

Atomic Energy of Canada Limited

NONDESTRUCTIVE NEUTRON ACTIVATION ANALYSIS OF SILICON CARBIDE

Ьy

T.T. VANDERGRAAF and A.G. WIKJORD

Whiteshell Nuclear Research Establishment Pinawa, Manitoba October 1973

AECL-4581

NONDESTRUCTIVE NEUTRON ACTIVATION ANALYSIS OF SILICON CARBIDE

Ъy

T.T. Vandergraaf and A.G. Wikjord

Whiteshell Nuclear Research Establishment Pinawa, Manitoba, ROE 1LO October, 1973

NONDESTRUCTIVE NEUTRON ACTIVATION ANALYSIS OF SILICON CARBIDE

by

T.T. Vandergraaf and A.G. Wikjord

ABSTRACT

Instrumental neutron activation analysis has been used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution γ -spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections.

Radiation fields from the various specimens have been estimated assuming all radionuclides have reached their saturation activities.

Atomic Energy of Canada Limited Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 1LO

October 1973

Analyse par activation neutronique non destructive du carbure de silicium

par

T.T. Vandergraaf et A.G. Wikjord

Résumé

On a eu recours à une analyse instrumentale par activation neutronique pour déterminer les infimes constituants se trouvant dans le carbure de silicium. Quatre poudres commerciales ayant différentes origines, une matière de référence NBS et un cristal unique ont été caractérisés. On a identifié en tout 36 espèces par activation non destructive au moyen d'une spectrométrie gamma à haute résolution; des résultats quantitatifs sont donnés pour 12 des éléments les plus importants. Les limitations de la méthode pour certains éléments font l'objet de commentaires. On signale le fait que le flux neutronique était réduit par des impuretés, dans le cas de grandes sections efficaces d'absorption des neutrons.

On a fait une estimation des champs de radiation des divers specimens, en assumant que tous les radionuclides atteignent leur activité de saturation.

L'Energie Atcmique du Canada, Limitée Etablissement de Recherches Nucléaires de Whiteshell Pinawa, Manitoba ROE 1LO

Octobre 1973

CONTENTS

		Page
1.	INTRODUCTION	Ĭ
2.	EXPERIMENTAL	2
3.	RESULTS AND DISCUSSIONS	4
4.	CONCLUSIONS	6
5.	ACKNOWLEDGEMENTS	7
6.	REFERENCES	8
	TABLES	9
	FIGURES	14
APPENDIX	NUCLEAR DATA FOR RADIONUCLIDES ORSERVED IN IRRADIATED SIC SAMPLES	18

INTRODUCTION

Silicon carbide has received considerable attention as a potential structural and fuel sheathing material for high temperature reactor use because of advantageous characteristics such as good irradiation stability, favorable thermal properities, low neutron absorption cross section, and high resistance to chemical attack. This interest has emphasized the need for reliable analytical procedures to determine **impurities** in silicon carbide. Impurities, particularly strong neutron absorbers, would not only adversely affect the reactor neutron economy but could be transformed into undesirable activation products, creating radiation fields which make postirradiation examination of components more difficult.

The analysis of silicon carbide by wet chemical techniques is very difficult because the material is extremely chemically inert and refractory in nature. The only convenient means to chemically dissolve silicon carbide involves an alkali fusion reaction, but because of the copious amounts of fluxing agent and extreme reaction conditions required, contamination from chemicals and crucibles poses serious limitations for any subsequent trace analysis. For this reason, physical methods of analysis must generally be used. Of the various instrumental techniques, emission spectrography, mass spectrometry, and neutron activation analysis have received the most attention and offer substantial practical benefits for trace analysis.

Direct spectrographic methods (1-4) have been developed for determining impurities in silicon carbide with detection limits for many elements in the range 10 to 300 ppb. This sensitivity has generally been achieved for elements which can be selectively volatilized from the silicon carbide matrix under mild excitation conditions so that interference from volatilization of silicon carbide itself is suppressed. A technique involving a lithium fluoride fusion has shown promise for less volatile constituents (5).

-1-

Spark source mass spectrometry (6) has been successfully employed to determine trace inorganic constituents in silicon carbide samples. With precautions to prevent contamination from the electrode holders and care to achieve uniform sparking conditions, detection limits in the 3 to 30 ppb range have been attained for certain elements.

Activation analysis also has high sensitivity for selected elements, particularly some of those that pose problems in nuclear applications, and has the advantage of freedom from post-irradiation contamination and the virtual absence of matrix effects. There are several reports of multielement radioactivation analysis of silicon carbide using destructive techniques^(7,8) as well as analysis of specific elements such as oxygen⁽⁹⁾ by the fast neutron reaction ¹⁶O(n,p)¹⁶N and phosphorus⁽¹⁰⁾ by ³¹P(n,\gamma)³²P.

