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Preface

•i

About half a year after I enrolled as a PhD-student at the Division of Optimization at 
Linkoping Institute of Technology, I happened to talk to a friend of mine, who just recently 
had begun working for Norsk Hydro.

I was involved in a project concerning cost allocation in transportation problems in gen­
eral. When I described examples of what kind of problems we considered, I used the 
following example: ’Suppose that a distribution system involves some vehicles, many cus­
tomers and an enormous amount of products. The initial problem is that of deciding which 
vehicle should carry what products to which customers, so that total cost is minimized. 
We study the next the problem; how to allocate the total cost to the products or to the 
customers involved.’ To me the problem was thrilling, since it was easy to see the relations 
to reality and its importance in practice. It also had an obvious economic interpretation 
which I, having a M.Sc. in Industrial Engineering and Management, appreciated.

If the problem was thrilling in theory it is easy to understand how I felt, when my friend 
at Norsk Hydro said after my description, ’That is exactly a part of my responsibilities!’

The project has been going on for about two years. My hopes are that the results of this 
thesis can be of use in the analysis of real life cost allocation problems. In particular I 
hope that the results can be of use for Norsk Hydro.
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Abstract

!

■ This thesis concerns cost allocation problems in distribution planning. The cost allocation
j problems we study are illustrated using the distribution planning situation at the Logistics
; department of Norsk Hydro Olje AB. The planning situation is modeled as a Traveling
i Salesman Problem and a Vehicle Routing Problem with an inhomogeneous fleet. The cost
! allocation problems are the problems of how to divide the transportation costs among
I the customers served in each problem. The cost allocation problems are formulated as

cooperative games, in characteristic function form, where the customers are defined to 
be the players. The games contain five and 21 players respectively. Game theoretical 
solution concepts such as the core, the nucleolus, the Shapley value and the t-value are 
discussed. From the empirical results we can, among other things, conclude that the core 
of the Traveling Salesman Game is large, and that the core of the Vehicle Routing Game 
is empty. In the accounting of Norsk Hydro the cost per m3 can be found for each tour. 
We conclude that for a certain definition of the characteristic function, a cost allocation 
according to this principle will not be included in the core of the Traveling Salesman 
Game. The models and methods presented in this thesis can be applied to transportation 
problems similar to that of Norsk Hydro, independent of the type of products that are 
delivered.
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Chapter 1

Introduction

Whenever it is necessary or desirable to divide a common cost between several users or 
items, a cost allocation method is needed. Moriarity (1981) gives a number of reasons for 
why an allocation of common costs can be necessary or desirable. It may be required for 
external reporting on inventory values. It may serve as an aid for cost control. A cost 
allocation may provide a guidance for product pricing. It may encourage cooperation 
and discourage wasteful consumption. In a decision making situation a cost allocation 
may signal optimal capacity adjustments and the relative profitability of products. An 
example related to the problems treated in this thesis, is when several users decides to 
cooperate in order.to realize economies of scale, and therefore use a common service. The 
cost of providing this service is then to be allocated among the users.

In practice the cost allocation could be done in several ways, e.g., using a rule of thumb, 
activity based costing or cooperative game theory. In this licentiate thesis a cost alloca­
tion problem found in a distribution planning situation is analyzed, and we discuss cost 
allocation methods based on concepts from cooperative game theory.

A cooperative game situation can be described as a situation including several players, who 
can choose to either participate or not participate in a cooperation. The motivation for 
the players to cooperate could be that they gain more (or loose less) by cooperating. The 
cooperative game is the question of how to allocate the total gains (or savings) among 
the participating players. A cooperative cost game is a game in which the players can 
reduce their total cost by cooperating, and where the total cost is to be allocated to the 
participating players.

The cost allocation problems we study in this thesis are illustrated using the distribution 
planning situation at the Logistics department at Norsk Hydro Olje AB1. The Logistics 
department at Norsk Hydro handles the supply and distribution of gas and gas-oil (i.e., 
heating oil and diesel oil) to customers in Sweden. The distribution is carried out from 10 
depots located in southern Sweden. The transportation of the products is done by carrier 
companies independent of Norsk Hydro. The amounts paid to the carrier companies are

1In this thesis we shall refer to Norsk Hydro Olje AB simply as Norsk Hydro, except for when there 
is a risk of misunderstanding.

1



2 Chapter 1 Introduction

computed using a tariff, and it is these costs that are to be allocated. . The tariff makes 
it possible to compute what the cost of any tour would be, which is important when using 
cooperative game theory.

The primary reason for why the transportation costs of Norsk Hydro are to be allocated 
is because there are two different cost centers (Gas and Gas-oil) within Norsk Hydro. If 
only one product type is transported by a vehicle, the cost can be allocated to the right 
cost center immediately. However, sometimes a vehicle deliver both products, in which 
case the allocation is more difficult. The primary reason for doing the cost allocation at 
Norsk Hydro is thus for book-keeping purposes.

From an accounting perspective it is also interesting to be able to estimate the cost of a 
specific customer or a customer group. If the costs are allocated to specific customers or 
customer groups, the costs for the customers or customer groups can be aggregated into 
costs for the cost centers Gas and Gas-oil respectively. This is one approach that can be 
used to solve the problem of allocating the cost to the two cost centers.

The game we study is disaggregated into a Traveling Salesman Game and into a Vehicle 
Routing Game, where the customers are defined to be the players. The Traveling Salesman 
Game we study is the problem of how to allocate the cost of one tour, to the customers 
that were served by the tour. The Vehicle Routing Game we study is the problem of 
how to allocate the cost of all the tours from one depot during one day, to the customers 
served that day. We study only the allocation of costs to gas customers.

1.1 Purpose and contributions

The purpose of this thesis is to investigate a cost allocation problem in a specific distri­
bution planning situation, using the perspective of cooperative game theory.

The main contributions of the thesis are:

• The application of cooperative game theory on a real-life cost allocation problem. We 
discuss considerations that have to be taken when modeling and solving the real- 
life problem of Norsk Hydro. We also compare and discuss the results of various 
solution concepts in cooperative game theory applied on a practical problem.

• The solution concepts we use, give raise to large scale optimization problems. We 
present models and methods that can be used to solve these large problems.

• We study the Vehicle Routing Game with an inhomogeneous fleet. The nucleolus 
(Schmeidler, 1969) is computed for this game. This is done using models and meth­
ods adopted from those that can be used to solve the Vehicle Routing Game with a 
homogeneous fleet (Gothe-Lundgren et. al.,1996).

The modeling of the games and the solution methods does not depend explicitly on the 
products gas and gas-oil. Thus the models and methods presented in the thesis can be
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applied in transportation problems similar to that of Norsk Hydro, independent of the 
type of products that are delivered.

1.2 Method of the Thesis

I Cost allocation using cooperative game theory
i

I Dror (1990) defines a cost allocation problem in a cooperative game setting as the problem
; of finding the best cost allocation method. A cost allocation method is a function defined
j for all cost games such that the total cost of the game is divided among the participants in

the game. Using the definition of Dror (1990), we do not aim to solve the cost allocation 
problem of Norsk Hydro, since we do not aim to suggest the best method. However 
we study the cost allocation problem and suggest and evaluate different cost allocation 
methods (i.e., functions that divides the costs among the participants), that fulfill some 
fairness requirements.

Profitability assessment

| If a number of participants, or players, choose to cooperate in a game situation where
| a common cost arise, they have to decide on a cost allocation method. A certain cost
I allocation method can be conceived as more or less fair to the players, but if the appre-
! hension of what is fair differs, it might be impossible to agree on a cost allocation method.
| The subjective apprehension of fairness is important. A player may have difficulties in
i expressing why a certain cost allocation method is conceived as more or less fair. In
| cooperative game theory, several values (or concepts) and corresponding methods have
i been suggested, that fulfill various fairness conditions. Some of the values are uniquely
, defined, if a set of fairness conditions are to be fulfilled at the same time. As pointed out

in Jensen (1977), in order to find a cost allocation method that a number of players can 
! agree upon, it might be easier to discuss these fairness conditions, rather than to discuss
' specific cost allocation methods.

Furthermore, one of the drawbacks of many cost allocation methods based on some rule 
: of thumb, is that they fail to capture the strategic gains customers could make by coop­

erating. Individuals or individual firms normally have the possibility of making strategic 
decisions to cooperate. Strategic possibilities play a significant role in cooperative game 
theory.

The games we formulate are suggestions for methods of allocating the transportation costs 
to the customers, that capture some strategic possibilities. The games we present can be 
seen as simulations of plausible games, which describe a quantitative measure of fairness. 
The main objective of Norsk Hydro to do the cost allocation, is to get an instrument for 
book keeping, that allocates the costs of the transportation in a fair manner.

i



4 Chapter 1 Introduction

If the aim is to compute the short term profitability of a specific customer or customer 
group in order to decide whether or not to serve him or them, a cost allocation may not 
be advisable. The users share common costs, and excluding a customer might give the 
effect that a part of this customer’s cost is only transferred to the customers still served. 
Thus by excluding a customer, the total cost of the system does not necessarily decrease 
by the same amount as the cost that was allocated to the excluded customer.

A traditional approach could be used in a decision-making situation which involves short 
term profitability assessment. The customer or customer group is served if the marginal 
revenue (marginal income minus marginal cost) is positive. If the marginal revenue is 
positive, the company will gain more (or lose less) than if that customer or customer 
group is not served.

A game theoretic approach to analyze the short term profitability of a certain customer 
or customer group would be to make a revenue allocation. This would require more data 
(total income and total cost of each customer and customer group), which would increase 
the uncertainty, since data always contains more or less uncertainty. Another problem 
when attempting to make a revenue allocation, is that in a company it is generally easier 
to assess cost data, than revenue data. In our case it would also mean that we would 
have to analyze the total cost of each customer, not only the cost of the transportation 
of the products. All the customers benefit in some sense from all the activities of Norsk 
Hydro, including e.g., marketing & sales, computer services, accounting, financing and the 
activities at the depot. The gas stations are tied to Norsk Hydro by long term contracts, 
making the cost structure even more complicated. The costs for the oil customers might 
be a little easier to assess, since some of the costs can be traced to a certain instance of 
delivery. The principles that are presented when doing the cost allocation, could be used 
in a similar way when doing a revenue allocation.

There are theoretical arguments against the allocation of common costs. Thomas (1969, 
1974) and Stigler (1966) among others, even argue that if a cost that is common to several 
users is to be divided between the users, this cost allocation is arbitrary by nature, and 
therefore no strategic decisions should be made using these data. If the allocation was not 
arbitrary, the cost could be traced to a user, and thus it would not be common. Callen 
(1978) argues that if certain cost allocation axioms are accepted, cost allocations that are 
not arbitrary can be found.

However, when making long term profitability assessments, some kind of allocation of 
common costs could be advisable. If a firm is to survive in the long run, it is of course not 
enough if the marginal costs are covered by marginal income. In the long run the fixed 
costs must also be covered. Furthermore, in spite of the theoretical arguments against 
the allocation of common costs, it is frequently done in practice. It is an advantage if 
there is some way of estimating what the major reasons for the common costs are. The 
estimation of the reasons for the common costs can be done by applying activity based 
costing (see e.g., Lumsden, 1995 or Brimson, 1991), where the idea is to analyze which 
activities are the cost drivers for the common costs. In the perspective of activity based 
costing, the game that we formulate could be seen as a way of analyzing what the cost 
drivers are in the types of distribution problems we study.
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Criticism of the game theoretic approach

One criticism of the game theoretic approach for the problem we are studying, is that there 
may not be a real game situation at all, since we are studying tours and transportations 
that have already been realized. Even if the games were modeled before the tours were 
carried out, the real game situation in the case of Norsk Hydro, would still not be as 
in our models. The customers do not have the alternative to leave the game and solve 
the transportation problem themselves, which we assume. The gas customers are tied to 
Norsk Hydro by long term contracts, and their alternative would be to break this contract 
and form a new agreement with another gas company. For the gas-oil customers, the 
alternative would simply be to get their deliveries from another oil company. Furthermore, 
these decisions clearly depend on more factors than just the cost of the deliveries of the 
products2. The customers do not even get a specification of the cost of the transport; this 
cost is included in the cost of the product. Theoretically, a game closer to the real game 
could be modeled e.g., by estimating the true alternative cost for each customer and each 
set of customers. However, it would be very difficult and very time consuming to estimate 
these costs.

Data collection

The data used in the problems studied has been collected from Norsk Hydro’s records of 
deliveries. Alveson & Skoldberg (1991) argue that data always has been rendered, in one 
way or another. The data we collected has been modified to some extent (e.g., volumes 
have been rounded off, the location of customers has been estimated). Thus we say that 
we study the problem using data based on reality. When analyzing all the data, we 
deliberately searched for problems that we assumed would give interesting results. This 
resembles the way case studies (see e.g., Merriam, 1994) are performed. The possibility of 
generalizing from a case study may be limited. Even if the results obtained in this thesis 
may not be generalized, the methods, principles and concepts presented can be used in 
many other situations that resembles the situation at Norsk Hydro.

The material collected for the description of the company has been collected from various 
written sources received from Norsk Hydro, and from interviews and discussions with 
representatives of Norsk Hydro throughout the project.

1.3 Outline of the Thesis

The thesis is arranged in the following way:

In Chapter 2 we present the Norsk Hydro case. The distribution planning situation and the 
cost structure of the transportations is described. The tariff is formulated mathematically 
for further use.

2The cost for the delivery of gas from depot to customer is around 80 SEK per m3 on the average,
while the product price for the gas customers are around 2200 SEK per m3 (excluding tax).



6 Chapter 1 Introduction

Chapter 3 begins with a brief introduction to game theory. Solution concepts from coop­
erative game theory are presented. Chapter 3 also includes a literature survey that covers 
cost allocation using cooperative game theory.

The disaggregation of Norsk Hydros problem into a Traveling Salesman Game and a 
Vehicle Routing Game is done in Chapter 4. Important presumptions we have made in 
order to model the situation of Norsk Hydro are discussed. Chapter 4 also includes the 
relevant data for the games that we will study in Chapters 5 and 6.

Chapter 5 discusses the Traveling Salesman Game. The mathematical models and meth­
ods used to compute a solution in the core, and the nucleolus are presented. The Shapley 
value and the r-value are also computed and presented.

In Chapter 6 the Vehicle Routing Game is treated. Methods to find a solution in the core, 
and to find the nucleolus are presented.

Conclusions that can be drawn from the games studied are discussed in Chapter 7. The 
most important numerical results from Chapter 5 and Chapter 6 are repeated.

Finally, in Chapter 8 some questions for further research are discussed.



Chapter 2

Case description of Norsk Hydro 
Olje AB

In Chapter 2, we describe the distribution planning situation of Norsk Hydro Olje AB. 
The discussion include aspects concerning both the product groups Gas and Gas-oil, but 
the focus is on aspects related to the product group Gas.

Recently Norsk Hydro bought the company Uno-X, adding roughly 350 gas stations to 
Norsk Hydro, and increasing the turnover for the product group Gas by around 50%. 
Chapter 2 describes the planning situation as it was before the take over of Uno-X.

The primary reason for why Norsk Hydro is interested in studying its cost allocation 
problem further, is that they feel that the current cost allocation principles (which are 
presented in Chapter 2.2.4) are not fair, especially when allocating the cost of tours where 
both gas and gas-oil are delivered (so called shared deliveries). They believe intuitively 
that the cost center Gas sponsors the cost center Gas-oil, simply because true costs do 
not increase linearly with demanded volume, and gas customers generally have a higher 
demand than gas-oil customers. The cost allocation made between the two cost centers 
Gas and Gas-oil is made for book-keeping reasons.

During the initial discussions about the project, other problems which are interesting for 
further study were revealed. These include the problem of how to allocate the cost of 
a tour or a set of tours to the customers, and how to allocate the cost among different 
customer groups, in order to be able to make a better profitability estimate than what is 
done today.

To solve the problem of how to allocate the costs between the cost centers Gas and Gas-oil 
using all the data from one year, one week or even one day would be too big a problem 
to begin with. The amount of data needed, not only require too much time and too 
many resources in the collecting phase, it would also be very difficult to analyze, model 
and solve. The problem necessarily calls for a disaggregation. Once the disaggregated 
levels are modeled, solved and analyzed, an aggregation can be done, in order to arrive 
at a solution of the original problem. The disaggregation that is done depends on the 
categorization of the problem. This is treated in Chapter 4.1.

7



8 Chapter 2 Case description of Norsk Hydro Olje AB

2.1 The Distribution Planning Situation

Company description

Norsk Hydro Olje AB, a subsidiary of Norsk Hydro Sverige AB, is a sales and marketing 
company for gas-oil and gas in Sweden. Norsk Hydro Sverige AB is a subsidiary of 
Norsk Hydro a.s., which in turn is owned by the Norwegian state (51 %), and by other 
international stockholders (49 %). Norsk Hydro Olje AB has around 180 employees, but 
including the gas stations there are more than 1000 people involved in the business. The 
net turnover in 1995 was around 3.7 billion SEK.

Norsk Hydro Olje AB started its operations in Sweden in 1972. Before the take over of 
Uno-X there were around 220 Norsk Hydro gas stations (not including the ICA gas pumps; 
see below). Some of the gas stations are owned by Norsk Hydro (mostly automatic pump 
stations). However the majority of the gas stations are franchising companies (i.e., the 
stations are owned and run by private persons, but their business is regulated by contracts 
made with Norsk Hydro) or stations operated in close cooperation with Volvo retailers, 
IKEA department stores and ICA (a Swedish food store chain) stores. The heating oil 
(gas-oil) is sold both to smaller and larger house-owners. A system of truck stops (HDS) 
where diesel (gas-oil) is sold, is also being developed. Some of the gas stations also carry 
diesel.

The logistics department

The Logistics department at Norsk Hydro is responsible for the transportation of different 
qualities of gas and gas-oil, to the customers of Norsk Hydro. The head office in Stock­
holm has 5 employees, working with both supply and distribution. Their responsibilities 
include the management of the department, e.g., developing the overall structure of the 
Logistic department, making contracts and having contact with the carrier companies, 
technical development and support to the dispatchers. The daily operations of the lo­
gistics department are carried out at 10 depots in southern Sweden1 (Gavle, Stockholm, 
Norrkoping, Kalmar, Karlshamn, Mahno, Goteborg, Kladesholmen, Lysekil and Karl­
stad). At each depot there are order receivers who book the orders from the customers 
in the region. At each depot, the actual planning of the tours, i.e., assignment of the 
demand of a customer to a specific tour and a specific truck, is done by a dispatcher. The 
dispatcher has too keep the expenses within the limits of a transport budget, and she2 is 
also responsible for a preliminary follow-up of the transportation costs. The main goal of 
the planning is to ensure deliveries to all customers at a minimal cost. In practice, there 
might be many considerations to be taken into account, that make the cost larger than

1In northern Sweden all logistics services, including planning and transportation, were bought from 
ODAB, Olje Distributions Aktie Bolaget. However, this contract has been terminated.

2The dispatcher may of course also be a man. I shall for simplicity refer to the dispatcher as she, 
rather than to use she/he.
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a theoretical minimum. Some of these considerations are discussed when the planning 
situation is described below.

The products

Two qualities of gas are delivered to the gas stations: 95 octane (regular) and 98 octane 
(premium). Both qualities are only sold unleaded. A third quality, 96 octane (also 
unleaded), is sold at some gas stations. This quality is a mixture of regular and premium, 
in the gas pump. There are three types of gas-oil: MK1 (diesel oil used as fuel for vehicles), 
F10 and F32 (mostly used as heating oil). All three qualities can also be delivered in two 
different taxation classes. The low-taxed products are colored with a very strong pigment, 
added when the product is loaded onto the truck.

For quality reasons, it is of course very important not to mix the different qualities. 
Furthermore since the pigment used in the low-taxed products is so strong, only a small 
amount of a low taxed product in another quality would ruin the load completely. The 
dispatcher may take this into consideration when planning a tour, by trying not to load 
too many different products or qualities on the same truck, even if it is technically possible. 
The dispatcher in Goteborg generally tries to plan as few shared deliveries as possible.

The transportations

The frequency of gas deliveries to customers ranges normally from about once a week 
to about three times a week. The dispatcher at the Goteborg (Gothenburg) depot is 
responsible for the distribution planning to a total of 63 gas customer, and a large number 
of gas-oil customers. In most cases the stock of gas at the gas stations is owned by the 
gas stations, but in some cases it is owned by Norsk Hydro. However, it is always the 
responsibility of the gas stations to place the orders so that they do not run out of stock.

The actual transportations are mostly carried out by independent carrier companies. 
Norsk Hydro have six trucks of their own, but the majority of transportation of gas 
and gas-oil are bought from these companies. There are long term contracts between 
Norsk Hydro and the carrier companies. The contracts contain regulations on e.g., what 
truck type and what equipment is to be used and how the truck should be painted, the 
availability of the truck, how to account for a tour, how the payment is computed. The 
contracts run over a period of one year, but they are renewed as long as neither side gives 
notice of termination of the contract.

Since the availability of the truck is specified, and since the truck has to be painted with 
the logotype and colors of Norsk Hydro, the carrier companies can not carry any other 
products than those of Norsk Hydro. The dispatcher may take this dependency on Norsk 
Hydro into consideration, and try to divide the tours evenly among the different carrier 
companies. In so doing, the dispatcher may in fact not choose the truck that would be 
the optimal one with respect to the cost, in each case. Apart from an aspect of fairness,
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dividing the tours among the carrier companies is done in order to allow for deliveries to 
be carried out as far as possible during daytime hours. However, in extreme situations 
(for example before a price raise), the trucks can be run both at nights and weekends, if 
the customers are willing to receive deliveries during these hours. The possibility of using 
the trucks in shifts allows for flexibility in capacity.

The policy of Norsk Hydro is that a customer should have her3 demand satisfied within 
three days of the receipt of the order. This is regulated in internal contracts between 
the Logistics department and the Marketing department. In practice the customers may 
get even quicker service, since the dispatcher tries to serve customers at shorter notice, if 
necessary and possible. At the Goteborg depot, the gas customers have a verbal promise 
from the dispatcher to be served within 36 hours of the reception of the order if it is 
necessary, even though this is not guaranteed. The customers (especially gas customers) 
do not generally want deliveries any earlier than necessary. One reason is that they might 
include the future demands of their customers, when placing the order to Norsk Hydro. 
Thus there would not be room in the tanks for an earlier delivery. Another reason is 
that if the customers receive the delivery earlier than necessary they also have to pay for 
the delivery earlier, and hence increase the inventory costs. For those stations where the 
inventory is owned by Norsk Hydro, an early delivery would not affect the inventory cost, 
and an early delivery would be possible, if there is enough room in the tanks.

If Norsk Hydro could deliver earlier, or if they could deliver the products later than within 
three days, there would be many more possible tours. The problem would then be more 
like an inventory-routing problem (see e.g., Dror & Ball, 1987). This would most certainly 
lower the optimal cost of the transportation. From case to case, Norsk Hydro may ask 
the customer if it is possible to come later than within the promised three days, if this 
would improve the possibility of constructing good tours. The customer may accept, but 
she is always guaranteed delivery within three days, if she wants. The planning situation 
gets more complicated the more days that are included, and without a good planning 
instrument the cost could even increase in practice. Furthermore, the service to the 
customers would decrease.

The dispatcher has access to a commercial software package, RouteLogix4, that solves a 
Traveling Salesman Problem, using the Swedish road database. RouteLogix is not used 
operationally to construct the tours, neither is it used to guide the driver. Customers 
assigned to a tour are served in an order chosen by the driver unless there are special 
considerations to be taken, such as time windows5 or the urgency to serve a specific 
customer. RouteLogix is sometimes used by the dispatcher when planning the tours, to 
see if a tour seems ’reasonable’. The dispatcher sometimes also uses RouteLogix to check 
how the reported length of a tour corresponds to an optimal tour. If the difference is 
too large and there is no specific reason for this, the carrier company may not be paid 
according to the reported length, which is normally the case. The truck driver may not 
choose to drive the shortest distance for several reasons other than the ones mentioned

3The customer may of course also be a man. I shall for simplicity refer to the customer as she, rather 
than to use she/he.

