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Fluctuations and correlations in neutron distributions have been 

the. subject of lively investigations for several ye.ars. In recent. stud­

ies~l.-3) the. theory was advanced by the introduction .of an appropriate 

ensemble probability for a reactor, and the phenomenlogical derivation of 

an equation to describe it. However, because of.the intuitive origin of 

.this equation, it is difficult, if not impossible, to explore the .limits 

of its validity or to obtain its generalization. 

We have investigated this problem from the point of view of the.quan­

tum Liouville equation( 4) for.the reactor, i.e., 

oD i ot = i [D,H]' (1) 

where the .density matrix, D, is identifiable, after appropriate speciali-

zation, as essentially the same as the ensemble probability mentioned 

above. The Hamiltonian for the reactor; H, is, of course, not known ex-

plicitly because of.lack of knowledge of nuclear forces. Nevertheless, 

enough of its properties are inferrable to enable an illuminating deriva-

tion of an approximate equation describing D which incorporates the usual 

notions of particle streaming and binary interactions. Furthermore, par-

ticle densities and variances are readily definable in terms of averages 

of appropriate .dynamical variables with respect to the density matrix, 

and equations describing them are deducible from the equation for. the den-

sity matrix. 

Since.comparison between theory and experi~ent takes place at the 
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level of particle .densities and variances rather than at the level of the 

density matrix.itself, it is·the equations describing the .particle .densi-

ties that are of primary interest. For the .sake of simplicity and con-

creteness, but with no intent to imply lack of generality, we cons~der 

here only first and second order densities for neutrons and a~pha parti-

cles, the latter often being the .particles detected in an experiment·. We 

( ) ( ) ( n) (a) ( na) 
introduce the operators Pin , p~ a , p2 , p2 and P2 such that their 

expected values, in the. se.nse of 

f (.A) ( ) !,~,t 
1 

(2) 

are respecti.vely the singlet densities for neutrons and alphas, the doub-

let densities for neutrons and alphas, and the doublet cross-density for 

neutrons and alphas. All densities are defined in a coarse-grained phase 

space(5) so that they are all positive definite. The phase points (!,~) 

~or.m a discrete lattice in which each point is the center of a six-dimen-

sional.hypercell whose volume is h3 • Any particle in a given hypercell 

is assigned the coordinates of its center, hence.the uncertainty princi-. 

ple is always satisfied. 

The set of kinetic .equations necessary to describe the various den-

si ties have been obtained. In the .classical limit.,* the equations are 

given by the following 

*This implies that effects due to quantum statistics are.ignored. 
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ro J (n) L~t ':!:' _y+vL.t (:!:) f~ (~':!:' t) = J d3 v 1V1fln) (~1~ 1 1 t)G(:!: 1 -+ y), (3) 

(~ •Y· 1) rfo:) (~,y,t) = J d3v 1Y 1LD(:!: 1 -+ y) rin) (~1 :!: 1 ,t), (4) 

[o l (n) · 
Ot +:!:• 'J..+:!: I • Y. ', +V~ (:!:)+VI r.t (:!:I) J f 2 (~I 1:!: I 1 ~1 :!:1 t) 

= J d3v~v~r1n) · (~· ,:!:~'~':!:,t)G(;0.-+ :!: 1
) 

+ J d3v1v1f1n) (2£,.1 ,'!, 1 ,~,YJ,,t)G(~-+ :!:) 
(5) 

,+ o(~-~ 1 )A(~~· ,~,t), 

A(:!:,:!: 1 
1 !_1 t) = 0 (~-:!: 1 >{ v;, (:!:)fin) (~1 y_, t) 

+ Jd3v~v~fln) (~,;0.,t)[; (~~-+ ~ 

+I o:2B~(:~~,~)J} -vfln) (~1!1 t)G(y-+ y_ 1
) (5a) ./ 

- v 1 ffn) (~,~ 1 ,t)G(~ 1 -+ ~) 

+.J d3v~v1Lor(y~) f~n) (~,y1,t) 
- B~(.!ll_!,y) ] , 

G(~-+ ~i) = · .. v;(~-+ ~ 1 ) + l:rCv) Io:B~(~,y~), 
jO: 

(~t •Y· J..+Y I.~~ ·r2(o:) (~I ,y ~_,~,y, t) 

I af3 [B~(,!l b:,yl) 
jaf' 

(5b) 

= j.,d3v v~(:!: + y)r}no:) (~' ,y 1 ,~,~,t) (6) . 

