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1. Introduction

Electron-helium scattering is the second most simplest electron-atom scattering system 
only being surpassed by the electron-hydrogen problem. The former has substantial 
advant ages from the experimental point of view and has been used as a standard against 
which other scattering systems may be compared, normalised, calibrated, etc. For 
theorists the e-11 system is preferable primarily because a three-body system is easier 
to work with than a four-body system. For these reasons over the years there has been 
a dispmportional concentration of theoretical and experimental activity: a great deal 
of e-H theory with relatively little experimental support and vice versa for the e-He 
system.

It turned out that the theorist’s fear, at least our own, of the e-He problem was 
somewhat misplaced. An adequate model of any helium atom discrete state is provided 
by a two-electron antisymmetric wave-function where one of the electrons is represented 
by the He+ Is orbital. This is known as the frozen-core model and suffices so long as we 
are only interested in one-electron excitation processes. Fortunately, these happen to be 
by far the most dominant. With this approximation for the helium structure the e-He 
system looks very similar to and not too much more difficult to calculate than the e-H 
system. The primary difficulty of calculation is the same for both systems, namely the 
treatment of the target continuum. It should be said that the fact that the frozen-core 
model yielded a good description of the target structure was known in the late sixties, 
see Cohen and McEachran (1967) for example. Just how good this model is for the 
purpose of electron scattering calculations has only become clear very recently (Fursa 
and Brav 1995, Bartsehat, el. at 1996a).

The primary purpose of this review is to demonstrate how successfully the 
convergent close-coupling (CCC) method, first introduced for the e-H problem (Bray and 
Stelbovies 1992), has been extended (Fursa and Bray 1995) to the calculation of e-He 
scattering. Even though there are many examples in the literature of excellent agreement 
between the CCC theory and experiment, we must caution the reader that there are 
also outstanding systematic discrepancies with a number of independent measurements 
for the ease of excitation from the metastable states. While it is unclear why t he CCC 
theory would yield correct results for excitation of the ground state but not for the 
simultaneously obtained excitation of the metastable states, it is most disturbing to 
find the CCC theory yielding substantially lower results than experiments for electron 
scattering from the 23S helium state.

This work is aimed at the reader who is already familiar with the general concepts in 
electron-atom scattering, but is not particularly interested in immediate technical detail 
In section 2 we give the outline of the CCC theory concentrating on how the close­
coupling formalism is used to yield simultaneously discrete excitation and ionisation



3

information, and how it relates to other electron-atom scattering theories. Section 3 
gives relations used to obtain, from the CCC scattering amplitudes, the data presented 
in the figures. This is followed by section *1 where we discuss electron-impact excitation 
(to n < 3 levels) and ionisation of the helium ground state. In section 5 we consider 
electron impact excitation (to n < 4 levels) and ionisation of the helium metastable 

'S states. Finally, the conclusions and future directions are given in section 6.

2. Theory

Let us begin with a general approach to electron- helium scattering. We do not wish to 
repeat here most of the technical detail given earlier (Fursa and Bray 1995). Instead, we 
would like to just give an overview that may be used to make clear the major differences 
between various theoretical approaches, and show how the CCC theory simultaneously 
yields results for discrete and ionisation processes.

Suppose we obtain the target wave functions 4>n by diagonalising the target 
Hamiltonian Ht in some explicitly antisymmetric two-electron basis of size N with 
square-intcgrable one-electron orbitals, i.e.

(i)

Thus obtained (two-electron) pseudostates V„ , n= 1,.... N have a formal dependence 
on the basis size N, but if the basis is chosen appropriately we can assume that 
(<*« 10n) ~ 1, e" ~ £n for the physical states (//t|V„) = cn|</>„)) of interest. In addition, 
the remaining of the N states form a representation of the higher discrete target states 
and the target continuum. These may be combined together to define the projection 
operator

7" = Z (2)
n= 1

which will be used to form the close-coupling equations. We desire that the basis be 
constructed in such a way that liuiyv-,00 IN = /, the true target-space identity operator.

To obtain e-Hc scattering information we would like to know the T matrix for the 
1 —> / I ransit ion

(4./|T|<I>l) = (4./|//-£|*,‘+,>. (3)

Here 41/ and are the (three-electron) final and initial channel functions, 'I'*11 is 
the total wave outgoing spherical wave boundary conditions, H and E arc the total 
Hamiltonian (acting to the left) and energy, respectively. For computational convenience 
we write

i'i'|+') = (i-fwM, (■i)
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where the use of the space and spin exchange operator Pra allows us to work with a 
non-symmetrised function Vi, though at the cost of non-uniqueness (Stelbovics 1990). 
The jV-stat.e approximation to the true T matrix (3) we define by

(*/|T"|$i) = (*//"!(* - E)( 1 - Pre)|/"v!+)>. (5)

The introduction of the projection operators IN allows us to unambiguously define the 
channel functions for both discrete excitation (this has never been a problem) and also 
ionisation. They ensure that asymptotically only the projectile-space electron is allowed 
to exit the scattering system. Hence, the asymptotic (channel) Hamiltonian K we write 
as

I< = K0 + //„ (6)

where K0 is the one-electron projectile-space kinetic energy operator, and the channel 
functions, eigenfunctions of K, as

I*™) = |V»k„). (7)

We use the discrete notation for the target eigenstates |V„) to represent both the discrete 
and continuum target states. In either case, if the final target state energy tj is the 
same as for say n = /, then (5) becomes

($,|T"|$i) = (V/IV/Xk/V/iy - (# - E)Pn|/"vi+)) (8)

= (9)
where V = H — K. The T-matrix elements Tyf arise upon solution of the close-coupling 
equations. These are well-defined once the target-space expansion states have been 
obtained in (1) and the total energy E specified. See Fursa and Bray (1995) and Bray 
and Fursa (1996a) for detailed discussion.

From (9) it is clear that after the Tfi have been obtained, the scattering amplitudes 
for discrete transitions ((V/|V/) ~ 1) and ionisation may be readily calculated. 
Convergence is checked by simply increasing N. In the case of ionisation, obtaining 
convergence in (9) is particularly noteworthy as limjv_IDO(V/IV/) = 00.

