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Abstract:
An effective chiral model which describes properties of a single baryon predicts

that the quark matter relevant to neutron stars, close to the deconfinement density, is
in a chirally broken phase. We find for the SU(2) model that pion-condensed up and
down quark matter is preferred energetically at neutron star densities. It exhibits spin
ordering and can possess a permanent magnetization. The equation of state of quark
matter with chiral condensate is very well approximated by the bag model equation of
state with suitably chosen parameters, We study quark cores inside neutron stars in this
model using realistic nucleon equations of state. The biggest quark core corresponds
to the second order phase transition to quark matter. Magnetic moment of the pion-

condensed quark core is calculated,
PACS numbers: 21.65.+f, 97.60.Jd

1. Introduction

Properties of neutron stars are determined by the equation of state of baryon matter
at densities exceeding the nuclear saturation density ny =~ 0.16 fm~3. In this density
range a phase transition to quark matter occurs which is expected to affect the neutron
star structure. Recent studies of millisecond pulsars stimulated investigations of quark
structure of neutron stars and even possibility of existence of quark stars [1]. Very
recent data [2], strongly suggesting that v-ray bursters are located at cosmological
distances, make the collision of quark-rich stars a promising candidate for a model of
this phenomenon [3].

In this paper we study implications for neutron stars of the phase transition from
nucleon matter to quark matter described by an effective chiral inodel. This model is
based on the assumption that {wo fundamental phase transitions predicted by QCD, the
deconfinement transition and the chiral symmetry restoration, are separated in baryon
density at low temperature. Deconfinement is assumed to occur at much lower densities
than the chiral symmetry restoration. The effective chiral model predicts thus that at
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the deconfinement transition quarks are liberated from nucleons but the chiral symmetry
rentains spontaneously broken, as in the nucleon phase. This implies that the quark
niatter in newtron stars has broken chiral symmetry. Earlier studies of quark matter in
neutron stars [4]-[6] based mainly on the hag model and perturbative QCD calculations,
did not consider such a possibility.

The SU{2) chital model for up and down quark matter was studied in detail in
Refs.[7]-{9. It predicts presence of a chiral field coudensate in the ground state of
quark matter. This phase is analogous to the pion condensate in nucleon matter, since
the chiral field is compeosed of pions and sigma-mesons. Presence of the neutral pion
condensate leads to a ferromagnetic ordering of quark spins which produces permanent
magnetizalion of this phase. The {erromagnetic quark core if present in & neutron star
can coniribute to its magnetic moment.

This work is organized as follows. In Secl. 2 we briefly summarize properties of
normal quark matter and quark malter with neutral and charged pion condensate in
the SU(2) eflective chiral model. In Sect. 3 we consider the equation of state of 8-stable
quack matter in neutron stars. In Sect.4 models of neutron stars with quark cores are
constructed and magnetic moments of pion-condensed cores are calculated.

2. The SU(2) effective chiral model
The eflective chiral model is described by the e-model Lagrangian with quark and
meson degrees of freedom,

.z = N ., 1 |
C=i¥y"8, ¥ — g¥(eo +iysT MY — U0, 7) + 5(a,,a)2 + E(a,m)", (1)
where ¥ = {3) is the isodoubiet of quarks interacting with an isotriplet of pions #

via pseudoscalar Yukawa coupling and with an jsoscalar tneson o via a scalar Yukawa
coupling. Both Yukawa interactions have the same coupling constant g. U is the
potential which generates spontaneous breaking of the chiral symimnetry,

Uo,7) = i,\?(a? N Sl g L (2)

where A% is the meson coupling conslant, A? = m2 /2F2, m, is the mass of the o-meson
and £ = 93 MV is the pion decay constant.

The SU(2} eflective chiral model is rather successful in reproducing properties of
the lightest baryons [10]. The nucleon is described in terms of valence gnarks interacting
with the soliton of the chiral field. The model is, in a sense, a relativistic generalization
of the constituent quark model, which was very successful in hadron spectroscopy.