+ -~d3v vl:n(~ + Y 1 )f2(no:)(~ 1 ~1 ~,y,~), 
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l~t, '.Y· .Y+:Y.'· !l+v ~~(~I)] f2(na) (!_I'~ I ,!_,y, t) 

= J d3v~v~f2(na)(!_ 1 ,~~,!_,y,t)q(~~ + ~1 ) 

J (a) 
+ d3v~v~;c~~ + y)f2 n (!_ 1 ,y_ 1 ,!_,~~,t) 

5(!_-!_ I) V 1 ;(~ I + y) f~ (n) (!_,~.I J t), 

(7) 

In writing these expressions, we have .introduced continuous configuration 

and momentum spaces for.the .~ensities. The cross-secti.on ;<~ + y) can be 
; 

.regarded as Lu(y_)rD(y_ + y), where Lu(y_) is the ordinary macroscopic cross­

section for the absorption of a neutron with velocity ~and rD(y_ + y)dSV 

is the conditional probability that given such an absorption an alpha 

j 
The quantity B (v v 1 )d3v 1 

a -'-particle with velocity yin d3V.will be produced. 

is the probability that a fission induced by a neutron at ~ produces j ne~ 

trons....-·a of .them in d3v 1 about v 1
• In Eq. (5a) B~(y_i·l~,~ 1 )d3vd~ 1 rep-

resents the probability that given a fission reacti.on induced by a neutron 

with velocity Y..~ j neutrons will be produced,,a of .which have velocity in 

d3.r about :y_ and 13 of which have. vel.ocity in d3v 1 about v'. 

The set of Eqs. (3) through (7) provides a.partial basis for a syste-

matic investigation of.neutron fluctuations due to space and velocity-cor-

relations. They can. also be used to study the .appro~imations inherent in 

existing theories.(l-3) Forthe present discussion, we.shall focus our 

attention upoif the neutron singlet and doublet densities .which are giyen 

.by Eqs. (3) ,. (5) and (5a'P). It should be noted that neutron source.s-which 

would be. required to complet.e the .description ofsubc+.itical systems-

·have. not been included.here. Furthermore, delayed neutrons have also 

been neglected, . 'so that . the above .system of equations must necessarily be 
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regarded as merely illustrative. These effects have not been ignored be-

cause of any difficulty in principle, but solely because their inclusion 

would add great bulk to the present discussion without shedding signifi-

cant new light on the subject. But, of course, a working se-t must de-

scribe sources, delayed neutrons, and anything else pertinent to a given 

experimental situatio~. 

In an effort to provide a littl~ more insight into the implications 

of these equations and in order to compare some of them with descriptions 

provided by other investigators, we consider a crude reduction to their 

"diffusion theory" equivilants (keeping in mind that we consider only 

the neutron densities henceforth). As the reduction of the transport 

equations for the neutron singlet density, Eq. (3), is well-known, (6) we 

shall make no comment on it here but rather will confine our attention to 

Eq. (5) for the doublet density.· As a first step, we integrate Eq. (5) 

··over all g and g• (g being the unit vector in the direction of y, for 

example) to obtain 

+ v'V'·Q'(x' E' ;x E·t) + vV·Q(x' E' ;x E;t) - - - ' -' ' - - - ' -' 

( 8) 
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In Eq. (8)' we have introduced the notation: 