Equation (8) may be used to outline the difference between the CCC and other 
approaches to the calculation of electron-atom scattering. For example, standard close­
coupling (CC) methods use only the discrete states in the definition of IN, thereby 
ignoring the target continuum. Pseudostate methods are very similar to the CCC 
method, but are somewhat less systematic in the definition of IN and have typically 
been applied with much smaller N. Coupled-channel optical (CCO) methods use just a 
few discrete states (P-space) in the definition of IN, but the effect of the remaining states 
(Q-space) is approximated by adding to V a complex nonlocal polarization potential 
V(K Distorted-wave methods approximate |/,vV,'+*) By |</>.k*+*), where k^+* is a distorted
wave.
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Generally, for e-He excitation, the /Z-matrix implementation of the CC method as 
used recently by Fon et al (1995) works well at energies below the ionisation threshold, 
though not for elastic scattering. The 7Z-matrix with psendostates (RMPS) method 
(Bartscliat. cl al 199Go), however, treats the target continuum via a .s<|uarc-intcgrablc 
approach and has yielded results comparable to those of the CCC method. The CCO 
method of McCarthy et al (1991) makes approximations in the treatment of the target 
continuum and exchange matrix elements. Unlike CC methods, it does yield good elastic 
cross sections (Granger et al 1992), but has difficulties with exchange transitions. The 
distorted-wave methods, being high-energy approximations, are generally not reliable 
below approximately 100 cV. They exhibit a strong sensitivity to the choice of the 
distorting potentials (Madison 1979) and perform poorly for exchange transitions. For 
direct transit ions, the first-order many-body theory (FOMBT) of Cartwright et al (1992) 
and the distorted-wave approximations (DWA) of Bartscliat and Madison (1988) are 
often quite accurate.

In passing, we note that the variational calculations of low-energy elastic scattering 
bv Nesbet (1979) have withstood the test of time and have provided a very useful 
standard against which more-complicated theories may be tested.

3. Physical observables

In this section we discuss how various cross sections and angular correlation parameters 
measured in experiment may be calculated using the T-matrix elements arising from the 
CCC calculations. This section is presented for completeness and for ease of reference.

3.1. Cross sections

The CCC calculations yield, for discrete transition i —t f, reduced T-matrix elements, 
which depend on the total spin S, parity II and partial wave of total orbital angular 
momentum I. These are related to the scattering amplitudes in the collision frame, 
where the quantization axis is along the incident projectile direction, by

/m/m,(9>T) =
ki rn f m / m,

x Cl0 mjmj rpJStlLit; J 1 lilfLiLfYmi-mj,(0. v), (10)

where. I and m, are the atom orbital angular momentum and its projection, while k and 
L are and projectile linear and orbital angular momenta. The spherical polar angles 
of the detected electron arc 0 and <p. The T-matrix elements, and thus the scattering 
amplitudes, depend on the basis size N of the calculation. For clarity of notation we do 
not include the N index, but assume that the calculations have been performed with a 
sufficient Iv-large N so that convergence to a required accuracy has been attained.

G

All cxpcrimcntally-obscrvablc quantities may be related to the scattering 
amplitudes. If the initial state of the helium atom is a singlet state then only spin 
channel S — 1/2 (doublet channel) is possible. The differential cross section (DCS) 
is then given by averaging over magnetic sublevels of the initial state orbital angular 
momentum I,, via factor 1 /\/2!,■ + I in (10), and summation over magnetic sublevels of 
the final state orbital angular momentum

da
dil = E l/-

W/,m,
(ii)

If the initial state of the helium atom is a triplet state then an additional independent 
spin channel S = 3/2 (quartet channel) is possible. The spin-resolved differential cross 
section is given by (11). The spin-averaged differential cross section is obtained by 
averaging over magnetic sublevels of the helium atom initial spin s, — 1 and two possible 
spin projections of the incident electron, as well as summation over the total spin S and 
its projections

^-2(2,!+!)^+  ̂ +4

The ratio of the quartet to doublet differential cross sections 

da'/' da'/'
'' ~ dQ 'dQ

do'/'
dQ

(12)

(13)

(H)

is used to define an exchange asymmetry via

which has the advantage of always being finite. For pure doublet scattering Aex = 1 
(r = ()) while for pure quartet scattering Aex = —1/2 (r — oo).

The integrated cross section o may be found by integration of the corresponding 
differential cross section over the scattering angles or by summing the partial cross 
sections. The total cross section <7t from initial state i may be obtained by summing 
the individual integrated cross sections for each state (/ = 1,... ,N) used in the close­
coupling expansion, or utilizing the unitarity of the close-coupling formalism by using 
the optical theorem. The total ionisation cross section (TICS) is defined by

ttj — Gy Oi,|„ (15)

where a„i, is the total non-breakup (elastic plus bound state excitations) cross section 
obtained by summing the integrated cross sections for negative-energy ((/') states.

3.2. Electron-impact coherence parameters (ElCPs)

Measurements of differential cross sections allow for testing of only the magnitudes of 
the scattering amplitudes summed over the magnetic sublevels. Much more information
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about the scattering process (namely, the relative phases between the scattering 
amplitudes) can be obtained if the scattered electrons are measured in coincidence with 
dipole radiation arising from atoms excited by the electron impact. Such measurements 
determine parameters related to the parameterization of the dipole photon polarization 
density matrix (Blum 1981), and are known as the Stokes parameters PilP2,P3.

Parameters Px and P2 are the degrees of linear polarization and P3 is the degree 
of circular polarization of the radiation propagating perpendicularly to the scattering 
plane. These three Stokes parameters, together with the DCS, are sufficient to 
completely describe excitation of helium P-states from the ground state. To characterize 
excitation of D-states an additional measurement of the degree of linear polarization 
of the radiation propagating in the scattering plane may be performed. This is the 
Stokes parameter P4. However, this still leaves the characterization of D-state excitation 
incomplete.

The Stokes parameters Pt, P2, P3, P, may be written in terms of the state multipoles 
Tt« (Blum 1981, Andersen et al 1988)

= q2(t22 - v/fr20)/2

Too — 7/ (T22 + T2 0/\/6)

T
atTn

Too — f(T-n + T2 0/\/6)
(17)

Q|tTu
Too — (T22 + T2 o/\/6)

(18)

“2(T22 T v/|T20)/2 

Too + ^(T22 - To/x/6)

where the coefficients nk are

nk = 3^2/, + l(-l)'1+,J+t+1 | * ^ hk j. (20)

Here l\ — If and /2 = // — 1 for dipole photon deexcitation. For scattering to a P-state, 
/, = If = 1. i2 = 0, and in this case Qi = a2 = VS. For scattering to a D-state 
l, = If = 2. l2 = 1, and in this case a, = 3/2, or2 = y/21/20. The spin-averaged state 
multipoles Tkq are

71, = E 7"^"."'. (21)
m,m'

where the spin-averaged density matrix is

/'m,n' = (p,'L+2rp^,,)/(l+2r). (22)
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The above spin-resolved density matrix of the final state, normalized to unit trace, 
is given by (Blum 1981)

Pinm'
•S

— V' J,nm‘

- 2L,
"»• dn

fS fs>
- J mm, J tn'tiij (23)

The state multipoles are normalized to have Too = 1 /yj2lf + 1. The spin-resolved state 
multipoles T£q are obtained by using the spin-resolved density matrix in (21). Spin- 
resolved counterparts to the Stokes parameters may be obtained by restoring the total 
spin S index to the state multipoles Tkq in (16-19). It is also clear that Eqs. (16-19) 
can be inverted and the state multipoles Tkq can be expressed via Stokes parameters.