The eflective quark mass is generated by the o field: m = go. In the vacuum we
have niyy = gog, where the vacuum expectation value of the o field is ¢ = F. It becomes
cnergetically favourable at high densities that o field vanishes and the spontaneously
broken chiral symtnetry is restored. This transition to the restored symmetry phase
makes the quarks massless. Tt is assumed in this model that deconfinement phase
transition occurs at a lower density than the chiral symmetry restoration. In this case
the deconfinement phase transition leads to the chirally broken phase of quark matter

4



with “constituent”-like masses generaled dynamically by the quark interactions with
the o field.

The model parameters mg of the order of 500 MeV and m, around 1GeV give good
fits to baryon properties [10]. However the fits are not sensitive lo m, as long as it is
large. In Rel. [8] we have studied properties of quark matter in this model for various
values of these parameters.

One can distinguish two different phases of SU(2)-symmetric up and down quark
matter with broken chiral symmetry: the normal quark matter with nonzero sigma field
and vanishing pion field, and the pion-condensed guark matler with space-dependent

pion and sigma fields [8].

2.1 Normal quark matter

In this case we neglect the pion felds and replace the sigma field by a constant
expectation value ¢ = &, The quark mass m = g& is generated through the interaction
term in the Lagrangian, Eq.(1). The energy density of a uniferm, quark matter is

1 br _ Lo
W = (__%]37/0 CR(K +g'67) @ - BTV, (3)

where the first term is the energy density of the quark Ferni sea and the second one
is the energy density of the o field resulting from the potential term U(o,7), Eq.(2).
For isospin-symmetric quark matter the spin-flavour-colour degeneracy v = NyN v, is
¥ == 12. The energy density, Eq.(3}, depends on the haryon density through the quark
Fernsi momentum kg = (67%n,/v)!/*, where n, is the quark density and the baryon
density is ng = (1/3)n,. The ground state of the system corresponds to the value of &
which minimizes the energy W at a fixed value of the baryon density rng. This gives &
as a function of baryon density, & = &(ng). Hence the quark mass is density dependent,
m = m(ng}. Il we oblain in this procedure vanishing sigma field # = 0 at some baryon
density =, the chiral symnetry will be restored. In such a case both the Lagrangian,
Eq.(1), and the ground state have the same SU(2); x $T7(2)r symmetry.

In the chirally symmetric phase, with massless quarks and vanishing sigma field,
the energy density is

kr
= (—éﬁ—).")f A dskk-l-U(O':U,f:‘]). (”

This equation is equivalent to that for the MIT bag model with massless quarks. The
last term in Eq.(4) plays the role of the bag constant,

nW

2

V(je=0,f=0)=B= %m.iF;. (5)

2.2 Quark matter with the pion condensate

If the pions appear in the ground state they will form a Bose-Einstein condensate.
In the pion-condensed phase some components of tbe pion field acquire a nonzero expec-
tation value. The following ansatz with non-vanishing expectation values of the nentral
meson fields is assumed {11]



ol{r) = dcos(q -7}, m(F) =dsin(¢-7), M =m =0 (6)
The Dirac equation [or quark fields with this ansafz has the form
(=i& -V + Bmezp(insmad M)S(F) = Ed(F), (7)

where ¢ is the Dirac spiner and the effective quark mass is n2 = g&. This equation was
solved in Rel.[8]. The quasiparticle spectrum is:

By (k) = {m? + &° +4 ¢ £ [ + (g RPYP (8)

The ground stale of quark matter is constructed by filling the Fermi seas for iwo
branches of the spectrum (8) up to the quark Fermi energy Er. The baryon density is

"0 = ggesi7 | [ #10(Ee - BN+ [roiEr-Eu@)], @

where the spin-flavour-colour degeneracy for a single branch is v = 6. The energy
density of the system is

ngW = 1 - [/ BRE_(R)O(Er — E_(k)) +jd3kE+(E)6(Ep - E+(E))]

1 1 2.2

+-5°¢ + X F - FI). (10)
2 |

It consists of the energy density of the occupied Fermi seas of K. and E4 quasiparticles

and the energy density of the chiral field.

