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1. Introduction and summary
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Recently, in the study of a model where the gauge bosons are constructed in terms of 

the defining elements of a Grassmann algebra, nonlinear changes of variables in Berezin 

integrals have been considered [1]. In the preliminary investigation of such changes of 

variables the following program was outlined

i) to construct a perturbative scheme in terms of fermionic composites by introducing 

such composites as integration variables in the Berezin integral which defines the partition 

function of the constituents [2]

ii) to use such a formalism to construct models in terms of even Grassmann fields 

(even polynomials of the defining elements ) assumed as independent variables.

The present paper is mainly devoted to the second part of the program, restricted 

to the case of scalar fields defined in terms of Fourier components of given index of 

nilpotency. For a model of this kind to be interesting in Particle Physics, such fields 

should have a particle interpretation. Now, while the meaning of even Grassmann fields 

is clear when they are introduced by a change of variables in the partition function of a 

fermionic system, it is no longer so when they are considered as independent variables 

from the outset. It would, appear most natural to continue to interpret them as fermionic 

composites analogous to the Cooper pairs of superconductivity, which are represented in 

the partition function by an even field with Fourier components of index 2. But relativistic 

theories are severely constrained and we do not know when a given action of even fields 

can "be obtained as the effective action of a fermionic system, even if such an effective 

action need not be entirely consistent: Lack of unitarity at some energy, for instance, 

can be the signal of the compositeness and of the importance of the constituents at that 

energy.

Surprisingly enough, there appears to be also the ( highly specultaive ) possibility that 

even fields can be associated to new particles ( with unusual properties ). We will in fact 

see that we have a consistent particle interpretation for the free theory, but we do not 

know if consistent interactions can be constructed.

The index of nilpotency of a variable <f> is the smallest integer n* such that



<f>n = 0, for n > n*. (1)

So in. this paper we consider fields of given index of nilpotency in momentum space

{4>(p))n = °) forn> n*, V p. (2)

A following paper [3] will be devoted to the study of fields of given index of nilpotency in 

configuration space

(<j>(x))n = 0, for n> n*, V x. (3)

The present paper is organized in the following way. We will start by giving in Sec. 2 the 

rule of integration over even Grassmann variables and discussing some of its properties. 

We will report the full formalism, although its application in the present paper is confined 

to the simplest cases. This because we want to put our results into the perspective of a 

possible relation to fermionic composites, and therefore we want to show its generality. 

Moreover we need the full formalism to clarify, in Sec.3, the origin of the difference between 

the propagators of fields nilpotent in configuration and momentum space. Finally, we need 

it to explain the limitations in the interactions of fields nilpotent in momentum space and 

the difficulty in proving the reflection positivity of such interactions.

Sec. 3 deals with the free propagators of scalar fields. In ref. [1] it was already shown 

that it is possible to define the free action of a scalar field of index 2 in momentum space 

( this choice did not have any other reason that simplicity, 2 being the smallest index 

with,the variables adopted there ) in such a way that its propagator be equal to that 

of an ordinary scalar. Here we extend this result to arbitrary index of nilpotency. We 

will argue, however, that the thermodynamics of even Grassmann fields must be different 

from that of ordinary fields, the former ones obeying an exclusion principle. In spite of 

this, it seems from our derivation that it is consistent to associate these fields with new 

particles (with unusual properties) although we do not know if consistent interactions can 

be constructed ( see Section 4 ). In the negative case the formalism would be interesting 

in Particle Physics only if these even fields could be related to fermionic composites.
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In ref. [1] we also investigated the propagator of a complex scalar field of index 1 in 

configuration space. This propagator was related to the selfavoiding random walk. Here 

we clarify the origin of this difference with respect to fields of given index in momentum 

space.' The extension to higher values of the index for fields nilpotent in configuration

space can be found in the following paper.

In Sec. 4 we will consider the interactions of our fields. Since gauge transformations 

change the index of the Fourier components, in the framework of gauge symmetries a 

scalar field with given index in momentum space can only be introduced as the ( gauge- 

invariant ) polar radius of a Higgs field. We are thus led to selfinteractions, whose study 

was already started in ref.[l] with the 04 model. We will complete this investigation, whose 

main motivation is the hope to avoid the triviality of the model with ordinary fields, a 

feature whose relevance to the Higgs sector of the electroweak Standard Model has been 

discussed by many authors [4]. Triviality with ordinary fields could be avoided if it were 

possible to define the model for attractive selfcoupling, in which case it is perturbatively 

asymptotically free [5]. But there seems to be a rather general consensus that it is not 

possible to circumvent the obstruction of the euclidean action unbounded from below [6]. 