In this study, thermal neutron activation analysis has been used to characterize a number of commercial silicon carbide powders and a single crystal of high purity. The activation products were identified and quantified by high resolution Y-spectrometry with no attempt to undertake chemical separations of interfering nuclides.

In addition, calculations were made of the gamma radiation fields which would result from irradiation to saturation of one-gram samples of carbides of different origin and purity. These can be useful in assessing the relative radiation levels of irradiated components fabricated from the different carbides.

2. EXPERIMENTAL

The samples described in Table 1 were irradiated in the pneumatic transfer irradiation facility of an organically cooled research reactor.* This facility uses high purity iron capsules with an internal volume of 1.3 cm^3 and can accommodate capsule liners with a maximum internal volume of 0.3 cm^3 . At full reactor power level the thermal and fast (E >1 Mev) neutron fluxes are 8×10^{13} and 8×10^{11} n cm⁻²s⁻¹ respectively. The irradiation facility is described in greater detail elsewhere⁽¹¹⁾.

After thorough mixing to ensure homogeneity, aliquots weighing approximately 100 mg were loaded in small capsule liners of high density polyethylene*, and irradiated for 2 and 60 minutes to produce short- and medium-lived isotopes. Long-lived isotopes were studied using 3-day irradiations. For these, the samples were wrapped in high-purity aluminum foil. Synthetic mixtures of standards were prepared from high-purity chemicals. After irradiation, the samples and standards were transferred into tared polystyrene containers, weighed and counted. Irradiation and decay times were chosen to obtain the maximum information with minimum demand on analyzer time and are listed in Table 2.

The counting equipment consisted of an 80 cm³ closed end coaxial Ge(Li) detector (Nuclear Diodes) located in a copper - and-cadmium-lined lead shield with internal dimensions of $100 \times 100 \times 100$ cm. The signal from the detector was fed into a Nuclear Data 2200 multi-channel analyzer with a 2048 channel memory. The analyzer was calibrated to 1 keV/channel. The spectra were plotted on a high speed XY recorder and the counts/channel typed out separately.

The spectra were interpreted qualitatively by comparing the photopeak energies with published data (12,13).

Quantitative activity values were obtained by integrating the appropriate photopeaks using Covell's method $(_{14})$. Where no photopeak could be observed, a limit of detection was found using the method described by Rogers $(_{15})$. Quantitative determination of trace constituents was made by comparing the induced activities in sample and standard, correcting for irradiation and decay times when applicable.

-3-

^{*} Supplied by the Biological Laboratory, Free University, Amsterdam, The Netherlands.

3. RESULTS AND DISCUSSION

Figures 1,2 and 3 show characteristic time-dependent gamma spectra of a particular silicon carbide sample P9, obtained after several irradiation and decay times. At the end of the 2-minute irradiation essentially all activity is due to ²⁸A1 and ⁵²V (Figure 1a). After a one-hour decay ²⁴Na and ⁵⁶Mn activities predominate (Figure 1b) and obscure practically all other isotopes with half-lives in the range of 2-20 hours. Isotopes with half-lives between 20 and 200 hours are best determined by a one-hour irradiation followed by a 2-day decay period. ¹⁴⁰La, ¹⁸⁷W and ¹²²Sb fall into this category (Figure 2b). Isotopes with half-lives longer than 200 hours are not observed to any appreciable extent until decay times of 7 to 10 days are reached. These include ⁶⁰Co, ⁵⁹Fe, ⁵¹Cr, ⁴⁶Sc, ¹⁸¹Hf, ¹³⁴Cs, ⁹⁵Zr, ⁶⁵Zn, and ¹⁷⁵Yb (Figure 3).

A few photopeaks above 200 keV could not be identified unequivocally on the basis of peak energy and half-life. No attempt was made to identify peaks below \sim 200 keV because of the many interferences and overlapping that occur in this region^(13,16). The presence of the photopeak of fission product ¹³⁷Cs (662 keV) in a number of the spectra can be explained by contamination which originates in the hot cells where the samples were removed from the capsule after the 3-day irradiation. The 1462 keV photopeak is due to background radiation of naturally occurring ⁴⁰K.

A complete tabulation of all the isotopes identified through the photopeak energies of their activation products is given in the Appendix. The results of qualitative analysis of each specimen are shown in Table 3 while quantitative results for 12 selected elements are presented in Table 4. For comparative purposes, the NBS* certified concentrations for Ti, Fe and Zr are given. These are the only elements for which comparison was available. The 10 to 15% discrepency between our results and the certified values provides an indication of the magnitude of errors in this work.