The integrals in Eqs.(9) and {10} can be evalualed analytically for the spectrum
given by Eq.(8). The baryon densities ng and n}, corresponding to occupied Fermi
seas of £_ and E quasiparticles are, respectively,

F__7T 7 _ 2_12,__1“3
"B = ggay (R o - g0 ke — gk

kﬂlllr

1
:I:;jq(k;p; +m23”|k: + p:1)} ) (11)

kmin

where p. = «/m?® + k2. The integration limits in Eq.(11} are

0 for m > %q and Eg >m — -;-q
bwin =4 0 for m < 3¢ and Er > %q— m o, (12}
{Er - 39 - m*]'? for m< lq and Ep < j9-m

and



1 2
kmaz = (B + 59)° —m?}!/? (13)

for all cases in Eq.(12). The E quark Fermi sea is occupied only if Er > 3¢ + m and
the integration limits in Eq.{11) are

1
kmin = 0, kmaz = [(EF - 5‘?)2 - m_?]lﬂ. {14)
Energy densities of occupied £_ and E, Fermi seas are

,__27 ,3,_1, 2 21372 gz, 4 x
npWe = 3—(~2—N—)E{L‘FL; Jl(m? + KDY 4+ S (mPhop. + minlk, 4 o)

kmdﬂ.‘
, (15)

kmin

1

1
Saki + gk}

3 3
- §q2[kzpz + miintk, + p.ll £ (59’7’121‘; n

with the same integration limits as for nf, Eq.(11).

The values of the variational parameters g and m in the ground state are determined
by minimizing the grand potential density O with respect to ¢ = |} and & = m/g at
fixed baryon chemical potential. The grand potential density (I at zero temperature is

Q(q,0) =ngW — pn = —p, (16)

where the energy density mpW and baryon density npg are sums of contributions given,
respectively, by Eqs.(15) and (11}, ¢ = 3EF is the baryon chemical potential and p is
the pressure. One can notice that the ground state is determined by maximizing the
pressure at fixed p. Minimization of {t gives the baryon density ng, the energy per
baryon W, the pressure p and the values of ¢ and m as functions of baryon chemical
potentials.

The results of this analysis are presented in detail in Ref.[8]. Here we only display
in Fig.l the energy per baryon as a function of haryon density for both normal and pion
condensed quark matter in case of neutron-like quark matter. We show results for two
limiting valnes of the parameter m,, which are m, = T00MeV and m, = 1200AfeV.
The value of the quark mass is my = 500MeV. One can notice that the pion-condensed
phase (C) is always of lower energy than the normal quark matter (N).

2.3 Magnetic properilies of the pion-condensed quark matier

The quasiparticles diagonalizing the Dirac Hamiltonian are the up and down quarks
with the spin polarized along the wave vector §, as shown in Ref.[8]. Corresponding
spin densities are

—

sud) = 3 (¥(1 £ 73)7 3, ¥). (17)

The magnetization of the sysiem is



M = go{pusy + ptasa), (18)

where g4 = 2 is the gyroscopic factor, p, and pq are the up and down quarks magnetons.
We assume Dirac magnetic moinents for quarks which give p, = —2u4. The quark
matter with neutral pion condensate has a net magnetization. For symmetric up and
down quark matter the total spin density is zero since the up and down quark Fermi
seas are oppositely polarized, but the opposite electric charges of up and down quarks
cause their magnetic moments to point in the same direction.

In Fig.2 we show the magnetization, Eq.(17), corresponding o spin densities (17)
as a function of baryon density for neutron-like quark matter, It will be used to find the
magnetic dipole moment of ihe neutron star core with pion-condensed quark matter.