4In Sweden RouteLogix is sold by Distribution Planning Software Scandinavia AB, Askim, Sweden, 
which is a subsidiary of Distribution Planning Software Ltd, Birmingham.

5A restriction on the time during which the customer is to be served.
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above. This is discussed in Chapter 2.2.3.

There are also many other restrictions that must be taken into consideration in designing 
a tour, e.g., laws that regulate which roads can or can not be used for large trucks, laws 
that, for safety reasons, regulate which roads to use when driving through a city (e.g., 
forbidding certain tunnels).

In order to utilize the capacity of the trucks as far as possible, the dispatcher may over­
plan6 the trucks. It can happen that some of the customers do not have room in their 
tanks for the whole volume they ordered, and all customers may then have their actual 
demand fulfilled. It can also happen that some customer does not get as much delivered 
as she demanded. The first case is more common in the deliveries of gas-oil (smaller 
house owners do not know their exact demand). The second case is more common in the 
deliveries of gas. Since the demand of the gas customers usually is quite large, the gas 
customers normally does not mind if a small portion of their demand is not delivered, 
at least if the relationship with Norsk Hydro (in particular with the dispatcher) is good. 
The dispatcher can also take into consideration that a customer did not receive its full 
demand when planning the next delivery, e.g., by giving priority to her the next time.

The tariff used by Norsk Hydro includes -14 different types of trucks. The gross capacities 
for each truck types are presented in Table 2.1 below.

Truck type 20 21 22 23 30 31 32 33 34 40 46 64 66 68
Capacity (m3) 10 19 30 35 15 25 35 44 48 10 35 35 44 48

Table 2.1 Gross capacities for the truck types in the tariff.

The first digit in the truck type 20-34 is the number of axles of the truck, and the second 
digit the number of axles of the trailer (where 0 means no trailer). The truck types 40-68 
correspond to trucks that are used in shifts. The numbers are divided by two, to get the 
corresponding system as with the trucks 20-33 (e.g., truck type 40 means that a truck of 
type 20 is used in shifts).

The net capacity of a specific truck may differ from the gross capacity of that truck type. 
The strongest limitation for the capacity of the truck is the weight, not the volume, of 
the truck. The net capacity of a truck depends on the supplementary equipment of the 
specific truck, since this affects the weight. A certain truck type may also have a different 
capacity for gas and for gas-oil respectively. Not only do the two products have different 
weights, but a truck carrying gas-oil needs special pumping equipment, adding to the 
weight. This is not needed on a truck exclusively designed to carry gas, since gas can be 
tapped without special pump facilities.

6 A demand higher than the capacity of the truck is assigned to the truck.
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2.2 Cost Structure of the Distribution

2.2.1 Principles of the Tariff

The costs of Norsk Hydro is based on a tariff negotiated with the carrier companies. The 
tariff is negotiated once a year, but it may be revised every quarter of the year, especially 
if the fuel price changes a lot. The tariff contains a number of different components, which 
are taken into consideration when Norsk Hydro compute what they have to pay to the 
carrier company. These components are the following:

• A Base-time cost, which is a fixed start-up cost for each tour. This cost is supposed 
to cover waiting time, e.g., the time it takes at the depot to collect the necessary 
documents for a tour.

• A fixed City driving supplement is paid when the tour starts (i.e., the depot is) 
in either Goteborg or Stockholm. The City driving supplement is supposed to 
compensate for a lower (average) speed when passing through these big cities.

• A load/unload cost that covers the time it takes to fill the truck at the depot and 
to empty the truck in the customers tanks. For the delivery of gas, the cost is 
proportional to delivered volume. For the delivery of gas-oil, there are three different 
intervals (< 3m3,3m3 — 5m3, > 5m3) of delivered volume to a specific customer. 
Within each interval, and for each order (i.e., customer), the cost is proportional to 
the volume delivered.

• A cost which is paid for each customer visited. This cost covers the time it takes 
to stop at a customer and to connect the first tank. The term used at Norsk Hydro 
for this cost is A-stop, and therefore A-stop is used here as well.

• A cost paid for each supplementary tank filled at a customer. This cost is to 
compensate for the time it takes to shift a hose from one tank to another, as well 
as for shifting between different compartments in the truck. The term that is used 
is B-stop.

• A mileage allowance that is proportional to reported length of the tour. This is 
supposed to cover e.g., the drivers wages, the fuel consumption, the maintenance 
and the depreciation of the truck.

All the above types of costs (except the B-stop cost), are also dependent on the truck- 
type, since a larger truck is assumed to have a higher cost of depreciation, maintenance, 
fuel consumption etc.

The costs of transportation during the period 18-29 September 1995, using the truck 
OMB575 (license plate number), delivering only gas from Goteborg, were divided in the 
categories mentioned above. This division is presented in Table 2.2 below.
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Cost type Cost (SEK) % of total cost
Base-time 5 152.9 8.2
City driving supplement 1 871.7 3.0
A-stop 2 320.5 3.7
B-stop 1 820.0 2.9
Load/Unload 11 739.6 18.7
Mileage allowance 39 791.3 63.6

Table 2.2. Cost types of truck OMB575 during the period 18-29 September 1995.

The majority of the trucks in the fleet of Norsk Hydro are owned by independent car­
rier companies, but six trucks used for the transportations are owned by Norsk Hydro. 
The construction of the tariff used by Norsk Hydro is very simple, and therefor task of 
computing the cost for a (real or imaginary) tour is elementary. The cost for the carrier 
company has components such as the wages for the driver, the depreciation of the truck, 
maintenance, fuel consumption etc., which would be difficult to compute exactly, since 
much more data for each tour would be required. The time spent driving, the time spent 
at each customer, the fuel consumption for the specific tour, the true rate of depreciation 
of the truck etc. would have to be known. This data would probably also be different for 
each carrier company, and in turn different for each truck and driver within the carrier 
company. To compute the cost of a tour that has not taken place, which is needed in our 
formulations, would be impossible. An imaginary tariff could be constructed using the 
cost structure of each carrier company. However, this would mean that a cost allocation 
in some sense already would have been made. This allocation is also made today, but 
only from the perspectives of the carrier companies. From the perspective of Norsk Hy­
dro no allocation of costs has been done. This licenciate thesis studies the cost allocation 
problem of Norsk Hydro, hence only costs according to the tariff are discussed, and we 
do not investigate further the allocations that have been made in constructing the tariff.

The existence of the tariff is very important for us, since it allows us to compute exactly 
what the cost of any possible tour would be, given the demand and location of each 
customer.

2.2.2 Categorization of Costs

The different costs may be expressed mathematically (to be used in later chapters), and 
they can be divided into categories. A mathematical formulation of the tariff is the 
following:
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Define:

Bk = Base-time cost for truck type k.
_ j 1 if the depot is situated in a big city (i.e., Goteborg or Stockholm) . 
— \ 0 otherwise

tk = City driving supplement for truck type k. 
ak = A-stop cost for truck type k. 
ft — B-stop cost.
bi = Number of B-stops at customer i. 
dk = Load/unload cost per m3 for truck type k.
Di = Delivered (demanded) volume (m3) at customer i.
Vk = Capacity (m3) for truck type k.
ak = Cost per km (Mileage cost)7for truck type k.
lT = Distance of arc r (representing a road), in km.
S = A set of customers, i.e., a coalition.
Rs = The set of arcs (representing roads) in the optimal tour that covers 

the customers in S.

Then the optimal cost for serving coalition S, c(S), using truck type k (i.e., ^3 D* < Vk)
ies

transporting gas, can be expressed as:

c(s) — Bk+rtk + |5|ofc+/? 53 + dfc 53 Di+ak 53
i€S i€S r€JZs

This expression has to be modified slightly to also hold for gas-oil, since the Load/unload 
cost for gas-oil is not linear in delivered volume.

If a truck type is chosen, c(S) can be divided into three categories:

• A customer specific cost that can be traced to the demand of a certain customer.

• A fixed cost that depends only on whether the depot is situated in a big city or not.

• A common transportation cost.

Suppose that truck type k has been chosen. Then the division is:

Fixed cost, Co = Bk + Ttk
Customer specific cost, Ci = a-k + pbi + dj.Di, ie S
Common transportation cost, Cs II £ M

reiJS

This division into three categories can not be done unless the truck type is chosen. The 
truck type that could be used for a tour depends on the total demand of the tour, which in

7Mileage cost means cost per distance unit, while mileage allowance means the cost for the traveled 
distance, i.e., (mileage cost)*(distance).
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turn depends on the sum of the demands of each customer on the tour. Thus the demand 
of a single customer can affect all other costs (except B-stop) of the tour, including the 
customer specific cost of all other customers, since it can affect the type of truck that 
can be used. For a tour that has been made, the truck type used is known, and it is 
meaningful to divide the cost into the three categories. However, for a tour that has not 
been made, a truck type has not been chosen, and it is not straightforward to make the 
division into categories.

For each tour that is carried out, there is practically always a difference between optimal 
cost, and the actual cost for Norsk Hydro, i.e., what Norsk Hydro pays the carrier com­
pany. One important and easily discovered reason, is that there is a difference between 
the optimal length, and the actual length of a tour which is used when computing the 
cost according to the tariff. We call the difference between optimal and actual cost the 
cost remainder. It is discussed in more detail in the next chapter.

2.2.3 The Cost Remainder

The cost remainder, or simply the remainder can be interpreted as the difference in cost 
between the optimal solution to the planning situation, and the solution that was applied. 
The main reason for the remainder is that the actual length of a tour, or a set of tours, 
is larger than what the optimal length is.

It is only meaningful to consider the remainder for a tour or a set of tours that have taken 
place, since the remainder is the difference between the actual and the optimal solutions. 
For tours that have not taken place, it is difficult to tell what the actual solution would 
be. The reasons for the remainder are slightly different in the Traveling Salesman case 
and the Vehicle Routing case.

The Traveling Salesman Case

Define:

c(S) = The cost for an optimal tour covering the customers in S. 
cy(S) = The actual cost for a tour covering the customers in S.
7s = The remainder, i.e., the difference between the actual cost 

and the optimal cost of a tour covering the customers in S.

Then the remainder can be expressed as:

7s = cy{S) - c(S)

In the Traveling Salesman case it is only meaningful to compute the remainder for the 
grand coalition N (i.e., the coalition that consists of all the customers served on the tour), 
c7(N), as this is the only tour that has been made.

There are a number of reasons why there is a remainder. Some of them are discussed 
below.
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The driver may not choose to drive the shortest path (which is always less costly for Norsk 
Hydro). She8 may for example choose to drive the quickest path. A smaller road may 
be shorter, but it can be faster e.g., to drive to, on and from a highway. There may be 
a temporary road block on the shortest path, something that is not included in the road 
database used to compute optimal distances. It may be forbidden for the truck to use 
certain roads. It may also be technically impossible to use a certain road (e.g., if it is too 
narrow). The driver may also have other incentives for not choosing the shortest path. 
Even though she is not supposed to, the driver may also report a distance that is longer 
than what actually was driven, e.g., including the distance between her house and the 
depot.

The driver may want to deliver all of the same quality first, in a certain area. It can allow 
the driver to do fewer connections and disconnections of the hoses, and this may also help 
her save time in emptying the hoses between the deliveries, which can cause the length of 
the tour to increase.

The customers can have requirements on the time when they can receive the products, 
i.e., there exists time window restrictions. In this case it can be an optimal decision to 
drive a detour to serve the customers in an order that does not minimize the length of 
the tour.

A customer may call in an urgent order very late, and Norsk Hydro may decide to serve 
the customer. This can lead to rescheduling, or redirecting of trucks that have already 
left the depot, which increase total length of the tour.

If a truck has made all the deliveries scheduled for a tour and there still are products left 
in the truck, the dispatcher may redirect th6 truck to deliver the rest of the products to 
a customer initially not scheduled on the tour. Compared with the inclusion of the extra 
customer initially, this tour may be more expensive.

All the above reasons are connected to a non-optimal length of a tour. There are also 
other possible reasons for the remainder. The dispatcher may choose a truck that is not 
of an optimal size, i.e., a truck that is larger than the smallest possible truck. However 
this is not very frequent, since the dispatcher often over plans the trucks.

Some further reasons for the remainder (as we compute it), come from errors in the data 
we use in the models. Examples of possible errors are errors in the software RouteLogix 
or in the road database tied to it, errors in placing the customers geographically in the 
database, and possible round-offs that we make. The effect of these errors could be 
that what we compute as optimal in our models, may not be optimal in reality. These 
components of the remainder can be positive as well as negative. However, the errors due 
to our modeling are assumed to be fairly small.

The Vehicle Routing Case

In addition to the reasons in the Traveling Salesman case above, at least one more reason

8The dispatcher may of course also be a man. I shall for simplicity refer to the driver as she, rather 
than to use she/he.
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for the remainder can be found in the Vehicle Routing case. This reason is that the 
dispatcher may not assign customers to tours in an optimal way, i.e., she does not use the 
optimal routes in the solution to the Vehicle Routing Problem.

The remainder in the grand coalition can then be divided into two components. One 
component appears because each of the actual routes is not driven optimally. The other 
component appears because the actual routes are not part of the optimal Vehicle Rout­
ing solution. As in the Traveling Salesman case, it is only meaningful to consider the 
remainder for the grand coalition. Therefore, we only define the remainder for N.

Define:

7at = The total remainder in the Vehicle Routing case.
7s = The remainder, due to the difference between the actual cost 

and the optimal cost of a tour covering the customers in S.
7t = The remainder due to the difference in cost between the actual routes and 

the optimal Traveling Salesman solutions to these routes.
7^ = The remainder due to the difference in cost between an optimal Vehicle

Routing solution and the-sum of optimal Traveling Salesman solutions, 
for the coalitions that correspond to the actual routes.

SA = The set coalitions that correspond to the actual routes.
S° = The set coalitions that correspond to the routes in the optimal 

Vehicle Routing solution.

Then the total actual cost, cy(N), in the Vehicle Routing case can be expressed as: 

Cy(N) = c(N) + 7^

Since the total actual cost is the sum of the costs of the actual routes, we can also write:

cyiN) = 53 °y(s) = 53 c(s) + 53 7s =
sesA sesA sesA

= 53 c(s) +7T = 53 C(S) + 7v + 7T = c(jV) + 7V + 7r
S€Sa ses°

i.e.,

lv = 53 c(f) - 53 c(s)sesA ses°
/y^ = 53 7ssesA
7AT = 1V + 7T



18 Chapter 2 Case description of Norsk Hydro Olje AB

2.2.4 Current Cost Allocation Principles

The only allocation of transportation costs that is carried out regularly at Norsk Hydro 
today, is the allocation of costs between the two cost centers Gas and Gas-oil. When 
the truck carries only one of these product groups, there is actually no need for a cost 
allocation of this tour, since the whole cost for a tour can be directly traced to a product 
group. In the case of shared deliveries, the customer specific costs, c,-, can be directly 
traced to a product group since it can be traced to a product9. The other costs, i.e., 
Fixed cost (cq) and Mileage allowance (Cs) are simply divided equally between the cost 
centers Gas and Gas-oil. This is done without any consideration to the demand or location 
of the customers, i.e., no consideration is taken as to how much gas and gas-oil respectively 
that are delivered in one tour. The conclusion is that if a larger volume of one product is 
delivered, this product carries less of the common cost, per m3.

The other costs of the Logistics department, such as the cost of the depots and the 
dispatcher, and the cost of the head-office, are allocated to the two cost centers Gas and 
Gas-oil, according to a fixed percentage.

In the accounting of the tours, a cost per m3 of each product group is computed for each 
tour. This implies a cost allocation principle, where the costs are allocated in proportion 
to demand. This principle means that the geographical location of a customer, is not 
taken into consideration at all. In this case only the demand of a customer is significant. 
In the following the principle of allocating costs in proportion to demand is referred to as 
’the principle implied by Norsk Hydro’.

Today, no regular allocation of the transportation cost to the customers is made by Norsk 
Hydro. However, a profitability evaluation is done each month for each station. In this 
evaluation transportation cost is one of the components taken into consideration. It is 
based on a rough template.

An example of how cost allocation is done in a situation similar to that of Norsk Hydro, 
can be found in the method used by another Swedish company10 in their distribution.

They allocate the cost of the tour to the customers receiving deliveries, in the following 
way:

The fixed cost (co) is split evenly among the customers on the tour. The customer specific 
costs (ci) are directly allocated to the customers. The common transportation cost (Cs) 
is computed using the following principle:

9If a customer gets a delivery of gas and gas-oil at the same time (which is hardly ever the case), 
the customer could be split into two imaginary customers, and then the customer specific costs could be 
traced to a product group.

10The company name is not mentioned for integrity reasons.
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Define:

N = The set of customers on the tour.
D{ = Delivered volume to customer i.
Oi = Mileage allowance if only customer i is served. 
Cs = Common transportation cost.

One component of Cs, A;, is computed as:

ieN

The second component of Cs, ft, is what is not covered by A,, divided evenly among the 
customers:

Cs~Yl^i
,, -V- |N|

Hence the cost y; allocated to customer i is:

Vi — l/?[ + ci + Ai + n
The method takes into consideration the Delivered volume and the Mileage allowance for 
each customer. Therefore we will refer to it as the DM-method in later chapters.
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Chapter 3

Cost Allocation and Cooperative 
Game Theory

In Chapter 3.1 a brief introduction to game theory is presented. Chapter 3.2 presents 
basic concepts in cooperative game theory. In Chapter 3.3 some solutions concepts are 
described, and Chapter 3.4 is a literature survey over cost allocation using cooperative 
game theory.

3.1 Introduction to Game Theory

The history of Game theory dates back to the Babylonian Talmud. Cases are described 
in which the estate of a deceased man are to be divided among his three widows. The 
widows have claims of 100, 200 and 300 units respectively on the estate. In Talmud, three 
cases are described, where the estate consists of 100, 200 and 300 units. In each case the 
prescription for the division is in Talmud: (33|, 33§, 33|), (50, 75, 75) and (50,100,150) 
respectively. It turns out that for a certain definition of the characteristic function, the 
solution is the nucleolus (Schmeidler, 1969) in each case. The problem, characterized as 
a bankruptcy game, is discussed in more detail in Aumann & Maschler (1985).

Modern game theory is considered to begin with von Neuman & Morgenstern’s publication 
’Theory of Games and Economic Behavior’ (von Neuman & Morgenstem, 1944), even 
though the study of the theory of games was started in 1928 by von Neuman (1928). 
Nash published a number of important papers on game theory between in the beginning 
of 1950’s (Nash, 1950a, 1950b, 1951 and 1953).

For an outline of the history of game theory we refer to Walker (1995).

Problems in game theory can be classified in a number of ways. The most obvious 
classification is into cooperative and non-cooperative games. In cooperative games it 
is possible for the players to form binding contracts, while this is not possible in non- 
cooperative games. An example of a cooperative game is when a number of players

21
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decide to work together in order to save costs. The cost allocation game is how to divide 
the cost (or the savings) among the players. Examples of non-cooperative games are chess 
or war situations.

A game can contain two players, n players or infinitely many players. An example of a 
two-person game is chess and an example of a n-person game is when a number of players 
cooperate in order to save costs. Examples of games with infinitely many players are in 
market situations (where each player is too small to affect the market), and in games 
where a cost is to be allocated to a continuous amount of products.

Games can also be divided into transferable utility (TU) and non transferable utility 
(NTU) games. TU-games often involves monetary, or physical, units that can be trans- 
fered between the players. An example of a TU-game is again a game where a number 
of players work together to save costs, where the cost (or the savings) can be transfered 
among the players. An example of a NTU-game is again the game of chess, where the 
’utility’ (the victory or loss) can not be transfered.

In this thesis we study n-person cooperative TU-games.

3.2 Basic Concepts

A cooperative n-person game is a pair (N; v) where N = {1,2,..., n} is the set of players 
and v is a real valued function, called the characteristic function, on S C N with v(0) = 0. 
Each subset S C N is called a coalition. We denote by N the grand coalition. The 
cardinality of a coalition, |S|, is equal to to number of players in S.

The characteristic function usually refers to a payoff that the players in S can receive from 
cooperating. In this thesis we study cooperative cost games (N\c), and we denote the 
characteristic function c(S) instead of v(S). The characteristic function in a cost game 
refers to the cost that arises when a coalition chooses to cooperate. A cost game can be 
transfered to a game of payoffs (a cost savings game), if the payoff to a coalition is seen 
as the savings that a coalition can achieve from cooperating. Since we study cost games, 
the concepts that are defined will be defined for cost games. Sometimes the prefix ’anti’ 
is put in front of the concepts in cost games (e.g., anti-core, anti-nucleolus). We will not 
do this.

An outcome (or a pre-imputation) y is a vector such that player i is allocated the cost %, 
and J2yi = c(N)1. An imputation is an outcome that fulfills the requirement % < c({«})

i&N
for all i2, i.e., individual rationality (see Chapter 3.3).

If the characteristic function c is monotone, i.e., c(S) < c(T) for 5 C T c N, then 
the game (N; c) is monotone. The game (N; c) is proper if the characteristic function is

1For simplicity, we will write y(S) = ^j/;.
*"es

2For simplicity, we will write c(i) = c({i}).
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subadditive, i.e., c(S) + c(T) > c{SUT) for all S,T c N,Sf]T = 0. In a game with a 
subadditive characteristic function, it is always profitable (or at least not unprofitable) to 
form larger coalitions. The weakest form of subadditivity is if the characteristic function 
is additive, i.e., c(S) + c(T) = c(S\JT) for all S,T C N,Sf]T = 0. A game with an 
additive characteristic function is called an inessential game. All other games are called 
essential.

An interesting class of games is the class of convex games. A cost game is convex if its 
cost function is concave (or submodular), i.e., c(S\JT) + c(Sf)T) < c(S) + c(T) for all 
S,T C N. This can also be expressed as e(SU{i}) — c(S) > c(T(J{f}) — c(T) for all 
i G N and S C T C AT\{z}. This implies a sort of ’snowballing’ effect, i.e., increasing 
cost savings with the size of the coalition.

A subclass of convex games, semiconvex games, was introduced by Driessen & Tijs (1985).

Two games are strategically equivalent if they both have the same set of players N, and 
the characteristic function of one game, c(S), can be related to the characteristic function 
of the other game, c(S), as: c(S) = kc(S)+y^Cj, for S C N, where k is a positive number

ies
and Ci, z e IV, are arbitrary real numbers.

The excess of a nonempty coalition S with respect to a (cost allocation) vector y is 
e{S,y) = c(S)-y(S).

The marginal cost of a player, zn, is the marginal cost of that player in the grand coalition, 
i.e., mi = c(N) - c(N\{i}). For a monotone game, m, > 0 for all i.

Nilssen (1987) has an excellent survey (unfortunately in Norwegian) of basic concepts and 
solution concepts. He discusses the concepts in the context of cost allocation problems 
concerning cooperation in the Norwegian gas-oil industry.

3.3 Solution Concepts

In order to characterize different solution concepts a number of properties can be defined. 
A solution concept may fulfill some of these properties. Depending on what properties a 
decision maker regards as necessary for a fair cost allocation, different solution concepts 
can be chosen. It is also necessary to evaluate the possibility of computing the different 
solution concepts. If'the characteristic function is difficult to compute, it may not be 
possible to use a solution concept that requires the characteristic function value for all 
coalitions to be known in advance. Some important properties for solution concepts are 
the following:

Efficiency (or group rationality or Pareto optimality) states that the sum of the allocated 
cost should be equal to the total cost of the game, i.e., y(N) = c(N).

3Sometimes in the literature group rationality refers to the condition y(S) < c(S), S CN.
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Individual rationality states that no player i should be allocated a cost that is higher 
than the cost of serving only player i, i.e., % < c(i) for all i. We will refer to c(i) as the 
stand-alone cost of player i.

The kick-back criterion requires that no player gets a negative cost allocation, i.e., y,- > 0.

The incremental cost condition states that no player should be charged less than the 
marginal cost of including this player, i.e., y, > m,.