*National Bureau of Standards

It is noteworthy that the impurity levels in the single crystal were generally 1 to 3 orders of magnitude lower than those found in the other powders. The number of observed impurities was also substantially less. In the short irradiations, for example, the only activation species detected initially were 52 V and 28 Al. After these short-lived species decayed, the presence of 31 Si formed by an (n, γ) reaction on natural 30 Si became apparent. This was the only case in which activation of one of the matrix elements was observed; for the other samples, the high background radiation from the other impurities obscured the low yield 31 Si photopeak.

Although the ²³Al photopeak was observed for all specimens, no quantitative results were obtained for aluminum because of interference of the fast neutron reaction ²⁸Si (n,p) ²⁸Al. No correction was made for this because a supply of aluminum-free silicon was not available.

Since the two major constituents of the matrix, silicon and carbon, have low neutron absorption cross sections (0.16 b and 3.4 mb respectively), essentially no neutron flux depression occurs except where impurities with large absorption cross sections are present in large quantities. These include B, Rh, Cd, In, Sm, Gd, Dy, Er, Ir and Hg. To determine the effect of these impurities on the quantitative results, concentration levels were calculated for the elements that would give a 5% flux depression for a sample geometry approximating the internal volume of the capsule liner. The maximum allowable concentrations are listed in Table 5 together with the calculated activities of the major isotope of each flux depressant. It can be seen that, with the exception of boron, any flux depression is readily manifested by a high level of activity in the irradiated sample.

In considering silicon carbide for fuel sheath and pressure tube manufacture, it is important to have an estimate of the residual radioactivity and corresponding γ -radiation fields of these reactor components in view of post-irradiation examination. Radiation fields from actual reactor components are a function of their geometry and are therefore extremely difficult to calculate exactly. However, by considering point sources, an estimate of relative radiation levels as a function of decay time can be

-5-

obtained using the neutron activation equation and a knowledge of the impurity concentrations in the silicon carbide samples. The calculation is made on the assumption that all radionuclides have reached their saturation activities. The correlations between activities and γ -fields for the various isotopes were obtained elesewhere (17). The results of these calculations are listed in Table 6 and the radiation fields as a function of time shown in Figure 4. It is evident that the strength of the residual radiation field is strongly dependent upon the origin of the material. Again, the high purity of the single crystal is quite apparent.

4. CONCLUSIONS

Thermal neutron activation analysis offers significant advantages in determining certain trace impurities in a chemically resistant silicon carbide matrix. By a judicious choice of irradiation and decay schedules, it is possible to determine a wide variety of elements qualitatively and quantitatively without resorting to post-irradiation chemical separations.

Although the increased resolution of Ge(Li) solid state detectors has placed the emphasis on non-destructive techniques, more could be gained by post-irradiation separation of trace impurities into groups. Thus, a new dimension would be added to the irradiation and decay time variables considered. Dissolution of the silicon carbide can be obtained by reaction with $\operatorname{Cl}_2^{(9)}$ or by fusion^(10,11). Separation can be made by the usual techniques. An interesting approach would be to decompose the sample in Cl_2 and separate the chlorides according to their boiling point in a temperature gradient tube⁽¹²⁾. Finally, the thermal/fast flux ratio could be altered by irradiating samples in thermal neutron absorbing shields^(13,14) to depress the formation of highly active interfering nuclides such as ²⁴Na, ⁵⁶Mn and ²⁸Al.

5 ACKNOWLEDGEMENTS

The authors are indebted to Messrs. R.B. Stewart and D.G. Boase for their helpful suggestions and discussion throughout this work, to Mr. J.D. Chen and Ms. D.C. Marek for recording the γ -spectra and assisting in their interpretation, and to Dr. R. Dutton for donating the silicon carbide single crystals.