3. Equation of state for quark matter in neutron stars

3.1 Equation of stafe of pion-condensed up and down gquark matier

The equation of state of pion-condensed up and down quark matter is obtained frem
Egs.(11) and (15). These give the baryon density and the energy density as functions
of the baryon chemical potential u. The pressure p{u) is determined by minimizing the
grand potential density 2 in Eq.{(16).

We treat the s-meson mass as a parameter of the model. Equations (11} and
(15) give a one-parameter family of pion-condensed quark matter eqnations of state
for a given value of g. We cheose g = 5 since this value gives best fits of single baryon
properiies {10]. In Figs.3 and 4 we show respectively 1he baryon density and the pressure
as functions of the baryon chemical potential for two values of m,: m, = T00MeV and
mg = 1200 eV. The curves in Figs.3 and 4 correspond to neutron-like quark matter
with up quark fraction z = 1/3.

The analytical form of Eqs.(11) and (15) in the presence of the pion condensate
is rather complicated. Numerically, however, the energy density ngW is very well
approximated by a simple bag model formula for massless quarks:

3,
ewd(fu, fainp) = Ef'ls( YR ny'* + B, (19}
i=u,d

where B is the bag constant and f; are flavour concentrations, f; = n;/np,t = u,d,s.
The corresponding pressure and haryon chemical potential is, respectively

1
P=3m(Y fPmy’ - B (20)
f=u,d
and
p=rP(Y Py 1)
=u,d

]



The bag constant B has to be chosen appropriately for a given value of .he scalar
meson mass m,., In Fig.5 we show B as a function of m, as obtained by the least-
squares fitting of the energy per baryon, Eq.(15), with the bag model formula (21} for
20 points. The quality of the fit is very good, with the maximum deviation below 0.2%
and it can be safely used in astrophysical applications.

As a check of applicability of the bag model formulae to the pion-condensed quark
matter in the effective chiral model we use Eq.(21) for the baryon chemical potential,
which does not depend on the bag constant. In the effective chiral model B is a function
of m,. Hence if one plots the baryon density as function of baryon chemical potential
{for two different values of m,, the two curves should coincide with one another. This is
the case of Fig.3, where the curves correspond to m, = 1200MeV and m, = 7T00MeV.

The agreement of the equation of state of pion-condensed quark matier corre-
sponding to broken chiral symmetry and the chirally symmetric bag model equation
of state indicates thal restoration of chiral symmetry amounts to change in the bag
constant. For m, = 1200MeV we find the value B = 150MeV fm=3 in case of the
pion-condensed quark matter while the value corresponding to the chirally symmet-
ric normal quark matter, Eq.(5), is B = 200MeV fm™%. The main reason of such a
behaviour of the pion-condensed quark matter equation of state is the fact that the
kinetic energy term in Eq.(10) for pion-condensed quark matter is essentially the same
as for massless quarks. The coincidence of the pion-condensed quark matier equation
of state, with broken cbiral symmetry, and chirally symmetric equation of state for
massless quarks is studied elsewhere [12].

The fact that the equation of state of pion-condensed quark matter is to a very
good approximation reproduced by the bag model equation of state simplifies consid-
erably further calculations, in particular construction of astraphysically relevant quark
equation of state.

3.2 Quark malter in neutron slars
Quark matter in neutron stars is generally composed of up, down and strange
qnarks. It should be $-stable and electnically neutral. Cbarge neutrality condition is

1 2
e 1 E(na‘ + n,) = gnu- (22)

Here n, is the electron density. It turns out that muons can be neglected since the
electron chemical potential usually does not exceed the muon rest mass for baryon
densities in neutron stars.

