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ABSTRACT

In this report we have chosen a sub-system of an MSF water desalination plant, the brine- 
heater, for analysis, synthesis, and simulation. This system has been modelled and imple
mented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop 
has been designed and implemented on the computer. The performance of the proposed FLC 
is compared with three other conventional control strategies: PID, cascade and disturbance 
rejection control.
One major concern on FLC’s has been the lack of stability criteria. An up to-date survey of 
stability of fuzzy control systems is given. We have shown stability of the proposed FLC using 
the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy 
controllers for complex and large-scale systems through hierarchy of rule sets and hybridiza
tion with conventional approaches are also investigated.
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1 Introduction

Water is a very essential ingredient for life and the world’s most precious resource. Without it, 
no one can live for a long period of time, and is thus an essential commodity for any society. In 
areas where water is not found naturally (as ground-water, fresh water lakes, rivers or rain), 
distillation of seawater (known as desalination) may be both economic and justified. This 
especially applies to the Middle East, where water resources are scarce and often over- 
exploited, and where they have access to low cost energy. In this region water also is a major 
factor for maintaining peace and stability.

Today there are several different desalination methods in use, which can broadly be classified 
as membrane and distillation techniques.

• Membrane techniques
Two commercially important desalination processes, electrodialysis and reverse 
osmosis (RO) uses membranes to separate salt and water. These two techniques are 
mainly used for brackish water, and in small to medium sized productions.

• Distillation techniques
These processes uses thermal energy to vaporise the seawater, and the vapour pro
duced is condensed as fresh water. Three major techniques exists; Multi-Stage 
Flash (MSP), Multi-Effect Distillation (MED) and Vapour Compression (VC). The 
two first are often installed in conjunction with an electricity plant, using available 
surplus steam, while VC uses electrical energy.

The choice of technology depends on several factors such as energy availability, desired pro
duction, salinity of water etc. For large productions using seawater, MSP desalination is the 
most widely applied process.
The control of MSP plants has more or less remained unchanged over the past 30 years, and 
initiative has been taken to investigate modem control techniques (Al-Gobaisi et al., 1994a; 
Rao et a/., 1994). In order to get a better understanding of the process, rigorous dynamic non
linear models of MSP plants are under development (Husain et al., 1994a,b). These models 
can also be used for studying the effect of advanced control methods, and in the design of such 
control systems.
In order to continuously improve the operating performance and plant availability, new control 
strategies are being investigated. One such control method is fuzzy control. Fuzzy control has 
turned out to be suitable for controlling non linear processes, and systems with imprecise, or 
those in which a mathematical model is not readily available. Fuzzy control is based on fuzzy 
sets and logic, which was first proposed in the seminal paper on fuzzy sets by Zadeh (1965). A 
fuzzy set has, unlike a classical set, unsharp boundaries, with a gradual transition from mem
bership to non-membership. This coincides more with the real world where things are seldom 
black or white, but rather shades of grey in between.
The main area of application of fuzzy logic has been in control engineering, where we have 
numerous examples ranging from control of cement kilns (Larsen, 1980), control of subway 
systems (Yasunobu and Hasegawa, 1985) to autonomous control of a model car (Sugeno and 
Nishida, 1985); the first laboratory implementation came in (Mamdani, 1974) with the control 
of a steam engine.
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Introduction

The main purpose of this work is, therefore, to choose a suitable sub-system of the MSF plant 
to be controlled, implement a stable fuzzy controller, and compare its performance with con
ventional methods.
This report is organised as follows:
Chapter 2 gives a description of MSF desalination plants and a non-linear model of the brine- 
heater. Theory about fuzzy sets, logic and control follows in Chapter 3. Stability of fuzzy con
trol systems, including the top brine heater system is covered in Chapter 4. Simulations and 
results are presented in Chapter 5. The notions of hierarchy and hybridization of fuzzy logic 
with conventional or other Al-based approaches are briefly discussed in Chapter 6. The con
clusions and discussions are presented in Chapter 7.
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2 Multi Stage Flash Desalination Plant

The basic principle of thermal desalination is vaporising the brine1. The vapour obtained is 
very pure, and when it condenses it gives high quality fresh water. The brine’s boiling-point is 
a function of pressure and salt concentration. When at its boiling-point, vapour can be 
obtained in two ways, either by heat addition or by pressure reduction. The former is known as 
boiling and the latter as flashing. When these processes are put in subsequent stages it is called 
Multi-Effect Distillation (MED) and Multi-Stage Flash (MSF). In large-scale desalination 
plants, the MSF principle is the most used of the two technologies.

In this chapter a description of the MSF process and control is presented. A dominant subsys
tem of the plant, the brine heater, is chosen for further study. A non-linear mathematical model 
of the brine-heater will be given.

2.1 Process Description

A typical MSF plant is shown in Figure 2-1. There are three mains sections: the heat rejection 
stages, the heat recovery (or gain) stages and the brine heater. The heat rejection and recovery 
section consists of several stages. One of these stages is illustrated in Figure 2-2. The number 
of stages is determined according to the desired production rate and performance, an example 
is 15 for the recovery section and 3 for the rejection section.

Seawater enters the last stage of the rejection section and flows through a series of heat 
exchangers. Upon leaving the first stage of the rejection section, a part of the heated seawater 
is rejected back to the sea (thus the name rejection section). The rest is fed through a dearator 
as make up flow to be mixed with concentrated brine in the last stage. The dearator removes 
oxygen to prevent corrosion of tubes. During the winter season, the seawater is mixed with 
rejected seawater to maintain a minimum seawater temperature.

From the last stage of the rejection section, part of the concentrated brine is rejected to the sea 
as blow-down, while most is pumped into the last stage of the recovery section. This flow is 
known as the recycle flow, and is the most important flow in the process. The main reason for 
recycling the brine is the high cost of chemical additives which is added to prevent scaling2 of 
salts in the tubes.

The recycle flow now passes through more heat-exchangers in the recovery section, its tem
perature increases as it proceeds towards the brine heater. The brine heater is the heat input 
section of the plant. In the brine heater the temperature is additionally increased to a maximum 
value, the Top Brine Temperature (TBT). Here the brine reaches its saturation temperature at 
the system pressure. The heating medium is low pressure, saturated steam. The steam nor
mally comes from an adjacent power plant, thus exploiting low cost surplus steam. The tem
perature of the steam is controlled by a desuperheater, where condensate from the brine heater 
is sprayed on the steam. This is done to ensure dry and saturated steam flow at constant tem-

1. a strong saline solution, i.e. stronger than seawater
2. The literature uses both scaling and fouling about deposits in tubes.
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Multi Stage Flash Desalination Plant

Courtesy of IFFWSAT
Figure 2-1: Typical MSF desalination plant
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Figure 2-2: A stage in an MSF plant (Hanbury et al„ 1993)

perature.
The brine then flows on the floor into the first stage of the recovery section through an orifice, 
thus reducing pressure. As the brine already was at its saturation temperature for a higher pres
sure, it will become superheated and flashes to give off vapour to become saturated again. The 
vapour passes through demisters (wire mesh) to remove any entrained brine droplets, and con
densates on the tubes of the counter-flowing recycling brine. The condensate drips from the 
tube surface into a distillate tray, and flows through all the stages in a channel. The heat of 
condensation supplies a large part of the heat required to raise the feed to its boiling-point.
The pressure in each stage is lower than the pressure in the preceding stage, the pressure drop 
being maintained by the brine level which acts like a liquid seal. If the brine level is lower than 
the orifice height, the inter-stage pressure difference is lost, and hence no flashing will occur 
(this is known as blow through).
The process of flashing and condensation is repeated in each stage as the brine flows towards 
the last stage of the rejection section. The brine level profile in all of the stages is controlled by 
the brine level in the last stage by the blow-down flow. Here the concentrated brine is mixed 
with fresh make up, and the whole process is repeated. The distilled water is pumped from the 
last stage, chemically treated and stored in storage tanks.

2.1.1 Operational Factors

There are principally two ways to increase the recovery rate (production).
• Increase the flash range

The flash range is defined as the difference in temperature between entering seawa
ter temperature and the TBT. The flash range can thus be increased either by 
increasing TBT or by decreasing the temperature of the entering flow to the last 
stage.

On fuzzy control of water desalination plants page 5



• The limit of TBT is determined by considerations of scaling. The TBT can 
be increased by adding costly high-temperature additives. The limit is then 
about 120°C. The steam supply is normally not a limiting factor.

• The temperature of seawater is given by nature and can not be changed. In 
the winter season the seawater feed is limited to about 24°C by adding 
rejected seawater from the first rejection stage.

• Increase the recycling flow
The upper limit here is given by the recycle flow velocity, which must be main
tained below an upper limit to avoid corrosion on the tubes. In the other end, one 
must have a minimum flow to avoid fouling of the tubes.

Increased recovery rate can also be improved by design, choice of materials, improved anti 
fouling additives etc. This will not be discussed here.

2.1.2 Optimal Performance

The operating range for a plant is between 60% and 120% of nominal production. One of the 
performance ratios used is:

PR kg of product 
kg of steam at 540 kcal/kg

(2-1)

It is mainly a function of the TBT and the recycle flow. An operational plot, as shown in Fig
ure 2-3, shows PR at different combinations of TBT and recycle flow. One could be misled to 
believe that the plant should always be run at its maximum performance ratio. This is not the 
case. For instance during summer the demand of water is high, and the plant must run at max
imum production at any cost.

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
Distillate production (t/hr)

Data supplied by Mr. Woldai at 1FFWSAT
Figure 2-3: Operational plot

In fact, most of the time the plants are running on maximum load, the need for partial load is 
mainly due to limited storage and infrastructure. However, plants are frequently shut-down 
due to malfunctioning of pumps/valves, necessary maintenance etc., so much work could be 
done to make shut-down and start-up automated. Today this is done by experienced operators.
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Multi Stage Flash Desalination Plant

2.2 Choice of Subsystem for Control

There are about 20 control loops in an MSF plant (see Figure 2-1) ranging from chemical 
additive to temperature and level control loops. The main controlled variables are (El-Saie and 
Hafez, 1994):

• Top brine temperature, controlled by controlling the steam flow valve.

• Brine recycle flow, controlled by the brine recycle pump.

• Steam temperature, controlled by spraying cooling fluid on the steam.

• Make-up flow, controlled by the make-up flow pump.

• Brine level in last stage, controlled by the blow-down pump.

• Distillate level in last stage, controlled by the distillate pump.

Picture 1: Brine heater

The plant represents a large-scale system, therefore we divide it into a number of subsystems 
which can be controlled independently. We have chosen the brine heater unit as the subsystem 
in this study. The two main reasons for this are:

1. It is the most important loop.

Together with the brine recycling flow it is the main factor for the production rate. 
In (Al-Gobaisi et al., 1994b) a study shows that it is the most critical loop for over
all stability and economy of plant operation.
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Multi Stage Flash Desalination Plant

2. It is a non-linear system.

The non-linearity relates to changing process characteristic (El-Saie and Hafez, 
1994). Examples of this are: fouling of brine heater tubes which changes the over
all heat transfer coefficient, change of recycling flow, variations in steam supply, 
valve characteristics and actuators. The brine heater process gain can change as 
much as 18% for different load conditions, and can have an 8% change between 
clean and fouled tube conditions (El-Saie and Hafez, 1994).

This makes conventional control, over a wide area of operation, quite difficult. The system, 
being a thermal system, is inherently stable. Due to large dimensions, it has a low bandwidth 
and is sluggish. Fluctuations of the TBT are the consequences of disturbances in the steam 
supply and recycle flow. The temperature of steam plays a minor role, as the steam is desuper
heated. The brine inlet temperature is a function of the TBT, so it is not an external distur
bance, but rather a crosscoupling.

2.3 Brine Heater Model

In (Babcock, 1994), we find a dynamic non-linear model of the brine heater from the MSF 
plant at Um-al-Nar-East 4-6 (UANE4-6). The brine heater is a steam-fluid, shell-tube heat- 
exchanger. (Babcock, 1994) use three sub-models to model the total system. The heater, valve 
and steam giving a system order of three. In this model they have not considered the distrib
uted phenomena due to the large dimensions. To show the distributed phenomena better, we 
decided to extend the model by dividing the heater into 10 segments making it a 12th order 
system. The idea is taken from (Husain et al., 1994), but they use the average (arithmetic), 
instead of the mean logarithmic, temperature difference.

We have the following assumptions:
• The density of brine in the tubes of the heater is constant. The density of the brine 

is a function of entering recycle brine temperature and salt concentration. As the 
brine concentration does not change insides the tubes the effect is negligible.

• Constant specific heat capacity of brine. Same as above.

• Heat loss to surroundings is negligible.
• Equal heating steam conditions on all tubes.

• Inlet temperature is independent of the brine outlet temperature. (Babcock, 1994) 
have not discussed this effect.

• Heat capacity of tubes is negligible.

2.3.1 The Heater

• Mass balance of brine in tubes:

dm
dt

Brine ^Brine, in ^Brine, out ®

• Energy balance for one segment:

(2-2)
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Multi Stage Flash Desalination Plant

dU - dT-
Ji = pBrine ' Cp ' VBrine ' ^ i + ‘ C7/- 1 “

This is rearranged to give:

(2-3)

dTt
dt PBrine ' Cp ' ^Brine

&HS, i + thBrine ' (Ti-l~

Total brine volume in tubes:

^nn, = ’LJ- LNT„ies

Brine volume in one segment:

(2-4)

(2-5)

VBrine
VBrine

nseg
(2-6)

Total heat transfer area:

A = %• d - L • N.Tubes

Heat transfer area for one segment:

nseg

Logarithmic mean temperature difference:

AT
h-h-1

LN.i Tcond ~Ti-l
In

V Tcond ~ Ti J

• Heat flow from steam to brine in one segment:

Qhs, i - k-A- A Tln< •

Total heat flow:

Qhs - X Qhs, ‘
i= 1

where i—\...nseg and Tq Tgr-Inejn.

