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ABSTRACT

It is shown.that Darwin's formula .for the'secondary.ek—:
'tinctionicorrection,.which has been universally accepted and
" extensively used, contains an appreciable error.in the xX~ray
.diffraction caée. The correct formula is derived.

As a first order correction for secondafy extinction
Darwin showed that one ‘should use an effective absorption
‘coefficiént u + gQ where an unpolarized incideﬁt'beam is

presumed. The new derivation shows that the effective ab-

226)%, which

~sorptionAcoefficient.is‘u + 2gQ(l+cos426)/(I+coé
glves u + gQ a2t 6 = 0° and.® = 90°, but w.+ 2gQ at 6 = 45°,
‘Darwin's theory remalng valid when.applied to neutron

diffraction.




INTRODUCTION

The effeqt\agxsecondary extinction on the integrated

intensity of x—ray\giﬁfraction in mosaic crystals was first
. . T ————————

‘studied in detail by C. G.-Darwin (1922), and the formulas

'~ derived by him have been used extensively throughout the last

fforty years. |

. -Recently this-writer'found that the Darwin equations did
not:give agreement with precise intensity measurements. As
'a consequence a reexamination of the theory was undertaken.
It was found thét the polarization of the X-ray beams was in-

correctly treated in Darwin's paper and in all subsequent

“theoretical work on secondary extinction. The correct formulas

‘have been derived and have been found to give agreement with

experiment. -Since the new theoretical treatment of secondary

.extinction requires significant modification of equations in

general use, the results of the reexamination will be given

in.some'detail-in‘the-present article.

!
t
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1. The'Ideal.Mosaic Crystal

It is convenient first to review well known results for
~ x-ray diffraction in the ideal mosaic crystal. Throughout the .
-afticle-it will be assumed that all observations are made -in
' the equator,plane, i.e. the plane containing direétions of
. incidence and diffraction. |
If theiincideptlbeam is linearly polarized, one must specify
~ the pélarization angie'¢ which the -electric vector makes with the
normél to the-équator plane. -For‘generalApolarization one needs
to know fhe intensity distribution Io(w)dw;'the-integral over
which gives the total incident intensity. 'It'is pefmissible
to resolve the electric vector into normal (¢;O) and'parallel
(¢=W/2) combonents and to set for the total incident intensity
I, = I (0) + I (n/2).
When the incident beam is linearly polarized at angle 9,

it follows that I_(0) = I_cos“e and I_(m/2) = I_sin“e. For
‘an unpolarized incident beam IO(O) = IO(W/Q) = % I,, and when

the ‘incident. beam is produced by reflection under a glancing

angle ©_ from a ‘monochromator crystal (in the same equator plane)

~one has I_(0) .=Io/(l+cos2

AfThertotalvdiffractéd power,”éRo(m), due -to a.crystal of

volume 6V, so small that>ail power losses are negligible, .is-

"8R_(9) = Ié(@)'Q(@)'éV |
.Q(@) = Q(0) {éos2¢~+ éin2¢c§s229) | | (1)

Q_=0(0) .= |Ne®F/mc?[3’/sinze.

| <2ng - 25, -
20_) and I_(m/2) = I_cos“28 /(1+cos“26 ).
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‘”Fornan,unpqlarized incident beam eq. 1 takes the  form

éRO = IoQopl 5V
(1a) .

220)/2,

it

Py (1+cos

and this eduationuwill be valid also for monochromatized .incident
beam 1if pi is replaced by pl',.where

2

py' = (l+cd52290005.29)/(1+cos22gg. (1p)

APower-lbssés4dﬁe to diffraction are by definition negligible
-in the d1deal mosaic crystal. .Integrating,eq.‘l and taking accountf

-of ordinary absorption one finds

R (9) = T,(0)a(e)VA(w)

(2)

A(u) = V7t expl -u(Ty+T,)

lav.
V ‘is the -irradiated volume of the -.crystal, .and ‘A is the trans-

-mission .factor. .For an unpolarized incident‘beam

R, =.IOQOVApl ‘ | (2a)

where Py mu;t'be~replaced by pi' if a.mohochromator<is used..

