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Abstract: 
An effective chiral model which describes properties of a single baryon predicts 

that the quark matter relevant to neutron stars, close to the deconfinement density, is 
in a chirally broken phase. We find for the SU(2) model that pion-condensed up and 
down quark matter is preferred energetically at neutron star densities. It exhibits spin 
ordering and can possess a permanent magnetization. The equation of state of quark 
matter with chiral condensate is very well approximated by the bag model equation of 
state with suitably chosen parameters. We study quark cores inside neutron stars in this 
model using realistic nucleon equations of state. The biggest quark core corresponds 
to the second order phase transition to quark matter. Magnetic moment of the pion-
condensed quark core is calculated. 
PACS numbers: 21.65.+f, 97.60.Jd 

1. Introduction 
Properties of neutron stars are determined by the equation of state of baryon matter 

at densities exceeding the nuclear saturation density щ % 0.16 fm~3. In this density 
range a phase transition to quark matter occurs which is expected to affect the neutron 
star structure. Recent studies of millisecond pulsars stimulated investigations of quark 
structure of neutron stars and even possibility of existence of quark stars [1]. Very 
recent data [2], strongly suggesting that 7-ray bursters are located at cosmological 
distances, make the collision of quark-rich stars a promising candidate for a model of 
this phenomenon [3]. 

In this paper we study implications for neutron stars of the phase transition from 
nucleon matter to quark matter described by an effective chiral model. This model is 
based on the assumption that two fundamental phase transitions predicted by QCD, the 
deconfinement transition and the chiral symmetry restoration, are separated in baryon 
density at low temperature. Deconfinement is assumed to occur at much lower densities 
than the chiral symmetry restoration. The effective chiral model predicts thus that at 



the deconfinement transition quarks are liberated from nucleons but the chiral symmetry 
remains spontaneously broken, as in the nucleon phase. This implies that the quark 
matter in neutron stars has broken chiral symmetry. Earlier studies of quark matter in 
neutron stars [4]-j6] based mainly on the bag model and perturbative QCD calculations, 
did not consider such a possibility. 

The SU(2) chiral model for up and down quark matter was studied in detail in 
Refs.[7]-[9]. It predicts presence of a chiral field condensate in the ground state of 
quark matter. This phase is analogous to the pion condensate in nucleon matter, since 
the chiral field is composed of pions and sigma-mesons. Presence of the neutral pion 
condensate leads to a ferromagnetic ordering of quark spins which produces permanent 
magnetization of this phase. The ferromagnetic quark core if present in a neutron star 
can contribute to its magnetic moment. 

This work is organized as follows. In Sect. 2 we briefly summarize properties of 
normal quark matter and quark matter with neutral and charged pion condensate in 
the SU(2) effective chiral model. In Sect. 3 we consider the equation of state of/3-stable 
quark matter in neutron stars. In Sect.4 models of neutron stars with quark cores are 
constructed and magnetic moments of pion-condensed cores are calculated. 

2. The SU(2) effective chiral model 
The effective chiral model is described by the (т-model Lagrangian with quark and 

meson degrees of freedom, 

£ - i*7"0„* - g*(a + il5r • тг)Ф - U{<T,*) + \{д,а)2 + ^ т г ) 2 , (1) 

where Ф = (^) is the isodoublet of quarks interacting with an isotriplet of pions n 
via pseudoscalar Yukawa coupling and with an isoscalar meson a via a scalar Yukawa 
coupling. Both Yukawa interactions have the same coupling constant g. U is the 
potential which generates spontaneous breaking of the chiral symmetry, 

Щ<г,*) = ±\*(<,г + *2-Р;)г, (2) 

where A2 is the meson coupling constant, A2 = m£/2F*, ma is the mass of the cr-meson 
and F-x — 93 McV is the pion decay constant. 

The SU(2) effective chiral model is rather successful in reproducing properties of 
the lightest, baryons [10]. The nucleon is described in terms of valence quarks interacting 
with the soli ton of the chiral field. The model is, in a sense, a relativistic generalization 
of the constituent quark model, which was very successful in hadron spectroscopy. 

