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Foreword

The International Workshop on Collective Effects and Impedance for B- 
Factories (CEIBA95) was held from 12 to 17 June, 1995 in Tsukuba, Japan, 
hosted by KEK. About 90 participants (30 from the oversees and 60 from 
KEK) have attended the Workshop.

The aim of the Workshop was to bring experts of single-beam collective 
effects and impedance issues from all over the world to one place, with the 
goal of identifying problems in B-factories and finding solutions to them or 
suggesting future theoretical and experimental studies. These issues include:

- coupled bunch instabilities due to photo-electrons, DIP and cavity HOMs
- bunch lengthening
- ion related instabilities (ion trapping and fast ion instability)
- transverse mode-coupling instability
- damped rf cavities
- feedback systems and kickers
- wake fields and heat deposition from various beamline elements (BPM, 
bellows, IR masks etc.)
- trapped modes in small discontinuity
- pumping slots and power flow to pumping chamber
- microwave absorbers

Most of findings of the Workshop have provided valuable guidance to the 
design of other types of high intensity machines as well, such as the Beijing 
Tau-Charm Factory and DA<j)NE Phi-Factory.

The Workshop was started with a half day plenary session, presenting the 
overall pictures of up-to-date B-factory designs. It was immediately 
followed by the working session, consisting of three working groups on 
single-beam collective effects, impedance and RF/Feedback, respectively. 
The Workshop was concluded by a final plenary session, summarizing the 
findings of the Workshop.

This proceedings cover most of talks presented in the plenary and working 
group sessions of the Workshop. There have been great progresses made in 
these issues since the last B-Factory Workshop in 1992 at KEK. Particularly, 
the discovery of new types of beam instabilities cast a great enthusiasm 
among the participants and stimulated people to join the theoretical work or 
to propose experimental studies to confirm their existence. The editor hopes 
that the proceedings will encourage more people to join the effort for 
further development.

Finally, I would like to express my thanks to Prof. Kurokawa for his 
leadership in the organizing committee of this Workshop.

Yong Ho Chin 
Editor
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Impedance and Collective Effects in the KEKB

Yong Ho Chin and Katsunobu Oide

KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305, Japan

ABSTRACT

This paper focuses on beam instabilities due to single-beam collective effects, impedances 
from various beamline elements, ion trapping, photo-electrons, and other issues in the 
KEKB. We will also discuss the power deposition generated by a beam in the form of the 
Higher-Order-Mode (HOM) losses by interacting with its surroundings.

1 INTRODUCTION

KEKB is an asymmetric e+e" collider at 8x3.5GeV energy for study of B-meson 
physics[l]. A short bunch oz =4 mm and the large beam currents (2.6 A in Low Energy Ring 
(LER) and 1.1 A in the High Energy Ring (HER)) for a very high luminosity of 10^ cm 's ' 
require serious efforts to minimize the coupling impedance of beamline components in the 
design stage in order to avoid beam instabilities and to reduce wall heating. In fact, as the 
result of the successful reduction of the coupling impedance at KEKB, the conventional beam 
instabilities based on the beam-chamber interaction can now be suppressed by the radiation 
damping or by the feedback system. The main concern, in turn, is the new types of beam 
instabilities such as the fast ion instability and the photo-electron instability! 1] which are 
caused by effects of ionized gas and photo-electrons, respectively. Some theoretical 
investigations have been done. They are discussed in the instability section of this paper.

The short bunch can pick up the impedance at very high frequency (= 20 GHz) and thus 
may create an enormous heat deposition by the HOM. Our estimate shows that the HOM 
power of about 200 kW will be created in the arc section of LER by various beamline 
components. Its frequency spectrum has a broad peak around 10GHz. Assuming the energy 
dissipation only in die chamber wall, the HOM power can run typically for about 300 m 
along the ring in an e-folding attenuation time. It implies that the HOM power of about 20kW 
can pass at any point in the ring. The leakage of even a fractional part of this HOM power into 
beamline components such as bellows may cause a catastrophically large heat deposition in 
their inner structures. A particular worry is the Interaction Point (IP) where the maximum 
tolerable heat deposition of the IP chamber is only 200 W. It arises a serious concern whether 
we should protect these components from the HOM power penetration. Several different 
types of HOM power absorbers have been studied to protect the beamline components at the 
arc and the IP chamber, respectively. Their structures and performance are reviewed after the 
impedance section.

2 IMPEDANCE

In this section, we summarize our estimate of impedances and loss factors of various
beamline components. Most of them are small discontinuities in the vacuum chamber wall and
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produce inductive impedances. Their wake potentials are almost a derivative of the delta- 
function, and therefore their loss factors are mostly negligible. Among impedance- 
generating elements of the rings, the largest contributors are RF cavities, the resistive wall, the 
IR chamber (including two recombination chambers at both ends), masks at arc, and bellows 
(because of their large numbers).

2.1 ARES RF Cavities

We proceed our estimate for RF cavity contributions with the assumption that the ARES 
cavities will be employed in the final design. Then, 20 and 40 cells of the ARES cavities will 
be needed in the LER and HER, respectively, to compensate the synchrotron radiation and 
HOM power losses, as well as to satisfy the requirement for the short bunch. A schematic 
view of ARES cavity is shown in Fig. 1. Using the program ABCI[2], we have estimated that
the main body of the ARES cavity produces a loss factor of 0.529 V/pC at bunch length az = 
4 mm. Cavities are connected to each other by the vacuum chamber with a diameter of 145 
mm through the straight section. They are connected to the beam chamber (diameter=100 mm) 
only at both ends of the cavity section with 100 mm long tapers. Each taper provides an 
additional loss factor of 0.363 V/pC.

SiC Absorbers

Notch Filter

Figure 1: Schematic view of the KEKB HOM-damped cavity.

2.2 Resistive-Wall

The material of the KEKB beam chamber was chosen to be copper because of its low photon- 
induced gas desorption coefficient, its high thermal conductivity, and its large photon 
absorption coefficient. Its high electrical conductivity also helps to reduce the resistive-wall 
impedance. Nevertheless, this is still the dominant source of transverse impedance for the
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coupled-bunch instability. The total transverse resistive-wall impedance of the circular pipe 
with an inner radius b is given by

ZTRW = Z0(sgn(<o) - ()—r (1)

where Z0(= 377ft) is the characteristic impedance of vacuum, 8 is the skin depth, R is the 
average radius of the ring, and sgn(o)) denotes the sign of 0). For the LER vacuum chamber 
(b = 50 mm), Eq. (1) gives the resistive-wall impedance of 0.3Mft/m at the revolution
frequency 100 kHz, while the impedance decreases to 2kft/m at the cutoff frequency 2.3 GHz 
of the chamber. The HER vacuum chamber of racetrack shape may be approximated by a 
circular one with a radius of 25 mm.

2.3 Masks at Arc

Each bellows has a mask (5 mm high) located in its front to be shielded from the 
synchrotron radiation from a nearby bending magnet. There are about 1000 bellows (one 
bellows on both sides of each quadrupole magnet. There will be no mask for BPMs). The 
cross section of the mask in the medium plane is shown in Fig. 2. For accurate calculations 
of wake potentials and loss factors, a 3-D program MASK30 has been developed which 
solves the Maxwell equations directly in time domain. Using this code, we have found that 
the total longitudinal impedance of 1000 masks is

Im Z(fl»
n

2.8x10-3 ft (2)

where n expresses the frequency <o divided by the revolution frequency (O0 (co = nco0). The 
total loss factor is kL = 4.6V/pC which corresponds to the total HOM power of 62 kW in the 
LER.

Figure 2: Mask at arc.
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2.4 Pumping Slots

The current design of pumping slots adopts the so-called “hidden holes’’ structure similar to 
those of HERA and PEP-II. The structure of the LER pumping port and slots are illustrated 
in Fig. 3. A slot has a rectangular shape with rounded edges, which is long in the beam-axis 
direction (100 mm long, 4 mm wide). The slot is patched on the pumping chamber side by a 
rectangular grid. They help to prevent the microwave power generated somewhere else from 
penetrating through the slots to the pumping chamber and then depositing the energy in the 
NEG pumps. There are analytic formulae for impedance and loss factor of such a narrow slot 
with length l and width w by Kurennoy and Chin[3]. The formula for inductive impedance 
can be written at low frequency (until the wavelength becomes comparable to the slot width) 
as

Im [Z(ti»] = -0.1334Z0 — • -t-jtj (3)
c 4 K b

where c is the speed of light. The thickness correction to the above formula was studied by 
Gluckstem[4]. It tends to reduce the impedance by 44% compared with that for zero thickness 
case. The total impedance of the pumping slots at arc (there are 10 slots per port and there are 
1800 ports in total) with thickness correction is

Im Z(Q))
n

l.lxl0"3Q (4)

The total loss factor was calculated to be 0.37 V/pC. There will be additional contributions 
from pumping slots in the straight section. Among them, only the ones at the wiggler section 
have been designed. A rough estimate shows that they will increase the above values for the 
impedance and the loss factor by about 10%.

ICF203

Figure 3: Structure of the LER pumping port and slots.
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2.5 BPMs

The annular gap (or groove) in a BPM (see Fig. 4) between the button electrode and the 
supporting beam chamber can be approximated by a regular octagon. The impedance of a 
BPM can be thus calculated from the same formula for a narrow slot considering it as a 
combination of eight narrow slots (two transverse, two longitudinal, and four tilted)[5]. If we 
neglect small contributions from the longitudinal slots, and consider four tilted slots as two 
transverse ones, the impedance of the BPM becomes equivalent to that of the four transverse 
slots. For a transverse slot, the formula (3) is replaced by

(5)

where

(6)

w 2w 3

is the longitudinal magnetic polarizability. Other parameters are: a is the radius of the annular 
gap, w is the width of the gap, and t is the thickness the chamber wall. In our case, they are 
numerically, a = 6.5 mm, w=l mm, and t = 1 mm. For 400 four-button BPMs, the total 
inductive impedance is

(7)

Beam direction

Figure 4: BPM electrode for KEKB.
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The total loss factor of BPMs was computed using the T3 code of MAFIA and found to 
befcL =0.79V/pC.

There is a theory [6] which predicts that small holes or slots in the beam chamber can create 
localized trapped modes in their vicinity. These trapped modes can give rise to sharply peaked 
impedances slightly below the cutoff frequencies of the corresponding propagating modes in 
the beam chamber. These narrow resonances may drive coupled-bunch instabilities. We have 
found using MAFIA that there is indeed such a trapped TE11 mode localizing around the 
electrode at 6.5 GHz. But, this mode radiates its power into the beam chamber and decays out 
quickly. The shunt impedance is only

R = 2.90 (8)

per BPM with four buttons. The Q-value is about 40. The growth time due to 400 BPMs 
turns out to be slower than the radiation damping time by a factor of 10.

2.6 Mask at IP

There are four masks (two large and two small) on both side of the beryllium chamber at 
the interaction point (IP) to shield it from the direct synchrotron radiation. Figure 5 shows 
their geometry.

-0.05
Z-axis (m)

Figure 5: Mask at the IP.

The loss factor due to these masks has been calculated using the code MASK30 and was 
found to be kL =0.08V/pC. This value is about one-fourth of that obtained by ABCI using the 
axi-symmetrical model. The ratio of the two loss factors coincides with the ratio of the 
opening angle of the IP mask from the beam axis (about 90 degree) to that of the entire circle. 
Based on this observation, we have learned that we can make a rough estimate of the loss 
factor for a 3-D structure by multiplying the opening angle ratio to results for its axis- 
symmetrical model.
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Not all of the power generated at the IP will be deposited there. It depends on Q-values of 
modes excited between the masks. The beam chamber at the IP has the cutoff frequency at 
6.36 GHz, and the tips of the taller masks creates another cutoff frequency at 8.20 GHz. It 
was estimated using the MASK30 code that if the wake fields between these two frequencies 
are trapped, the deposited power by two (an electron and a positron) bunches at the IP will be 
240W, which is 20% more than the design tolerance of 200 W for the beryllium chamber. 
However, a careful examination with use of an axis-symmetrical model for the IP masks 
showed that actual Q-values of the modes between 6.36 - 8.20 GHz are at most 70, which is
much smaller than Q = 1,4x 104 determined by the finite conductivity of the beryllium chamber. 
This is because the radius of the beam chamber remains the same inside and outside of the IP 
region separated by the masks, and thus the modes can escape to the outside region by making
a bridge over the masks. Consequently, less than 0.5% (=70/1.4xl04) of the HOM power
created at the IP is deposited there (P<1.2W). Even if these modes are resonant with the 
bunch spacing causing a build-up of wake fields, the maximum enhancement factor for a 
mode on the resonance is only

n =i&L.3.5
<omsb

(9)

where com is a typical mode frequency and sh is the bunch spacing. Therefore, the maximum 
power deposition is D^P < 4.2W. The actual 3-D masks at the IP has a more open structure 
than the axis-symmetrical model, and thus the power deposition might be even smaller.

A more serious problem may be a dissipation of the HOM power generated at other parts of 
the IR chamber and propagating to the IP region. As will be seen in die next two subsections, 
the HOM power of about 7 kW will be created in the entire IR region. Even a 3% deposition 
out of 7kW exceeds the tolerable power of beryllium IP chamber (200W). It implies that we 
may need HOM absorbers to stop the flow of HOM power to the IP. We are going to discuss 
about such a HOM absorber scheme in the section 4.

2.7 IR Chamber

The experimental chamber at the IR makes two large shallow tapers. Its layout is sketched 
in Fig. 6. Its impedance has been calculated using ABCI and found to be mostiy inductive. It 
is

Im Z(m)
n

1.0xl0"3O (10)

The loss factor without the contribution from the IP masks is kL =0.29V/pC which 
corresponds to the HOM power loss of 4 kW. This power deposition as well as the power 
generated at the recombination chambers must be taken care of by e.g., putting an absorber in 
the chambers.

7



-50 —

-100

Z-axis (m)

Figure 6: Layout of the IR chamber.

2.8 Y-shaped Recombination Chambers

The LER and HER chambers are combined to a single chamber on both sides of the IP 
(about 3 m away). The impedance and loss factors of two recombination chambers were 
computed using MAFIA. Their combined loss factor is 0.22 V/pC, which corresponds to the 
HOM power loss of 3 kW due to the low energy beam.

