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Abstract

A simple derivation of all three so-called Kepler Laws is presented in which the orbits,
bound and unbound, follow directly and immediately from conservation of cnergy and
angular momentum. The intent i1s to make this crowning achievement of Newtonian
Mechanics easily accessible to students in introductory physics courses. The method is
also extended to simplify the derivation of the Rutherford Scattering Law.
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I. INTRODUCTION

The so-called Kepler’s Laws of planctary motion have been of central interest for
Newtonian Mechanics ever since the appearance of Newton'’s Principia [1]. They are
discussed in most introductory textbooks of physics [2,3] and continue to be a subject
of lively interest in the pages of the American Journal of Physics [4]. This interest is not
surprising because the understanding of planetary motion has been one of the oldest
challenges in many human cultures and continues to excite the sense of wonder among
young scientists today.

The purpose of the present article is to give a new elementary derivation of all three
of the Kepler Laws intended to make their physics accessible to first year university
students taking introductory mechanics. I have used this derivation in my own in-
troductory classes for more than a decade and find that it, and the many associated
problems, are a highlight of the introduction which 1 give to physics. In contrast, most
first-year textbooks give a description of Kepler's Laws but apparently regard their
derivation as too difficult. Perhaps the derivation given here can then fill an important
gap.

The clementary proof, given in the next section, follows directly, in a few ecasy
steps, from conservation of cnergy and angular momentum which, in turn, follow from
I’ = ma and the central nature of the universal gravitational force, ' = Gm M/r?.
These conservation laws, on which we build, are usually covered thoroughly, and often
even clegantly, in first year textbooks.

In succeeding sections, beyond the proof, we provide further discussion of bound
clliptic orbits and extend the treatment to the unbound Kepler orbits and to the
Rutherford Scattering Law.

II. ELEMENTARY PROOF OF KEPLER'’S LAWS

a) Kepler’s First Law (The Law of Orbits): All planets move in elliptical orbits hav-
ing the Sun at one focus.

For a planct of mass m in a bound orbit(negative total energy E), around the sun
of mass M, we have the constant total energy, E

E = mv*/2-GMm/r, n

where r is the distance of the planet from the sun and v its velocity. (—F/m) is a
positive constant of the motion. Because the force is central we also have conserved
angular momentum, €

¢ = mvh , (2)

where h(= r sind, with ¢ the angle between v and r) is the perpendicular distance from
the planet’s instantancous velocity vector to the sun (see Fig. 1). From the definition
of h we have h < r. (f/m) is also a positive constant of the motion. Using LEq. (2) in
liq. (1) we obtain

[(¢/m)} 2= Efm)]  (GM[(=F[m)]

h? r

S (3)




An ‘forbit’ equation is, in general, a relationship between two independent variables.
Iiquation (3) is an orbit equation connecting two independent coordinates, r & h. What
kind of an orbit? It is exactly an cllipse because the standard ellipse equation, trans-
formed into the two variables r & h is (see Sec. 3)

b 2a

=== -1/ <0, (1)

where a is the semi-major axis of the ellipse and b is the semi-minor axis. The equality
of q. (3) and Eq. (4) not only completes the proof of Kepler's First Law, but also
immediately gives the orbit parameters, a & b, in terms of the constants of the motion,

(—FE/m) and (£/m)

a = GM |2(—E/[m) , b = ({/m)/(-2E[m)? . (5)

b) Kepler’s Second Law (The Law of Areas): A line joining planet to the Sun swecps
oul equal areas in equal times.

This law is the only one of the three commonly proved in introductory physics
textbooks. Referring to Fig. 1, the time derivative of the area, A, swept out is

dA/dt = %vh = {[2m , (6)

which is constant. Thus this law is directly associated with the conservation of angular
momentuin.

¢) Kepler’s Thud Law (The Law of Periods): The square of the period of any plancet
about the Sun s proportional to the cube of the planet’s mean distance from the Sun.