It is uéeful to list the ‘specific form of eq. 2a for symme-
trical diffraction by a plane parallel plate of thicknesS~TO which'
" .completely covers ﬁhé incident beam. These -equations are: :

.Laue casge -

=
|

=B QP T exp (-pT)
: . ('2b)
To/cose,

3
i




Bragg case, WTo>>1 N

-

,Ro'=APoQopl/2u" .'(29) |
‘ wheré‘Pb_= SIo:is the total power'of‘the-incidentvbeam,‘S'béing

‘its cross section.

2. -Secondary Extinction

The -equations given in the preceding section are onioﬁsly
_approximations since the x-ray beams in traversing the cryspéi'
musﬁ,lose some power thfough the diffraction process.

In part A of this section the exact solution to the dif-
fraction,problem:in a plane parallel plate will be given,,while
ih.part‘B an approximate solution -will be derived for the general
case df arbitrary crystal shape.

. Let W(A) be the»distribution,function,which characterizes
t%e misalignment of the mosaic blocks'in,the»crystal specimen,
.0 being the -angular deviation,ffomAthe-mean. The considerations
2»wiil be restricted to.the case of small secondary extinction,
Jmplying that.the'width_of~w is large compared to the.width,of
the diffréction peak for a single mosaic block.

| gSuppoSeuthat.the:incident4direction,makés’a sharply,defined
glancing,angle-e with the mean orientation of a .lattice plane
for which the-idéal Bragg angle is GB. -‘The -expectatlon value

-for the power diffracted by a volume element is then

dP(6,9) = I _(9)6(9,8)dv

0

.§(¢,é) = W(QB-G)Q(w),
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.whef@ P and.IO are.measpred'at the ‘volume -element.

.2A. .The ‘Plane ‘Parallel ‘Plate

The diffraction problem‘for the -plane parallel plate was
investigated and solved by.C. G. -Darwin (l.c.). A somewhat
different'derivétion,.whicﬁ led to identical results, was later
made by,this writer (Zachariasen 1945), However, both of these
‘workers made the-same‘érror in taking account .of the -polarization
of the -incident beam.

.The‘derivation;to follow will adhere‘cloéély,to that pre-
-vitusly given by. the writer; except that the-error will be cor-
rected and the notation modified. -(The symbols yd, T,~PO,.P of
the:earlier work correspond to the quantities 6(¢), yT,~PO(¢),
‘P(9) as used in the present -article. A prefix Z is used in

_referencés to.equatidné given in the earlier publication.)

The~equationsiwhictho(Q,T) and -P(9,T) must satisfy.are

"(see=Z.'4.21)

dPO*=,[u +6(m)]}Pode+ 6(g')PAT

()
4P =-F[u+6(9')] PAT £ 6(9)P_dT.

.In these equations T'isttheAdistance-of travel qf'the incldent -
‘beam .into the cfystal.-‘The:upper sign refers to Laue -and the f'
" .lower sign to Bragg reflection. The terms involvihg 6(¢')

'Cbrrespond tofavffractidnpof the -diffracted beém,,éo that ¢




'and ¢' are related as follows

Vg
—
(9
o

cosQp' = cosw/[cosgm+sid2¢cosg29] .

Thus ®' = ¢ only when ¢ = 0 or n/2, i.e..for normal or for
ﬁarallel linear polarization of the incident beam.
‘Egs. 5 have been solved exactly for the case @' = ¢ (see -

A 4.24430), and these ‘solutions are

‘Laue case
P =P, expl ~(u+6)T] sinh(6T),
P = P_T exp(-uT)[6-6°T + 26°T° + ..... ], - (6)
T = T_/cosé,

Bragg case, uTO>>l

P Po[u+5-f(u+6)2-62]%J/c,

p P_(2u) o - 6%/2u + 567/8u% + .....],

It must be remembered that P,:PO, 6<in.eqs..6 and 7 refer
-elther all to ¢ = 0, or all to ¢ = n/2, and that 6 is a function
of 6, 6 having appreciable value only for 6=9B.