Figure 7: Layout of the recombination chambers.
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2.9 Bellows

As explained in the subsection for the masks at arc, there are about 1000 shielded bellows 
in both rings (one bellows on both sides of every quadrupole). We have adopted the so called 
sliding-finger structure for bellows. Their layout in the LER is sketched in Fig. 8. The 
bellows in the HER have a similar structure. These bellows produce predominantly inductive 
impedance. Their impedance has been calculated with use of ABCI. The imaginary part of the 
total impedance for 1000 bellows in the LER ring are

Im
Z((0)

n
= 4.23 x 10 £2 (11)

and the total loss factor is kL =2.5V/pC. They are Im[Z/n] = 0.8 x 10 2fi and kL =5.0V/pC 
in the HER.

Additional impedance is generated by the slits between the sliding fingers of the bellows. 
Using the same formula for a narrow slot, we found that their contributions are negligible.

Figure 8: A schematic drawing of a Type-B LER bellows.

2.10 Summary of Impedance Section

The inductive impedances and the loss factors of the individual elements in the LER are 
tabulated in Table 1. The total HOM power deposition in the LER is P= 327 kW. In the HER, 
the total inductive impedance would be comparable to that of the LER. The total loss factor in 
the HER is larger than that of the LER 11.3 V/pC due to additional 20 RF cavities, leading to
35.5 V/pC. The corresponding total HOM power deposition is 90 kW.

9



Table 1: LER impedance budget and HOM power loss budget.

Components Number Inductive
impedance

Z/n(Q)

Loss
factor

(V/pC)

HOM
power
(kW)

Cavities 20 11.3 153
Resistive-wall 3016 m 5.2xl0'3 

at 2.4GHz
4.0 54

Masks at arc 1000 (5mm) 2.8xlO"3 4.6 62
Pumping slots 10x1800 1.1x10" 0.37 5.5

BPMs 4x400 1.3x10" 0.79 10.7
Mask at IP 1 =0.0 0.08 1.1
IR chamber 1 1.0x103 0.29 4

Y-shaped chambers 2 -8.0x10" 0.22 3
Bellows (1mm) 1000 4.23X103 2.5 34

Total 0.015 24.2 327

3 HOM ABSORBERS

The Higher-Order-Mode (HOM) power deposition is one of most crucial problems in the 
KEK B-factory. As stated in the introduction, the HOM power can run typically for about 
300 m along the ring in an e-folding attenuation time. This means that the HOM power of 
about 20kW can pass at any point in the ring. Two crotches in the IR and the IR chamber 
itself create HOM powers of 3kW and 4kW, respectively. Most of them can drift through the 
double-walled beryllium IP chamber. It is difficult to estimate how much power will be 
deposited in the IP chamber, but even a 3% deposition out of 7kW exceeds the tolerable 
power of beryllium IP chamber (200W) determined by the thermal stress at the Si detectors. 
In addition, there will be more power flow from the nearby arc section to the IP. Since the IR 
chamber has the largest aperture at the crotches, some HOM modes may be trapped and 
become a cause of coupled-bunch instabilities.

Two and one types of HOM power absorbers have been studied for the arc sections and the 
IR, respectively. It is not yet decided whether HOM absorbers will be implemented at the 
entire are section, since no beamline components have been found so far in which the heat 
deposition due to the HOM power leakage amounts to an intolerable level. It is, however, 
strongly expected to put two HOM absorbers in the IR between the crotches and the IP, and 
several HOM absorbers in the adjacent straight sections on both sides of IR to stop the HOM 
power flow from the arc sections to the IP. We will review these absorbers below.

3.1 HOM Absorbers at Arc

There are three basic requirements for the performance of HOM absorbers:

1. high absorption efficiency
2. small loss factor
3. “self-cleaning function” (i.e., to leave a little or no HOM power created by itself 

inside the chamber).
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The requirements (1) and (2) tend to conflict to each other and it is necessary to find an 
optimal point between them. Assuming that several absorbers are installed at every 300 m 
(corresponding to about one-tenth of the ring) at the arc, an absorption efficiency of 10-20% 
makes the total HOM power absorbed by the absorbers comparable to that lost on the chamber 
wall. From the outgassing point of view, the absorption efficiency of 30-40% would be the 
maximum. A typical loss factor per absorber in mind is around O.lV/pC, which increases the 
total HOM power by about 50% if several tens of absorbers are installed into the LER.

3.1.1 Radial Line + Coaxial Pipe Type

This type of HOM absorber has been studied by the KEK RF group to be used for choke
mode cavities[l]. Figure 9 shows its schematic view. A radial line is inserted into a 
disconnected vacuum chamber and then bended to guide fields to an attached coaxial pipe 
where an absorbing material is housed. Merits of this type are (1) there is no cutoff frequency 
for electromagnetic fields to be absorbed out (2) the absorbing material is not directly exposed 
to a beam and thus its fragments or dust when cracked will not disturb the beam. It is, 
however, foreseen that the absorbing efficiency will be limited to an order of 10% due to a 
mismatching of impedance at the entrance of the radial line. A larger gap size at the entrance 
will improve the matching at the cost of a larger loss factor.

Figure 9: Schematic view of the radial line + coaxial pipe type.

The absorbing efficiency has been computed as a function of frequency up to 20 GHz 
using the HFSS code. The HOM power is assumed to propagate inside the radial line as either 
TEM, TM01, or TM02 modes. The result is shown in Fig. 10. It can be seen that a good 
absorbing efficiency in a range of 15% is obtained in the wide range of frequency. The loss 
factor was calculated using ABCI and found to be 0.2V/pC.
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Figure 10: 
Absorption 

efficiency of the 
radial line + 
coaxial pipe 

type.

3.1.2 
Tilted 

Slots Type

A
conventional 

Frequency [GHz] (hollow)
cylindrical absorber attached to the inner surface of the vacuum chamber can offer a large 
power absorption, while tending to have a large loss factor as well. A too large absorption 
efficiency (50-100%) is not desirable in the present case, since it may allow a power 
deposition in a single absorber more than the maximum tolerance and may cause the heat 
breakdown and the outgas problems. A way to control both the absorption efficiency and the 
loss factor is to partially screen the surface of the cylinder by the copper coating so that the 
absorbing material is exposed to a beam only through tilted slots placed azimuthaLly along the 
vacuum chamber. See Fig. 11.

The tilting angle should be determined for an optimal coupling with both TM and TE 
modes (30-45 degrees are found to be a good angles). The geometrical parameters assumed 
for computational study are: a 94mm inner diameter with 10 slots tilted by 45 degrees, each of 
which is 5cm long and 1cm wide. CERASIC-B (a brandname of SiC) is assumed as an 
absorbing material. We have computed the absorption efficiency for TE11 and TM01 modes 
at 3 and 8 GHz using the MAFIA code. The results are summarized in Table 2.
From plots of the power distribution on the absorbing material, which are not shown here, 
we have found that the power is almost uniformly deposited along the beam axis in the TE11 
mode. On the other hand, the power deposition of TM01 mode takes place mainly in the 
upstream of the absorber (the side closer to the source of the power). The loss factor was 
computed by MAFIA and found to be 0.16V/pC.

The absorption efficiency for the TE11 mode may be improved by decreasing the tilting 
angle, say, to 30 degrees, at the cost of reducing that for the TM01 mode. The loss factor can 
be also reduced (the analytical estimate[3] for the 30 degrees tilting case gives the loss factor 
to be 0.1 V/pC).
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Figure 11: Illustration of the tilted slots type.

Table 2: Absorption efficiency of the tilted slots type for TE11 and TM01 modes.

Frequency Absorption efficiency
(GHz) TE11 (%)

TM01
3 8 13
8 6 13

3.2 HOM Absorber at IR

As stated in the impedance section, the HOM power of about 3kW will be produced by two 
crotches on the both sides of IR. The tapered IR chamber itself will create another 4kW. In 
order to stop the power flow to the IP chamber and reduce Q-values of trapped modes near the 
crotches, a HOM power absorber is planned to be installed on each side of the IR between the 
crotches and the IP chamber. In contrast to the HOM absorbers at the arc, a large absorption 
efficiency (70-100%) is required even at the cost of a large loss factor to stop the power flow 
as much as possible. Our solution is a simple SiC cylinder attached to the inner surface of the 
copper chamber. Water channels run through the outer surface of the copper chamber for 
cooling. A proto-type of the absorber has been fabricated by the RF group and was installed 
to the Tristan Accumulation Ring (AR) in April, 1996, in the upstream of the ARES cavities 
for a beam test. Its schematic view is illustrated in Fig. 12.

13
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Figure 12: Illustration of the HOM power absorber at IR.

Although the ferrite has a similar power absorption performance as SiC, SiC is preferable 
for a larger heat conductivity (CERASIC-B: 100W/mK, ferrite: 6.3W/mK) and a smaller 
outgas rate by an order of magnitude.

The absorption rate was calculated using the HFSS code for the structure with the diameter 
of 100 mm and the length of 100 mm for different SiC thickness. The results are plotted in 
Fig. 13. It can be seen that the absorption rate is rather insensitive to the SiC thickness and 
remains around 70% in the frequency range of 5-15GHz. The loss factor was calculated to be
0.5V/pC per absorber using the analytical formula. This corresponds to an additional
7kWx2=14kW power. It leads that the total HOM power to be taken care by the two 
absorbers hikes to 21kW (or lOkW by each).

u 0.8

—t=4mm
- - t=2mm
- ■ - t=8mm

Frequency [GHz]

Figure 13: Absorption efficiency of the cylindrical HOM absorber at the IR.
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We have also calculated the temperature rise in the SiC surface relative to the cooling water 
temperature for various absorbed power. The heating is assumed to take place uniformly 
inside the SiC plate and the copper conductor. We have found that the relative temperature rise 
is about 30 degrees for the power absorption of lOkW. Therefore, the temperature rise and the 
resulting outgas from the SiC should cause no problem.

3.3 Conclusions of HOM Absorbers Section

We have studied two types of HOM absorbers for the arc sections of KEKB ring. The 
calculation results using the HFSS and MAFIA codes demonstrate the proof of principle that 
they can fulfill our requirements. Namely, both of them offer relatively good absorption 
efficiencies of 10-15% in the wide range of frequency (5-15 GHz). The loss factors are found 
to be around 0.1-0.2V/pC per absorber. These values are slightly larger than the design goal, 
but, still stays in the acceptable range. The optimization of their geometry are in progress. RF 
power test of full size models should be conducted at the AR in a near future.

The design of HOM absorber at the IR is more straightforward. A conventional cylindrical 
SiC absorber fits our demands and the computer simulation results show that it can handle the 
HOM power more than required, while the outgas rate is well under control. Its proto-type 
was installed into the AR next to the ARES cavities and a series of beam tests are under way.

4 CONVENTIONAL BEAM INSTABILITIES

In this section, we review our predictions of conventional singe-bunch instabilities and 
coupled-bunch instabilities due to the beam-chamber interaction. As mentioned in the 
beginning, the single-bunch instabilities are expected to impose no fundamental limitation on 
the stored current, since the bunch current is relatively low compared with other large electron
rings. However, the requirement of the short bunch (az =4 mm) demands a careful attention 
at any possible causes for deviation from the nominal value. The transient ion problem and 
coupled-bunch instabilities due to photo-electrons will be discussed separately in the sections

4.1 Bunch Lengthening
There are two mechanisms to alter the bunch length from the nominal value. One is the 

potential-well distortion of the stationary bunch distribution due to the longitudinal wake 
potential. The deformed bunch distribution can be calculated by solving the Haissinski 
equation. The bunch can be either lengthened or shortened depending on the type of the wake 
potential. Another mechanism is the microwave instability and has a clear threshold current 
for the onset of the instability.

Oide and Yokoya have developed a theory to include both the potential-well distortion 
effect and the microwave instability [7]. A program is now available to compute the bunch 
length according to their theory. Figure 14 shows the calculated bunch length in the LER as a 
function of the number of particles in a bunch, Np As can be seen, there is a constant bunch 
lengthening due to the potential-well distortion and the microwave instability takes off at
Np= 1.5x10“, which is about four times larger than the proposed number of particles per 
bunch. At the design intensity, the bunch is lengthened only by 10%.
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Figure 14: Bunch length and energy spread in the LER.

4.2 Transverse Mode-Coupling Instability

The transverse mode-couplinginstability is known to be responsible for limiting the single
bunch current in large electron rings such as PEP[8] and LEP. This instability takes place 
when two head-tail modes (m=0 and m=-l modes in most cases) share the same coherent 
frequencies. In a short bunch regime where the KERB will be operated, the coherent 
frequency of the m=-l mode keeps almost constant as a function of the bunch current, while 
that of the m=0 mode keeps descending until it meets with the m=-l mode. Using the 
estimated transverse wake potentialand the averagedbeta function of 10 m, we found that the
coherent tune shift of the m=0 dipole mode is only =-0.0002 at the design bunch current. This
value is much smaller than the design value of the synchrotron tune (=0.017). Thus, the 
transverse mode-coupling instability will not impose a serious threat on performance of the 
KERB.

4.3 Conventional Coupled-Bunch Instabilities

The coupled-bunch instabilities due to high-Q structures such as RF cavities and the 
resistive-wall beam pipes are expected to be serious in the RERB rings because of the 
unusually large beam current. We have adopted the so-called damped-cavity-structure to 
sufficiently lower the Q-values of higher-order parasitic modes, typically less than 100. As a 
result, the longitudinal growth due to RF cavities were reduced to a manageable level. Even 
the most unstable mode has the growth time (60 msec) longer than the radiation damping time 
of 20 msec in the LER with wiggler. Transversely, however, the growth time of the resistive-
wall instability(=5 msec) is far shorter than the radiationdamping time of 40 msec. This can 
be damped by our transverse feedback system which is capable to damp instabilities with 
growth time as short as 1 msec.

16



5 NEW TYPES OF BEAM INSTABILITIES

In the course of study on possible beam instabilities at KEKB, two new types of beam 
instabilities have been discovered by computer simulations. They are based on the interaction 
of a beam with either ionized gas or photo-electrons in the ring created by the synchrotron 
radiation. Simulation results predict that they have very short growth time and thus will 
impose the most serious limitation on the beam current.