2.3.2 Steam

Mass balance for steam in the heater shell:

(2-7)

(2-8)

(2-9)

(2-10)

(2-11)
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Multi Stage Flash Desalination Plant

dfnHS v dpHS 
It = v»s'Tt ,ilHS Illconct

rearranged to give steam density:

dp HS 
dt

• Energy balance of steam:
HS

d^HS
dt QHS-™Co,uf^hV = 0

giving the condensate flow:

(2-12)

(2-13)

(2-14)

mcond
Qhs

Ah,,
(2-15)

Assuming ideal gas behavior of heating steam:

Pshell ‘ Mhs

Phs ~ a - Cr„w+273.15K)

giving the shell pressure

P shell = Phs' Mhs ' a • (Tcond + 273.15£)

For the condensation temperature the Antoine equation is used:

logP = A-(|+c)

(2-16)

(2-17)

(2-18)

which is a semi-empirical relation that shows the correlation between vapour pres
sure and condensation temperature. Rearranging and with constants:

-1750.268
' cond

log
P shell

-235

\ 1.332x10 ^

(2-19)

-8.1077

Volume of the shell is approximately a constant times the volume of brine. The 
constant is determined from the brine heater’s geometry:

vhs ~ 4-07 • VBrine (2-20)

2.3.3 The Valve

• Mass balance in valve:

~dtHS ~ thHS, in ~ thHS, out - 0 (2-21)
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Multi Stage Flash Desalination Plant

• Energy balance in valve:

dUHS
~ mHS. in " hHS, in ~ mHS, out' hHS, out ~ 0

• Steam flow characteristic:

(2-22)

*«■- * ep (2-23)

An equal percentage valve characteristic is used:

^vs
(2-24)

The valve actuator dynamics is modelled with an on/off characteristic and dead- 
zone:

dli-
dt

' 0.02, 

• -0.02, 

. 0,

-h. >8

<8

<8

(2-25)

2.3.4 Operating Conditions

As can be seen from the above non-linear model, the brine heater model has basically four dis
turbances. These are: the steam supply pressure, brine heater inlet temperature, brine recycle 
flow and the steam temperature to the brine heater.
From (Hornburg et al., 1993) we find, in the contractors ‘s process design data, the range of 
variations for these variables, except for the brine heater inlet temperature. This is because the 
brine heater inlet temperature is dependant of the TBT, and is not an external disturbance. The 
brine heater is designed to deliver a TBT between 90°C and 106°C, depending on summer/ 
winter and high/low operating conditions. The range of the disturbances are (Hornburg et 
#71993): -

• Steam supply pressure
• Maximum: 2.1 bar. Minimum: 1.4 bar.

• Brine recycle flow
• Maximum: 4030 kg/s. Minimum: 3581 kg/s.

• Temperature of steam to brine heater
• Maximum: 121°C. Minimum: 105°C.

The model should be validated against these figures, but this task lies outside the scope of this 
report.
The non-linear model can be implemented on any commercially available simulation environ
ment, (Babcock, 1994) uses SPEEDUP1. We will implement the model in MATLAB/ 
SIMULINK2 in Chapter 5.

1. AspenTech, UK. 2. The Math Works Inc., USA
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3 Fuzzy Sets, Logic and Control

In this chapter we describe fuzzy sets, fuzzy logic and fuzzy control. Fuzzy logic has been suc- 
cessfullv-used-in-ControLengineeringJnjhe_form_offuzzy logic controllers (FLC). The FLCof 
t-ype-Tak-agi-Sugeno-is-presented......... .................... ......................................................................

3.1 Fuzzy Sets And Logic

3.1.1 Fuzzy Sets

A classical set C, denoted as a “crisp set” to distinguish it from a fuzzy set, can be described 
by its characteristic function:

\lc: U —> {0,1} (3-1)

where U is the universe of discourse, i.e. a collection of objects which can be discrete or con
tinuous. In a crisp set a variable either belongs or doesn’t belong to the set. (Zadeh, 1965) 
extended this definition by introducing a fuzzy set F whose characteristic function is given by:

|iF : U -> [0,1] (3-2)

thus giving a member of a fuzzy set all “truth” values between 0 and 1, and the possibility for 
a variable to belong to several fuzzy sets.
The characteristic function, or mapping function, is also called a membership function. This 
function can have any arbitrary shape, but the most common ones are piece-wise linear func
tions such as triangular, trapezoidal or singletons. These functions are easy to handle in a com
puter as storage and computations are simple.

3.1.2 Fuzzy Sets Operations

In order to manipulate with fuzzy sets we must have fuzzy set operations, like intersection, 
union and complement. In (Zadeh, 1965) we find the following definitions:

Union. The union of two fuzzy sets A and B with respective membership functions (tA(x) 
and |ig(xj is a fuzzy set C, written as C=A U B, whose membership function is related to 
those of A and B by:

V:x 6 X\ |lc(x) = max [|lA(x), |lB(x)] (3-3)

This is also referred to as the max-operation.
Intersection. The intersection of two fuzzy sets A and B with respective membership func
tions |iA(x) and jj.6(x) is a fuzzy set C, written as C=A n B, whose membership function is
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related to those of A and B by:

V.v g X: |ic(x) = min [|iA(x), |i5(x)] (3-4)

This is also referred to as the mm-operation.

Complement. The complement of a fuzzy set A with membership function ll^(x) is denoted 
as A and is defined as:

Vx E X: p^(%) = 1 - |lA(x) (3-5)

These operations can be visualised as shown in Figure 3-1.

Figure 3-1: Example of fuzzy set operations

Most of the basic identities which holds for crisp sets also holds for fuzzy sets. This includes 
DeMorgan’s laws, distributive laws and associative properties.

The following two laws in classical logic does, however, not hold for fuzzy logic:

• The law of contradiction:

A nA*0

because:

V* e X: |XAnA(x) = min [|iA(x), (1 - fiA(x)) ] < 1/2 

• The law of excluded middle:

A uA*X

because:

V* g X: (±A uA(x) = max [|Aa(x),( 1 - nA(x)) ] > 1/2 

where 0 denotes the empty set, and X is the whole universe of discourse.

(3-6)

(3-7)

(3-8)

(3-9)
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3.1.3 Fuzzy Implication

Fuzzy sets can be labelled with appropriate names to describe linguistic variables, e.g. “hot”, 
“comfortable” and “cold”. Then by formulating fuzzy if-then rules, or just fuzzy rules, we can 
reason with linguistic terms. These rules show the input/output relation. A simple rule with 
one input and one output is:

IF x is A THEN y is B (3-10)

where x is the input, A and B are fuzzy sets and y is the output.

This can be expressed as:

IF x is A THEN y is B —> (x, y) is A x B (3-11)

where —> stands for “translates into”, and A x B is the Cartesian product of the fuzzy sets A 
and B. The membership function of Ax B is given by:

M-a x z?<A’ y) = ™n [|iA(x), |iB(y)] (3-12)

using the min-operator for intersection. This is also known as Mamdani’s implication. Other 
implications exists, based on other operators than the min-operator. The reader is referred to 
(Lee, 1990; Driankov et al., 1993) for further information.

3.1.4 Fuzzy Inference

In practice, more than one rule is useful. A set of fuzzy rules is usually built on the basis of the 
fuzzy partition of the input sets. We can then reason with these rules to obtain an output 
inferred from the inputs. When the rules are put together we get the knowledge base or rule 
base.

In general we have a rule base with n-rules on the form (single input, single output for simplic
ity):

IF x is A. THEN y is B{ , i = 1(3"13> 

This can be written as the combined implication:

□F x is A. THEN y is -> (x, y) is (A{ x u ... U A/( X Bn) , i = 1, ..., n (3-14)

In short we can write:

(x, y) is UA; x g, (3-15)
i

that is, a Cartesian mapping from the input space to the output space. This can also be inter-
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preted as a fuzzy graph (Zadeh, 1995) as shown in Figure 3-2.

fuzzy point
A, xB

Figure 3-2: Interpretation of fuzzy rules as a fuzzy graph (Zadeh, 1995)

We then have an inference scheme, called compositional rule of inference (Zadeh, 1973):

(*,30 is R
X is A (3-16)

y is R • A
The operation of composition is defined by:

H-fl. A(v) = maxK(min(^(«, v), |xA(u))) (3-17)

where R = ^\A;. x Bi, \iR(u, v) and |iA(x) are the membership functions of R and A. Eq.(3- 
17) is also referred to as the max-min inference.

The operation of finding the linguistic value of y based on a linguistic value of x, may be inter
preted as the projection of the intersection of the fuzzy graph with the cylindrical extension of 
A (Zadeh, 1995). This can be viewed graphically in Figure 3-3.

A = cylindrical extension of A

Figure 3-3: Interpolation of fuzzy graph (Zadeh, 1995)

3.1.5 Defuzzification

This process involves transferring the fuzzy output set given from the inference engine to a 
crisp value, e.g. the control signal to a valve. The most common method in control application
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is the Centre of Area (COA) method, which calculates the centre of area of a fuzzy set A on 
the universe X:

X x' Mx)
X* = -------------- (3-18)

X
xe X

This defuzzification strategy gives a smooth output, which is preferred in control to avoid 
excessive stress on actuators.
Other methods like Mean Of Maxima (MOM) and First Of Maxima (FOM) defuzzification 
methods can be found in (Jamshidi etal., 1993; Driankov etal., 1993).

3.2 Fuzzy Control

Much of the success of FLC is due to its capability to integrate heuristic knowledge about a 
process into a controller. A PID is a very general controller, it will give the same linear signal 
no matter the amplitude of the inputs. With an FLC it is possible, in an easy way, to express 
the range of the inputs, thus making a specialised controller for each process. This fact, how
ever, makes it a difficult task to express a general design method for FLC’s.

3.2.1 Fuzzy Logic Controller

A typical FLC is shown in Figure 3-4

fuzzification
Output
scaling

Input
scaling

defuzzification

Rule base

Inference
engine

Input
from sensor

Output to 
actuator

Figure 3-4: Block diagram of typical FLC 

The FLC consists of the following computational steps:.
• Input scaling

This consists of mapping the sensor value to a normalised universe of discourse, 
which is usually the universe [-1,1]. This is to facilitate computations.

• Fuzzification
This is the process of mapping a sensor value xq onto a fuzzy set with the member
ship function |i(x) to obtain H(xo). This makes the input sensor values compatible 
with the fuzzy rules in the rule base.

• Inference engine
This means combining the fuzzified inputs to obtain the fuzzy output set. This is
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done through the rule base which expresses the relation between the inputs and 
outputs, in the form of fuzzy rules. The fuzzy rules are then inferred with an infer
ence mechanism, usually the max-min inference, creating a fuzzy output set.

• Defuzzification
This is the process of obtaining the crisp (numerical) value from the inferred fuzzy 
output set. As mentioned before, the most common one used is the COA.

• Output scaling
This is the process of transferring the normalised crisp output to the physical uni
verse of discourse.

Of these steps, the input and output scaling are optional. An FLC can be seen upon as a static 
non-linear transfer element as no operations on time are performed inside the FLC (Driankov, 
et al., 1993). The non-linearities comes from the fuzzification/defuzzification steps (due to the 
non-linear membership functions), and the inference engine (the rule base and due to the infer
ence mechanism like the max-min inference).

3.2.2 Takagi-Sugeno Fuzzy Logic Controller

The Takagi-Sugeno FLC (TSFLC) uses fuzzy sets in the antecedents, but the output conse
quence is, in general, a crisp non-linear function of the input variables or can be a constant 
value (Takagi and Sugeno, 1985). The fuzzy rules of a TSFLC are of the form (with single 
output for simplicity):

: if is Aj(I)and... andxnis then u{ = fl(xl,x2, ...,xn)

: : (3-19)

R: if x{ is A l<"') and ... and x/zis A;j"z) then um = fm(x{, x2,..., xn)

where AJ{ are fuzzy sets, a: is the input vector, u is the output and/ is, in general, a non-linear 
function.

The inputs of the TSFLC can be a state vector or the output of the system (error, change of 
error, integral of error etc.). One can, with this method, assign a control function for each 
region of the input-space as a single rule. This makes it possible to weaken or amplify certain 
frequencies according to the inputs. This can also be done by conventional switching of con
trollers, but the fuzzy method offers a smooth transition between the individual controllers.
The total output of Eq.(3-19) is the weighted combination of all the fired rules:

X \ ■ ui

“ = ---------- (3-20)

2X
/ = 1

where p.;< is the firing strength of the z-th rule found by the min-operation for fuzzy implica
tion (Eq.(3-12)). As the rule consequence is a non-normalised function, the need for output 
scaling can be omitted. Furthermore, explicit defuzzification is needless, since the result of 
each rule is a crisp value and the global result is determined by Eq.(3-20).
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3.2.3 Fuzzy Logic Controller Design

Unlike linear control theory, no formal method for designing FLC’s exists. FLC’s are, in most 
cases, designed independent of the system’s model, so the design mainly relies on experience 
and knowledge of the process. FLC’s are sometimes referred to as knowledge-based control
lers. This is a subjective method, and is one of the reasons for the controversy over FLC in the 
control community. FLC’s are most appropriate when the problem at hand is too intractable 
and a mathematical model or representation is not even available (Jamshidi, 1996).
The relevant issues in FLC design1 are (Lee, 1990; Driankov et al., 1993; Kruse et al., 1994):

1. Definition of input and output variables.
The essential parameters reflecting the process state should be chosen as inputs. In 
the case of a fuzzy PID like controller, the inputs are error, change of error or sum 
of errors. The output variables are the outputs to the actuators, normally one has 
only one output from the FLC. This can either be the actual control signal, u, or the 
change in control, ii.

