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1. Introduction

Electron-helium scattering is the second most simplest electron-atom seattering svstem
only being surpassed by the clectron-hydrogen problem. The former has substantial
advaitages from the experimental point of view and has been used as a standard against
which other scattering systems may be compared, normalised, calibrated, ete.  For
theorists the e-H system is preferable primarily because a three-body system is casier
to work with than a four-body system. For these reasous over the years there has been
a disproportional concentration of theoretical and experimental activity: a great deal
of e-H theory with relatively little experimental support and vice versa for the e-He
system.

It turned out that the theorist’s fear, at least our own, of the e-He problem was
somewhat misplaced. An adequate model of any helium atom discrete state is provided
by a two-electron antisvimmetric wave-function where one of the electrons is represented
by the He* 1s orbital. This is known as the frozen-core model and suffices so long as we
are only interested in one-electron excitation processes. Fortunately, these happen to be
by far the most dominant. With this approximation for the helium structure the e-lHe
systent looks very similar to and not too much more difficult to calculate than the c-H
svstem. The primary difficulty of calculation is the same for both systems, namelv the
treatinent of the target continuum. It should be said that the fact that the frozen-core
model vielded a good description of the target structure was known in the late sixtics.
see Cohen and McEachran (1967) for example. Just how good this model is for the
purpose of electron scattering calculations has only become clear very recently (Fursa
and Bray 1995, Bartschat et al 1996a).

The primary purpose of this review is to demoustrate how successfully the
convergent close-coupling (CCC) method, first introduced for the e-H problem (Bray and
Stelbovics 1992), has been extended (Fursa and Bray 1995) to the calculation of e-He
scattering. Even though there are many examples in the literature of excellent agreement
between the CCC theory and experiment, we must caution the reader that there are
also outstanding systematic discrepancies with a number of independent measnrements
for the case of excitation from the metastable states. \While it is unclear why the CCC
theory would vield correct results for excitation of the ground state but not for the
simultanconsly obtained excitation of the metastable states, it is most disturbing to
find the CCC theory yielding substantially lower results than experiments for electron
scattering from the 238 helium state.

This work is aimed at the reader who is already familiar with the gencral concepts in
clectron-atom scattering, but is not particularly interested in immediate technical detail.
In section 2 we give the outline of the CCC theory concentrating on how the close-
coupling formalism is used to yield simultancously discrete excitation and ionisation
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information, and how it relates to other electron-atom scattering theories. Section 3
gives relations used to obtain, from the CCC scattering amplitudes, the data presented
in the figures. This is followed by section 4 where we discuss clectron-impact excitation
(to n < 3 levels) and ionisation of the helium ground state. In section 5 we consider
electron impact excitation (to n < 4 levels) and ionisation of the helinin metastable
2413 states. Finally, the conclusions and future directions are given in section 6.

2. Theory

Let us begin with a general approach to electron-helium scattering. We do not wish to
repeat here most of the technical detail given earlier (Fursa and Bray 1995). Instead, we
would like to just give an overview that may be used to make clear the major differences
hetween various theoretical approaches, and show how the CCC theory simultaneously
vields results for discrete and ionisation processes.

Suppose we obtain the target wave functions ¢, by diagonalising the target
Hamiltonian H, in some explicitly antisymmetric two-electron basis of size N with
squarc-integrable one-electron orbitals, i.e.

(oF [H oY) = €8y (1)

Thus obtained (two-electron) pseudostates ¢Y, n = 1,..., N have a formal dependence
on the basis size N, but if the basis is chosen appropriately we can assume that
(¥ |pn) = 1, € = €, for the physical states (H,|¢n) = €a|@s)) of interest. In addition,
the remaining of the N states form a representation of the higher discrete target states
and the target continuum. These may be combined together to define the projection
operator

1= S el ©)

which will be used to form the close-coupling equations. We desire that the basis be
constructed in such a way that liny o, IV = I, the true target-space identity operator.

To obtain e-He scattering information we would like to know the T matrix for the
= f transition

(®/|T|,) = (@ |H ~ E|¥{). (3)

Here &y and @ are the (three-electron) final and initial channel functions, ‘IIE"') is
the total wave outgoing spherical wave boundary conditions, H and E are the total
Hamiltouian (acting to the left) and energy, respectively. For computational convenience

we write

Wy = (1= Py, ()
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where the use of the space and spin exchange operator Py allows us to work with a
non-symmetrised function ;, though at the cost of non-uniqueness (Stelbovics 1990).
The N-state approximation to the true T matrix (3) we define by

(@TN (@) = (8,17 |(H - E)1 ~ P)| IV ™). (5)

The introduction of the projection operators IV allows us to unambiguously define the
channel functions for both discrete excitation (this has never been a problem) and also
ionisation. They ensure that asymptotically only the projectile-space clectron is allowed
to exit the scattering system. Hence, the asymptotic (channel) Hamiltonian K we write
as

K = Ko + H,, (6)

where Ky is the one-electron projectile-space kinetic energy operator, and the channel
functions, eigenfunctions of K, as

[@n) = |@uky). (7)

We use the discrete notation for the target eigenstates |¢,,) to represent both the discrete
and continuum target states. In either case, if the final target state energy e; is the
same as ¢/ for say n = f, then (5) becomes

(@71T™1®;) = (95167 ) (ksoF IV — (H — E) Pl IV 9{P) (8)
= (g1} TR, (9)

where VV = H — K. The T-matrix elements T,’}’ arise upon solution of the close-coupling
equations. These are well-defined once the target-space expansion states have been
obtained in (1) and the total energy E specified. See Fursa and Bray (1995) and Bray
and Fursa (1996a) for detailed discussion.

From (9) it is clear that after the 1,",’ have been obtained, the scattering amplitudes
for discrete transitions ((¢,|¢?’) a 1) and ionisation may be readily calculated.
Convergence is checked by simply increasing N. In the case of ionisation, obtaining
convergence in (9) is particularly noteworthy as limy 00 (¢/|¢}) = co.