The effective quark mass is generated by the cr field: m = g<r. In the vacuum we 
havemo = ga0, where the vacuum expectation value of the <r field is a0 — F*. It becomes 
energetically favourable at high densities that a field vanishes and the spontaneously 
broken chiral symmetry is restored. This transition to the restored symmetry phase 
makes the quarks massless. It is assumed in this model that deconfinement phase 
transition occurs at a lower density than the chiral symmetry restoration. In this case 
the deconfinement phase transition leads to the chirally broken phase of quark matter 



with "constituent"-like masses generated dynamically by the quark interactions with 
the cr field. 

The model parameters mo of the order of 500 MeV and ma around lGeV give good 
fits to baryon properties [10]. However the fits are not sensitive to ma as long as it is 
large. In Ref. [8] we have studied properties of quark matter in this model for various 
values of these parameters. 

One can distinguish two different phases of SU(2)-syminetric up and down quark 
matter with broken chiral symmetry: the normal quark matter with nonzero sigma field 
and vanishing pion field, and the pion-condensed quark matter with space-dependent 
pion and sigma fields [8]. 

2.1 Normal quark matter 
In this case we neglect the pion fields and replace the sigma field by a constant 

expectation value cr = a. The quark mass m = ger is generated through the interaction 
term in the Lagrangian, Eq.(l). The energy density of a uniform, quark matter is 

1 fkF 1 

Щ*1 Jo
 d k{k + 9 ° ) + 4Л ^ ~ Fn) ' (3) 

where the first term is the energy density of the quark Fermi sea and the second one 
is the energy density of the cr field resulting from the potential term U(a, тг), Eq.(2). 
For isospin-symmetric quark matter the spin-flavour-colour degeneracy 7 = NfNc~f, is 
7 = 12. The energy density, Eq.(3), depends on the baryon density through the quark 
Fermi momentum kf — (6ТУ2ПЧ/^У'3, where nq is the quark density and the baryon 
density is пв — (l/3)n9. The ground state of the system corresponds to the value of cr 
which minimizes the energy W at a fixed value of the baryon density пв- This gives cr 
as a function of baryon density, a = сг(пв)- Hence the quark mass is density dependent, 
m = т.(пв)- If we obtain in this procedure vanishing sigma field a = 0 at some baryon 
density nr, the chiral symmetry will be restored. In such a case both the Lagrangian, 
Eq.(l), and the ground state have the same SU(2)i x SU(2)R symmetry. 

In the chirally symmetric phase, with massless quarks and vanishing sigma field, 
the energy density is 

1 fkF 

nW = ——f d3kk + U(cr = 0,7? = 0). (1) 
(^7r)' Jo 

This equation is equivalent to that for the MIT bag model with massless quarks. The 
last term in Eq.(4) plays the role of the bag constant, 

U (a = 0,7? = 0) = В = -m\Fl. (5) 

2.2 Quark matter with the pion condensate 
If the pions appear in the ground state they will form a Bose-Einstein condensate. 

In the pion-condensed phase some components of the pion field acquire a nonzero expec¬ 
tation value. The following ansatz with non-vanishing expectation values of the neutral 
meson fields is assumed [11] 



a(r) = acoĄcj • г), 7Гз(г) = asin(q • г), TTJ = 7г2 =•• 0. (6) 

The Dirac equation for quark fields with this ansatz has the form 

(-ia • V + l3mcTp(iisT3q- г))ф(г) - Еф{г), (7) 

where ф is the Dirac spinor and the effective quark mass is m = да. This equation was 
solved in Ref.[8]. The quasiparticle spectrum is: 

E±(k) - {m2 + P + <̂f2 ± [m2<? + (g • k)2}1'2}1?2. (8) 

The ground state of quark matter is constructed by filling the Fermi seas for two 
branches of the spectrum (8) up to the quark Fermi energy EF. The baryon density is 

пв = „,.-._v,7 Id3kQ(EF - E-(k)) + j d3k9(EF - E+(k))\ , (9) 

where the spin-flavour-colour degeneracy for a single branch is у = 6. The energy 
density of the system is 

d3kE-(k)O(EF - E_(£)) + jd3kE+(k)Q(EF -

(10) 

It consists of the energy density of the occupied Fermi seas of EL and E+ quasiparticles 
and the energy density of the chiral field. 