To account for the g-stability we have to add contributions to the energy density due
to strange quarks and electrons. The strange quark energy density &,(n,) is discussed
below. The electron energy density is

te(ne) = ;11—3”3#2/3(_{8 - 1)¥*R4f8, (23)
The 3-stability requires that the total energy density of the system
f(fus fa, fa?ﬂB) = fud(nus"d) + e,(ﬂ.,) + fe(ne)a (24)
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is stationary with respeci to flavour concentrations. Since the flavour concentrations
satisfy the sum rule

fot fitfi=3, (25)

only two of them are independent variables,

The charge neutrality condition and 3-stability requirement allov: us to determine
uniquely the Aavour cotnposition of quark matter at given baryon density ng. The 5-
stability requirement leads to relations between quark and electron chemical potentials

g = py e (26)
and
Bd = fts. (27)

To determine the composition of quark matter we adopt the strange quark energy
density in the form

6 -
€(fs,mB) = @) /Kh Pk fk2 +m] ), (28)

where &, = (2 f,np)/? is the Fermi momentum of the strange quark Fermi sea.
For massless up and down quarks and neglecting electron rest mass from Eqs.(26)
and (27} we find equations for llavour concentrations in the form

£ = fB3 L 31335, - 110, (29)

7=+, (30)

where y = m, ors/{m*np)!/?. Using Eq.(25) one can solve Eqs.(26) and (27) for f., f4
and f,. At lower densities when the chemical potential of ihe down quarkis pg < m, ey,
there is no strange quark component in the quark matter, f, = 0. The B-stable up and
down quark matter is essentially neutron-like quark matter, f, ~ 1, fa = 2. The exact
solution of Eq.(29) gives f, = 1.006, f; = 1.994.

When the chemical potential of the down quark exceeds the eflective mass of the
strange quark, g > m, sy, the strange quark Fermi sea starts to be populated. The
threshold density is ng = mf‘e ﬂ;ﬂ.z fa, where f; is the above value of the equilibrium
down favour conceniration. One should notice that solutions of Eqs.(29) and (30)
depend only on one parameter y?, whose value at the threshold is y* = fj‘w = 1.58.
In Fig.6 the flavour concentrations are shown as functions of the parameter 3*. With
deereasing ¥° concentiration of strange flavour f, increases, f; decreases and f, remains
fat. In the limit y* = 0 all flavours have the same concentrations, f, = fa = f, = 1.

Presence of strange quarks affects the equation of state of quark matter mainly
through the Aavour composition of 3-stable quark matier. This fact is rather evident if
we write the energy density of quark matter in the form
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3
fuda(fus fda f.si'nB) = 212,’30’7“’3}3 + B+ AE‘,(_f“ﬂB). (31)

The first two terms represent the bag model energy density for three massless flavours,
with

a= 3 AP +8P(f -1 (32)

i=u,d,s

The last term in this formula is the electron contribution, which can be neglecied as f,
is always close to unity. The parameter a for S-stable quark matter is shown in Fig.7.

The correction At,(f.,np) accounts for deviations of the strange quark energy
density from the massless quark formula which are mainly due to higher eflective mass
of the strange quark,

1
. 3
Aeo(foynB) = 3«2"31;‘,!";;:’3] dz(yf 3 + 2 7P~ 2) = Zwmn",;“aa. (33)
1]

This expression shows that the correction Aa is small near the threshold, where f, is
small, as well as at higher densities, where y* is small. In Fig.8 we show Aa/a as a
function of ¥%. The relative correction has a maximum value 0.092 for y* = 0.7.

To obiain actual values of Ae,(f,,ng) in the effective chiral model one should
specify the effective mass of the strange quask, m,.s7. In general this mass depends
on density, m,ers{ng). It can be obtained by extending the effective chiral model to
the SU(3) group. This is beyond the scope of this paper and will be studied elsewhere
[12]. Here we shall only find some constraints which the parameter y? should satisfy for
quark matter to be present inside neutron stars, These constraints are related to the
fact ihat the quark equation of state, Eq.{31), allows for presence of sizable quark cores
inside neutron stars only for values of the parameter a close to a specific value a = ¢
which depends on the nucleon equation of state, as discussed below.