Equation (8) may be used to outline the difference between the CCC and other
approaches to the calculation of electron-atom scattering. For example, standard close-
conpling (CC) methods use only the discrete states in the definition of IV, thereby
ignoring the target continuum. Pseudostate methods are very similar to the CCC
method, but are somewhat less systematic in the definition of IV and have typically
been applied with much smaller N. Coupled-channel optical (CCO) methods use just a
fow discrete states (P-space) in the definition of 7V, but the effect of the remaining states
(Q-space) is approximated by adding to V a complex nonlocal polarization potential
V9. Distorted-wave methods approximate |1wa+)) by |¢,»k$”), where kg” is a distorted
wave.
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Generally, for e-He excitation, the R-matrix implementation of the CC method as
used recently by Fon et al (1995) works well at energies below the ionisation threshold,
though not for clastic scattering. The R-matrix with pseudostates (RMPS) method
(Bartschat ef al 1996a), however, treats the target continuum via a squarc-integrable
approach and has yielded results comparable to those of the CCC method. The CCO
method of McCarthy et al (1991) makes approximations in the treatment of the target
continnum and exchange matrix elements. Unlike CC methods, it does yield good elastic
cross sections (Brunger et ol 1992), but has difficulties with exchange transitions. The
distorted-wave methods, being high-energy approximations, are generally not reliable
below approximately 100 eV. They exhibit a strong sensitivity to the choice of the
distorting potentials (Madison 1979) and perform poorly for exchange transitions. For
dircct transitions, the first-order mnany-body theory (FOMBT) of Cartwright et al (1992)
and the distorted-wave approximations (DWA) of Bartschat and Madison (1988) are
often qguite accurate.

In passing, we note that the variational calculations of low-energy elastic scattering
by Nesbet (1979) have withstood the test of time and have provided a very useful
standard against which more-complicated theories may be tested.

3. Physical observables

In this section we discuss how various cross sections and angular correlation parameters
measured in experiment may be calculated using the T-matrix elements arising from the
CCC calculations. This section is presented for completeness and for ease of reference.

A.1. Cross sections

The CCC calculations yield, for discrete transition i — f, reduced T-matrix elements,
which depend on the total spin S, parity T and partial wave of total orbital angular
momentum J. These are related to the scattering amplitudes in the collision frame,
where the quantization axis is along the incident projectile direction, by

11 l ki J——
5 9, o e e i 2L, N lc"h mytngmy
fmfm'( ‘P) Van V2 +1 kj LI‘%‘:‘J Ly iy J

X G TS L Yo, (6, 0), (10)
where { and 1, are the atom orbital angular momentuin and its projection, while k and
L are and projectile linear and orbital angular momenta. The spherical polar angles
of the detected electron are @ and . The T-matrix clements, and thus the scattering
amplitudes. depend on the basis size N of the calculation. For clarity of notation we do
not include the N index, but assume that the calculations have been performed with a
suflicientiv-large N so that convergence to a required accuracy has been attained.

Al experimentally-observable quantities may be related to the scattering
amplitudes. If the initial state of the helium atom is a singlet state then only spin
channel § = 1/2 (doublet channel) is possible. The differential cross section (DCS)
is then given by averaging over magnetic sublevels of the initial state orbital angular
momentum L, via factor 1/y/2; + 1 in (10), and summation over magnetic sublevels of
the final state orbital angular momentum

do S s 12
E!_i B m;n.‘lfm/m'l A (11)
If the initial state of the helium atom is a triplet state then an additional independent
spin channel § = 3/2 (quartet channel) is possible. The spin-resolved differential cross
section is given by (11). The spin-averaged differential cross section is obtained by
averaging over magnetic sublevels of the helium atom initial spin s; = 1 and two possible
spin projections of the incident electron, as well as summation over the total spin § and
its projections

do 1 do¥ 1/ do'l? do /2
Ty PUCER 25(2:@ 1 ) (12)
The ratio of the quartet to doublet differential cross sections
do3? do\/?
= ol /(75-1 (13)
is used to define an exchange asymmetry via
1—r
Ao = 157 (14)

which has the advantage of always being finite. For pure doublet scattering A, = 1
(7 = 0) while for pure quartet scattering Aex = —1/2 (r = c0).

The integrated cross section ¢ may be found by integration of the corresponding
differential cross section over the scattering angles or by summing the partial cross
sections. The total cross section oy from initial state i may be obtained by summing
the individual integrated cross sections for each state (f = 1,..., N) used in the close-
coupling expansion, or utilizing the unitarity of the close-coupling formalisin by using
the optical theorein. The total ionisation cross section (TICS) is defined by

0, = 0y — Oph, (15)
where oy, is the total non-breakup (elastic plus bound state excitations) cross section
obtained by summing the integrated cross sections for negative-energy (e}") states.

3.2 Eleetron-tmpact coherence parameters (EICPs)

Measurements of differential cross sections allow for testing of only the magnitudes of
the scattering amnplitudes sumimed over thie magnetic sublevels. Much more information
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about the scattering process (namely, the relative phases between the scattering
amplitudes) can be obtained if the scattered electrons are measured in coincidence with
dipole radiation arising from atoms excited by the electron impact. Such measurements
determine parameters related to the parameterization of the dipole photon polarization
density matrix (Blum 1981), and are known as the Stokes parameters P, P, Ps.

Parameters Py and P; are the degrees of linear polarization and Pj is the degree
of circular polarization of the radiation propagating perpendicularly to the scattering
plane. These three Stokes parameters, together with the DCS, are sufficient to
completely describe excitation of helium P-states from the ground state. To characterize
excitation of D-states an additional measurement of the degree of linear polarization
of the radiation propagating in the scattering plane may be performed. This is the
Stokes parameter P;. However, this still leaves the characterization of D-state excitation
incomplete.

The Stokes parameters Py, Py, P, Py may be written in terms of the state multipoles
Tiq (Blum 1981, Andersen et al 1988)

(12(T22 - \/%T'zo)/2

' T - 2(Ty, + Too/V6)’ (1o
E —;((Tfi Tu/V6)’ w
= Ty - %‘(Q'I:;j: Tn/V6)' ()

- ay(Ter + \[3T0) /2 19)

_To() + g22(T22 - T20/\/6) ’

where the coeflicients ay are

L !
(yk=3\/211+1(—1)"+‘2+’°+'{ lll 1‘ Z} (20)

Here I) = 1; and l; = [; — 1 for dipole photon deexcitation. For scattering to a P-state,
h =1y =1. 1, =0, and in this case a; = ap = V3. For scattering to a D-state
ly =1y =2, 1, =1, and in this case @, = 3/2, ap = /21/20. The spin-averaged state
mmltipoles Ty, are
Tey= 3. (—U""’"CI}‘ 3" P, (21)
m,m’
where the spin-averaged density matrix is

1/2 o.. 3]2 9., e
P = (02, + 20022 V(1 + 27). (22)
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The above spin-resolved density matrix p3,., of the final state, normalized to unit trace,
is given by (Blum 1981)

fS fS’o

Y mne; Jm'm; o

/)mm’ = z -_,[‘?S——_—' (2'3)
m; ﬁ

The state multipoles are normalized to have Ty = 1/,/2l; + 1. The spin-resolved state
multipoles qu are obtained by using the spin-resolved density matrix in (21). Spin-
resolved counterparts to the Stokes parameters may be obtained by restoring the total
spin S index to the state multipoles Ty, in (16-19). It is also clear that Eqs. (16-19)
can be inverted and the state multipoles Ty, can be expressed via Stokes parameters.