A more physical description of the atom charge cloud is provided by the alignment, 
orientation, and coherence parameters (Andersen et al 1988). The linear polarization of 
the atomic charge cloud is

Pt = (Pi + P|)1/2 (24)

the alignment angle relative to the z axis of the collision frame is

7 = arg(Pi + tP2)/2,

the degree of polarization (total coherence) is 

p = (Pl + P2 + P2)1/2,

(25)

(26)

and the angular momentum transferred to the atom perpendicular to the scattering 
plane is

^ k ,Tn,
V 3 <*i (27)

where It is proportional to the detected radiation intensity in the direction perpendicular 
to the scattering plane.

- 3&^" " = -4_(P^1XP,_1)- (28)

For S to P excitation (Z4 = 0, // = 1) (16-18) can be simplified. The symmetry 
property of the scattering amplitudes }?q = ~/£10 results in the additional relation for 
the state multipoles (Hertel and Stoll 1977)

To/v/§ + T22 = —1/3, (29)

and the Stokes parameters are then given by

T = 1 + 47 A,
P-t = 2T21,
P3 = — 2t7) 1 = —L±-

(30)
(31)
(32)
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In this case measurement of the three Stokes parameters and the DCS allows the 
state multipoles Tj^, and consequently the scattering amplitudes /,„0, to be determined 
unambiguously (up to an overall phase in the case of scattering from 3S states). There is 
complete coherence (Ps = 1) in both the doublet and quartet channels. However, when 
scattering from a 3S state, the spin-averaged P is not equal to unity and its deviation 
from unity is a measure of exchange scattering, though not a very sensitive one.

The study of S- to D-statc excitation usually involves the definition of one more 
parameter. If is convenient to use the natural-frame density-matrix element (Andersen 
et al 1988)

„ l \/5I ,T20

It can be expressed in terms of the Stokes parameters as,

2(1 +fl)
4 — (l — Pi)(l — Pi)

(33)

(34)

The complete description of D-state excitation requires state multipoles Tkq up to rank 
k = 4. However, measurements of the Stokes parameters Pl,...,P4 in the standard 
electron-photon coincidence experiment can yield state multipoles up to rank k = 2 
only. The state multipoles of rank k = 3 and 4 can be obtained from two-photon-electron 
coincidence measurements, where in addition to the D —> P photon being detected, the 
P -4 S photon is measured in coincidence. See the work of Mikosza et al (1993) and 
Mikosza et al (1996) for details.

A major complication arises for the analysis of the 33P and 33D state excitation. 
In these cases the spin-orbit interaction leads to a depolarisation of the radiation 
emitted and hence measured polarisations cannot be simply related to any description 
of the excited state produced in the collision. If the fine-structure splitting is large 
compared with the natural line width, which is true for the He 33P and 33D states, the 
depolarisation can be taken into account by introducing the perturbation coefficients 
Gk (see Blum (1981) for detailed discussion) and replacing the coefficient ak in (16-19) 
by nkGk.

We will denote the observed Stokes parameters by P(,..., Pj while keeping the 
tmprimed notation for the reduced Stokes parameters, those that would be measured if 
there were no depolarisation due to the spin-orbit interaction (Gk = 1). The observed 
Stokes parameters can be readily related to the reduced ones by (Crowe et al 1994),

Pi^P'i I'
' |(G: !) + /(’

i = 1,2 (35)

Ps = (G:/G,)fS? r,
|(G2 -1) + /(’

(36)
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P r' 2 - W ~ pi)
" 4|(2G2 + i)-/;(i-p;) (37)

where

/: =
2(1 + P')

4 - (1 - P()(l - Pi)
— G2I, - ^(G2 - I). (38)

From the above relations it is clear that the determination of the reduced Stokes 
parameters generally requires the in-plane measurement of the parameter P(.

For the. 33P state Gj = 1/2 and G2 = 5/18 and, due to (29), the relation between 
the observed Pf, P2, P3 and reduced P,, P2, P3 Stokes parameters simplifies to

P[ = Cl Pi, P2 = c,P2, P3 = c2P3, (30)

where c, = 15/41 and c2 = 27/41 arc the constant depolarisation coefficients. For the 
33D state G| = 43/54 and G2 — 71/150. However, the relation between the observed 
and the reduced Stokes parameters cannot be simplified any further and the constant 
depolarisation coefficients cannot be formulated.

Crowe et al (1994) obtained the relations (35-37) when analyzing helium 33D angular 
correlations. In fact they are valid for arbitrary orbital angular momentum of the target 
final and initial states. If more than one total spins are involved then the spin index needs 
to be restored and appropriate averaging performed. For targets with nonzero nuclear 
spin (eg. sodium) the hyperfine structure corrections should be taken into account when 
calculating the coefficients Gk (see Blum (1981) and Andersen et al (1988) for details).

4. Electron scattering from the helium ground state

Traditionally, the energy range of interest in atomic physics has been divided into the 
low (below ionisation threshold), intermediate (between one and ten times the ionisation 
threshold) and high (more than ten times the ionisation threshold) regions. This was 
done as some theories worked well in either extreme of the energy range, and none were 
reliable at intermediate energies. One of the primary motivations in the development 
of the CCC method was to devise a theory that is equally valid irrespective of the 
incident energy. A demonstration of this for e-Ho(l’S) scattering has been given by 
Fursa and Bray (1995), where the energy considered ranged from 1.5 to 500 eV. Here we 
primarily wish to concentrate on a single energy of 30 eV. This is in the most difficult 
intermediate energy range, being only 5.4 eV above the ionisation threshold. Techniques 
that treat the target continuum via a square-intcgrablc approach, such as our own, have 
to be able to demonstrate that the results are free from psendoresonauce effects. In 
addition, at this energy a large set of experimental data and calculations are available 
for comparison.
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A key feature of the CCC formalism is that convergence to some accuracy in the 
parameter of interest needs to be demonstrated as a function of the number of states 
used. The CCC(69) and CCC(75) calculations (Fursa and Bray 1995) generally showed 
good agreement with each other, but differed visibly on some occasions. The difference 
between them is that the former had more S-, P- and D-states than the latter, which in 
addition had F-states. Here, where appropriate, we shall present results from 111-state 
calculations which have more S-, P- and D-states than the CCC(69), more F-states than 
the CCC(75) and also have G-states. Specifically, the CCC(lll) results presented below 
were obtained with 14 ’S states, 13 3S and 3,1 P states, 12 3'D states, 10 3,IF states and 
7 MG states. An implementation of such a calculation using the CCC method required 
in excess of 1G core memory.