6. REFERENCES

- G.H. Morrison and R.L. Rupp, in "Silicon Carbide A High Temperature Semiconductor", Proceedings of a Conference on Silicon Carbide, Boston, 1959, eds. J.R. O'Connor and J. Smiltens, Pergamon Press, 1960.
- 2. A.N. Pikhtin, Zav. Lab., 31 (5), 559 (1965).
- G.H. Morrison, R.L. Rupp and G.L. Klecak, Anal. Chem., <u>32</u>, 933(1960).
- G. Ehrlich, R. Gerbatsch and G. Freitag, Chemia Analityezna (Warsaw), 7, 435(1962).
- 5. C.R. Hillier, WNRE, private communication.
- J.A. Baker, Advan. Tech. Mater. Invest. Fabr., Soc. Aerosp. Mater. Process Eng., Nat. Symp. Exhib., 14th, 1968, I-3-3.
- 7. P.N. Kuin, Mat. Res. Bull., <u>4</u> S273(1969)
- L.F. Lowe, H.D. Thompson and J. Paul Cali, in "Silicon Carbide A High Temperature Semiconductor", Proceedings of a Conference on Silicon Carbide, Boston 1959, eds. J.R. O'Connor and J. Smiltens, Pergamon Press, 1960.
- 9. D.J. Veal and C.F. Cook, Anal. Chem., 34, 178(1962).
- 10. H. Schmied and U. Bergamin, Microtecnic, 17, 125(1963).
- 11. The WR-1 Pneumatic Capsule Transfer Facility: A Manual for the User, WNRE-14, March, 1970.
- F.F. Dyer, ORNL Computer Compilation of γ-Ray Energies, private communication to J.D. Chen.
- G.J. Pearson and J.M. Bewers, "A Compilation of Gamma Ray Interferences in Thermal Neutron Activation Analysis", Atlantic Oceanographic Laboratory, Darmouth, N.S., September 1971.
- 14. D.F. Covell, Anal. Chem., 31, 1785 (1959)
- 15. V.C. Rogers, Anal. Chem., 42, 807(1970).
- 16. G.E. Gordon et al, Geochim. Cosmochim. Acta, 32(4), 369(1968).
- 17. J.S. Merritt and F.H. Gibson, CRNL-750^{*} (1972).

^{*}These are unpublished internal reports of the Whiteshell Nuclear Research Establishment and the Chalk River Nuclear Laboratories of Atomic Energy of Canada Limited.

DESCRIPTION OF SILICON CARBIDE SAMPLES

Sample Identification	Supplier	Suppliers Designation	Average Particle Size* (µ)	% Free Silicon*	% Free Carbon*
NBS	National Bureau of Standards	Standard Sample 112		-	0.09
P5	Carborundum Company	1200 RA	2 - 4	0.2	0.21
P9	Fisher Scientific	C-191	41	-	-
P18	Carborundum Company	1000 RA	5	<0.1	0.13
P38	Carborundum Company U.K.	F-4F	1 - 2	1.0	2.6
Singl e Crystal	Norton Company	-	Large fragments	-	-

* Analysis performed at WNRE

TABLE 2

IRRADIATION AND DECAY SCHEDULES

	Decay Times (t _d)						
Irradiation Time (t _.)	^t d ₁	t _{d2}	^t d ₃				
2 minutes	10 minutes	l hour	l day				
1 hour	l day	2 days	7 days				
3 days	10 days	20 days	30 days				

Element	NBS	Р5	Р9	P18	P38	Single Crystal
Na	+	+	+	+	+	+
Al	+	+	+	+	+	+
Si	-	-	~	-	-	+
C1	+	+	+	+	+	+
K	-	-	+	-	-	-
Sc	+	+	+	+	+	-
Ti	+	+	+	+		+
V	+	+	+	+	+	+
Cr	+	+	+	+	+	+
Mn	+	+	+	+	+	+
Fe	+	+	+	+	+	+
Co	+	+	+	+	+	-
Cu	+	+			-	-
Zn	+	-			-	-
As	+	+		+	+	-
Zr	+	+++	-	-		-
Sb	+		+	+	+	-
Cs	-		+	+		-
La	+	+	+	+	+	+
Ce	+		+	-	+	-
Eu	+		+	-	+	-
ТЬ	+	-	-	-	-	
Dy	+	+	+	+	+	
Yb	+	-	-	-	-	
Lu	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	-
Hf	+		+	+	+	+
Ta	-		-	+	-	-
W Hg	+ +	+++	+ -	+ -	+ -	