A more physical description of the atom charge cloud is provided by the alignment,
orientation, and coherence parameters (Andersen et al 1988). The linear polarization of
the atomic charge cloud is

Pe= (P} + P))'2, (24)
the alignment angle relative to the z axis of the collision frame is

v =arg(P +1R)/2, (25)
the degree of polarization (total coherence) is

P = (P} + P} + P}, (26)

and the angular momentum transferred to the atom perpendicular to the scattering
plane is

3(lp+1)i5/2
L, = \/2(2[j O DY iTy = ———-——( s+ i/ IP;, (27)

3 )
where I, is proportional to the detected radiation intensity in the direction perpendicular
to the scattering plane.

2(Py + 1)
A= (A=D1 -1)
For § to P excitation (; = 0, I; = 1) (16-18) can be simplified. The symmetry

2 @
I, = %(Too - —;(Tzz + Tao/VB) = (28)

property of the scattering amplitudes f{ = ~f5,, results in the additional relation for
the state multipoles (Hertel and Stoll 1977)
To/V6 + Ty = -1/3, (29)

and the Stokes parameters are then given by

Pl = 1 + 47—:22, (30)
1)2 = 2T21, (31)
Py= - 2T, =—L,. (32)
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In this case measurement of the three Stokes parameters and the DCS allows the
state multipoles T,f;, and consequently the scattering amplitudes [, to be determined
unambignonsly (up to an overall phase in the case of scattering from S states). There is
complete coherence (P¥ = 1) in both the doublet and quartet channels. However, when
scattering from a 33 state, the spin-averaged P is not equal to unity and its deviation
from unity is a measure of exchange scattering, though not a very sensitive one.

The study of S- to D-state excitation usually involves the definition of one more
parameter, It is convenient to use the natural-frame density-matrix element (Andersen
et al 1988)

" V2l Tio

1 21
Poo=75+ 5 (Tt '—\/—(—;)- (33)

It can be expressed in terms of the Stokes parameters as,

L3 3 21+ Py)
”00*5(1"1')‘5(1“4—(1—13,)(1—134))' | (34)

The complete description of D-state excitation requires state multipoles Ty, up to rank
k = 4. However, measurements of the Stokes parameters Py,..., Py in the standard
electron-photon coincidence experiment can yield state multipoles up to rank £ = 2
only. Tle state multipoles of rank k = 3 and 4 can be obtained from two-photon-electron
coincidence measurements, where in addition to the D — P photon being detected, the
P — S photon is measured in coincidence. See the work of Mikosza et al (1993) and
Mikosza et al (1996) for details.

A major complication arises for the analysis of the 3°P and 3°D state excitation.
In these cases the spin-orbit interaction leads to a depolarisation of the radiation
emitted and hence measured polarisations cannot be sitmply related to any description
of the excited state produced in the collision. If the fine-structure splitting is large
compared with the natural line width, which is true for the He 33P and 33D states, the
depolarisation can be taken into account by introducing the perturbation coefficients
Gy (sce Blum (1981) for detailed discussion) and replacing the coefficient oy in (16-19)
by o Gy )

We will denote the observed Stokes parameters by P,..., P; while keeping the
unpritmed notation for the reduced Stokes parameters, those that would be measured if

there were no depolarisation due to the spin-orbit interaction (G = 1). The observed
Stokes parameters can be readily related to the reduced ones by (Crowe et af 1994),

II
PPt =1
[ '2(62—1)4-1;, ¢ '2 (35)

3
II

Py= (Gz/Gn)Pég(—G;;Ll‘m

i (36)

10
2-1,(1-P))
P — Pl- z 1 —
T B AT ) 0
where
, 201+ Py) 2
= = Gyl — - (Gy = 1).
]z 4 - (1 — Pl,)(l — P‘) 24, 3((‘2 ) (38)

From the above relations it is clear that the determination of the redueed Stokes
parameters generally requires the in-plane measurement of the parameter Py.

For the 3%P state G; = 1/2 and G, = 5/18 and, due to (29), the relation between
the observed Py, P, P3 and reduced Py, Py, P3 Stokes parameters simplifies to

P; = cll",, PQ' = C‘Pg, P:; = C2P3, (30)

where ¢y == 15/41 and ¢, = 27/41 are the constant depolarisation coefficients. For the
3°D state G, = 43/54 and G, = 71/150. However, the relation between the observed
and the reduced Stokes parameters cannot be simplified any further and the constant
depolarisation coeflicients cannot be formulated.

Crowe et al (1994) obtained the relations (35-37) when analyzing helinm 33D angular
correlations. In fact they are valid for arbitrary orbital angular momentum of the target
final and initial states. If more than one total spins are involved then the spin index needs
to be restored and appropriate averaging performed. For targets with nonzero nuclear
spin {(cg. sodium) the hyperfine structure corrections should be taken into account when
calculating the coefficients Gy (see Blum (1981) and Andersen et al {1988) for details).

4. Electron scattering from the helium ground state

Traditionally, the energy range of interest in atomic physics has been divided into the
low (below ionisation threshold), intermediate (between one and ten times the ionisation
threshold) and high {more than ten times the ionisation threshold) regions. This was
done as some theories worked well in either extreine of the energy range, and none were
reliable at intermediate energies. One of the primary motivations in the development
of the CCC method was to devise a theory that is equally valid irrespective of the
incident encrgy. A demonstration of this for e-He(1'S) scattering has been given by
Fursa and Bray (1995), where the energy considered ranged from 1.5 to 500 ¢V. Here we
primarily wish to concentrate on a single energy of 30 eV'. This is in the most difficult
intermediate energy range, being only 5.4 eV above the ionisation threshold. Techniques
that treat the target continunm via a square-integrable approach, such as our own, have
to be able to demounstrate that the results are free from psendoresonance effects. In
addition, at this energy a large set of experimental data and calculations are available

for comparison.
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A key feature of the CCC formalism is that convergence to some accuracy in the
parameter of interest needs to be demonstrated as a function of the number of states
used. The CCC(69) and CCC(75) calculations (Fursa and Bray 1995) generally showed
good agreement with each other, but differed visibly on some occasions. The difference
between them is that the former had more S-, P- and D-states than the latter, which in
addition had F-states. Here, where appropriate, we shall present results from 111-state
calculations which have more S-, P- and D-states than the CCC(69), more F-states than
the CCC(75) and also have G-states. Specifically, the CCC(111) results presented below
were obtained with 14 'S states, 13 3S and *'P states, 12 3!D states, 10 3!'F states and
731G states. An implementation of such a calculation using the CCC method required
in excess of 1G core memory.