2. Fuzzy partition of the input and output domains.
Fuzzy sets with linguistic labels are partitioned on the input and output domains. In 
the case of a TSFLC, the crisp output functions must be determined. The domains 
can either be normalised, or be the actual physical domain. The domain is, in any 
case, determined by knowledge of the process, such as physical limits. The number 
of fuzzy sets determines the granularity of the control. The shape of the member
ship functions is, as before mentioned, normally chosen to be linear piece-wise 
functions.
The number of possible rule combinations increases exponentionally with the 
number of input sets, and linearly with the number of output sets, so there is a prac
tical limitation on the fuzzy partitioning. This can partly be solved by using a hier
archical control structure, where inputs are combined together before entering the 
FLC (Jamshidi, 1996). This will be discussed in Chapter 6 ‘Hierarchy and Hybrid
ization of Fuzzy Logic Control Systems’ on page 44.

3. Rule base.
The rule base consists of a set of fuzzy rules based on expert knowledge. How to 
derive this rule base is not a straight forward procedure, and no mature guidance 
exists for this problem. In (Driankov et al., 1993; Lee, 1990) we find three 
approaches:

• Derivation of rules based on knowledge from a process operator and/or 
control engineer. This is either done by an introspective verbalization of 
human expertise, or a well formulated questionnaire.

• The use of a fuzzy model of the process to directly derive the rule base.
• Self organizing/learning controllers. The FLC has a supervisory rule base 

which consists of meta-knowledge which enables the FLC to evaluate its 
performance. Based on this evaluation, the FLC can derive and modify the 
rule base.

4. Scaling factors.
Input scaling factors determines the sensitivity for the input variables. The output

1. we assume that the need for using an FLC has been justified
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scaling factor determines the output energy intensity (this can be looked upon as 
the controller’s gain).

5. Defuzzification method.
Most often this is chosen to be the COG, which produces a smooth control surface. 
In the case of the TSFLC this step is, as mentioned before, omitted.

6. Implementation and simulation of the fuzzy control system.
There exists a number of software packages1 for implementation and design of 
FLC’s, and which allows simulation with a plant model (Jamshidi et cil, 
1993).This, however, requires a mathematical model of the plant, which is not 
always available.

7. Tuning and optimization.
Usually an iterative design process is necessary. Few methodologies exists as 
where and how to tune the FLC, but is rather a result of trial and error. The tuning 
can be done on the scaling factors, the shape of the fuzzy sets, number of fuzzy 
sets, and the rule base. This gives a very high number of tuning parameters. A nat
ural mix seems to connect the FLC with other Artificial Intelligence mechanisms, 
such as Neural Networks and Genetic Algorithms, to obtain an optimised control
ler.

8. Hardware implementation.
If the FLC works satisfactorily, a real-time implementation to the plant can be done 
with one of the increasingly numbers of fuzzy micro-controllers. An overview of 
available hardware can be found in (Jamshidi et al., 1993).

Other design issues, such as completeness and consistency of the rule base, will not be dis
cussed here. For a more in-depth overview of the design subject, the reader is referred to (Dri- 
ankov etal., 1993).

1. The Math Works, Inc. have now released their Fuzzy Control Toolbox
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4 Stability of Fuzzy Logic Control 
Systems

4.1 introduction

One of the most fundamental issues in any control system-fuzzy or others is the stability. 
Briefly, a system is said to be stable if it would come to its equilibrium state after any external 
inputs, initial conditions and/or disturbances have impressed the system. The issue of stability 
is of even greater relevance when questions of safety, lines, and environment are at state like 
in such systems as nuclear reactors, traffic systems and aeroplanes autopilots. The stability test 
of fuzzy control system or lack of it has been a subject of criticism by many control engineers 
in some control engineering literature (IEEE Control Systems Magazine, 1993).
Almost any linear or non-linear system under the influence of a closed-loop crisp controller 
has one type of stability test or other. For example, the stability of a linear time-in variant sys
tem can be tested by a wide variety of methods such as Routh-Hurwitz, Root locus, Bode 
plots, Nyquist criterion, and even through traditionally non-linear systems methods of Lyapu
nov, Popov and Circle criterion. The common requirement in all these tests is the availability 
of a mathematical model-be it in time or frequency domain. A reliable mathematical model for 
a very complex and large-scale system may, in practice, be unavailable or unfeasible. In such 
cases, a fuzzy controller may be designed based on expert knowledge or experimental prac
tice. However, the issue of the stability of a fuzzy control system still remains and must be 
addressed. The aim of this chapter is to present an up-to-date survey of available techniques 
and tests for fuzzy control systems stability.
Fuzzy controllers represent static non-linearities (Bretthauer and Optiz, 1994) and as such the 
stability problems belongs to non-linear control systems. In this chapter, a survey of fuzzy 
control systems stability will be given and a few more promising approaches will be described 
in more detail.

4.2 Fuzzy Control Systems Stability Classes

From the viewpoint of stability a fuzzy controller can be either acting as a conventional (low- 
level) controller or as a supervisory (high-level) controller (Jamshidi, 1996). Depending on the 
existence and nature of a system’s mathematical model and the level in which fuzzy rules are 
being utilized for control and robustness, four classes or fuzzy control suitability problems can 
be distinguished. These four classes are:

Class 1: Process model is crisp and linear and fuzzy controller is low level.
Class 2: Process model is crisp and non-linear and the fuzzy controller is low level.
Class 3: Process model (linear or non-linear) is crisp and a fuzzy tuner or an adap
tive fuzzy controller is present at high level.
Class 4: Process model is fuzzy and fuzzy controller is low level.
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Figures 4.1-4.4 show all the four classes of fuzzy control systems whose stability is of con
cern. In this presentation we are concerned mainly with the first three classes. For the last 
class, traditional non-linear control theory would fail and is beyond the scope of this section. It 
will be discussed very briefly. The techniques for testing the stability of the first two classes of 
systems (Figures 4.1 and 4.2) are shown in Table 4.1. As shown, the methods are divided into 
two main groups-time and frequency.

Fuzzy
Controller

Linear Process 
Model

Figure 4-1: Class 1 of fuzzy control system stability problem.

Fuzzy
Controller

Non-linear 
Process Model

Figure 4-2: Class 2 of fuzzy control system stability problem.

Fuzzy
Controller

Fuzzy Process 
Model

Figure 4-3: Class 3 of fuzzy control system stability problem.

Process
Model

Fuzzy
Adaptation

(Tuner)

Conventional
Crisp

Controller

Figure 4-4: Class 4 of fuzzy control system stability problem.
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Table 4-1: Stability Analysis Methods for Fuzzy Control Systems with Known 
Model

Stability Analysis Methods

C^^Time DomairT^^) (^Frequency Domain^)

State-space Harmonic Balance (Describing Function)
Lyapunov Theory
Hyperstability Theory Popov Criterion
Bifurcation Theory
Graph Theory Circle Criterion

4.2.1 Time Domain Methods

The state-space approach, considered by many authors (Aracil, etal., 1988; Chen, 1988; Chen 
and Tsao, 1989; Wang, et al., 1990; Hojo, et al., 1991; Hwang and Liu, 1992; Driankov, et al., 
1993; Kang, 1993; Demaya, et al., 1994). The basic approach here is to subdivide the state 
space into a finite number of cells based on the definitions of the membership functions. Now, 
if a separate rule is defined for every cell, a cell-to-cell trajectory can be constructed from the 
system’s output induced by the new outputs of the fuzzy controller. If every cell of the modi
fied state space is checked, one can identify all the equilibrium points including the system’s 
stable region. This method should be used with some care since the inaccuracies in the modi
fied description could cause oscillatory phenomenon around the equilibrium points.

The second class of methods is based on the Lyapunov’s method. Several authors (Aracil, et 
al., 1989; Langari and Tomizuka, 1990; Bouslama and Ichikawa, 1992; Chen, et al., 1993; 
Chen, 1987; Driankov, et al, 1993; Franke, 1993; Gertler and Chang, 1986; Hoja, etal., 1991; 
Kiszka, etal., 1985; Tanaka and Sugeno, 1992; Wang, 1993, 1994; Tahani and Sheikholeslam, 
1994) have used this theory to come up with criterion for stability of fuzzy control systems. 
The approach is along the same lines as in conventional stability approaches, i.e. show that the 
time derivative of the Lyapunov function at the equilibrium point is negative semi definite. 
Many approaches have been proposed. One approach is to define a Lyapunov function and 
then derive the fuzzy controller’s architecture out of the stability conditions. Another approach 
uses Aiserman’s method (Bretthauer and Optiz, 1994) to find an adopted Lyapunov function, 
while representing the fuzzy controller by a non-linear algebraic function u =f(y), when y is 
the system’s output. A third method calls for the use of so-called facet functions, where the 
fuzzy controller is realized by box-wise multi-linear facet functions with the system being 
described by a state space model. To test stability, a numerical parameter optimization scheme 
is needed.

Hyperstability approach, considered by other authors (Barreiro and Aracil, 1992; Optiz, 1993, 
1994) has been used to check stability of systems depicted in Figure 4.1. The basic approach 
her is to restrict the input-output behaviour of the non-linear fuzzy controller by inequality and 
to derive conditions for the linear part of the closed-loop system to be satisfied for stability.

Bifurcation theory (Driankov, etal., 1993) can be used to check stability of fuzzy control sys
tems of class described in Figure 4.2. This approach represents a tool in deriving stability con
ditions and robustness indices for stability from small gain theory. The fuzzy controller, in this
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case, is described by a non-linear vector function. The stability, in this scheme, could only be 
lost if one of the following conditions become true: (i) the origin becomes unstable if a pole 
crosses the imaginary axis into the right-half plane-static bifurcation, (ii) the origin becomes 
unstable if a pain of poles would cross over the imaginary axis and assumes positive real parts- 
Hopf bifurcation, or (iii) new additional equilibrium points are produced.

The last time-domain method is the use of graph theory (Driankov, et al., 1993). In this 
approach conditions for special non-linearities are derived to test the BIBO stability.

4.2.2 Frequency Domain Methods

There are three primary groups of methods which have been considered her (see Table 4.1). 
The Harmonic balance approach, considered by Brace and Rutherford (1978, 1979), and 
Kickert and Mamdani (1978), among others, has been used to check the stability of the first 
two classes of fuzzy control systems (see Figures 4.1 and 4.2). The main idea is to check if 
permanent oscillations occur in the system and whether these oscillations with known ampli
tude or frequency are stable. The non-linearity (fuzzy controller) is described by a complex
valued describing function and the condition of Harmonic balance is tested. If this condition is 
satisfied, then a permanent oscillation exists. This approach is equally applicable to MIMO 
systems.

Circle criterion (Aracil, et al., 1989, 1991; Optiz, 1994; Ray and Majumder, 1984; Ray, et al., 
1984) and Popov Criterion (Bohm, 1992; Buhler, 1993) have been used to check stability of 
the first class of systems (Figure 4.1). In both criteria, certain conditions on the linear process 
model and static non-linearity (controller) must be satisfied. It is assumed that the characteris
tic value of the non-linearity remains within certain bounds, and the linear process model must 
be open-loop stable with proper transfer function. Both criteria can be graphically evaluated in 
simple manners.

The stability of adaptive fuzzy control systems has been treated in details by Wang (1994a, 
1994b) and is best used when augments the design process as is described in (Jamshidi, 1996).

4.3 Lyapunov Stability of Fuzzy Control Systems

As mentioned before, one of the most fundamental criterion of any control system is to insure 
stability as a part of the design process. In this section, some theoretical results on this impor
tant topic is detailed, followed by a few stability-guaranteeing design examples.

We begin with the zth implication of a fuzzy system:

P‘: IF x(k) is A\ and...and x(k-n + 1) is Aln (4-1)

THEN x\k + 1) = a\x(k) + ... + a‘ux(k -n+ 1)

with i = 1,..., /. The present discussion is limited to autonomous fuzzy control systems. The 
stability of a fuzzy control system with presence of the inputs will be considered shortly. The 
consequent part of (4-1) represents a set of linear subsystems can be rewritten as (Tanaka and 
Sugeno, 1992), i.e.
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IFx(k) is A\ and...andx(k-n + 1) is A;'; (4-2)

THEN x\k + 1) = AjX(k)
where x(k) is defined by x(k) = - 1) ... x(k - n + 1)] T and nXn matrix A. is:

Ai =

/ i i i
a\ a1 •" an- 1 an

1 0 ... 0 0
0 1 ... 0 0

0 0 ...
0 0 ...

0 0 
1 0

The output of the fuzzy stem described by Equations (4-1) - (4-3) is given by

(4-3)

2 w' Ai *(&)

X(k+ 1) = ——j-------------- (4-4)

/ = 1
where wl is the overall truth value of the zth implication (Jamshidi, 1996) and l is the total 
number of implications. In sequel, a theorem and a lemma for crisp discrete-time systems is 
first given before a Lyapunov method for the problem is presented.
Theorem 4.1 Consider a discrete-time system described by

x(k+ 1) = f(x(k)) (4-5)

where x(k) e /( • ) is an ^-dimensional non-linear function with a property f(0) = 0 
for all k. Assume that a scalar continuous function v(x{k)) exists which has the following 
properties

a) v(0) = 0

b) v(x(k)) > 0 for x(k) ^ 0
c) lim v(x(k)) = oo

d) Av(x(k)) = (v{k + 1) - v(k)) < 0 for x(k) ^ 0

Then the equilibrium point x(k) = 0 of (4-5), obtained by solving x(k) = f(x(k)), is asymp
totically stable in the large for all k and v(x(k)) is a Lyapunov function.

