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Abstract

A simple derivation of all three so-called Kepler Laws is presented in which the orbits, 
bound and unbound, follow directly and immediately from conservation of energy and 
angular momentum. The intent is to make this crowning achievement of Newtonian 
Mechanics easily accessible to students in introductory physics courses. The method is 
also extended to simplify the derivation of the Rutherford Scattering Law.
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I. INTRODUCTION

The so-called Kepler’s Laws of planetary motion have been of central interest for 
Newtonian Mechanics ever since the appearance of Newton’s Frtncipia (1). They are 
discussed in most introductory textbooks of physics [2,3] and continue to be a subject 
of lively interest in the pages of the American Journal of Physics [4]. 'Phis interest is not 
surprising because the understanding of planetary motion has been one of the oldest 
challenges in many human cultures and continues to excite the sense of wonder among 
young scientists today.

The purpose of the present article is to give a new elementary derivation of all three 
of the Kepler Laws intended to make their physics accessible to first year university 
students taking introductory mechanics. I have used this derivation in my own in­
troductory classes for more than a decade and find that it, and the many associated 
problems, are a highlight of the introduction which I give to physics. In contrast, most 
first-year textbooks give a description of Kepler’s Laws but apparently regard their 
derivation as too difficult. Perhaps the derivation given here can then fill an important 
K%P

The elementary proof, given in the next section, follows directly, in a few easy 
steps, from conservation of energy and angular momentum which, in turn, follow from 
/' = rna and the central nature of the universal gravitational force, / = Grn M(rl. 
These conservation laws, on which we build, are usually covered thoroughly, and often 
even elegantly, in first year textbooks.

In succeeding sections, beyond the proof, we provide further discussion of bound 
elliptic orbits and extend the treatment to the unbound Kepler orbits and to the 
Rutherford Scattering Law.

II. ELEMENTARY PROOF OF KEPLER’S LAWS

a) Kepler’s First Law (The Law of Orbits): All planets move in elliptical orbits hav­
ing the Sun at one focus.

For a planet of mass m in a bound orbit(negative total energy E), around the sun 
of mass A/, we have the constant total energy, E

E = mv*/2 - GM m/r , (I)

where r is the distance of the planet from the sun and v its velocity. ( — Efm) is a 
positive constant of the motion. Because the force is central we also have conserved 
angular momentum, i

l = mvh , (2)

where h(= r sin<f>, with <f> the angle between v and r) is the perpendicular distance from 
the planet’s instantaneous velocity vector to the sun (see Fig. I). From the definition 
of h we have h < r. (tjm) is also a positive constant of the motion. Using Fq. (2) in 
Fq. (1) we obtain

[(f/m)2/2(-E/m)\ _ [GMf(-E/m)\ 
h2 r

(3)
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Aii ‘orbit’ equation is, in general, a relationship between two independent variables. 
Equation (II) is an orbit equation connecting two independent coordinates, r & h. Wliat 
kind of an orbit? It is exactly an ellipse because the standard ellipse equation, trans­
formed into the: two variables r h is (see Sec. 3)

6^ 2a 
h3 ~ r -1 (V < r) , (4)

where a is the semi-major axis of the ellipse and b is the semi-minor axis. The equality 
of Fq. (3) and Fq. (4) not only completes the proof of Kepler's First Law, but also 
immediately gives the orbit parameters, a& 6, in terms of the constants of the motion, 
(-KJm) and (f/m)

a = GM f2(-Efm) , b = (t/m)/(-2E/m)> . (5)

b) Kepler’s Second Law (The Law of Areas): A line joining planet to the Sun sweeps 
out equal areas in equal times.

This law is the only one of the three commonly proved in introductory physics 
textbooks. Referring to Fig. 1, the time derivative of the area, A, swept out is

dAfdt = -u/i = Ij2rn , (b)

which is constant. Thus this law is directly associated with the conservation of angular 
momentum.

c) Kepler’s Third Law (The Law of Periods): The square of the period of any planet 
about the Sun is proportional to the cube of the planet’s mean distance from the Sun.

Using the second law the period, T, of the planet must be equal to the total area 
of the ellipse, divided by the constant, dAfdt. The total area of an ellipse is nab. 
Therefore,

T = 2n abf(ifm) = (2nfy/GM)a* 
or T2 = (4tt2fGM)as . (7)

Interpreting the semi-major axis as the mean distance from the sun, the result Fq. (7) 
proves the third law. The constant, (4n2/GM), which applies to all planets is, about, 
3.0 x 1U-:M y2/rn:i.