IMPURITIES OBSERVED IN SILICON CARBIDE SAMPLES

+ = observed

- = not observed

RESULTS OF QUANTITATIVE ANALYSIS

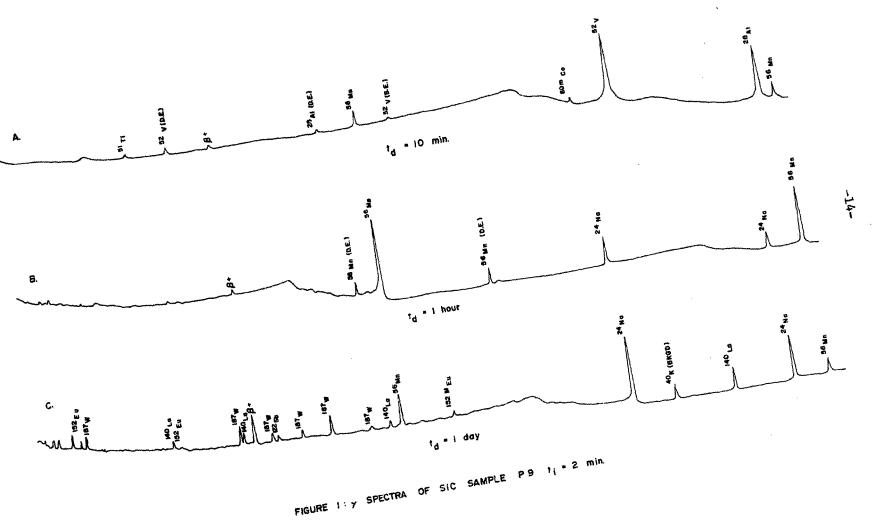
					µg/g				
E le ment	Isotope	Photopeak (MeV)	This Work	NBS Certified Value*	Ρ5	Р9	P18	P38	Single Crystal
Na	24 Na	1.368	8,3		150	510	35	3300	1.3
Sc	46Sc	0.889	0.7		0.2	0.4	0.2	0.8	0.001
Ti	51 Ti	0.320	. 300	250	700	230	350	<700	<100
v	52 V	1.434	0,08		33	77	23	120	23
Cr	⁵¹ Cr	0.320	5		17	13	8	9 0	0.4
Mn	56 _{Mn}	0.846	16		0.24	3	0.18	35	0.004
Fe	59Fe	1.291	3900	4 500	260	3040	180	20,000	50
Co	⁶⁰ Co	1.333	2.3		0.3	4	0.4	8	<0.2
Zr	⁹⁵ Zr	0.757	300	270	73	80	42	320	<40
Sb	^{1 2 2} Sb	0.564	5		0.3	2	0.2	8	<0.2
La	¹⁴⁰ La	1.595	1.7		0.4	2.2	0.3	7.3	0.8
H£	¹⁸¹ Hf	0.482	7		3	2	2	4	0.1

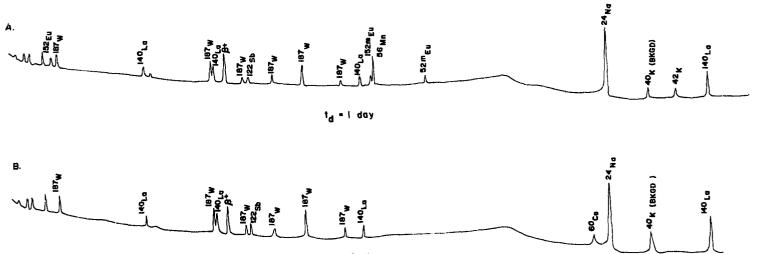
* National Bureau of Standards, Certificate of Analysis, Silicon Carbide Standard Sample 112

-11-

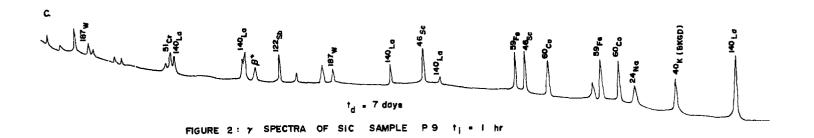
CONCENTRATION OF ELEMENTS WITH HIGH NEUTRON ABSORPTION CROSS SECTION NECESSARY TO DEPRESS FLUX BY 5%*