Clearly, this theorem is the discrete version of the standard Lyapunov stability theorem (Jam
shidi, et al., 1992). Now, consider the following Lemma:
Lemma 4.1 If P is a positive definite matrix such that

ATPA-P< 0 and BTPB-P< 0 

where A, B, and P are nXn matrices, then

ATPB + BTPA-2P<0
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Proof: Evaluating the left side of the inequality would result in

ATPB + BrPA -2P = - (A-B)TP (A- B) +ATPA + BTPB - IP 

= - (A-B)TP(A-B) + (ATPA-P) + (BTPB-P)
since the last two terms are assumed to be positive definite and since P is a positive definite 
matrix,

-(A-B)TP(A-B) <0 
and the lemma’s conclusion follows. □
We now present the first stability result of fuzzy control systems, due to Tanaka and Sugeno 
(1992), among others.
Theorem 4.2 The equilibrium point of a fuzzy system (4-4) is globally asymptotically stable if 
there exists a common positive definite matrix P for all subsystems such that

ATpa:-P< 0 (4-6)

for i=l,...,(.

Proof: Let the scalar Lyapunov function v(x(k)) = xT(k)Px(k), where P is an n X n positive 
definite matrix. The function v(x(k)) satisfies the following properties: (i) v(0) = 0, (ii)
v(x(k)) > 0 for x(k) ^ 0, and (iii) lim v(x(k)) = .

llXtill ->00
Next, we evaluate

Av(jc(k)) = v(x(k + l))-v(x(k)) = xT(k+ 1 )Px{k+ 1) -xT(k)Px(k) (4-7)

( 1 ) r / / X
2 w‘ Ai *(*) 2 w* A; %(^)

i = 1 D z = 1
/ /

2>'
v i = 1 / v z = 1 '

-xT(k)Px(k)

= xT(k)

-ft \
X w' AJ

z = 1

r

P

f 1 \
2 w' Az x(*) 
z= 1 -p

yy
- i

A z = 1 ^ V z = 1 /

x(k)

2 wJxT(k) (AfPAj - P) x(k) 
/■ / = 1

T wV

r / /J=1 z
(w‘) 2xT(k) (AfPA; - P) x(k) + \vvJxT(k)Px(k)

— *-/ = 1 /</

% JJ
i,j = 1
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where w‘ > 0 for all and _ w* l 2 > 0. Now, by assumption of the theorem, Equation
(4-6), the first matrix is negative definite and the second matrix relation is negative definite by 
Lemma 4.1. Hence, we have Av(x(k)) < 0. Now, in lieu of Theorem 4.1, the fuzzy system (4- 
4) is globally asymptotically stable. □

It is noted that the above theorem can be applied to any non-linear system which can be 
approximated by a piece-wise linear function if the stability condition (4-6) is satisfied. More
over, if there exists a common positive definite matrix P, then all the A; matrices are stable. 
Since Theorem 4.2 is a sufficient condition for stability, it is possible not to find a P > 0 even 
if all A{. matrices are stable. In other words, a fuzzy system may be globally asymptotically 
stable even if a P > 0 is not found. The fuzzy system is not always stable even if all the A.’s 
are stable.

Theorem 4.3 Let A; be stable and non-singular matrices for i = 1,...,/. Then AAj are stable 
matrices for i,j = 1if there exists a common positive definite matrix P such that

AjPA ■ — P <0 (4-8)

Proof: Rewriting (4-8), we obtain

P- (Af)TPAf<0

since (Ar1) T = (Af)~l. Thus, P< (Ar1) rPAjl for i = 1,...,/. In view of this inequality 
and the one in (4-8), it follows that

A7>A.<(A7i)7p(A7i)

or by pre- and post-multiplying by Aj and Aj, respectively we have AjAjPA^j-P <0. 
Thus, must be a Hurwitz matrix for i,j = !...,/. □

In summary, to check the stability of a fuzzy system, one must find a common positive definite 
P .This task may not be an easy task. One possible algorithm to check the stability is to

1. Find a P{> 0 such that AjPAi-P < 0 for i = 1,...,/. If A. is stable, it is always 
possible to find a P(.

2. Check if a Pj e {Pi I z=l,...,/} exists such that AfPjAi-Pj < 0.

If so, a common P has been obtained. Otherwise go to step (1) for the next value 
of i.

Stability of Non-autonomous Fuzzy Control Systems

Thusfar, the criteria which have been presented treat autonomous (no inputs) systems. Con
sider the following non-autonomous fuzzy system

pl: IF x(k) is Aj and...andx(k-n+ 1) is A‘n (4-9)

and u(k) is B\ and...and u(k-m + 1) is 

THEN x(k +1) = «q + a\x{k) + ... + dnx{k -n+ 1)

+ b\u{k) + ... + blmu(Jc -m + 1)

In this section, we use some results from Tahani and Sheikholeslam (1994) to test the stability 
of the above system. We begin by a definition.
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Definition 4.1 The non-linear system

x(k + 1) = f(x(k), u{k), k), y = g(x(k), u(k), k)

is totally stable if and only if for any bounded input u(k) and bounded initial state jc0 , the state 
x{k) and the output y(k) of the system is bounded, i.e., we have

For all ||x0| < 0 and for all ||n|| < °o => ||jc(fc)|| < °° and |[y(&)|| < 00 (4-to)

Here, u(k) = [u^) u(k- 1) ... u(k-n+ 1)]T- 

Now, consider the following theorem:

Theorem 4.4 The fuzzy system (4-9) is totally stable if there exists a common positive definite 
matrix P such that the following inequalities

AfPAi-P <0 (4-11)

for i = 1,...,/, and A(. is defined by (4-3). The proof of this theorem can be found in Kholeslam, 
(1994). Note that the conditions (4-11) is the same as those in (4-6) of Theorem 4.2 for fuzzy 
system (4-1). Proof of this theorem can be found in Sheikholeslam (1994).

The next section presents an alternative (non-Lyapunov) criterion for fuzzy control systems.

4.4 Fuzzy System Stability via Interval Matrix Method

Recent results on the stability of time-varying discrete interval matrices by Han and Lee 
(1994) can lead us to some more conservative, but computationally more convenient, stability 
criteria for fuzzy systems of the Takagi-Sugeno type shown by Equation (4-1). Before we can 
state these new criteria some preliminary discussions will be necessary. Consider a linear dis
crete-time system described by a difference equation in state form:

x(k+ 1) = (A + G(k))x(k), x(0) = xQ (4-12)

where A is re X re constant asymptotically stable matrix, % is the re X 1 state vector, and G(k) is 
an unknown n X n time-varying on the perturbation matrix’s maximum modulus, i.e.

|G(£)| < Gm , for all k (4-13)

where and the inequality holds elementwise. Now, consider the following theorem:

Theorem 4.5 The time-varying discrete-time system (4-12) is asymptotically stable if

P(|A| + Gm) < 1 (4-14)

where p(-) stands for maximum (or largest) of the eigenvalues. The proof of this theorem is 
straightforward, based on the evaluation of the spectral norm ||%(&)|| of x(k) and showing that 
if condition (4-14), then lim \\x(k)\\ = 0. The entire proof can be found in Han and Lee, 
(1994). *->0°
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Definition 4.2 An interval matrix Afk) is an n X n matrix whose elements consist of intervals 
[bfj, c.j] for ij = 1n, i.e.

Afk) ~

[ b ii? ^ 111

[by c..] • • >

1-bnn’ CnJ

(4-15)

Definition 4.3 The centre matrix, Ac, and the maximum difference matrix, Am of Afk), in (4- 
15) are defined by

A
C

B + C 
2 , Am

C-B
2

(4-16)

where 5 = {b^} and C = {c-} . Thus, the interval matrix Afk) in (4-15) can also be 
rewritten as

Afk) = [Ac-Am,Ac+Am] = Ac + AA(k) p (4-17)

with |AA(k)| < Am.

Lemma 4.2 The interval matrix Afk) is asymptotically stable if matrix Ac is stable and

P(|Ac|+A/»)< 1 (4-18)

or in canonical form,

P(|r-iAcr| + |z-'|A,„|r|)<i <ms)

The proof can be found in Han and Lee (1994). The above Lemma can be used to check the 
sufficient condition for the stability of fuzzy systems of Takagi-Sugeno type given in Equation 
(4-2). Consider a set of m fuzzy rules like (4-2),

IFx(k) is A| and... and x(k-n+ 1) is A* THEN xl(k+ 1) - A,x(£)

: (4-20)

IF x(k) is A",1 and ... and x{k-n + 1) is A'“ THEN x\k + 1) = Amx(k)

where A{. matrices for i = 1,...., m are defined by (4-3). One can now formulate all the m matri
ces Af, i = 1,...., m, as an interval matrix of the form (4-17) by simply finding the minimum 
and maximum of all the elements at the top row of all the A; matrices. In other words, we 
have

[av a,]

Afk) =
1
0

0

: 1 ... 0
0 ... 1 0

(4-21)

where af and ai for i- 1,...., m are the minimum and maximum of the respective elements of
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the first rows of A;. in (4-3). Using the above definitions and observations, the fuzzy system 
(4-20) can be rewritten (for simplicity) in compact form as

IF x{k) is A THEN x(k+ 1) = Afk)x(k) (4-22)

where the antecedent of the above rule corresponds to all the m rules of (4-20), i.e. x(k) corre
sponds to all m x(k) ’s and A corresponds to all the m “and”-ed antecedents. Now, we consider 
the following lemma:

Lemma 4.3 The fuzzy system (4-22) is asymptotically stable if the interval matrix A}(k) in (4- 
21) is asymptotically stable, i.e., the conditions of Lemma 4.2 are satisfied.

4.5 Stability of Fuzzy Logic Controllers Using 
Describing Functions

Here we will look into a stability criterion using describing functions. Marin and Titli (1995) 
also discuss the use of describing functions for the design of FLC’s, but this will not be inves
tigated further in this study.

We will first look at stability in Sinusoidal Input Describing Function (SIDF) sense, then at the 
SIDF of the Takagi-Sugeno type FLC.

4.5.1 Stability in SIDF sense

The SIDF of a non-linear element NL is defined by:

Lnl(X, go) = -j[lVL(r) -je~ja da ) (4-23)

o

with r(t) = X- sin (cor) , Xe Da, Da = [A., As], (A-, AJ e 91^ and the assumption that 
NL has a symmetric characteristic, i.e NL(-r) = -NL(r).

Physically, this approximation means that the describing function Lnl replaces NL by neglect
ing higher harmonics. Therefore, the open-loop system (OLS) must be a low-pass system, i.e:

VX e Da, go : \\Lqls(X, co)|| » \Lols(X, n ■ co)||, for n> 2 (4-24)

With the transfer function of the plant and the SIDF of the NL, a criterion of stability in SIDF 
sense, using the Nyquist criterion, is derived:

Definition 4.4 The closed loop system is globally stable in Da in SIDF sense iff the Nyquist 
plot of L0ls satisfies the Nyquist criterion for X in Da.
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4.5.2 The SIDF of the Takagi-Sugeno type FLO

We will here assume a Takagi-Sugeno type FLC1 with error and change of error as inputs, and 
constants in the output functions. The fuzzy rules are on the form:

rule i: if en(t) is Af. and en(i) is Bi then u'n = cj (4-25)

where A,- and Bt are fuzzy sets over normalised universes of discourse, defined by their mem
bership functions g.A(e;z) and ps(en). The inputs and the output are scaled in the following 
way: en = Ke ■ e, en = K^e, and u = Ku ■ un.

The output of the FLC is then:

FLC{e, e) = u(e, e) = K ■ —----- :----------
2/(2,,, v

(4-26)

where v {en, en) = min (|iA (cj, |dB (<?„)) using the min-operator (see also 
Section 3.2.2 “Takagi-Sugeno Fuzzy Logic Controller” on page 17.).

The following assumptions are sufficient for obtaining a symmetric FLC:
'i\(V =

W = H H„) (4-27)

Cf = ~C-i

With the assumptions in (4-27) the Global Sinusoidal Input Describing Function (GSIDF) can 
be shown to be:

with

and where

LFLc(X’ ~ Ku ‘ Ke ' X Ln&n’ C0,z) ' Ci
i>0

C(X„.®„) = V je'* -da

(4-28)

(4-29)

V =
v(y gn)

en = Xn ■ Sina

2« = ^' ' cos a

(4-30)

1. (Marin and Titli, 1995) considers the general case of FLC
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The equations ((4-28)-(4-29)) have to be solved numerically by simulations, as no analytical 
functions exists. It is then possible to find the GSDDF over a range of amplitudes and frequen
cies. The GSIDF of the FLC can be used to show stability together with the transfer function 
of the plant to be controlled using Definition 4.4. This will in fact be done with a TSFLC for 
the TBT control loop with the 3rd order brine-heater model, in Section 5.4 “Stability of the 
Fuzzy Control System" on page 40.
In this chapter a number of sufficiency conditions have been presented to check for the asymp
totic stability of fuzzy control systems with Takagi/Sugeno type rules, i.e. Equation (4-1). All 
the criteria presented here are somewhat conservative. It is noted that if a given condition, say 
Equations (4-6, 4-11, or 4-18) is not satisfied it does not mean that the system is necessarily 
unstable. On the other hand, if the condition is true, then the system is, in fact, stable. The con
tents of this section hopes to serve as a starting point for many new results to come toward a 
solid stability theory for fuzzy control systems. This challenge still exists for both control 
engineers and mathematicians.
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In this chapter we present three conventional control strategies used in this study, and the 
implementation with the non-linear brine heater models on MATLAB/SIMULINK. A TSFLC 
is designed and implemented also on MATLAB/SIMULINK. Four different simulation sce
narios are chosen, simulated, and the results are presented. The stability of the designed 
TSFLC control system is shown, using the stability criterion in SIDF sense, as discussed in 
Chapter 4.

5.1—Control-Strategies

5.1.1 Conventional Control

(Babcock Inc., 1994) has analysed three control structures for the TBT’s control loop. These 
are PID control, cascade control and disturbance rejection control1.