5.1 Photo-Electron Instability

The vertical coupled-bunch instability has been observed in the PF at KEK for years when 
operated in a positron multi-bunch beam mode. This instability has a rather low threshold 
current and causes an increase of the vertical beam size. The spectrum of the betatron sideband 
shows a broadband distribution and suggests that this instability does not attribute to the HOM 
of the RF cavity or the vacuum components. A partial filling of a positron beam has little 
effect to suppress the instability [9].

A large number of photo-electrons are produced when the synchrotron radiation hits the 
inner wall of the beam tube. Typically, one photo-electron is created out of ten photons at PF. 
The following physical model has been proposed to explain the mysterious instability 
observed at PF in terms of the "beam-photo-electron interaction" [10]: photo-electrons created 
by the passage of a bunch receive attractive forces from the successive bunches and forms a 
crowd around the beam axis. While photo-electrons are constantly produced by passages of 
bunches, some of them hit the tube surface and get lost. After a while, the numbers of newly- 
born and died photo-electrons reach the equilibrium, and the distribution of photo-electrons 
becomes stationary when there is no coherent motion of bunches. That stationary distribution 
at the LER is shown in Fig. 15.

Figure 15: Stationary distribution of photo-electrons.
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If a bunch passes through the stationary photo-electron distribution with an offset from the 
beam axis, the distribution is disturbed and affects the transverse motion of the following 
bunches. The coherent interaction between bunches and the crowd of photo-electrons can be 
formulated in the same manner as for the conventional beam instabilities using the concept of 
wake potential. One can accordingly derive a dispersion relation, the mode number and its 
frequency. The growth rate of the instability can be estimated from the imaginary part of the 
frequency shift. Figure 16 shows the vertical wake force simulated for beam current of 2.6A 
for different beam offsets in the LER. By using the wake force described in Fig. 16, the 
growth rate of the PEI can be calculated, as shown in Fig. 17. The maximum PEI growth rate 
of 2500 s'1 is much larger than the SR damping rate of 50 s '.
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Figure 16: Vertical wake potential due to photo-electrons.
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Figure 17: Growth rate of the vertical photo-electron instabilities versus the mode number.
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So far, effects of the space charge among the photo-electrons and the image charge induced 
on the beam chamber are not included. The space charge force dissipates the photo-electrons 
to prevent their concentration in the vicinity of the beam axis. The image charge force tends to 
attract the photo-electrons back to the beam chamber to cut the flow of photo-electrons to the 
beam axis. Figures 18 and 19 show the distributions of photo-electrons without and with the 
effects of the space charge and the image charge, respectively. Contrary to the case without 
these effects, photo-electrons are mostly populated near the beam chamber where they are 
produced when these effects are included. Figure 20 shows the growth rate of PEI with the 
effects of the space charge and the image charge. The maximum growth rate is now reduced a 
little bit below 800 s'1 which can be damped by the transverse feed-back system.
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Figure 18: Distribution of photo-electrons inside the beam chamber when the effects of the 
space charge and the image charge are not included.
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Figure 19: Distribution of photo-electrons inside the beam chamber when the effects of the 
space charge and the image charge are included.
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Figure 20: Growth rate of the vertical photo-electrons instabilities versus the mode number 
when the effects of the space charge and the image charge are included.

5.2 Fast Ion Instability

In any circular machines, the beam produces ions via ionization of residual gas molecules 
and through other processes. At an electron ring which stores many bunches, these positive 
ions are attracted towards the beam. After several turns the ions are concentrated near the 
beam orbit, and they can disturb the beam motion. This phenomenon, called ion trapping, has 
been studied for many years. One possible cure for this problem is a partial fill, i.e., to create 
a contiguous group of empty RF buckets that are unoccupied by the beam, and to let the ions 
drift away during this gap.

Recently it has been pointed out that a somewhat different process can also degrade the 
beam. This effect may be called transient ion trapping. With high intensity and low emittance 
beams, even if the ions eventually disappear in the bunch gap, they may cause a serious effect 
before disappearing through the following mechanism. While each bunch ionizes the residual 
gas, if a bunch is displaced from the design orbit, the ions left in space will be also displaced. 
Such ions execute off-centered oscillations in subsequent electron bunches, and they act as an 
amplifier for the electron oscillation.

Since the vertical emittance is much smaller than the horizontal one, the effect is more 
serious in the vertical plane. We assume that nb electron bunches are followed by a gap 
which is long enough to sweep out the ions. This bunch pattern of nb bunches plus a gap may 
be repeated several times over the ring. The first bunch of each train travels in a fresh residual 
gas without ions.

The linear theory has been developed to study the effect of ions. The amplitude blowup factor 
G according to the linear theory for the HER is plotted in Fig. 21 as a function of the number 
of turns for n, various values of the number of electron bunches nb. The residual gas is 
assumed to be CO with the pressure of 10"9 Torn The e-folding time of the amplitude is about
70 turns for nb =500 («nb2) although the growth with respect to n, is not exponential.

20



f r f f f
ff> cO c-O <?o C--0 <-0

nh = 200.

nh — 150,

Figure 21: Amplitude blowup factor G for CO+ of 10"9 Torr.

The linear theory is valid only for small amplitude oscillations. It does not predict the 
emittance growth, either. In order to take into account those effects that are ignored in the 
linear theory, computer simulation is being conducted. The results of the simulation up to now 
can be summarized as follows.

• As long as the center-of-mass amplitude is small =0.5 standard deviations), the 
linear theory can describe the phenomena reasonably well.

• The center-of-mass amplitude saturates at about loy.
• In order to study the effects of the bunch gaps, the electron bunch structures like 

256+[25]+256, 256+[50]+256, 128+[25]+128+[25]+128+[25]+128, etc. (the 
number in [\ ] is the number of missing bunches) have been simulated and 
compared with continuous 512 bunches. It turned out that the effect of the missing 
bunches up to 50 does not considerably improve the situation.

• The growth rate with 256 bunches (followed by long enough gap) is much smaller 
than that with 512 bunches as the linear theory predicts. However, the repetition of 
256 bunches plus a gap of much more than 50 missing bunches will not be 
acceptable because of the luminosity reduction.

• The emittance growth is about 30%.

Thus, in order to damp the growth with 512 successive bunches, a feedback system as fast as 
50 to 100 turns (0.5 to 1 msec) is needed, if the gas pressure is 109 Torr. The fastest bunch 
mode will be about 50 bunches per cycle.
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Table 1. Parameters of the PEP-II B-factory

parameter HER/LER

energy E 9.0/3.1 GeV
average radius R 350.03 m
rf frequency frj 476.0 MHz
harmonic number h 3492

revolution frequency /o 136.3 kHz
dc beam current Ib 0.986/2.14 A
number of bunches nb 1658
particles per bunch Nb (2.72/5.91) 1010

gap ng; 4 88; 0.05*27ri?

bunch spacing SB 1.26 m
momentum comp. a (2.41/1.31) 10"3

energy spread 6 (6.1/8.1) 10-4

bunch length <*B 1 cm
damping time Tz (36.8/40.4) ms

z-Partition number Je 1.9969/2.0116
number of cavities f^cav 24/8
loss/turn Uo 3.57/0.87 MeV

synchrotron tune Q, 0.0516/0.033
voltage/cavity Vrf 0.77/0.64 MV

cavity shunt imped. Rs 3.5 MU

average beta-x 0X (14.5/10.84) m

average beta-y Py (13.84/9.95) m
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Introduction

There is no need to emphasize how important it is to minimize the beam impedance 
for a lepton machine with the beam current of several amperes and a large number of 

bunches. This paper summarizes the results of the impedance studies of the compo
nents of the B factory11'. The prime goal of this activity was to support the design of 

the vacuum chamber and, at the same time, to get a reasonable model of the machine 

impedance that can be used later for detailed studies of the collective effects. The 
work combined analytic approach and extensive simulations with available numerical 

codes such as MAFIA and ABCI.

The main parameters of the B factory relevant to the paper are given in Table 1.

In this paper we, first, discuss limitations on the impedance given by the beam dy
namics. Next, we list the impedance-generating elements in the electron high-energy 

ring (HER) and mention the difference with the positron low-energy ring (LER). The 
analysis of the impedance of each element follows. At the end, we summarize results 

giving the parameters of the impedance of the HER.

Constraints on the impedance

Impedances should be minimized to reduce the Wakefields excited by the beam, 
which may make the beam unstable. Coherent effects impose certain limitations on 
the magnitude of the impedance.

The longitudinal wakefield modifies the rf potential well and, as a result, changes 
the bunch shape p(s). For a purely inductive impedance Z, a single bunch self- 
consistent potential is

U = ^T + ALp(s) (1)

where f p(s)ds = 1, and dimensionless

For small s,

A[Bre _ e2 _ E
2,K^a8'iR' t me2’ ^ me2

{/ = [! —
A L s2

agy/2ir 2a2B

(2)

(3)
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For the HER at the nominal /g = 1 A, A/v^r = 0.88510 3, and 10% bunch length
ening may be expected for

L — 225 n/f, or Zjn — 0.2 fZ. (4)

Microwave longitudinal instability sets the limit on the effective impedance (Z/n)eff, 
defined as Zjn averaged with the bunch spectrum

2,ra(E/e)g2
< - w- (5)

where, for a Gaussian bunch, the peak bunch current is Ipeak = ^bunch^^^faB- 

For the nominal CDR[1], Table 1, the limit is (|)eff < 0.97 Ohms for the HER and 

(f)e// < 0.14 Ohms for the LER. Sometimes SPEAR scaling (f )e// — (-fX^s/fr)1'68 

is used to relate effective and machine impedances. For the average < b >= 3.3 cm 

machine impedance is 7.4 times larger than effective impedance, giving {Zjn) = 7.2 
Ohms for the HER, and {Zjn) = 1.03 Ohms for the LER. However, SPEAR scaling 
may not necessarily be valid for PEP-II. Note that a purely inductive impedance does 
not lead to microwave instability.

Transverse microwave (transverse fast blow-up) instability limits effective broad
band impedance for a given average bunch current;

|Zi|<
4 Qs(E/e)b

> #' (6)

where Qs is the synchrotron tune, and < /? > is the average transverse beta function. 
At nominal CDR currents, an average < /3j_ >= 10 m, and a beam aperture b = 2.5 

cm, the criterion limits impedance to \Z±\ — 21 MfZ/m for the HER, and \Z±\ = 2.3 
MfZ/m for the LER.

Transverse mode-coupling instability limits the imaginary part of effective trans
verse impedance

ImZi_ < 4 Qs(E/e)b iy/iraB

C«cA<^>a 3 T' (7)

and gives essentially the same constraints for PEP-II as fast blow-up instability.
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Slow head-tail instability sets a loose limit on the chromaticity of the ring and is 
not important for this note.

Transverse impedance also causes closed-orbit distortion and changes the beta

tron tune; however, these effects are small. They may be enhanced by a factor 

QLc/{^fmsB) proportional to the loaded Qi factor of a higher-order mode (HOM) 
excited by a train of bunches if the frequency of a mode fm of the narrow-band 
impedance is in resonance with the bunch spacing fmsB jc = integer + 1/4, or with 

the frequency of a coherent coupled-bunch mode of the train.

The maximum kick from a single mode to a bunch centroid with the offset r is

„ AP± 4irNBre/2r
rc (8)

provided that the mode frequency is in resonance with the bunch spacing.

For example, one of the strongest rf cavity dipole HOM, with parameters / =

1674.2 MHz, R/Q — 0.31 kil/m, and loaded Qi = 2134, gives the maximum trans

verse impedance = (R/Q)Ql — 0.66 Mfl/m. Take NB = 6 x 1010, offset r = 1 

cm, 7 = E/mc? = 6 x 103, re = e2/me2 = 2.8 x 10~13cm. Then 0 = 1.0 x 10-5 is 
much smaller than the divergence angle within a beam. The HOM of a cavity with 
length l is equivalent to a quad with the focusing length F — 1/0. The betatron 

tune shift given by the mode is AQj. = —7?j_/(47tF) and, for l = 10 cm, /?j_ = 11 m, 
AQi = 4. x 10-4. Hence, under the resonance condition the maximum tune shift 
due to the strongest HOM of the 8 rf cavities AQj_ = 0.6 x 10-3 in the LER is still 

much smaller than the beam-beam tune shift (£ = 0.03).

More limitations derive from coupled bunch instabilities.

In the longitudinal case, the growth rate for nj equally spaced bunches

T„

IBOi

47T (E/e)Qs

OO

p= —OO

where ojpn — ure„[pnt + n + Qs], should be compared to the damping time 77 = 20 

ms. (This conservative approach ignores additional possible Landau damping and
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head-tail effect). That limits the impedance at any resonance frequency / = ujpn/2ir. 

For the CDR parameters of the rings:

(cfe)(:W)c"<2'/'’'/cl’ < 19'5 iHER)] < 41 {LER)- P)

Similarly, comparison of the growth rate of the transverse coupled-bunch instability

7~ = ~(Ef!r E (mi
1-R p=-oo

where ivpn = cvrei,[pnt + n + (5i], with damping time tj_ = 40 ms, limits the transverse 
impedance at any resonance frequency fpn to

^or e~(u,<7g/c)2 < 119.8 (HER)] < 26.6 (L£R). (11)
iv S£/ 771

The longitudinal loss factor gives the energy loss of a beam and defines the power 
deposited in the beam pipe by an uncorrelated train of bunches

p = AS/o = (12)
4tt

where Zq = 120tt fl is the impedance of the vacuum. For a 1 A current and sg = 1.26 

m, a loss factor of m = 1 V/pC corresponds to P = 4.16 kW of microwave power.