4. Quark cores in neutron stars

The form (31) of the bag model equatjon of state is very useful for astrophysical
considerations as it shows that there are two relevant parameters in this equnation of
state: The coefficient 2 of the kinetic term and the bag constant B. Both of them are
subject to considerable uncertainties. In the effective chiral model considered here the
parameter a is determined by the value of 3°.

In Ref.[13] we have studied presence of quark cores inside neutron stars for the bag
model equation of state, Eq.(31), using realistic equations of state to describe the nucleon
phase. We have found that the maximum quark core inside neutron star corresponds
to a continucus phase transition from nucieon matter to quark matter. For a given
equation of state such a continuous phase transition can occur only for a specified value
of the parameter @ = gy, provided the deconfinement density has a proper value. The
values of a, corresponding to the three equations of state from Ref.[13] are in the rang=
3.19 < a, £ 3.34. Requirement that ¢ = a, for a given nucleon equation of state is
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a necessary condition for presence of a sizable quark core inside neutron star. If the
rarameter a diflers considerably from a;, there are no astrophysically interesting quark
cores inside neutron star, for any value of the bag constant.

In order to construct a phase transition from nucleon matter to quark matter in a
neutron star we use three equations of state, AV14+UVII, UV144+-UVII and UV14+TNI,
derived by Wiringa, Fiks and Fabrocini [14]). The results discussed here were obtained
by fitting with & polynomial the values of the energy per particle, E, of the f3-stable
matter given in Table V of Ref.[14]. This fit, which is given in the appendix, was then
used to obtain the baryon chemical potential, sy, and the pressure, Py, of the nucleon
phase according to the formulae:

_ 3[7!-5E]
and
Py ={pn —m - E)ng. (35)

Here m is the nucleon rest mass.

An important observation is that from Eq.(21) one can obtain the baryon density
of the quark phase as a function of the baryon chemical potential, ng(p) ~ p*, which is
independent of the bag constant B. For the nucleon phase one finds ng(p) ~ £ with
a generally below unity, « < 1, for any realistic nucleon equation of state {13]. The
functions ng{y) for quark and nucleon phase have opposite curvatures. This allows us
to find such a value a; of the parameter a that nfBQ)(p) for quark matter is tangent to
n(BN)(,tc) {or nucleon matter. The value of the baryon chemical potential at the tangency
point, g, is distinguished, as the phase transition occurring at g, is continuous (second
order). To construct a second order phase transition a suitable value of the bag constant
has to be chosen [13]. In Table I parameters of the second order phase iransitions are
given, for the three nucleon equations of state.

The values of a; for the three nucleon equations of state are in the range 3.19 <
ay < 3.34. From Fig.7 where the parameter a is plotted as a function of 3 one can find
values of y* corresponding to the values of a, in Table 1. These values of 2 are given in
the Table I. We also give in Table I the values of the sigma meson mass corresponding
to the values B, of the bag constant for which the second order phase transition occurs.

We have constructed neutron star models corresponding to the second order phase
transition to quark matter for the three nucleon equations of state. In this case the
quark matter occupies the biggest fraction of the star. The neutron star models were
obtained in a standard way by numerically integrating the Tolman-Oppenheinier- Volkoff
equation {see e.g. Shapiro and Teukolsky [15]) for the equations of state with the phase
transition {rom nucleon matter to quark matter described above. At subnuclear densities
we used the equation of state derived by Baym, Bethe and Pethick [16]. In the crust we
employed the equation of state due to Baym, Pethick and Sutherland {17] and, at low
densities, the one due to Feynman, Metropolis and Teller [18].

The results are shown in Fig.9 where we show the neutron star mass as a function
of the central density. Only those stars are considered which contain quark cores.

12



The quark core appears when the central baryon density ny exceeds the deconfinement
density n,. For equations of state consiructed ir this paper quark cores exist inside
neutron stars heavier than about 1Mg.