Using the second law the period, T, of the planet must be equal to the total arca
of the ellipse, divided by the constant, dA/dt. The total area of aun cllipse is rab.
Therefore,

T = 2xabj(¢/m) = (2x/VGM)a’
or T* = (4x*/GM)a* . (7)
Interpreting the semi-iajor axis as the mean distance from the sun, the result Eq. (7)
proves the third law. The constant, (4x2/GM), which applies to all planets is, about,

3.0 x 107" y* /.
III. SOME PROPERTIES OF ELLIPSES

Referring to Fig. 1, the famihiar equations for the ellipse relate to the coordinates

r&y,

rifat + g bt =1, (8)



or, alternatively, to the polar coordinates r & 6,
r =a(l —é)/(1 + ecousb) (9)

where the eccentricity, ¢, is defined by ¢ = (a? — b?)3 = ca, with c being the distance
from the center of the ellipse to its focus.
Next we provide the derivation, beginning with Eq. (7) of the unfamiliar form of the

cllipse, Eq. (4), required for the proof of Sec. 2. The coordinate r, shown on Fig. 1, is
defined by .
r=fy+ - (10)
We substitute for y? from Eq. (7),
§ = B(1 - 23/a?) = (1/a})(a’ - H)a® - 27)
to obtain
r = a'(a®-cz), (11)

which is also an cquation for the ellipse in terms of the coordinates r & z.

To find & in terms of = (or y) we start with the general formula for the perpendicular
distance, h, from an arbitrary point (z,,y,) to an arbitrary straight line, y = y'z + yo,
where y'(= dy/dz) is the slope of the line and yp is its y intercept. The formula is

h=(14y) 3 (o—wn+yzn). (12)

Here (£,,¥)) = (c,0) and the y-intercept is yo = y — y'z. The straight-line (see
Fig. 1) is the tangent to the ellipse at the position (z,y) of the planet so that

v = dy/dz = —(z/y)(b/a’), (13)

which follows directly from Eq. (7). Substituting into the square of Eq. (12) for y', yo,
v and 2, we obtain

= (1 + 2% /y’a*) (y + £2b*/ya® — zcb*/ya?)?
— (y2a4 +12b4)-l(y2a2 +b21'2 _b'lxc)'l
= bla*(1 - £¥/a®) + £*(a® - )] ?() - £ /a?) + 2* - z)?
— b2(ai _ I2C2)—I(a2 _ IC)2
= b*(a* + z¢) Y(a® - zc) , (14)

which, again, is an cquation for the ellipse in terms of the codrdinates h & x.
Solving Eq. (10) for z yields

s = (@)1 - r/a) , (15)
and siumilarly, solving Lkiq. (13) for z yields
r = (a*fe)(1 = h*J6*) /(1 + h*b?) . (16)
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Finally, equating Eq. (13) and Eq. (14) yiclds the desired cllipse Eq. (1).

From a teaching point of view the present approach to the Kepler problem works so
well because the physics content of the proofs is all contained, as in Sec. 2 above, in a few
simple statements pertaining to the conservation of energy and angular momentum.
'TThe complications, such as they are, occur only in the derivation of the unfamiliar
form of the ellipse equation. Even this derivation involves straightforward mathematics
which, in my experience, i3 familiar to students taking introductory physics courses. In
order not to deflect from the physics interest it is my practise to present the derivation
given in this section as a handout intended to help those students who wish to know
more about ellipses and who want to relate the unfamiliar form of Eq. (4) to something
that they know.

It is interesting to plot the ellipse pairs of coordinates other than the usual z & y
of Fig. 2. For example, the z & r ellipse of Eq. (11) or Eq. (15) is a straight line for
which the elliptical motion lies between the maximum and minimum values of r, that
is, between (1 —~¢)a and (1+¢)a. Similarly, for the z & h equation the ellipse lies between
the limits (1 — ¢)a < h < (1 + ¢)h, or correspondingly, —a < z < a. The h & r cllipse,
q. (1), which is of importance to us in this paper, is shown on Fig. 2, for two values of
the eccentricity, ¢ = 0 and ¢ = 0.8660. The latter corresponds to a choice of b = a/2,
which was also the choice for the ellipse of Fig. 2. By the definition of &, the only values
of h which can have any physical meaning are those for which A < r. Thus the elliptical
motion takes place in the half quadrant for which, A < r, that is, below the dashed line
of Fig. 2. For ¢ = 0 we have a circle and, indeed, on Fig. 2, the only physical point is
h=r=a.

IV. UNBOUND KEPLER ORBITS

It is well known that when the total energy E is a positive constant the orbit ol the
Kepler problem is hyperbolic. This fact is often stated in introductory physics texts.
We now prove it by the same simple methods used for elliptic orbits above.