It is convéhientAto use new -symbols. R, g, P, and.ph'
defiﬁed'as,follows

R = [Pa(6-65), g, = M7d(6-65),

(1+cos™20)/2, o (8)

Py -

p" .-(l+cbsggeocos2n29)/(1+c032296)

-,whére-one notes that g; =1, and that p; and pl' agree with

.previous,definifions,




>Ihtegréti6nﬁoffeqsf~6»and 7 and addition of.normal and parallel |

;compdnenﬁs give'as resuit

 3/36‘=!RO/Pdfl-dé(Ro/Po) + ag(R/B)Z + ... . f(é)

<Ro/Po are thé_quantities_given by egs. 2b:and 2¢ while

~ Laue -case e Bragg case
ap = ppy/py ?)exp(ur) - 2gy(py/0%)
A o | (92)
as = (%)%3(93/Pij)?Xp(2“T) ?53(P3/p13)° o

'iFor,thé monbéhromator éase pn' everywhere repiaces pn‘in the
»abbve équatiéns.

| ‘The:previousitreatmenbs by Darwin and thié writer gave-the‘
*res%lts of eq. 9a if one sets p2/pl2 = p3/p13 = 1. However, this'
iS'ﬁét permissible .for pe/pl2 increases from 1 at 26 = O to -2 at

ige = n/2; pj/plj‘frbmal't0~44

2B. -Arbitrary Crystal Shape

. In<the-foliowingAan*approximate solution, good to the first
ofdéf éorrection terﬁ,:will be -given for a-crystal of any shape.
The approximation to ‘be made ‘is this: for x-ray beams traversing
fhe crystal power losses due to absorption and.diffraction”are
considered, but power‘gaiﬁs~from.double-diffracbion,are neglected.

.It is thus assumed that

[e
av)

<
i

- ~[u+6(e) )P aT
(10)

o R
ae)
~~
S
i

~[u+6(e*)]pdT.
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In other words terms.in 62 are neglected.

If thé~considératidns are restricted to either normal or

parallel linear polarization, the~integration_of eqgs. .10 give

P o= ICGVA(u+6). i - (11)
In”the-X-ray case u>>6 so that

A(p+6) ® A+6dA/du. . (12)

where it is. senseless to -include quadratic terms. since in
eq. 10 such terms were neglected.
~In.tegration'_of'eq..ll and addition of normal and parallel

components give

~R/IO ~-RO/1O[;-aRO/Io]

< - | (13)

-1 2yr-1
a, = gg(pE/pl')V dA*/du.

a.= S

RO/Io istgiven.by eq. 2a, A* = A1 1is the absorption factor,

.and-S is the cross.section of that part of the incident beam

“.which falls on the crystal., -Again pﬁ' replaces pn'if a .mono-

chromator 'is used.

It is readily verified .that eq. .13 correctly gives.eqs. 9

,(to'the.first order.expansion terms) when“applied to a .plane

-parallel.pi;§é>\I<

,~LéttingaQ~;'Qapl eq. 13 gan:be;rewritten‘in:the;form

-

n

R

R R ¢ £ 0]

Lo ,_AME;,.Z(I’)Q/IADIQ)'Q o o .‘ | ©(130) -
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" where eq.  13b isAthe correct form for the old Darwin relation
fu;-= u+g2Q. |

~Sinée intensity measurements are usually made on relative
‘rather than‘absolute scale, it is useful to usé eq. .13 in the

<ufofm

Feorr. é'KFobs {1+B(29)CJobs]} : (14)

Fobs is the obseryed structure factor, Fcorr the value corrected
~.for secondary extinction, and Jobs the observed integrated
intensity‘onAarbitfary sca1e. K and C are scale facfors to be
-ad justed, while B(26) takes account of the angular variation

of the extinction chfection_and is assumed to be normalized

- to ﬁnity at 20 = 0.