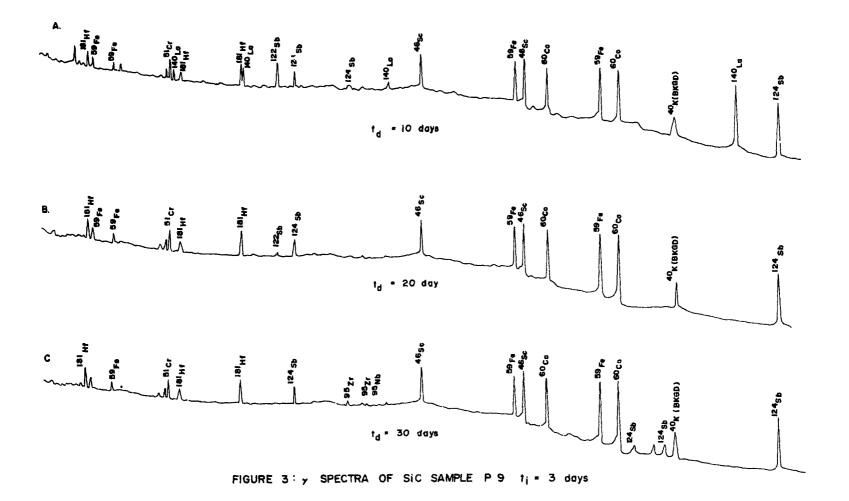
Element	Atomic Weight	σ (barns)	Concentration (µg/g)	Activity major isotope produced after one-hour irradiation (dps/100 mg	
в	10.811	760	1 ,3 52	no γ-a	activity
Rh	102 .9 05	148	66,087	¹⁰⁴ Rh	6.2×10^{11}
Cđ	112.40	2,460	4,343	¹¹⁷ Cd	6.0 × 10 ⁶
In	114.82	194	56,254	^{ll6m} In	2.4×10^{11}
Sm	150.35	5,860	2,439	¹⁵⁵ Sm	9.3 × 10^7
Eu	151 .9 6	4,200	3,439	^{152m} Eu	1.3×10^{10}
Gđ	157.25	48,000	311	¹⁶¹ Gd	2.1×10^{6}
Dy	162.50	930	16,607	^{165m} Dy	3.5×10^{11}
Er	167.26	160	99,360	¹⁷¹ Er	4.2×10^{8}
Ir	191.2	426	42 ,6 60	^{195m} Ir	1.2×10^{11}
Hg	200.59	370	51,528	²⁰⁵ Hg	4.2 × 10^7
L					

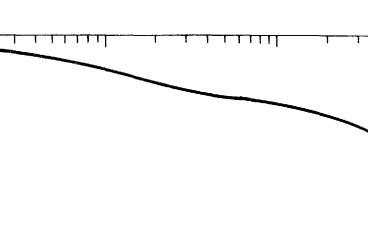

* capsule liner 0.56 cm right cylinder, sp. gr. SiC 3.22 † $\phi = 10^{14} \text{ n/cm}^2$.s


SATURATION ACTIVITIES (A. AND Y-RADIATION FIELDS (F) FOR 1 GRAM SAMPLES OF SIC*

Sample+	N	NBS P5		P	P9 P18			P39		Single Crystal		
_ 1	۸œ	F	Aeo	F	A∞	F	Å≊	F	A۳	F	A∝	F
ISOTOPE	(dps)	(mR/h @ 1 ft)	(dps)	(mR/h @ 1 ft)	(dps)	(mR/h @ 1 ft)	(dps)	(mR/h @ 1 ft)	(dps)	(mR/h 0 1 ft)	(dps)	(mR/h @ 1 ft)
²⁴ Na [↓]	1,2E7	6.5E0	2.0E8	1.1E2	7.1E8	4.0E2	5.0E7	2.7E1	4.6E 9	2.6E3	1.8E6	1,0E0
³¹ Si	5.1E 9	6.9E1	5.1E9	6.9E1	5.1E9	6.9E1	5.1E9	6.9E1	5 .1E9	6,9E1	5.1E9	6.9E1
⁴⁶ Sc	2.1E7	6.5E0	6.0E6	1.9E0	1.2E7	3.7E0	6.0E6	1.9E0	2.4E7	7.4E0	1.8E4	<1.0E-2
⁵¹ Ti	2.8E6	1.8E-1	6.6E6	4.2E-1	2.2E6	1.4E-1	3.3E6	2.1E-1	<6.6E6	<4.2E-1	<9.4E5	<6.0E-2