For positive E we rewrite Eq. (3) as
[(¢/m)*/2E[m)] _ [GM/(E/m)]
h? r

For this orbit equation we note that the relevant hyperbola, shown on Fig. 3, obeys
the equation

= 1. (17)

= - = =1

h? r (18)

which can be contrasted with the ellipse, kXq. (4). Again, the equality of Kq. (17) and
Iq. (18) proves that the orbit is hyperbolic and gives the orbit parameters, a& b, to be

a = GM/[2AE[m), b= (¢/m)/(2E/m)} . (19)

To complete the proof we must derive the hyperbola Eq. (18), in terms of the
coordinates r & h, from the usual equation of a hyperbola, in terms of the coordinates

z&y:
fa — /6 = 1. (20)
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Iu the (z,y) plance of I'ig. 3 the hyperbola lies between two asymptotes whose direc-
tions are determined by the choice of 8& a. (For the hyperbola illustrated in Fig. 3 we
have chosen b = a/2, as we did for the ellipse of Fig. 2 above.) There are, of course,
two cqual hyperbolas, both of which satisfy Eq. (20). We have drawn only the left-side
hyperbola on Fig. 3, and not its image mirrored in the y-axis.

This choice between the two hyperbolas is arbitrary but the choice for a system of
hyperbola plus focus is not. When we refer to the physics we place the center-of-force
at the focus: (z,y) = (—c,0) or (+¢,0) with ¢ = a?+ b2 For the left hyperbola shown
on Fig. 3 the choice of (—¢,0) as the focus corresponds to gravitational attraction
the orbit is “pulled around” the center-of-force. Placing the focus at the other posi-
tion, (4+¢,0), would correspond to the unphysical orbit of antigravity - with the orbit
“pushed away” from the center-of-force. Although this latter case has no relevance to
the Kepler problem it does provide the orbit for Rutherford scattering (see Sec. 6,
below). The orbits for the left-side hyperbola, with the two possible foci both obey the
same hyperbola equation in the z & y coordinates, that is, Eq. (20), but for the r& h
coordinates the two cases obey different equations. We are interested here in the case
of the Kepler problem, with the left-side hyperbola taken together with the left-side
focus.

To begin the proof of Eq. (18) we note that from Eq. (20) we have
y = b(z"/a’ ~ 1), (21)

y' = dyf/dz = (b*/a®)(z/y), (22)

and the y-intercept for the tangent line at point P is
vo=y-yz. (23)
Choosing the left-side focus, (z,,y,) = (—¢,0) we find at once, in place of Eq. (10)

V' + (z+ )]}
= —a'(a® + zc) . (24)

r

Similarly we find, using Eq. (12)
h?* = —b*(a® + zc)/(a® - zc), (25)

which can be compared to Eq. (13) for the ellipse. Combining Eq. (24) and Eq. (25)
yields the desired hyperbola, Eq. (18).

V. ACCESSIBLE ORBIT PROBLEMS

With the simple relationship between the orbit parameters and the constants of the
motion, derived above, a myriad of interesting problems can immediately be tackled
by the students. The point is that any two pieces of information pertaining to a, b, c,
¢/m, Efm, T cic., completely specify the orbit. A few examples are:

i) If you fire a cannonball horizontally at the North Pole with an initial velocity of
v = 0.98 x 10* in/s, sketch the orbit and find the orbit parameters. (Assume the
carth is spherically symmetric and neglect air friction.) Find the period of the
motion. ‘The solution for this problem is an elliptical orbit whose major axis lies
along the carth’s axis and is greater than the ecarth radins.
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1) If your friendly computer “Hal” launches you from your spaceship into outerspace
al a distance from the Sun of 3.1 x 10" m, with a speed of 8.2 x 10* m/s and a
direction of motion such that your perpendicular distance is 1.86 x 10'' m from
the Sun, find out what will be your distance of closest approach to the sun. Also,
find out if your orbit is bound or unbound.

i) If a comet were to strike the carth in such a way that its orbital velocity instantly
increased by 10% but the direction of the velocity remained unchanged by the
collision, find the effect on the earth’s orbit (originally assumed to be circular)
and its period.

Further, a great deal of celestial mechanics becomes accessible and transparent.

VI. THE RUTHERFORD SCATTERING LAW

In spite of its importance the Rutherford Scattering Law is not a subject normally
covered in introductory physics textbooks, perhaps because the concepts of cross sec-
tions are usually optional or omitted. Indeed, the concept of a differential cross section,
needed for the Rutherford Law is quite sophisticated for a first year course. However,
because of my own personal predilections in physics | like to say more about atomic
and nuclear cross sections in my introductory class than is the standard fare. When |
then also give a full treatment, as above, of the Kepler Laws it is very tempting to go
further and derive the Rutherford Scattering Law. The connection between the crown-
ing achievement of Newtonian Mechanics and the foundations of modern subatomic
physics is very compelling. This is an approach to which | was led by the PSSC courses
of two decades ago and which has been admirably presented by French in his textbook,
Newtonian Mechanics [3].