Now with even Grassmann fields the model can be defined also for attractive selfcoupling, 

at least in the presence of a suitable cutoff, and in its first investigation it was found to 

be asymptotically free in perturbation theory. In the presence of selfattraction, however, 

one expects a nontrivial vacuum. The natural way to investigate its structure would seem 

to use the so called Hubbard-Stratonovich transformation [7], but in the last Section we 

will show that this application is precluded by the lack of a small expansion parameter.

The cancellation of disconnected terms, which is more involved than in the ordinary 

case was not proven in ref. (1). In the present paper we show that it does occur, and we 

investigate the behaviour of the bare mass with the cutoff, which turns out to be rather 

surprising, being quadratically increasing/decreasing for repulsive/attractive selfcoupling. 

We perform the analysis for fields of index 1 and 2 finding the same behaviour.

We will not say anything about the physical interpretation of the model. The investi

gation of a possible relation to fermionic composites is in progress. The alternative that 

the ^-field be a fundamental one, on the other hand, depends on whether the model sat



— 5 —

isfies or not reflection positivity. The discussion of such a property following Osterwalder 

and Schrader [8] appears difficult to us for a reason explained below ( while with fields 

nilpotent in configuration space it is similar to that of ordinary fields ).

If a particle interpretation is possible, the model might find an application, admittedly 

rather artificial, in the Higgs sector of the Standard Model of electroweak interactions. 

Since, as we will see, a gauge symmetry cannot be introduced for a 0- field with given 

index in momentum space, as already said such a field could only be related to the 

gauge-invariant polar radius in a polar parametrization of the Higgs field. For the same 

reason, if the model is to be considered an effective theory, the "fundamental ” fermionic 

constituents of the 0-field should not partecipate into the gauge transformations of the 

Electroweak Model and should therefore be new particles.

Summarizing, even fields with given index in momentum space are easy to treat per- 

turbatively, but the possibility of constructing models is very limited, and the assessment 

of the physical interpretation is still lacking. The physical meaning of fields with given 

index in configuration space is instead much more transparent [3].

2. Nonlinear change of variables in a Berezin integral

Let us consider the composites

2 N
4>i= X) c>l,2X-,Ai2, (4)

*1 i*2=l
where the A-fields are the generating elements of a Grassmann algebra. The index i 

is associated to intrinsic as well as position or momentum degrees of freedom and for 

notational convenience we have put

AN+i = A*, i — 1, ...N, (5)

if the total number of degrees of freedom is N.

Our aim is to introduce the 0-fields as integration variables in the composite correlation 

functions defined by the Berezin integral



< >=yJWWhx (6)

where

27V .
M = p <tti, Zi = / [<iAl<iC/e-s(J'I'l, . (7)

dU is the measure over any additional variables U on which the euclidean action S(A, U) 

might depend. Therefore we must define an integral over the 0’s in such a way that for 

an arbitrary function f

J mm=/ [</A]/y(A)i. (s)

Eqs.(4) cannot obviously be inverted, namely the A’s cannot be expressed in terms of the 

0’s. In which sense they can be considered a change of variables will be specified below.

We recall that there is only one function (modulo a numerical factor ) of the constituent 

fields which has a nonvanishing Berezin integral. This function is the product of all the 

A-fields

A — A1...A2 Nt (9)

and its Berezin integral is

J[d\]A = l. (10)

To find out the integration rule over the 0’s, we must therefore determine all their 

functions which, when expressed in terms of the constituent fields, are proportional to 

A with nonzero coefficient. We call them relevant. Only when relevant functions can

actually be constructed by means of the given composites, can the latter be introduced 

as new variables of integration.

The most general function of nilpotent variables is a polynomial. Hence it is sufficient 

to determine all the relevant monomials, which are the monomials of maximum degree. 