-For unpolarized incident beam the -expression for B(26) is

M N

26)  Ax'(20) . .7, | |
)2 X2 ) (15)

2(1+cos

(l+cos?29

B(20) =

where A*'(20) is the value of dA*/du at 26 and A*'(0) the value

"at 26 = O.

"When‘a monochromatbr is used the expression for B(26) becomes

, (1+cosg26 )(1+cose26 003426) w1 [
81 (26) = 0 0 A% (26)
2 2 )2 A*¥' (0O

(l+c05'éeocos.26

(15a)

PFigure 1 shows B as function of the -scattering angle for
a crystal sphere of radius r bathed -in the incident beam for
various values of ur. It is clearly illustrated that one

cannot regard B as indepéndent of scattering angle, such as

B3k Ea ok Dt

e s e Ko A L

S SR Lt aly

Lo

DR e Rirt b CEs v 5

L et
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is usually.aséuméd. For large values of ur for a crYstal sphere
o ' R ' n
one has. p(0)/p(m) = &(pr)

Eq. 14 is.prObably'a good approximation even for BCJ®1, .at

small scatterihgwangles and small values of ur or uTO.
Consider the Laue and Bragg cases for which the -second order

.correction terms have been given. .Inversion of eq. 9 gives.

R /B, R/P [L4ay(R/2,) + (20,7-05) (R/E)Z). | (16)

Under the stated conditions one finds

i Laue case’
r .

!
b RO/PO

Rl

R/P [1+e,R/P (28, 35) (R/P,) %) an -

Bragg case

Q

R /P = R/P_[1+2g,R/P _+(8g,2-5¢,) (R/P_)2].

‘'The approximation .
“Feorr Fobs[l+CJ] (19)
(note that P*i for small 26 and uT) is. thus good to second order
if the brackets on the right of eqs.‘17 and 18 are perfect squares.
This requires |

2 _
g, 21/15 = 1.31g,
2

‘Laue case g3
% -(20)
Bragg case g5 = 8p 7/5 = 164Og2 ‘

It is reasonable to suppose that W(A) is an error function, and

1
25(3)7% = 1.15g22. .Thus the conditions

“if so by eq. -8, 83 = &
of eq. 20 are nearly fulfilled, and it appears that eq. 19 can

be used with somé confidence even.When CJ=1.




-13-
A

Hamilton (1957) has made a detailed study of the effect of
crystal shape on secondary extinction and outlined.a -practical
method for numerical solution of the problem. .In the approximate
solution of this paper the crystal shape effect is contained.in
the .term dA*/du of eq. .13. Hamilton's results are valid for
neutron diffraction; but! in the case of'x—ray diffraction the
normal and parallel components must be considered separately and

the components added at the end of the process. Thus the

modifying factors p_/p N win again .enter, although implicitly.
: A 4 n' 71 :

.3, -Experimental Verification of the New.Formula

'Experiments'by,the:Manchester school of crystallographers
during_the‘nineteen4tWenties supposedly confirmed the Darwin
formula:forvsecondafy extinction which is now known to be in
‘error. [A good survey of this work is given by James (1950).]
However, 1in thelManchester expeniments intensities were measured

with adeduate‘precision only at small scattering angles, so that

no real test was made :of a possible dependence of the extinction”

i

coefflcient on soatterlng angle.

‘The new formula\for secondary extlnctlon derlved in thlS.
paper ought to be checked/by means of experiments carefully |
:de51gned for'this yery purpose. Thls has not yet been done.
However,rit‘was'reiated in the introduction that the re-

'examlnatlon of the theory of secondary extlnctlon was undertaken

because dlscrepancy was observed between Darwin's formula and
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: experimenta; rosults. .The:specific case of disagreement was
the -set of carefully measured integréted intensities for a
crystal of.Be_é.BOB(OH),' the mineral hambergite.

| This erystal is of great hardness, so that the thermal
intensity attenuation is small. The intensitieo were measured
with a proportional counter, CuKo radiation witn unpolarized
Encident'beam and a perfect crystal spheré<for which pr = 0.69.
Under the circumstances strong réflections were observed over
rthe<entire730attering range. It was quickly apparent that there
;was-consideréble~secondary'extinction in the-specinen in spite
:of surface grinding and thermal shock treatment in liquid
nitrogen.