The dummy player property states that if player i contributes nothing (in the reduction 
of total cost) to any coalition, i.e., c(S) = c(S\{i}) + c(i) for all S C N,S 9 i, then the 
cost allocated to t,yy is equal to c(i).

The anonymity (or neutrality or symmetry) condition, states that the order in which the 
players are numbered should not affect the cost allocation.

Regarding the monotonicity condition of a solution concept there is some confusion4 in 
the literature. Monotonicity is sometimes used to describe Monotonicity in the aggregate, 
which implies that if the overall cost increases, no player should be allocated a lower cost,
i.e., if c1(S) = c2(S),S C N and c1(JV) > c2(lV), then y] > y2 for all i. We will use 
monotonicity for this condition. Sometimes monotonicity is used to describe coalitional 
monotonicity, which implies that if the cost increases for a particular coalition, T, and 
stays the same for all other coalitions, S ^T, then no member of T can get a lower cost 
allocated than before the increase, i.e., if c(T) > c(T) and c(S) = c(S),S ^ T, means 
that yi >Vi,iG T. We will use coalitional monotonicity to describe this property.

Additivity requires that if the cost matrix C = {cy} is divided into two independent cost 
matrices, C1 = {cy} and C2 = {cy}, where cy = cy + c?- for all i,j, then y, = yj + y2 for 
all i.

Young (1985) refers to the property covariance (or relative invariance under S-equivalence 
in e.g., Driessen, 1988) if two games that are strategically equivalent, yield corresponding 
results in the cost allocation. This means that if y is the solution to game (N; c) and y is 
the solution to game (IV; c), where: c(S) = kc(S) + ^CyS C AT, then y, = ky, + c,-.

ies

Hartman & Dror (1996) discusses another set of criteria that a good cost allocation method 
should fulfill, in the context of cost allocation for an inventory model. They suggest three 
necessary criteria: Stability (a core solution), justifiability (consistency of benefits with 
costs) and polynomial computability. They show that the Louderback value (Louderback, 
1976) fulfill these three criteria for a specific example. In the example the Shapley value, 
the nucleolus, and four more methods fail to fulfill all three criteria.

A cost allocation concept that is obvious and very easy to compute, is the egalitarian 
method, which divides the cost c(N) equally among the players in N. It is efficient, 
kickback-free, additive, anonymous and monotonic. However, it is not individually ra-

4To add to this confusion monotonicity as describes as a property of cost allocation methods, is not 
the same as the property that a game (or a characteristic function) can be monotone, as described in 
Chapter 3.2.
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tional, and it does not possess the dummy player property. Furthermore it is clearly 
unattractive since it does not relate the cost allocation to the marginal cost of a player.

The concepts we present further are the core, the nucleolus, the Shapley value and the 
r-value. There are also a number of other solution concepts that we present but not 
discuss in detail.

Core

The core is probably the most intuitive solution concept conceived as fair. It is defined 
as those imputations that fulfill:

< c(S), ScN [3.1] 
ies

Vi = c{N) [3.2]
ieN

Constraints [3.1] say that no player or coalition, should together be allocated a cost when 
forming the grand coalition, that is higher than if the individual or coalition would act 
alone. Constraint [3.2] is the efficiency axiom.

It is possible that the constraints [3.1] and [3.2] define an empty set, i.e., that the core is 
empty. One strong condition that guarantees non-emptiness of the core is that the game 
is convex (for a proof, see e.g., Shapley, 1971 or Driessen, 1988). However, the core may 
be non-empty even if the game is not convex.

The core was presented in Gillies (1959), but according to Shubik (1982) Shapley devel­
oped the core as a solution concept. However, the idea behind the core is older than 
that. The contract curve of Edgeworth (1881) and Bohm-Bawerks (1889) solution of 
horse bargaining can be seen as precursors of the core. According to Straffin & Heaney 
(1981), Ransmeier (1942) discusses preliminary criterion of a satisfactory allocation, as 
being the conditions of the core. The idea of the core is also mentioned in von Neuman 
& Morgenstern (1944).

The two main theoretical drawbacks of the core, are that in general the core will not 
consist of a unique solution, and that the core can be empty. The core can be seen as 
a description of candidate allocations, rather than a concept that can be used to find a 
particular allocation.

The kick-back criterion and the incremental cost condition are fulfilled in any solution in 
a non-empty core. Since we do not in general get a unique solution using the core concept, 
it is not meaningful to discuss the neutrality condition or the monotonicity condition.

It is neither meaningful to discuss the monotonicity condition. Two games with the same 
cost matrix (i.e., C1 = C2 = C) could generate two different solutions in the core, which 
would not fulfill the monotonicity condition. If one y\ < yj, then necessarily at least one 
v) > Vj>j 7^ i, since y(N) = c(N). On the other hand, the monotonicity condition can
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be fulfilled when looking at two different cost matrixes C1 and C2, again depending on 
which solutions in the core that are chosen.

The additivity condition is fulfilled, in the sense that if two games with the cost matrices 
C1 and C2 are formulated, and if y\ and y2 are in the core of their respective game, then 
the solution y,- = y\ + y2 will be one of the solutions in the core of the game with cost 
matrix C — C1 + C2. However, the converse is not necessarily true.

Peleg (1992) presents some further properties and proves that a number of these properties 
uniquely defines the core.

The strong e-core (sometimes just called the e-core) are those solutions y, that fulfill the 
requirements:

I> < c(S) +e, ScN
ies
13 y« = c(N)
iSN

The weak e-core are those solutions y, that fulfills the requirements:

Ew £ c(S) +|S|e, ScN
ies
13 Vi = C(N)
i£N

The core is the same as the strong or weak 0-core, i.e., when e=0. Note that a solution in 
an e-core does not necessarily fulfill the individual rationality conditions. The weak and 
the strong e-core were introduced by Shapley & Shubik (1963,1966).

If e is large enough, the strong and the weak e-core are always non-empty (for a proof 
see e.g., Kannai, 1992). The minimal e-value that produces a non-empty e-core could be 
seen as either a measure of the ’distance’ from a non-empty core, or as an indication of 
the size of the core. The e-value can also be viewed as a value that takes into account the 
cost of forming a coalition (such as communication costs).

The minimal e-value that makes the strong e-core non-empty is computed as a sub­
procedure when computing the nucleolus (see below). The solutions in the strong e-core 
for the minimal e-value is called the least e-core. For further discussions on approximate 
cores, see e.g., Kannai (1992).

Nucleolus

The concept of the nucleolus was introduced by Schmeidler (1969). The nucleolus intu­
itively lies in the center of the core, since it minimizes maximal discontent (or maximizes 
minimal content, or gain) for the coalitions.

To define the nucleolus we need the following:
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In a game (iV; c), define for each imputation y an excess vector 9(y) of dimension 2^ — 2. 
Let the excess vector contain the excesses, e(S, y), of each S C N, S ^ 0 with respect to y, 
in a non-decreasing order. This implies that if i < j, 9i(y) < 0j{y) for all 1 < i < j < n. If 
there exists a positive integer q, such that 9i(y) = 9i{y) whenever i < q and 0j(y) > 9i(y) 
for i = q, we say that 9{y) is lexicographically greater than 9(y), and denote this by 
9(y) >i 0(y). With 9(y) >L 9{y) we will mean that either 9(y) >%, 9(y) or 9{y) = 9(y).

The nucleolus is defined as those imputations y that have the lexicographically greatest 
associated excess vector, i.e.,

9(y) >l 0(y), for all y 6 {y\y{N) = c(N),yi < c(i)}.

Schmeidler (1969) showed that the nucleolus always exists, and that it is a unique point. 
He also showed that the nucleolus is always included in the kernel (see e.g., Davis & 
Maschler 1965). For convex games, Maschler et. al. (1972) proved that the kernel coincides 
with the nucleolus. Schmeidler (1969) also showed that the nucleolus is also included in 
every nonempty e-core (i.e., in any nonempty core). Furthermore he showed that the 
nucleolus is a continuous function of the characteristic function.

The fact that the nucleolus always exists and defines a unique point that (in some sense) 
is in the center of any non-empty core, makes it an appealing cost allocation concept. The 
nucleolus is efficient, individually rational, anonymous and possesses the dummy player 
property. Axiomatizations of the nucleolus are presented in Potters (1990) and Snijders 
(1995).

The main theoretical drawbacks of the nucleolus are that it is not additive and it is not 
monotonic. In fact, Young (1985) shows that for |IV| > 5 there exists no coalitionally 
monotonic core allocation method. Another drawback is that the nucleolus does not take 
into consideration possible differences in importance of certain coalitions. All coalitions 
are equally important in the computation of the nucleolus.

The pre-nucleolus is defined in a similar way to the nucleolus. The pre-nucleolus is de­
fined as those pre-imputations y that have the lexicographically greatest associated excess 
vector, i.e.,

8{y) >l 0(27), for all y 6 {y\y(N) = c{N)}

The pre-nucleolus is also a unique point, and except for the individual rationality con­
straint, the pre-nucleolus fulfills all the properties of the nucleolus. An axiomatization 
of the pre-nucleolus is presented in Maschler (1992). If the pre-nucleolus is an imputar 
tion, i.e., fulfills the individual rationality conditions, the pre-nucleolus coincides with the 
nucleolus.

Grotte (1970) introduced the normalized nucleolus (also called the weak nucleolus e.g., 
in Young et. al., 1982 or the per capita nucleolus e.g., in Young, 1985). It is defined 
in the same manner as the nucleolus except that the excesses e(S,y) are divided by the 
cardinality (size) of the coalition, i.e., eN(S,y) = ^j§p. The effect of the normalized 
nucleolus is that the large coalitions gain in importance, since the excesses are reduced
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more for the large coalitions than for small coalitions. Therefore the large coalitions 
can get a lower cost allocated to them in the normalized nucleolus compared to what 
they get in the nucleolus. It is pointed out in Young et. al. (1982) that the normalized 
nucleolus may not fulfill the dummy-player property. However, it is monotonic, although 
not coalitionally monotonic.

The normalized nucleolus is subjected to some axiomatic criticism in e.g., Shapley (1981) 
and Young (1985). The idea behind the criticism is that when formulating a game, all the 
relevant information of the game (AT; c) should be included in the set of players N, and 
in the value of the characteristic function c(S). This means that no other information, 
like the number of players in the coalition, should need to be taken into account. It is 
necessary that all information of the game is included in N and c, if the properties (or 
axioms) presented earlier in this chapter are to hold, for several of the solution concepts.

Young et. al. (1982) also suggests the proportional nucleolus. It is defined in the same 
manner as the nucleolus except that the excesses e(S, y) are divided by the value of the 
characteristic function of the coalition, i.e., eN(S,y) =

Shapley Value

The rationale behind the Shapley value (Shapley, 1953) is that the marginal cost of each 
player when successively forming the grand coalition is reflected. Each way of forming the 
grand coalition is considered to be equally probable. Given a set N (of size n), there are 
n! permutations, i.e., different ways to order the members of N (or to form the coalition 
N).

Suppose that the grand coalition is formed by successively adding players in the order 
Pi,... ,ps,... ,p„. There are (s-l)!(n—s)! ways of adding players (i.e., forming the grand 
coalition), such that player i = ps. Furthermore let S (of size s) be the coalition that 
correspond to the players in the order pi,... ,ps. Then the marginal cost of player i in 
coalition S, is c(S) — c(5\{i})

The Shapley value for player i is computed as the sum over all the coalitions S, of the 
marginal cost of player i in the coalition S', multiplied with the probability that the grand 
coalition is formed that way, i.e.,

4>i= Y
SCJV|i6S

(|g|-l)!(|lV|-|S|)!
|A|! (c(2)-c(S\{i}))

The Shapley value is a unique solution to a game. It is the only value that satisfies the 
three properties additivity, symmetry and the dummy-players property (for a proof, see 
e.g. Driessen, 1988). Furthermore, the Shapley value is efficient and fulfills the anonymity 
conditions. It is also covariant.

The main theoretical drawback of the Shapley value is that even if the core is non-empty, 
the Shapley value may not be included in the core, e.g., it does not necessarily fulfill the
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individual rationality conditions. However, the Shapley value is in the core of every convex 
game. If certain multiplicity of the extreme points of the core is taken into consideration, 
the Shapley value is in the center of gravity of the core of a convex game (see e.g., Shapley, 
1971 or Driessen, 1988). Another drawback of the Shapley value is that in many cases, the 
assumption that all possibilities to successively form the coalition are equally probable, 
may not hold.

A concept related to the Shapley Value, is the Shapley-Shubik power index (see e.g., Roth, 
1988). It is the Shapley Value adopted to simple n-person games (e.g., voting games). 
A simple game is a game (IV; v)5 such that: v(S) G {0,1}, S C N, v(N) = 1 and 
v{S)<v(T),ScTcN.

r-value

Tijs (1981) introduced the r-value. Tijs & Driessen (1986) discuss the cost gap allocation 
method. This is the equivalence to the r-value, for cost games. We will call this method 
the r-value, also for cost games. Tijs & Driessen (1986) define a (cost) gap function g(S) 
of a game (IV; c), as:

9{S) =
c(S) - mi for S ^ 0

iSS
0 for S = 0

The rationale of the value is that if a player i is allocated a cost y* > m; + g(S) for some 
coalition S where i G S, then the player i will form the coalition S. In this coalition all 
players j G S,j ^ i can get a cost of m,- and player i can absorb the cost m;+g(S), which 
is less than the cost allocated to player i.

The non-separable cost mi, can be seen as a lower bound for the cost of player i (since 
this is the marginal contribution of player i to the grand coalition). Equivalently m; + w,- 
can be seen as an upper bound for the cost of player i (what i receives if all other players 
are allocated their marginal cost, in the best coalition 5, from the view of i). The r-value 
is the unique efficient allocation on the line between the vectors m and w.

The T-value is based on separable (or marginal) and non-separable costs. In the first 
step of such a method, the separable cost of each player i G IV, is allocated to player 
i. In the second step, the remaining, non-separable cost, g(N) = c(IV) - mi, is

ieN
allocated according to some weight vector w = (wi,w2,...,wn), where w, >0,1 G N. 
The allocation is y, = —g(N) The weight vector in the r-value is computed as

ieN
"i = 38 3is)-

5These types of games are most frequently games where the characteristic function refers to payoffs. 
Therefore we let the characteristic function be v (instead of c as in the cost games).
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The r-value is based on the assumption that for subsets S C N one has c(S) > y
ies

and ^2 mi > ff(fV). This does not hold for all games, which means that the r-value can 
iew

not be applied to all games.

For games with the properties c(S) > and ^ m,- > g(N), the r-value is efficient,,
«es iew

individually rational, possesses the dummy-player and the anonymity property and it is 
covariant. It is also a continuous function of the characteristic function.

A drawback of the r-value is that it does not necessarily lie in the core. Driessen & 
Tijs (1985) present conditions which guarantee that the r-value lies in the core. In 
particular they show that for games with a constant gap function, i.e., games such that 
g(S) = g(N) >0,5 C iV\0, the nucleolus, the Shapley value and the r-value coincide.

The r-value is discussed in detail in e.g., Driessen (1988). An axiomatization that uniquely 
defines the r-value (using properties not described in this thesis) is presented in Tijs 
(1987).

Other solution concepts

There are a number of methods other than the r-value, that are based on separable 
and non-separable costs. Three methods of this type are described by Tijs k Driessen 
(1986). These methods are efficient and anonymous, but they do not necessarily fulfill 
the individual rationality condition (i.e., the solutions are not necessarily in the core). 
The methods are the following: In the equal charge method, where the weight vector 
is Wi = l,i 6 N, the non-separable cost is divided equally among the players. In the 
alternative cost avoided method, where to; = c(i) — mi,i 6 N, i.e., the non-separable cost 
is divided in proportion to the savings that are made for each player by joining the grand 
coalition instead of acting alone. A method related to the alternative cost avoided method 
is the separable cost remaining benefits method, where to; = min{c(i), &;} — m;,i G N, 
where b, is the estimated benefit to player i if only the purposes of player i are served. 
The idea is that a project would not be undertaken, if the benefit was less than the cost 
(i.e., if bi < mi).

Gately (1974) proposed a solution method that uses a cost savings game. He defines each 
player’s propensity to disrupt. As pointed out in Straffin k Heaney (1981) the alternative 
cost avoided method is the same as minimizing the maximal propensity to disrupt.

A (pre-)imputation y is said to be dominated by a (pre-)imputation vector y if there is a 
non-empty S C N such that y(S) > c(S) and y; < y;,i G S. von Neuman k Morgenstern 
(1944) suggested the solution concept of stable sets (or von Neuman-Morgenstem solu­
tions), as the set, V, of (pre-)imputations that are not dominated by any other vector in 
V. Every stable set contains the core. Shapley (1971) proves that for convex games the 
stable set is unique and coincides with the core.
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Other solution concepts which we will not discuss further are the bargaining set (Aumann 
& Maschler, 1964 and Peleg 1963), and the kernel (Davis & Maschler, 1965).

3.4 Literature Survey

This literature survey covers cost allocation problems, using cooperative game theory. 
The focus is on cost allocation in games that are closely related to our problems. Much 
attention is paid to tree games, since these games have been studied extensively in the 
literature. Tree Games are also related to Traveling Salesman Games. Since this the­
sis covers the Traveling Salesman Game and the Vehicle Routing Game, the literature 
covering these problems is studied in detail.

There are also other games that are related in the sense that they produce interesting 
combinatorial problems. These are for example the Bin-packing Game (Dror, 1990), and 
the Knapsack Game (Dror, 1990). Other game situations producing combinatorial games, 
that have been studied are e.g., the Network Design Game (see e.g., Kubo & Kasugai, 
1992) and the Assignment Game (see e.g., Shapley & Shubik, 1972). However, these 
games are not discussed in this thesis.

The Bin Packing Problem (BPP) can be described as: Given a finite set of items, U = 
{ui,U2,...,u.n}, each of a rational size between zero and one, find a partition of U with 
the smallest number of disjoint subsets U\, 11%,..., such that the total size of each subset 
does not exceed one. If the cost c, of each bin j is arranged in an increasing order, the 
cost will be minimized if the number of bins is minimized.

The BPP Game is the problem of how to divide the total cost between the different items 
in U. A practical situation that is a BPP is the following: Suppose several companies wish 
to transport products overseas, using standard containers. The total cost is minimized if 
the number of containers are minimized. Since the companies may share a container, the 
total cost has to be allocated among the companies.

The 0-1 Knapsack Problem can be described as: Suppose that the cost of transportation 
of a carrier is fixed to C, and that there is a finite set U = {u\,U2,... ,un} of potential 
items to load in the carrier. Each item has an associated volume u, > 0, and a revenue 
r{. The total size of the carrier is V. Let y, = 1 indicate that item U{ is loaded, and let 
■yi = 0 indicate that item Ui is not loaded. The 0-1 Knapsack problem is the problem of

n n
which items to load, so that ^3 < V and that is maximized.

i=1 i=l
A difference between the 0-1 Knapsack Problem and the BPP, is that in the 0-1 Knapsack 
Problem only the most profitable items are packed, while in the BPP all items have to be 
packed. The Knapsack Game, is how to assign the shipping cost C to each of the items 
loaded.

Linear Production Games were studied by Owen (1975). The article of Owen (1975) is 
interesting since he uses mathematical programming to draw conclusions about the core
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of the game. Linear Production Games can be described in the following way: Suppose 
that a set of players, N, is given, where each player is given a vector i 6 N, of resources. 
The resources can be used to produce goods which can be sold at a given market price. 
The Linear Production game is the problem of how to allocate the total earnings among 
the players that contributed with the resources. The characteristic function of this game 
is a Linear Programming (LP) problem, thus it is a special case of LP-Games (see e.g., 
Tijs, 1992). Owen (1975) uses duality theory in LP to obtain equilibrium prices for 
the resources, which are used to prove that the core of the Linear Production Game is 
non-empty.

A number of references in the intersection of mathematical programming and cooperative 
game theory are mentioned in Tijs (1992).

3.4.1 Tree Gaines

A tree (see Figure 3.1) is a connected graph that contains m nodes and m — 1 edges. A 
spanning tree (see Figure 3.2) is a tree that spans all the nodes N in a graph.

Figure 3.1. Two examples of trees.

Figure 3.2. A spanning tree.

A minimum cost spanning tree (MOST) is a spanning tree where the sum of the edge 
costs is minimal among all spanning trees.
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Given a graph G = (V, E), V = {0,1,..., n} where 0 is the common supplier (or the root) 
and the set N = {1,2,... ,n} is the users’ set, and E are the edges each with a cost cy 
between node i and j. Given the cost data for a graph, presented in Table 3.1, the MOST 
to the graph of this cost data would be the the tree in Figure 3.3.

Gust. 0
1 5 1
2 8 5 2
3 11 9 4 3
4 6 6 3 6 4
5 9 11 8 7 5 5
6 9 13 12 13 9 6 6
7 4 10 11 13 8 9 5

Table 3.1. Cost data (C = {cy-}, cy = cy-) for a graph.

0

Figure 3.3. A MOST to the cost data in Table 3.1.

A tree structure can be found in many practical situations. A need for cost allocation 
in a tree would arise when sharing the cost for constructing e.g., a cable-TV network, a 
telephone network, or a water pipe system (where there is no doubling of connections for 
e.g., security reasons).

TVee Games, i.e., the problem of how to divide the cost arising in various sorts of trees, 
is the problem of how to divide the cost between the players in the tree (situated at the 
nodes of the tree). Tree Games were first introduced by Claus & Kleitman (1973). They 
discuss a number of plausible cost allocation methods for a MOST. They do not use the 
notion of the core, but the requirements that they give for an acceptable cost allocation 
method implies the core.

A MCST-Game is a cooperative game (N;c) where the characteristic function c(S) is a 
MOST problem.



34 Chapter 3 Cost Allocation and Cooperative Game Theory

Bird (1976) gives an erroneous proof (see Granot & Huberman, 1981) that the MCST- 
Game has a non-empty core. He defines the irreducible core of a MCST-Game. The 
irreducible core is shown to be stable under union of additional players, i.e, for solutions y 
in the irreducible core, if a set of players are added to the MCST-Game (N; c) to form the 
game (N,c), there exists solutions y, < yi,i £ N. The core is not stable under union of 
other players. Bird (1976) also gives an example of a Tree Game where multiple sources 
are allowed, that has an empty core.

Granot & Huberman (1981) showed that a solution in the core of a MCST-Game, referred 
to as the L-solution, can be read from an associated MCST graph. Thus, the core of a 
MCST-Game is never empty. Consider a complete graph G = {V,E). In this graph let 
Fjv = (IV, En) be a MCST. This tree induces a partial order > on 0 LUV. Write i > j if 
node j is on the (unique) path connecting node i and node 0 in F#. Under the order > each 
node i G N has one immediate predecessor p(i) and a (possibly empty) set of immediate 
followers F(i). Granot 6 Huberman (1981) showed that the vector L(c) = (ylt y2, - ■ •, yn) 
(the L-solution) is in the core of the MCST-Game (AT;c), where y, = cip(i). When the 
MCST solution is not unique, L(c) may not be unique either. The L-solution to the 
problem in Figure 3.3 would be L{c) = (5,5,4,3,5,5,4).

A weakness of this solution is that it discriminates users close to the depot. All the 
followers of a node i benefit from the connection that node i has to the subtree connected 
to the depot, but in the L-solution node i pays the whole cost of this connection. In this 
way a node i with F(i) — 0 (i.e., each leaf), pays its minimum allocation. Even though 
the L-solution is a core solution, it does not seem to be the most fair, since it is an extreme 
solution.

Granot & Huberman (1981) also discuss the core, the nucleolus and the Shapley value of 
a MCST-Game (N;c) where the MCST, IV, has more than one edge, p > 1, incident to 
the common supplier 0. They show how this game can be divided into p MCST-Games 
and how the core and the nucleolus easily can be constructed from the solutions to these 
games. They also show that the simple method can not be applied to compute the Shapley 
value.

Granot & Huberman (1984) present two efficient procedures for generating cost allocation 
vectors in the core of a MCST-Game, using so called weak demand operations and strong 
demand operations. They also show how the nucleolus can be computed efficiently using 
strong demand operations. Finally they show that in a MCST-Game, the nucleolus is the 
unique point of the intersection of the kernel and the core.