We call them fundamental if they are products of powers of the 0’s with coefficient 1
$
I

.set__
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©m = 4>Tl4>27— = WmA. . (11)

These monomials are characterized by the vector index m with components mj restricted 

according to

= N (12)
/

V
and by the weight wm.

The fundamental monomials with the quantum numbers of the pion and the nucleon 

have been determined in the last of refs. [1].

The integral over the 0’s can be expressed in terms of the weights. In fact any function 

of the 0’s can be written in the form

/(0) = 53 /m©m + irrelevant terms. (13)
771

If we think of / as expressed, via the definition of the 0’s, in terms of the A’s, its Berezin 

integral is

/W(« = E/. wm* (14)

This result can be directly obtained if we integrate over the new variables 0 provided we 

give as rule of integration

(15)'

for all the fundamental monomials, all other integrals being zero. Note that, although in 

general different expansions

Z(0) = 53 /m©m + irr. terms = 53 /m@m + *rr. terms (16)
m m

may exist, the above equality implies

53 fmwm — 53 fmwm,
m m

(17)
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since both the l.h.s. and the r.h.s. axe equal to the coefficient of A in the expansion of 

/(<£) in terms of the generating elements, so that the value of the integral does not depend 

on the particular expresssion for /.

It should now be clear in which sense relations like Eq.(4) can be considered a change of 

variables. They cannot obviously be inverted, and therefore an action defined in terms of 

the A’s cannot in general be expressed through the 0’s. But in any.nonvanishing Berezin 

integral the integrand must be proportional to A, which we can always replace by relevant 

functions of the composite variables.

This integration rule has some characteristic features

1) The number of degrees of freedom need not be balanced. A discussion of this point 

can be found in the last of Refs. [1] and it will not be reported here.

2) The integral of a fundamental monomial is unaffected by an arbitrary shift (f> —> <f>+a. 

The integral of an arbitrary function, however, does not enjoy such a property, because its 

expansion in fundamental monomials does change as a conseqence of the shift. Unlike the 

Berezin integral, therefore, the integral over even elements of a Grassmann algebra is not 

translation invariant. It enjoys, however, another property which is sufficient to derive

an equation of motion for even Grassmann fields, as it will be shown in the subsequent 

paper .

3) The integral over even Grassmann variables is not invariant under a change from 

even to even variables which alters the index of nilpotency. This includes Fourier trans

forms and more generally unitary transformations. For this reason in the construction 

of models with even Grassmann fields as fundamental fields, for most symmetries we 

must restrict ourselves to fields nilpotent in configuration space. For instance local gauge 

transformations of such a scalar field

4>{x) -+ e*&4>{x) (18)

do not alter its index of nilpotency ( but do change that of its Fourier transform ). It 

is perhaps whorth while mentioning that the restriction to a given index of nilpotency 

in configuration space is also compatible with a model where the gauge fields are even 

elements of a Grassmann algebra ( first of Refs. [1] ).
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Among the various symmetries, Lorentz invariance can be implemented for scalar fields 

with given index in configuration or momentum space. The first case is obvious, since 

is Lorentz invariant, while for the second one we observe that under a Lorentz 

transformation ( in the continuum, of course ) the Fourier components do not change the 

index of nilpotency

4>{p) -> e tdfip(j>(Ap). (19)

4) It is easy to evaluate the integral of the exponential of a quadratic form of fields of 

index 1

J = per Af, (20)

where perM is the permanent of the matrix M. But the permanent of a matrix cannot 

be evaluated by diagonalization, which reflects the noninvariance of the integral under 

unitary transformations. As a consequence the evaluation of the propagator of even 

Grassmann fields cannot be performed in the standard way.

3. The free correlation functions of a scalar field nilpotent in momentum space

In this Section we show that it is possible to define the partition function of even 

Grassmann fields with given index in momentum space in such a way that their free 

correlation functions at zero particle density are equal to those of an ordinary, local 

scalar field.. We will not study the correlation functions at finite particle density, but 

we expect them, for a reason explained below, to be different from the corresponding ones 

of an ordinary scalar field, so that different should be the thermodynamics.

We will first discuss the case of a real field, and at the end we will report the result for 

a complex one.

It is convenient to use the parametrization

${p) = ^yA(p), Ae(p) = A(-p), (21)

where
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w(p) = (p2 + m2)?.