We should note that in the relatively-comprehensive earlier work (Fursa and
Bray 1995) there was no discussion of resonances. The CCC method is able to calculate
these, and has done so in the case of e-H (Bray et al 1996) and e-He' (Bray et al 1993)
scattering, however it is not best suited for such calculations. The R-matrix (Berrington
and Kingston 1987, Sawey et al 1990), and preferably RMPS (Bartschat et al 1996b)
or J-matrix methods (Konovalov and McCarthy 1995) are more-appropriate choices for
investigation of threshold and resonance behaviour since they typically yield results on
a fine encrgy mesh rather than at a single energy as is the case in the CCC method.

4.1.  Elastic scattering

Elastic e-He scattering is well understood experimentally and theoretically and has been
used extensively for calibration purposes in various electron-scattering applications. We
would like to draw the attention of the reader to the comprehensive data set of absolute
differential and integrated elastic cross sections given by Register et al (1980). The
reported data at an impact energy range of 5 to 200 eV are in good agreement with the
more-recent study by Brunger et al (1992) (1.5 - 50 eV).

The major difficulty in calculating e-He elastic cross sections is to fully account
for the atomic-static dipole polarisability, a significant part of which comes from the
continnum.  The pseudostate technique has been successfully used in the R-matrix
method by O'Malley et al (1979) and Fon, Berrington and Hibbert (1981), and
variational formalism by Nesbet (1979). Perturbative methods account for the dipole
polarisability by going to second order, subject to approximations. For example, the
closure approximation was used in the second-order method of Winters et al (1974),
in the cikonal-Born method of Byron and Joachain {1977), and in the distorted-wave
second Born approximation of Dewangan and Walters (1977). A pseudostate technique
hias been used in the second-order many-body theory method by Scott and Taylor (1979).
The polarised-orbital method was also applied to calculate elastic scattering by LaBahn
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and Callaway (1970).

Generally the agreement between above theory and experiment is very good.
However, most of these methods have been limited to the calculation of elastic scattering
only. More-sophisticated general electron-atom scattering methods (CCO, CCC, RAPS)
have heen developed later and applied to the calculation of elastic scattering. These
methods have been able to improve agreement with experiment in the few places where
it was not perfect.

In figure 1 we present the CCC calculations (Fursa and Bray 1995) of the e-He
elastic DCS at low and intermediate energies. The results at 30 eV have been replaced
by those of the present 111-state calculation. The agreement with the measurements
of Brunger et al (1992) and Register et al (1980) is quantitative at all incident electron
cuergics. Where available, the results of the variational calculations of Nesbet (1979) (5
and 18 eV), R-matrix calculations of Fon, Berrington and Hibbert (1981) and the RMPS
calculations (Bartschat et al 1996a) (30 and 50 eV) are presented for comparison. The
variational, R-matrix and RMPS calculations have a very accurate ground state with
P pscudostates to account for the helium dipole polarisability. On the other hand, the
CCC calculations differ in that the simpler frozen-core model of the helium atom yields
a less accurate ground state. However, the agreement between the results of all four
methods is very good, specially below the first excitation threshold. This indicates that
the frozen-core model is sufficiently accurate for the description of elastic scattering.
Since the largest error in the description of the helium bound states using the frozen-
core model occurs in the ground state, accurate results for elastic scattéring are a good
indication of the reliability of the model for inelastic scattering (Fursa and Bray 1995).

4.2.  Erxcitation of n=2 states

We now turn to the discussion of excitation cross sections of the 238 and 213D states and
EICPs of the 2'P state. Although a great body of measurements are available over a wide
range of incident clectron energies, the agreement between them is not always perfect.
Similarly, calculations including DWBA (Bartschat and Madison 1988), FOMBT
(Csanak and Cartwright 1988), R-matrix (Fon et al 1979, Freitas ¢t al 1984, Berrington
and Kingston 1987, Sawey et al 1990), and CCO (McCarthy et al 1991, Brunger
et al 1992) methods often disagree with each other and the measurements. However,
application of the CCC theory (Fursa and Bray 1995), new measurements (Roder
et al 19964), and most recent RMPS (Bartschat et al 1996a) calculations has changed
the situation substantially for the better.

The current status of theory and experiment is summarised in figure 2, where
the differential cross sections are presented at 30 eV incident electron energy. For
oplically-forbidden transitions (28, 2%P) the results of the theoretical methods are
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often very different. At this low energy the FOMBT method is quite unreliable. The
29-state R-matrix (RM(29)) calculation is in better agreement with experiment than
the FOMBT results. However, only the CCC (111 states) and RMPS results arc in
good agreement with cach other and experiment. For the 2°P excitation there are
some shape differences between the CCC and RMPS results as well as between the
experimental data of Brunger et al (1990) and Trajmar et al (1992). However, the
recent, relative measurements of Roder et al (1996a) are in very good agreement with
the CCC results when suitably normalized. The small statistical uncertainty (<5 %)
of the latter measurements suggests that the CCC results may be the most accurate.
As in the case of elastic scattering, the application of the RMPS theory confirmms the
conclusion that treating the target continuum is more important than improving the
frozen-core structure model.

Experimental and theoretical results for the optically-allowed 2'P excitation
differential cross sections show little variation in shape though the magnitude does vary.
A stronger test of the scattering theories is provided by the EICPs determined from
the electron-photon coincidence measurements, see section 3.2. In figure 3 we present
the 2!P EICPs at 30 eV. The agreement between the CCC results and experiments is
good. This is also the case for the R-matrix calculations with (RMPS) and without
(RM(29)) the treatment of the target continuum. This indicates that for this excitation
the exclusion of the target continuum does not result in a substantial error for the EICPs.
However, the results of the FOMBT are very different and disagree with experiment and
the other calculations.