We should note that in the relatively-comprehensive earlier work (Fursa and 
Bray 1995) there was no discussion of resonances. The CCC method is able to calculate 
these, and has done so in the case of e-H (Bray et al 1996) and e-He+ (Bray et al 1993) 
scattering, however it is not best suited for such calculations. The //-matrix (Berrington 
and Kingston 1987, Sawey et al 1990), and preferably RMPS (Bartschat et al 19961) 
or ./-matrix methods (Konovalov and McCarthy 1995) are more-appropriate choices for 
investigation of threshold and resonance behaviour since they typically yield results on 
a fine energy mesh rather than at a single energy as is the case in the CCC method.

4-J. Elastic scattering

Elastic e-He scattering is well understood experimentally and theoretically and has been 
used extensively for calibration purposes in various electron-scattering applications. We 
would like to draw the attention of the reader to the comprehensive data set of absolute 
differential and integrated elastic cross sections given by Register et al (1980). The 
reported data at an impact energy range of 5 to 200 eV are in good agreement with the 
more-recent study by Brungcr et al (1992) (1.5 - 50 eV).

The major difficulty in calculating e-He elastic cross sections is to fully account 
for the atomic-static dipole polarisability, a significant part of which conies from the 
continuum The pseudostate technique has been successfully used in the /{-matrix 
method by O’Malley et al (1979) and Foil, Berrington and Ilibbert, (1981), and 
variational formalism by Nesbet (1979). Perturbative methods account for the dipole 
polarisabilitv by going to second order, subject to approximations. For example, the 
closure approximation was used in the second-order method of Winters e< al (1974), 
in the cikonal-Born method of Byron and Joachain (1977), and in the distorted-wave 
second Born approximation of Dewangan and Walters (1977). A pseudostate technique 
has been used in the second-order many-body theory method hy Scott, and Taylor (1979). 
The polarised-orhital method was also applied to calculate elastic scattering by LaBahn
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and Callaway (1970).
Generally the agreement between above theory and experiment is very good. 

However, most of these methods have been limited to the calculation of elastic scattering 
only. More-sophisticated general electron-atom scattering methods (CCO, CCC, RMPS) 
have been developed later and applied to the calculation of elastic scattering. These 
methods have been able to improve agreement with experiment in the few places where 
it was not perfect.

In figure 1 we present the CCC calculations (Fursa and Bray 1995) of the e-He 
elastic DCS at low and intermediate energies. The results at 30 eV have been replaced 
by those of the present 111-state calculation. The agreement with the measurements 
of Brungcr et al (1992) and Register et al (1980) is quantitative at all incident electron 
energies. Where available, the results of the variational calculations of Nesbet (1979) (5 
and 18 eV), //-matrix calculations of Fon, Berrington and Hibbert (1981) and the RMPS 
calculations (Bartschat et al 1996a) (30 and 50 eV) are presented for comparison. The 
variational, //-matrix and RMPS calculations have a very accurate ground state with 
'P pscudostat.es to account for the helium dipole polarisability. On the other hand, the 
CCC calculations differ in that the simpler frozen-core model of the helium atom yields 
a less accurate ground state. However, the agreement between the results of all four 
methods is very good, specially below the first excitation threshold. This indicates that 
the frozen-core model is sufficiently accurate for the description of elastic scattering. 
Since the largest error in the description of the helium bound states using the frozen- 
core model occurs in the ground state, accurate results for elastic scattering are a good 
indication of the reliability of the model for inelastic scattering (Fursa and Bray 1995).

4-2. Excitation of n =2 states

We now turn to the discussion of excitation cross sections of the 21,3S and 2I,3P states and 
EIGPs of the 2‘ P state. Although a great body of measurements are available over a wide 
range of incident electron energies, the agreement between them is not always perfect. 
Similarly, calculations including DWBA (Bartschat and Madison 1988), FOMBT 
(Csanak and Cartwright 1988), //-matrix (Fon et al 1979, Freitas et al 1984, Berrington 
and Kingston 1987, Sawey et al 1990), and CCO (McCarthy et al 1991, Brungcr 
et al 1992) methods often disagree with each other and the measurements. However, 
application of the CCC theory (Fursa and Bray 1995), new measurements (Roder 
et al 1996a), and most recent RMPS (Bartschat et al 1996a) calculations has changed 
the situation substantially for the better.

The current status of theory and experiment is summarised in figure 2, where 
the differential cross sections are presented at 30 eV incident electron energy. For 
optically-forbidden transitions (2l,3S, 23P) the results of the theoretical methods are
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often very different. At this low energy the FOMBT method is quite unreliable. The 
29-state 77-matrix (RM(29)) calculation is in better agreement with experiment than 
the FOMBT results. However, only the CCC (111 states) and RMPS results arc in 
good agreement with each other and experiment. For the 23P excitation there arc 
some shape differences between the CCC and RMPS results as well as between the 
experimental data of Brunger et al (1990) and Trajtnar et al (1992). However, the 
recent relative measurements of Roder et al (1996a) are in very good agreement with 
the CCC results when suitably normalized. The small statistical uncertainty (<5 %) 
of the latter measurements suggests that the CCC results may be the most accurate. 
As in the case of elastic scattering, the application of the RMPS theory confirms the 
conclusion that treating the target continuum is more important than improving the 
frozen-core structure model.

Experimental and theoretical results for the optically-allowed 2'P excitation 
differential cross sections show little variation in shape though the magnitude does vary. 
A stronger test of the scattering theories is provided by the EICPs determined from 
the electron-photon coincidence measurements, see section 3.2. In figure 3 we present 
the 2‘P EICPs at 30 eV. The agreement between the CCC results and experiments is 
good. This is also the case for the 77-matrix calculations with (RMPS) and without 
(RM(29)) the treatment of the target continuum. This indicates that for this excitation 
the exclusion of the target continuum does not result in a substantial error for the EICPs. 
However, the results of the FOMBT are very different and disagree with experiment and 
the other calculations.

f.3. Excitation of n=3 states

Differential cross sections for the 3I,3S and 3I,3P states at 30 eV are presented in figure 4. 
Here the situation is very similar to the case of n = 2 excitation. The CCC results are 
in good agreement with experiment for all transitions. The FOMBT is inadequate 
for the optically-forbidden transitions, but is in good agreement with experiment for 
the optically-allowed 3'P excitation. The RM(29) calculation treats only the target 
discrete subspare, and exhibits substantial problems. Even for the optically-allowed 
3'P excitation the 77-matrix results are systematically too high. This suggests that the 
treatment of higher discrete excited and continuum states becomes progressively more 
important with increasing excitation energy of the observed state. We look forward to 
the extension of the RMPS method to the n — 3 states.

Excitations of the 3'P and 31,3D states are very difficult to resolve due to their 
very small energy separation. Recently Khakoo et al (1995) have performed the first 
measurements of the 3'P DCS that are resolved from the 31,3D levels using the electron- 
photon coincidence technique. The new data are in very good shape agreement with the
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CCC theory, but are somewhat systematically higher. For this reason also presented in 
figure 4 arc the measurements of Chutjian and Thomas (1975) and TVajmar et al (1992) 
of the summed DCS for the 3'P and 3'3D states with the CCC theoretical DCS for 
3'V'D states (see figure 7) subtracted. Theory indicates that excitation of the 3'P state 
is dominant for scattering angles ff < CO”, and so somewhat better agreement with the 
earlier measurements is encouraging.