We start by the case where the A(p)’s have index 1

J dA(p)Am(p) = 5(m - 1), Vp.

We assume the free action to be minus the standard one

(22)

(23)

SoM = -p(^)[-D + m2]ip(x),

and we define the correlation functions according to

where

[dA] = jQ dA(p), Zq — f [dA] e s°.

(24)

(25)

(26)

This definition is analogous to that appropriate to ordinary scalars in terms of holo- 

morphic variables. The reason why A(0) is not integrated over is that it does not appear 

in Sq. In fact by inserting in Eq. (24) the Fourier transform of <p

<t)(x) = ^2 expx<f>(p), L = edge of the quantization volume, (27)

we find

So — A(p)A(-p).
z p

(28)

Since A2(0) = 0, So does not depend on A(0). Moreover for p ^ 0 it is a function of the 

variables of index 1

in terms of which

B(p) = A(p)A(—p), p ^ 0,

So = -r X) B(p)-
z p^o

(29)

(30)



— 11 —

Since B(p) = B(—p), it is convenient to define "star” sums, products, and integrals, where 

the momentum p ranges in the domain

. V+ : p4 > 0 

Pi = 0, pz > 0 

Pi = P3 = 0, pi > 0

Pi = P3 = P2 = 0, pi > 0. (31)

We then have

J [iA] = J'ldB] (32)

So = B(p), (33)
p

e-* = nil + B(p)j. (34)
P '

The fundamental monomials are the B(p)’s whose weight is 1. An alternative possibility 

is to use the variables A(p),Am(p) for p € V+.

In order to evaluate the correlation functions we observe that they vanish unless the 

product of the A’s can be arranged into a product of the B's, namely unless their argu

ments fall into pairs of opposite momenta. We can then use relations of the type

Zq = J[dA\e 80 = J [dB\e s° = 1,

J[dA]A(pi)A(p2)e-So = 5(pi +Pi)f [dB]B{p\) e-Sb = 5{pl + p2), (35)

where

pm = p, if p € V+, p" = —p, otherwise. (36)

In such a way we get for the propagator the expression valid for ordinary scalars

< <£(Pi)<£(P2) >0= S{pi +P2)V2{pi)' (37)
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This result can easily be generalized to the 2n-point correlation functions. We get a 

nonvanishing contribution only when all the momenta fall into different pairs of opposite 

momenta (in such a case we will say that the momenta are simply paired, while we will say 

that they are multiply paired with multiplicity m if a given momentum and its opposite 

occur m times )

< #(pi)-AP2n) >o = zo +Ph)-^z!)sb,h"-'+?i-)e's°

= n e(PM2k) 23 < 4>(PiMPh) >o... < 0(pi2n-i)^(pi2„) >o,
h<k . all pairings

Phh # ±p,-Jfc, A ^ 6. (38)

The 6-function appearing in the above equation is defined by

6(p, q) = 0, /or p = ±q, 6(p, q) = 1 otherwise. (39)

Let us now consider these correlation functions in the thermodynamic limit. 

At zero particle density, the momenta excluded by the 6-functions belong to a sub

space of vanishing measure, and the 2n-point correlation functions are equal to those of 

a local free field.

The thermodynamics, however, is not expected to be the same as that of ordinary 

fields, because if we take the thermodynamic limit at fixed nonvanishing density, the 

restrictions of the 6-functions will act as an exclusion principle.

The above result can be easily generalized to an index of nilpotency ri* > 1. Confining 

ourselves for the sake of brevity to ri* even we normalize the integral over the A’s and the 

B’s according to

J dA(p)Am(p) = n’\8(m — ne), Vp,

J dB{p)Bm(p) = (n*!)2£(m-0, p^O ; J dB(0)Bm(0) = n*\8{m - ^n*). (40)

Notice that
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J[dA\ = J dA(0) J [dB], for n* > 1. (41)

It is then easy to see that in order to get a 2-point function equal to that of a local free 

field, we must take as free action

SPtt) = = 4"'S(0) - n- £ B(p). (42)

In fact the exponential of this action has the expansion

and repeating the steps which led to Eq.(38) we find the same result when the momenta 

are simply paired. But now some pairs of momenta can coincide. If the pairing has 

multiplicity m, with m < n*, we must insert in the r.h.s. a factor (n*)~m(n*)!/(n* — m)!, 

while if m > n* the r.h.s. vanishes. The conclusion about the thermodynamic limit is the 

same as for index 1.