Even though MCST-Games always posses an non-empty core, they differ in general from 
convex games (see e.g., Granot 6 Huberman, 1982). However, there exists convex MCST- 
Games (e.g., the games presented in Bird, 1976, Megiddo, 1978a, and Littlechild, 1974). 
Granot & Huberman, (1982) introduce the class of permutationally convex games, and 
shows that permutationally convex games posses a non-empty core. They also show that 
both convex games and MCST-Games are permutationally convex games.

Granot et. al. (1996) studies the Tree Enterprise and its game. In particular they study 
the Standard Tree Enterprise. This is a tree, where there are non-negative costs on the
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arcs, one or more players are located in each vertex, the root is not occupied, and only 
one arc leaves the root. They show that the core of the Standard Tree Enterprise Game 
is non-empty, and that the kernel consists of a unique point in the core (and therefore 
coincides with the nucleolus). They describe a procedure to find the nucleolus/kemel, 
that is based on eliminations of arcs and condensations of players of the tree. For certain 
trees (e.g., chains) the procedure to find the nucleolus involves 0(n) operations.

Megiddo (1978a) has presented a procedure to find the nucleolus of a tree game in 0(n3) 
operations, and Galil (1980) has reduced the number of operations needed for Megiddo’s 
procedure to O(nlogn).

There are also other Tree Games that have been studied. Megiddo (1978b) treats the 
Steiner Tree Game, which is a game where the members of TV (J 0 is just a subset of the 
nodes of G, i.e., the players are not limited to use only arcs linking two members of TV U 0, 
but they may use some additional arcs. Megiddo (1978b) proves that the core of such 
a game may be empty. He also shows that if a MCST-Game (TV; c) on a graph G is 
modified such that the characteristic function 5(5) in the game (TV; 5) is a Steiner Tree on 
G, the core of (IV; 5) is included in the core of (TV; c), and that the L-solution of Granot 
& Huberman (1981) is included in the core of (TV; 5).

The 1-tree Game is studied by Gothe-Lundgren et. al. (1992). The 1-tree problem (see 
e.g., Held & Carp 1970, 1971) is the problem of connecting the n users to each other by 
a MOST, Hw, and Hjv to the common supplier by the two least cost edges incident to 
the supplier. The 1-tree problem is interesting, since it is a relaxation to the Traveling 
Salesman Problem. Gothe-Lundgren et. al. (1992) show that the core of the 1-tree Game 
is non-empty. They also present a procedure to find the nucleolus, using a constraint 
generation approach, similar to the procedure of finding the nucleolus in the Traveling 
Salesman Game and the Vehicle Routing Game which is presented in Chapters 5 and 
6. The subproblem in the constraint generation procedure is the Node Weighted Steiner 
Tree problem, which is studied in e.g., Engevall et. al. (1995) and Segev (1987).

Bjprndal (1995) also studies the computation of the nucleolus of tree and 1-tree Games.

3.4.2 Traveling Salesman Games

Hoffman & Wolfe (1985) introduce the Traveling Salesman Problem (TSP) as follows:

’If a salesman, starting from his home city, is to visit exactly once each city 
on a given list and then return home, it is plausible for him to select the order 
in which he visits the cities so that the total of the distances traveled in his 
tour is as small as possible. ’

A Hamiltonian cycle is a cycle that visits each node in a graph exactly once. The TSP 
can in graph-theory terminology be defined as the problem of finding the minimum weight
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Hamilton cycle in a weighted complete graph. The TSP can also be defined mathemati­
cally as:

min 53 53 %
ieNjeN

13 %, =
ieN

53 % =
j€N

1353% <
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Xii G

1, jeN [3.3]

1, i(=N [3.4]

l'5| — 1,
f SCN
1 |S|>2 [3.5]

{0,1}, i,j € N [3.6]

where: 
% = \ 1 if the arc between nodes i and j is used 

0 otherwise

Conditions [3.3] states that exactly one arc should be used entering node j. Conditions 
[3.4] states that exactly one arc should be used leaving node i. A subtour is a tour 
that covers only the nodes in some set S C N. A subtour covering the nodes S, has 
exactly |S| arcs. In the TSP, no subtours may be included and the conditions [3.5] are 
the subtour-breaking inequalities.

The TSP-Game is the problem of how to divide the total cost c(N) — z of the optimal 
solution to the TSP, among the players covered by the tour.

Dror (1990) shows that the core of a TSP-Game without a home city is empty. This 
is shown in the following example. For each player i we have c(i) = 0. The individual 
rationality constraints then require that % < c(i) = 0. Furthermore, assume that c(N) > 
0. Then we require that 53 Vi = c(IV), which clearly is a contradiction. Thus no outcome 

ieN
y is in the core.

Dror (1990) shows in the following example that the characteristic function of a TSP- 
Game (N;c), without a home city, may not be subadditive: In the graph in Figure 3.4, 
let the distances of the arcs not shown be very large, and let S = {1,4} and T = {2,3}. 
Then c(S) = c(T) = 2 and c(5UT) = 22. Clearly c(S) + c(T) = 4 £ c(SUT) = 22. 
Thus the TSP-Game without a home city is not subadditive in general.

Figure 3.4. A TSP-Game without a home city, that is not subadditive. (Dror, 1990).

Dror (1990) also discusses the TSP-Game with a home city. If a home city is included, 
the TSP-Game is subadditive.
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Tamir (1989) gives several examples of games where the core is empty. Two examples of 
graphs with an empty core for the corresponding TSP-Games are shown in Figure 3.5 (all 
arcs have unit length).

\
\

□
Figure 3.5. Examples of graphs for TSP-Games with an empty core.

Tamir (1989) also gives some sufficient conditions for the core to be nonempty in special 
cases of the TSP-Game. As a corollary he also shows that if the graph G of a TSP-Game 
with a symmetric cost matrix6, and has at most 5 nodes (|1V| < 4), the TSP-Game has a 
non-empty core.

Kuipers (1993) shows that the core is also non-empty for TSP-Games with a symmetric 
cost matrix that has 6 nodes (|1V| < 5).

Potters et. al. (1992) describe the fixed route TSP-Game. In this TSP-Game the order in 
which the players are served, remains the same for all coalitions. They show that if the cost 
matrix fulfills the triangle inequality7. , and the fixed route is a minimal cost TSP-route, 
then the core is non-empty for the fixed route TSP-Game. Fishburn & Poliak (1983) gives 
three conditions that should be fulfilled for a cost allocation method. These conditions 
are modified slightly by Potters et. al. (1992), into efficiency, individual rationality, and 
that each player pays at least his marginal cost. They then describe the simple allocation 
method % = Ac(i) + (1 — A)mj, where A is chosen such that y~',yi = c(JV). This method

i£N
gives a cost allocation satisfying the three conditions. However, the allocation does not 
necessarily lye in the core.

Potters et. al. (1992) give an example of a TSP-Game with a cost matrix that fulfills 
the triangle inequality, and that has an empty core. However they show that if any cost 
matrix C = {cy} is modified in the way described below, the corresponding modified 
TSP-Game has a non-empty core. Define a matrix L(a,b) = {Zy }:

,ab _ f aj+bj if i,j € ZVIJ0 and z /j.
“ \ Oiii = j.

The numbers a, and 6; can be seen as an entry and exit tax that has to be paid when 
entering and leaving, respectively, city i. If C1 = C + L(a,b), Potters et. al. (1992)

6A symmetric cost matrix, C has cy = cji for all i,j e N.
7Ttiangle inequality states that for a cost (or distance) matrix C = {cy-}, c,;; < cy + Cjk
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show among other things that there exists a real number P(C) such that the TSP-Game 
corresponding to the cost matrix C1 has a non-empty core, if and only if Oq + bo > 0{C). 
Potters et. al. (1992) finally show that TSP-Games in a graph have a non-empty core if 
|1V| < 3, and if the cost matrix fulfills the triangle inequality (even if the matrix is not 
symmetric).

In a working paper, Engevall et. al. (1996) shows an example of an empty core in a (Eu­
clidean TSP-Game). The Euclidean TSP-Game is the game where the graph is complete 
(i.e., there is an arc between each pair of players i,j G IV (J 0) and the length of an arc 
is equal to the Euclidean distance between the players. The example they present is the 
following:

Suppose that a large number of customers are spread out on a circle, and along 3 radii, 
where the depot is located in the center of the circle. Suppose that the six coalitions, 
Si,..., Sg are identified, where Si, S% and S3 correspond to the customers along each of 
the radii, and S4, S5 and Sg correspond to parts (in a natural fashion) of the circle (see 
Figure 3.6a).

....... --..Si

/
X &/Depot /

V <->5

Figure 3.6a. Example of a TSP, where the corresponding Euclidean TSP-Game has an empty
core. (Engevall et. al., 1996).

An optimal solution to the TSP in Figure 3.6a is e.g., serving the coalitions in the order 
Si, S5, S2, Sg, S4, S3 (see Figure 3.6b). If the radius of the circle is r, the optimal objective 
function value is (2tt + 4 + V3)r — e, where e is small if the customers are close to each 
other.

Figure 3.6b. An optimal solution to the TSP of Figure 3.6a.
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The characteristic function value for the grand coalition, c(N) in the corresponding TSP- 
Game is (2ir+4 + y/Z)r — e. We also know that for a solution in the core, the inequalities 
[3.6a]-[3.6c] (see Figure 3.6c) must hold:

+2/i
+2/i +2/2

+2/2

+2/3 +2/5 +2/6 < S3,85, S&}) — (y + 2)r [3.6a]
+2/4 * +2/6 <<:({%,&,%,%}) = (^ + 2)r 

<c({%,&,&,%}) = (# + 2)r
[3.6b]

+2/3 +2/4 +2/5 [3.6c]

[3.6a]
{S1,S2,S4,S6}

[3.6b]

Figure 3.6c. Optimal solutions to the TSPs for the coalitions corresponding to constraints
[3.6a]-[3.6c].

The inequalities [3.6a] - [3.6c] imply that

2i/i + 27/2 + 27/3 + 27/4 + 2t/5 + 2y& < (4tt + 6)r [3.7]

which is equivalent to

y{N)<(2n + 3)r [3.8]

However, the efficiency condition in the core formulation require that y(N) = c(N) = 
(27r + 4 + y/3)r - e, which can not hold (for e small enough) at the same time as [3.6a]- 
[3.6c] hold. Thus, the TSP-Game corresponding to Figure 3.6a has an empty core.

3.4.3 Vehicle Routing Games

In the Vehicle Routing Problem (VHP) a set of customers, each with a specific demand, 
and a central depot from which the customers are supplied by a number of vehicles, are 
considered. Each vehicle has a specified capacity, and it is assumed that each vehicle 
is used in one route at the most. A route is a path that starts at and returns to the 
depot, and passes at least one customer on the way. Given the cost of transportation 
using each vehicle, the Vehicle Routing Problem is the problem of minimizing the total 
transportation cost, given that the capacity of each vehicle is not exceeded, and the 
demand of the customers is satisfied.
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If the fleet is homogeneous, i.e., the capacities and costs of all trucks are equal, and if it 
is assumed that each customer is visited exactly once, the VHP is the basic VHP. The 
basic VRP8 can be formulated mathematically in the following way:

Assume that for each subset of customers for which the total demand does not exceed the 
vehicle capacity, a minimal cost route, r, is known. Denote the cost of such a route qr, 
and the set of all such cost routes R. Let:

1 if customer i is covered by route r
0 otherwise
1 if route r is chosen 
0 otherwise

Then the VRP can be formulated as a set partitioning problem (SPP):

53 9r#r
refi
y i airxr = 1, i € N
rSR

Xr > 0, r G R
Xr integer , r G R

dir =

xr —

The minimal cost, qr, of each route r is the solution to a TSP (see Chapter 3.4.2.) Since 
the number of columns is large, this formulation of the VRP is most useful if column 
generation (see e.g., Balinski & Quandt, 1964) is applied.

The VRP has many natural applications in distribution situations. The basic VRP and 
many of its extensions have been studied extensively in the literature (see e.g., Golden & 
Assad, 1988).

The Vehicle Routing Game is a game (N;c) where the total cost of the VRP is to be divided 
among the players (i.e., the customers). The VRP-Game is studied in Gothe-Lundgren 
et. al. (1996), where the corresponding VRP is the basic VRP.

Gothe-Lundgren et. al. (1996) prove that the number of inequalities that defines the core 
in the VRP-Game can be reduced significantly by only consider coalitions that can be 
served by one vehicle. They give an example of a VRP-Game with an empty core:

The location of three customers and a depot is shown in Figure 3.7. The costs of the arcs 
are also given in the figure. Each customer has a demand of one unit, and the capacity 
of each vehicle is two units (suppose a supply of at least two trucks). The characteristic 
function values of the game (IV; c) where N = {1,2,3}, are: 
c(S) = 2, |S| = 1
c(S) = 3.7, |5| = 2
c(N) = 5.7

The value of the grand coalition correspond to e.g., the routes Depot-1-2-Depot and 
Depot-3-Depot. Due to the symmetrical roles of the three customers, the nucleolus is

8For simplicity we will refer to the basic VRP simply as VRP



3.4 Literature Survey 41

y =(1.9,1.9,1.9). For any coalition |S| = 2 we have y(S) = 3.8 ^ c(S), i.e., the nucleolus 
does not fulfill the core inequalities. Since the nucleolus belongs to any non-empty core, 
we can conclude that the core is empty for this game.

Depot \

Figure 3.7. Example of a VRP-Game with an empty core. (Gothe-Lundgren et. al., 1996).

Gothe-Lundgren et. al. (1996) prove that the core of the VRP-Game is empty if and only 
if there is an integrality gap between the optimal solution to the SPP formulation and 
the optimal solution to the LP-relaxation of the SPP formulation. Finally they show how 
the nucleolus can be computed using a constraint generation approach.

The models and methods presented in Gothe-Lundgren et. al. (1996) will be discussed in 
detail in Chapters 5 and 6.

3.4.4 Applications

Solution concepts from Game Theory have been applied to several real-life problems. 
Some of them will be described in this chapter.

Aircraft landing fees

Littlechild & Thompson (1977) present a case where aircraft landing fees are computed 
using cooperative game theory. Using computations based on data from the airport of 
Birmingham in 1968-69, they investigate:

• If the airport of Birmingham was built at the right size, i.e., if the size of the airport 
is such that maximal net present value of benefits is maximized.

• If the movement charges applied were fair, i.e., if:

— A smaller aircraft pays less than a larger (fairness criterion I).
— The charge of a larger aircraft does not exceed the charge of a smaller aircraft 

by more than the difference in cost for the two aircraft (fairness criterion II).
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• If the charges were efficient9, i.e., if:

- The charges give the airport authority incentive to build an airport of optimal 
size.

— There is no cross subsidization between different sizes of aircraft.

— The pricing scheme gives all aircraft that can use the airport an incentive to 
do so.

• How the charges compare to various rules of thumb derived from game theory. They 
study the Shapley value and the nucleolus.

Littlechild & Thompson (1977) conclude from their analysis that the chosen runway size of 
the airport is justified, provided that the smaller runway sizes are justified. They can not 
conclude weather it would be optimal to build a larger runway, since data corresponding 
to a larger runway than the actual one, can not be collected.

They also conclude that the landing charges not quite (but almost) fulfill neither the 
efficiency condition, nor any of the conditions on fair charges.

In the game theoretical context they define each movement (take-off and landing) as one 
player, each with a requirement on the runway depending on the size of the aircraft. 
Littlechild & Thompson (1977) compute both the benefit and the cost of each movement. 
Thus they are able to compute the nucleolus for two different games, and conclude that the 
nucleolus in the game concerning benefits is close to fairness criterion I, and the nucleolus 
in the cost game is close to fairness criterion II. However, the actual charges are far from 
the nucleolus computed in each of the games.

Littlechild & Thompson (1977) can not compute the Shapley value for the benefit game 
exactly, but they compute an approximative value. If the cost game is studied, the Shapley 
value can be computed easily, through a simplification of the formula for computing it. 
They conclude that the approximative Shapley value for the benefit game is closer to the 
actual charges than the nucleolus, and that the Shapley value for the cost game is even 
closer to the actual charges. They also say that airport economists actually have suggested 
allocation rules for allocating construction costs, that coincides with the Shapley value 
for the cost game.

Water resource planning (Tennessee Valley Authority)

Straffin & Heaney (1981) analyze the Tennessee Valley Authority (TVA) from a game 
theoretical perspective (see also e.g., Parker, 1943). The TVA was formed in the 1930’s 
and was authorized to undertake large scale, multiple purpose water resource development 
projects in the Tennessee River basin.

9This efficiency conditions is not to be mixed up with the efficiency requirement in a cooperative game, 
described in Chapter 3.3.
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The major purposes to be served were improved navigation, flood control and provision of 
electric power, with subsidiary benefits to irrigation, national defense and the production 
of fertilizer. It was decided that the cost were to be allocated to the different purposes 
involved.

TVA engineers and consultants examined a number of cost allocation methods. Some of 
these methods are closely related to concepts in cooperative game theory. These concepts 
are discussed further in Straffin & Heaney (1981).

Straffin & Heaney (1981) also present the computations of a specific game using methods 
suggested in the TVA, and concepts from cooperative game theory (e.g., the nucleolus 
and the Shapley value). According to Parker (1943), the final cost allocation of the TVA 
was not based on any one mathematical formula, but rather fixed by judgment.

Water resource development

Young et. al. (1982) discuss different methods for allocating costs of water supply projects 
among users. They discuss both simple proportional methods, as well as solution concepts 
from cooperative game theory (e.g., the Shapley value and variants of the core).

Young et. al. (1982) exemplify the different methods in a case study. An association called 
Sydvatten Company was formed by some municipalities in Skane in southern Sweden. The 
association started to design a project for obtaining water from a lake from outside the 
region, via a tunnel. A total of 18 municipalities (not only those forming Sydvatten Com­
pany) could participate in the project. 18 players can form 218 -1 = 262 143 different 
coalitions. To compute or to estimate the characteristic function of each coalition would 
be impossible. Therefore the 18 municipalities were divided into six independent units. 
When computing the characteristic function, considerations were taken that not all coali­
tions would actually form in practice. For some coalitions S = Si (J S2 the characteristic 
function was simplified to c(S) = c(Si) + c(%).

Young et. al. (1982) show that in the case studied, the proportional allocation princi­
ples suggested does not meet the individual rationality constraints. The separable cost 
remaining benefits method does not fulfill the constraints of the core, and neither does 
the Shapley value. Using an example they show that if the cost of the project turn out 
to be higher than was planned, the nucleolus will allocate a lower cost to one of the 
participants. The Shapley value and the normalized nucleolus allocates any increase in 
cost equally among the players. These properties of the nucleolus, the Shapley value and 
the normalized nucleolus are considered as undesirable properties by Young et. al. (1982). 
The remaining method they studied is the proportional nucleolus, which is included in 
any non-empty core, and allocates an increase in proportion to the cost savings of partic­
ipating in the game. The proportional nucleolus is still fairly complicated to compute (as 
are the nucleolus, the normalized nucleolus and the Shapley value).

Straffin & Heaney (1981) conclude that the proportional nucleolus is a strong candidate 
for a cost allocation method in water resources development, even though they state that
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there is no one best method. In reality, the cost was simply allocated in proportion to 
population.

Investment in electric power

Gately (1974) studies the problem of distribution of gains from regional cooperation in 
planning investment in electric power. He uses the case of four states of the Southern 
Electricity Region of India. Gately uses a number of intuitive methods, as well as concepts 
from cooperative game theory (i.e., the core, the kernel and the Shapley value). Gately 
(1974) also introduces the concept of a players propensity to disrupt.

Analyzing the cost allocation using the different methods, Gately (1974) concludes that 
among the methods used, only the Shapley value and the value that equalizes each player’s 
propensity to disrupt are candidates for mutually acceptable methods.

Telephone billing rates

Billera et. al. (1978) consider the problem of determining telephone billing rates at Cornell 
University. The problem is divided into two parts. The first part regards the problem of 
which services (out of four possible) to buy, in order to provide long-distance calling. The 
second part regards the problem of how to charge the users for the calls.

The costs consist to a large extent on components that are fixed, i.e., do not vary with the 
usage of the lines. Some of the services that can be bought, allow for a maximum usage to 
a fixed cost. The cost for the other services is mainly proportional to usage time or usage 
time and distance. The usage, specified to a maximum in some services, is accumulated 
during the month. This means that in the beginning of the month the marginal cost of a 
call is 0, while at the end of the month it may be greater than 0, if supplementary services 
have to be bought. However, it is not reasonable to charge little to calls in the beginning 
of the month, and more at the end of the month.

The client in the study (Cornell University) required that the rates must exactly cover 
the expenses. They must also be ’fair’ or ’symmetric’ in the sense that two calls made 
to the same destination during the same period of the day, must be charged the same, 
regardless of e.g., the purpose of the calls, or the office that placed the call.

The game is modeled as a non-atomic game (i.e., an infinite, or large, number of players), 
where the players represent the individual calls. Billera et. al. (1978) use the solution 
method of the Aumann-Shapley value (Aumann 6 Shapley, 1974) in order to suggest the 
telephone billing rates. The rates computed by Billera et. al. (1978) was published by 
Cornell University, and used for billing purposes.
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Modeling of the Norsk Hydro Case

In this chapter we present the categorization of the distribution planning situation of 
Norsk Hydro, and discuss the disaggregation of the situation that is made. We also discuss 
important presumptions that we have made in the modeling, including the problem of 
allocating the remainder. Finally we present the data collected in the cases that we have 
studied, i.e., in the Traveling Salesman Game and the Vehicle Routing Game.

4.1 Problem Categorization

The transportation problem of Norsk Hydro can be categorized as a Probabilistic Vehicle 
Routing Problem (PVRP) (see e.g., Jaillet & Odoni, 1988). A PVRP can be described 
as a Vehicle Routing Problem (VRP), where only a subset of the customers have to be 
visited, at a given instance of the problem. Since Norsk Hydro do not know exactly which 
day they will receive orders from their customers, their distribution planning problem is 
a PVRP. If it was Norsk Hydros responsibility to assure that the customers did not run 
out of stock, the problem could be seen as an Inventory Routing Problem (see e.g., Dror 
& Ball, 1987).

If Norsk Hydros cost allocation problem is to be studied, at least two cases can be iden­
tified, depending on the aim of the cost allocation.

If the aim is to allocate the actual costs of tours that have taken place, the problem can be 
seen as a game in a Multiperiod Vehicle Routing Problem (MVRP). It can be described as 
the problem of dispatching vehicles to satisfy multiple demands for services that evolve in 
a real-time fashion. The VRP is no longer stochastic, since the demand and the location 
of the customers are known.

Since one of our aims of the study is to acquire a deeper understanding of the character­
istics of the cost allocation problem, it is necessary to further disaggregate the problem. 
The MVRP is a difficult problem to solve. A disaggregated problem allows us to study 
what details that are important to take into consideration e.g., when solving the more

45
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complicated MVRP-Game.

The MVRP may be simplified and disaggregated into a number of single period VRPs, 
e.g., a number of VRPs that each cover the customers served during one day. The (single 
period) VRP can in turn be simplified by studying a number of Traveling Salesman 
Problems (TSP), e.g., the tours that were carried out.

The study of the less complex TSP-Game and VRP-Game, can facilitate the understand­
ing of the aspects needed to be considered when studying a more complicated game. It 
can also be interesting to compare the cost allocations for various solution concepts in 
the TSP-Game, with the results in the VRP-Game. These comparisons may indicate 
which solution concepts that can be used in a less complicated game to approximate the 
solutions of a more complicated game. This would be useful in the development of an 
operational tool for the cost allocation problem.

If the aim is to roughly estimate the long-term profitability of a customer or customer 
group, the stochasticity of the PVRP should not be excluded. The cost allocated to a 
customer or customer group, would risk to depend too much on the situation in the case 
studied. If a day when the planning situation was more difficult than usual (in the sense 
that it leads to higher costs than usual), was included in the game, this could lead to 
an disadvantageous estimation of the costs of the customers that happened to be served 
that day. The conclusion is that the game chosen for the study either has to be kept 
stochastic in some way, or it has to be large enough for any unusual situations to be of 
minor importance. We do not further discuss these possible approaches.