PID Control

This strategy consists of one PID controller that observes the TBT and controls the steam 
valve. The control scheme is shown in Figure 5-1.

Brine heater

Pin THS,u

Figure 5-1: PID control scheme

The textbook algorithm of a PID controller is:

1. In (Babcock Inc., 1994) they call it disturbance value control

(5-1)
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The model is not linearisible, so well known design methods, like pole placement techniques, 
can not be used. There are methods that use the open-loop response of a step input, like the 
Ziegler-Nichols open-loop method (Astrom and Wittenmark, 1989), to determine the PID 
parameters. In (Babcock Inc., 1994) they use another method, proposed by Chien, Hrones and 
Reswick (1952)*. This method is similar to the one of Ziegler-Nichols (Astrom and Witten
mark, 1989), but with other adjusting parameters. (Babcock Inc., 1994) then found the follow
ing PID parameters:

• ATp=0.47, Ti~9.65 and 7)/=0.91.

Cascade Control

This strategy consists of two controllers, as shown in Figure 5-2. The TBT is controlled by a 
main loop controller which gives the setpoint to a secondary controller. The secondary con
troller acts on the steam flow and controls the valve opening. The parameters for the two con
trollers were found in (Babcock Inc., 1994), where they used the same method as for the PID 
control to find the controllers parameters.

Brine heater
Primary

loop
Secondary

loop

b,in mbrine

Pin

Figure 5-2: Cascade control scheme

The parameters are:

• Main controller (PID):

KP=23.79, 7}= 10.45 and 7>0.95

• Secondary controller (PI):

KP=0.018 and 7}=5.46

Disturbance Rejection Control

This strategy is based on the cascade control scheme, but also takes the disturbances steam 
pressure and recycle flow into account before they influence the TBT. This strategy is shown 
in Figure 5-3.

This is done by measuring the disturbances, and giving an extra control signal to the valve. 
The disturbance rejection function is in (Babcock Inc., 1994) and is found to be: 1

1. In (Babcock Inc., 1994) they give no further references.
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Brine heater

Disturbance
rejection
function

Primary
loop

Secondary
loop

Figure 5-3: Disturbance rejection control scheme

b, in’ mbrine' 0.084 . J + 1.48x10^1 m,^-3888^ 1(5-2)

5.1.2 Fuzzy Control

We wanted to construct a simple FLC, so we constricted our FLC to have two inputs and one 
output. We then decided to use a PID-like TSFLC. With a two dimensional input, one has the 
choice between a PD or a Pi-like controller. An integral action is normally needed to achieve a 
good performance, so the Pi-type TSFLC was chosen for further design. The block diagram of 
this control structure is the same as in Figure 5-1, only with an FLC in the place of the PID 
block.

deThe inputs to this controller are e, defined as e = yset-y, and e, defined as e = —. The 
output is u. The output is a function of the inputs, and when it is integrated it gives the control 
u = FLC(e,fe), which is a Pi-like controller. The input space was partitioned (for both 
inputs) into three fuzzy sets, 'NEC, ‘ZE’ and ‘POS’ on the normalised universe of discourse,
as shown in Figure 5-4.

. NEC

The output functions were chosen to be singletons on the normalised universe of discourse, 
with the following linguistic labels and singleton values: ‘NEG’=-1, ‘ZE’=0, and ‘POS’=l.

2
With the inputs partitioned into three fuzzy sets, the number of possible rules are 3 =9. The 
rule base was then constructed by using meta rules for control such as:

if error is above the setpoint and moving away, then decrease control

if error is zero and not changing, then control is unchanged
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The above two examples can be expressed as the fuzzy rules:

(5-3)
if e is NEG and e is NEG then u is NEG 

if e is ZE and e is ZE then u is ZE 

This was done with all the input combinations, and the rules can be expressed as in Table 5-1.

NEG ZE POS
NEG
ZE

POS

NEG NEG ZE
NEG ZE POS
ZE POS POS

Table 5-1: The TSFLC rule base

The initial input scaling factors, Kg and K&, were chosen by looking at the maximum error, 
emnr, and change of error, e , under PID control. We then chose £ = 1/e v = 1/0.8 
and K6 = 1 /emax - 1/0.15. Initial output scaling was determined by knowing that the max
imum change of the valve actuator is 0.02, thus giving £„ =0.02.

For implementation, a fuzzy control toolbox (Babuska, 1994) for MATLAB was first used. 
This turned out to be very slow, as it is very general. Therefore a TSFLC was implemented in 
an m-file, sugeno.m, which can be found in Appendix A. This gave a quicker inference time 
than the fuzzy control toolbox, but was still a bit slow. Therefore, in order to further enhance 
computational performance, the MATLAB file was translated to a C-file, sugeno.c, using MCl 
(Comsol). The translated file was then compiled to a mex-file, resulting in the file sug- 
enomex.mex4. This file can be called from MATLAB/SIMULINK. The evolution of these 
controllers, from the fuzzy control toolbox to the mex-file, had a drastic effect on the inference 
time. The inference time was improved by a factor of about 70.

By simulation of the closed-loop fuzzy control system, it was found that the output gain cho
sen was too low. By a procedure of trial and error, a final value of £,,=0.0375 was found. The 
input scaling factors were left unchanged.

The control surface of the TSFLC is shown in Figure 5-5.

Figure 5-5: Normalised control surface of final FLC

1. This program is a MATLAB to C-transIator.
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5.2 Implementation of Brine Heater Models and 
Control Strategies

All implementation of models and control strategies were programmed and simulated using 
MATLAB/SIMULINK (MathWorks, 1993) on a Sun4 workstation under the UNIX operating 
system. Two different models were used for simulation. They were first implemented as ordi
nary m-files, but later implemented as mex-functions in MATLAB. This improved the simula
tion time with a factor of about 45. The two models are:

• The original 3rd order model of (Babcock Inc., 1994) in brineheatermexS.c.
• Our extended 12th order model in brineheatermex.c.

The listings of the models can be found in Appendix A. In the listings, one will also find the 
physical properties and constants used for the models. These models are then called from 
within SIMULINK, and connected to the different control strategies. With 4 different control 
strategies and 2 models, the total number of block-diagrams is 8. One of these SIMULINK 
block-diagrams, the FLC scheme for the 3rd order model (brine_h_flc.ni1), is shown in Fig
ure 5-6. The other block-diagrams are found in Appendix A.

©- —M t_flc3 | 
Clock To Workspace

Set
point

Error

Abs ► 1/s------ H iae_flc3]
Abs Integrator To Workspaces 

-H ise_flc3]1/s
Product Integrator! To Workspace4

Fuzzy
controller

0.632

-H h_in_flc3 
To Workspaces

------------------►
Sum Jlir

mb
©T Th In

Bias P_in 11C
t_hsin Brine_heater

S.order

—H tb_flc3 1 
To Workspaces

-W h_flc3
To Workspace?

-H rho_hs_flc3 | 
To Workspaces

Figure 5-6: SIMULINK block-diagram with fuzzy logic controller

The integration method used was rk45, which is a fifth order Runge-Kutta method. This 
method uses a variable integration time-step At which was chosen to be between 
A/min = 0.1 and Afmax = 0.2. The accuracy of the integration was chosen to be 1 e . All 
simulations were performed for 240 seconds.

1. brine_h!2_flc.m is the same, except it uses the 12th order brineheatermex.c
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5.3 Simulations

5.3.1 Choice of Simulation Scenarios

Three different simulation scenarios were studied (Babcock Inc., 1994):
• Step in brine heater inlet temperature, Tb in, from 88°C to 86°C. Simulation A.
• Step in brine recycle flow, mb, from 3888 kg/s to 4165 kg/s. Simulation B.
• Step in steam supply pressure, pin, from 1.5 to 1.7 bar. Simulation C.

To investigate the response to a set-point change, we included a fourth simulation:
• Step in TBT setpoint, TBTrep from 95°C to 96°C. Simulation D.

As this being a non-linear simulation, the variable should change as in Figure 5-7. This is

Figure 5-7: Variation of variables

because as a non-linear system, it behaves differently depending on the initial condition, the 
step size and the direction of the step.The second step is applied in the opposite direction, with 
the same magnitude, as the first step.

The simulation scenarios (A, B, and C) in (Babcock Inc., 1994) were reproduced on the 3rd 
order model, with great accuracy. This was taken as a verification of the implemented models 
and control strategies. We then simulated the 4 scenarios (with the variation of variable as in 
Figure 5-7) on the 3rd and 12th order model. The first step was applied after 2s, and the dura
tion, L, was 60s. The results of these simulations follows in the next four sub-chapters, and are 
also discussed. In simulation C and D, the disturbance rejection scheme is not included, as it 
gives the same results as the cascade control scheme.

5.3.2 Simulation A. Step in brine inlet temperature

As shown in Figure 5-8 that of the conventional strategies on the 3rd order model, the PID 
controller has the largest overshoot, but about the same settling time as the cascade controller. 
The cascade controller is slow, but the overshoot is small. The settling time of the disturbance 
rejection control is slow, and slightly oscillating.

For the 12th order model, we notice that the disturbance rejection control gives an inverse-
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Fuzzy controller vs. PIPConventional control strategies

Simulation A: 3rd order modelSimulation A 3rd order model

Time (s) Time (s)

Simulation A 12th other model Simulation A: 12th other model

.2 95.2

Time (s)

----- PID
- - Fuzzy logic controller

----- PID
- - Fuzzy logic controller

----- PID
- - Cascade control 
- ■ Disturbance rejection control

-----PID
- - Cascade control
- - Disturbance rejection control

5 94.8 •

94.6 •

Figure 5-8: Simulation A. Step in brine inlet temperature

response. This is due to that the higher order system introduces a small time delay. The distur
bance rejection function has no compensation for this effect, and this results in the inverse 
response.The PID control performs well, with a fast settling time, however somewhat oscilla
tory. The cascade control performance is a slightly slower on the settling time, but less oscilla
tory.

As for the FLC, it performs very well on the 3rd order model with a fast response and a small 
overshoot. For the 12th order model, the FLC gives a bigger deviation than the PID, but still 
has about the same settling time. The overshoot is less than for the PID, but the FLC is slightly 
more oscillatory.

5.3.3 Simulation B. Step in brine recycle flow

In this simulation we see (Figure 5-9) the effect of the non-linearity in the system. The FLC 
strategy shows an oscillatory behaviour for the 12th order model, but also exists for the con
ventional strategies with a smaller amplitude.

For the conventional strategies we see that the PID outperforms the other two, with lesser 
deviation and faster rise time, but with approximately the same settling time. There is no sig
nificant overshoot in any of the control strategies.
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Fuzzy vs.PIDConventional control strategies

Simulation B. 3rd order modelSimulation B 3rd order model

95.08

95.06

95.04

95.02

94 95
94.96

94.94

94 85,

Time (s) Time (s)

Simulation B 12th other model Simulation B. 12th other model

95 05

94 95
94.95

Time(s)
Time fs)

----- PID
— Fuzzy logic controller

----- PID
- - Fuzzy logic controller

-----PID
- - Cascade control 
- • Distutbance rejection control

- - Cascade control
- • Disturbance rejection control

95 15

94.92 •'

/->=-

Figure 5-9: Simulation B. Step in brine recycle flow.

When comparing the PID and FLC, we see that the FLC allows a bigger deviation, but the set
tling time is quicker. However, as mentioned earlier, the FLC is oscillating more than the PID.

5.3.4 Simulation C. Step in steam supply pressure

The cascade control is heavily oscillating (see Figure 5-10) in the two last steps, and has not 
settled before the next step is applied. In the last step change it looks unstable, but will in fact 
stabilise. The PID clearly outperforms the cascade control, with less overshoot and a fast set
tling time. The controllers show about the same performance on the 12th order model.

The FLC has more or less the same performance as the PID, but gives slightly less overshoot. 
We notice that in the last step that the FLC is quicker than the PID in the 3rd order model, and 
oscillating more for the 12th order model.

This simulation scenario is a good example of the non-linearities in the process, and the 
importance of applying a step change in both directions from the nominal point. We see 
clearly that the system response depends on the initial condition and the step direction.

5.3.5 Simulation D. Step in TBT set point

On fuzzy control of water desalination plants page 39



Simulationresults

Fuzzy vs. PIPConventional control strategies

Simulation C 3rd order modelSimulation C: 3rd order model
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- - Fuzzy logic controller

----- PID
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Figure 5-10: Simulation C. Step in steam supply pressure.

Shown in Figure 5-11, the cascade controller is oscillating and slow. The PID overshoots, and 
uses a long time to reach the steady state condition.
In this simulation the FLC is performing very well, with a quick response and insignificant 
overshoot.

The behaviour in both models is approximately the same.

5.4 Stability of the Fuzzy Control System

In our model we have a dynamic non-linear element in the form of the valve actuator. This is 
highly non-linear and not linearisible. In order to be able to show stability of the fuzzy control 
system, we have to find the SIDF for the brine heater model. We use the 3rd order model in 
our further stability analysis.
The stability procedure was as follows:
1. First we determine the amplitude, X, and frequencies intervals, to. With a maximum valve 

opening, i.e. hin = 1, the TBT was found to be 97°C. The amplitude interval was then 
determined to be Xe [-3°C, 3°C ] . By looking at the previous simulations, the fre
quency interval was chosen to be co e [ (2k) /30, (2k) /5] . The number of discrete val-
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Simulation D 3rd order model Simulation D: 3rd order model
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Figure 5-11: Simulation D. Step in TBT set point

ues for the amplitude interval, nx, and the frequency domain, nw were chosen to be 50. This 
gives a total number of possible input combinations to 2500. The intervals were then loga
rithmically spaced.