The 3'P angular correlations are presented in figure 5. The EICPs Lx and 7 and 
Stokes parameters P, and P2 reported by Neill and Crowe (1988) and Neill et al (1989) 
are compared with results of the CCC, 19- and 29-state 77-matrix, and DW calculat ions. 
The DW results are in poor agreement with the experiment. Similar to the FOMBT 
the DW method is a high-energy approximation and is not accurate at such a low 
energy. The 77-matrix methods have achieved good convergence, but to the wrong 
result in the case 7 at intermediate electron scattering angles. The alignment angle 7 is 
a derived parameter related to the observed Stokes parameters (7 = ATAN2(P2, P,)/2). 
It is more instructive to compare with the originally-measured P, and P2 parameters. 
Whereas agreement with the P2 data is good there are some problems in the case of 7). 
Some variation between the two reported measurements indicates the difficulty of the 
experiment.

In figure 6 we present the EICPs for the 33P state at 30 eV. The measured radiation 
in this case is depolarised (see (39) for the relation between the measured and the 
reduced Stokes parameters). Both the CCC and 77-matrix results are similar and show 
satisfactory agreement with experiment.

We now turn to the discussion of the 3'3D states. No DCS measurements have 
been reported due to the above-mentioned problem of resolving D-states from the 3'P 
state. I11 figure 7 we compare the CCC(lll) results with the CCC(75) and with the DW 
calculations of Bartschat and Madison (1988). The two CCC calculations show good 
convergence. The two DW results are very different from each other, indicating the 
large dependence on the choice of the distorting potential, with neither choice agreeing 
with the CCC results.

Extensive electron-photon coincidence measurements are available for electron 
impact excitation of the helium 3'3D states. In figure 8 we present the EICPs and 
Stokes parameters for the 3'D state at 30 eV. We observe generally good convergence 
of the CCC results and good agreement with experiment of Donnelly et al (1994). The 
DW results of Bartschat and Madison (1988) are in poor agreement with experiment 
and the CCC results. For Stokes parameters P, and P2 the experiment and CCC results 
arc in relatively good agreement. However, this is not the case for the alignment angle 7. 
The apparent disagreement between the CCC results and experiment here is an artifact 
of the definition (25) of the alignment angle 7.

The 33D state EICPs and measured Stokes parameters (P/-P4 are presented in
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figure 9. The latter parameters are affected by fine structure depolarisation (see Eq. (35- 
37)). Examining the CCC(lll) and CCC(75) calculations we observe good convergence 
and agreement with experiment. This indicates that the effect of the O-states, included 
in the CCC(lll) calculation, is small and that there is no need to include target states 
with higher angular momentum.

4-4- Ionisation

Historically, the close-coupling formalism was designed and used to calculate elastic 
and bound-state-excitation processes. The introduction of pseudostates into the close­
coupling method allows for an estimate of the total ionisation cross section (TICS). The 
TICS is then obtained as the difference between the total and total nonbreakup cross 
sections (15) or, alternatively, by summing integrated cross sections for positive energy 
pseudostates.

One of the first examples of the success of the CCC theory was its application to 
the calculation of TICS in the case of e-H scattering (Bray and Stelbovics 1993), where 
remarkable agreement was found with experiment. This has since been demonstrated for 
the e-Ile system (Fursa and Bray 1995), given in figure 10. We compare the results of the 
C’CC(GO) calculations with experiment of Montague ct al (1984) and Born calculation 
of McGuire (1971) and distorted-wave-with-exchange (DWE) calculation of Younger 
(1981). The CCC results are in good agreement with experiment and superior to the 
Born and DWE calculations in the intermediate energy region. At high energies (> 500 
eV) the CCC results underestimate the TICS due to the use of the frozen-core model 
(only one-electron ionisation without He+ excitations is allowed).

It is quite remarkable that the CCC(69) calculation, which has only target states 
with maximum orbital angular momentum lmax = 2 , is in such a good agreement with 
experiment. Interestingly, unitarity of the CC formalism ensures rapid convergence 
with l,naI without requiring convergence in the individual /-dependent contributions 
(Bray 1994). However, in order to calculate differential ionisation cross sections we do 
require convergence in all of the contributions.

The ability to correctly predict the TICS invites investigation to determine whether 
the CCC method yields correct differential distributions in the case of ionisation. This, 
at first glance, is an odd thing to do because the method formally allows for only a single 
pro jectile-space electron to be in the true continuum. All other electrons are treated by 
square-integrable functions. Curran and Walters (1987) and Curran et al (1991) took 
the approach that the pseudostate expansion yields an accurate total wave function, 
and generated triple differential ionisation cross sections using this wave function. This 
approach leads to nonexistent integrals that arise due to an inconsistent treatment of 
the total wave function and the asymptotic two-electron continuum states. We avoid
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this problem by using the target-space projection operator IN on both sides of (5), and 
then directly relate the T-matrix element for excitation of a positive-energy pseudostate 
to the ionisation channel via (9). Detailed discussion of these issues together with the 
explicit definitions of the CCC ionisation amplitudes has been given by Bray and Fursa 
(1996a) and will not be repeated here.

Application of the CCC method to differential ionisation is still in its infancy. The 
first application was for e-H ionisation at 54.4 and 150 eV (Bray et al 1994), where very 
good agreement was found with the experimental data, available only for the highly 
asymmetric energy sharing region. A more thorough test of the CCC theory may be 
performed by comparison with the much more numerous e-He ionisation data. For 
example, at 100 eV (Bray and Fursa 19966) a single CCC calculation has yielded good 
agreement with experiment for elastic and excitation (to n < 3) DCS, and with the 
ionisation single (SDCS), double (DDCS), and triple (TDCS) differential cross sections. 
The CCC calculations had lmax = 3 and the TDCS measurements of Roder et al (1995) 
in the standard coplanar geometry for ejected electron energy of 4 eV were reproduced 
essentially quantitatively. The DDCS and SDCS data of Miiller-Fiedler et al (1986) are 
available not only for the asymmetric but for the whole kinematical region. Given the 
relatively small /,„„* = 3 it was particularly encouraging to find good agreement with 
all of the 100 eV data of Miiller-Fiedler et al (1986), even in the case of both outgoing 
electrons having nearly 40 eV.