The integrals in Eqs.(9) and (10) can be evaluated analytically for the spectrum 
given by Eq.(8). The baryon densities n~^ and n~g, corresponding to occupied Fermi 
seas of E- and E+ quasiparticles are, respectively, 

3(2тг) 

~q(k.pz +m2ln\k. + p :|)} (H) 

луЬеге p, — \Jrii2 + kh The integration limits in Eq.(ll) are 

for m > |g and EF > m — \q 
for m < \q and EF > ~q - m , (12) 

[(EF - |<7)2 - m2]1'2 for m < \q and EF <\q- m 

and 



kmax = [(EF + \q)2-m2\1'2 (13) 

for all cases in Eq.(12). The E+ quark Fermi sea is occupied only if Ep > | c + m and 
the integration limits in Eq.(ll) are 

kmin = 0, kmax = {(EF-l-q)2-m2?'2. (14) 

Energy densities of occupied E- and E+ Fermi seas are 

3
Fks ~ hks{m2 + klf'2 + hm2kzPz + m4ln\kz + pz\)} 

4 Z 3(2^)2 

zpz + m2łn\kz + Pz\] ± Ą (15) 

with the same integration limits as for n j , Eq.(ll). 
The values of the variational parameters q and m in the ground state are determined 

by minimizing the grand potential density ft with respect to q — \q\ and a = m/g at 
fixed baryon chemical potential. The grand potential density ft at zero temperature is 

u(q,a) - nBW - /in = -p, (16) 

where the energy density пд W and baryon density ng are sums of contributions given, 
respectively, by Eqs.(15) and (11), fu = 3Ep is the baryon chemical potential and p is 
the pressure. One can notice that the ground state is determined by maximizing the 
pressure at fixed ц. Minimization of ft gives the baryon density ng, the energy per 
baryon W, the pressure p and the values of q and m as functions of baryon chemical 
potentials. 

The results of this analysis are presented in detail in Ref.[8]. Here we only display 
in Fig.l the energy per baryon as a function of baryon density for both normal and pion 
condensed quark matter in case of neutron-like quark matter. We show results for two 
limiting values of the parameter mCT, which are ma = 700MeV and raa = 1200Ме^. 
The value of the quark mass is mo = 500MeF. One can notice that the pion-condensed 
phase (C) is always of lower energy than the normal quark matter (N). 

2.3 Magnetic properties of the pion-condensed quark matter 
The quasiparticles diagonalizing the Dirac Hamiltonian are the up and down quarks 

with the spin polarized along the wave vector q, as shown in Ref.[8]. Corresponding 
spin densities are 

{ Ф ( 1 ± ) Е , Ф > . (17) 

The magnetization of the system is 



(18) 

where gq — 2 is the gyroscopic factor, ци and \i& are the up and down quarks magnetons. 
We assume Dirac magnetic, moments for quarks which give fj,u = —2/ij. The quark 
matter with neutral pion condensate has a net magnetization. For symmetric up and 
down quark matter the total spin density is zero since the up and down quark Fermi 
seas are oppositely polarized, but the opposite electric charges of up and down quarks 
cause their magnetic moments to point in the same direction. 

In Fig.2 we show the magnetization, Eq.(17), corresponding to spin densities (17) 
as a function of baryon density for neutron-like quark matter. It will be used to find the 
magnetic dipole moment of the neutron star core with pion-condensed quark matter. 