2. The SIDF of the FLC is found by using the Eq.(4-28) to Eg.(4-30). The SIDF of the FLC 
was then multiplied with the integrator, giving LJFuzzy(X, co) = LF (X, to) • Lftd). This 
was implemented in the file SIDF.m, found in Appendix A. The result is shown in Figure 
5-12.

3. We then calculated the SIDF of the brine heater model. From the SIDF of the FLC we have 
2500 output combinations. Therefore, to reduce this number of inputs to 50, a modified 
amplitude vector, Xmod, was constructed. This Xmod is then used as the input amplitude to 
the brine heater system. We find Xmodmax and Xmodmin by the following equations:

V (X, w): = max(X - abs(Z,,^,(X, w))) (5-4)

V (X, w): X,„,d = ™n(X - abs(L,^,(X, w))) (s-5)

This gave us Xmod e [0.0241,0.406] , which was logarithmically spaced. The frequency 
domain is left unchanged. The 3rd order brine heater model was then simulated (with a 
fixed time-step At = 0.05) for 30 periods in order to simulate beyond transient conditions. 
This was implemented in the file Lsys.m, which can be found in Appendix A. For each
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Figure 5-12: SIDF of FLC, L'IFuzzy

input combination, Xmod •, ©., the describing function was found using the discrete inte
gral:

tf

Lsystem^mod, P ®/) = % '~~TC ' 2 TBTi,/*) ' (sin(©/) + V"!COS(O)/)) • A* (5-6)

mod, z r _ o

In order to be able to multiply the SIDF of the FLC and the SIDF of the system in the fre
quency plane, the Lsvstem(Xmod, to) has to be modified so it fits with the amplitude/fre
quency pairs given by the FLC. This was done by linear interpolation, giving the adjusted 
Lsvs(Xmod’ to) as shown in Figure 5-13.

Real axis

Figure 5-13: SIDF of 3rd order brine heater model, L (Xmod, to). 

4. The Open-Loop System’s (OLS) SIDF is obtained by:
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Loupi, co) = m) ■ L„s(Xmod, to) <s-7)

We can then plot a Nyquist plot of the OLS as seen in Figure 5-14. We see that the open- 
loop system’s polar plot does not encircle (-1,0) thus we can conclude by Nyquist’s Crite
rion that the closed-loop system is stable (assuming that the open-loop system is minimum- 
phase).

- ■

Real axis

Figure 5-14: Nyquist plot of Lols(X, to)
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6 Hierarchy and Hybridization of 
Fuzzy Logic Control Systems

6.1 Rule-Base Reduction

It is well known that the number of rules grows exponentionally with respect to the number of 
system’s sensory feedback variables. Although the hierarchical structure suggested by Raju et 
al. (1991) does reduce the number of rules considerably, it is still not computationally effec
tive. Consider, as an example, the all too familiar inverted pendulum problem. For the 4th 
order non-linear (or linear) model, the number of rules reduce from 54 = 625 to 
3 • (5)2 = 75. Clearly, this number of rules is still too many and unacceptable. Moreover, 
this approach is not of any use for 2-variable systems, on one hand, and the intermediate vari
ables M,, u2, ..., uL (see Figure 6-1) are not fuzzy sets of controller input sensory variables, i.e 
some rules loose their “readability” as an expert’s opinion. They represent an aggregate of 
fuzzy decisions whose contributions into higher-level rules can not be obtained readily.

Rule Base 1

Hierarchy 
Level 1

Rule Base 2

Hierarchy 
Level 2

Rule Base L+l

Hierarchy 
Level L+l

Figure 6-1: Hierarchical Fuzzy Controller

Here, the hierarchical structure of Raju et al. (1991) is combined as one layer of a systematic 
procedure to drastically reduce the number of rules, i.e. the size of the overall rule base or the 
inference engine.

6.1.1 Sensory Fusion

An approach for rule-base reduction is to investigate the physical possibility and feasibility of 
combining or fusing sensory signals (variables) before being fed to the fuzzy controller (infer
ence engine). Assume that a fuzzy controller has three inputs (y;, z'=l,2,3) and one output (n). 
Furthermore, let each variable (input or output) be represented by 5 linguistic variables: NM 
(Negative Medium), NS (Negative Small), AZ (Approximately Zero), PS (Positive Small) and

On fuzzy control of water desalination plants page 44



Hierarchy and Hybridization of Fuzzy Logic Control Systems

PM (Positive Medium). This combination would call for k = mn = 53 = 125 rules, 
described below:

R{: IF y, is A, and y2 is Bl and y3 is C{ THEN u is D{

R2: IF y, is A2 and y2 is B2 and y3 is C2 THEN u is D2
(6-1)

/?, 25: IF y, is A125 and y2 is Z?125 and y3 is C125 THEN z< is D125

Now, if one would look into combining the sensory data (variables y., z'=l,2,3) in one of the 
following possible four ways:

(i) All three variables fused

Y = ayl+by2 + cy3 (6-2)

where a, b, and c are positive parameters dictated by physical considerations and 
designer’s experience.

(ii) Variables 1 and 2 are fused 

F, = ayx + by2
Y2 - -V3

(ili) Variables 1 and 3 are fused

E, = ay i + by3 

Y2 " -V2

(iv) Variables 2 and 3 are fused 

y, = ay2 + Zzy3

Y2~ y\
In this manner the number of fuzzy rules would be reduced from 125 in the unfused (general) 
case to = 5 or ki = 25, / = 2,3, and 4, depicting the above four cases. In this way a 
remarkable reduction in the size of the rule base would result. In fact, the reduction has a 
lower bound if all variables could, somehow, be fused. The rules for the first case are shown 
below:

IF y is Aj THEN u is D{

R5: IF y is Ag THEN u is D5
(6-3)

Should, every two variables could be combined, then for an even number of variables, the 
reduction is even more pronounced. For example, if n = 4, then the rules would reduce from 
54 = 625 to 52 = 25 - a 96% reduction versus 80% for n = 3. Figure 6-2 illustrates this 
simple idea for n - 2, 3 and4.
In spite of the remarkable reduction of the size of the rule base for lower values of n, if n is 
large, say n = 10, there are 510 = 9,765, 625 rules in the original base which could be 
reduced to 55 = 3,125 rules if every two sensory variable can be fused. Although 3, 125 is 
the upperbound by way of sensory fusion, the hierarchical structure of Raju et al. (1991) 
would result in only 9 • (5)2 = 225 rules, i.e. a linear increase as a function of n. Now, as
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n> 10, the number of rules get larger and larger regardless of what approach one would 
choose.

Number of rules = 625

Number of rules = 125

Number of rules = 25

(b) Three variables

(c) Four variables

(a) Two variables

Number of rules = 25

Number of rules =5

Number of rules = 25

Number of rules = 5

Figure 6-2: Fuzzy logic controller's rule base reduction for 3 cases

6.1.2 Hierarchy and Sensory Fusion Approach

Here, the variables are simply combined first, as in Figure 6-2, and then are organised into a 
hierarchical structure similar to that of Figure 6-1. For one or two input variables, there is no 
problem in reducing the size of the rule base. Figure 6-3 shows four possible fuzzy control 
structures corresponding to 3, 5, 8, and 10 input variables (sensory values). The reduction in 
the size of the rule base is quite remarkable. For the four cases shown the size of the rule base 
reduces from 80% for n = 3, 98.4% for n = 5, 99.98% for n = 8 to nearly 100%
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Number of rules = 9,765,625 Number of rules = 100

_______ ___ (d) n = 10 variables
Figure 6-3: Rule base reduction using hierarchical and sensory fusion
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(99.998976%) for n - 10. Figure 6-4 (a)-(c) shows four of five approaches for the size of the 
rule base. The first one is the single-level standard fuzzy controller rule base which is growing 
exponentionally. The second chart depicts the hierarchical structure of Raju etal. (1991), i.e. a 
linear increase in the number of rules before and beyond n = 2. The third chart shows the 
progression of the number of rules as a result of sensory fusion. The fourth graph represents 
the progression of rules as a result of combining sensory fusion (two variables at a time) and 
hierarchy of the rules. Finally, the fifth chart (Figure 6-4 b) shows a very ideal (impossible) or 
absolute minimum rules which could be obtained by fusing all variables and using a single 
level of hierarchy.

Clearly, depending on how many variables can be fused and in what order they are put into a 
hierarchical structure, the size of the rule base would be reduced differently. At this point, 
questions such as which variables to fuse with which ones and what are the most suitable val
ues for coefficients a, b and c in (6-2) are open. The only certain issue here is that the decisions 
on which variables to fuse and which ones to group at which level of hierarchy depends 
mostly on one fact - knowledge about the system. For the time being, the fusion can be done 
through the following rule,

E = ae + PAc (6-4)

where e and Ae are error and its rate of change E is the fused variable and parameters a and 
P are, at present time, chosen arbitrarily.

Going back to the proposed scheme of fuzzy rule base reduction, as the number of variables 
increase the percent reduction of rules quickly increases to “nearly” 100% as shown in 
Figure 6-5.

Next section will introduce schemes to reduce a rule base through hybridization and structural 
perturbation, decomposition, and decentralisation.

6.2 Hybrid Fuzzy Control Systems

The notions of hybridization and hierarchy in which either a fuzzy controller is combined with 
another controller, e.g. conventional or use fuzzy logic for both control purpose and plant 
behaviour (state identification). Here, what we mean by “state identification” is a classification 
of various states that a given system can attain throughout its dynamic history. As an example, 
consider the case of a flexible link robot (Akbarzadeh and Jamshidi, 1994) where the link can 
be “straight”, “oscillating”, “bent to the right”, “bent to the right", etc. The consequences of 
the rules which determine the approximate behaviour of the robot would, in turn, influence the 
behaviour of a low-level fuzzy controller either through the inference engine or membership 
functions or both.

Sayyarrodsari and Homaifar (1995) have presented a similar concept in their work in which a 
fuzzy partitioning of the input space of the controller would allow the high-level hierarchy 
define the firing boundaries of the lower-level rules within the inference engine.

The integration of fuzzy control or fuzzy logic with standard or non-standard approaches of 
control, hierarchy, decentralization, model reduction, search, optimization, and clustering will 
be briefly presented. Some of the proposed approaches in this section are intentionally left as 
an open research problem to entice some interest in the readers.
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------- Hierarchical reduction

Hierarchical and sensory fusion
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(a) Rule base reduction for 4 methods
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Figure 6-4: Rule base size for 5 possible large-scale fuzzy control structures
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Variable n

Figure 6-5: Percent rules reduction vs. variable n. Hierarchical-Sensory fusion
method

6.2.1 Fuzzy-PI D Controller

The set-point accuracy of standard PID controllers and non-linear characteristics of fuzzy con
trollers can be integrated to a hybrid fuzzy-PID architecture. The adaptation of a PID (multi- 
term) controller is presented in (Jamshidi, 1996). Here, a different point of view and structure 
is presented (Pedrycz, 1993).

Consider a hybrid structure as in Figure 6-6. The switch s/w provides a combination of the

Sensor
Input

Actuation
Output

Figure 6-6: A hybrid fuzzy-PIID control structure

control signal ul by the fuzzy logic controller and u2 by the PID controller. The control u is 
given by

u = aMj + (1 - a) «2 (6-5)

where
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a = c(e, Ag)
c(e, Ae) + f(e, Ae)

and c(e, Ae) and f(e, Ae) are two fuzzy sets representing a degree or a measure of being close 
to and far from the zero error as functions of error and change of error.

Figure 6-7 shows a schematic of these fuzzy sets. In this way, the control (6-5) would behave 
as follows: When error is large positive or negative, i.e. “far” set membership-value is close to 
one, i.e a = 0 and u ~ u2, a fuzzy controller. When the error e nears the zero value (positive 
or negative), a ~ 1 and control u~u,, a predominantly PID controller.

Figure 6-7: Fuzzy sets representing notions of close and far for error e.

This scheme of hybrid control can also be used between fuzzy logic controller and any other 
conventional schemes such as, sliding mode, optimal, etc.

6.2.2 Decentralized Fuzzy Control

Another approach to introduce fuzzy logic control in large-scale complex systems is to apply a 
set of fuzzy rules for each decentralised local controller as discussed in Chapter 5 of Jamshidi 
(1996). Consider a linear discrete-time large-scale system

with z'th output equation

N
x(k + 1) = Ax(k) + Bdifk) 

i= 1
(6-6)

yfk) = ctx{k) (6-7)

for / = 1, ..., N. Assume now that each local output can be used to activate the z'th local fuzzy 
controller given by a structure and a set of rules given below:

ufk) = FLC.(y.) (6-8)

R1: IF yfk) is Az and Ayfk) is Bl THEN ufk) is C' (6-9)

where k can be changed from k to k-I, k-2,...

Figure 6-8 shows a decentralised fuzzy control architecture. Here each local control signal 
will be the fuzzified output of rules of type given by (6-9).
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Large-Scale System
A u{ y, A uN yN

— FLCj( ■ ) - 1—FLC^C • )

Figure 6-8: A decentralized fuzzy control architecture

An alternative architecture for a decentralised fuzzy control of a large scale system is shown in 
Figure 6-9. Here, typical local controller would be described by the following relation

u(t) = Kpe{t) + K[je(x)dx + KDe(t) 

and the fuzzy tuner’s typical rules can be as
IF e is A1 and Ae is Bl THEN Kp is Small and K{ is Medium and KD is Big

Fuzzy tuner

Large-Scale System
Output

Figure 6-9: An architecture for fuzzy-tuned decentralised RID control of large-
scale system.

6.3 Interaction Predicted Fuzzy Control

One of the most attractive approaches for hierarchical control has been the interaction predic
tion method (see Section 4.3 of Jamshidi, 1996, and Chapter 4 of Jamshidi, 1983). One reason 
for the attractiveness of this method is the simplicity of the coordinator’s problem, while 
reducing the overall system’s order to a finite number of sub-problems. In spite of these 
favourable attributes the fact remains that at the low-level, a series of computationally inten
sive optimal control problems must be solved.