Let us finally report the result relative to a complex scalar. The definition of the Fourier 

transform remains of course valid, but without the reality condition, so that A(p) and 

A*(p) are independent variables. We then find that to have a propagator equal to that of 

an ordinary scalar, for index n* we must choose the action

4n 4>) = —n* J dx4(f>m(x)[—a + m2]<f)(x). (44)

We conclude by two remarks. First, nothing in what we have done forces the interpre

tation of the <£-field as a fermionic composite, so that it seems theoretically consistent the

existence of a new particle which behaves as an ordinary scalar at zero density, but has a 

different thermodynamics. But only if we can construct a consistent interaction, can such 

a field become the candidate for a new particle. .

. Second, we can clarify why the propagators of fields nilpotent in momentum and con

figuration space are so different from one another. In the first case there is only one 

fundamental monomial



(45)Q=ntfoor.
p

If we perform a change of integration variables passing to the field in configuration space 

0(x), we have infinitely many fundamental monomials if the field is defined in continuum 

space. If the field is defined on a lattice with N4 lattice sites the fundamental monomials 

are

©m = nM*)!”11’ m = {mx}, = NAn*. (46)
X X

This explains why it is easy to evaluate the propagator of fields of given index in momen

tum space, while we have no analytic expression for fields of given index in configuration 

space, whose propagator can only be related to the selfavoiding random walk.

4. The <j>4 theory

As already said we are unable to construct gauge interactions for fields with given index 

in momentum space, apart from the possibility mentioned in the introduction. We are 

then left with Yukawa and selfinteractions. In this Section we consider a <f>4 theory where 

the <£-field, assumed as an independent field, has index 1 or 2 in momentum space. The 

interaction

5,=i9 / dWM* («.+«.+®+«.) n ^ <47>

is the standard function of the Fourier transform of the <£-field and the correlation func

tions

< 4>(pi)—<i>(p27i) >= /[dA\4>{p{]...4ip2n)e (5o+S/)

have the standard definition in terms of the partition function

Z = J[dA]e~(so+Sl).

(48)

(49)
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It should by now be clear why it is difficult to discuss reflection positivity for such 

a model. This property is best proven when the integration variables are the fields in 

configuration space, and if we perform the necessary Fourier transforms in the above 

equations, we are unable to evaluate the integrals, because of the uncontrollable number 

of fundamental monomials in configuration space.

Let us emphasize that the model is well defined irrespective of the sign of g, but when 

the selfinteraction is attractive we expect a nontrivial vacuum. In this Section we will 

confine ourselves, however, to the perturbative expansion with respect to the perturbative 

vacuum for both signs of g.

A qualification is in order for index of nilpotency 1. As already said So does not depend 

on A(0). But the terms involving this variable in Si cannot contribute to any correlation 

function because they contain an odd number of momenta which therefore cannot be 

paired. As a consequence for index 1 the variable A(0) is suppressed everywhere.

Let us introduce the renormalized action, with the counterterms necessary for a one- 

loop calculation, in the usual way

Sr = S'or + Sir, (50)

where

Sor = ~n* J dx4^4>r(x)[-0 +ml]K4>r{x),

Sir =? J dz4{-^n'5m2^(z) + 1.grZa<f>t(x)}, (51)

with’

<j> = Z^<j)r, g = gr^, m2 = (m2 + 8m2) fZ. (52)

The suffix A means that the wave operator is regularized. For definiteness one can have 

in mind a lattice regularization or a cut off procedure implemented by the replacement

p2
u(p)-¥ w(p)exp(—). (53)
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We will evaluate the 2- and 4-point functions at one loop. For the 2-point function we 

have

< 4>{Pi)4>{P2) >1= ^i(pi,p2)- < 4>(Pi)4>(P2) >o A, (54)

where

Vl = T I ['iAK-s^e"a,r

■PifPi.Pz) = j (<f.4]0(p1)^(p2)(-S/r)e-s"'.