Q'(x 1 E' ·x E·t) - J d!2d!2 1 !2 1 f(n)(x 1 E' !2' ·x E n·t). (9b.) - - , '~ ' - 2 - , , - '_, , _, , 

Q( x' E' ·x E·t) - Jdndn'nf(n)(x 1 E' n• ·x E n·t) (9c) 
- - , '~ ' - 2 - ' , - '~ '_, ' 

= ) ... dn • G( E n ..... E I n I ) ,_ ,_ , ( 9d) 

-J dndn 1A(E,Q;E' ,Q' ;~t). ( 9e) 

Next we multiply Eq. (5) by g1 and again integrate over all nand !2 1 • We 

get 

( 2_, + "l>' (v) + v•>' (v'=~ Q'(x' E' ·x E·t) Ot '-1; . '-1; ') - - ' '_, ' 

J Clf(n)(x' E' !2' ·x E n·t) + VI . d.Qdn I g I .QJ1, __ 2_:.....=:-..::'-...:..1--:.....' =='l:.._..:l___:.'~ 

dxl· 
J 

( 10) 

In this equation we have introduced the further notation, 

( 11) 
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Another equation, similar to (10), is obtained by multiplying by g.and in-

tegrating over g and g•. We shall not bother to display this equation ex-· 

plicitly, but will refer to it where necessary as Eq. (lOa). 

The implications of the coupled system of relations (8), (10), and 

(lOa) have not begun to be explored to date. However, our purposes here 

will be at least partially served if we simply discard all embarrasing 

terms in (10) and (lOa) without regard for justification until we obtain 

a sort of Fick's rule relating g and g• to ~. ~1us (all with reference 

to (10) and (lOa)) we: 

(a) 

(b) 

{c) 

(d) 

Neglect all time derivatives; 
(n) 

set Jdndn •n•n .0f 2 

· - Jox' 

J' · Zn) 
Set dndn•n•n.ofg = O; and 

- J~ oxj 

Neglect all terms on the right-hand sides of these equations. 

We then find that 

9_' (.~', E' ;!, E;t) = v' 
V'' ~ '. ( 12a) 

and 

v 
( 12b) 

Inserting (12a and b) into Eq. (8), we obtain 
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( 13) 
3( v1Et+v4J 

+.! dE1,v1 G0 (E1 + E 1 )~(E1 ,E) + 8(!-!1 )1\, • 

From here on, we discontinue the explicit indication of the arguments of 

functions except where deemed necessary. 

To proceed further, we c.onsider only those systems in which we may 

. treat the singlet density as space-independent, and then obtain the "one-

· speed" equations by integrating (13) over all E and E 1 • The first re-

striction guarantees that Ao will be space-independent, and hence that 

~will depend only on the space variables !-~1 • It then follows that 

v2 = V12 and also that~ is symmetric under the interchange of E and E1 • 

Introducing the space variable X = x-x 1 and the notationj 

(14a) 

Rn2 - .J dEdE 1 v'Dv 

= J dEdE 1 v 1 L 1 ~ , 

(14b) 

and 

( 14c) 

we find after integrating (13) over E and E1 j 
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( 15) 

The subscripts, c and f, designate averaged reaction rates for capture 

and fission respectively. The single-barred averages have been defined 

vii th respect to the energy dependence of the singlet density. The quan-

tities j and j2 are the mean and squared-mean number of neutrons pro-

duced by fission respectively. Again we caution that neutron sources, 

other than prompt fission, have not been accounted for---and must be be-

fore (15) may be credited as even partially descriptive of a real system. 

Lastly, we observe that a steady state .solution of Eq. (15) implies 

that n2 depends upon position according to 

= (constant) 
-lx-x' l/x0 e --

' 
( 16) 

Thus, it is seen that ·in situations in vrhich it may vrell be appropriate 

·to approximate the singlet density as spatially uniform, it does not 

·necessarily follow that the same approximation applies equally to the 

doublet density. 
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