The object of this section is to introduce fuzzy logic into the interaction prediction approach of 
hierarchical control. The reader is cautioned that the content of this section is merely a pro
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posal for further detailed research and investigation.
Consider a large-scale discrete-time linear system

x(k + 1) = Ax(k) + Bu(k) (6-10)

X(0) = XQ (6-11)

where all the terms are defined before through the usual optimal control theory (Jamshidi, 
1996). Assume that the order of (6-10) is very large, i.e. n » 1 and let it be decomposed into N 
subsystems each being described by,

xfk A 1) = Apcfk) + BjUfk)+z£k) (6-12)

Xf0) = XiQ (6-13)

where the order of (6-12) is now ni with constraint n = ni. The interaction term zfk) 
is assumed to follow the relation

N
zfk) = A^Xjik) (6-14)

j= i 
i*j

and the overall Hamiltonian of the problem is given by:

Hfk) = l:xJ{k)Qixfk) + ]-uJ{k)R.pcfk) + ajzfk) (6-15)

N
- ^ ajAjXfk) + Pj(k) {Axfk) + Bufk) + zfk)) 

j*i
and afk) is the n X 1 vector of Lagrange multipliers corresponding to the interconnection 
constraints in (6-14). The remaining terms are self explanatory. It is also well known (Jam
shidi, 1983) that the coordinator’s policy (interaction balance) is given by

_ 1+ 1

i

S __
_1

Z;(&) = N
afk) XVi®

1

(6-16)

The subsystem problem consists of a discrete-time Riccati solution to (6-12) with known zfk) 
and a quadratic cost function (Jamshidi, 1983), i.e.

ufk) = -Ffk)xfk) (6-17)

where Ffk) is related directly to Kfk) which is the symmetric n. x ni positive definite Ric
cati matrix in discrete-time form.
In order to solve the low-level control problem with fuzzy logic, let us introduce the following 
set of rules for the zth subsystem:

Rr. IF xfk) is A[ and xfk) is .... THEN ufk) = -Ffk)x(k) (6-18)
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where Ay, j = I, ... are the ith subsystem’s vectors of fuzzy labels and Ffk) is an m.xni 
feedback matrix which can be determined arbitrarily for now. Note that the consequents of (6- 
18) could also be linguistic such as those rules in (6-1). Then ufk) is NM, where NM stands 
for Negative Medium. Note also, that the rule set (6-18) represents ni rules for the zth subsys
tem. Having observed this if there are, say 5 linguistic labels per fuzzy set Ay, then the size of 
the rule set would be 5 ', where ni is usually a large number, e.g. 5, 10, or even 15. This indi
cates that the number of rules per sub-system can become too large. Figure 6-10 shows a block 
diagram for the proposed interaction prediction fuzzy control system. The coordinator’s prob
lem can be simply the upper half of the relation (6-16). As an alternative one can use fuzzy 
rules in place of the above relation, e.g

IF (a:j nx2... nxN) is A, THEN z\+1 = z[

: : (6-19)

IF (x1 nx2... nxN) is AN THEN z^1 = zN

Note that the large-scale hierarchical fuzzy control architecture in Figure 6-10 provides a 3- 
directional rule-based reduction and simplification of control implementation - decomposition, 
sensory fusion, and rule-base hierarchy.

Subsystem#! Subsystem #N

Fuzzy controller #NFuzzy controller #1

Reduced Rule Set #1 Reduced Rule Set #N

COORDINATOR

Figure 6-10: A proposed interaction predicted hierarchical fuzzy control
architecture

On fuzzy control of water desalination plants page 54



7 Discussions and Conclusions

In this study a water desalination plant’s brine heater subsystem under conventional and fuzzy 
control has been investigated. Our goals in this study was to implement a stable FLC, and 
evaluate performance by comparing it with three conventional control strategies. We will in 
this chapter use the performance criterion, Integral of Absolute Error (IAE), to do a fair com
parison. Then we give some recommendations on further work from this study. Final remarks 
ends this chapter and the report.

7.1 Fuzzy vs Conventional

‘Best’ performance is a subjective measurement, so we choose the numerical criterion IAE = 
J\e{x)\dx to be able to compare the control strategies. (Babcock Inc., 1994) conclude with that 
the cascade controller is the best performing strategy, however they did not use any perform
ance criteria to reach this conclusion, but based their conclusions on heuristic argumentation. 
By comparing the performance criterion IAE, in Figure 7-1, our conclusion is that the PID 
controller is the best performing of the three conventional strategies.

The comparison between the FLC and conventional methods is not meant to be taken ‘liter
ally’, but rather as to be able to assess the performance of the FLC. No attempts has been made 
to optimise the conventional strategies, these are taken ‘as is’. Still, the comparison can said to 
be fair, as the FLC was not optimised either and has one degree of freedom less than the PID. 
Our conclusion is then, from looking at Figure 7-1 (with IAE on y-axis), that the FLC per
forms in most simulation cases better or equally well as the conventional strategies. The 
superior performance is most clear in Simulation D.

IAE: 3rd order model

0 - Simulation A 
□ - Simulation B 
Q - Simulation C 

- Simulation D

PID Cascade Dist.rej FLC

IAE: 13th order model

PID

03 - Simulation A 
□ - Simulation B 
0 - Simulation C 
EJ - Simulation D

1

Cascade Dist.rej FLC

Figure 7-1: Performance criteria IAE for 4 controllers.
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7.2 Stability

We have shown (in Section 5.4 ’Stability of the Fuzzy Control System’ on page 40) that the 
fuzzy control system is stable. Looking at the Nyquist plot one could be misled to believe that 
the controller has almost infinite gain margin and a phase-margin of about 45 degrees. But in 
fact, none of these properties can be deduced from the Nyquist plot as in the linear case. This 
is because changing the gain of the controller (Ku) will lead to a different Xmod to the model. 
We will then have a different SIDF of the model, which in turn leads to a different Lqls, 
which can be unstable. We can therefore only conclude that the fuzzy control system is sta
ble for the chosen TSFLC with the studied amplitudes and frequencies.

7.3 Recommendations

We will here come with some suggestions on what could be done in a further study.

7.3.1 Model

• The validity of using a 12th order model vs. a 3rd order model should be assessed.
• Model parameters must be evaluated and probably changed to obtain a model 

which can be simulated over larger area of operating conditions. The model should 
work in the operating regime as described in Section 2.3.4 ’Operating Conditions’ 
on page 11.

• The model does not take into consideration the main property that distinguishes the 
brine heater from a normal heat-exchanger, namely the dependency between the 
brine heater inlet temperature and the TBT. In our opinion this is clearly a defi
ciency, as it changes the overall dynamic behaviour of the system, and thus also the 
performance of the controllers. The possibility of including a relation showing this 
dependency, should be investigated.

• Work can be done to simulate the controller strategies with a total non-linear model 
of an MSF plant to get more realistic responses.

• Model identification and verification could be done with actual plant measure
ments.

7.3.2 Control

Conventional

• Optimization of the PID control parameters (the PID and cascade control scheme) 
is clearly needed. The open-loop methods are just meant to be a starting point for 
further controller tuning.

• In (Babcock Inc., 1994) they discuss the poor performance of the disturbance 
rejection scheme, and names 1) the lack of time delays and inertias in the brine 
heater model, and 2) the chosen disturbance rejection function. One could there
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fore find a better disturbance rejection function than the linear used in (Babcock 
Inc., 1994), and/or introduce reasonable time delays in the model.

• The problem with the cascade control loop seems to be the integral term of the 
inner loop. Because one has saturation in the valve actuator, the integrator will con
tinue integrating, and the outer loop will produce a still higher setpoint due to the 
lack of response from the inner loop.This phenomena is known as integrator wind
up. An anti wind-up controller can be used, solving part of this problem.

Fuzzy

• Optimization of scaling factors and tuning of fuzzy sets on existing controller. The 
controller could also be expanded with more fuzzy sets. A better performance 
could be expected if one would tune the rules and the membership functions to bet
ter reflect the non-linearities in process. This could for instance be done using 
Genetic Algorithms as a search engine to find a global optimum.

• Hybrid approach. In the cascade control loop, one could investigate the use of an 
FLC in the secondary loop. The non-linearities and uncertainties lies mainly in the 
valve characteristics (Babcock Inc., 1994).

In this study we have only looked at one operating point. A good control strategy should be 
able to work in a larger range of operation. The non-linearities of the process is more predom
inant, and demands more robustness of the control, when all of the operating regime is consid
ered. Therefore several operating points should be included in a further study (as mentioned 
before, this requires a model which works for the operating regime).

7.4 Final Remarks

Fuzzy logic offers an elegant method of transferring knowledge of a process into a non-linear 
controller. One interesting aspect, which (to the authors best knowledge1) has not been inves
tigated, is the following:

• A conventionally obtained control law can be transferred to a fuzzy system with 
any desired degree of accuracy, since fuzzy systems are universal approximators 
(Kosko, 1992). The resulting fuzzy rules then describes in a natural, linguistic way 
the underlying control law. The rulebase could then be modified, using heuristic 
process and control knowledge, enhancing the performance of the controller.

Fuzzy control is still immature in many aspects, e.g stability, design and tuning. One reason 
for this has been the reluctance from the control community. Hopefully, with increased accept
ance from control researchers, some of the drawbacks of fuzzy control will be resolved. Fuzzy 
control should not be seen upon as a replacement of classic control theory, but rather as an 
extension in the available tools for a control engineer.

1. in (Dubois etal., 1994) they also mention this idea.
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Appendix A Listings

A.1 brine Jijoid.m1

-W t_pid3 1 
To Workspace Abs Integrator To Workspaces

* * ------ ►i/s------Hise_pid3|
Product Integrator! To Workspace4

------- H h_in_pid3 |
To Workspaces

Clock

—►I tb_pid3 |
To Workspace2Error PID Controller

0.632 ->
—H h_pid3 |
To Workspace?

—►)o_hs_pl^
To Workspacest_hsin

A.2 brine_h_cascade.m2

----H t_cascade3 |
Clock To Workspace Integrator To Workspaces

ise cascade3
To Workspace4Product Integrator!

-►I h_in_cascade3~1 
To Workspaces

Controller! To WorkspacesSum2Controllers
►j h_cascade3

To Workspace?BiasS
►j rho hs cascade3Tbjn

To Workspaces
m hs

t_hsin Brine_heater

0.63251.0178

iae cascade3

1, brine_hl2_pid.m is the same, except it uses the 12th order brineheatermex.c.
2. brine_hl2_cascade.m is the same, except it uses the 12th order brineheatermex.c.
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A.3 brinejL.dist.m1

»| iae_dist3► Abs-------►[l/sj
Abs Integrator To Workspaces

t * -------Hlfel-------W ise_dist3~l
Product Integrator! To Workspace4

■H t_dist3 |
To WorkspaceClock

h in dist3
Disturbance

Rejection
Function

To Workspaces

tb dist3
Error PID Controller To Workspaces

Sum! PID Controller!
|0.632|—

Sum2
h dist3

To Workspace?Bias!
Tb in

To Workspaces

t_hsin
Brine_heater

S.order

A.4 sugeno.m2

function out=sugeno(xl,x2,Mem_xl,Mem_x2,Mem_u,rules) 
%This is the Takagi-Sugeno type FLC.
%Inputs are:
% xl, x2: Crisp inputs
% Mem_xl,
% Mem_x2: Membership functions of the fuzzy sets
% for the inputs.
% Mem_u: crisp constant for output consequence
% rules: rulebase matrix
%determine the number of input sets for xl and x2 
[m,n]=size(rules);
%Find membership value for all fuzzy sets for 
%the input xl 
for i=l:m,

a=Mem_xl(i, 1) ; 
b=Mem_xl(i,2); 
c=Mem_xl(i, 3);
if (xl==b),

uxl=l;
elseif ((xl>=b) & (xl<=c)), 

uxl=(xl-c)/(b-c); 
elseif ((xl<b) & (xl>=a)), 

uxl=(xl-a)Z(b-a);
else

uxl=0;
end;
ul(i)=uxl;

end;
%Find membership value for all fuzzy sets for 
%the input x2 
for i=l:n,

a=Mem_x2(i,1); 
b=Mem_x2(i,2) ; 
c=Mem_x2(i,3) ;
if (x2==b),

ux2=l;

1. brine_hl2_dist.m is the same, except it uses the 12th order brineheatermex.c
2. The sugeno.c file obtained from the translation with MC is not included here as it is not very readable
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elseif ((x2>=b) & (x2<=c)), 
ux2=(x2-c)Z(b-c); 

elseif ((x2<b) &. (x2>=a) ) , 
ux2=(x2-a)Z(b-a) ;

else
ux2=0;

end;
u2(i)=ux2;

end;
%Xnitialise sums 
SigUijCij=0;
SigUij=0;
%for all fuzzy sets for xl 
for i=l:m,

%for all fuzzy sets for x2 
for j=l:n,

%use min-operation for fuzzy inference 
%and save in array 
if ul(i)<u2(j),

u(i,j)=ul(i);
else
end;

u(i,j)=u2(j);

%calculate the firing strength 
SigUijCij=SigUijCij+Mem_u(rules(i,j))*u(i,j); 
SigUij=SigUij+u(i,j);

end;
end;
%find weighted output 
out=SigUijCijZSigUij;

A.5 mem3.m

%Error has three fuzzy sets defined as: 
mem_func_e=[ -1-10 % NEG

-10 1 % ZE
Oil]; % POS

%The fuzzy sets of e_dot are the same as e 
mem_func_edot=mem_func_e;
%Three singletons for output function 
mem_func_output=[-1 0 1]; %[NEG, ZE, POS]
%Rulebase
rulebase=[ 112