Similarly for the 4-point function

< <i>(pi)<p(p2)<i>{pz)<i>{PA) >1= A(Pi,P2,P3,P4) -A(pl,P2,P3,P4)A

where

A(P1,P2,P3,P<) = J- J[dA\4>(pI)ij>(p2)^(p3)4>(pl)(-Sir)e~s‘’

A(Pi,P2,P3,P<) = ^ y M^W(Pi)^(P2)^(P3)^(pi) j5;!re-Sor. (57)

(55)

(56)

In the evaluation of the integrals, in order to single out from the beginning the pairings 

which occur in S/r, we write the latter in the form, valid for index 1 and 2

(58)
;=i

where

Ti = 275,r746^2(0) 13
^ ■ gjto

A = 7iPry%12<^(0) ^(g)^(-2g)

Tz = T\9rjt$(0) E n %«•> 9i)%! + 92 + qz) II
' 91.92.93540t<j=l A=1
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Ts

Tg

r^7i3Z)fc)^(-g)
g^o

t4

Ts = 27^7^3 53 0(9i>?2)<0(gi)<p(—9i)^(?2)^(—72)
4- ^ 91,92*0

Te = Tf5r746 53 II + % + ?3)^(9i)%2)4%)
' 91,92,93 *0 t"<j=l

r7 = X3 II 9j)^(9l + 92 + 93 + 94) II ^(%)

4r £4

91 ,92,93,9**0 t<7=l A=1

—-ne<£m2<£2(0)

-^n^m2 53 $(9)£(“?)- 
z g*o

(59)

To simplify the calculation we exclude the value p,- = 0 from the arguments of the 

correlation functions, and we restrict the arguments of the 4-point functions according to

Pi^'±Pj, i^j. (60)

The contributions to V\ and V\ come only from the terms Ti,T4,Ts,T&,Tg

'PiiPuPi) = < 4>(Pi)<Xp2) >o [dB]e s°B(pl){--gr-[6j2

(61)

w:(0) !(?) lw2(0) u2(q)
(62)

Because of the contribution of double pairings ( the factors B2(p) ) the evaluation of V\ 

and V\ must be done separately for index 1 and 2.

The evaluation of Ao is straightforward and holds for both values of the index

1 4 1
A)(Pi,P2,P3,P4) = -Qr-JJ^Pl + P2 + p3 + p4) H : U* = 1>2*

Ll^iPiV
(63)
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Finally Ai gets non * connected contributions from the products
rp rp rp rp rp rp rp rp rp rp
lll7y X4X7315-*7j ir-^8) -t7-*9

rAhnonconn(Pi, P2, ?3, P4) = Ao(Pl, ?2, ?3, P4) / [dB]e-S° JJ B(pZ)

'(?)

w2(g)
S(0) •)

4 , u4(q) 2 w !(0) w(?)!

w2(9i)w2(}2) 

(64)

It must also be evaluated separately for the different values of the index. 

The connected term comes entirely from the product T7T7

Al|COn(Pl,P2,P3,P4) = \irr\9rji\2 H J2 5(Y1
^ ^ qi...q4^0 ki„.ki^Q m=l n=l

II J[dA] n 4>(Ph)4>(qh)4>{h)e~So. (65)
i<j= 1 h=1

Due to the restrictions imposed by the 6- and ^-functions and those on the arguments 

of the correlation functions, the above integral does not vanish only when 2 of the p,- 

are paired to 2 of the <?,•, the remaining pt- to 2 of the ki and the remaining <7,- and A:,- 

among themselves. There are 122 ways to do that. In general such pairings, for index 2, 

have multiplicity 2. Due to the aforementioned restrictions, however, only single pairings 

contribute so that the evaluation of the integral is the same for index 1 and 2

Acon(Pl,P2,P3,P4) = -A)(pi,P2,P3,P4)%Pry% #(&1,&2) H II Pj)S(Pl + P2 + h + k2)
A i=l j=l

jm n B(P,)B(kl)B(k2)e-°°, n~ = 1,2. (66)

We must now transform the integral over the A’s into an integral over the B’s, and for 

this purpose we must rewrite the sum over A?i, fc2 as a*.sum over momenta belonging to 

V+. After that the evaluation is straightforward
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3 1 .*
Ai|Con(Pl,P2,P3,P4) = ~A>{puP7,p3,PA)-29rj4 X) [<HPl + P2 + h + k2) + 5(pi + P2 ~ h - k2)

ki k?
1

+^(Pl + P2 + ^1 — ^2) + HPl +?2 ^1 +

Only the last 2 5-functions contribute to the divergent part of this term

(67)

3 1 1
-4l,jiv(Pl.P2,P3,Pl) = -A(P1,P2,P3,P-i) (68)

which is equal to that of the ordinary theory, so that also the counterterm is the same

r 3 g 1 x-' ^
S9r = 2a'T^^{ky

It follows that the /3-function is that of the ordinary theory

(69)

'“IS?* (70)

and the model is asymptotically free for attractive selfcoupling.