In the TSP-Game we study one tour that has been carried out. In the VRP-Game we 
study the VRP that corresponds to the tours carried out during one day, delivering one 
product from one depot.

4.2 Presumptions

In order to model the problem, a number of presumptions are necessary. Some have been 
mentioned implicitly in previous chapters, some are new to this chapter.

The most important presumption, is that we assume that the goal of Norsk Hydro, or 
more precisely of the dispatcher, is to minimize total transportation cost. As mentioned in 
Chapter 2.1, the dispatcher may take into account other objectives than the minimization 
of costs. If these other objectives that she may have, not are based on rational decisions, 
they are difficult or impossible to model. In our models we need to compute the cost of 
tours that never took place. The best assumption we can make about these tours is that 
they would be designed optimally (according to our model), i.e., at a minimal cost.

This leads us to the formulation of the characteristic function, which will be defined as 
the solution to an optimization problem that corresponds to the planning situation in
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each case (i.e., a TSP and a YEP respectively).

Another important presumption, is that we assume that the goal of the customers (i.e., 
gas stations) is to minimize the transportation cost allocated to them. This means that 
a customer i is assumed to prefer a cost allocation vector yl to a vector y2, if and only 
if y] < yf. In practice it could occur that the solution y2 is preferred to y1 for some 
non-monetary reason, e.g., because applying solution y1 would mean that customer i is 
served at an too early hour, according to her preferences.

At the Goteborg depot, only truck types 30, 32, 33 and 34 are available normally. We 
only consider these to be in the fleet of the TSP-Game, even if occasionally trucks of 
other sizes are borrowed from a neighboring depot. Furthermore, in the VKP-Game we 
only consider the types 33 and 34 to be in the fleet. These are the only truck sizes that 
would actually be used for gas transport. Our models and solution methods will still be 
applicable if more truck types were included in each of the games.

The maximum capacities of the trucks in the TSP are assumed to be the gross capacities, 
presented in Table 2.1 in Chapter 2.1, except for truck type 33. Since this is the truck 
used in the TSP, and it carried 45.1 m3, we assume the capacity of truck type 33 to 
be this volume. The maximum capacity of the trucks in the VBP, has been decided by 
evaluating old data about the three trucks that were actually used the day of the VHP 
that we study. The capacity of the truck OMB575 (type 33) was set to 46.0 m3 and the 
capacity of the trucks KFK382 and BSS420 (type 34) was set to 53.4 m3. In both the 
TSP and the YEP, we assume the supplies of each truck type to be large.

When we study the problem of gas deliveries, we do not take into account that two 
different qualities of gas actually are delivered (regular and premium). We simply study 
gas as one product. This simplification does not have a large effect. Of course the qualities 
can not be mixed in the different compartments of the truck. However, as the greatest 
limitation of a truck is the weight and not the volume, it is assumed that the truck can 
take any combination of the two qualities as long as the sum of the weights (and volumes) 
does not exceed the capacity limit of the truck.

All deliveries are given in mz and are rounded off to one decimal. The deliveries to 
each customer are presented in Table 4.5 in Chapter 4.5. The costs based on quantity 
are computed after the round offs have been made. We suppose that the demand of a 
customer is equal to the amount delivered to her. In reality, true demand may be more 
as well as less than what was delivered.

We assume that the customers actually served in the TSP-case and the VEP-case re­
spectively, were the only customers that had to be served. It is possible that one of the 
customers served, did not have to be served that day. It is also possible that a customer 
that should have been served was not served, for some reason.

We have placed the customers geographically as precisely as possible, given the data that 
we had. The placement in the data base of EouteLogix has been made according to 
the area code in the address of each customer, except for a few cases where we have 
tried to be even more detailed. The distances in the distance matrix are computed using
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RouteLogix. The distance matrix is assumed to be symmetrical1. This is not always 
the case in reality as it may not be possible to use the same roads, e.g., because a road 
used (in one direction) is a one-way road. We have only computed the distance between 
each pair of customers once, and simply assumed the distance matrix (and thus the cost 
matrices) to be symmetric. The error due to this should be very small.

When we compute the costs for the arcs between all customers, the costs (in SEK) are 
rounded off to one decimal. As will be seen in Chapter 5.1.2 this leads to a different 
theoretical conclusion about the TSP-Game that we study. However it should not be of 
any significane to the computational results or to the conclusions. All costs and figures 
presented in the thesis are also rounded off to one decimal even if more decimals are used 
in the computations.

We only consider the possibility of delivery from one depot. In practice it is possible that 
customers located close to an area covered from another depot, are served from this other 
depot, if the dispatchers of the two areas form an agreement for this. We do not consider 
the possibility of split delivery, i.e., to get the total demand of a customer satisfied from 
two deliveries.

We do not allocate the cost remainder. A discussion of how this could be done in a 
practical situation, and a motivation to why we choose to not allocate it, is discussed in 
the next chapter.

4.3 Allocation of the Cost Remainder

As in Chapters 2.2.3 and 3.2, define:
In

is

7,T -

Vv _

S°

c(S) =
Cy(S) =

y(s) -

The total remainder in the Vehicle Routing case.
The remainder, due to the difference between the actual cost 
and the optimal cost of a tour covering the customers in S.
The remainder due to the difference in cost between the actual routes and 
the optimal Traveling Salesman solutions to these routes.
The remainder due to the difference in cost between an optimal Vehicle 
Routing solution and the sum of optimal Traveling Salesman solutions, 
for the coalitions that correspond to the actual routes.
The set coalitions that correspond to the routes in the optimal 
Vehicle Routing solution.
The cost for an optimal tour covering the customers in S.
The actual cost for a tour covering the customers in S.
The sum of the costs allocated to the customers in S C N.

If the actual total cost Cy(N) is to be divided, there are of course methods for doing this 
in practice.

'The distance going from customer i to customer j is equal to the distance going in the opposite 
direction.
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In Chapter 5.1 and 6.1, we define the characteristic function for the games we study. 
The characteristic function is defined as c(S). If 7s could be estimated for each coalition, 
S C N, this could lead us to another characteristic function c7(S), which would define 
another game. This would be a possible way of handling the remainder, using the same 
principles as those we suggest.

The remainder, 7s, could be estimated to be in the same proportion to c(S), as 7# is 
to c(N). A game with such a remainder used to compute c7(5) would be strategically 
equivalent to the game with characteristic function c(S). The result of the computations 
would be the same as allocating the remainder 7# in the same proportion as c(N) is 
allocated.

Another way to allocate c7(N) is to let the grand coalition pay the total cost c7(lV), but 
still compute c(5) as the optimal cost for each coalition 5 C N. Since we will define the 
characteristic function to be the optimal solution to a TSP and a VHP respecitvely, this 
would turn the game that we define into another game. In the VRP-case, if the total cost, 
c7(N), was to be allocated, while computing c(S) as optimal solutions to a VRP covering 
the customers in S, the core would be empty as soon as 7# > 0. This can be shown in 
the following way: If 7// > 0 in the VRP-case, and the total cost c7(lV) is to be allocated 
this means that a solution y in the core must fulfill:

y(N) = c7(N) = c(N) + 7jv = c(N) + 7V + 7T > c(N) = £ c(S)
ses°

However for any core solution, we also have the requirements y(S) < c(S),S C N, and 
thus:

2/(AT)= £ 2/(5) < £ c(S)<y(N)
S€S° S<BS°

which is a contradiction, and proves that the core is empty for this game. Solution 
concepts such as the nucleolus and the Shapley value could still be computed, since they 
do not require the core to be nonempty.

If more data was collected about each tour, it could be possible to reduce the remainder. 
If the reason for a part of the remainder could be traced to a certain customer, that part 
of the remainder could be interpreted as a customer specific remainder of that customer. 
However, it would still be difficult to compute what that customer specific remainder 
would be in any coalition other than the actual coalition. For example, suppose that a 
time-window restriction says that customer i has to be served before 8.00 a.m. If this 
restriction is included in the mathematical model, there would be a problem of how to 
take this restriction into consideration when computing the costs for serving coalitions 
that does not include i, 5|i 0 5.

Another possible way of dividing the total cost, c7(N), in practice would be to simply 
divide Jn equally among the players in N.

It is difficult to argue that the customers have no reason to cover any cost that is non- 
optimal and that therefore the remainder should be paid by (i.e., allocated to) Norsk
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Hydro. The objective is to allocate the costs of Norsk Hydro. If part of the cost is 
returned to Norsk Hydro, the problem is not solved. Furthermore, in the accounts this 
would mean that not all of the costs are allocated, which might be undesirable.

Since we can not find any theoretical motivations for allocating 7# in one way or another, 
we will not allocate the remainder. We shall only consider the optimal cost c(S),S C N 
when we do our computations. In Chapters 4.4 and 4.5 the size of the remainder is 
presented for the problems studied.

4.4 Data in the Traveling Salesman Game

Since we already had quite detailed data for the deliveries of gas and gas-oil, during the 
period September 18, 1995 to September 29, 1995, we chose to study a tour during this 
time period.

We wanted to study a Traveling Salesman Game that was large enough to show interesting 
properties in the modeling phase as well as in the solution phase. Yet, the problem should 
be small enough to allow a study of depth from different perspectives. On most gas tours, 
between one and five customers are served, while on the gas-oil tours most frequently 
between five and 20 customers are served. We thought that computationally it would be 
possible to handle around five customers and that this number would be large enough to 
show some interesting properties. We also searched for a tour that described a loop, since 
a tour back and forth along the same road may not have a structure typical to a TSP.

To be able to extend the problem into a cost allocation problem in a VRP-Game, the 
chosen tour should be on a day when there were several tours from the same depot, but 
still not too many to be impossible to handle computationally. To make the problem less 
complicated, there should be no shared deliveries from that depot during that day.

The choice fell on studying gas deliveries from the Goteborg depot, the second tour made 
by truck OMB575 (license plate) on September 20,1995. This tour satisfies all the above 
criteria. The tour involves five customers in a loop. The same day there were 8 gas tours 
from Goteborg to a total of 21 gas customers and no shared deliveries.
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Figure 4.1. Map of the studied TSP-tour.

The detailed data for the tour and the customers of the tour are the following:

Number of customers, |iV| = 5
Truck type: 33
A-stops: 5
B-stops: 3
Actual length: 250 km
Optimal length: 239.7 km
Delivered volume: 45.1 m3

The customer specific data are as follows:

Customer i2

Customer
location

Demanded 
volume (m3)

Customer specific cost 
(Truck type 33) (SEK)

15 Varberg 27.6 399.3
16 Ullared 3.0 79.6
17 Overlida 8.5 162.1
18 Mjoback 3.0 79.6
19 Oxaback 3.0 79.6

Table 4.1. Customer specific data of the studied TSP-tour.
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In the tour we have been studying the costs types are:

Cost type Cost (SEK) % of total cost
Base-time (£33) 198.2 5.6
City driving supplement (rW 72.0 2.0
A-stop (|S|083) 227.5 6.5
B-stop

i?N
60.0 1.7

Load/Unload (^33 53 A)
ieiv

512.8 14.5

Mileage allowance (°33 53 lr) 
rP.RN

2 355.1 66.8

Remainder (7w) 101.2 2.9

Table 4.2. Cost types in the studied TSP-tour.

Using the categories discussed in Chapter 2.2.2, the costs are:

Cost type Cost (SEK) % of total cost
Fixed cost (co) 270.2 7.7
Customer specific costs (E*)

ieN
800.3 22.7

Common cost (%) 2 355.1 66.8
Remainder (7) 101.2 2.9

Table 4.3. Cost types in the studied TSP-tour.

The distances between the customers can be found as a sub-matrix of the distance matrix 
in appendix 1.

4.5 Data in the Vehicle Routing Game

One of the criteria we used to select a TSP-tour, was that there should be several tours 
delivering gas, and no shared deliveries, from that depot on the chosen day. This was to 
allow us to compare the results of a TSP-Game with the results of a VRP-Game. The 
chosen day, the customers were located as below. 2

2Since the five customers are numbered 15-19 in the VRP-problem, they are numbered the same way 
here.
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Figure 4.2. Map of the customers in the studied VRP.

The 8 tours that day has the following characteristics:

Tour no.3
Truck
type

A-
stops

B-
stops

Actual 
length (km)

Optimal 
length (km)

Demanded
volume

BSS 1 34 3 1 149 137.6 49.4
BSS 2 34 5 5 252 234.9 52.1
BSS 3 34 1 2 340 304.6 50.1
KFK 1 34 1 3 380 340.0 50.0
KFK 2 34 2 5 60 46.5 50.0
OMB 1 33 2 2 260 222.3 45.0
OMB 2 33 5 3 250 239.7 45.1
OMB 3 33 2 5 220 218.9 38.0

Table 4.4a. Characteristics of the actual tours in the studied VRP.

3The letters are the letters in the license plate of the truck, and the number is a counter, e.g., KFK 1 
means the first tour of the truck with license plate KFK382.
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Tour no.3
Fixed 

cost (SEK)
Customer specific 

costs (SEK)
Mileage

allowance (SEK)
Remainder 

7t (SEK)
BSS 1 274.6 684.2 3 426.5 403.3
BSS 2 274.6 770.5 468.6 136.3
BSS 3 274.6 729.8 1 386.7 114.8
KFK 1 274.6 933.5 2 367.3 171.4
KFK2 274.6 665.4 2 069.8 356.3
OMB 1 270.2 642.7 2 184.1 370.7
OMB 2 270.2 800.3 2 355.1 101.2
OMB 3 270.2 623.1 2 150.7 11.0

Table 4.4b. Characteristics of the actual tours in the studied VRP.

The customer specific data are as follows:

Tour no.
Customer

i
Customer
location

Demanded 
volume m3

Customer specific 
cost (Actually 

used truck) (SEK)
BSS 1 1 Kinna 12.0 185.0

2 Kinna 14.0 208.1
3 Hallingsjo 23.4 336.7

BSS 2 4 Ljurhalla 11.5 346.3
5 Ljung 1.5 63.6
6 Ljung 4.1 199.2
7 Dannike 12.5 113.6
8 Boras 22.5 210.7

BSS 3 9 Jonkoping 50.1 665.4
KFK 1 10 Varnamo 50.0 684.2
KFK 2 11 Bjorkekarr 25.7 383.3

12 Angered 24.3 387.2
OMB 1 13 Tranemo 19.0 281.5

14 Svenljunga 26.0 361.1
OMB 2 15 Varberg 27.6 399.3

16 Ullared 3.0 79.6
17 Overlida 8.5 162.1
18 Mjoback 3.0 79.6
19 Oxaback 3.0 79.6

OMB 3 20 Falkenberg 26.0 401.1
21 Varberg 12.0 222.0

Table 4.5. Customer specific data in the studied VRP.
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The aggregation of the costs in the VRP-Game give the following proportions of the costs:

Cost type Cost (SEK) % of total cost
Remainder, 7r 1 665.0 6.1
Remainder, 257.8 1.0
Remainder, 7 = 7J + 1 922.8 7.1
Fixed cost, cq 2 183.6 8.1
Customer specific costs, ^ c*

ieN
5 849.5 21.6

Common cost, C$ 17 408.8 64.2

Table 4.6. Cost categories in the studied VRP.

For this VRP, the distance matrix is presented in appendix 1.
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Chapter 5

Cost allocation in a Traveling 
Salesman Game

In this chapter, we present the mathematical models and methods, and the computational 
results of several different solution concepts, in a cost allocation game of a Traveling 
Salesman Problem (TSP). The TSP-Game is the problem of how to divide the cost for a 
TSP-tour, among the customers that were served on the tour.

5.1 The Core

5.1.1 Mathematical Models and Methods

Recalling the mathematical definition of the core as being all imputations y = {y,}, where 
yi is the cost allocated to customer i, that fulfills:

I> < c(S), ScN [5.1] 
ies
Y yi = c(N) [5.2]
<6AT

where c(S), S C N, is the characteristic function of the game (N;c).

The triangle inequality

The distance matrix in the studied TSP fulfills the triangle inequality. If Zy is the distance 
between customer i and j, the triangle inequality states that for customers i,j and m:

hm — Zy + Zjm,

57
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i.e., the distance to go straight between two customers is never longer compared to (going 
between the two customers and) passing another customer between these two. In theory, a 
TSP-tour passes each customer exactly once, but in practice there is no reason to exclude 
the possibility of passing a certain customer several times, if it would be less costly. 
If this was the case, an artificial arc with the distance Zy + Zjm could be constructed 
between customers i and m. A distance matrix with artificial arcs constructed in this 
way, corresponds to a complete network (i.e., arcs between all pair of nodes) that fulfills 
the triangle inequality. Since the distance matrix we have used contains the shortest path 
between customers i and j, for all i,j E (AT(JO), the distance matrix fulfills the triangle 
inequality. If the distance (or cost) matrix satisfies the triangle inequalities, the shortest 
(cheapest) tour is a TSP-tour.

The fixed cost, Co, and the customer specific costs, cy can be combined with the distance 
matrix to construct a cost matrix as followings: Let crk be the mileage cost using truck 
type k. The transportation cost of the (real or artificial) arc between customers i and j is 
then o-klij. If co is considered to be the customer specific cost of the depot, the customer 
specific cost of customer i £ (N(JO),cy is divided by 2 and added to all arcs connecting 
to node i. Since every TSP-tour leaves the depot, visits each customer exactly once and 
returns to the depot, the costs cy Z E (IV(JO), will be included in the cost of the tour.

For example, the cost Cy- of the arc between node i and node j using truck type k when 
the fixed and the customer specific costs are included, would be:

Cy = °fcZy + f + f-,

The cost <4 is defined to be 0 for all i 6 (A(JO).

If the cost <4 is considered, and c,- > 0, i E (N U 0) we have: 

cim = °V»m +^ + £f < O&Zy + O’khm + % + <

< CjJy + f + f- + <?khm + 2" + ^ = + cfm

This proves that the triangle inequality is fulfilled also for the cost matrix {cy}. The 
triangle inequality also implies that the TSP-Game is subadditive.

Defining the characteristic function

A game (JV;c) is defined by the players ZV = {!,...,n} and the characteristic function 
c(S),S C N. Therefore, it is very important to define the characteristic function and 
the players precisely. In the TSP cost allocation problem of Norsk Hydro, the customers 
served in the TSP are defined to be the players. There are several different ways to define 
the characteristic function c(S), for a coalition S. For example:
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1. (a) c(S) could be defined assuming that the customers in S are served by the truck
that was actually used in the tour (serving the customers in IV), driving the 
shortest TSP tour.

(b) c(S) could be defined as in la, but assuming that the smallest possible truck is 
used when serving the customers in S, instead of the truck that was actually 
used.

2. (a) Another way to define the characteristic function is by letting c(S) be the cost
of the shortest tour covering the customers in S, served in the same order, with 
the same truck, as in the optimal tour for the grand coalition. This would be 
a fixed route TSP-Game, (see e.g., Fishburn & Poliak ,1983 or Potters et. al., 
1992).

(b) c(5) could also be defined as in 2a, using the smallest possible truck instead of 
the actual one.

In this chapter refer to these games as (iV;c^10^), (TV; c^1^), (IV; c^) and (TV; c^) when 
the characteristic function is defined as in la, lb, 2a and 2b respectively. The game 
(jV;c(l0)) [(TV; d2^)] can be seen as a special case of (TV; c^) [(IV; c(26))], where there is 
only one truck type in the fleet. In all the games above c(0) = 0.

One of the reasons for studying the games (iV; cO6)) or (N;cis that the demand of a 
customer (and of a coalition) is to some degree reflected in the formulation of the core. 
It is always less costly to use the smallest possible truck when serving a given coalition 
S. In the games (IV; c^) and (IV; c^2a'1) the demand is not at all taken into consideration 
when computing c(S), thus neither in the formulation of the, core. Since all customers in 
N actually were served by the truck, of course any coalition S C N may also be served 
by that truck, without exceeding the capacity. The only factor that can affect the cost of 
a coalition, is the geographical placement of the customers in the coalition.

One reason for not studying the games (IV; c^) and (IV; c^) is that any other truck 
than the larger types, would never really be used by Norsk Hydro in the transportation 
of gas.

We present the results for the TSP-Games (IV; c^) and (IV; c^16'). We do not consider 
the games (IV; d2a^) and (IV; c^) explicitly, since in this particular case it turns out that 
they are equivalent to the games (IV; c^) and (IV; c^1^) respectively.

Define

K = The set of available truck types.
Vk = Capacity (m3) of truck type k.
Di = Demand of customer i.

{1 if the arc between customers i and j is used 
0 otherwise

Cy = The cost of the arc between customers i and j, using truck type k.

Choose the truck type k. In the game (IV; c^) the truck type is given in advance. In 
the game (IV; c^) the truck type can be chosen as:
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k - argmin{Vfc|T4 > Y A}
6 ies

Then the characteristic function c(S) for the TSP-Game (iV; c) is formulated as a TSP in 
the following way:

c(S)= min Y E cijx» 
ies jess.t. 'y ] Xtj — i,iesI>ij = i, ieS

jes

E E XH ^ies, ies, I-Ssl — i, / s$cs
1 \Ss\ > 2

%ij £ {0,1}
The tariff is constructed in such a way, that it is always less costly to choose the smallest 
possible truck to serve a given coalition S in a TSP-tour. However, it is possible that it 
is less costly to serve a coalition using two smaller trucks, instead of one larger, even if 
the demand of all customers would fit on the larger truck. The savings e.g., in mileage 
allowance can in extreme cases be more than the extra base-time cost, if using two smaller 
trucks instead of one larger one. Consider the following example:

In Figure 5.1 below suppose the following: The demand of customer A is 2 and the demand 
of customer B is 2. There are two types of vehicles available. Type (i) has a capacity of 
5 and the cost is 5 per distance unit. Type (ii) has a capacity of 2 and the cost is 3 per 
distance unit. For each vehicle used, there is also a fixed cost of 5 (independent of vehicle 
type).

In this example, serving the two customers using vehicle type (i) would cost 110, while 
serving them using two vehicles of type (ii) would cost 65+17=82. Thus it would be 
cheaper to use two vehicles.

Figure 5.1. Transportation example where two vehicles are less costly than one.

The situation can only occur when adding one more customer means that a capacity limit 
is passed and a larger truck has to be chosen. Since the game (N; c^) requires that only 
one truck is used in the computations, the situation above can not occur in this game, 
and it can always be solved as a TSP-Game.
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However, if the construction of the tariff and the location of the customers are such that 
there is a risk that the situation above could occur, the TSP-Game (IV; c^) should 
instead be formulated as a VRP-Game with inhomogeneous fleet. If it was cheaper to use 
two trucks instead of one, this would be the optimal solution to the VBP. The VRP-Game 
with inhomogeneous fleet is studied in Chapter 6.

Finding a solution in the core

One of the problems when formulating the core, is that the number of inequalities in the 
formulation of the core (i.e., inequalities of type [5.1]) becomes very large when the number 
of customers, |jV|, grows large. There are 2^ — 1 number of constraints (including the 
grand coalition but excluding the empty set), and each constraint requires that a TSP 
is solved. It is a well-known fact that TSP belongs to the class of NP-hard problems. 
Therefore, the problem of evaluating the characteristic function for all the core defining 
inequalities is computationally difficult, as soon as TV is of a nontrivial size.

If the aim is to find a particular solution in the core by adding a linear objective function 
to the core defining inequalities (e.g., to find the nucleolus or an extreme point), only a 
few of all the inequalities will be active. If the cost allocation problem has |iV| customers, 
the dual to the cost allocation problem has a basic solution with |AT| basic variables. This 
is equivalent to that at most |AT| constraints are enough in the core formulation. The 
problem is that there is no way of knowing in advance which these constraints are. In 
this setting a constraint generation approach can be applied. This approach is described 
in Chapter 6.1.1. When applying a constraint generation approach to the TSP-Game, 
the subproblem IVRPy6 in Chapter 6.1.1. will be replaced by a Profitable Tour Problem 
(FTP).