In summary, the main limitations to impedance come from bunch lengthening, 

power deposition, and multibunch stability. Single-bunch stability does not seem to 
be a strong limiting factor.
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Table 2. Impedance generating elements, HER PEP-II B factory

RF Cavities RF cavities 24

RF cavities tapers 48

Arcs Copper chamber(m'I 1440

Dipole screens 192

BPM 198

Arc bellows module 198
Collimators 2

Dipole offsets 384

Quad pump slots 198

Arc flex jonts 198

Flange/gap rings 398

Early x-ray mask 6

Straights SS 304L pipe (m) 760

BPM 92

Collimators 6

Pump ports 92

Sliding joints 92

Flex joints 92

Flange/gap rings 184
Gate valves 16
Tapers octag./round 12
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1IR

Feedback

Inject/Abort

Arcs Diagnos. 

Str. Diagnos.

IR Diagnos. 

Other

IR Be chamber 

IR masks 
Q2 septum 2

Collimators 4
IR pump ports 2

Special BPMs 2

High power dumps 2

Feedback pickups 4
Longitud. kicker 1

Transverse kicker 1

Injection port 1

Kicker ceramic 3

Abort dump port 1
Synch, light monitor 2 
SSRL xray port 2

BB curent monitors 1 
DC current transf. 1 

Tune monitor 1

Profile monitor 1 
Luminosity monitor 1 

Pulsed separator 4 
PPS stopper 1
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Impedances of the components

The list of impedance-generating elements in the HER (including interaction re
gion (IR)) is given in Table 2. The LER is different in only a few aspects. First, 

the LER has an A1 vacuum chamber in the arcs and, because LER dipoles are short, 

an ante-chamber with discrete pumps is used instead of HER distributed ion pumps 

(DIPs). In the LER, the impedance of the antechamber ’’replaces” the impedance of 
the dipole screens of the HER. Secondly, wigglers give an additional contribution to 

the LER impedance budget.

RF cavities

The dominant contribution to the impedance comes, of course, from the damped 

rf cavities (see Fig. 1).

The loaded Qi factor of the HOMs for a damped cavity is relatively low and the 
width of a HOM is large compared to the revolution frequency. For this reason, the 

variation of the HOM frequency in the non-identical cavities (HOM detuning) is not 

important and the total impedance of the cavities is proportional to the number of 

cavities.

Table 3 summarizes the main longitudinal monopole and transverse dipole modes 
found numerically with the code URMEL and those measured on a prototype cavity111.

The total narrow-band loss factor of a cavity is kj = 0.26 V/pC. This is the sum 

of the loss-factors of the monopole HOMs below the 2.5 GHz cut-off frequency of the 
beam pipe with b = 4.76 cm radius. The loss factor of the fundamental mode adds

0.167 V/pC. The total loss factor of a cavity calculated by ABCI from the wake field 
excited by a bunch going through the cavity is k\ = 0.55 V/pC; hence, the broad band 

loss from the modes above the cut-off frequency is 0.12 V/pC.

The longitudinal wake-field of a rf cavity is depicted in Fig. 2 and for dipole 

HOMs in Fig. 3. The real part of rf cavity longitudinal broad band impedances is 

depicted in Fig. 4. The beam-pipe radius is b — 4.49 cm.
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Table 3. Single RF Cavity Monopole HOMs

freq (MHz) R/Q Rs(MCl) Ql{ num/mes
489.6 108.8 5.036 /31926 3472.28
769.8 44.97 1.782 26/28 1.26
1015.4 0.006 0.0002 169/246 0.001

1291.0 7.68 0.692 66/ not visible
1295.6 6.57 0.265 /907 5.96
1585.5 5.06 0.216 /178 0.90
1711.6 4.75 0.404 not visible
1821.9 0.06 0.006 /295 /0.018

1891.0 1.68 0.075 not visible
2103.4 3.52 0.235 /233 0.82

2161.9 0.02 0.002 /201 0.004
2252.2 1.21 0.068 /500 0.61
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Table 4. Main RF cavity Dipole HOMs, ro = 4.7625 cm

f (MHz) R/Q (fl) <5i(calc/meas) (R/Q)(QL/kr% (kSl/m)

679.6 0.001 35/- not visible
795.5 9.876 121/122 31.86
1064.8 31.990 38/- not visible
1133.2 0.320 76/112 0.65
1208.2 0.385 2266/1588 10.3
1313.2 10.336 /498 80.1
1429.0 5.999 /3955 342.0
1541.0 2.065 /59 1.62
1586.2 5.262 /178 12.1

1674.2 14.732 /2134 385.0
1704.4 0.285 /444 1.52

1761.9 0.330 /7129 27.3
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Eight cavities in the LER with the nominal beam current would generate 16.6 
kW of power, see Eq. (12), propagating downstream from the cavities and absorbed 

in the walls. For TM modes in the round pipe with the radius r = b, the power 
absorbed in the wall within the distance l = l/ap is P(z) oc e-arpZ, where

k 8
cep = — -

w

Here, k = u/c, kz = yjk2 — k^, and km is the cut-off frequency of the m-th propa

gating mode. The bunch spectrum starts to roll off above frequencies ka ~ 1. For
a crp — 1 cm bunch, the roll off starts at the frequency / ~ 4.77 GHz. For such a

frequency the skin depth is 8 ~ lfim and the absorbtion length in the beam pipe with 
radius b = 4.76 cm is of the order of l ~ 500 m. Hence, the wall power deposition 
from the cavities is 29.0 Wjm. The broad-band transverse kick-factor of a rf cavity

k i_ — 5.266 V/pC/m at 6 = 4.49 cm.

The maximum narrow-band (NB) impedance of a single cavity (R/Q)Ql = 

5.96 kfi at / = 1.296 GHz is larger than the 3.4kf2 limit set by Eq. (9) for the 
LER, see Table 3. The coherent stability of PEP-II therefore requires a feedback 

system. Optimization of the vacuum chamber should be considered, in this context, 
as an attempt to minimize requirements on the feedback system.

The same is true for the dipole modes. The dipole modes f — 1.429 GHz and 
f = 1.674 GHz have maximum impedances much higher than allowed by Eq. (11), 
see Table 4. Transverse stability depends again on the bunch-by-bunch transverse 

feedback system.
Resistive wall

The longitudinal resistive-wall impedance is given by[2'

(13)

where
2c

Zqouj

is the skin depth, F — 1 for a circular pipe with radius b, and F(a/b) — 0.97 for a
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rectangular beam pipe with a ratio of height-to-width of b/a — 2.4/4.6 = 0.52.

The transverse resistive-wall impedance for a circular pipe is

_ 2AZ,

The transverse impedance of a rectangular pipe can be estimated from the impedance 
of two parallel planes separated by a distance 26[3*:

Zj_ — BZq
(l-i)2R6 L 

2 b2 b 2nR'
(15)

B — tt2/24 or B = tt2/12 for motion parallel or perpendicular to the planes, respec

tively.

For the 1300 m copper beam pipe of the HER arcs with a conductivity 1 jo — 

17.7 nfZ — m, the longitudinal and transverse impedances are Z; = 0.823(1 — i)y/nCl, 

Zx — 0.435/V^ Mf2/m, and Zy = 0.87/\/n Mf2/m. The 900 m straight, circular 
stainless-steel pumps with b = 4.6 cm and l/a — 900 nfl — m give Z/ = 2.16(1 — i)\fn 

fl and Zj_ = 0.74/y/n Mfl/m.

Combining the two contributions, the total resistive wall impedances are

Z\ — 2.98(1 — i)y/n fZ, Zx = 1.175/y/n Mfl/m, Zy = 1.61 /y/n Mfl/m.

The longitudinal impedance at the roll-off frequency of the bunch hag — 1, or 
n = 3.5 x 104, is 0.56 kfZ, still within the limit of Eq. (9). Transverse impedance gives 

the dominant contribution to the total impedance at low frequencies and is higher 
than the limit set by Eq. (11). Again, stability of the beam relies on a transverse 
feedback system.

The loss factor and the power deposition per unit length due to the resistive wall 
(RW) impedance in a circular beam pipe are

dk, 1 prr(f) dP c2 ntNlh pTp,

ds ~ 2wb\l Zo<T ds ~ 2,1 VZoff V’ 1

where ng, is the number of bunches per ring, Ng is the number of particles per bunch, 

and /o is revolution frequency.
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The copper coating on the stainless steel (SS) beam pipe may be used to reduce 
impedance and heating due to synchrotron radiation from upstream dipoles. The 

impedance depends on the thickness t of the coating: it decreases exponentially from 
the value for the SS pipe for t = 0 to the value of the copper pipe for t ~

(17),

where

C(z)
1 -f A + (1 — A)F(x)
1 + A — (1 - A)T’(x)’

vss
°Cu

F(x) = e-2(i-')= (18)

The factor £ goes to 1 for a thickness of the order of the skin depth of the coating.

The wall conductance at the transitions between arcs and straight sections has a 
jump. The impedance generated by such a jump in the conductivity may be estimated 

as the impedance of a step with a width equal to the difference of the skin depths 
and is negligible.

HER DIP screen

The screen separates the beam pipe and DIPs in the HER dipole vacuum cham
ber. We considered several possible screen designs. The issues here were the screen 

vacuum conductance, beam impedance, crosstalk between the plasma in the DIP and 
the beam, screening the beam from dust particles that may be produced in the DIP 
chamber, and screening the DIPs from scattered synchrotron radiation and from pen

etration of TE modes, which may be generated by an offset beam or by TM/TE mode 

conversion in the beam pipe. The impedance issue includes broad band impedance 

as well as narrow-band impedance produced by the interference of waves generated 
by openings in the screen or by trapped modes.

The final screen design is based on T. Wei land’s old idea of using continuous, 

narrow longitudinal grooves cut halfway through the screen with small holes cut 

through another half of the screen thickness (see Figs. 5a,b). Grooves with height 
w and depth d attenuate the beam field at the slot opening by a factor e~*d/w for 

frequencies w/c < tt/iv. For w = 3 mm, chosen for the grooves, this condition is true
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for all frequencies within the ag — 1 cm bunch spectrum. For w = d, the attenuation 

factor is = 0.043, and the broad band impedance is reduced by the square of this 

factor, i.e. by a factor 500.

Narrow grooves also preclude the DIP plasma discharge affecting the beam. Con

tinuous grooves reduce broad-band impedance and eliminate complications of narrow 

band impedance. Tilted grooves make efficient screening of the beam from dust par
ticles and screening of the DIPs from scattered synchrotron radiation.

Small 3 mm diameter holes give large enough vacuum conductance while simul

taneously preventing penetration of TE modes through the screen. A hole acts as an 

antenna for an incoming TE mode with a dipole moment proportional to r3. The 

ratio of radiated power to incoming power of a TE wave generated in the beam pipe 
with radius b by a bunch with rms length erg may be estimated as (see Eq. Al-37)

AUrad 
A Utn

°-3<k)2' (19)

Hence, the penetration length of a TE mode scales with the hole radius as (1/r)6 and, 
for 3 mm holes, is larger then the absorbtion length of such modes in the beam-pipe 

walls. The hole separation is chosen large enough to make gap impedance small. This 
prevents a significant crosstalk between holes, which could result in the adding-up of 

their dipole moments. The mesh reduces total vacuum conductance by less than 4%. 

There will be 192 screens, 5.6 m long, with 6 grooves and 8400 holes per screen.

Each hole has an inductance L = 3.5 x 10-5 nH, giving L = 56.5 nH for all holes 
of the 192 screens. Attenuation in the grooves reduces the total inductance of the 
holes to L — 0.1 nH. The holes make the tolerance on the tilt of the grooves very 

loose in respect to the beam direction.

The total transverse impedance of the HER DIP screens is Z± — —i 0.06 kQ/m.

The resistive part of the impedance and the loss factor for frequencies within the 

bunch spectrum are negligible small: k[ = 5.5 x 10~5 V/pC.
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LER Antechamber

The LER antechamber replaces the DIP vacuum chamber of the HER and is 

similar to the antechamber of the ALS, see Figs. 6a,b. Impedance of the ALS 
antechamber was measured and modeled with MAFIA15*. Broad band impedance is 

generated mostly by the discontinuity of the antechamber slot at the ends. Narrow- 

band impedance would correspond to modes trapped in the antechamber. Simulations 

and theory show that the dependence of the impedance on the length of the slot 

saturates when it becomes several times the rms bunch length at several gq (several 

cm). Excitation of the modes of the antechamber by the beam may be attenuated 

significantly if the slot of the ante-chamber is narrow and long: it works exactly in 

the same way as to the grooves in the DIP screen. Fig. 7 shows the field pattern 

at the slot opening that confirms this statement. The attenuation factor found with 
MAFIA agrees with the simple formula e~ird^w. However, the opening of the slot 

has to be large to accommodate the vertical size and the position jitter of the beam. 
Calculations were carried out with slot heights of 1.8, 1.4, and 1.0 cm. In all cases, 

the wake field is inductive and small, with maximum values of 0.04, 0.12, and 0.31 

mV/pC, respectively, for a slot 40 cm long and 1 cm deep (see Fig. 8). Dependence 
on the depth c of the antechamber slot was compared for c = 1, 12, and 26 cm: the 

difference is negligible. The calculated inductive Z/n — 0.5 /xfZ or L = 5.7 x 10-4 nH 

is quite small and agrees with measurements. No trapped modes were found.

Abort system

The beam abort system requires a long vacuum chamber 3 cm wide and 12 cm 
deep (from the beam to the bottom) under the beam terminated with the dump161 as 

shown in Figs. 9a, 9b. To minimize the impedance the chamber is screened with two 

shallow rf tapers (down and back up to the beam pipe). The taper going down may 

be very long and gives negligible impedance. The aborted beam goes through the 

taper going up. The angle a of this taper is limited by the energy deposition, which 
depends on radiation length Xq, and thickness t of the screen: a > tjXo. MAFIA 

calculations for a 3 m long structure with two (up and down) tapers 8.5 cm high and 

angle a = 0.048, give an inductive wake field with L = 0.23 nH. The loss factor is
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ki = 4.5 x 10 3 V/pC. No narrow-band trapped modes were found.

Interaction Region

The interaction region (IR) is a complicated 3-D set of masks and tapers as shown 

in Fig. 10a, and 10b. It was modeled as a whole structure using MAFIA. The broad
band wakefield is approximately inductive with L — 5 nH (see Fig. 11). The loss 

factor of the total structure is kj = 0.12 V/pC. Most of the power lost due to the 

broad band impedance propagates downstream and is absorbed outside the IR.