Let us now pass to the evaluation of the quantities which depend on the index of 

nilpotency.

For index of nilpotency 1 the terms containing £(0) and B2(p) vanish. The surviving 

ones give

1 1 * ^
7MPi,P2) = < <Kpi)4>(P2) >0 {~v9rJs 53 u2(q1)u2fa2)^qi,Pl^te2'P1Wqi'q2)

+5m2 ][>(<?,pi)^},

1 1 * 1
2>i = ~29rU 53 ^ii?2)

9192
w2(gi)u?(q2)

+ 5m2 X)
w w (71)

so that the 2-point function to one loop results

< </>(Pi)Ap2) >i=< <£(Pi)0(p2) >0 "2(p|y{&• J4 ± - 5m2}. (72)

Because of the restriction in the sum over q we see that the mass counterterm cannot
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be strictly local, but it is local modulo a term which vanishes in the thermodynamic limit

(73)

Notice that 8m2 is increasing/decreasing for positive/negative gr and its absolute value is 

equal to that of the ordinary theory.

The above result can also be obtained by an appropriate decomposition of any diagram 

vanishing because of nilpotency into the sum of a connected plus a disconnected graph with 

opposite values. The value of the disconnected graph must be such that the cancellation 

of disconnected graphs should be complete in the thermodynamic limit. This requires 

a positive/negative sign for a connected graph with an even/odd number of crossings 

respectively, as shown for fields with given index in configuration space [1].

Let us now pass to index 2. In this case we must retain the variable A(0) and we have, 

neglecting terms 0(l/(Lm)4) .

TMpi.P*) = < >o {-5Sr^[31, + 5^0)J

1
+12 53 0(qi,q2)0(qi,Pi)d(q2,Pi)

91,92 hj2(q1)uj2(q2)

+Sm2iJ(o)-^r)+2zJw]}'
Vl - -1^77(36+ TJtm' +12 L %i.®) J

4 ri<1 u;2(0)J

+5m2tr^7rv\ + 2 X) 75777]-

91,92 u2(qi)u2(q2)'

-W(0) w !MJ
(74)

Therefore the 2-point function is

< 4>(Pi)kP2) >i=< fe)fe) >0 X) - 5m2}> (75)

and the cancellation of disconnected terms requires
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,9 1 1 V" ^
Sm =4 (76)

whose absolute value is half that of the ordinary theory.

Finally Ai>rumcon can be evaluated in a similar way, and it can be shown to vanish after 

use of the appropriate value of 5m2.

5. The Hubbard-Stratonovich transformation

When the selfcoupling is attractive we can introduce a truly bosonic field a by means 

of the so called Hubbard-Stratonovich transformation

exP{^f\9\ J dxA4>\x)} cc j[da\exp{- j dxA\^cr2(x) + ^L(x)<£2(x)]}. (77)

We can then rewrite the partition function of a field with Fourier components of index n* 

in the form

Z = J[da][d(j>]exp{-Jdx4[-^n*<f>(x)[-D + m2]<j)(x) + |cr2(z) + |^a-(x)4?{x)]} (78)

It is perhaps worth while noticing that the integral over <f> would not exist if this field 

were truly bosonic. Now one can proceed to a loop expansion to evaluate this integral 

in order to obtain an effective action for the field cr, whose vacuum properties could 

be studied in the standard way. Unfortunately exponentiating the result of the loop 

expansion one gets in the action a logarithm whose expansion gives all the terms of order 

1 irrespective of n*. To have a small expansion parameter one should replace n* by (n*)2 

in quadratic action of the field <f>. This would produce terms of order (rc*)-'5 for the s-th 

term of the expansion of the logarithm. There being at present no justification for such 

a choice we have not pursued the calculation.
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