52 _V	4.6E5	1.2E-1	1.9E8	4.8E1		1.1E2	1.3E8	3.3E1	6.8ES	1.7E2	1.3E8	3.3E1
⁵¹ Cr	4.3E6	2.0E-2	1.4E7	8.0E-2	1.1E7	6.0E-2	6.8E6	4.0E-2	7.7E7	4.5E-1	3.4E5	<1.0E-2
⁵⁵ Cr	5.0E4	<1.0E-2	1.7E5	<1.0E-2	1.3E5	<1.0E-2	8.0E4	<1.0E-2	9.1E5	<1.0E-2	4.0E3	<1.0E-2
⁵⁶ Mn	2.4E8	5.3E1	3.6E6	8.CE-1	4.5E7	1.0E1	2.7E6	6.0E-1	5.2E8	1.2E2	6.0E4	<1.0E-2
⁵⁵ Fe	7.0E8	-	4,9E7	-	5,5E8	-	3.3E7	-	3.6E9	-	9.026	-
⁵⁹ Fe	1.7E7	4.6E2	1.1E6	3.1E1	1.3E7	3.5E2	8.0E5	2.2E1	8.0E7	2.2E3	2.1E5	5.8EO
⁶⁰ ^m Co	4.1E7	3.6E-2	5.4E6	<1.0E-2	7.2E6	<1.0E-2	7.2E6	<1.0E-2	1.4E8	1.3E-1	3./E6	<1.0E-2
⁶⁰ Co	8.5E7	5.8E1	1.1E7	7.5E0	1.5E7	1.0E1	1.5E7	1.0E1	3.0E8	2.GE2	7.4E6	5.0E0
⁹⁵ Zr	2.8E6	7.5E-1	6.7E5	1.8E-1	7.4E5	2.0E-1	3.9E5	1.0E-1	2.9E6	7.9E-1	3.7E5	1.0E-1
⁹⁷ Zr	2.8E5	7.0E-2	6.7E4	2.0E-2	7.4E4	2.0E-2	3.9E4	<1.0E-2	2.9E5	7.0E-2	3.7E4	<1.0E-2
¹²² Sb	8.5E6	5.5E-1	5.1E5	3.0E-2	3.4E6	2.22-1	3.4E5	2.0E-2	1.4E7	8.7E-1	3.4E5	2.0E-2
¹²⁴ Sb	3.5E6	9.5E-1	2.1E5	6.0E-2	1.4E6	3.8E-1	1.4E5	4.0E-2	5.6E6	1,5E0	1.4E5	4.0E-2
140 _{La}	5.6E6	2.1E0	1.6E6	4.9E-1	8.6E6	2.720	1.2E6	3.7E-1	2.8E7	8.9E0	3.1E6	9.5E-3
175 _{Hf}	1.766	7.0E-2	7.2E5	2.9E0	4.8E5	2.0E-2	4.8E5	2.0E-2	9.6E5	4.0E-2	2.4E4	<1.0E-2
150mHf	6.5E4	1.0E-2	2.8E4	<1.0E-2	1.9E4	<1.0E-2	1.9E4	<1.0E-2	3.7E4	<1.0E-2	9.3E2	1.0E-
181 _{H£}	8.4E6	9.1E-1	3.6E6	3,9E-1	2.4E6	2,6E-1	2.4E6	2.6E-1	4.8E6	5.2E-1	1,2E5	<1.0E-