The main issue for the IR is heating. Heating in the IR results mostly from 

modes trapped in the central Be pipe ±20 cm around the IP, 3 watts of ohmic losses 

in the Be pipe, and, to a much smaller extent, from losses in upstream components 
of the beam pipe, mainly from the IR septum. Broad band impedance has maximum 

ReZ = 0.46 kfZ at 6 GHz as a result of averaging of the trapped modes.

The l = 40 cm Be pipe with radius b = 2.5 cm and adjacent masks with circular 

openings on both sides was modeled separately. The loss factor of this section is 

ki = 0.012 V/pC. A number of the trapped modes are confined in the 40 cm Be 
pipe, due to the adjacent masks (see Fig. 12). Frequencies of the modes range from

4.6 GHz to 5.92 GHz. The frequency interval at the low-frequency end is about 50 
MHz. Spacing increases to 150 MHz at the upper frequency end. Trapped modes are, 

basically, TMq\ modes of the pill box cavity with frequencies

w
c

(f )*+(”)*• (20)

The lowest radial number v — 2.4 and the number of the half waves n along the 

structure range from n = 1 to n = 12.

Both beams excite the modes simultaneously. For a symmetric structure, the 
amplitude A of the even modes (n = 2m) excited by a bunch is proportional to 
(N+ ± AL) sin(fc//2), and for odd modes (n = 2m + 1), A oc (N.f — AT) cos(/;//2) 

where N± is the number of particles per bunch in each beam. Therefore, the power 
deposited in even modes scales as P oc (N+ + AT)2. For an IP placed asymmetrically

39



at a distance li from one end of the pipe, the amplitude of the even and odd modes 
is

A± oc (N+ + AL)[sin(&/i) ± sin(fc/2)] + (7V+ — N-)[cos(kli) =|= cos(A;/2)], (21)

and odd modes can be excited even for equal number of particles in both beams. The 
power deposition within the Be pipe depends on the Q factor of the modes.

Resistive Q ~ 1.25 104 is very large in our case. Loaded Qi depends on the 
coupling of trapped modes to propagating modes in the beam pipe on the other side 

of the masks, where the beam pipe radius is much larger than that for the Be pipe. 
We estimate for round openings in the masks that

Q‘“ - (22)

where oq is the radius at the neck of the masks, and W% is the probability of tunneling 

through the mask for a mode with frequency fm:

W, = |e-/*w*)l|2, l»WI = (23)

The integral may be estimated as

(23)
J O & UJfjiClQ

where a' = \da/dz\ is the slope of the mask.

For our case, this approach gives Qext — 1200 for a typical fm = 5.7 GHz, and 
ao = 1.5 cm. In this case, only 10% of power loss goes to the Be pipe wall.

In principal, detuning from a resonance can be done by heating Be pipe. Tem
perature dependence of the mode frequency

A/ . (Al/f)
f 1+ti)2

(25)

is different for different n: the coefficient is equal to 1/50 for n = 1, and 1/2 for 
n = 12. For (A///) ~ 10_5AT, and AT ~ 100° the frequency shift for the mode 

n = 12 is small but comparable to the width of the resonance.
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The power loss to an even mode with the loss factor Km and loaded is

P = PqD, Pq = I%Km—, (26)

where Pq = 480 W is the power loss of uncorrelated bunches, and I z = I+ + /_. The 
enhancement factor D for a train of bunches with bunch spacing sg

D = < c )__________ l/Qm__________ (27)

depends on detuning the mode frequency from the resonance frequency u>r,ujrsg/(2ttc) 

integer. Far away from the resonance Awm/wm >> 1/2Qm and we get the factor 
D « 1. At the resonance

Dmax = (28)
WmsB

and, for sg = 120 cm and /m ~ 6 GHz, Dmax >> 1 provided that Q » 70. For 

Qm ~ 1200, the enhancement Dmax = 16, and Dmin — 4.4 x 10-3. If only three out of 
twelve trapped modes are resonant, power loss is P = 3 x (1 /12) X480IF x Dmax = 1.92 
kW. Power dissipated into the wall itself is Pwaii = 192 W in this case.

The frequency spectrum of a train of bunches also has frequencies at multiples of 
the revolution frequency wo. The number of independent coherent modes is equal to 

the number of bunches ng. If the amplitude of the coherent mode is A/, the power 
loss of a particle due to this mode is (Eq. A3-17)

P =! 2lU~-?(RIQ),Q‘L. (29)

The rms amplitude of the coherent modes is on the order of A; ~ 2ag/y/ng, and 

power loss due to single coherent mode is 2I^v(agu}ilc)2(Qg/ng)(R/Q)i. The number 

of such modes within the resonance width wi/(Ql) is w;/(2Q^wo). Total loss of 
coherent modes

(2/ir)(agu>i/c)2Po

is independent of Qg and is smaller than the uncorrelated power loss Pq.
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Hence, the wall-power loss is acceptable provided the pipe and adjacent masks 
are carefully designed to avoid resonances with bunch spacing.

Injection port, kicker ceramic

The injection port generates impedance due to a 2 x 12 cm slot in the tapered 

beam-pipe wall, with the average pipe radius b = 3.8 cm (see Fig. 13 a,b). Broad

band impedances, both of the slot and the taper, calculated with MAFIA, are mostly 
inductive. The slot gives an inductance L — 0.025 nH and a loss factor k} — 1.5 x 10-3 

V/pC. The contribution of the taper is larger: L = 0.15 nH and ki = 5.4 x 10~3. 
Including both contributions, the injection port gives L = 0.17 nH and k[ = 6.9 x 10-3 

V/pC. No indication of trapped modes was found.

Kicker ceramic section (e = 9 >> 1, thickness Ab = 4 mm, tube radius b = 

2.75 cm) for the injection kicker (length l — 1.25 m) have a thin titanium coating 

(resistivity pcoat = 43 pCl — cm). The wakefield generated by the ceramic section 
depends^on the parameter

&BPcoat
Zo(A6)i’ (30)

where t = 0.75pm is the thickness of the coating. For this coating thickness, V « 1 
and the wake

<31>

is mostly resistive, Eq. Appendix 1-22,

Rq =
Ipcoat

2wbt
(32)

For / — 1.25 m, the resistive part of the impedance Rq = 5.7 fl; the loss factor 

k{ = 0.04 V/pC. The inductive impedance corresponds to L = 0.5 10~3 nH.
BPM

The HER has 290 sets of four-button BPMs (see Fig. 14). A BPM should have 
high sensitivity within the bandwidth 1 GHz, but at the same time must have low 
power going to the cables, low beam impedance, and low heating inside the BPM 
structure. We compared several designs of a BPM.
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A 2 cm diameter round button is reasonably sensitive but the impedance is reso

nant at 6 GHz with relatively high shunt impedance. The problem may be avoided by 

making the button asymmetric. In particular, a narrow bridge across the gap elimi

nates the resonance but makes power to the cable too high. Measurements confirmed 

the results of MAFIA simulations quite well (see Figs. 15a,b).

The final version of the BPM uses a round button with a — 1.5 cm diameter. 

Such a design (see Fig. 16) satisfies requirements for sensitivity, heating, and power 

output to the cables.

For a four-button BPM and Nq = 3 x 1010, the sensitivity|9,is defined by the 

impedance 0.5f2 at 1 GHz.

The impedance of a single button is generated by a w = 2 mm round slot. 

Impedance of a slot can be esimated as the difference of the impedances of two round 

holes with radii a and a + w, giving polarizability at + am = 2tva2 and

r 2wa2

Itf'

or L = 5.7 x 10~3 nH per button, L = 6.8 nH for 300 four-button BPMs. The 
Kurennoy'"'estimate is smaller: ae + am = wa2/8. MAFIA|9'gives L = 3.7 x 10—211 

nH and a loss factor of ki = 2.7 x 10-3 V/pC for a four-button BPM; L — 11 nH, 

and k\ — 1 V/pC for 300 BPMs.

Hence, the power loss by the beam is P = 126 W per BPM at the current 3A. 
Power output to a cable is found by direct calculations of the fields at the port and is 
9 W per cable. The 1 cm beam offset in the direction to a button can increase power 

to the cable by a factor of 2 because the frequency harmonic of the field depends on 

the distance as 1/r.

Transverse broad band impedance of 300 BPMs found in simulations'9'^ Zx =

6.7 k£l/m, and Zy — 5.5 ktl/m. One mode of the narrow-band longitudinal impedance 
has a total shunt impedance 6.5 kQ, at / = 6.8 GHz for 300 BPMs. The field pattern 
of the mode indicates that this mode is a TE\\ mode (in respect to the button axis).
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Transverse narrow-band impedance Zx has a mode with the total Rs = 90 fctl/m at 

/ = 6.8 GHz, and Zy = 120 Hl/m at / = 6.2 GHz.

The impedance is only slightly more than required by the conservative estimate 
of Eq. (9) and may increase the power of the feedback amplifier by not more than 

5%.

Ceramic in the BPM has t = 10 and loss tangent of the ceramic is 8C = 0.0007. 

The power deposited by a propagating wave into ceramic with thickness h = 3 mm,

Or6- (33)

is P — 12 mW per button for the loss JP,„ = 126 W per BPM at / = 7.5 GHz.

The power absorbed in the thin Ni layer at the edge of the ceramic in a coax with 

characteristic impedance Zw — (Zo/2tt) ln(6/o) and radii a, b is

u fiSh
(P5^’ (34)

where for TEM wave

l/de// —
(q + fr)

2ab\n(b/a)'
(35)

and 8 is the skin depth of Ni. Note that fi8 scales as y/JI. The permeability n of Ni 
rolls off at high frequencies very rapidly and at 7 GHz is of the order /z = 3 (see Fig. 
17) reducing power loss to Ni to P — 46.8mW per button for the loss Pin = 126 W 

per BPM.

The fraction of power absorbed in the resistive walls is on the order of the ratio 

of the length of a button / = 1.9 cm to the absorption length

= (t)c' d

8l
eff

(36)

and is very small.
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The Q factor given by these losses is Qo = 534. The loaded Ql, determined by 
MAFIA and confirmed in wire measurements on a BPM prototype, is much smaller: 

Ql ~ 60. It is too low to enhance the power loss in a train of bunches.

It is worthwhile to compare the loss factor k( = (u>j2)(R/Qo) of the longitudinal 
mode f = 6.8 GHz with the broad band loss ki = 2.7 x 10-3. Taking Qo = Ql and 

Rs — 22 Q, per BPM, we get k\ = 0.46/Ql per BPM. This figure is larger than the 

broad band loss factor for Ql — 100. This argument indicates again that the loaded 
Ql should be much less than Qo and has to be dominated by the radiation back to 
the beam pipe.

The relevant parameter for heating is the wall loss factor of a propagating wave 

multiplied by the number of passes of a wave, Qlc/u>1 ~ 36 for Ql — 60. That gives 
absorbed power 2.5 W and heating of button at normal conditions should not be a 
problem.

If a button cable is accidentally disconnected, the situation may be different. 
First, reflection from the open unmatched end can produce a standing mode within 

the BPM. Consider a button as a transmission line. The currents and voltages at 

both ends of the line are related by the characteristic impedance of the line Zl and 
the impedance of a termination Z%\

Vin = Ft [cos xp -f sin xp], 
At

/([cos xp + i~ sin xp].
Zl

Under normal conditions, the characteristic impedance of the line is matched to the 
impedance of the cable, and the voltage and current at both ends of the button are 
the same, except for a phase xp = ql where q is the propagating constant and l is the 
length of the line. For a disconnected cable, the current at the output port of the 
button is zero. The current at the input port is related to the density of the image 

current induced by the beam and, therefore, is the same as at the normal operation. 

Hence, voltage at the input port increases by a factor cot xp compared to the normal 
operation. For a TEM wave with frequency w, the phase xp is xp = ul/c. From 
a reciprocity theorem it follows that the voltage induced at the beam current and,
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hence, the energy loss by the beam and heating are also increased by the same factor 

cot V’, or by a factor 6.25 for / = 7.5 GHz and 7—1.9 cm. Radiation to the beam pipe 
is also increased due to the reflected TEM mode. Simulations with MAFIA confirmed 

appearence of the new resonances in the beam impedance with a disconnected cable.

The same design of BPMs with flat buttons will be used in the arcs and straight 
sections. In the straight sections, a flat button will be flush with the round beam 

pipe only at the center, making small cavities at the edges. The effect was simulated 

with MAFIA and changes the broad band impedance only by a few percents.

To screen BPMs from halo electrons, buttons will be recessed by 0.5 mm (includ

ing tolerance for installation). Other factors such as direct or secondary synchrotron 
radiation, or electrons emitted from the chamber walls are not affected by the small 
recess under consideration. For a beam pipe gap b = 2.5 cm and a betatron wave

length ~ 50 m the incident angle of a halo electron is 6 — 46/A^, and the recess 

A ~ 2r9 = 0.75 x 10-3 cm would be large enough for the button with radius r — 0.75 
cm. This number is very small, and practically recess is defined by the tolerances of 
the BPM installation. Excessive recess may, however, produce trapped modes. The 

decay length of the trapped mode

Q = C
gVt
2 S

depends on the parameter £. For a round pipe £ = 1, and for a rectangular beam 
pipe

c =
4a2 sin2(7rx&/a) _ 2a2

a2 + b2 a2 + 62
(38)

The lowest TM mode in a rectangular beam pipe with dimensions a x b, a >

A . 7rx 7ry A ttx . Try
Hx — — sm — cos —, Hv =---- cos — sin —

b a b a a b

b is

(37)

and has the cut-off frequency (tvc/c)2 = (7r/a)2 + (7r/6)2. For four buttons with radius 
r located at i = ij = a/4, y = 0 or y — b and recessed by A, the total volume of
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bulging is Vfc = 47rr2A, and the decay length of the trapped mode

^ 25

is given by the parameter

C =
4a2 sin2(7T£{,/a) 2a2

! + 62 a2 + 62
(38)

The frequency shift of a mode is

Aw _ (27r)4r4A2 
w 264(o2 + 62)'

Resistive wall gives in this case

, Aw. 8 <z3 + 63
i—)Rw = ~h-^rb2-

(39)

(40)

Recess is small if it gives a small frequency shift compared to the shift due to resistive 

wall:

<41>

Take a — 9.0 cm, b = 4.8 cm, r — 0.75 cm, 8 = 1/zm. Then A < 0.64mm has to be 

taken as the maximum acceptable recess of a button in the arcs. The resistive wall 

frequency shift in the round pipe of the straights is

Aw
w )rw -

8_
26'

(42)

The acceptable button recess for four-button BPM in the beam pipe with radius 6 is

A <
63 fl 

‘Ivr2 V 6’ (43)

and larger than that in the arcs: A < 1.6 mm for 6 = 4.5 cm, and r = 0.75 cm. The 

estimate of the acceptable recess is conservative and does not take into account losses 

to a BPM cable.
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Bellows, quad/dipole offset, rf seals

We compared several designs for a bellows module. The final design uses fingers 

outside of the beam pipe and does not use large synchrotron radiation masks. Instead, 

the beam pipes are offset horizontally by a few mm and the transitions are tapered 

to produce sufficient protection from th synchrotron radiation (see Figs. 18 a,b).