The FTP has been studied e.g., in Volgenant & Jonker (1987) and Dell’Amico et. al. 
(1995). Given a set of customers N and a vector y e IjW of profits, the FTP is to find a 
TSP-tour that covers one or more customers, and maximizes the sum of the profits made 
at the customers covered by the tour minus the arc costs of the tour. If the value of 
the objective function to the FTP is positive, the profits made are greater than the cost 
of the tour. In the cost allocation problem, where the profit correspond to a proposed 
allocation y, this is equivalent to a coalition S that is allocated a cost that is larger than 
the cost of serving them, i.e., y(S) > c(S). This corresponds to a violated constraint 
in the formulation of the core, and should be included. A new allocation y is computed 
with the new constraint included; and the FTP is solved again. This procedure continues 
until the value of the objective function to the FTP is nonnegative, which means that 
y(S) < c(S), for all S C N, and the solution y is a solution in the core, or until the core 
is proven to be empty. If there is no feasible solution y to the master problem after a 
constraint is added, the core is empty and the procedure can be terminated.

Volgenant & Jonker (1987) show that the FTP can be transformed into an Asymmetric 
TSP. They suggest that the Asymmetric TSP in turn is transformed into the (symmetric) 
TSP and thereafter solved. Dell’Amico et. al. (1995) present methods for solving the
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Asymmetric TSP. Heuristics for solving the PTP are presented e.g., in Bienstock et. al. 
(1993).

Theoretically it is possible to generate all the extreme points (corresponding to feasible 
basic solutions) of the polyhedron described by the constraints of type [5.1] and type [5.2], 
(i.e., the polyhedron of the core). It is a way of getting an indication of the size of the 
core, even if it is only another way of representing the core. However, it is computation­
ally very complicated to find all the extreme points. As mentioned, in the TSP-Game in 
general it is also complicated to find all the inequalities of type [5.1]. We take a simplified 
approach, evaluating the minimum and the maximum of what each customer would pay 
if the objective was to allocate as little and as much as possible respectively, for a single 
customer. This generates up to 2|jV| extreme points of the core. It is of course only inter­
esting to generate the extreme points, if the core is non-empty. Any convex combination 
of the generated extreme points in each game is also a solution in the core of each game 
respectively.

To evaluate the minimum amount that customer i has to pay, we solve a linear program 
with the constraints [5.1] and [5.2] and the objective function min #. The solution to 
this problem is an extreme point in the core (if it is non-empty). This is done repeatedly 
for each player. The same principle is used to evaluate the maximum amount that each 
player is willing to pay, where the objective function is max %%. This is done both for the 
game (N;c(la)) and the game (N; c^).

5.1.2 Computational Results

In the Norsk Hydro case it is always optimal to serve a set of customers using one truck. 
The tariff is such that the costs of the smallest truck (type 30) is around 80% of the cost 
of the truck used for the grand coalition (type 33). Since the customers are almost at 
equal distance from the depot, if the grand coalition was divided in two smaller coalitions 
two trucks would together have to travel almost twice the distance in total. Even if this 
is a rough estimation, it is clear that using 20% less costly trucks, never would cover the 
cost of an extra truck.

In the TSP-Game we chose to study, there are only five customers giving rise to 25 — 1 = 31 
constraints (including the grand coalition, but excluding the empty coalition). With only 
five customers, it is computationally possible to solve the TSP using complete enumer­
ation. However this involves 0(|jV|!) operations, and becomes impossible as soon as N 
becomes large. A code that efficiently solves a TSP is necessary. The procedure we use to 
solve the TSP is the the same that we use for subproblem IVRPp6, described in Chapter 
6.1.1.

In the TSP-Games (N; c^) and (/V; c^), the core is defined by the constraints in Table 
5.1:



5.1 The Core 63

c(S) in game:
Constraint (£)?/,-) 

ieS
(IV; CM) (IV;c(16>)

2/15 < 2 172.8 2 059.1
2/16 < 2 338.4 1 902.4

2/17 < 2 307.0 1 879.4
2/18 < 2 177.2 1 769.8

2/19 < 1 713.6 1 388.2
2/15 +2/16 < 2 791.8 2 645.2
2/15 +2/17 < 3 104.2 3 104.2
2/15 +2/18 < 3 004.0 2 845.9
2/15 +2/19 < 2 719.1 2 576.4

2/16 +2/17 < 2 765.8 2 256.1
2/16 +2/18 < 2 663.6 2 169.2
2/16 +2/19 < 2 569.4 2 091.6

2/17 +2/18 < 2 396.4 1 952.1
2/17 +2/19 < 2 424.9 1 975.5

2/18 +2/19 < 2 295.2 1 866.0
2/15 +2/16 +2/17 < 3 219.2 3 219.2
2/15 +2/16 +2/18 < 3 117.0 2 953.4
2/15 +2/16 +2/19 < 3 022.8 2 864.2
2/15 +2/17 +2/18 < 3 193.6 3 193.6
2/15 +2/17 +2/19 < 3 222.1 3 222.1
2/15 +2/18 +2/19 < 3 122.0 2 958.0

2/16 +2/17 +2/18 < 2 855.2 2 328.8
2/16 +2/17 +2/19 < 2 883.7 2 352.3
2/16 +2/18 +2/19 < 2 781.6 2 265.4

2/17 +2/18 +2/19 < 2 514.3 2 048.3
2/15 +2/16 +2/17 +2/18 < 3 308.6 3 308.6
2/15 +2/16 +2/17 +2/19 < 3 337.1 3 337.1
2/15 +2/16 +2/18 +2/19 < 3 235.0 3 235.0
2/15 +2/17 +2/18 +2/19 < 3 311.6 3 311.6

2/16 +2/17 +2/18 +2/19 < 2 973.2 2 815.2
2/15 +2/16 +2/17 +2/18 +2/19 — 3 426.6 3 426.6

Table 5.1. Constraints for the TSP-Games1.

In the TSP that we studied, we discovered that the games (lV;c(l0)) and (TV; c^) (and 
(N;c^) and (IV; c^) respectively) yield the same results1 2 . The studied tour is con­
structed in such a way that serving a coalition, S C IV, in an optimal order, is to serve the 
customers in the same order as they are served in the grand coalition IV. This property 
is not general for TSP. Consider the following example: In the network in Figure 5.2, 
suppose that the length of the arcs not shown are large, and that one vehicle is enough

1For more details of each customer we refer to Chapter 4.4.
2This does not hold for one coalition, where the cost is lowered 0.1 SEK by reversing the order in 

which two customers are served, due to the fact that the elements of the cost matrix {c^} have been 
rounded off to one decimal. If more exact numbers are used in the cost matrix, the statement is true.
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to cover all four customers. The optimal order in which to serve all four customers is 
Depot-A-B-C-D-Depot. The optimal order in which to serve the subset of customers A, 
B and C is Depot-A-C-B-Depot. Thus the order in which the customers A, B and C are 
served, are different in the smaller coalition from that in the larger one.

Figure 5.2. Example of a TSP where the order in which the customers are served changes 
between the large coalition and a smaller.

If the order in which the customers are served does not change for any coalition S, 
compared to the order in which the customer are served in the grand coalition N, the 
solution is same as if the game is formulated as a fixed route TSP-Game (see e.g., Fishburn 
& Poliak (1983) or Potters et. al. (1992)). Potters et. al. (1992) prove that the core of a 
fixed route TSP-Game is nonempty, if the solution to the TSP for the grand coalition is 
a minimal cost tour, and the cost matrix fulfills the triangle inequality. Thus we know3 
that the core of this particular TSP-Game will be non-empty.

In Tables 5.2-5.5 below we present the result of the computations. In Tables 5.2a, 5.2b 
and 5.3 we present the results for the game (AT; c^), and in Tables 5.4a, 5.4b and 5.5 we 
present the results for the game (N;

The computation of the minimum and maximum amount that can be allocated to each 
customer in a core solution, generates in this problem up to 10 of the at most
^ ^ j = 27 405 extreme points4 of the core.

3If a more exact cost matrix is used.
4Reducing the number of variables using the equality constraint, there are 30 conditions and 4 

variables.
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Customer i

Alloca
min
2/15

tion using 
min
2/16

l the obj< 
min
2/17

ictive fun 
min
2/18

ction:5
min
2/19

15 453.4 2 172.8 2 172.8 2 172.8 2 172.8
16 2 338.4 115.0 619.0 619.0 619.0
17 427.3 931.3 191.6 427.3 427.3
18 89.5 89.5 212.2 89.5 89.5
19 118.0 118.0 231.0 118.0 118.0

Table 5.2a. A selection of extreme points in the core for the game (N;c^).

Customer i

Alloc;
max
2/15

ition usin
max
2/16

g the obje 
max
2/17

ctive func
max
2/18

ition:5
max
2/19

15 2172.8 453.4 797.3 824.8 1 005.5
16 619.0 2 338.4 115.0 115.0 303.7
17 427.3 427.3 2 306.8 191.6 314.3
18 89.5 89.5 89.5 2 177.2 89.5
19 118.0 118.0 118.0 118.0 1 713.6

Table 5.2b. A selection of extreme points in the core for the game {N;c^la^).

It should be noted that when the objective function is miny,- (maxy;), several extreme 
points where y, attains its minimum (maximum) are possible, and that no particular 
method is used to choose between these extreme points. The most interesting results in 
Tables 5.2a and 5.2b are the minimum and maximum each customer is willing to pay (i.e., 
the diagonals of the tables). This is transferred to Table 5.3 below, that also presents 
the stand-alone cost for customer i (c(i)), the marginal cost (mi), the cost allocation 
according to the principles implied by Norsk Hydro6, and the cost allocation according to 
the DM method7 8 9.

Customer i miny,6 maxy/ c{i) TUi Norsk Hydro DM
15 453.4 2 172.8 2 172.8 453.4 2 097.0 1 521.0
16 115.0 2 338.4 2 338.4 115.0 227.9 413.6
17 191.6 2 306.8 2 307.0 191.6 645.8 717.2
18 89.5 2 177.2 2 177.2 89.5 227.9 402.9
19 118.0 1 713.6 1 713.6 118.0 227.9 370.0

Table 5.3. Computational results for the game (N; c(lol).

5The objective function is used in a linear program with the core constraints, i.e., constraints [5.1] 
and [5.2].

6In proportion to demand.
7See Chapter 2.2.4.
8 The minimum allocation can only be attained for one customer at a time.
9The maximum allocation can only be attained for one customer at a time.
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Customer i

Alloca
min
2/15

;ion using 
min
2/16

the obje 
min
2/17

ctive fun 
min
2/18

:tion:10 11
min
2/19

15 611.4 2 059.1 2 059.1 2 059.1 2 059.1
16 1 316.1 115.0 523.5 586.1 586.1
17 549.8 1 045.0 191.6 573.9 573.9
18 462.9 89.5 370.8 89.5 89.5
19 486.4 118.0 281.6 118.0 118.0

Table 5.4a. A selection of extreme points in the core for the game (N;c^).

Customer i

Alloca
max
2/15

tion using 
max
2/16

the obje 
max
2/17

ctive func
max
2/18

tion:10
max
2/19

15 2 059.1 878.8 1 263.3 1 263.3 1 188.2
16 586.1 1 766.4 115.0 115.0 287.8
17 573.9 366.9 1840.8 355.2 472.9
18 89.5 195.5 89.5 1 575.1 89.5
19 118.0 219.0 118.0 118.0 1 388.2

Table 5.4b. A selection of extreme points in the core for the game (N;c^).

Customer i mint/,11 max t/i12 c(i) mi Norsk Hydro DM
15 611.4 2 059.1 2 059.1 611.4 2 097.0 1 521.0
16 115.0 1 766.4 1 902.4 115.0 227.9 413.6
17 191.6 1 840.8 1 879.4 191.6 645.8 717.2
18 89.5 1 575.1 1 769.8 89.5 227.9 402.9
19 118.0 1 388.2 1 388.2 118.0 227.9 370.0

Table 5.5. Computational results for the game (N;c^).

Observe that the allocations according to the principle of Norsk Hydro, and the DM- 
method, are independent of the game, i.e., they are the same in Tables 5.3 and 5.5.

In Tables 5.2 and in Tables 5.4 above, we can see that the core is very large. As expected, 
it seems to be smaller in the game (N;c^) than in (N;c^).

Tables 5.3 and 5.5 also give an indication of the size of the core. The maximum of what 
each customer is willing to pay is close to her stand-alone cost (c(i)), and the minimum 
is her marginal cost (mi). An interpretation of the result is that cooperation is very 
profitable.

10The objective function is used in a linear program with the core constraints, i.e., constraints [5.1] 
and [5.2].

11The minimum allocation can only be attained for one customer at a time.
12The maximum allocation can only be attained for one customer at a time.
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The core is too large to give an indication of how a fair allocation should be done. It 
can be assumed that almost any cost allocation method that attempts to divide the cost 
between all the customers, will result in a solution in the core. Therefore, it is interesting 
to note that the cost allocation principle implied by Norsk Hydro gives a solution that is 
not in the core of the game (N; c^16^)! According to the principle implied by Norsk Hydro, 
i.e., to allocate cost in proportion to demand, customer 15 has to pay 2097.0, but she 
is only willing to pay 2059.1. This is an interesting result for Norsk Hydro, that clearly 
demonstrates one of the weaknesses of a rule of thumb, as well as motivating further 
research and discussion.

Finding a unique cost allocation vector

Since the core is generally not a unique solution, and the size of the core is large in the 
two TSP-Games studied, further investigation is necessary to suggest a cost allocation.

There are (at least) two possible ways to continue. The first way is to use a solution 
concept that gives a unique solution. We compute the nucleolus (and versions of it), the 
Shapley value and the r-value. This is done in Chapters 5.2 and 5.3.

The second way is to enlarge the problem, to better capture the influence of the size 
of the demand on the cost allocation. This could be done for example, by studying the 
VEP-Game involving more customers on more tours. When more customers are included, 
the customers with a low demand in particular have a greater chance to form coalitions, 
thereby reducing what they would have to pay in a cost allocation in the core. We study 
this in Chapter 6, where the VEP-Game that includes all the tours from the Goteborg 
depot on the same day, is considered.

5.2 The Nucleolus

In this chapter we actually consider the pre-nucleolus. Since it turns out that the pre­
nucleolus of the studied TSP-Game fulfills the requirements of individual rationality, i.e. 
Vi < c(i) for all i S N, the pre-nucleolus for this game coincides with the nucleolus.

5.2.1 Mathematical Models and Methods

If all constraints for the core are known, the pre-nucleolus can be found by solving suc­
cessive, linear programs in the following way, suggested by Kopelowitz (1967) (see also 
Dragan, 1981):
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(Pi) max Wi
s-t. +Wi

t'es

ieN

< c(S), ScN 

- c(N)

Let II1 (S) be the dual variable that belongs to constraint ^Vi + wi < c(S). Let II1* be
iss

the optimal dual solution to Pi. If Pi has a unique (primal) solution (y*,w{), then y* is 
the pre-nucleolus of the game.

The pi constraints (pi > 1,) that are binding and have a corresponding strictly positive 
dual solution (II1*(5) > 0), are binding and active. These constraints define the pi first 
elements of the lexicographically smallest excess vector 9(y), with the excesses c(S)—y(S) 
arranged in increasing order (see Chapter 3.3). If the solution (y*,w{) is not unique at 
least element pi + 1 has to be found by solving another linear program, Pg, where the 
binding and active constraints in the optimal solution to Pi are fixed:

(PO max w2

S-t. Y,Vi 
ies

+w2 < c(S), Se{sc jV|nx*(S) = 0}

Y,Vi
ies

X>iiew

= c(S),

- c(N)

Se{Sc N\nu(S) > 0}

If P2 has a unique solution (p*, w2), then y* is the pre-nucleolus of the game. If P2 does 
not have a unique solution another problem, P3, has to be solved. The problem P3 is 
constructed in a way similar to P2.

This procedure can be generalized as follows:

Let r, be the set of all the coalitions that have corresponding dual variables IF* (S) > 0 
(i.e., the excess w* = c(S) - y(S)):

r, = {5c N\n**(S) > 0}.

At iteration t, solve the following linear program:

(Pt) max Wt

s-t.
i€S

+Wt < C(S), ScN

T,Vi
ies

+W'q = c(S), s er q,q — 1,... • , t — 1

EVi
i€N

= c(N)

This process has to be continued until Pt has a unique solution (p*,u;t*), where p* is the 
pre-nucleolus.
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The procedure above can also be used to find the nucleolus. In this case the additional 
constraints % < c(i), i G N must be added, to each linear program Pt.

The problem P\ contains 2^1 — 1 constraints and \N\ +1 variables, which can be difficult 
to handle computationally, if the number of players is large. As mentioned in Chapter 
5.1.1, the characteristic function itself adds significantly to the complexity. In the TSP- 
Game, each evaluation of the characteristic function requires a TSP to be solved, which 
is NP-hard. Thus the method described above can not always be used, for computational 
reasons.

However, in the studied TSP-Game there are 31 constraints, each requiring a fairly small 
TSP to be solved, and 5 players (i.e., 6 variables) in problem Pi. Therefore we chose to 
apply the procedure above.

For a problem where the method described above becomes too complicated computa­
tionally, a constraint generation procedure could be applied, similar to the procedure 
mentioned in Chapter 5.1.1, and more thoroughly described in Chapters 6.1.1 and 6.2.1.

5.2.2 Computational Results

Pre-nucleolus for the game (IV; c^)

The pre-nucleolus of the game (JV;c^10^) was found in one iteration, i.e., only problem P% 
had to be solved.

The pre-nucleolus of the game (IV; c^) is presented in Table 5.6. The stand-alone cost 
of each customer i, and the cost allocation according to the principle implied by Norsk 
Hydro are also presented. Finally the pre-nucleolus minus the customer specific costs q, 
is presented. These values are equivalent to the pre-nucleolus in a game when only the 
fixed and common transportation costs are included in the characteristic function. Since 
Ci for all i S N are independent of which coalition customer i is included in, the game 
that does not include the customer specific costs, is a strategic equivalent game to the 
game (IV; c^).

Customer i
Pre-nucleolus
(Nucleolus) c(i) Norsk Hydro Pre-nucleolus—Cj

15 945.2 2 172.8 2 097.0 545.9
16 606.8 2 338.4 227.9 527.2
17 683.4 2 307.0 645.8 521.3
18 581.3 2 177.2 227.9 501.7
19 609.8 1 713.6 227.9 530.2

Table 5.6. Computational results for the game (IV; c^°l).
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As can be seen in Table 5.6, the pre-nucleolus fulfills the individual rationality constraints 
(since it is less than c(i) for all i 6 N), and thus the pre-nucleolus coincides with the 
nucleolus.

The value of w{ (i.e., the excess in the least content coalitions) is 491.8. The binding 
constraints in the solution are all the {IV\z} coalitions. An interpretation of the result is 
that cooperation is very profitable. The larger the coalition is, the more will be saved. 
Since the grand coalition correspond to the optimal solution, the larger coalitions will be 
the least satisfied (i.e., they do not gain as much by cooperating as the smaller coalitions 
do).

All the customers can be served by one truck, and therefore demand does not have any 
influence on the fixed cost and the transportation cost for a coalition. This could be seen 
in the strategically equivalent game, where only the fixed cost and the transportation 
cost is considered. This game would have a pre-nucleolus (and nucleolus) that coincide 
with the pre-nucleolus minus c,-, presented above. The customers get an almost equal 
allocation, which is to be suspected given the geographical placement of the customers. 
The customers 15 and 19 get a somewhat higher cost (even if they are closer to the depot 
than the others), since they are located on the side compared to the others. They do not 
have as many opportunities to form good coalitions as customers 16, 17 and 18, who are 
located more centrally.

It does not seem fair and reasonable that the demand of the customers should not have 
any significance on the allocation of the cost. The smaller customers do not have as 
many options to cooperate in the TSP-Game, as they would have in a real situation. 
If more customers than the customers from one tour are included in the problem, the 
smaller customers would have a wider range of opportunities. They could either choose 
to cooperate with many other small customers, or with a few larger customers. The larger 
customers would not have as many possibilities, as they only could cooperate with one 
or a few of the smaller customers. An extension that includes more customers is the 
VRP-Game studied in Chapter 6.

Pre-nucleolus for the game (N;c^)

When the game (JV;c^) is studied, the differences in demand between the customers 
are reflected to some extent. In Table 5.7 below, the pre-nucleolus, the stand-alone cost 
for customer i, and the allocation implied by Norsk Hydro are presented. The pre­
nucleolus found in game (IV; c^) is also presented. The game (IV; c(16^) is not strategically 
equivalent to the game where the customer specific costs not are included, since these not 
are the same for each customer in all coalitions (as the customer specific costs varies 
with the size of the truck, i.e., with the demand of the coalition). Thus this value is not 
included for this game.
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Customer i
Pre-nucleolus 

(IV; c<“>)
c{i)

(IV; c^)) Norsk Hydro
(Pre-)nucleolus 

(IV; cM)
15 1143.5 2 059.1 2 097.0 945.2
16 647.1 1 902.4 227.9 606.8
17 603.9 1 879.4 645.8 683.4
18 501.8 1 769.8 227.9 581.3
19 530.3 1 388.2 227.9 609.8

Table 5.7. Computational results for the game (IV; c(16)).

As in the game (IV; c^) the pre-nucleolus fulfills the individual rationality constraints, 
and therefore it coincides with the nucleolus.

In game (IV; c^) two iterations were necessary. In the optimal solution to Pi, w\ = 
412.3, corresponding to the excesses in the least content coalitions. The constraints cor­
responding to coalitions {17,18,19}, {15,16,17,18}, {15,16,17,19} and {15,16,18,19} 
were included in IV In problem P2 the pre-nucleolus was found. The value of w\ — 532.1. 
The two remaining {IV\i}-coalitions were the two new binding constraints.

As expected, the nucleolus in the game (IV; c^) captures some of the difference in demand 
between the customers. The smaller customers gain somewhat in importance and get a 
lower cost allocated to them, except for customer 16. She is rather far away from 18 and 
19, the other two small customers, and therefore it is more difficult for customer 16 to 
form good coalitions. The principle implied by Norsk Hydro does not at all correspond 
to the nucleolus.

It still seems like demand does not have as much influence on the allocations as would 
be desirable in an allocation that was to be accepted by all the customers. Therefore we 
study some more concepts related to cooperative game theory in the next chapter.

5.3 Other Solution Concepts

We have computed the normalized nucleolus (Grotte, 1970). In the game (IV; c^), 
the normalized nucleolus coincides with the nucleolus, since the larger coalitions already 
correspond to the binding constraints. In the game (IV; c*16)), there is a minor difference.

Another version of the nucleolus, that takes into consideration the demand of the cus­
tomers, is the demand nucleolus. The demand nucleolus is defined in the same way as 
the nucleolus (see Chapter 3.3), but using the excess eD(S,y) instead of e(S,y) where 
eD(S,y) is the excess e(S,y) multiplied with the total demand of the coalition:

eD(S,y) = e(S,y)J2Di
ies

The demand nucleolus suffers from the same axiomatic criticism as the normalized nu­
cleolus (see Chapter 3.3). However, the effect that the demand nucleolus has on the cost
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allocation, might be desirable. This effect is that the importance of coalitions having a 
large demand is reduced, when computing the nucleolus. A larger portion of the total 
cost can be allocated to customers that participate in coalitions with a large demand. It 
is a way of including what might be felt as reasonable; that the customers with a higher 
demand should carry a larger share of the common costs.

We have also computed the Shapley value and the r-value (see Chapter 3.3 for mathe­
matical descriptions) for the games (IV; c^) and (IV; c^).

The values are presented in Table 5.8 and Table 5.9 below.

Customer i

Nucleolus
(Normalized
nucleolus)

Demand
nucleolus

Shapley
value r-value

Norsk
Hydro

15 945.2 1 756.3 913.3 794.1 2 097.0
16 606.8 263.2 716.3 682.4 227.9
17 683.4 954.1 720.0 709.3 645.8
18 581.3 228.6 609.0 627.2 227.9
19 609.8 224.3 467.9 613.6 227.9

Table 5.8. A selection of values for the game (N;c11o1).