3. Equation of state for quark matter in neutron stars 

3.1 Equation of state of pion-condensed up and down quark matter 
The equation of state of pion-condensed up and down quark matter is obtained from 

Eqs.(ll) and (15). These give the baryon density and the energy density as functions 
of the baryon chemical potential /г. The pressure p(fi) is determined by minimizing the 
grand potential density Q, in Eq.(16). 

We treat the cr-meson mass as a parameter of the model. Equations (11) and 
(15) give a one-parameter family of pion-condensed quark matter equations of state 
for a given value of g. We choose g = 5 since this value gives best fits of single baryon 
properties [10]. In Figs.3 and 4 we show respectively the baryon density and the pressure 
as functions of the baryon chemical potential for two values of mff: та = 700MeV and 
ma = 1200MeV. The curves in Figs.3 and 4 correspond to neutron-like quark matter 
with up quark fraction x = 1/3. 

The analytical form of Eqs.(ll) and (15) in the presence of the pion condensate 
is rather complicated. Numerically, however, the energy density ngW is very well 
approximated by a simple bag model formula for massless quarks: 

l'z + B, (19) 

where В is the bag constant and /; are flavour concentrations, /; — тц/пв,г — u,d,s. 
The corresponding pressure and baryon chemical potential is, respectively 

and 

f)4/3-5 (20) 
i=n, d 



The bag constant В has to be chosen appropriately for a given value of ihe scalar 
meson mass mCT. In Fig.5 we show В as a function of ma as obtained by the least-
squares fitting of the energy per baryon, Eq.(15), with the bag model formula (21) for 
20 points. The quality of the fit is very good, with the maximum deviation below 0.2% 
and it can be safely used in astrophysical applications 

As a check of applicability of the bag model formulae to the pion-condensed quark 
matter in the effective chiral model we use Eq.(21) for the baryon chemical potential, 
which does not depend on the bag constant. In the effective chiral model В is a function 
of ma. Hence if one plots the baryon density as function of baryon chemical potential 
for two different values of mCT, the two curves should coincide with one another. This is 
the case of Fig.3, where the curves correspond to ma = 1200MeV and ma ~ IQQMeV. 

The agreement of the equation of state of pion-condensed quark matter corre¬ 
sponding to broken chiral symmetry and the chirally symmetric bag model equation 
of state indicates that restoration of chiral symmetry amounts to change in the bag 
constant. For m.a — 1200MeV we find the value В ~ UbOMeVfm*3 in case of the 
pion-condensed quark matter while the value corresponding to the chirally symmet¬ 
ric normal quark matter, Eq.(5), is В = 200MeVfm~3. The main reason of such a 
behaviour of the pion-condensed quark matter equation of state is the fact that the 
kinetic energy term in Eq.(10) for pion-condensed quark matter is essentially the same 
as for massless quarks. The coincidence of the pion-condensed quark matter equation 
of state, with broken chiral symmetry, and chirally symmetric equation of state for 
massless quarks is studied elsewhere [12]. 

The fact that the equation of state of pion-condensed quark matter is to a very 
good approximation reproduced by the bag model equation of state simplifies consid¬ 
erably further calculations, in particular construction of astrophysically relevant quark 
equation of state. 

3.2 Quark matter in neutron stars 
Quark matter in neutron stars is generally composed of up, down and strange 

quarks. It should be /?-stable and electrically neutral. Charge neutrality condition is 

1 2 ne +-(nd + n3) =-nu. (22) 
о о 

Here ne is the electron density. It turns out that muons can be neglected since the 
electron chemical potential usually does not exceed the muon rest mass for baryon 
densities in neutron stars. 

To account for the /^-stability we have to add contributions to the energy density due 
to strange quarks and electrons. The strange quark energy density e,(na) is discussed 
below. The electron energy density is 

j i / » , (23) 
The ^-stability requires that the total energy density of the system 

+ ee(ne), (24) 



is stationary with respect to flavour concentrations. Since the flavour concentrations 
satisfy the sum rule 

fu+fd+f,= 3, (25) 
only two of them are independent variables. 