e e de Rea


* $\phi = 10^{14} \text{ n/cm}^2/\text{s}$



t_d = 2 days

104

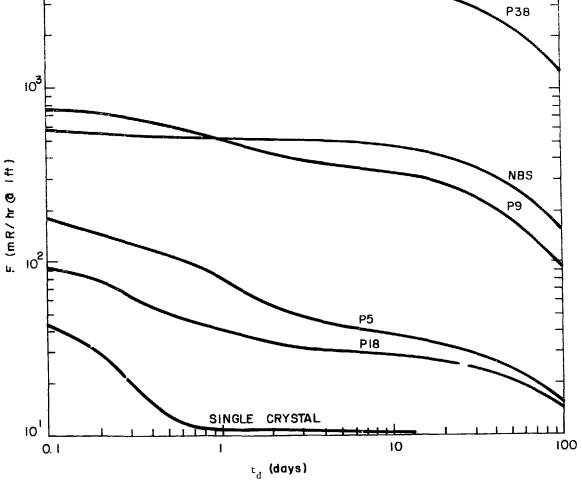


FIGURE 4 GAMMA - RADIATION FIELDS VS DECAY TIME FOR I GRAM SIC SAMPLES IRRADIATED TO SATURATION

APPENDIX

NUCLEAR DATA FOR RADIONUCLIDES OBSERVED IN IRRADIATED SIC SAMPLES

	ELEMENT	1SOTOPE	HALF-LIFE	PARENT	CROSS SECTION (b)	% ABUNDANCE	Y-RAY ENERGIES (keV) USED TO IDENTIFY RADIONUCLIDE	PHOTOPEAK INTENSITY NUMPER OF Y's/1000 decays
1	Sodium	24 Na	15.0 h	23 Na	0.53	100	1368.7 1732.1	1000 DE*
2	Aluminum	28 A1	2.3 m	27 Al	0.23	100	1778.9 1267.9 757	1000 SE** DE
3	Silicon	31 Si	2.60 h	30 Si	0.11	3.05	1266.0	0.70
4	Chlorine	38 C1	37.3 m	37 C 1	0.43	24.5	1642.0	380
5	Potassium	42 K	12.50 h	41 K	1.30	6.88	1524.7	180
6	Scandium	46 Sc	84.0 d	45Sc	23.0	100	889.3 1120.5	1000 1000
7	Titanium	51 Ti	5.8 m	50 T i	0.14	5.34	320.0 928.5	955 45
8	Vanadium	52 V	3.8 m	51 V	4.8	99.76	1434.4 923.4 412.4	990 SE DE
9	Chromium	51 Cr	27.8 d	50 Cr	16.0	4.31	320.1	90
10	Manganese	56 Mn	2.58 h	55 <u>M</u> n	13.3	100	846.8 1811.0 1090 1601 789 1299	990 297 DE SE DE SE
11	Iron	59 Fe	45.0 d	58Fe	1.23	0.33	1099.3 1291.6 192.2	560 440 25
12	Cobalt	60 Co	5.25 y	59Co	37.0	100	1173.2 1332.5	999 1000
		60m.Co	10.5 m	⁵⁹ Co	19.9	100	1332.5	2.5
13	Copper	⁶⁴ Cu	12.8 h	63Cu	4.5	69.1	1345.5	5
14	Zinc	65Zn	243.8 d	⁶⁴ Zn	0.82	48.9	1115.5	506
15	Arsenic	⁷⁶ As	26.5 h	75 _{As}	4.3	100	559.1 657.0 1216.3	440 66 44
16	Zirconium	⁹⁵ Zr	65.5 d	⁹⁴ Zr	0.075	17.4	756.9 724.3	549 431
17	Niobium	⁹⁵ Nb	35.2 d	⁹⁵ Zr	0	0	765.8	1000
18	Antimony	¹²² Sb	2.8 d	^{1 2 1} Sb	6.2	57.3	564.0	663
		¹²⁴ Sb	60.3 d	¹²³ Sb	3.45	42.8	692.5 602.7 1691.0 722.7 645.8	33 980 500 98 74

* DE: Double escape peak ** SE: Single escape peak

	ELEMENT	150TOPE	HALF-L1FE	FARENT	CROSS SECTION (b)	ABUNDANCE	γ-RAY ENERGIES (keV) USED TO IDENTIFY RADIONUCLIDE	PHOTOPEAK INTENSITY NUMBER OF V'S/1000 decays
19	Cesium ¹³⁷ Cs (fission product)		30.2 y	235 U		0.72	661.6	84.8
20	Lanthanum	140 _{La}	40.2 h	¹³⁹ La	9.55	99.9	1596.2 487.0 815.8 328.7 925.2 867.9 751.7 432.5	970 460 240 210 67 57 45 3 0
21	Cerium	141 Ce	53.0d	140 Ce	0.54	88.5	145.4	490
22	Europium	152 Eu	12.4 y	151 <u>E</u> u	5700	47.8	121.8 344.2 1408.1 964.2 1112.2 779.1 1086.0 688.9	294 285 229 162 154 145 148 90 27
		152m Eu	9.3 h	151 <u>Lu</u>	3100	47.8	244.5 841.4 963.1 1314.3	76 111 93 8
23	Dysprosiu	n ¹⁵⁹ Dy	144 d	¹⁵⁶ Dy	96	0.09	58.0	40
24	Terbium	167 _{Tb}	73 d	¹⁵⁵ ТЬ	27	100	879 298 966	300 271 247
25	Ytterbium	¹⁶⁹ ҰЬ	32 4	^{1 f ສ} ຳໄອ	3200	0.14	63.5 197.8 177.9	573 344 202
		¹⁷⁵ Үb	4.2 d	174 _{Yb}	65	31.6	396.1 282.6 113.5	ю і7 19
26	Lutetium	¹⁷⁷ Lu	6.7 d	175Lu	2100	2.6	208.4 113.9	75 44
27	Hafnium	¹⁸¹ Hf	42.5 d	^{15 3} Hf	12.6	35.4	482.0 133.0 345.9 136.2	e0 - 10 - 10
28	Tantalum	¹⁶² Ta	115 d	¹⁶¹ Ta	21.0	99.98	67.8 1121.2 1221.4 1189.0 109.1	417 350 278 166 142
		163 _{Ta}	5.0 d	1€2 _{Ta}	8200	0	1231.0 246.1 107.9 354.0 161.3 244.3 99.1	117 300 132 129 105 96 81
29	Tungsten	187 _W	23.8 h	: e s _u	38	28.4	685.7 479.5 72.0 134.2 518.2 551.5 772.9 625.4 864.5	330 266 123 97 72 63 49 13 4
30	Mercury	197 _{Hg} 203Hg	64.1 h 46.6 d	¹⁹⁶ Hg ²⁰² Hg	3110 4.9	0,146 29_8	77.h 279.2	190 820

Additional copies of this document may be obtained from Scientific Document Distribution Office Atomic Energy of Canada Limited Chalk River, Ontario, Canada KOJ 1J0

Price - \$1.00 per cupy

2211-73