format =
print, format =
print, format =

'("Input buffer size
28)
'("Output buffer size
30)
' ("Frames per subframe 1
'("Frames per subframe 2

Mode (0 = word

[words] (W15)

fix(testbytes,22)
fix(testbytes,24)
fix(testbytes,26)

15)', $

[words] (W16):", 15)

(W17):", 13)', fix(testbytes,32)
(W18):", 13)', fix(testbytes,34)

"Record
fix(testbytes,36)

print, format = '("Two ASCII blanks (W20)
byte(testbytes,38),byte(testbytes,39)

testbytes = testbytes((DDRlength*2):*)
DRlength = fix(testbytes,2)
print,DRlength
print,' '
print,'Data Record
print,'

1 = byte) (W19)

214)',$

13)

print, format = '("Record Marker (Wl):",T27 , 2Z3) ' , $
byte(testbytes,0),byte(testbytes,1)

print, format = '("Data Record length (words)(W2):",15)', fix(testbytes,2)
print, format = '("Block number (W3):",T2 6,14)',fix(testbytes,4)
print, format = '("Stream ID (W4 & W5): ",T26, 4A1)', $

string(byte(testbytes,6)),string(byte(testbytes,7)),$
string(byte(testbytes,8)),string(byte(testbytes,9))

print, format = ' ("(MSB) Appendix words; Preface words (W6) : ",14, ";",14) ' ,$
byte(testbytes,10), byte(testbytes,11)

print, format = '("Input buffer size (W7):",T31,15)', fix(testbytes,12)
("TFE Status (bitflags):",T32,Z4)', byte(testbytes,14)
("Frame number in block (W8,LSB):", 14)',byte(testbytes,15)
("Mag Tape Write Status (W9):",T34,12)',fix(testbytes,16)
("Not used (nil, W10):",T32,14)', fix(testbytes,18)

(18A4)',raw(0:(HRlength*2)-1) ;46 words in Header Record

print, format =
print, format =
print, format =
print, format =
print,' '
print,format =
print,'
print,format = '(18A4)',$;20 words in Data Description Record

raw(HRlength*2:((HRlength+DDRlength)*2)-1)
print, • '

print,format = ' (18A4) ' , $
raw(((HRlength+DDRlength)*2):((HRlength+DDRlength)*2+10*2)-1)

end

FYSISK INSTITUTT

FORSKNINGS-
GRUPPER

Biofysikk
Elektronikk
Elementaerpartikkelfysikk

Faste stoffers fysikk
Kjerne- og energifysikk
Plasma- og romfysikk
Strukturfysikk
Teoretisk fysikk

DEPARTMENT OF
PHYSICS
RESEARCH SECTIONS

Biophysics
Electronics
Experimental Elementary
Particle Physics
Condensed Matter Physics
Nuclear and Energy Physics
Plasma and Space Physics
Structural Physics
Theoretical Physics

ISSN - 0332 - 5571