HI SOME PROPERTIES OF ELLIPSES

Referring to Fig. I, the familiar equations for the ellipse relate to the coordinates

s2fa2 + y2/l>2 («)
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or, alternatively, to the polar coordinates r & #,

r = a(l — t2)/(l + tcosQ) , (9)

where the eccentricity, t, is defined by c = (a2 — fc2)a = ta, with c being the distance 
from the center of the ellipse to its focus.

Next we provide the derivation, beginning with Eq. (7) of the unfamiliar form of the 
ellipse, Eq. (4), required for the proof of Sec. 2. The coordinate r, shown on Fig. 1, is 
defined by

r = [y2 + (i-c)2Ja . (10)

We substitute for y2 from Eq. (7),

y2 = 62(1 - x2/a2) = (l/a2)(a2 - c2)(a2 - x2) ,

to obtain

r = a-l(o2 — cx) , (11)

which is also an equation for the ellipse in terms of the coordinates rUx.
To find h in terms of x (or y) we start with the general formula for the perpendicular 

distance, /t, from an arbitrary point (x,,yj to an arbitrary straight line, y = y'x + y0, 
where y'( = dy/dx) is the slope of the line and yo is its y intercept. The formula is

h = (1 + y/2)“a(y0 - yi + y'x,) . (12)

Here (z,,y,) = (c,0) and the y-intercept is yo = y — y'x. The straight line (see 
Fig. 1) is the tangent to the ellipse at the position (x,y) of the planet so that

y' = dy/dx = ~(x/y)(b2/a2) , (13)

which follows directly from Eq. (7). Substituting into the square of Eq. (12) for y', yo, 
y, and z,, we obtain

h2 = (1 + x2b*/y2a4)~l(y + x2b2/ya2 — xcb2/ya2)2 
= (y V + xV)-‘(yV + b2x2 - b2xc)2
= <#2(a4(l - x2/a2) -f- x2(o2 - c2)]_*(a2(l - x2/a2) + x2 - xc]2 
= b2{aA — x2c2)_,(a2 — xc)2
= 62(a2 T xc)-l(a2 - xc) , (14)

which, again, is an equation for the ellipse in terms of the coordinates h&x.
Solving Eq. (10) for x yields

x = (a2/c)(l - r/o) ,

and similarly, solving Eq (13) for x yields

= (a2/r)(l - /i2/62)/(l + h2b2) .
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Finally, equating Eq. (13) and Eq. (14) yields the desired ellipse Eq. (4).

From a teaching point of view the present approach to the Kepler problem works so 
well because the physics content of the proofs is all contained, as in Sec. 2 above, in a few 
simple statements pertaining to the conservation of energy and angular momentum. 
The complications, such as they are, occur only in the derivation of the unfamiliar 
form of the ellipse equation. Even this derivation involves straightforward mathematics 
which, in my experience, is familiar to students taking introductory physics courses. In 
order not to deflect from the physics interest it is my practise to present the derivation 
given in this section as a handout intended to help those students who wish to know 
more about ellipses and who want to relate the unfamiliar form of Eq. (4) to something 
that they know.

It is interesting to plot the ellipse pairs of coordinates other than the usual xb.y 
of Fig. 2. For example, the xfor ellipse of Eq. (11) or Eq. (15) is a straight line for 
which the elliptical motion lies between the maximum and minimum values of r, that 
is, between (1 — t)a and (1 +c)a. Similarly, for the xfoh equation the ellipse lies between 
the limits (1 — t)a < A < (1 -f e)A, or correspondingly, -a < x < a. The A ellipse, 
Eq. (4), which is of importance to us in this paper, is shown on Fig. 2, for two values of 
the eccentricity, t = 0 and e = 0.8660. The latter corresponds to a choice of b = a/2, 
which was also the choice for the ellipse of Fig. 2. By the definition of A, the only values 
of A which can have any physical meaning are those for which A < r. Thus the elliptical 
motion takes place in the half quadrant for which, A < r, that is, below the dashed line 
of Fig. 2. For c = 0 we have a circle and, indeed, on Fig. 2, the only physical point is 
h = r = a.

IV. UNBOUND KEPLER ORBITS

It is well known that when the total energy E is a positive constant the orbit of the 
Kepler problem is hyperbolic. This fact is often stated in introductory physics texts. 
We now prove it by the same simple methods used for elliptic orbits above.