4.8.  Ezcitation of n=3 states

Differcntial cross sections for the 3'*S and 31:3P states at 30 eV are presented in figure 4.
Here the situation is very similar to the case of n = 2 excitation. The CCC results are
in good agreement with experiment for all transitions. The FOMBT is inadequate
for the optically-forbidden transitions, but is in good agreement with experiment for
the opticallv-allowed 3'P excitation. The RM(29) calculation treats only the target
diserete subspace, and exhibits substantial problems. Even for the optically-allowed
3'P excitation the R-matrix results are systematically too high. This suggests that the
treatment of higher discrete excited and continuum states becomes progressively more
important with increasing excitation energy of the observed state. We look forward to
the extension of the RMPS method to the n = 3 states.

Excitations of the 3'DP and 3'3D states are very difficult to resolve due to their
very small energy separation. Recently Khakoo et al (1995) have performed the first
measurements of the 3'P DCS that are resolved from the 3'2D levels using the electron-
photon coincidence technique. The new data are in very good shape agreement with the
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CCC theory, but are somewhat systematically higher. For this reason also presented in
figure 4 are the measurements of Chutjian and Thomas (1975) and Trajmar et al (1992)
of the summed DCS for the 3'P and 3'°D states with the CCC theoretical DCS for
31D states (see figure 7) subtracted. Theory indicates that excitation of the 3'P state
is dominant for scattering angles 8 < 60°, and so somewhat better agreement with the
carlier measureiments is encouraging.

The 3'P angular correlations are presented in figure 5. The EICPs L, and v and
Stokes parameters Py and P, reported by Neill and Crowe (1988) and Neill et ol (1989)
are comparcd with results of the CCC, 19- and 29-state R-matrix, and DW calculations.
The DW results are in poor agreement with the experiment. Similar to the FOMBT
the DW method is a high-energy approximation and is not accurate at such a low
energy.  The R-matrix methods have achieved good convergence, but to the wrong
result in the case y at intermediate electron scattering angles. The alignment angle + is
a derived parameter related to the observed Stokes parameters (y = ATAN2(P,, P)/2).
It is more instructive to compare with the originally-measured P, and P, parameters.
Whereas agreement with the /% data is good there are some problems in the case of /.
Some variation between the two reported measurements indicates the difficulty of the
experiment.

In figure 6 we present the EICPs for the 3°P state at 30 eV. The measured radiation
in this case is depolarised (sce (39) for the relation between the measured and the
reduced Stokes parameters). Both the CCC and R-matrix results are similar and show
satisfactory agreement with experiment.

We now turn to the discussion of the 33D states. No DCS measurements have
been reported due to the above-mentioned problem of resolving D-states from the 3'D
state. In figure 7 we compare the CCC(111) results with the CCC(75) and with the DW
calculations of Bartschat and Madison (1988). The two CCC calculations show good
convergence. The two DW results are very different from each other, indicating the
large dependence on the choice of the distorting potential, with neither choice agrecing
with the CCC results.

Extensive electron-photon coincidence measurements are available for electron
impact excitation of the helium 3'7D states. In figure 8 we present the EICPs and
Stokes parameters for the 3'D state at 30 eV. We obscrve generally good convergence
of the CCC results and good agreement with experiment of Donnelly et af (1994). The
DW results of Bartschat and Madison (1988) are in poor agreement with experiment
and the CCC results. For Stokes parameters Py and Py the experiment and CCC results
are in relatively good agreement. However, this is not the case for the alignment angle .
The apparent disagreement between the CCC results and experiment here is an artifact
of the definition (25) of the alignment angle +.

The 3’D state EICPs and measured Stokes parameters (P{-P} are presented in
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figure 9. The latter parameters are affected by fine structure depolarisation (see Eq. (35-
37)). Examining the CCC(111) and CCC(75) calculations we observe good convergence
and agreement with experiment. This indicates that the effect of the G-states, included
in the CCC(111) calculation, is small and that there is no need to include target states
with higher angular momentum.

4.4. [lonisation

Historically, the close-coupling formalism was designed and used to calculate elastic
and hound-state-excitation processes. The introduction of pseudostates into the close-
coupling method allows for an estimate of the total ionisation cross section (TICS). The
TICS is then obtained as the difference between the total and total nonbreakup cross
sections (15) or, alternatively, by summing integrated cross sections for positive energy
pseudostates.

One of the first examples of the success of the CCC theory was its application to
the calculation of TICS in the case of e-H scattering (Bray and Stelbovics 1993), where
remarkable agreement was found with experiment. This has since been demonstrated for
the e-He system (Fursa and Bray 1995), given in figure 10. We compare the results of the
CCC(69) calculations with experiment of Montague et al (1984) and Born calculation
of McGuire (1971) and distorted-wave-with-exchange (DWE) calculation of Younger
(1981). The CCC results are in good agreement with experiment and superior to the
Born and D\E calculations in the intermediate energy region. At high energies (> 500
¢V) the CCC results underestimate the TICS due to the use of the frozen-core model
(only one-electron ionisation without Het excitations is allowed).

It is quite remarkable that the CCC(69) calculation, which has only target states
with maximum orbital angular momentum [,,,, = 2 , is in such a good agreement with
experiment. Interestingly, unitarity of the CC formalisin ensures rapid convergence
with .. without requiring convergence in the individual I-dependent contributions
(Bray 1994). However, in order to calculate differential ionisation cross sections we do
require convergence in all of the contributions.

The ability to correctly predict the TICS invites investigation to determine whether
the CCC method yields correct differential distributions in the case of ionisation. This,
at first glance, is an odd thing to do because the method formally allows for only a single
projectile-space electron to be in the true continuum. All other electrons are treated by
squarc-integrable functions. Curran and Walters (1987) and Curran et al (1991) took
the approach that the pseudostate expansion yields an accurate total wave function,
and generated triple differential ionisation cross sections using this wave function. This
approach leads to nonexistent integrals that arise due to an inconsistent treatment of
the total wave function and the asymptotic two-clectron continnum states. We avoid
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this problem by using the target-space projection operator I” on both sides of (5), and
then directly relate the T-matrix element for excitation of a positive-energy pseudostate
to the ionisation channel via (9). Detailed discussion of these issues together with the
explicit definitions of the CCC ionisation amplitudes has been given by Bray and Fursa
(1996a) and will not be repeated here.