‘A very precise~determination was made of the 24 positional
degrees of'freedom in the structure and of the-42 thermal para-
meters (the anisotropic coefficients for all but the hydrogen
atoms) by means of least square refinements based on the weak
reflections for which'secondary extinction is negligible. The
-strncture factors corresponding to strong refleotions, which
were not used in the refinement could thus be calculated with
nigh accuracy. It was found, however, that'thegapplication
,of a secondary extinction correction to the strong reflections .
in accordance-with-tne Darwin formulaAled to discrepanciesAof
systematic~nature,‘~.

lTable-lﬂgireS the -observed integrated intensities
(on arbitrary scale), tne~gxperimental and calculated structure’
factors for all reflections (HKO). .It is seen that there is

very good agreement -for small structure factors, but that the

’ -




s

calculated values are consistently higher for the -strong re-

flections. Agreement for the latter cannot be obtained by

meéns of the-DarWih_fofmula, -Fig. 2 plots the~actura1'value§

of.B(26)C'fesuiting from. the data of table 1 (and for other
 stroﬁg réflections from the threedimensional set of data);
 whi1e_the‘curVe in{the figure 1s the theoretical'curve
_"calculated in accordance with eq. 15, using the value
C =1.1x 19"3; ~Cohversely, the last column of table 1 gives
the éorrected F-values using eq. 15 and the 'value of C given
ab?ve. | |
EAA.leaSt sqﬁare refinement based on these corrected F-
‘rvalues (fdr'the‘full threedimensional set of 437 reflections)
gave tﬁe-low conventional R-value of 0.041.
' " The standard error for bond lengths attained in the last-
: refinement was O¢OO4ﬁ for B-0 and Be-0 bonds,.0.04A for the

H-0 bond and 0.002AF for 0-0 distances.
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Table 1. HKO Reflections

HKO ' " Jovs Fobs Feorr - KFoaie
020 36 4.8 5.0 4.6
200 4k 5.9 6.2 5.5
210 458 - 20.0 30.1 -30.5
220 976 . 32.0 66.3 ~61.7
230 - 103k 36.8 78.8 T
040 . 489 25.7 39.5 -40.7
240 | 229 19.4 ok .2 23,8
400 196 18.7 22.7 ~22.3
410 687 - 35.k 62.2 ~62.1
420 .97 . 13.8 15.2 EY N
250 314 o5, 4 3.2 ~%1.9-
- 430 101 14.8 16.5 15.0
060 ! 211 "21.8 26.9 25.9
440 < 316 27.9 377 ' 37.0
260 . 16 10.8 11.3 10.4
450. 445 . 35.5 54.3 51.9
270 © . 192 o 2h.0 29.8 28.2
600 106 18.0 20.4 20.5 .
610 - . 9 - 16.8 18.8 -18.3
620 . 109 j 18.7 21.3 -21.1
460 N © 64 144 15,6 14.8
. 080 \\\\\g\?14 | 32.3 ' 45.8 -46.7 -
. 630 SN2 u/{/r 15.6 17.1 16.2
280 -~ - 1357 6.9 7.0 ~6.1
k7O - 1z T.2 7.3 6.3
6s0 132 21.9 26.0 . 25.3
650 . - 15.2 - T.T 7.9 . -7.2
290 - 0.3 1.2 1.2 1.2
480 172 26.6 33.8 =33.7
660 - 287 o oh.T -50.7 . 51.4.
0.10.0 .~ 130 23.8 28.7 29.7
6 1.6 1.9

. 800 . 0.6 - 1.
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-CAPTIONS

 Fig. 1 -shows the variation‘of B with scattering angle for a

crystal sphere of radius f, for selected values of pur.

'«Fig. 2 shows the experimental values BC obtained with a sphere
| of hambergité for which ur = 0.69. The curve is the
-théoretical one, calculated with C = 1.1 X 10‘3.,
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