For positive E we rewrite Eq. (3) as

l(*/m)V2(E/m)) _ [GM/{E/m)) 
h2 r (17)

For this orbit equation we note that the relevant hyperbola, shown on Fig. 3, obeys 
the equation

b2 2 a
*5 - 7 = 1 ■

which can be contrasted with the ellipse, Eq. (4). Again, the equality of F’q. (17) and 
Eq. (18) proves that the orbit is hyperbolic and gives the orbit parameters, a & 6, to be

« = GM/2(E/m) , b = (t/m)/{2E/m)l . (19)

To complete the proof we must derive the hyperbola Eq. (18), in terms of the 
coordinates r & A, from the usual equation of a hyperbola, in terms of the coordinates 
xky:

x2/a1 — y2/b2 = I .
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Ill the (x, y) plane of Fig. 3 the hyperbola lies between two asymptotes whose direc­
tions are determined by the choice of a. (Tor the hyperbola illustrated in Fig. 3 we 
have chosen b = a/‘2, as we did for the ellipse of Fig. 2 above.) There arc, of course, 
two equal hyperbolas, both of which satisfy Bq. (20). We have drawn only the left-side 
hyperbola on Fig. 3, and not its image mirrored in the y axis.

This choice between the two hyperbolas is arbitrary but the choice for a system of 
hyperbola plus focus is not. When we refer to the physics we place the center of force 
at the focus: (x, y) = (—c, 0) or (+c,0) with c2 = a2 + 62. For the left hyperbola shown 
on I’ig. 3 the choice of (—c,0) as the focus corresponds to gravitational attraction 
the orbit is “pulled around” the center of force. Placing the focus at the other posi­
tion, (+r, 0), would correspond to the unphysical orbit of antigravity with the orbit 
“pushed away” from the center of force. Although this latter case has no relevance to 
tin; Kepler problem it does provide the orbit for Rutherford scattering (see See. (i, 
below). The orbits for the left-side hyperbola, with the two possible foci both obey the 
same hyperbola equation in the x&y coordinates, that is, Bq (20), but for the rfa h 
coordinates the two cases obey different equations. We are interested here in the case 
of the Kepler problem, with the left-side hyperbola taken together with the left-side 
focus.

To begin the proof of Bq. (18) we note that from Bq. (20) we have

y = b(x2fa2 — 1)* , (21)

y' = dyldx = (b2fa2)(x/y) , (22)

and the y-intercept for the tangent line at point P is

yo = y-y,x. (23)

Choosing the left-side focus, (x,,y,) = (—c,0) we find at once, in place of Bq. (10)

r = [y2 + (x + c)2]*
= -a-1 (a2 + xc) . (24)

Similarly we find, using Bq. (12)

h2 = -b2(a2 + xc)/(a2 — xc) , (25)

which can be compared to Bq. (13) for the ellipse. Combining Bq. (24) and Bq. (25) 
yields the desired hyperbola, Bq. (18).

V. ACCESSIBLE ORBIT PROBLEMS

With the simple relationship between the orbit parameters and the constants of the 
motion, derived above, a myriad of interesting problems can immediately be tackled 
by the students. The point is that any two pieces of information pertaining to a, 6, c, 
f/rn, IC/m, T etc., completely specify the orbit. A few examples are:

i) If you fire a cannonball horizontally at the North Pole with an initial velocity of 
v = 0.98 x I04 m/s, sketch the orbit and find the orbit parameters. (Assume the 
earth is spherically symmetric and neglect air friction.) Find the period of the 
motion. The solution for this problem is an elliptical orbit whose major axis lies 
along the earth’s axis and is greater than the earth radius.
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ii) If your friendly computer “Hal” launches you from your spaceship into outers pace 
at a distance from the Sun of 3.1 x 10n m, with a speed of 8.2 x 104 m/s and a 
direction of motion such that your perpendicular distance is 1.86 x 10" m from 
the Sun, find out what will be your distance of closest approach to the sun. Also, 
find out if your orbit is bound or unbound.

iii) If a comet were to strike the earth in such a way that its orbital velocity instantly 
increased by 10% but the direction of the velocity remained unchanged by the 
collision, find the effect on the earth’s orbit (originally assumed to be circular) 
and its period.

Further, a great deal of celestial mechanics becomes accessible and transparent.

VI. THE RUTHERFORD SCATTERING LAW

In spite of its importance the Rutherford Scattering Law is not a subject normally 
covered in introductory physics textbooks, perhaps because the concepts of cross sec­
tions are usually optional or omitted. Indeed, the concept of a differential cross section, 
needed for the Rutherford Law is quite sophisticated for a first year course. However, 
because of my own personal predilections in physics Z like to say more about atomic 
and nuclear cross sections in my introductory class than is the standard fare. When I 
then also give a full treatment, as above, of the Kepler Laws it is very tempting to go 
further and derive the Rutherford Scattering Law. The connection between the crown­
ing achievement of Newtonian Mechanics and the foundations of modern subatomic 
physics is very compelling. This is an approach to which I was led by the PSSC courses 
of two decades ago and which has been admirably presented by French in his textbook, 
Newtonian Mechanics (3).