A detailed comparison of the CCC results and experiment for incident electron 
energies above 100 eV has been given (Bray and Fursa 1996a). We believe that for 
these energies the CCC method is able to yield accurate ionisation cross sections for all 
energy sharing combinations of the outgoing electrons. For the purpose of illustration 
we present our results at 600 eV. Note that at such high energies many other approaches 
to ionisation work well (Byron et al 1986, Furtado and O’Mahony 1988, Brauner 
et al 1991, Franz and Altick 1992, Jones et al 1993, Biswas and Sinha 1995). At such 
a high energy exchange may be dropped from the CCC calculations and so only singlet 
states need be included in the close-coupling expansion. In figure 11 we present results of 
the CCC(51) no-exchange calculation with lmal = 5. We can see very good agreement 
with coplanar TDCS measurements of Jung et al (1985) performed at a number of 
ejected-electron energies EB (2.5, 5, and 10 eV) and a number of fixed angles of the 
fast electron dA (2°, 6°, 8°, and 10°). In figure 12 we compare the CCC(51) results 
with the DDCS measurements of Miiller-Fiedler et al (1986). We find generally good 
agreement except for the largest ejected-electron energy (40 eV). The normalization of 
the measured DDCS by extrapolation to the optical oscillator strength is least reliable 
for the largest momentum transfer and may be the reason for at least some of the 
observed discrepancy between the CCC results and experiment.

To our mind the really interesting test of the CCC approach to ionisation is at
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low incident, energies. This is because in this case electron-electron correlation is 
particularly important and is substantial at greater distances from the nucleus. Now, we 
already know that the CCC method obtains accurate results for elastic and excitation 
processes, as well as the total ionisation cross section (Fursa and Bray 1995). What 
about, differential ionisation cross sections at low to intermediate energies?

In figure 13 we present a three-dimensional plot of the coplanar TDCS for 40 eV 
incident-electron energy and 4 eV slovv-electron energy. Detailed discussion and 
comparison with experiment (including two-dimensional cuts for fixed angle of the fast 
and slow electrons) has been given by Roder et al (19966). For this kinematic region 
forward scattering of the fast electron with backward scattering of the slow electron 
is by far the dominant process. Here, as well as at 50 eV incident electron energy 
(Roder et, al 1996c), the CCC method obtains good agreement with experiment in the 
asymmetric kincmatical region. However, as the energies of the outgoing electron come 
closer we find that the CCC theory yields magnitudes that are systematically lower 
than experiment, while still keeping good angular profiles (Roder et al 1996c, Roder 
ct al 1997a, Roder et al 19976). This rather surprising result is currently under intense 
investigation.

5. Electron scattering from the helium metastable states

A great, strength of the close-coupling methods is the ability to obtain from a single 
calculation the scattering results for transitions between various initial and final states. 
The reliability of the CCC theory should be independent of the initial state. The 
excellent agreement the CCC theory has generally attained with measurements of the 
e-He(l'S) system should translate directly to good agreement with measurements of 
the c-He(231S) scattering systems. Unfortunately this is not the case. We have found 
systematic discrepancy between the CCC results and measurements of the differential 
(Miiller-Fiedler et al 1984) and integral (Dixon et al 1976, Lagus et al 1996) cross 
sections for excitation of the 23S helium metastable state. Of particular concern is the 
fact that the CCC theory typically predicts a factor of two or so lower than the various 
independent experiments.

Scattering from the helium 23S state is a little different to scattering from the 
ground state or 2‘S states. In addition to the total spin S = 1/2 (all that is necessary 
for singlet states) the total spin now also takes on the additional value of S = 3/2. In 
parallel to scattering from quasi-one-electron targets, two independent calculations arc 
now required, one for each of the total spin cases. The calculated observables have to 
be appropriately spin averaged (12) when compared with spin-unresolved experimental 
data. Note that the total spin S = 3/2 case requires significantly less computer time 
because only triplet (s = 1) target states are included in the close-coupling calculations.
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In performing e-He(l1S,23 lS) calculations, we have a constant, total energy E in all 
channels. Denoting by e„ the projectile energy relative to state n with energy e„, we 
have

E = E\i s + Cl'S
= f'2'S + f2'S

= £2’s + f^s- (40)

Therefore, a single calculation for a total energy E leads to results with different incident 
projectile energies corresponding to different, incident target states.

5.1. Excitation

The DCS for electron impact excitation of the helium 23S state (to u < 1 triplet states) 
have been measured by Miiller-Fiedler et al (1984) at a number of fixed outgoing-electron 
energies (15, 20 and 30 eV). In figure 14 we present experimental and theoretical results 
at. 20 eV outgoing electron energy (see Bray and Fursa (1995) for comparison at other 
energies). The fixed outgoing electron energy implies different incident energies for each 
excitation channel and formally requires a separate calculation. However the energy 
difference between helium states excited from the 23S state is relatively small and the 
cross sections change slowly with energy. Therefore we make an insignificant error bv 
comparing with a single CCC calculation at the incident energy of 21 eV relative to 
the 23S state. This energy leads to the outgoing energy of approximately 20 eV for 
each of the excitation channels. It also corresponds to 40 eV incident energy relative 
to the helium ground state, where there arc extensive experimental data in very good 
agreement, with the CCC theory (Fursa and Bray 1995). Examining figure 11 we observe 
that the experimental results of Miiller-Fiedler et al (1984) are systematically higher 
than the CCC results for all transitions, but angular distributions arc generally in good 
qualitative agreement. The present 40 eV CCC(lll) calculation uses the same number 
of states in each target symmetry as the one used at 30 eV. Convergence is clearly 
established by comparison with the CCC(75) results. Also presented arc the FOMBT 
and DWA data of Cartwright and Csanak (1995). It is interesting to note that for 3'P 
state excitation there is a structure in the small-angle differential cross section which is 
present in the CCC results as well as in the results of various distorted-wave methods 
(Flannery and McCann 1975, Mathur et al 1987, Cartwright and Csanak 1995, Verma 
et al 1995), but not in the experiment. Clearly, the most disturbing aspect of the 
comparison of theory and experiment is the discrepancy in magnitude. In passing, we 
note that there are also measurements of the superelastic DCS of the 23S helium state 
(Jacka et al 1995). Whereas these show excellent angular agreement with the CCC 
theory they are not absolute and so do not help us to resolve the magnitude problems.
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Extensive application of the CCC method to the calculation of e-He(23,lS) excitation 
cross sections has been reported by de Heer et al (1995). There the CCC method was 
used to establish the preferred data set for use in fusion research. Comparison with the 
many available theories may be found there. In figure 15 the integrated cross sections for 
excitation of the 33S, 33P, 33D, and 43D states from the 23S helium state are presented. 
Comparison is made with the measurements of the apparent (direct plus cascades) cross 
sections by Rail et al (1989) (for the 33P state the direct cross section is presented) and 
with the measurements of the direct cross sections by Lagus et al (1996). The results of 
the CCC(G9), CCC(75) and CCC(lIl) calculations are presented together with the FBA 
calculations (Kim and Inokuti 1969, Briggs and Kim 1971) and the 11-state fi-matrix 
calculations (Berrington et al 1985).