Maximum masses M. of neutron stars which contain quark cores in Fig.9 differ
by about 0.1Mjy, i.e. they are much closer to each other than maximum masses of
corresponding pure nucleon stars, with no phase transition fo quark matter, which are
2.20Mg, 2.12Mg end 1.84Mg. One should alse note that the values of My, in Fig.9
exceed only slightly the lower observational limit of 1.55M,.

The quark core can contribute to the magnetic moment of a neutron star if the
quark matter is magnetized. Using magnetization (18} we have calculated the magnetic
moment of the quark core end its contribution to the polar magnetic field Bp of the
star. In Fig.10 the magnetic field is shown as a function of the central baryon density ns.
The order of magnitude is Bp ~ 10'®G. This value exceeds magnetic fields observed
in pulsars, which are typically 10?G. Very strongly magnetized neutron star, with
magnetic field exceeding 10", was proposed recently as a model of repeating soft
~v-ray bursters [19}.

This work was partially supported by the Polish State Committee for Scientific
Research {KBN), grants no. 2 0204 91 01 and 2 0054 91 01.

Appendix

The energy per particle of neutron star matter for the three equations of state from
Ref.[14} is fit with the following polynomials:

The AV14+UVII equation of state:

E(ng) = 2.65511 + 76.744np — 183.611n% + 459.906n} — 122.832n%,  (36)

the UV14+UVII equaiion of state:

E(ng) = 7.57891 — 1.23275n 5 + 227.384n% — 146.596n%; + 324.823n% — 120.355n3 (37)
and the UV14+4+TNI equation of state:

E(np) = 6.33041 — 28.1793n 5 + 288.397n%, — 65.2281n}. (38)

In the above formulae ng is in fm~> and E is in MeV,
The sum of squares of residuals for 18 entries from Table V Ref.[14] is, respectively,
1.5927MeV?, 1.9629MeV? and 1.2946M eV 2,
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FIGURE CAPTIONS
Fig.1 Quark matter energy per unity of baryon number as a function of baryon density.
Solid and dashed lines correspond, respectively, to m, = T00MeV and m, = 1200MeV.

N and C label, respectively, normal and pion-condensed quark matter,

Fig.2 Magnetizetion of pion-condensed quark matter versus baryon density. Solid and
dashed lines correspond, respectively, to m, = T00M eV and m, = 1200 eV,

Fig.3 Baryon density as a function of baryon chemical potential for pion-condensed
quark matter. Solid and dashed lines correspond, respectively, to m, = 700MeV and
me = 1200MeV .

Fig.4  Pressure as a function of haryon chemical potential for pion-condensed quark
matter. Solid and dashed lines correspond, respectively, to m, = 700MeV and m, =
1200MeV .

Fig. 3 Bag constant as a function of the # meson mass.

Fig.6  Flavour concentrations of 3-stable quark matter as functions of y2.

Fig.7 The paramneter @ as 2 function of y%.

Fig.8 The relative correction Ae/ea as a function of y%.
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Fig.9 Neuiron star mass M and quark core mass M, as functions of the central
baryon density. Solid, long-dashed and short-dashed lines correspond, respectively, to
AV144UVIL, UV14+UVII and UV14+4TNI equation of state,

Fig.10 Neutron star magnetic field due to magnetized quark core as a function of cen-
tral baryon density. Solid, long-dashed and short-dashed lines correspond, respectively,
to AV14+4+UVII, UV14+UVI] and UV14+TNI equation of state,

TABLE 1

Parameters of quark equations of state for which continuous phase transition from nu-
cleon matter to quark matter occurs. The columns contain respectively specification of
tke nucleon equation of state, the bag model parameter a;, the baryon density n;, the
corresponding value of parameter yZ, the bag constant B, and corresponding value of
the sigma meson mass m,.

Equation of state: a; ny[fm 3 ¥ B{MeVim™3] my[MeV]
AV14+UVII 3.191 0.51¢ 0.38 90.0 861
UV144-UVII 3.335 0.481 1.19 80.3 808
UV144+TNI 3.265 0.566 1.05 36.3 841
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