Impedance of the quadrupole/dipole transition with the tapered beam pipe offset 

of 5 mm was modeled with MAFIA. The loss factor of the transition is lq = 4.5 10~4 

V/pC. No trapped modes were found either by considering propagation of the rf 
Gaussian bunch or in the S-matrix calculations.

The impedance of the bellows module is generated by finger slots, slots in the 
bellows corners, small tapers of the synchrotron radiation masks, and the RF seals. 

All contributions are small and correspond to an inductive impedance.

Impedances of the tapers of the bellow module were modeled as independent 

axi-symmetric structures with radii equal to the distances from the beam line to the 
corresponding taper. The results were then averaged proportional to the azimuthal 

filling factors, giving an inductance L — 0.044 nH and a loss factor k{ = 3.3 x 10~3 

V/pC per bellows. For 300 bellows the total inductive impedance is only L — 13 nH 
and ki = 1 V/pC. Due to the larger distance of the taper from the beam and the 

small vertical size of the vacuum chamber, the taper with the large 20° angle gives 
only a small contribution after averaging.

Impedance of the 50 finger slots with length 1.25 cm, and width 0.76 mm is 
L = 1.5 x 10-4 nH for 50 fingers per bellows. Eight slots in the corners are wider 

(w = 4 mm) and, although they are farther away from the beam, give L = 7.6 x 10-4 

nH per bellow, more than the finger slots. The total inductance of the slots is L = 0.27 

nH per 300 bellows. The difference in the dimensions of the beam pipe in the arcs 
and straights is of no significance here.

The rf seals in a bellows module are designed to give a small 1 mm high and 0.5 
mm wide recess in the beam pipe. The exact height of the recess cannot be known but 
the rf seal should not look like a groove that may generate trapped modes. Impedance
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of the rf seal is inductive [101

L = *-T- <44>

To be conservative, we take A = 1 mm, < 1/6 >= 0.33cm-1. Then L — 1.6 x 10-2 

nH per rf seal. The code ABCI gives the same L = 1.07 x 10-2 nH and the loss factor 

ki = 1.1 x 10-4. Neglecting again the difference between dimensions of the bellows 

in the straights and arcs, we get L = 0.47 nH or Zjn ~ 0.4 x 10-3 fi for the 290 rf 

bellows seals in the ring. (Note, that this is an overestimate of the actual impedance).

The estimate of the impedance of the rf bellows seals is valid also for the flange/gap 

rings. These give an additional L — 0.47 nH per ring. Clearly, the main issue for the 

bellows is not beam impedance but heating and operational reliability of the fingers.

Heating, in particular, may be produced by radiation through the slots, and by 

coupling of the beam to the modes of the cavity between fingers and bellow convolu

tions.

Radiation of the slots is dipole radiation with dipole moment induced by the field 

of a bunch or by the field of a TM HOM generated somewhere upstream from the 

bellows. The first mechanism gives the average radiated power due to the beam

p. — lw \2
2r3/2 Va^32b7y (45)

For Iav = 3 A, as = 1 cm, and b = 3.3 cm that gives P = 0.45 W/bellows from eight 

corner slots. Fifty finger slots, being narrower, give less by a factor of 123.

Consider now the TM modes generated by the beam somewhere upstream at 

the components with a total broad-band loss factor of k\. That defines the power 

of the incoming HOM modes averaged over frequencies within the bunch spectrum 

Ptm — ^av^lsB/c- Power Ptm radiated from a slot due to incoming TM mode may 

then be compared then with power radiated by the beam Pjeam:

PTM = ‘Zx/nkiagPbeam (46)

and, for the total loss factor k\ ~ 3V/pC, can be larger than Pbeam by a factor of 10.6.
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Radiated power becomes on the order of 5 W per bellows module. This estimate does 
not take into account local variation of power in TM HOM-s.

Radiation from the finger slots induced by a TE mode is 1290 times larger than 

radiation due to regular TM modes mostly due to the factor (//u>)4. Taking into 
account the difference in the number of finger and corner slots, we get the power 
P = 312.8 W per bellows module, provided that the power of the incoming TE and 

TM modes are the same. However, beam does not couple with the TE modes: they 
can be produced by transformation of the TM-modes or due to decay of modes in 

asymmetric structures with hybrid modes. In both cases a small factor makes the 

power of the TE modes on the order of a few percent of the average power of the 
TM HOMs reducing the radiation power due to TE ROMs to a few watts per bellows 

module.

Another mechanism that may be important for heating is resonance excitation of 
eigen modes in the cavity between fingers and bellow convolutions if their frequencies 
are in resonance with bunch spacing ujsb/c — 2ttn. The enhancement factor of the 
power deposited by the beam is D — 4Qi/(2Trn). For a frequency / ~ 1 GHz, the 

factor usb/c — 8tt and D depends on the loaded Ql, Dmax — Qi/A-k. For a TM 
HOM corresponding to fcj = 3 V/pC, the power P — 0.02 W/bellows is still small 
even for Ql — 104, which can be expected with stainless-steel convolutions.

Lumped pumps

Ports of the lumped vacuum pumps are screened with a grid of long and narrow 
slots. The layout for the straight section of the HER is shown in Fig. 19a, and for 
the arcs in Fig. 19b. In the arcs, there are 24 slots altogether in the upper and lower 
decks with length l — 15.4 cm and width w — 2.54 mm.

Impedance of each slot of the pumping screen in the arcs is L = 1.1 x 10-4, and 
the total contribution of the 24 pumping slots for all of the 200 ports in the arcs is
0.53 nH. The potential problem here is not broad-band impedance but the possibility 
of trapped modes.

As an example, consider a g = 2 cm long circular cavity with a depth A = 3 mm 
in the b — 3 cm radius beam pipe11*1. The broad-band impedance of such a small

50



cavity is small and mainly inductive (see Eq. (41)). However, MAFIA finds a narrow 
resonance with shunt impedance Rs = 7 kfi, and Q = 2.7 x 104. Such a mode can 

be considered as a modified propagating mode with a frequency close to the cutoff 
frequency um/c — vqfb where vq — 2.405 is the first root of the Bessel function 

Jo(vo) = 0. A small bulge of the beam pipe changes the frequency of the mode, 
shifting it below cutoff and making a trapped mode. The situation is analogous to 
the frequency shift of a mode in a cavity due to a small perturbation of the boundary. 
The mechanism is described in the original paper by Stupakov and Kurennoy1"1. The 

paper also gives a numerical example quite similar to the one described above.

The theory1121 predicts a trapped mode at the grid of the vacuum port in the 

arcs with shunt impedance1131 Rs — 644.$1, Q factor on the order of 3.5 x 104, and 

localization length L = 35 cm. The shunt impedance of a trapped mode at the 
vacuum ports of the straight sections is smaller, Rs = 85.$1. MAFIA confirms that 

slots cut in the circular beam pipe produce a trapped mode with parameters given 
by the total magnetic polarizability of the slots, Fig. 20a,b.

The frequency shift of the trapped mode is larger than the width given by the 

resistivity of the wall. Radiation from a narrow slot outside the thick beam-pipe 
is suppressed at a frequency close to the cut-off. Radiation into the beam pipe is 

possible only in the TE\\ mode, which has a cut-off frequency lower than the cut-off 
for the TMq\ mode. However, the width due to this process is very small. For a 

symmetric placement of the slots, radiation is additionally suppressed.

To eliminate trapping, the beam pipe at the vacuum port may be recessed with the 
recess volume equal to or slightly larger than the polarizability of the slots. Numerical 
simulations with MAFIA confirmed this statement1"1.

A bow-like recess of the slots in the arcs has to have saggita A > 0.27 mm and, 
practically, will be set to be larger than the fabrication tolerances. A mesh of small 
holes on the pump side should be used to prevent propagation of TE modes to the 
pumps.

Tapers

The circular beam pipe of the straight sections (6 = 4.5 cm) and the rectangular
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beam pipe of the arcs (2.5 x 4.5 cm) are connected with tapers (see Fig. 21). The 2D 

modeling of a 10° taper connecting two circular beam pipes with radii of 2.5 and 4.5 
cm gives a conservative estimate of k[ = 5.1 x 10~3 V/pC and L = 0.3 nH per taper 
(see Fig. 22). The wake is inductive. The real part of the impedance is ReZ < 0.5 D 
per taper for frequencies below 5 GHz.

Collimators

A simple model of a collimator as a pair of tapers with a height of 4.5 cm and a 
taper angle of 10° gives a loss factor of ki = 2 x 10-2 V/pC. The wake is inductive 

and corresponds to L = 1.57 nH per collimator (see Fig. 23).
Feedback kickers

Longitudinal and transverse kickers for PEP-II are modeled after those designed 
and measured for the ALS1141 (see Fig. 24). The longitudinal beam impedance of the 

ALS transverse kicker was found to be Z/n = 0.53 mfl and the loss parameter was 
estimated as k{ = 0.66 V/pC. For the longitudinal ALS kicker, Zjn — 25 mfZ and 
the shunt impedance is 300 D within the passband 1.25 GHz.

Tolerance on the beam-pipe misalignment

Misaligned beam pipes can generate additional impedance. For a small misalign
ment 8 of two beam pipes with radius b the impedance is inductive115’

L
4 P 

3 b '
(47)

For 8 = 2 mm and b — 2.5 cm that gives L = 0.023 nH. In the worst case 300 mis
alignments of this kind give L = 7 nH, giving the upper bound for the misalignments 
with rms error 2 mm. We checked this formula with the 2-D code ABCI considering 
two pipes with radii 4.7 and 4.5 mm. That gives L = 0.030 nH, and the loss factor 

k\ = 1.4 10-3 V/pC. Inductance, after scaling proportional to the azimuthal filling 
factor 1/2 and ratio of radii is L = 0.027 nH in good agreement with the analytic 

formula.
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Impedance of synchrotron radiation

Maximum value of impedance caused by synchrotron radiation

7 i
max(-) = 300—fi (48)

n R

for b = 2.5 cm and the average radius R = 350 m is quite large, giving Lmax — 

25 nH. However, the maximum value corresponds to the harmonic number nth ~ 

(7rR/b)3/2 — 7.5 x 106. Such frequencies are much larger than frequencies within the 

bunch spectrum which, for <7 = 1 cm, rolls-oif starting from n = 3.5 x 104. Impedance 

of the synchrotron radiation is suppressed exponentially for frequencies n < and 

contributes negligibly to the PEP-II impedance budget.

Cross-talk

As usual, we neglected the cross-talk between spatially close components in this 

calculations. An example of a periodic array of irises shows that such an interference 

tends to reduce the total impedance, but, to our knowledge, no serious studies of the 

problem are available at this time. We want to make only a few comments.

At high frequencies, a diffractional model can be used to estimate the length of 

the interaction of the wake with a particle. Consider, for example, a scraper with 

the inner radius o in a beam pipe with radius b. The angle of diffraction 6 for a 

wave with frequency w = 2tt/ is 9 ~ c/ua. The elements of the vacuum system 

can be considered as independent if the distance between is larger than the length of 

diffraction L ~ (b — a)uja/c.

If two recessed elements of the vacuum chamber are close to each other, a mode 

can be localized between them. However, to have a large Q factor, the mode should 

not be coupled with propagating modes outside of the elements. This coupling for 

smooth obstacles with the width w and height of the recess A depends exponentially 

on the parameter

vw 12A
TVT’

where b is the beam pipe radius and v = 2.4 is a root of the Bessel function. The 

parameter should be much larger than one for a large Q.
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This problem was considered for the rf seal and recessed vacuum port. Both are 
short (in the model the height of each was 1 mm) and are close to each other. The 

field pattern found in MAFIA simulations confirmed, as was expected, that such a 
system does not confine a mode (see Fig. 26).

Summary

The main contributions to impedance of PEP-II come from the rf cavities and 

the resistive wall impedance. Components giving the main contribution to inductive 
part of the impedance are summarized in Table 6. The contribution of an element is 

calculated and multiplied by the number of such elements given in Table 2. These 
elements are mainly inductive but do have a small resistive part, which give a non

zero loss factor of ki = 3.1 V/pC. We can describe this loss by a constant resistivity

Rq.

Longitudinal impedance is the sum of the narrow-band and the broad-band 

impedances. The narrow-band impedance is given by the modes of the cavities (see 
Table. 3), and a few modes in the BPMs, and kickers. Broad band longitudinal 
impedance can be parametrized|16,|17,by expansion over \/w. For cv > 0 it takes the 

form:

Zi(u>) — —iZo~------b (1 — i)Rwy/u + Rq + (1 + i)Rc\f—i
47rc V tv 0(w tv, :) + •■■■

where Zo = 4tt/c = 120% fl, and tvc/27r is a cutoff frequency. Usually, the impedance 
can be set to the cutoff frequency of the beam pipe at the rf cavities. Dependence of 
the total impedance on the choice of ivc is weak if the number of modes below cutoff 

taken into account in the narrow-band impedance and the coefficient Rc are chosen 
consistently.

The first term in the expansion of Z; over describes inductive impedance 

generated by all elements in the ring with eigen-frequencies much higher than fre

quencies within the bunch spectrum. The inductance L (L in nH, 1 cm=l nH) 

defines the low-frequency parameter Z\jn where n = cv/cvo is the harmonic number, 
and tvo = 2trf = c/R is the revolution frequency.