At higher energies the CCC and FBA calculations converge together for all 
optically-forbidden transitions. However the experimental data of Lagus et al (1996) 
are systematically higher than the theoretical results. For the optically-allowed 33P 
excitation we observe a constant difference at high energies between the FBA and CCC 
results. Here the 33P excitation cross section is proportional to the optical oscillator 
strength for the 23S-33P transition. The difference between the CCC and FBA results 
is, therefore, due to the difference between the frozen-core model of helium structure 
that has been used in the CCC calculations and the highly-accurate Hylleraas-type wave 
functions (Weiss 1967) employed in the FBA calculations.

As the incident electron energy decreases we can see the growing difference between 
CCC(75) and CCC(69) results. The difference is smallest for 33S excitation, becomes 
noticeable for the 33P state, and is the largest for 33D and 43D states. This is consistent 
with the effect of inclusion of F-states in the CCC(75) calculation which are absent in the 
CCC(69) calculation. The CCC(69) results generally overestimate the cross sections and 
the CCC(75) results should be considered as more accurate. The CCC(lll) calculations 
presented at two incident electron energies of 16.5 eV and 21 eV (obtained from the c- 
He(l‘S) calculations at 30 and 40 eV) indicate that the inclusion of the G-states is 
negligible on the considered transitions.

The RM(ll) calculations have only n < 3 shell states included. It therefore 
overestimates the cross section for n = 3 states due to the absence of the n = f 
and higher-lying S-, P-, D-, F-states and the continuum. The CCC and R-inatrix 
results converge together at the lowest available common energy point just below n = 4 
excitation thresholds (% 3.8 eV). Similarly, the FBA calculations must be seen its being 
too high at the intermediate and low energies.

5.2. Ionisation
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One aspect, of particular interest to us is comparison with experiment for the case 
of total ionisation. We have seen that the CCC method yields good agreement with 
experiment in the case e-He(l'S) ionisation. In figure 16 we present the results for 
ionisation cross sections (total (TICS) and spin asymmetry (Aj)) of the helium 2‘S 
state. The difference between the 75- and 111-state calculations indicates the minimal 
importance of G-states in this process. Although convergence in the TICS is not of the 
same accuracy as in the case of ionisation of the ground state, the large discrepancy 
with the experiment of Dixon et al (1976) is not due to convergence problems. At the 
higher energies the Born calculations of Ton-That et al (1977), Born-Ochkur calculations 
of Peach (Dixon et al 1976), and the CCC calculations converge and lie considerably 
below the experimental data.

The only theoretical calculation consistent with the experimental TICS results at 
high energies is the Bethe-Born calculation of Briggs and Kim (1971). However, it and 
the experiment do not reach the Born limits as calculated by Ton-That et al (1977) 
and Peach (Dixon et al 1976) even at 1000 eV, though the CCC results appear to do 
so closer to 100 eV. This, unfortunately, suggests that the “Born” limit, in the case of 
total ionisation, depends on the method of calculation. In the cross section peak region 
(10-20 eV) the Born-approximation calculations of Ton-That et al (1977) lie very close 
to the experiment data, and the Born-Ochkur calculations of Peach (Dixon et al 1976) 
lie substantially lower than experiment, indicating that the approximate inclusion of 
exchange in the calculation reduces the Born approximation cross section significantly 
in this region. Whereas at high energies auto- and double-ionisation process occur, 
which may account for the different “Born" limits, this is not the case in the region of 
10 to 20 eV. Here only a single electron ejection is possible, and the frozen-core structure 
model should be sufficiently accurate.

Of particular significance to us is the remarkable agreement between the CCC theory 
and the measurements of the ionisation spin asymmetries A\ by Baum et al (1989). The 
A\ may be obtained from the doublet of2) and quartet ct*41 ionisation cross sections by

A i
t(2) tW

^ + 2o^'
(41)

The CCC(111) and CCC(75) calculations are very close indicating that convergence for 
spin asymmetry is somewhat easier to achieve than for total ionisation cross section. 
Note that the Born calculation of Ton-That et al (1977) would give exactly zero for 
the Aj. The ionisation asymmetry and cross section have a peak in the same energy 
region. Therefore agreement of the Born calculations with the experimental ionisation 
cross section in this region is likely to be accidental.
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5.3. Tbf.n/ cross sections

Finally, wo compare in figure 17 our results with measurements of the total cross sections 
for scattering on the 2''3S states by Wilson and Williams (1976) and with the 5-state 
/(-matrix calculations (Foil, Berrington, Burke and Kingston 1981). Experimental data 
are absolute for the 2'S state and relative for the 23S state, which we have normalized 
to the CCC data at 7.94 eV. These arc the least sensitive of the cross sections and are 
dominated by the elastic and optically-allowed transitions. Convergence is particular 
easy to achieve as can be seen from the the comparison of the 75-state CCC results with 
the 5-state /(-matrix calculations. Good agreement with experiment exists for incident 
electron energies above approximately 1.5 eV. Below this energy the CCC results are 
substantially lower than experiment. This behavior of the CCC results is in agreement 
with the results of the 5-state /(-matrix calculations, which are expected to be reliable 
for energies below the excitation thresholds of the n = 3 states.

6. Conclusions

We have presented a review of recent CCC calculations applied to the e-He system. 
Generally we find satisfactory agreement between theory and experiment for discrete 
transitions involving the ground state. Good agreement with experiment is also found 
for the case of differential ionisation with asymmetric energy sharing by the outgoing 
electrons. However, no such good agreement with experiment is found when scattering 
from the metastable 23S helium state is considered, even though these results are 
generated simultaneously with those for the ground state. Of particular concern is that 
the CCC results arc systematically lower than a number of independent measurements. 
We suggest that further theoretical and experimental investigation of electron scattering 
on the mctastablc states of helium is warranted.

A very intriguing aspect of the CCC calculations that we have only been able to 
touch upon lightly is the application to the calculation of differential ionisation in the 
equal-energy-sharing kinematical region. While obtaining excellent angular profiles the 
theory underestimates the magnitudes. Investigation of the reasons for this is currently 
one of our highest priorities.

The CCC method has now been extended to general quasi-two-electron atoms and 
ions. Whereas for helium the frozen-core approximation has sufficed for our purposes 
this not so for other such targets. Furthermore, application to double ionisation and 
ionisation plus excitation by electron impact requires relaxation of the frozen-core 
approximation. We look forward to applying the CCC method to such processes.
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0 30 GO 90 120 150 180 0 30 60 90 120 150 180

scattering angle 9 (deg)

Figure 1. Elastic differential cross sections for e-Hc scattering at a range of projectile 
energies. The measurements are due to Brunger ct al (1992) and Register ct al (1980).
The CCC calculations are due to Fursa and Bray (1995), except at 30 eV where they 
are due to the present 111-state calculation. The R-matrix with pseudostates (RMPS) 
calculations at 30 and 50 eV are due to Bartschat ct al (199Ga). The variational 
calculations of Nesbet (1979) at 5 and 18 eV are denoted by N79, and the 5-state 
R-matrix calculations of Fori, Berrington and Hibbert (1981) are denoted by RM(5).