12 3 
2 3 3];

%Scaling factors 
Ku=0.0375;
Ke=lZ0.8004; %1.25
KedOt=lZ0.15; %6.67

A.6 brineheatermex3.c

ffinclude <math.lh>
#include "cmex.h”
((define NSTATES 3
#define NOUTPUTS 4
((define NINPUTS 5
((define NEEDINPUTS 0
((define Pi 3.14
((define rho_b 1000 Z*Density of brine*Z
((define cp_b 4.18 Z*Heat capacity of brine*Z
((define n_tube 2700 Z*Number of tubes in heat exchanger*Z
((define d_i 0.0293 Z*Internal diameter of tubes*Z
((define L 17.33 Z*Length of tubes*Z
((define k 1.942 Z*Heat transfer coefficient*Z
((define eps 0.001 Z*Valve constant*Z
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#de£ine rho 
“define k_vs 
#define H_v 
#define R 
Sdefine c2K

0.7 /*Density of supply steam*/
7 /*Valve coefficient*/
2230 /*Evaporation enthalpy*/
0.00461 /*Ideal gas constant*/
273 /*From Celsius to Kelvin*/

static double T_cond; 
static double m_hs;
void derivatives(t,x,u,dx) 
double t,*x,*u; 
double *dx;
{double h_in,m_b,Tb_in,p_in,T_hsin; 
double h,rho_hs,A_i,T_b,T_ln,d_Tb; 
double phi,V_hs,V_b,Tb,tmp,p_sh,Q_hs,m_cond; 
int i;

/♦Inputs*/ 
h_in=u10]; 
m_b=u[1]; 
Tb_in=u[2]; 
p_in=u[3]; 
T_hsin=u[4];

/♦Control signal to steam valve*/ 
/♦Recycle flow*/
/♦Inlet temperature*/
/♦Steam supply pressure to valve */ 
/♦Temperature of saturated steam*/

/♦States*/ 
Tb=x[0]; 
h=x[1]; 
rho_hs=x[2J

/*TBT*/
/♦Valve opening*/ 
/♦Density of steam*/

/♦Steam pressure in heater*/ 
p_sh=rho_hs*R*(T_cond+c2K);
/♦Steam condensation temperature*/
T_cond=(-1750.268/(loglO(p_sh/l.332e-3)-8.1077)-235) ;
/♦Heat Transfer surface*/ 
A_i=pi*n_tube*d_i*L;
/♦Volume of brine*/
V_b=0.25*pi*n_tube*L*d_i*d_i ;
/♦Logarithmic temperature, T_ln*/
T_ln=(Tb-Tb_in)/log((T_cond-Tb_in)/(T_cond-Tb)) ;
/*Q_hs*/
Q_hs=k*A_i*T_ln;
/♦Energy balance*/
d_Tb=(Q_hs+m_b* cp_b*(Tb_in-Tb))/(rho_b* cp_b*V_b); 
dx[0]=d_Tb;
/*------------------------------------------- */
/♦Valve equations */
/*---------------------------------------------------------- */

if (fabs(h-h_in)<eps){
dx[l]=0; /*d_h=0;*/

}else{
if (h<h_in){

dx[l]=0.02; /*d_h=0.02;*/
}else{

dx[l)=-0.02; /*d_h=-0.02;*/
}

}/♦Saturation limit for valve opening */
if(h>l){

dx[l]=-0.02; 
h=l;

}
/*-------------------------------- */
/♦Steam density ecuations */
/*-------------------------------- */
/♦PHI-equal percentage valve equation*/
/♦The ratio of k_vo/k_vs is about 0.04*/ 
phi=0.04*exp(3.22*h);
/*PHI-linear characteristic valve equation*/
/*phi=0.04+0.96*h;*/
/♦Flow characteristic*/
/♦The value of c_G is 519 */
m_hs=k_vs*519*sqrt(fabs(p_sh*(p_in-p_sh)*rho/T_hsin))*phi;
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/*Flow of condensate */ 
m_cond=Q_hs/H_v;
/*Steam density*/
V_hs=4.07 *V_b;
dx[2]=(m_hs-m_cond)/V_hs;

}
void init_conditionsCxO) 
double *x0;
{

xO[0]=95;x0[lj=0.632; /*For equal percentage valve*/ 
xO [2]=0.706;
T_cond=105.4; 
m_hs=51.04;

}

void outputs (t,x,u,y) 
double t,*x,*u; 
double *y;
(

y[0]=x[0]; y[lj=x[l] ; 
y[2]=x[2] ; 
y 13]=m_hs;

}
ffinclude "simulink.h"

/*TBT*/
/*Valve opening*/ 
/*Steam density*/ 
/*Steam flow*/

A.7 brineheatermex.c

ff include <math.h>
ft include "cmex.lh-
ff define NSTATES 12
ff define NOUTPUTS 13
ffdefine NINPUTS 5
ftdefine NEEDINPUTS 0
ffdefine Pi 3.14
ffdefine rho_b 1000 /* Density of brine */
ffdefine cp_b 4.18 /* Heat capacity of brine */
ffdefine n_tube 2700 /* Number of tubes in heat exchanger */
ffdefine d_i 0.0293 /* Internal diameter of tubes */
ffdefine L 17.33 /* Length of tubes */
ffdefine k 1.942 /* Heat transfer coefficient */
ffdefine n_seg 10 /* Number of segments */
ffdefine eps 0.001 /* Valve constant */
ffdefine rho 0.7 /* Density of supply steam */
ffdefine k_vs 7 /* Valve coefficient */
ffdefine H_v 2230 /* Evaporation enthalpy */
ffdefine R 0.00461 /* Ideal gas constant */
ffdefine C2K 273 /* From Celsius to Kelvin */
static double T._cond;
static double m_hs;
void derivatives(t,x,u,dx) 
double t,*x,*u; 
double *dx;
{double h_in,m_b,Tb_in,p_in,T_hsin; 
double h, rho_hs, A_i, T_b, T_ln, Q_hs ; 
double phi,m_cond,V_hs,SUM_Q_hs,p_sh,V_b,Tb; 
int i;

/*Inputs*/ 
h_in=u[0]; 
m_b=u[1]; 
Tb_in=u[2]; 
p_in=u[3]; 
T_hsin=u[4];

/* Control signal to steam valve */ 
/* Recycle flow */
/* Inlet temperature */
/* Steam supply pressure to valve */ 
/* Temperature of saturated steam */

/* Steam pressure in heater */ 
rho_hs=x[ll]; /*Density of steam*/
p_sh=rho_hs*R*(T_cond+c2K);
/* Steam condensation temperature */
T_cond=(-1750.268/(loglO(p_sh/l.332e-3)-8.1077)-235);
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/* Heat Transfer surface */
A_i=(pi*n_tube*d_i*L)/n_seg;
/* Volume of brine */
V_b=(0.25*pi*n_tube*L*d_i*d_i)/n_seg;
/* Inlet temperature */
Tb=x[0];
/* Logarithmic mean temperature, T_ln */
T_ln=(Tb-Tb_in)/log((T_cond-Tb_in)/(T_cond-Tb)) ;
/* Heat flow */
Q_hs=(k*A_i*T_ln);
SOM_Q_hs=Q_hs;
/* Energy balance */
dx[0]=(Q_hs+m_b*cp_b*(Tb_in-Tb))/(rho_b*cp_b*V_b);
/* Calculate each segment */ 
for (i=l;i<n_seg;i++){

/* Logarithmic temperature, T_ln */
Tb=x[i]; /* Temperature output for segment */
Tb_in=x[i-1]; /* Inlet temperature for segment */
T_ln=(Tb-Tb_in)/log((T_cond-Tb_in)/(T_cond-Tb));
/*Q_hs*/
Q_hs=(k*A_i*T_ln);
SUM_Q_hs=SUM_Q_hs+Q_hs;
/*Energy balance*/
dx[i] = (Q_hs+m_b*cp_b*(Tb_in-Tb))/(rho_b* cp_b*V_b);

}
/*---------------------------------------------------------- */
/* Valve acuator equations */
/*------------------------------------------- */
/* Valve opening */ 
h=x[10];
if (fabs(h-h_in)<eps){

dx[10]=0; /*d_h=0;*/
}
else{

if (h<h_in){
dx[10]=0.02; /*d_h=0.02;*/

}else{
dx[10]=-0.02; /*d_h=-0.02;*/

}
}

/* Saturation limit for valve opening */ 
if(h>l){

dx[10]=-0.02; 
h=l ;

}

/*-------------------------------- */
/*Steam density equations */
/*-------------------------------- */
/* PHI-equal percentage valve equation */
/* The ratio of k_vo/k_vs is about 0.04 */ 
phi=0.04*exp(3,22*h);
/* PHI-linear characteristic valve equation */
/*phi=0.04+0.96*h;*/
/* Steam flow characteristic */
/* The value of c_G is 519 */
m_hs=k_vs*519*sqrt(fabs((p_sh*(p_in-p_sh)*rho)/T_hsin))*phi;
/* Flow of condensate */ 
m_c ond= SUIl_Q_hs / H_v ,-
/* Steam volume */
V_hs=4.07*(V_b*n_seg);
/* Change of steam density */ 
dx[11]=(m_hs-m_cond)/V_hs;

}void init_conditions(xO) 
double *x0;
{
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%with the integrator 
for i =1:length(Aa),

for j=l:length(Ww),
LI(i,j)=L(i,j)*I(i,j);

end;
end;

A.9 Lsys.m

function [Lsystem,Xmod]=Lsys(LI,A,W)
%This functions finds the SIDF for the 3rd order 
%brine heater model. The inputs are:
% LI: The SIDF of the controller
% A: The original amplitude vector
% W: Frequency vector
%Variables passed to the Simulink system 
global Asys Wsys
%Size of integration step used in simulation 
stepsize=0.05;
%Find modified input amplitudes, Xmod
mod=abs(LI);
for i=l:length(A),

Xmodmax(i)=max(abs(LI(i,:)))*A(i);
Xmodmin(i)=min(abs(LI(i,:)))*A(i) ;

end;
Xmin=min(Xmodmin);
Xmax=max(Xmodmax);
Xmod=logspace(loglO(Xmin),loglO(Xmax),length(A));
%For all amplitudes 
for i=l:length(A)

%For all frequencies 
for j=l:length(Xmod)

%Input amplitude 
Asys=Xmod(i);
%Input frequency 
Wsys=W(j);
%Set final time to 30 periods 
Tf=30*pi*2/Wsys;
%Simulate Simulink system
rk45('lsys',Tf,[],[le-03 stepsize stepsize 0 0 2]); 
%Extract last period of TBT
y=tb(length(tb)-l/Wsys*2*pi/stepsize:length(tb)); 
%Take average value 
y=y-mean(y);
%Extract last time period
t=t(length(t)-l/Wsys*2*pi/stepsize:length(t));
%Make period start at time 0 
t=(t-t(1));
%Calculate discrete integral
intl=(Wsys/(Asys*pi))*sum(y.*sin(t*Wsys)*stepsize); 
int2=(Wsys/(Asys*pi))*sum(y.*cos(t*Wsys)*stepsize);
%Store SIDF in array
Lsystem(i,j)=intl+sqrt(-1)*int2 ;

end;
end;

A. 10 controller.m

function [xprime]^controller(v;t,x)
%This function returns the SIDF of the FLC. 
%V)ritten by J.P.Marin, LAAS
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%Inputs:% wt: frequency% x is a dummy state vector
% x(l)=X
% x(2)=W% x(3)=RE(L(X,W))
% x(4)=Im(L(X,W))
% x(5)=Ke
% x(6)=Kde
% x(7)=Ku
% controller parameters
global Mem_e Mem_de Mem_u Table!j
% e=K_e*X*sin(wt) 
e=x(5) *x(l) *sin(wt) ;
% edot= K_edot*X*w*cos(wt) 
de=x(6)*x(l)*x(2)*cos(wt);
%Maximum allowable value for the inputs is 1 
if ( abs(e)>=l ) e=sign(e); end;
if ( abs(de)>=1 ) de=sign(de); end;
% u=K_u*FLC(e,edot)output = x(7)*sugenomex ( e, de, Mem_e, Mem_de,Mem_u, Table!j ); 
%output
%dummy variables 
xprime(1)=0; 
xprime(2)=0;
%Calculate integralxprime(3)=2/(pi*x(l))*output * sin(wt); 
xprime(4)=2/(pi*x(l))*output * cos(wt);
%dummy variables 
xprime(5)=0; 
xprime(6)=0; 
xprime(7)=0;

A. 11 STABSIDF.m

%Initialization 
init_table; 
global Asys Wsys
%Find the SIDF of the controller 
[W,X,Lfuzzy,LIfuzzy]=SIDF;
%Find the SIDF of the system 
[Lsystern,Xmod]=Lsys(LIfuzzy,X,W) ;
%perform the linear interploation to match 
%the amplitude and frequency pairs 
for i=l:length(X),

for j=l:length(W),
Xmodreel(i,j)=X(i)*abs(LIfuzzy(i, j)) ;
Xmodre=ones(length(X),1)*Xmodreel(i,j); 
diffe=Xmod'-Xmodre;
[k]=min(find(dif fe>-eps));
if k==l,

Lsys(i,j)=Lsystem(l,j);
else

indicemin=k-l;
indicemax=k;
Lsys(i,j)=(Xmodreel(i,j)-Xmod(indicemin))/(Xmod(indicemax)-Xmod(indi- 

cemin')* Lsys tern(indicemax,j)...
+(-Xmodreel(i,j)+Xmod(indicemax))/(Xmod(indicemax)-Xmod(indicemin))*Lsystern(indi

cemin j) ;

end;
end;

end;

%The SIDF of the Open Loop System is: 
Lols=LIfuzzy.*Lsys;
‘’•save work 
%save tot_stab;
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