Application of the CCC method to differential ionisation is still in its infancy. The
first application was for e-H ionisation at 54.4 and 150 eV (Bray et al 1994), where very
good agreement was found with the experimental data, available only for the highly
asyminetric energy sharing region. A more thorough test of the CCC theory may be
performed by comparison with the much more numerous e-He ionisation data. For
example, at 100 eV (Bray and Fursa 1996b6) a single CCC calculation has yielded good
agreement with experiment for elastic and excitation (to n < 3) DCS, and with the
ionisation single (SDCS), double (DDCS), and triple (TDCS) differential cross sections.
The CCC calculations had ., = 3 and the TDCS measurements of Réder et al (1995)
in the standard coplanar geometry for ejected electron energy of 4 eV were reproduced
essentially quantitatively. The DDCS and SDCS data of Miiller-Fiedler et al (1986) are
available not only for the asymmetric but for the whole kinematical region. Given the
relatively small {,,,, = 3 it was particularly encouraging to find good agreement with
all of the 100 eV data of Miiller-Fiedler et al (1986), even in the case of both outgoing
electrons having nearly 40 eV.

A detailed comparison of the CCC results and experiment for incident electron
energies above 100 eV has been given (Bray and Fursa 1996a). We believe that for
these energies the CCC method is able to yield accurate ionisation cross sections for all
energy sharing combinations of the outgoing electrons. For the purpose of illustration
we present our results at 600 eV. Note that at such high energies many other approaches
to ionisation work well (Byron et al 1986, Furtado and (O’Mahony 1988, Brauner
et al 1991, Franz and Altick 1992, Jones et al 1993, Biswas and Sinha 1995). At such
a high energy exchange may be dropped from the CCC calculations and so only singlet
states need be included in the close-coupling expansion. In figure 11 we present results of
the CCC(51) no-exchange calculation with l,,; = 5. We can see very good agreement
with coplanar TDCS measurements of Jung et al (1985) performed at a number of
cjected-electron cnergies Ep (2.5, 5, and 10 e¢V) and a number of fixed angles of the
fast electron 84 (2°, 6°, 8°, and 10°). In figure 12 we compare the CCC(51) results
with the DDCS measurements of Miiller-Fiedler et al (1986). We find generally good
agreement except for the largest ejected-electron energy (40 eV). The normalization of
the measured DDCS by extrapolation to the optical oscillator strength is least reliable
for the largest momentum transfer and may be the reason for at least some of the
observed discrepancy between the CCC results and experiment.

To onr mind the really interesting test of the CCC approach to ionisation is at
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low incident energies. This is because in this casc electron-electron correlation is
particularly important and is substantial at greater distances from the nucleus. Now, we
already know that the CCC method obtains accurate results for elastic and excitation
processes, as well as the total ionisation cross section (Fursa and Bray 1995). What
about, differential ionisation cross sections at low to intermediate energies?

In figure 13 we present a three-dimensional plot of the coplanar TDCS for 40 eV
incident-electyon encrgy and 4 eV slow-clectron energy. Detailed discussion and
comparison with experiment (including two-dimensional cuts for fixed angle of the fast
and slow clectrons) has been given by Roder et el (19965). For this kinematic region
forward scattering of the fast electron with backward scattering of the slow electron
is by far the dominant process. Here, as well as at 50 eV incident electron energy
(Réder et al 1996¢), the CCC method obtains good agreement with experiment in the
asymmetric kinematical region. However, as the energics of the outgoing clectron come
closer we find that the CCC theory yields magnitudes that are systematically lower
than experiment, while still keeping good angular profiles (Rdder et al 1996¢, Roder
et al 1997q, Roder et al 1997b). This rather surprising result is currently under intense
investigation.

5. Electron scattering from the helium metastable states

A great strength of the close-coupling methods is the ability to obtain from a single
calculation the scattering results for transitions between various initial and final states.
The reliability of the CCC theory should be independent of the initial state. The
excellent agreement the CCC theory has generally attained with measurements of the
e-He(1'S) system should translate directly to good agreement with measurcments of
the c-He(2%1S) scattering systems. Unfortunately this is not the case. We have found
systematic discrepancy between the CCC results and measurements of the differential
(Miiller-Fiedler et ol 1984) and integral (Dixon et al 1976, Lagus et al 1996) cross
sections for excitation of the 23S helium metastable state. Of particular concern is the
fact that the CCC theory typically predicts a factor of two or so lower than the various
independent experiments.

Scattering from the helium 23S state is a little different to scattering from the
ground state or 2'S states. In addition to the total spin S = 1/2 (all that is necessary
for singlet states) the total spin now also takes on the additional value of S = 3/2. In
parallel to scattering from quasi-one-electron targets, two independent calculations are
now required, one for each of the total spin cases. The calculated observables have to
be appropriately spin averaged (12) when compared with spin-unresolved experimental
data. Note that the total spin S = 3/2 case requires significantly less computer time
becanse only triplet (s = 1) target states are included in the close-coupling calculations.
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In performing e-He(1'S,231S) calculations, we have a constant total energy F in all
channels. Denoting by €, the projectile energy relative to state n with enecrgy ¢, we
have

E=ceng+eps
= €ug + €y

= €935 + €935. (10)

Therefore, a single calculation for a total energy E leads to results with different incident
projectile energies corresponding to different incident target states.

5.1.  Excitation

The DCS for electron impact excitation of the helium 23S state (to 11 < 4 triplet states)
have been measured by Miiller-Fiedler et al (1984) at a number of fixed outgoing-electron
cenergies (15, 20 and 30 eV). In figure 14 we present experimental and theoretical results
at 20 eV outgoing electron energy (see Bray and Fursa (1995) for comparison at other
cnergies). The fixed outgoing electron energy implies different incident encrgies for each
excitation channel and formally requires a separate calculation. However the energy
difference between helium states excited from the 238 state is relatively small and the
cross scctions change slowly with energy. Therefore we make an insignificant, error by
comparing with a single CCC calculation at the incident energy of 21 eV relative to
the 23S state. This energy leads to the outgoing energy of approximately 20 eV for
cach of the excitation channels. It also corresponds to 40 eV incident energy relative
to the helium ground state, where there are extensive experimental data in very good
agreement with the CCC theory (Fursa and Bray 1995). Examining figure 14 we observe
that the experimental results of Miiller-Fiedler et al (1984) are systematically higher
than the CCC results for all transitions, but angular distributions are generally in good
qualitative agreement. The present 40 eV CCC(111) calculation uses the same mumber
of states in each target symmetry as the one used at 30 eV. Convergence is clearly
established by comparison with the CCC(75) results. Also presented are the FONBT
and DWA data of Cartwright and Csanak (1995). It is interesting to note that for 3*P
state excitation there is a structure in the small-angle differential cross section which is
present. in the CCC results as well as in the results of various distorted-wave methods
(Flannery and McCann 1975, Mathur et ol 1987, Cartwright and Csanak 1995, Verma
et al 1995), but not in the experiment. Clearly, the most disturbing aspect of the
comparison of theory and experiment is the discrepancy in magnitude. In passing, we
note that there are also measurements of the superelastic DCS of the 23S helium state
(Jacka et al 1995). Whereas these show excellent angular agreement with the CCC
theory they are not absolute and so do not help us to resolve the magnitude problemns.
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Extensive application of the CCC method to the calculation of e-He(2%!S) excitation
cross scctions has been reported by de Heer et al (1995). There the CCC method was
used to establish the preferred data set for use in fusion research. Comparisan with the
many available theories may be found there. In figure 15 the integrated cross sections for
excitation of the 335, 3P, 3%D, and 43D states from the 23S helium state are presented.
Comparison is made with the measurements of the apparent (direct plus cascades) cross
sections by Rall et al (1989) (for the 3%P state the direct cross section is presented) and
with the measurements of the direct cross sections by Lagus et al (1996). The results of
the CCC(69), CCC(75) and CCC(111) calculations are presented together with the FBA
caleulations (Kim and Inokuti 1969, Briggs and I(im 1971) and the 11l-state R-matrix
calculations (Berrington et al 1985).