2G
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RMPS —

FOMBT * - - 
RM(29) -- 

Brunger et al «
Trujmur et al •

scattering angle 9 (deg)

Figure 2. The 21,3S and 2* 3P differential cross sections for e-He scattering at 
30 eV. The measurements are due to Brunger et al (1990), Trajmar ct al (1992), 
and Roder et al (1996a) (normalized to CCC). The present 111-state CCC calculation 
is described in the text. The recent R-matrix with pseudostates (RMPS) results are 
due to Bartschat et al (1996a). The calculations denoted by RM(29) are due to Fon 
et al (1995), and those denoted by FOMBT are due to Cartwright et al (1992).
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Figure 3. The 2*P EICP’s for c-He scattering at 30 eV. The present CCC calculation 
is described in the text. The BMPS results are due to Bartschat et al (1996a). The 
calculations denoted by RN1(29) are due to Foil et al (1995), and those denoted by 
FOMBT are due to Cartwright et al (1992). The measurements are due to McAdams 
et al (1980), Steph and Golden (1983), and van den Heuvell et al (1982).
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Figure 4. The 31,3S and 31,3P excitation differential cross sections for e-He scattering 
at 30 eV. The present CCC calculation is described in the text. The calculations 
denoted by RM(29) are due to Fon et al (1995), and those denoted by FOMBT are 
due to Cartwright et al (1992). The measurements due to Chutjian and Thomas (1975) 
and 'IYajmar et al (1992) are of the summed 3!P +331D cross sections, and have had 
the CCC results for the 33,1D states subtracted. The data of Khakoo et al (1995) is 
solely for the 3’P excitation, obtained with the aid of the electron-photon coincidence 
technique.



29

N«*Ht *nd Crowe 
kiT Neill el al

-CO -

0.5 -

90 120 150 18090 120 150 180

scattering angle 8 (deg)

Figure 5. The 3lP EICPs for e-He scattering at 30 eV. The present CCC calculation 
is described in the text. The calculations denoted by RM(19) and RM(29) are due to 
Fon et al (1991) and Fon et al (1995), respectively. The calculations denoted by DW 
are due to Beijers et al (1987). The measurements are due to Neill and Crowe (1988) 
and Neill et al (1989).
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Figure 6. The 33P EICPs for e-He scattering at 30 eV. The present CCC calculation 
is described in the text. The calculations denoted by RM(19) arc due to Fon et al 
(1991), RM(29) are due to Fon et al (1995). The measurements arc due to Donnelly 
et al (1988).
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Figure 7. The 31,3D excitation differential cross sections for e-He scattering at 30 eV. 
The present CCC(lll) calculation is described in the text. The CCC(75) calculation 
(Fursa ami Bray 1095) is given to show convergence in the CCC approach by contrast 
to the dependence of the cross sections upon the choice of distortion in the DW 
calculations of Bartschat and Madison (1988).
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Figure 8. The 31 D EICPs for 30 eV e-He scattering. The present 111-state convergent 
close-coupling calculation is denoted by CCC(lll). The CCC(75) calculation is due 
to (Fursa and Bray 1995). The calculations denoted by DWBA-EP and DWBA-GP 
are due to Beijcrs et al (1987). The measurements are due to Donnelly ct ul (1994).
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Figure 9. The 33D ElCPs and observed Stokes parameters for 30 eV e-He scattering. 
The theory is same as in figure 8. The preliminary measurements have been reported 
by Bray et al (1995).
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DWE **-
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Figure 10. Total ionisation cross sections of the 1*5 state of helium by electron 
impact. The convergent close-coupling calculations are denoted by CCC(G9). The 
Born and distorted wave with exchange (DWE) calculations are due to McGuire (1971) 
and Younger (1981), respectively. The measurements are due to Montague et al (1984).
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Figure 11. Electron-impact ionisation of helium triple (inferential cross sections at 
COO cV. The CCC(51) calculation is due to Bray and Fursa (199Ga). The measurements 
are due to Jung et al (1985).
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Figure 12. Electron-impact ionisation of helium double differential cross sections at 
GOO eV. The CCC(51) calculation is due to Bray and Fursa (1990a). The measurements 
are due to Miiller-Fiedler et al (1986).
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Figure 13. The e-He ionisation coplanar triple differential cross sections for the case 
of 40 eV incident energy with the slow Eb = 4 eV electron detected at Ob and the fast 
E,\ - 11.4 eV electron detected at 6*. The absolute measurements and the 99-state 
CCC calculation are from Roder et at (19966).
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Figure 14. Differential cross sections for excitation of the helium 2’S state.
The CCC(75) (Bray and Fursa 1995) and present CCC(lll) calculations are for 
21 eV incident electrons, leading to outgoing energies of approximately 20 c\ The 
measurements at outgoing energy of 20 eV are due to Miillcr-Ficdlcr et al (1984). The 
DWA and the FOMBT results are due to Cartwright and Csanak (1995).
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Figure 15. Integrated cross sections for scattering from mctastable 23S helium state. 
The present 111-state calculations are denoted by CCC(lll). The CCC(75) and 
CCC(G9) calculations are from de fleer et al (1995) The Horn (FDA) calculations 
are due to Briggs and Kim (1971) and 11-state /7-matrix calculations RM(ll) are due 
to Berrington et al (1985). The measurements are due to Rail et al (1989) and Lagus 
ft al (1996).

cr
os

s s
ec

tio
n (

10

Dixon et al 
CCC(75) 

CCC(lll)

Baum ct al 
CCC(75) 

CCC(lll)
Born--------q>

Born-Ochkur 
Bet lie-Born

10
projectile energy (eV)projectile energy (eV)

Figure 16. Total ionisation cross section and its spin asymmetry for election impact 
ionisation of the 23S state of helium. The present 111-state calculations are denoted by 
CCC(lll), the CCC(75) is due to (Bray and Ftirsa 1995). The Bom, Bom-Ochkm and 
Bethe-Born calculations are due to Ton-That et al (1977), Peach (Dixon et al 197G) 
and Briggs and Kim (1971), respectively. The measurements are due to Dixon et al 
(197G) and Baum et al (1989).

Wilson and Williams 
CCC(75) 

KM(5)

projectile energy (eV)

Figure 17. Total cross sections for electron scattering from the 23S and 2lS states of 
helium. The convergent close-coupling calculations are denoted by 000(75) (Bray and 
Fursa 1995). The calculations denoted by RM(5) arc due to Foil, Berrington, Burke 
and Kingston (1981). The measurements are due to Wilson and Williams (1976). For 
2*S state measurements are absolute, while for 23S state they are relative; and are 
normalized to the COO data (1.158 x 10”14 cm2) at 7.9-1 eV.