Customer i Nucleolus
Normalized

nucleolus
Demand
nucleolus

Shapley
value r-value

Norsk
Hydro

15 945.2 1 102.3 1 788.3 1 158.9 898.4 2 097.0
16 606.8 605.9 234.1 625.9 689.0 227.9
17 683.4 631.4 999.9 681.5 697.6 645.8
18 581.3 529.3 201.5 539.3 628.0 227.9
19 609.8 557.8 202.7 421.0 513.5 227.9

Table 5.9. A selection of values for the game (IV; cl16l).

The discussion about the results is the same for both games. The results show that the 
normalized nucleolus gives almost the same result as the nucleolus. The demand nucleolus 
seems to capture the influence of the demand of the customers fairly well, since the result 
is close to the results of Norsk Hydro. The procedure of computing the demand nucleolus 
terminated when all the constraints corresponding to the singletons were binding. It also 
seems like the truck size is of minor importance when computing the demand nucleolus. 
The Shapley value and the r-value does not seem to capture the importance of the demand 
in a better way than the nucleolus, for this particular game.

The most interesting values from a theoretical and practical viewpoint, is in our opinion 
the nucleolus, the Shapley value, and the r-value. The demand nucleolus is interesting 
since it seems to be the best approximation of the allocation principle implied by Norsk 
Hydro, for this particular game . The maximum that each player would be willing to 
pay in any solution, and the allocation implied by Norsk Hydro are interesting from a
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practical viewpoint. The values mentioned above are presented in Table 5.10, for the game 
which is the most interesting game for Norsk Hydro, as this game correspond 

to the trucks that would be used in the transportation:

Customer i Nucleolus
Shapley

value r-value
Demand

Nucleolus
max

Vi Norsk Hydro
15 945.2 913.3 794.1 1 756.3 2 172.8 2 097.0
16 606.8 716.3 682.4 263.2 2 338.4 227.9
17 683.4 720.0 709.3 954.2 2 306.8 645.8
18 581.3 609.0 627.2 228.6 2 177.2 227.9
19 609.8 467.9 613.6 224.3 1 713.6 227.9

Table 5.10. A selection of values for the games (TV;

The smaller customers should be able to reduce their cost significantly, by having the 
possibility to form coalitions with many other customers. These possibilities should have 
a larger effect, than the possibilities of reducing the cost by choosing a smaller truck (as 
in game (iV; c^)). To be able to compare what the difference is between the allocation of 
the cost for one tour, and the allocation of costs in a larger game with more opportunities 
to form coalitions, we study the VRP-Game. This is done in Chapter 6.
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Chapter 6

Cost allocation in a Vehicle Routing 
Game

In this chapter we study cost allocation in a vehicle routing problem where the fleet is in­
homogeneous. We call this problem the Inhomogeneous Vehicle Routing Problem (IVRP), 
and the corresponding game the IVRP-Game. We show how the methods presented in 
Gothe-Lundgren et. al. (1996), studying a cost allocation game in the Vehicle Routing 
Problem where all the vehicles have identical capacity (which we denote by VRP), can 
be adopted for the IVRP. The IVRP-Game is the problem of how to divide the cost for 
a IVRP among the customers that are served on the routes.

6.1 The Core

6.1.1 Mathematical Models and Methods

The VRP-Game

We start with a brief description of the VRP-Game. The mathematical definitions of 
the core and the nucleolus for the VRP-Game are the same as in the TSP-Game (or any 
cooperative game). The difference is in the characteristic function c(S),S C AT, which in 
the VRP-Game is the optimal solution to a VRP.

We introduce the following definitions for use in this chapter:

75
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R = The set of all possible routes (i.e., routes where the demand of the customers 
covered by the route, does not exceed the capacity limit for a vehicle). 

qr = The cost of route r £ R.
1 if customer i is covered by route r
0 otherwise
1 if route r is chosen 
0 otherwise

The characteristic function c(S) for

c(5") - min ^2 9r%r 
reR

S.t. Qiij-Xr —- 1,

reR
Xr > 0, 
xr integer,

the VBP-Game can be defined as:

i£S

r£R
reR

The rVRP-Game

The formulation of the IVRP, similar to the formulation of the VRP above, is the following:

Denote a coalition S such that ^2 A < 14 a feasible coalition with respect to truck type
ies

k. Denote a coalition that is not a feasible coalition with respect to truck type k an 
infeasible coalition with respect to truck type k. Such a coalition is infeasible in the sense 
that it can not be served by one single truck (of type k). An IVRP has to be solved for 
such a coalition.

In the IVRP-Game, we define the customers served in the IVRP as the players. Further­
more, define:

Di = The demand of customer i.
K = The set of truck types in the fleet.
Vk = The capacity of truck type k, k £ K.
kmax = The truck type with the largest capacity, i.e., Vkmax > Vk, k £ K.
R = The set of all feasible coalitions {Si,..., Sm}

with respect to the largest truck type, i.e., R = {S C N\^2 Dt < 14m«}-
ies

c(S) = The least costly route that serves the customers in coalition S £ R, 
using the cheapest truck12.

1 if customer i £ Sr
0 otherwise
1 if the route covering the customers in Sr is chosen 
0 otherwise

2For a given tour, a smaller truck is always less costly than a larger.
2Sr and c(Sr) will be used for coalitions e R, when it is necessary to refer to a specific route, e.g.,
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We define the characteristic function, c(S) in the rVRP-Game as the optimal solution to 
an IVRP, involving the customers in S. Mathematically, c(S),S C N, is expressed as:

(IVRP) c(S) — min £ 'c(Sr)zr 
risren

S.t. ^ ' Q'irS'r
r\Sr€R

xr 
xr

In the game above, define c(0) = 0.

The function c(S) for each S £ R can be computed by solving a TSP using the cheapest 
possible truck. This formulation of IVRP contains as many columns as the VRP has, if 
the VRP is formulated for the largest truck type kmax. The number of columns can be 
reduced, since it is possible that some of the columns in IVRP never would be chosen in 
an optimal solution.

Consider the following example: Suppose coalition Sj £ R is feasible with respect to 
truck type kj ^ kmax, and that Si £ R is feasible with respect to truck type fcj ^ kmax. 
Suppose also that Sm = {5, U Si} £ R is feasible with respect to truck type kmax. If 
c(Sm) > c(Sj) + c(Si), then the customers in Sj and Si will not form coalition Sm, and 
xm will never be chosen in an optimal solution to the IVRP.

For those coalitions S £ R that can be served at a lower cost using more than one truck 
we have that c(S) > c(S). For those coalitions S £ R that are served at an optimal cost 
using one truck, we have equality, i.e., c(S) = c(S). Thus c(S) is an upper bound to c(S).

It is possible to reduce the number of columns, by eliminating the columns that correspond 
to coalitions S where c(S) > c(S). However this would mean that an IVRP (instead of 
a TSP) has to be solved for each coalition S £ R, and from a computational aspect, it 
would probably not be worth the effort of eliminating columns.

= 1, i £ S

> 0, r|Sr 6 R 
integer, r|5r £ R

The core defining inequalities

If all the constraints of the IVRP-Game would be explicitly formulated it would be nec­
essary to solve 2lNl — 1 problems of type IVRP. This would be too complicated computa­
tionally, for any nontrivial size of N. However, it is possible to reduce the number of core 
defining inequalities significantly. The proof below is adapted from Gothe-Lundgren et. 
al. (1996):

Consider any infeasible coalition S (S ^ N) with respect to the largest truck type, 
and a corresponding optimal route configuration with routes {ri,...,rm}. Denote by 
{Si,..., Sm) the corresponding feasible (with respect to any truck type) disjoint coali-

when relating Sr to xT.
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m m
tions. Since £ £ yi = 51% and 51 c(S,) = c(S) it follows that the core defining

■j=i ieSj ie§ i=i
mm

inequalities 51 % < c(S'J)J = l,...,m imply £ies% = 51 51 % ^ 51 c(5i) = c(S).
i€Sj J=1 ieSj j—1

This proves that the constraints 51 % < c(S) are redundant in the definition of the core.
ies

Thus, only the feasible coalitions (with respect to at least one truck type) are of interest, 
and it is only necessary to evaluate the characteristic function c(S) for feasible coalitions 
SeR.

Thus the core of the IVRP-Game can be expressed using these constraints:

(TVRPcore) £% < c(S) SeR [6.1]
ies
51 Vi = C(N) [6.2]
ieN

Observe that one IVRP still has to be solved, in order to find the value of c(N) in 
constraint [6.2].

It is also interesting to observe that in any core solution to the IVRP, the customers on 
each optimal route, have to carry the full cost of the route. There can be no subsidizing 
between routes. The following proof of this is adopted from Gothe-Lundgren et. al. (1996):

Let the route configuration in the optimal solution to the IVRP of the grand coalition be 
{rf,..., r^}, and the corresponding optimal routes {S^,.. Since the coalitions
Sj*,j = 1,... ,m are feasible (at least with respect to the largest truck type), we know 
that for every solution in the core we must have:

£ % < c(Sf), j = 
iesf

We also know that:
m __ __ m

£ £ Vi = £ Vi = c(N) = £ c(sf)
j=i iesf ieN j=l

This is satisfied if and only if

£ % = c(Sf), j = l,...,m 
ies?

This does not mean that the IVRP-Game can be disaggregated into several TSP-Games, 
each including one route in the optimal route configuration of the IVRP. The formulation 
of the core includes constraints corresponding to coalitions that would not be formed 
in the optimal IVRP solution. Thus the constraints in the definition of the core in 
each TSP-Game are only a subset of all the constraints for the core of the IVRP-Game. 
However, any core solution to the IVRP-Game, are solutions in the core of each TSP-
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Game (corresponding to the routes in the optimal IVRP-solution) respectively.

Investigation of the emptiness of the core

Even if the number of core defining inequalities can be reduced significantly by includ­
ing only those constraints that correspond to feasible coalitions, as described above, the 
number of core defining inequalities may still be too large to generate computationally.

If the aim is to find a particular solution in the core by adding a linear objective function 
to the core defining inequalities, as in the TSP-Game, only a few of all the inequalities 
will be active. If the game has ]iV| players, the dual to the core formulation has a basic 
solution with |1V| basic variables. In this setting a constraint generation approach (e.g., 
Gilmore & Gomory, 1961) can be applied. Constraint generation to find solutions to 
cooperative games has successfully been applied by e.g., Hallefjord et. al. (1995), and 
Gothe-Lundgren et. al. (1996).

As in the VRP-Game, the core of the IVBP-Game can be empty or non-empty, depending 
on the data of the problem. In order to investigate whether the core is non-empty in a large 
game where c(N) is not known, the following procedure (including constraint generation) 
may be applied (adopted from Gothe-Lundgren et. al. 1996).

Formulate the IYRP for the grand coalition in the following way:

(IVRP) z = min 53 c(Sr)xr
r\Sr£R

S.t. 53 fl»r®r = 1, i £ N
r\Sr£R

xr > 0, r|Sr £ R
xr integer, r|5r £ R

The LP-relaxation to the IVRP is denoted IVRP, where z is the optimal objective function 
to IVRP, i.e.,

(IVRP) z= min £ c(Sr)xr
r\SrGR

s.t. 52 air%r = 1) i £ N
r\ST£R

xr > 0, r\Sr £ R

Then the dual to IVRP, which is denoted IVRPp, can be formulated as:

(IVRPjr,) u = max 52 Vi
ieN

s.t. 53% < 2(5), S£R [6.3]
«es
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In any imputation, the efficiency condition requires that the optimal cost in the IVRP 
solution is allocated among all the players,

53 Vi ~ C(N) : z
i£N

We also know from IVRPy and IVRP that 

u=z<z = Y^Hi = c(N),
i£N

and therefore that J^ieN Vi = u = c(N) exactly when z = z.

Thus, if IVRP is solved in order to find (a bound for) the optimal solution to the IVRP, 
we can conclude that if there is an integrality gap between z and z, i.e., z < z, the core is 
empty. Otherwise it is non-empty. Furthermore we know that there will be an integrality 
gap, if all the optimal solutions to the IVRP are non-integer.

Computing a solution in the core

To investigate whether this particular IVRP-Game has a non-empty core or not, we solve 
the IVRP by solving IVRPy.

If at least one optimal solution to IVRP is integer, i.e., z = z, we have found the right 
hand side of the efficiency constraint [6.2] in the core formulation, i.e., y(N) = c(N) = z. 
At the same time we have proven that the core is non-empty.

If all optimal solutions to IVRP are non-integer, we can conclude that the core is empty. 
If IVRP has multiple optimal solutions, it is necessary to investigate weather at least one 
is integer. The constraints generated in the procedure below, can be transformed into 
columns in IVRP. A branch-and-bound procedure can the be applied on IVRP, using 
column generation, to investigate weather there are any optimal solutions to IVRP that 
are integer. If it is proven that the core is empty, the column generation and branch- 
and-bound procedure may also be used to solve IVRP for the grand coalition, since it is 
necessary to solve IVRP if the value c(N) is needed, for example to compute the nucleolus.

We apply the following procedure to solve IVRPy, to find out weather the core is empty 
or not:

0. Begin with a number of constraints (that prevents the problem from being un­
bounded), corresponding to a set of coalitions Q, C R.

1. Solve the problem IVRP* (which is a relaxation to the problem IVRPjrj in the sense 
that not all S € R are included):

(IVRP*) w = max 53 y,
i€N

s.t. 53 2/x < c(S), S e [6.4] 
ies
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Identify the solution y*.

2. For each truck type k € K:
Find a coalition3 Sk E {S|5 is a feasible coalition with respect to truck type k}\D. 
that most disagrees with the proposed cost allocation y*.
This can be found by solving IVRPy6 described below.
Let the objective function value to LVRPy6 be

3. Choose a most unsatisfied coalition Sk among all truck types, i.e., choose k E 
argmapi.

4. If z-k < 0, the IVRPd is solved, and the procedure can terminate.
If zk > 0 then let = Q U Sk, and return to step 1.

If the solution to IVBP that is found is integer, we have a solution y in the core. Otherwise 
we have to investigate weather there is at least one optimal solution to IVBP that is 
integer, for example by using a branch-and-bound procedure.

The subproblem IVBPp

The procedure we use to solve IVRPy has been adopted from Laporte & Martello (1990). 
They use the procedure to solve the Selective Traveling Salesman Problem (STSP). Given 
a graph with costs on the arcs and profits at the nodes, the STSP consists of selecting a 
simple circuit of maximal profit, whose route cost does not exceed a pre-specified bound.

Gdthe-Lundgren et. al. (1996) have adopted the procedure to solve IVBPy6
Given a graph with costs on the arcs and profits at the nodes (corresponding to a suggested
cost allocation y), select a simple circuit, including the depot, that maximizes the profits
at the nodes visited minus the costs of the arcs used, such that the vehicle capacity is
not exceeded. The procedure is based on implicit enumeration in a branch-and-bound
procedure. For a more detailed description of the procedure, see Gdthe-Lundgren et. al.
(1996)4.

The sub-procedure IVRPp only handles one vehicle capacity. Therefore, step 2 in the 
procedure has to be repeated for each available truck type k E K. From a computational 
aspect this is not very efficient. The problem IVRPp is a linear program, and is easily 
solved. Furthermore, it does not have to be solved from the beginning in each iteration, 
since only one constraint is added. It is more efficient to re-optimize in each iteration.

However, the procedure IVRPy6 is computationally difficult. The procedure to solve 
IVBPs would be more efficient if I VHP ^6 is adopted in such a way that for each coalition

3The problem of regenerating constraints corresponding to coalitions S € fl is easy to solve, by 
forbidding these coalitions in the implicit enumeration.

4The procedure can also be used to solve a TSP. If sufficiently high profits are assigned to the nodes, 
all nodes will be included in the solution, to a minimal arc cost, i.e., the TSP is solved.
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considered, only the least costly (i.e, smallest possible ) truck type is considered. This is 
possible, since a coalition feasible with respect to a truck type k ^ kmax that is unsatisfied 
when evaluating truck kmax, is even more unsatisfied when truck type k is evaluated. The 
procedure to solve IVRPp would also be more efficient if all coalitions that disagrees with 
the proposed coalitions were generated in step 2-4. A simple heuristic to find unsatisfied 
coalitions could also be implemented in step 2, and only use IVRPp6 to verify optimality.

Since our aim has not been to implement an efficient code we solve IVRPy6 more times 
than necessary.

The subproblem IVRPp may generate constraints corresponding to coalitions S such 
that 5(5) > c(S). These constraints will be redundant in the optimal solution to IVRPp 
(and in any solution to IVEPy). This is shown by the following example:

Suppose that Sm = Sj (J 5;, where Sm, Sj, Si € R. Suppose also that the division is made 
in such a way that the least costly way to serve Sm is by serving Sj and Si separately. 
This implies that 5(5m) > c(Sj) + 5(5;) = c(Sj) + c(5;), and that c(5m) = c(Sj) + c(5r).

If all constraints in the formulation of the core of IVRP would be formulated, we would 
have the following three constraints among them:

12 Vi < c(5,) [6.5a]
i€S}

< c(5) [6.5b]
ies,

E Vi < C(&.) [6.5c]
ies,Us,

Since c(5m) = c(Sj)+c(S{), constraints [6.5a] and [6.5b] make constraint [6.5c] redundant.

Now when we consider the problem IVRPy we have the following constraints correspond­
ing to the coalitions Sm, Sj, 5;:

12 Vi < c(%) [6.6a]
iess
E Vi < C(S) [6.6b]
ies,

E Vi < [6.6c]
iesm(JSi

Since c(Sj) 4- c(5;) > 5(5m), constraints [6.6a] and [6.6b] make [6.6c] redundant.

Finally, if we consider the problem IVRFp we could generate constraint [6.6c] before 
constraints [6.6a] and [6.6b]. However, as long as the constraint [6.6c] remains binding, 
at least one of the coalitions Sj or 5; will be unsatisfied with the allocation y, and the 
the corresponding constraint will be generated before the optimal solution to IVRPp is 
found. Thus it is redundant in the optimal solution to IVRPy.

The constraints [6.4] in IVRPp represent a relaxation of the core, that still gives the core.
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6.1.2 Computational Results

In the IVRP-Game that we chose to study, there are 221 — 1 = 1 048 575 constraints 
in the definition of the core. Each of these constraints requires an IVRP to be solved. 
Our computations showed that the IVRP for the grand coalition N was difficult to solve. 
Hence it would be computationally impossible to generate all the constraints.

As shown in Chapter 6.1.1, the number of constraints can be reduced significantly by 
only considering the core defining inequalities that correspond to feasible coalitions, with 
respect to at least one truck type. It turned out that the number of constraints could be 
reduced to a total of 4976. These constraints are divided as presented in Table 6.1 below.

Size of the 
coalition, |S|

Number of constraints 
(feasible coalitions)

1 21
2 177
3 705
4 1460
5 1 550
6 839
7 204
8 20

Table 6.1. Distribution of core defining inequalities in the studied IVRP-Game

Each of these constraints involves the computation of an optimal solution to a TSP. Even 
though the TSP is NP-hard, it is possible to solve these TSPs (since there are only eight 
customers in the largest problems), either using the subproblem IVRPy6 presented in 
Chapter 6.1.1, or even by using complete enumeration. Furthermore, a linear program 
with 22 variables5 and 4976 constraints, is fairly easy to solve. Thus in the IVRP-Game 
we chose to study, it would be computationally possible to generate all core defining 
inequalities [6.3].

However, we want to evaluate a solution method that could be applied also for larger 
problems than the one we chose to study. We also need the solution to the IVRP for the 
coalition N, to be able to compute the nucleolus. Therefore we chose to investigate the 
emptiness of the core, by solving rVRPp.

In our computations we began the solution procedure of IVRPa with the constraints 
corresponding to the coalitions fi = {S|S is a singleton } U{S|S is a coalition in the 
solution applied by Norsk Hydro }. From the beginning, Q contained the 21 singletons and 
six coalitions corresponding to actual routes (Two of the actual routes were to singletons). 
The solution procedure terminated when a total of 77 constraints were included in the 
problem (i.e., 50 generated constraints). The optimal objective function value to IVRPf,

5The number of variables in the first iteration in the computation of the nucleolus.
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was 24 928.9. The distribution of the sizes of the coalitions, corresponding to the generated 
constraints, is presented in Table 6.2 below.

Size of the 
coalition, |Sj

Number of constraints in the 
optimal solution to IVRPy

Total number of constraints 
(feasible coalitions)

1 21 21
2 10 177
3 6 705
4 18 1 460
5 16 1 550
6 6 839
7 0 204
8 0 20

Table 6.2. Distribution of core defining inequalities generated in the optimal solution to
IVRPo.

The dual optimal solution, i.e., the optimal solution to IVRP is unique and non-integer. 
Thus we can conclude that the core of this particular IVRP-Game is empty.

We still want to find a cost allocation for the IVPR-Game, and therefore we compute the 
nucleolus and the pre-nucleolus. This is done in Chapter 6.2.

6.2 The Nucleolus

6.2.1 Mathematical Models and Methods

Before we can begin to compute the nucleolus and the pre-nucleolus, we need to know the 
optimal solution to the IVRP for the grand coalition.

This was done using a branch-and-bound procedure where in each node the linear problem 
IVRP is solved by using constraint generation (see e.g., Desrochers et. al., 1992).

Once the optimal objective function value to the IVRP-problem is known, the pre­
nucleolus (and the nucleolus) can be computed through successive linear programs.

The procedure uses the same principles as in Gothe-Lundgren et. al. (1996), and as when 
solving IVRPa in Chapter 6.1.1. It can be described as follows:

0. Begin with a number of constraints corresponding to a non-empty set of coalitions 
Q C R. For example, if the emptiness of the core has been investigated using 
constraint generation, these constraints may be included in fi from the beginning. 
Let Pq = 0, and t = 1.
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1. Solve master problem t:
CptM) max wt

s.t. Y,Vi +wt < c(S),
i€S
x> +K = 5(5),
ies

= c(N)
i£N

Identify the solution If y* is
nucleolus.
Otherwise go to step 2.

Sen
s ^ Ur=0 rT
S 6 rT,r = 0,— 1

a unique solution to Ph, then y* is the pre-

2. For each truck type k 6 K:
Find a coalition Sk 6 {S|S is a feasible coalition with respect to truck type k}\Q, 
that most disagrees with the proposed cost allocation y*.
This can be found by solving IVRPp6 described in Chapter 6.1.1.
Let the objective function value in IVRPfl6 be z/:.

3. Choose a most unsatisfied coalition Sk among all truck types i.e., choose k 6 
argmaxzfc

4. We know that if the coalition Sk is unsatisfied with respect to any truck, Sk will 
be most unsatisfied with respect to the smallest possible truck that can serve them. 
Thus, we have the excess in Sk:
e(Sk,y) = c(Sk) - 53 Vi = ~zh 

ies£
If e(Sk,y) < iuj this corresponds to a violated constraint in PlM, since we require: 
u>t < e(S,y) for all S G R\S Ut=orr.
Let Cl = flUSj, and return to step 1. If e(Sk,y) > w*t, all the necessary constraints 
for PlM are included and step 5 should be performed.

5. Ft = {S e #\U.=o Frin^S) > 0}. Let t=t+l, and go to step 1.

The efficiency of the procedure to find the pre-nucleolus (and the nucleolus) can be im­
proved by modifying it, in the same way as the suggested modifications of the procedure 
to solve IVRPy6, which were described in Chapter 6.1.2.

The nucleolus can be found using the procedure above, if the constraints # < c(i),i € N 
are added to the problems PlM.

6.2.2 Computational results

We only considered two truck types in our computations. These were the two largest 
types, 33 and 34. In the tariff, the smaller truck type (33) has costs that are 97-98% of 
the cost of the larger type (34). To serve the customer that is closest to the depot would
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cost around 300 SEK, in fixed cost only. If a coalition, feasible with respect to truck type 
34, would be served at a lower cost using two trucks of type 33, this would mean that the 
300 SEK are saved on the 3 % lower cost of transportation. This means that the tour 
should be at least 1000 km. Clearly this is not likely, and we can conclude that in the 
studied IVRP, it will always be less costly to serve a feasible coalition using one truck. 
The cost matrices for the truck types 33 and 34 in the FVEP, can be found in Appendix 
2.