The purpose of this section is to show that the derivation of the Rutherford Law ben-
efits fully from the simplification of the Kepler Laws introduced above. If the Coulomb
force is F' = kQ,Q2/r?, in an obvious notation, then the total energy, E, of an alpha
particle in its orbit around a gold nucleus is given by

E = mv*/2 + kQ,Q,/r . (26)
Using the conserved angular momentum, ¢ = muk, we find, instead of Eq. (3)
(2/27"E kQ]Q;/E‘
. +
h? r
This orbit is that for the Kepler problem with a repulsive force. We have the left-side

hyperbola with the right-side focus, as shown on Fig. 3, where the coordinates ' & &'
are also indicated. In terms of r' & A’ the hyperbola equation is

b? 2a

= =

(hl)2 + r!

=1. (27)

which is to be compared with the ellipse Eq. (4) and Eq. (18) which pertains to the
hyperbola-focus system for attractive forces. Again, comparing lq. (28) and Eq. (27)
gives us the orbit parameters:

a = kQ\Qy/2E , b= (£)2mE)7 . (29)
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T'he proof of Lq. (28) follows closely the derivation of Sec. 4 above. kquations (21),
(22) and (23) still apply. However, with the choice of (z,,y,) = (+¢,0) we find

v =a'[a®+ 2, (30)

and (h')? = —b*(a® - zc)/(a® + z¢) , (31)
P
which are to be compared with the corresponding variables of Sec. 3 and Sec. 4. Com-
bining Eq. (30) and Eq. (31) now yields Eq. (28).

When the alpha particle is far from the gold nucleus the potential energy vanishes
and therefore £ = T,, the initial kinetic energy of the alpha particle. The orbit
parameter b is in fact, from Fig. 3, the usual “impact parameter”. From the geometry
of Fig. 3 we see that

b = acot (8/2), _ (32)
where 0 is the scattering angle, and then
db/dé = (a/2)sin%(0/2) . (33)

‘lo complete the derivation of the Rutherford Scattering Law we need to introduce
the definitions pertaining to the differential scattering cross section, do/df). Here we
follow the conventional treatment whose elements are the following. The partial cross
scction element, do, is defined to be proportional to the fraction of alpha particles
whose impact parameters lie in between b& b + db

do = 2x bdb , (34)
dQ is the area on the unit sphere between 6 and 8 + d0
d} = 2x3in0d0 = 4x sin(0/2) cos(0/2)d0 . (35)

Therefore, using Eq. (20)

do b db
dQ ~ 2sin(0/2) cos(0/2) db
= a?/[4sin*(0/2)] = [k Q:Q:/4T, sin®(8/2)]* , (36)

which is the Rutherford Scattering Law.

VII. CONCLUSION

A derivation is given of Kepler’s Laws in which the physics is easy and immediate.
Any complications reside in the mathematics of ellipses and even these are well within
the grasp of the students who have, in the past decade or more, come into my intro-
ductory physics class. Therefore, the derivations presented here fulfilled their intent
of making the whole Keplerian problem easily accessible to physics students in first
year. The intellectual payoff is large for the effort involved and that is the essence of
introducing physics to willing students.
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FIGURE CAPTIONS

Fig. 1. The geometry for the bound elliptical orbit of a planet at point PP around the
Sun at the focus. The ellipse parameters (a, b and c) are shown as well as three
alternative pairs of coordinates: z &y, r& 0, r & h, where h is the perpendicular
distance from the focus to the tangent at point P. The ellipse shown has b = a/2.

Fig. 2. The elliptical orbit, Eq. (4), in terms of the coordinates r & h for two different
values of the eccentricity: ¢ = 0 (a circle) and ¢ = 0.8660 (the ellipse of I'ig. |
for which b = a/2). Since h < r the elliptical motion pertains to that part of the
curve which lies in the lower half of the quadrant, that is, below the dashed line
of r = h.

Fig. 3. The geometry of the hyperbola pertaining to unbound Kepler orbits of plancts
and to the orbit of alpha particles in Rutherford scattering. The hyperbola (heavy
line) is confined between two asymptotes. For the unbound Kepler orbit the Sun
is at the focus (z,y) = (—c,0) and the orbit parameters a, b& c are indicated. As
in Fig. 1, above, we have chosen b = a/s. For the planet at point P its distance, r,
from the Sun as well as the perpendicular distance, h, to its tangent line are also
shown. For alpha-nucleus scattering the same hyperbola applies but the nucleus
is at the other focus, (z,y) = (¢,0) for which the alpha-nucleus distance is '
and the perpendicular distance to the tangent line is h'. r' & A’ are indicated on
the figure as well as the scattering angle 8.
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