The charge neutrality condition and /3-stability requirement allov us to determine 
uniquely the flavour composition of quark matter at given baryon density rig. The /3-
stability requirement leads to relations between quark and electron chemical potentials 

Ud = Ни + Me (26) 

and 

/ * *= / * . . (27) 

To determine the composition of quark matter we adopt the strange quark energy 
density in the form 

/ \ A < « / / (28) 
k<k, ¥ 

where к, = (* 2 /« п в)^ 3 is ^he Fermi momentum of the strange quark Fermi sea. 
For massless up and down quarks and neglecting electron rest mass from Eqs.(26) 

and (27) we find equations for flavour concentrations in the form 

/] / 3=/У3+31 / 3(Л-1)1 / 3 , (29) 

/ Г = y/f?»+V>, (30) 
where у = ms,cff/(я"2ив)1/'3• Using Eq.(25) one can solve Eqs.(26) and (27) for fu,fd 
and / 3 . At lower densities when the chemical potential of the down quark is fid < ins,e}f, 
there is no strange quark component in the quark matter, / , = 0. The /3-stable up and 
down quark matter is essentially neutron-like quark matter, fa % 1,/a % 2. The exact 
solution of Eq.(29) gives fu - 1.006, fd = 1.994. 

When the chemical potential of the down quark exceeds the effective mass of the 
strange quark, /id > rns%ejf, the strange quark Fermi sea starts to be populated. The 
threshold density is ng = m\ efjl^2 fd-i where fd is the above value of the equilibrium 
down flavour concentration. One should notice that solutions of Eqs.(29) and (30) 
depend only on one parameter y2, whose value at the threshold is y2 = fj = 1.58. 
In Fig.6 the flavour concentrations are shown as functions of the parameter y2. With 
decreasing y2 concentration of strange flavour f, increases, fd decreases and fu remains 
flat. In the limit y2 = 0 all flavours have the same concentrations, fu = fd = ft = 1. 

Presence of strange quarks affects the equation of state of quark matter mainly 
through the flavour composition of /3-stable quark matter. This fact is rather evident if 
we write the energy density of quark matter in the form 

10 



-Tr2/3an4J3 + B + Aea(fs,nB). (31) 

The first two terms represent the bag model energy density for three massless flavours, 
with 

a= Y, ft/+^f4U-l)i/3- (32) 
i=u,d,s 

The last term in this formula is the electron contribution, which can be neglected as fu 
is always close to unity. The parameter a for /3-stable quark matter is shown in Fig.7. 

The correction Аея(/а,пв) accounts for deviations of the strange quark energy 
density from the massless quark formula which are mainly due to higher effective mass 
of the strange quark, 

+y>fr2/3 -z)= 3-^n4J3Aa. (33) ą 

This expression shows that the correction Да is small near the threshold, where f, is 
small, as well as at higher densities, where y2 is small. In Fig.8 we show Да/а as a 
function of y2. The relative correction has a maximum value 0.092 for y2 = 0.7. 

To obtain actual values of Де,(/,,пв) in the effective chiral model one should 
specify the effective mass of the strange quark, m3ieff. In general this mass depends 
on density, тоЛ)е^(пв). It can be obtained by extending the effective chiral model to 
the SU(3) group. This is beyond the scope of this paper and will be studied elsewhere 
[12]. Here we shall only find some constraints which the parameter y2 should satisfy for 
quark matter to be present inside neutron stars. These constraints are related to the 
fact that the quark equation of state, Eq.(31), allows for presence of sizable quark cores 
inside neutron stars only for values of the parameter a close to a specific value a = at 
which depends on the nucleon equation of state, as discussed below. 

4. Quark cores in neutron stars 
The form (31) of the bag model equation of state is very useful for astrophysical 

considerations as it shows that there are two relevant parameters in this equation of 
state: The coefficient a of the kinetic term and the bag constant B. Both of them are 
subject to considerable uncertainties. In the effective chiral model considered here the 
parameter a is determined by the value of y2. 