The purpose of this section is to show that the derivation of the Rutherford Law ben­
efits fully from the simplification of the Kepler Laws introduced above. If the Coulomb 
force is F = kQxQ2fr2} in an obvious notation, then the total energy, F, of an alpha 
particle in its orbit around a gold nucleus is given by

F = mv2f2 + kQxQjjr . (26)

Using the conserved angular momentum, t = mu/t, we find, instead of Fq. (3)

i2/2mF kQxQJF 
h2 * r (27)

This orbit is that for the Kepler problem with a repulsive force. We have the left-side 
hyperbola with the right-side focus, as shown on Fig. 3, where the coordinates r' hh' 
are also indicated. In terms of r'&A' the hyperbola equation is

fca 2o 
(h1)2 + r' (28)

which is to he compared with the ellipse Fq. (4) and Fq. (18) which pertains to the 
hyperbola-focus system for attractive forces. Again, comparing Fq. (28) and Fq. (27) 
gives us the orbit parameters:

u - kQxQif'lE , b = (C/2mF)i . (29)
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Tin: proof of Eq (28) follows closely the derivation of Sec. 4 above, liquations (21), 
(22) and (23) still apply. However, with the choice of (xi,yt) = (+c, 0) we find

r* = a-1 [a2 + xc] , (30)

and (A')2 = -b2(a2-xc)l(a2 + xc), (31)

which are to be compared with the corresponding variables of Sec. 3 and Sec. 4. Com­
bining Eq. (30) and Eq. (31) now yields Eq. (28).

When the alpha particle is far from the gold nucleus the potential energy vanishes 
and therefore E = T„, the initial kinetic energy of the alpha particle. The orbit 
parameter b is in fact, from Fig. 3, the usual “impact parameter”, from the geometry 
of Fig. 3 we see that

b = acot (0/2) , (32)

where 0 is the scattering angle, and then

db/dO = (a/2) sin~2(0/2) . (33)

To complete the derivation of the Rutherford Scattering Law we need to introduce 
the definitions pertaining to the differential scattering cross section, dofdil. Here we 
follow the conventional treatment whose elements are the following. The partial cross 
section element, do, is defined to be proportional to the fraction of alpha particles 
whose impact parameters lie in between bleb + db

do = 2wbdb , (34)

dil is the area on the unit sphere between $ and 0 + dO

dQ = 2xsinOdO = 4jt sin(0/2) cos(0f2)d$ . (35)

Therefore, using Eq. (20)

do b db
dil = 2sin(0/2)cos(6/2) dO

= aJ/|4Sm*(tf/2)l = l* QMiT. ^(0/2)11 . (36)

which is the Rutherford Scattering Law.

VII. CONCLUSION

A derivation is given of Kepler’s Laws in which the physics is easy and immediate. 
Any complications reside in the mathematics of ellipses and even these are well within 
the grasp of the students who have, in the past decade or more, come into my intro­
ductory physics class. Therefore, the derivations presented here fulfilled their intent 
of making the whole Kepierian problem easily accessible to physics students in first 
year. The intellectual payoff is large for the effort involved and that is the essence of 
introducing physics to willing students.
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FIGURE CAPTIONS

Fig. 1. The geometry for the bound elliptical orbit of a planet at point P around the 
Sun at the focus. The ellipse parameters (a, b and c) are shown as well as three 
alternative pairs of coordinates: x& y, r&O, r& A, where h is the perpendicular 
distance from the focus to the tangent at point P. The ellipse shown has b = a/2.

Fig. 2. The elliptical orbit, Eq. (4), in terms of the coordinates r&th for two different 
values of the eccentricity: c = 0 (a circle) and c = 0.8660 (the ellipse of Fig. I 
for which b = a/2). Since h < r the elliptical motion pertains to that part of the 
curve which lies in the lower half of the quadrant, that is, below the dashed line 
of r = k.

Fig. 3. The geometry of the hyperbola pertaining to unbound Kepler orbits of planets 
and to the orbit of alpha particles in Rutherford scattering. The hyperbola (heavy 
line) is confined between two asymptotes. For the unbound Kepler orbit the Sun 
is at the focus (x,y) = (—c,0) and the orbit parameters a, 6 & c are indicated. As 
in Fig. 1, above, we have chosen b = a/s. For the planet at point P its distance, r, 
from the Sun as well as the perpendicular distance, h, to its tangent line are also 
shown. For alpha nucleus scattering the same hyperbola applies but the nucleus 
is at the other focus, (x,y) = (c,0) for which the alpha nucleus distance is r' 
and the perpendicular distance to the tangent line is h'. r' hh! are indicated on 
the figure as well as the scattering angle 0.
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