At higher energies the CCC and FBA calculations converge together for all
optically-forbidden transitions. However the experimental data of Lagus et al (1996)
are systematically higher than the theoretical results. For the optically-allowed 3*P
excitation we observe a constant difference at high energies between the FBA and CCC
results. Here the 33P excitation cross section is proportional to the optical oscillator
strength for the 235-3%P transition. The difference between the CCC and FBA results
is, thercfore, due to the difference between the frozen-core model of helium structure
that has been used in the CCC calculations and the highly-accurate Hylleraas-type wave
functions (\Weiss 1967) employed in the FBA calculations.

As the incident electron energy decreases we can see the growing difference between
CCC(75) and CCC(69) results. The difference is smallest for 333 excitation, becomes
noticeable for the 3°P state, and is the largest for 33D and 43D states. This is consistent
with the effect of inclusion of F-states in the CCC(75) calculation which are absent in the
CCC(69) calculation. The CCC(69) results generally overestimate the cross sections and
the CCC(75) results should be considered as more accurate. The CCC(111) calculations
presented at two incident electron energies of 16.5 eV and 21 eV (obtained from the c-
He(1'S) calculations at 30 and 40 eV) indicate that the inclusion of the G-states is
negligible on the considered transitions.

The RAM(11) calculations have only n < 3 shell states included. It therefore
overestimates the cross section for n = 3 states due to the absence of the n = 4
and higher-lving S-, P-, D-, F-states and the continuum. The CCC and R-matrix
resnlts converge together at the lowest available common energy point just below n = 4
excitation thresholds (= 3.8 eV). Similarly, the FBA calculations must be scen as being
too high at the intermediate and low energies.
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5.2.  Ionisation

One aspect of particular interest to us is comparison with experiment for the case
of total ionisation. We have scen that the CCC methad yields good agreement with
experiment in the case e-He(1'S) ionisation. In figure 16 we present the results for
ionisation cross sections (total (TICS) and spin asymmetry (4;)) of the helium 23S
state. The difference between the 75- and 111-state calculations indicates the minimal
importance of G-states in this process. Although convergence in the TICS is not of the
same accuracy as in the case of jonisaticn of the ground state, the large discrepancy
with the experiment of Dixon et al (1976) is not due to convergence problems. At the
ligher encrgics the Born calculations of Ton-That et al (1977), Born-Ochkur calculations
of Peach {Dixon et al 1976), and the CCC calculations converge and lie considerably
below the experimental data.

The only theoretical calculation consistent with the experimental TICS results at
high energies is the Bethe-Born calculation of Briggs and Kim (1971). However, it and
the experiment do not veach the Born limits as calculated by Ton-That et al (1977)
and Peach (Dixon et al 1976) even at 1000 eV, though the CCC results appear to do
so closer to 100 eV. This, unfortunately, suggests that the “Born” limit, in the case of
total ionisation, depeuds on the method of calculation. In the cross section peak region
(10-20 eV) the Born-approximation calculations of Ton-That et al (1977) lie very close
to the experiment data, and the Born-Ochkur calculations of Peach (Dixon et al 1976)
lic substantially lower than experiment, indicating that the approximate inclusion of
exchange in the calculation reduces the Born approximation cross section significantly
in this region. Whereas at high energies auto- and double-ionisation process occur,
which may account for the different “Born” limits, this is not the case in the region of
10 to 20 eV. Here only a single electron ejection is possible, and the frozen-core structure
model should be sufficiently accurate.

Of particular significance to us is the remarkable agreement between the CCC theory
and the measurements of the ionisation spin asymmetries A; by Baum et al (1989). The
A; may be obtained from the doublet aim and quartet ai“) ionisation cross sections by
0‘('2) _ ‘Ti“)

Ui(?) + 2054) )

Ay (41)
The CCC(111) and CCC(75) calculations are very close indicating that convergence for
spin asymmetry is somewhat easier to achieve than for total ionisation cross section.
Note that the Born calculation of Ton-That et al (1977) would give exactly zero for
the A;. The ionisation asymmetry and cross section have a peak in the same energy
region. Therefore agreement of the Born calculations with the experimental ionisation
cross section in this region is likely to be accidental.



21

5.8.  Total cross sections

Finally, we compare in figure 17 our results with measurements of the total cross sections
for scattering on the 2'7S states by Wilson and Williams (1976) and with the 5-state
R-matrix calculations (Fon, Berrington, Burke and Kingston 1981). Experimental data
are absolute for the 2!S state and relative for the 23S state, which we have normalized
to the CCC data at 7.94 eV. These are the least sensitive of the cross sections and are
dominated by the elastic and optically-allowed transitions. Convergence is particular
casy to achieve as can be seen from the the comparison of the 75-state CCC results with
the 5-state R-matrix calculations. Good agreement with experiment exists for incident
electron energies above approximately 1.5 eV. Below this energy the CCC resulis are
substantially lower than experiment. This behavior of the CCC results is in agreement
with the results of the 5-state R-matrix calculations, which are expected to be reliable
for energies below the excitation thresholds of the n = 3 states.