In Ref.[13] we have studied presence of quark cores inside neutron stars for the bag 
model equation of state, Eq.(31), using realistic equations of state to describe the nucleon 
phase. We have found that the maximum quark core inside neutron star corresponds 
to a continuous phase transition from nucleon matter to quark matter. For a given 
equation of state such a continuous phase transition can occur only for a specified value 
of the parameter a — at, provided the deconfinement density has a proper value. The 
values of at, corresponding to the three equations of state from Ref.[13] are in the rang» 
3.19 < at < 3.34. Requirement that a = at for a given nucleon equation of state is 

11 



a necessary condition for presence of a sizable quark core inside neutron star. If the 
parameter a differs considerably from a(, there are no astrophysically interesting quark 
cores inside neutron star, for any value of the bag constant. 

In order to construct a phase transition from nucleon matter to quark matter in a 
neutron star we use three equations of state, AV14+UVII, UV14+UVII and UV14+TNI, 
derived by Wiringa, Fiks and Fabrocini [14]. The results discussed here were obtained 
by fitting with a polynomial the values of the energy per particle, E, of the /3-stable 
matter given in Table V of Ref.[14]. This fit, which is given in the appendix, was then 
used to obtain the baryon chemical potential, /ijv, and the pressure, PN, of the nucleon 
phase according to the formulae: 

d(nBE) , m v 
MW = —R 1- m (34) 

on в 
and 

PN = (VN -m- E)nB. (35) 
Here m is the nucleon rest mass. 

An important observation is that from Eq.(21) one can obtain the baryon density 
of the quark phase as a function of the baryon chemical potential, пв(ц) ~ Ц3, which is 
independent of the bag constant B. For the nucleon phase one finds пв(ц) ~ fi™ with 
a generally below unity, a < 1, for any realistic nucleon equation of state [13]. The 
functions пд(^) for quark and nucleon phase have opposite curvatures. This allows us 
to find such a value at of the parameter a that njj (//) for quark matter is tangent to 
nB (l-1) f°r n u c l e o n matter. The value of the baryon chemical potential at the tangency 
point, fi.t, is distinguished, as the phase transition occurring at /it is continuous (second 
order). To construct a second order phase transition a suitable value of the bag constant 
has to be chosen [13]. In Table I parameters of the second order phase transitions are 
given, for the three nucleon equations of state. 

The values of at for the three nucleon equations of state are in the range 3.19 < 
at < 3.34. From Fig.7 where the parameter a is plotted as a function of y2 one can find 
values of y2 corresponding to the values of at in Table I. These values of y2 are given in 
the Table I. We also give in Table I the values of the sigma meson mass corresponding 
to the values Bt of the bag constant for which the second order phase transition occurs. 

We have constructed neutron star models corresponding to the second order phase 
transition to quark matter for the three nucleon equations of state. In this case the 
quark matter occupies the biggest fraction of the star. The neutron star models were 
obtained in a standard way by numerically integrating the Tolman-Oppenheimer-Volkoff 
equation (see e.g. Shapiro and Teukolsky [15]) for the equations of state with the phase 
transition from nucleon matter to quark matter described above. At subnuclear densities 
we used the equation of state derived by Baym, Bethe and Pethick [16]. In the crust we 
employed the equation of state due to Baym, Pethick and Sutherland [17] and, at low 
densities, the one due to Feynman, Metropolis and Teller [18]. 

The results are shown in Fig.9 where we show the neutron star mass as a function 
of the central density. Only those stars are considered which contain quark cores. 

12 



The quark core appears when the central baryon density щ exceeds the deconfinement 
density nt. For equations of state constructed ir this paper quark cores exist inside 
neutron stars heavier than about 1M©. 

Maximum masses Mmax of neutron stars which contain quark cores in Fig.9 differ 
by about 0.1M©, i.e. they are much closer to each other than maximum masses of 
corresponding pure nucleon stars, with no phase transition to quark matter, which are 
2.20M©, 2.12M© and 1.84M©. One should also note that the values of Mmax in Fig.9 
exceed only slightly the lower observational limit of 1.55M©. 