54



The inductance L is given by Table 6. The second term describes the resistive 
wall impedance. The third term describes a constant resistivity. The wake of a bunch 

in this case is proportional to p(s). The last term is a good parametrization of the 

high-frequency tail of the rf cavities.

Transverse impedance is dominated by the modes of the rf cavities, Table 4, and 
resistive wall estimated above. The rest of the ring contribures little and, therefore, it 

may suffice to have an estimate of such a contribution. This estimate can be obtained 

in a standard way from the results of Table 6.
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Table 6. The main contribution to the inductive impedance of PEP-II

L (nH) (V/pC)

Dipole screens 0.10
BPM 11. 0.8

Arc bellow module 13.5 1.41

Collimators 18.9 0.24

Pump slots 0.8

Flange/gap rings 0.47 0.03

Tapers oct/round 3.6 0.06

IR chamber 5.0 0.12

Feedback kickers 29.8 0.66

Injection port 0.17 0.004

Abort dump port 0.23 0.005

83.3 3.4Total



Figure Caption

Fig. 1. RF cavity shape (without damping ports).

Fig. 2. Broad-band longitudinal wake potential of a rf cavity.

Fig. 3. Dipole wake potential of a rf cavity.

Fig. 4. Real part of the longitudinal broad-band impedance of a rf cavity.

Fig. 5 a,b. Layout of the DIP screen.

Fig. 6 a,b. Layout of the LER antechamber.

Fig. 7. Electric field pattern for the antechamber.

Fig. 8. Longitudinal wakepotential W(s) for different 

lengths and depths of the antechamber.

Fig. 9 a,b Layout of the abort system and the model used in MAFIA simulations. 

Fig. 10a,b. Layout of masks of the IR in horizontal and vertical planes.

Fig. 11. Broad band impedance of the IR.

Fig. 12. Field pattern of trapped modes of the Be pipe of the IR.

Fig. 13 a,b. Injection port and the model used in MAFIA simulations.

Fig. 14. Layout of a four button BPM.

Fig. 15 a,b. Comparison of MAFIA simulations with wire measurements 

of a BPM.

Fig. 16. Impedances and Wakefields of a 1.5 cm button.

Fig. 17. Dependence on frequenc of the permeability /z.

Fig. 18 a,b. Layout of a bellows, x, z and y,z planes.

Fig. 19 a,b. Layout of the slots of a vacuum port for the straight sections 

and arcs respectively.

Fig. 20. (a) Dependence of the Ez component of a trapped mode on the

57



distance from the slot center and (b) the electric field pattern.

Fig. 21. Layout of the taper of a transition from a round to a 

hexagonal pipe.

Fig. 22. Wake potential of the taper.

Fig. 23. Longitudinal wake potential of a model of a typical collimator.

Fig. 24. Layout of a feedback kicker.

Fig. 25. Layout of a valve.

Fig. 26. Field pattern with two 1 mm high restrictions. The beam pipe is closed 

at the ends. The wide restriction confines the mode but a small one has no effect. In 

a real system, the mode would propagate to the left.
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The LEP Impedance Model

Bruno Zotter *

CERN, Geneva 23, Switzerland

Abstract
This report describes a number of measurements and computations of the impedance 

of the Large Electron Positron collider LEP at CERN. The work has been performed 
over several years, together with D. Brandt, K. Cornells, A. Hofmann, G.Sabbi and 
many others. The agreement between measurements of single bunch instabilities on 
the machine and computer simulations is in general excellent and gives confidence in 
the impedance model used.

1 Current Limitations by Collective Effects in LEP
Contrary to smaller machines like B-factories, where in general longitudinal effects such 
as bunch lengthening or energy loss dominate, the main limitations in large storage 
rings - and LEP is by far the largest one in existence - are usually in one of the 
transverse planes, mostly the vertical one. This can be understood by the fact that 
the transverse impedance increases with average machine radius R as shown by the 
approximate relation

Zj_ fs 2Rh
b2 n

(1)

where b is the chamber radius or half height, and Z||/n the longitudinal impedance 
divided by the mode number. The main limitation of single bunch current in LEP is the 
transverse mode coupling (TMC) instability, whose threshold is inversely proportional 
to the sum over the products of all transverse impedances Zj_,- (or the transverse loss 
factor &j_) and the beta functions /3, at their locations

2 xv3E/e 8 f.E/e

hk - TMrJ(a) ~
For bunch lengths above a fraction of a mm, the form factor f(a) ~ <r (or k± ~ l/cr).
Hence bunch lengthening is beneficial to stabilise the bunches, whose natural length is 
of the order of a few mm, depending on the momentum compaction of the particular 
lattice used. At injection energy (20 GeV), the bunches need to be lengthened even 
more (typically to 10 - 20 mm) in order to reach sufficiently high currents. This is 
usually achieved by powering one or more wigglers which have been installed in LEP 
originally for other purposes (damping, emittance control, polarization). At operating 
energy, presently 45 GeV, these wigglers are no longer effective and thus are switched 
off, but the natural bunch length is anyhow 10 - 15 mm. Since (3* is typically 4-5 cm, 
there is still no loss of luminosity due to the “hour-glass effect”.

* Talk given at the workshop on collective effects in B-factories CEIBA 95, Tsukuba, Japan, 
July 1995
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The main longitudinal collective effect encountered during commissioning of LEP 
was an irregular phase motion of the bunches, which could however be cured by in
stalling a dedicated feedback system. Furthermore, synchro- bet at ron resonances need 
to be avoided by careful adjustment of the working point, in particular during accu
mulation of current. More recently, another longitudinal problem appeared: power 
dissipation in sensitive equipment related to the superconducting (SC) cavities - in 
particular HOM couplers, bellows and tapers - which are being installed for operation 
at 90 GeV (LEP2), and which had to be minimized by design changes.

2 Design of Low-Impedance LEP Components
The largest impedance in LEP is caused by 128 five-cell 352 MHZ copper cavities. 
(Eight of these have been removed and replaced by 1 GHZ feedback cavities, hence the 
impedance has not much changed.) At bunch lengths between 10 and 15 mm, each 
cavity cell has a transverse loss factor of nearly 5 V/pC, hence the total is about 3000 
V/pC. For LEP2, 192 four-cell SC cavities will be added - but presently only a few 
have been installed. Due to their much larger beam pipe radius (12 vs 5 cm), their 
transverse loss factor k±_ is much lower than that of the copper cavities, a full SC cavity 
has only about half the value of a single copper cell. Nevertheless, unless at least some 
copper cavities are removed, the TMC threshold will be somewhat reduced.

The second most important element for determining the TMC threshold of short 
bunches in LEP are the bellows, of which a large number (nearly 3000) are required for 
accommodating the thermal expansion (over 30 mm) of each vacuum chamber. Since 
the chambers are slightly curved, also a transverse displacement of up to 3 mm should 
be allowed. A number of solutions were investigated:

• “Inner bellows” - as used e.g. in SPEAR at SLAC - i.e. very thin-walled bellows 
with shallow corrugations, were found to break during testing, and still had a too high 
transverse impedance.

• An enlarged vacuum chamber, sliding directly on the standard one over a spring 
contact - as used e.g. in PETRA at DESY - also was found to have a too high transverse 
impedance. In addition, this design was considered unreliable since a minimum contact 
pressure is not guaranteed.

• Specifically for LEP, long Be-Cu fingers were proposed, sliding on the outside 
of a thin SS extension of the oval vacuum chamber. An outer spiral spring keeps the 
contact pressure always above the minimum required. These RF screens are tricky to 
assemble, but in 5 years of operation, only a single finger was found to stick inside the 
chamber, and they have performed very well at the current levels of LEP.

In ESRF, a reduced version of similar design has been used for some time without 
any problems for multi-bunch operation. However, recent operation with a few and 
strong bunches led to pressure increases due to overheating and arcing.

• For machines with even higher currents - such as B or Phi factories - screens 
without sliding contacts may be preferable. Such a design, consisting of a flexible inner 
sleeve bulging to the outside during compression - essentially a single convolution inner 
bellows - had been proposed for Springs some time ago. It has not been adopted there 
for impedance reasons, and a re-evaluation may be indicated.

All other components in the LEP vacuum chamber, such as electro-static separators 
(of which there are now over 50), collimators, pick-up electrodes, large unshielded 
bellows (over 200) etc. still present rather small contributions to the total impedance 
(see Figs.l and 2). This may change when a substantial number of copper cavities are
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removed.
Longitudinal motion of bunches was limiting the performance of LEP before the 

installation of a dedicated feedback system. However, for several reasons it is not prob
able that it is caused by a coupled-bunch instability: it has occurred even when only 
a single bunch was present in LEP - with almost 27 km circumference. When several 
bunches are in the machine, they tend to move in phase (“ zero mode”) rather than 
in one of the more unstable modes with finite phase shift between bunches. Exact 
analysis of thresholds of the coupled bunch instability is not possible in the presence 
of such a large number of cavity cells - over 600 - each of which has in addition many 
resonances. Their frequencies may be slightly different due to fabrication tolerances 
or different tuner positions, and even change with time due to temperature variations: 
their total impedance thus may vary widely. For the same detuning factor, the thresh
olds for transverse coupled bunch instabilities are much lower - but these have not been 
observed. A similar longitudinal bunch motion was recently seen at DESY, where it 
was explained as loss of Landau damping rather than a real instability.

3 Impedance Measurements on the Machine
The reactive part of the transverse impedance can be deduced from the slope of the 
coherent betatron tunes with bunch current:

dQ
dl

eR
2tvaE 5>z±:" (3)

where the sum extends over all significant impedances. The effective impedance is 
defined as the integral (or sum) over the product of the bunch spectrum and the 
imaginary part of the (transverse) impedance. For a Gaussian distribution, the result 
can be expressed with complex error functions. For very short bunches - compared to 
the resonant wavelength - this can be approximated by

= 2&Wrf)' (4)

while it becomes simply R/Q for uircr > 1. Note that both approximations may be 
needed for bunches of a given length in the presence of different resonators.

Many measurements of the tune slopes have been made in LEP over the years. 
The values depend somewhat on bunch length - typically 60-70 A-1 in the horizontal 
and 100-130 A-1 in the vertical plane (see Fig.7). A measurement only two weeks 
ago gave similar values, indicating that the recent installation of more SC cavities and 
separators has not yet strongly increased Z±.

4 Measurements of the Distribution of Impedances
4.1 The distribution of transverse impedance around LEP

The pick-ups in LEP - over 500 in total - have a “1000-turn memory”. This permits 
determination of the phase of the betatron oscillation around the whole machine cir
cumference. The bunch is excited either horizontally of vertically, and the change of 
phase is determined as function of current by analysis of the measured oscillations. 
The excitation needs to be weak in order to avoid non-linear effects. The measured 
changes are very small, and the accuracy of the measurement is limited. Taking only
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the results for larger currents (“method I”) or using least-square fits (“method II”) of 
all data yields slightly different results, but the average slope is in reasonable agree
ment with the measurements of total tune shifts (Figs.3 and 4). Only in one or two 
octants the slope appears locally inverted, which could be a real focussing of the elliptic 
chamber, or just measurement inaccuracy - therefore a repetition of the measurement 
with better resolution would be desirable.

4.2 The distribution of the energy loss

The energy loss - proportional to the real part of the longitudinal impedance - can be 
found my measuring the shift of the closed orbit with bunch current in all pick-ups 
with finite dispersion. In order to measure the dominant contribution of the RF cavity 
impedance, one of the 2 RF sectors is switched off, while the other one supplies the 
required energy. Once there are enough SC cavities installed to replenish the energy 
loss of the beam, we plan to repeat the experiment with all copper cavities idling.

Since also this measurement is on the limit of sensitivity, the results are averaged 
over each machine octant (Figs.5 and 6). The loss factors can be found from the 
relation

^fr <5>

With an average dispersion D = 0.58 m in the pick-ups, a total loss factor fc|| of about 
390 V/pC is found, quite near to the computed value of 375 V/pC for a bunch length 
of 12 mm.

5 Simulation Program TRISIM and Results
Simulation of collective effects for LEP was begun more than a decade ago with a 
super-particle program SIMTRAC[1], However, the program was not very fast and the 
results depend on the number of super-particles used. Also it needs a delta-function 
wake as input which can only be approximated incompletely.

The next step was a code using an expansion of the particle distribution into Her- 
mite polynomials called HERSIM[2][3]. It was less sensitive to the number of particles, 
and was faster since it used pre-calculated wake field tables. However, it was limited to 
polynomials of low (6-th) order, mainly because the wake field tables were produced by 
successive numerical differentiation which becomes rapidly inaccurate. Due to insuffi
cient convergence, the description of distributions differing strongly from a Gaussian 
can therefore be rather poor.

These shortcomings are removed by using “linear interpolation functions” - in the 
shape of shifted triangles (see Fig.7) - in the program TRISIM[4]. A large number of 
triangles can be used to approximate any distribution quite well. Only a single wake 
field table is required for triangles of a given base width, which makes the program 
extremely compact and fast. It is also quite insensitive to the number of super-particles 
used.

The program TRISIM has been used extensively[5] to simulate current limitations 
by TMC for various lattice configurations (Fig.8 shows a typical output for an unstable 
situation), for the operation of LEP2 with many SC cavities, and also for testing a 
rather complex reactive feedback system using one or more free oscillators which store 
the information from the pickups. At present, we are also developing a 3-dimensional
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version of the program to simulate effects in both transverse planes including betatron 
coupling.

6 Conclusions
The agreement of measured and computed impedances in LEP is quite satisfactory for 
single bunch (“short range”) effects. For analytic estimates of thresholds and power 
losses, it was found to be quite important to use the “effective” rather than the low 
frequency impedance for comparison with experimental results.

The predicted TMC threshold of 0.75 mA/bunch (at the nominal synchrotron tune 
Qa = 0.1) was based on simple estimates of the transverse impedances of the copper 
cavities and the shielded bellows. It was found to be only slightly lower in experiments. 
Since the beam-beam effect limits the bunch currents to about the same values for op
eration of LEP at 45 GeV, it is presently not required to get to a higher current/bunch. 
For LEP2, however, which is expected to reach 80-90 GeV where the beam-beam effect 
is weaker, higher bunch currents would be very desirable to reach high luminosity. In 
addition to other changes like higher Qa and/or longer bunches, this could be achieved 
by keeping the transverse impedance low - e.g. by removal of copper cavities.