In our computations we started to solve IVRP for the grand coalition, to obtain c(N). 
The optimal objective function value of IVRP was 25 185.0 (compared to 24 928.9 for the 
IVRP). The optimal route configuration is presented in table 6.3:

Customers Cost of the route Truck type used
{1,2,3} 2 390.8 34
{4,5,6,7,8} 3 573.4 34
{9} 4 009.8 34
{10} 4 385.4 34
{11,12} 1 512.7 34
{13,14} 3 096.9 33
{15,21} 2 519.4 33
{16,17,18,19,20} 3 696.6 33

Table 6.3. The optimal route configuration in the IVRP.

The only difference between the optimal IVRP-solution and the actual tours that were 
made, is that customers 15 and 20 are switched in the last two coalitions.

All constraints corresponding to route configurations generated in the branch-and-bound 
tree, could be included from the beginning in the set fi, when computing the nucleolus. 
However, for practical reasons, we let Q. contain the 77 constraints generated when solving
Tvrjv

When computing the pre-nucleolus the procedure went through 39 major iterations, thus 
generating Ft and w*t for t = 1,... ,39. The first value, w{, was -33.4. This can be 
interpreted to measure the dissatisfaction of the most unsatisfied feasible coalition. The 
vector wm was (-33.4, -25.8, -23.6, -3.3, -3.3, -0.9, 12.2, 14.6, 29.8, 42.3, 58.1, 59.1, 61.5,
61.5, 63.9, 68.3, 70.1, 75.2, 75.8, 81.0, 86.0, 90.0, 94.7, 96.3, 97.9, 98.4, 99.3,100.8,101.7,
102.5.105.5.107.1.107.2.109.5, 116.1,116.9, 118.2,118.2, 120.2)6.

A total of 105 constraints were generated (i.e., another 28 from the solution to IVRP). 
The distribution of the sizes of the coalitions corresponding to the generated constraints, 
is presented in Table 6.4 below.

6When two successive values are equal in the vector above, there is a difference in the decimals not
shown.
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Size of the 
coalition, |S|

Number of constraints 
generated to find 
the pre-nucleolus 
(New from IVRP)

Total number 
of constraints 

(feasible coalitions)
1 21(0) 21
2 12(2) 177
3 13(7) 705
4 33(15) 1 460
5 20(4) 1 550
6 6(0) 839
7 0 204
8 0 20

Table 6.4. Distribution of coalitions corresponding to generated constrains in the computation
of the pre-nucleolus.

When computing the nucleolus the procedure went through 41 major iterations. The first 
value, wh was -39.1. The vector w* was (-39.1, -35.8, -32.6, -31.2, -5.7, -5.7, 0.0, 0.0, 6.0, 
10.3, 19.8, 39.4, 45.9, 55.6, 62.4, 62.4, 62.6, 62.8, 67.6, 76.5, 77.8, 78.0, 79.0, 81.6, 87.0, 
88.7, 92.8, 93.1, 97.1, 99.0, 105.3, 105.5, 105.5, 107.4, 108.4, 112.4, 114.5, 114.5, 117.0, 
117.6)7.

A total of 107 constraints were generated (i.e., another 30 from the IVBP). The distribu­
tion of the sizes of the coalitions corresponding to the generated constraints, is presented 
in Table 6.5 below.

Size of the 
coalition, |S|

Number of constraints 
generated to find 
the pre-nucleolus 
(New from IVRP)

Total number 
of constraints 

(feasible coalitions)
1 21(0) 21
2 12(2) 177
3 14(8) 705
4 35(17) 1460
5 19(3) 1 550
6 6(0) 839
7 0 204
8 0 20

Table 6.5. Distribution of coalitions corresponding to generated constrains in the computation
of the nucleolus.

The pre-nucleolus and the nucleolus are presented in Table 6.6 below. Two allocations 
according to the principles implied by Norsk Hydro are presented. NHi corresponds to

7When two successive values are equal in the vector above, there is a difference in the decimals not
shown.
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the principle that the cost of each optimal route is divided in proportion to the demand 
of the customers on the route. NH2 corresponds to the principle that the total cost of the 
IVRP is divided in proportion to the demand of the customers of the IVBP. Finally, the 
stand-alone cost for each customer, (c(i)), is also presented.

Customer no. Pre-nucleolus Nucleolus NHj nh2 c(i)
1 625.6 625.3 580.8 795.9 1 760.8
2 725.7 732.0 677.6 928.6 1 763.8
3 1 072.8 1 072.5 1 132.5 1 552.1 1 401.4
4 866.3 864.8 788.8 762.8 1 918.6
5 182.0 201.5 102.9 99.5 2 138.6
6 510.5 494.0 281.2 271.9 2 351.2
7 813.2 812.4 857.3 829.1 2 242.4
8 1 234.8 1 239.7 1 543.2 1 492.4 2 022.4
9 4 043.2 4 009.8 4 009.8 3 323.1 4 009.8
10 4 386.3 4 385.4 4 385.4 3 316.4 4 385.4
11 719.8 722.6 777.5 1 704.6 950.4
12 826.3 829.1 735.2 1 611.8 1 037.2
13 1 542.7 1 544.9 1 307.6 1 260.2 2 723.0
14 1 587.6 1 587.8 1 789.3 1 724.5 2 443.0
15 1 828.5 1 834.4 1 755.9 1 830.7 2 172.8
16 301.3 306.5 254.9 199.0 2 338.4
17 654.8 647.4 722.3 563.8 2 307.0
18 185.9 192.5 254.9 199.0 2 177.2
19 185.0 188.3 254.9 199.0 1 713.6
20 2 168.3 2 169.9 2 209.5 1 724.5 2 709.0
21 724.3 724.0 763.5 795.9 2 032.6

Table 6.6. Computational results for the IVRP-Game.

Li Table 6.6 it can be seen that the pre-nucleolus is close to the nucleolus. The largest 
differences are found for customers 5, 6 and 9. The individual rationality constraints are 
not fulfilled for customers 9 and 10 (corresponding to the two routes serving singletons, in 
the optimal IVEP-solution). The principle NH2 does not fulfill the individual rationality 
constraint for customer 3. NHi seems to be the best approximation to the nucleolus. The 
differences between NHi and the nucleolus are largest for customers 5 and 6.

6.3 Other Solution Concepts

In order to compute, the normalized nucleolus, the demand nucleolus, the Shapley value 
and the t-value it is required that all core constraints are known or generated (i.e., not 
only the constraints corresponding to feasible coalitions with respect to any truck). Since 
that would mean that more than 1 000 000 IVRPs would have to be solved, these values 
are impossible to compute in the studied IVRP.
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It is neither possible to compute the maximum nor the minimum that each player could 
pay, since the core is empty.

The marginal cost of each customer, ro; could be computed, but this was not done since 
it would require 21 IVRPs with 20 customers to be solved. We found it computationally 
difficult even to find the solution to one IVRP (with 21 customers).

Thus the only solution concept we have studied, that is possible to compute in the IVRP- 
Game studied, is the nucleolus.
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Chapter 7

Conclusions

An interesting comparison is that of the nucleolus of the IVRP-Game and solutions accord­
ing to different solution concepts in each of the TSP-Games (corresponding to the tours 
that were actually carried out). The comparison is found in Table 7.1 below. It contains 
the nucleolus in the IVRP-Game ((IVRP-)nucleolus), the nucleolus1, the Shapley value, 
the r-value and the demand nucleolus2 for each of the TSP-Games ((TSP-)nucleolus, 
(TSP-)Shapley value, (TSP-)r-value and (TSP-)demand nucleolus, respectively). In the 
TSP-Games the game (N;c^) is considered in each case (See Chapter 5.1.1). The prin­
ciple implied by Norsk Hydro (NHi in Chapter 6)3 is also presented.

In Table 7.1, the solutions in the TSP-Games do not sum up to the same amount as the 
IVRP-nucleolus. The difference is due to the part of the cost remainder (which is 
discussed in Chapter 2.2.3). The size of 7V is 257.8, compared to the value of the optimal 
IVRP-solution which is 25 185.0.

The double lines in Table 7.1 divides the customers into the corresponding actual tours.

1The nucleolus for each TSP-Game is computed in the same way as presented in Chapter 5.
2The demand nucleolus for each TSP-Game is computed in the same way as presented in Chapter 5.
3In Table 7.1 the actual tours are considered. In Chapter 6, Table 6.6, the routes in the optimal 

solution to the IVRP are considered, when computing NHi.
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Customer i
(IVRP-)
nucleolus

(TSP-)
nucleolus

(TSP-)
Shapley

value
(TSP-)
T-value

(TSP-)
Demand
nucleolus NHi

1 625.3 742.2 830.2 808.1 675.4 580.8
2 732.0 745.3 833.4 811.2 839.5 677.6
3 1 072.5 903.3 727.1 771.5 875.9 1 132.5
4 864.8 668.7 606.7 627.3 740.9 788.8
5 201.5 538.1 599.6 581.1 145.4 102.9
6 494.0 639.5 751.8 709.4 427.1 281.2
7 812.4 907.0 879.0 887.7 942.6 857.3
8 1 239.7 819.9 736.4 767.6 1317.4 1 543.2
9 4 009.8 4 009.8 4 009.8 4 009.8 4 009.8 4 009.8
10 4 385.4 4 385.4 4 385.4 4 385.4 4 385.4 4 385.4
11 722.6 712.2 712.2 712.2 719.5 777.5
12 829.1 800.6 800.6 800.6 793.2 735.2
13 1 544.9 1 688.5 1 688.5 1 688.5 1 528.3 1 307.6
14 1 587.8 1 408.5 1 408.5 1 408.5 1 568.6 1 789.3
15 1 834.4 945.2 794.1 887.4 1 756.3 2 097.0
16 306.5 606.8 682.4 676.3 263.2 227.9
17 647.4 683.4 709.3 725.6 954.1 645.8
18 192.5 581.3 627.2 616.5 228.6 227.9
19 188.3 609.8 613.6 520.2 224.3 227.9
20 2 169.9 1 860.2 1 860.2 1 860.2 2 172.4 2 082.7
21 724.0 1 183.8 1 183.8 1 183.8 871.5 961.2

Table 7.1. A collection of values for customers 1-21.

It can be seen in table 7.1 that the allocation principles implied by Norsk Hydro seems 
to be a very good approximation to the(IVRP-)nucleolus. The biggest differences are for 
customers 6, 8, 13,14,15 and 21. As explained in Chapter 2.2.4, the principle implied by 
Norsk Hydro only takes demand into consideration (and not the geographical location of 
the customers).

The (TSP-)demand nucleolus seems to be an even better approximation to the 
(rVRP-)nucleolus. It behaves considerably better than the principle implied by Norsk 
Hydro, for the customers 6, 8, 13,14,15 and somewhat better for customer 21. However, 
it is considerably worse for customers 3 and 17. Compared to the principle implied by 
Norsk Hydro, the (TSP-)demand nucleolus is computationally difficult. Furthermore, the 
(TSP-)demand nucleolus is not a better approximation of the (IVRP-)nucleolus in all cases 
(even considerably worse in some). Compared to the (IVBP-)nucleolus, the computations 
of the (TSP-)demand nucleolus is computationally much easier.

In the computations of the nucleolus, the possibilities of forming coalitions is important for 
a customer to reduce the costs that are allocated to her. The principle implied by Norsk 
Hydro only take demand into consideration. The (TSP-)demand nucleolus take both 
demand and the geographical location into consideration. Therefore it is not surprising
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that the allocation according to the (TSP-)demand nucleolus is somewhat better than 
the principle implied by Norsk Hydro. When computing the (TSP-)nucleolus only the 
geographical locations of the customers are considered. The (TSP-)nucleolus differs much 
more from the (IVRP-)nucleolus than what the principle implied by Norsk Hydro and the 
(TSP-)demand nucleolus do. A conclusion of this is that it seems as the size of the demand 
is more important than the geographical location, for the possibilities of a customer to 
form (good) coalitions.

The (TSP-)nucleolus, the (TSP-)Shapley-value and the (TSP-)r-value are almost the 
same4. All these three concepts aim at finding a ’fair’ allocation. If the customers of each 
game participate under the same conditions, all three values will divide the total cost 
equally (due to the anonymity property, see Chapter 3.3.3). Since in the studied TSP- 
Games, the customers of each game participate under almost the same conditions (their 
stand-alone cost is high, and cooperation in all coalitions is very profitable), the three 
methods divides the cost almost equally using the three values. The (IVRP-)nucleolus 
is quite different from the (TSP-)nucleolus. It would be interesting to see weather the 
Shapley value and the r-value behave in a similar way. However, this is unfortunately not 
computationally possible.

4For the TSP-Games where |iV| < 2 the nucleolus, the Shapley-value and the r-value coincide. This 
property holds in general for games where |JV| < 2.
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Chapter 8

Further research

There are a number of possible ways to continue the research on questions related to the 
Norsk Hydro case.

Our motive to study the IVRP-Game instead of the TSP-Game, was that the customers 
should have more opportunities to form coalitions with other customers than just those 
that happened to be on the same tour. The extension of this would be to study what the 
results would be, if the customers also had a possibility to form coalitions with some of 
the customers that were served within delivery time, i.e., within three days. The planning 
problem (i.e., the characteristic function to be defined), could be seen as an IVRP-Game 
with time windows, or a multi-period IVRP-Game. If more days were included in the 
game, the game could also be used to estimate the long-term cost of the customers. The 
extensions of the types described would be interesting both from an theoretical and a 
practical aspect.

Another way to estimate the long-term cost of customers, would be to study a number of 
IVRPs, each corresponding to the deliveries made during one day. This would be necessary 
in order to prevent conclusions to be made about a customer or a customer group, based 
on data from unusual situations (e.g., unusual planning situations). In order to develop 
an efficient tool that solves many IVRP-Games, research would have to be done on how 
to make the solution procedure described in this thesis, more efficient.

It is also interesting to study weather the games concerning gas-oil deliveries, and shared 
deliveries have the same characteristics as the games concerning gas deliveries. The study 
of games concerning shared deliveries is needed if an allocation is to be done between the 
two cost centers Gas and Gas-oil. However, not only the shared delivery tours would have 
to be studied. A customer served on a shared delivery tour, has also the possibility to 
form coalitions with customers on a tour where only one product is delivered. It would be 
necessary to define what coalitions are feasible in such a game. If the aim is to allocate 
the costs to the two cost centers, another approach is to define the products as players 
in a game. This would turn the game in a non-atomic game (see e.g., Owen, 1995). A 
non-atomic game is a game with a continuum of players, instead of an n—person game 
(with n distinct players), which we have studied in this thesis.
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We decided to not allocate the cost remainder. In a practical problem, such as the Norsk 
Hydro case, it would be interesting to treat the remainder, e.g., by including it in the 
mathematical modeling.

From a methodological aspect it would also be interesting to find procedures that succeeds 
in computing or approximating game theoretic solution concepts other than the nucleolus 
(e.g., the Shapley value or the r-value), in large games such as the IVRP-Game.

Finally, it would be interesting to study cost allocation problems in other real-life prob­
lems, e.g., production planning and scheduling, financial planning and problems concern­
ing investments in infra-structure (traffic planning, telecommunication investments etc).



Appendix 1

Distance matrix
The distances (in km) between the customers in the IVRP is presented below. It is 
assumed that dy = dy for i,j € N, where dy is the distance between customers i and j. 
Customer 0 is the depot.

Oust. 0
1 66.6 1
2 65.6 1.6 2
3 40.7 29.7 28.7 3
4 73.9 60.5 61.3 58.0 4
5 91.9 58.3 59.1 68.2 19.6 5
6 100.2 62.4 63.2 72.3 27.9 10.4 6
7 89.8 44.5 45.3 58.2 47.1 42.2 39.0 7
8 71.8 29.7 30.5 42.1 33.0 30.9 34.9 20.4 8
9 152.3 107.3 108.1 122.6 97.0 81.8 72.2 69.2 81.9 9
10 170.0 108.6 108.0 136.2 135.0 126.4 116.8 88.7 105.4 67.0 10
11 15.4 58.0 57.0 35.0 59.1 77.1 85.4 81.2 63.2 143.7 161.4
12 19.6 62.9 61.9 41.0 61.7 79.7 88.0 86.0 67.9 148.6 166.3
13 110.5 49.3 48.7 75.1 71.8 69.2 62.4 29.2 41.2 65.8 66.3
14 92.2 30.8 30.2 58.4 64.6 62.0 60.4 26.2 34.0 82.6 79.8
15 76.5 56.5 55.5 66.5 116.2 114.0 118.1 98.4 85.6 157.7 121.6
16 101.2 51.8 50.8 77.6 109.3 107.1 110.7 77.9 78.7 132.3 92.2
17 95.4 34.5 . 33.7 60.3 89.5 87.3 85.3 51.5 58.9 102.6 82.9
18 93.0 32.1 31.1 57.9 86.7 84.5 85.7 51.5 56.1 103.1 84.2
19 69.4 8.5 7.5 34.3 65.6 64.8 67.5 45.7 35.0 109.0 107.7
20 103.7 81.3 80.3 93.7 138.8 136.6 140.2 107.4 108.0 161.8 114.6
21 78.4 50.8 49.8 65.6 109.3 107.1 111.2 90.9 78.5 147.9 115.8
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Cust. 11
12 11.4 12
13 101.9 106.8 13
14 83.6 88.5 19.6 14
15 73.4 82.0 91.6 75.5 15
16 98.1 106.7 66.2 53.9 30.2 16
17 87.0 91.7 36.5 26.9 59.4 32.8 17
18 84.4 89.3 37.0 26.4 60.0 33.2 3.4 18
19 60.7 65.7 44.6 26.1 54.6 47.2 29.9 27.5 19
20 100.6 109.2 95.7 83.4 31.2 30.3 62.7 76.7 62.3 20
21 75.3 83.9 83.2 67.1 10.8 24.4 54.1 46.2 53.7 36.8



Appendix 2

Cost matrices
The cost (in SEK) matrices for truck type 33 and truck type 34 in the IVBP-Game are 
presented below. It is assumed that % = cji for i,j € N, where cy is the (modified) cost 
of going between customers i and j. Customer 0 is the depot.

Cost matrix for truck type 33.

Cust. 0
1 880.4 1
2 881.9 209.0 2
3 700.7 548.6 550.1 3
4 959.3 783.5 802.7 833.8 4
5 1069.3 695.0 714.3 867.1 322.0 5
6 1175.6 760.1 779.3 932.2 428.3 189.5 6
7 1121.2 632.0 651.2 841.4 664.7 549.7 543.0
8 1011.2 553.4 572.7 750.1 593.0 505.5 569.6
9 1959.0 1472.8 1492.0 1697.9 1378.7 1162.5 1093.0
10 2142.3 1495.0 1500.4 1840.9 1761.5 1610.2 1540.6
11 475.2 849.7 851.2 698.5 867.6 977.6 1084.0
12 518.6 899.9 901.4 759.5 895.2 1005.2 1111.6
13 1361.5 716.1 721.6 1044.4 944.3 851.9 809.9
14 1221.5 574.1 579.6 920.1 913.4 821.0 830.0
15 1086.4 845.7 847.3 1018.8 1439.4 1351.0 1416.0
16 1169.2 639.7 641.3 968.0 1211.8 1123.3 1183.5
17 1153.5 511.0 514.5 839.3 1058.5 970.1 975.2
18 1088.6 446.2 447.7 774.5 989.8 901.3 937.9
19 856.8 214.3 215.8 542.6 782.5 707.7 759.1
20 1354.5 1090.3 1091.8 1286.9 1662.4 1573.9 1634.1
21 1016.3 701.0 702.6 921.3 1283.0 1194.5 1259.6
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Gust. 7
8 471.0 8
9 1111.3 1302.9 9
10 1312.3 1543.2 1322.8 10
11 1090.5 980.5 1928.3 2111.6 11
12 1139.7 1028.7 1978.5 2161.8 491.8 12
13 531.5 716.2 1114.8 1129.2 1330.8 1381.0 13
14 541.8 685.3 1319.7 1301.6 1190.8 1241.0 513.9
15 1270.2 1211.3 2076.6 1731.4 1109.7 1196.2 1240.4
16 909.0 983.7 1667.2 1282.7 1192.5 1279.0 831.0
17 690.9 830.4 1416.7 1232.6 1124.7 1172.9 580.5
18 649.6 761.7 1380.3 1204.1 1057.9 1108.1 544.1
19 592.6 554.3 1438.3 1435.0 825.0 876.2 618.8
20 1359.6 1432.3 2117.8 1663.5 1377.8 1464.3 1281.6
21 1107.9 1052.9 1891.7 1585.7 1039.6 1126.2 1069.2

Gust. 14
15 1122.0 15
16 749.9 536.2 16
17 525.9 864.3 443.1 17
18 479.7 829.0 405.8 154.3 18
19 476.8 775.9 543.4 414.6 349.8 19
20 1200.5 706.8 538.1 897.7 993.9 852.5 20
21 950.8 416.7 390.5 723.6 604.7 678.4 673.1
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Cost matrix for truck type 34.

Gust. 0
1 900.9 1
2 902.5 212.5 2
3 715.8 560.1 561.6 3
4 981.7 801.7 821.4 852.5 4
5 1095.3 711.7 731.4 887.5 328.9 5
6 1203.9 778.1 797.8 953.8 437.6 193.4 6
7 1147.7 646.2 665.9 860.3 679.6 562.5 555.2
8 1034.1 564.9 584.6 765.8 605.3 516.4 581.7
9 2004.9 1506.4 1526.2 1736.6 1409.9 1188.9 1117.2
10 2192.7 1529.0 1534.6 1883.1 1802.2 1647.8 1576.1
11 484.2 868.6 870.2 712.8 886.9 1000.5 1109.1
12 528.4 919.9 921.4 775.1 915.0 1028.6 1137.3
13 1393.9 732.2 737.8 1068.2 966.1 872.1 828.6
14 1249.9 586.2 591.8 940.3 934.0 840.0 848.9
15 1110.9 864.4 866.0 1041.2 1473.3 1383.3 1449.7
16 1197.7 654.9 656.5 990.9 1241.6 1151.6 1212.9
17 1181.0 522.3 525.9 858.3 1083.8 993.8 998.7
18 1115.0 456.3 457.9 792.3 1013.8 923.8 961.0
19 877.2 218.5 220.1 554.5 801.2 725.3 777.5
20 1385.8 1115.1 1116.7 1316.1 1701.8 1611.8 1673.2
21 1039.9 716.8 718.4 942.0 1313.6 1223.6 1290.0
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Gust. 7
8 480.1 8
9 1135.5 1331.3 9
10 1341.4 1577.5 1350.0 10
11 1115.4 1001.8 1972.6 2160.4 11
12 1165.7 1051.0 2023.9 2211.7 500.1 12
13 542.6 731.3 1138.8 1153.2 1361.6 1412.8 13
14 552.8 699.2 1348.5 1329.7 1217.6 1268.9 523.9
15 1299.7 1238.5 2124.7 1770.3 1134.0 1222.6 1268.7
16 930.9 1006.8 1706.5 1311.8 1220.8 1309.4 850.6
17 706.6 849.0 1449.0 1259.8 1150.7 1200.0 593.0
18 664.8 779.0 1412.2 1231.1 1082.7 1134.0 556.3
19 606.4 566.4 1471.7 1468.0 843.9 896.2 632.9
20 1391.1 1465.0 2166.7 1700.5 1408.9 1497.5 1310.8
21 1133.9 1076.8 1935.7 1621.6 1063.0 1151.6 1093.9

Gust. 14
15 1146.9 15
16 767.1 547.5 16
17 536.7 883.5 453.3 17
18 489.9 847.8 415.5 157.0 18
19 486.9 793.4 556.6 424.0 358.1 19
20 1227.3 720.5 549.2 917.5 1016.8 871.7 20
21 972.1 424.0 398.8 739.9 618.5 694.1 686.8
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