The quark core can contribute to the magnetic moment of a neutron star if the 
quark matter is magnetized. Using magnetization (18) we have calculated the magnetic 
moment of the quark core and its contribution to the polar magnetic field Bp of the 
star. In Fig.10 the magnetic field is shown as a function of the central baryon density щ. 
The order of magnitude is Bp ~ 1015G. This value exceeds magnetic fields observed 
in pulsars, which are typically 1012G. Very strongly magnetized neutron star, with 
magnetic field exceeding 10I4G, was proposed recently as a model of repeating soft 
7-ray bursters [19]. 

This work was partially supported by the Polish State Committee for Scientific 
Research (KBN), grants no. 2 0204 91 01 and 2 0054 91 01. 

Appendix 
The energy per particle of neutron star matter for the three equations of state from 

Ref.[14] is fit with the following polynomials: 
The AV14+UVII equation of state: 

E{nB) = 2.65511 + 76.744nB - 183.611nB + 459.906nB - 122.832nB, (36) 

the UV14+UVII equation of state: 

E(nB) = 7.57891-1.23275nB + 227.384nB-146.596nB + 324.823nB-120.355nB (37) 

and the UV14+TNI equation of state: 

E(nB) = 6.33041 - 28.1793ns + 288.397nB - 65.2281тав. (38) 

In the above formulae nB is in fm~3 and E is in MeV. 
The sum of squares of residuals for 18 entries from Table V Ref.[14] is, respectively, 

2, 1.9629MeV2 and 1.2946MeV2. 
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FIGURE CAPTIONS 

Fig.l Quark matter energy per unity of baryon number as a function of baryon density. 
Solid and dashed lines correspond, respectively, to ma = 700MeV and ma = 1200MeV. 
N and С label, respectively, normal and pion-condensed quark matter. 

Fig.2 Magnetization of pion-condensed quark matter versus baryon density. Solid and 
dashed lines correspond, respectively, to m.a = 700Mel/ and ma — 1200A/eV. 

Fig.3 Baryon density as a function of baryon chemical potential for pion-condensed 
quark matter. Solid and dashed lines correspond, respectively, to ma = 700MeV and 
ma = 1200MeV. 

Fig.4 Pressure as a function of baryon chemical potential for pion-condensed quark 
matter. Solid and dashed lines correspond, respectively, to ma = 700MeV and ma = 
UOOMeV. 

Fig. 5 Bag constant as a function of the er meson mass. 

Fig.6 Flavour concentrations of /?-stable quark matter as functions of y2. 

Fig.7 The parameter a as a function of y2. 

Fig.8 The relative correction Aa/a as a function of y2. 
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Fig.9 Neutron star mass M and quark core mass Mq as functions of the central 
baryon density. Solid, long-dashed and short-dashed lines correspond, respectively, to 
AV14+UVII, UV14+UVII and UV14+TNI equation of state. 

Fig.10 Neutron star magnetic field due to magnetized quark core as a function of cen¬ 
tral baryon density. Solid, long-dashed and short-dashed lines correspond, respectively, 
to AV14+UVII, UV14+UVII and UV14+TNI equation of state. 

TABLE I 

Parameters of quark equations of state for which continuous phase transition from nu-
cleon matter to quark matter occurs. The columns contain respectively specification of 
the nucleon equation of state, the bag model parameter at, the baryon density nt, the 
corresponding value of parameter y2, the bag constant Bt and corresponding value of 
the sigma meson mass raCT. 

Equation of state: 
AV14+UVII 
UV14+UVII 
UV14+TNI 

at 
3.191 
3.335 
3.265 

nt[fm~3] 
0.510 
0.481 
0.566 

У2 

0.88 
1.19 
1.05 

Bt[MeVfm-3} 
90.0 
80.3 
86.3 

ma[MeV] 
861 
808 
841 
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