6. Conclusions

We have presented a review of recent CCC calculations applied to the e-He system.
Generally we find satisfactory agreement between theory and experiment for discrete
transitions involving the ground state. Good agreement with experiment is also found
for the case of differential ionisation with asymmetric energy sharing by the outgoing
clectrons. However, no such good agreement with experiment is found when scattering
from the metastable 23S helium state is considered, even though these results are
generated simultaneously with those for the ground state. Of particular concern is that
the CCC results are systematically lower than a number of independent measurements.
We suggest that further theoretical and experimental investigation of electron scattering
on the metastable states of helium is warranted.

A very intriguing aspect of the CCC calculations that we have only been able to
touch upon lightly is the application to the calculation of differential ionisation in the
equal-cnergy-sharing kinematical region. While obtaining excellent angular profiles the
theory underestimates the magnitudes. Investigation of the reasons for this is currently
one of our highest priorities.

The CCC method has now been extended to general quasi-two-electron atoms and
ions. Whercas for helium the frozen-core approximation has sufficed for our purposes
this not so for other such targets. Furthermore, application to double ionisation and
ionisation plus excitation by electron impact requires relaxation of the frozen-core
approximation. We look forward to applying the CCC method to such processes.
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Figure 1. Elastic differential cross sections for e-He scattering at a range of projectile
energies. The measurements are due to Brunger et al (1992) and Register et al (1980).
The CCC calculations are due to Fursa and Bray (1995), except at 30 eV where they
are due to the present 111-state calculation. The R-matrix with pseudostates (RMPS)
calculations at 30 and 50 eV are due to Bartschat et al (1996a). The variational
calculations of Nesbet (1979) at 5 and 18 eV are denoted by N79, and the 5-state
R-matrix calculations of Fon, Berrington and Hibbert (1981) are denoted by RM(5).
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Figure 2. The 2'3S and 2'*P differential cross sections for e-He scattering at
30 eV. The measurements are due to Brunger et al {1990), Trajmar et al (1992),
and Réder et al (1996a) (normalized to CCC). The present 111-state CCC calculation
is described in the text. The recent R-matrix with pseudostates (RMPS) results are
due to Bartschat et al (1996a). The calculations denoted by RM(29) are due to Fon
et al (1995), and those denoted by FOMBT are due to Cartwright et al (1992).
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Figure 3. The 2'P EICP’s for ¢-He scattering at 30 eV. The present CCC calculation
is described in the text. The RMPS results are due to Bartschat et el (1996a). The
calculations denoted by RM(29) are due to Fon et al (1995}, and those denoted by
FOMBT are due to Cartwright et al (1992). The measurements are due to McAdams
et al (1980), Steph and Golden (1983), and van den Heuvell et ol (1982).
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Figure 4. The 3':3S and 3! 3P excitation differential cross sections for e-He scattering
at 30 eV. The present CCC calculation is described in the text. The calculations
denoted by RM(29) are due to Fon et al (1995), and those denoted by FOMBT are
due to Cartwright et ¢l (1992). The measurements due to Chutjian and Thomas (1975)
and Trajmar et al (1992) are of the summed 3'P +3%!D cross sections, and have had
the CCC results for the 33! D states subtracted. The data of Khakoo et al (1995) is
solely for the 3'P excitation, obtained with the aid of the electron-photon coincidence
technique.
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Figure 6. The 33P EICPs for e-He scattering at 30 eV. The present CCC calculation
is described in the text. The calculations denoted by RM(19) are due to Fon et al
(1991), RM(29) are due to Fon et al (1995). The measurements are due to Donnelly
et al (1988).

Figure 5. The 3!'P EICPs for e-He scattering at 30 eV. The present CCC calculation
is described in the text. The calculations denoted by RM(19) and RM(29) are due to
Fon et al (1991) and Fon et al (1995), respectively. The calculations denoted by DW
are due to Beijers et al (1987). The mecasurements are due to Neill and Crowe (1988)

and Neill et al (1989).
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Figure 7. The 3'D excitation differential cross sections for e-He scattering at 30 eV.
The present CCC(111) calculation is described in the text. The CCC(75) calculation
(Fursa and Bray 1995) is given to show convergence in the CCC approach by contrast
to the dependence of the cross sections upon the choice of distortion in the DW
calculations of Bartschat and Madison (1988).
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Figure 8. The 3'D EICPs for 30 eV e-He scattering. The present 111-state convergent
close-coupling calculation is denoted by CCC(111). The CCC(75) calculation is due
to (Fursa and Bray 1995). The calculations denoted by DWBA-EP and DWBA-GP
are due to Beijers et al (1987). The measurements are due to Donnelly et al (1994).
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Figure 10. Total ionisation cross sections of the 1'S state of helium by electron
| ] impact. The convergent close-coupling calculations are denoted by CCC(69). The
0 L L e Born and distorted wave with exchange (DWE) calculations are due to McGuire (1971)
0 30 60 90 120 150 180 © 30 60 90 120 150 180 ¢ 30 60 90 120 150 180 and Younger (1981}, respectively. The measurements are due to Montague et al (1984).

scattering angle 6 (deg)

Figure 9. The 3°D EICPs and observed Stokes parameters for 30 eV e-He scattering.
The theory is same as in figure 8. The preliminary measurements have been reported
by Bray et al (1995).
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Figure 11. Electron-impact ionisation of helium triple differential cross sections at
600 ¢V. The CCC(51) calculation is due to Bray and Fursa (19964). The mcasurements
are due to Jung et al (1985).
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Figure 13. The e-He ionisation coplanar triple differential cross sections for the case
of 40 eV incident energy with the slow Eg = 4 eV electron detected at g and the fast
E. = 11.4 eV electron detected at §,4. The absolute measurements and the 99-state
CCC calculation are from Réder et af (19965).
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Figure 14. Diflerential cross sections for excitation of the helium 2*S state.
The CCC(75) (Bray and Fursa 1995) and present CCC(111) calculations are for
21 eV incident electrons, leading to outgoing energies of approximately 20 e\, The
measurements at outgoing energy of 20 ¢V are due to Miiller-Fiedler et al (1984). The
DWA and the FOMBT results are due to Cartwright and Csanak (1995).
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Figure 17. Total cross sections for electron scattering from the 23S and 2'S states of
helinm. The convergent close-coupling calculations are denoted by CCC(75) (Bray and
lursa 1995). The calculations denoted by RM(5) are due to Fon, Barrington, Burke
and Kingston (1981). The measurements are due to Wilson and Williams (1976). For
2'S state measurements are absolute, while for 23§ state they are relative and are
normalized to the CCC data (1.158 x 107" cm?) at 7.94 eV.