For more exact predictions and comparison with experimental data, we now rely 
mainly on simulation programs such as TRISIM. This program is based on the descrip
tion of the particle distribution by linear interpolation functions. It gives a rapid and 
accurate estimate of collective single bunch effects in storage rings - if the impedance 
model can be trusted. In LEP, the elements with the biggest contributions to the 
impedances are the copper RF cavities and the shielded bellows, mainly due to their 
large number. Other elements of smaller importance are the SC cavities, the separators, 
pick-ups electrodes, collimators, and large bellows. With the wake potentials of these 
elements as input, the program TRISIM has been found to give excellent agreement 
with the single bunch effects observed in LEP,
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INPUT FILE NAME I08y4t1mod (part 2) RUN DATE21 / 6/95 TIME 15. 15. 20

Distributions are approximated by linear interpolation (10 ps step)
Longitudinal wake switched ON - Transverse wake switched ON

Number of particles 2000 Damping time (s) 0.255 Beam energy (GeV) 20
Number of turns 3000 Energy spread (MeV) 22.8 Radiation loss (MeV) 6.94

Bunch current (mA) 0.52 Betatron tune 76.18
Totol RF Voltage (MV) 186 Synchrotron tune 0.08

Equilibrium values (averaged over 2000 turns)

Bunch center (ps) -67.513 Bunch length (ps) 31.238 Bunch width (mm) 0.17
Mean energy (MeV) -1.18 Energy spread (MeV) 26.791 Total losses (MeV) 27.686

Total CPU time (s) 692.888 Time for wake calculation (s) 71.007
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Figure 9: Output of Simulation Program TRISIM
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COLLECTIVE EFFECTS AND IMPEDANCE ISSUES FOR THE
SOLEIL PROJECT

G. Flynn
LURE-CNRS/CEA/MESR

Centre Universitaire, Bat. 209 D, 91405 Orsay Cedex, France
ABSTRACT

Various issues related to collective effects in the 
SOLEIL project are adressed. Particular attention is 
payed to the effects of longitudinal oscillations on 
undulator brilliance. Preliminary estimates of turbulent 
bunch lengthening and of the transverse mode coupling 
threshold are presented.

I. INTRODUCTION AND PROJECT 
OVERVIEW

SOLEIL is intended to be a very low emittance, 
medium energy synchrotron radiation storage ring 
providing radiation in the 10 eV to 20 keV energy range 
from a large number of undulators and bending magnets 
as well as from several strong field wigglers. The 
machine will consist of 16 double bend (DB) lattice 
cells grouped in 4 super-periods. Four long straight 
sections (14 m) will be provided for a storage ring free 
electron laser (EEL), many period undulators and other 
applications. [1] Several different operating points are 
possible. The achromatic Chasman-Green (CG) lattice 
provides a horizontal emittance of 7 nm.rad with zero 
dispersion in the user occupied straight sections. The 
minimum emittance of 2.7 nm.rad is obtained with 
distributed dispersion. The main machine parameters 
are presented in table 1 for several of the planned 
operating modes. The machine is designed for a 
maximum current of 500 mA with total ring filling 
(560 bunches). An 80 mA, 8 bunch filling pattern is 
also envisaged for time resolved experiments. Finally 
an 8 bunch, 1.5 GeV FEL configuration is also 
planned. The high currents and large number of 
bunches present many challenging issues, many of 
which resemble, to some degree, problems encountered 
in B-Factory projects. The principal collective effects 
which need to be considered are the following:

-RF induced heating and outgassing 
-coupled-bunch longitudinal instabilities 
-coupled-bunch transverse instabilities 
(primarily resistive wall)
-turbulent bunch lengthening (time resolution 
and FEL experiments)
-transverse mode coupling (single bunch 

current limit).

The aim of the present paper is to provide a strategic 
overview of these issues in conjunction with the other

design constraints and performance goals of the 
machine.

II. PERFORMANCE GOALS

Three principal parameters, spectral flux, spectral 
brilliance and beam life-time determine the "quality" of 
a synchrotron radiation source from a user point of 
view. A fourth parameter, bunch length, is of interest 
to a subset of users (time resolution and FEL 
operation). Flux, the number of photons per second 
within a given small energy range integrated in angle 
depends mainly on the stored current and on the 
characteristics of the source device (bending magnet, 
wiggler or undulator). In the discussion that follows, 
we will consider only undulator emission. Undulator 
flux is weakly dependent on the emittance (through the 
effect of angular dispersion on spectral width) and on the 
effective energy spread. Spectral brilliance, being 
defined as the number of photons per second per unit 
solid angle per unit source area (also within a given 
energy range), is simply the phase space density of 
photons in the user beam. It is inversely proportional 
to the convolution of the phase space area of the 
electron beam with the diffraction limited radiation of a 
single particle. It is thus a strongly varying function of 
the emittance. Both flux and brilliance have the 
advantage of being conserved quantities, they can never 
be increased by user optics. Few users are interested 
only by flux as optical apertures and sample sizes are 
always limited. On the other hand, the number of users 
requiring extremely high brilliance is expected to 
increase in the coming years with the advent of more 
sophisticated optics. Life-time is very important for 
nearly all users as it determines the integrated flux or 
brilliance available during the course of a particular 
experiment

For these reasons, SOLEIL has been designed to 
provide a high-current (500 mA), extremely low 
emittance beam (2 nm.rad) with a greater than ten hour 
life-time. These requirements lead to the following 
choices

-distributed horizontal dispersion (to minimize 
the emittance)
-3 MV of RF (for Touschek life in 8 bunch 
mode)
-nearly equal filling pattern in multibunch 
mode (Touschek life).

The need for a small emittance also implies very strong 
focussing in order to minimize the horizontal beta
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function in bending magnets. This in turn leads to 
large beta values in the quadrupoles and thus to large 
negative natural chromaticities. It is thus necessary to 
provide strong sextupoles to correct these chromaticities 
to zero in order to avoid the head-tail instability. 
Sufficient additional sextupole strength will be provided 
to raise the vertical chromaticity to 0.7 in order to raise 
the transverse mode coupling limit (see section VII.).

These considerations along with the choice of a 500 
MHz RF frequency for technological reasons imply the 
very short natural bunch length of 3.3 mm or 11 psec. 
While this will be favorable for FEL performance and 
time resolution users, it may well worsen certain 
collective effects.

Table 1: Machine parameters

Circumference fml 336.
Straight sections 14.1 m x 4 + 7.4 m x 12
Revolution frequency, fo [kHz] 892.261
Energy [GeV] 2.15 1.5
Energy loss per turn [keV] 500 118
Natural energy spread 8.6 10-4 6.0 IQ"4
Emittance [nm.radl 2.7 7 15
Horizontal dispersion in 7 m straight sections [ml 0.18 0.0 -0.1,-0.2
Momentum compaction 3.8 10-4 5.5 ID"4 1.3 10-3
Total RF voltage [MV] 2 3 3
Synchrotron tune 5.439 10-3 8.0868 10-3 15.2 IQ*3
Betatron tunes vx. vz 18.3, 8.38 18.3, 8.38 19.4, 6.38
Natural bunch length [mm] 3.3 3.1 2.8

B. Instability thresholds

HI. LONGITUDINAL COUPLED-BUNCH 
INSTABILITIES

A. Effect on undulator performance

The presence of a non-zero dispersion function in all 
insertion occupied straight sections renders the 
performance of the machine extremely sensitive to any 
increase in the effective energy distribution of the beam 
as this would increase the horizontal source size and 
thus reduce the brilliance. A secondary effect of such 
oscillations is the reduction in spectral flux and 
brilliance due to undulator line broadening. The most 
likely source of excess energy dispersion is dipole mode 
longitudinal coupled bunch (LCD) instability. The 
effect of such oscillations on the brilliance of a typical 
undulator has been calculated numerically and the results 
are shown in figure 1. It is seen that the most 
important effect is that due to the increase in source 
dimension. It seems clear from this figure that the 
amplitude of bunch energy oscillations must be kept to 
less than about 10*3 (corresponding to about a 20 % 
reduction in brilliance) if an unacceptable degradation of 
source brilliance is to be avoided. Because of the short 
bunch length this corresponds to a phase stability of 
only about 2° or 11 psec. One can see from the figure 
that if the dispersion function were zero, as is the case 
in present generation machines, the stability criterion 
could be substantially relaxed.

As all similar machines, SOLEIL will be very prone 
to longitudinal coupled bunch instabilities driven by 
narrow band higher order mode resonances (HOM's) in

12.00 •combined effect

—— •energy spread 
only

10,00 •

.00 .
■ source size only

4,00 .

2.00 •

ItlimmHUlHtlfUMIl

ooooooooooooooooo
Energy oscillation amplitude [%]

Figure l: Brilliance reduction due to bunch energy 
oscillations

the accelerating cavities or other vacuum chamber 
elements. This can easily be seen from the well-known 
approximate formula, reproduced here for reference:

l 2E.V, 1
$ frRs

(1)

where:
Is instability threshold current
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Es=beam energy (in eV) 
vs=synchrotron tune 
Tsr=synchrotron radiation damping time 
a =momentum compaction factor 
fr=HOM resonance frequency 
Rs=HOM shunt impedance

For a typical cavity HOM (fr =1000 MHz, Rs= 1 
MQ) this formula predicts a threshold current of only 
10 mA if the HOM falls directly on a beam harmonic. 
Formula (1) suggests the use of the following factor, F, 
as a means of comparing the sensitivities of different 
machines to LCB instabilities at there nominal 
operating current;

The larger the value of F, the lower the HOM 
strength needed to limit the current below (nominal 
Values of F for several different B-factory and 
synchrotron radiation machines are presented in table 2. 
We see from this table that the machine parameters of 
SOLEIL render it comparable in sensitivity to the high 
energy rings of the two current B-factory projects. It is 
however much less sensitive than the low-energy rings.

Table 2 : Comparison of sensitivities to LCB instability

KEK-B [2] PEP-II [3] ESRF [4] ELETTRA
[5]

ALS [6] SOLEIL

HER LER HER LER (100 mA) (200mA) (400 mA) (500 mA)
* nominal

l Tsr“ J

1.2 15.8 5.0 21.9 0.14 6.4 24.8 4.8

C. Statistical analysis and HOM displacement

Formula (1) is of course only valid if an HOM falls 
directly on a beam harmonic. Two questions then come 
immediately to mind. The first is, what is the 
probability of the beam current being limited if a 
realistic distribution of cavity HOM’s is assumed? This 
probability can be estimated rather easily if a few 
approximate but realistic hypotheses are made. First we 
observe that the spacing of revolution harmonics in 
SOLEIL is about 0.9 MHz. Due to manufacturing 
tolerances, the frequency of a given cavity HOM is only 
known to a limited precision. Actual experience 
suggests that for a real cavity equiped with a coupler, 
pumping holes and other accessories, the uncertainty in 
HOM frequencies is likely to be considerably greater 
than 1 MHz. [7] One can then safely assume that HOM 
position is random with respect to beam harmonics. 
Formula (1) combined with the Lorentzian line shape of 
an HOM resonance permits one to deduce the dangerous 
width of such a resonance with respect to a given design 
current. The expression is:

Afda„ger=|V(Rsfr)F-1

where Q = quality factor of the resonance.

Finally these assumptions permit one to write the 
probability of being limited to a current below the 
nominal current by a particular HOM as:

r, Afdang#

Mimit ~ Z *0
One can then take into account the effect of several 
HOM's using the binomial distribution. Typical values 
(fr =1000 MHz, Rs=l MO, Q=40000, 3 modes per 
cavity, 5 cavities in the machine) lead to a probability 
per mode of 15% and a total probability of over 90%. 
It is thus clear that one cannot rely on luck to avoid 
instabilities.

The second question one might ask is whether it 
could be possible, to adjust HOM frequencies 
dynamically in order to avoid beam harmonics. A 
priori, this seems very difficult given that a typical 
cavity will contain nearly ten HOM's below the vacuum 
chamber propagation frequency and that only a quite 
limited number of parameters are available for 
adjustment (temperature and tuner position, for 
example). Recent encouraging results at ELETTRA 
have however shown that careful temperature control 
can permit the control of HOM frequencies and lead to 
at least a great reduction in the amplitude of LCB 
oscillations. [8] Questions remain however concerning 
the effects of broadened, nearly propogating, HOM's 
which cannot be displaced.

C. Cures

The aforementioned considerations having shown 
that LCB instability is certainly a problem which will 
have to be dealt with, several possible solutions are 
currently being considered. The ideal approach would be
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to use RF cavities having essentially no narrow band 
HOM's. Such a "monomode" cavity does in fact exist. 
It has been developed by Cornell for the high 
luminosity upgrade of CESR. [9] This cavity has the 
particularity of being superconducting and some concern 
exists concerning the long-term reliability of such an 
RF system. Another approach would be to adopt a 
system similar to that used at ELETTRA and avoid 
HOM's by cavity tuning. However it is not yet clear 
that this alternative will provide a sufficiently stable 
beam to meet the tolerances presented in (III.A). 
Finally cavity tuning or partial HOM damping could be 
combined with a bunch to bunch feedback system. This 
approach also poses questions concerning beam stability 
and long-term reliability.

Since none of these potential cures provides a 
guaranteed solution without concurrent disadvantages, 
work is currently underway to further elucidate LCB 
behavior for each of these different systems. Now that 
quantitative tolerances have been set for longitudinal 
instability, the next step is to determine LCB saturation 
amplitudes as a function of HOM impedance. A final 
decision on the approach to be taken is expected before 
the end of 1995.

IV. TRANSVERSE COUPLED BUNCH 
INSTABILITY

A. Resistive wall

The most significant transverse narrow band 
impedance will most likely be the resistive wall effect. 
Since the resistive wall impedance is a rapidly 
decreasing function of frequency, centered around zero, a 
simple estimate of this effect can be made by 
considering only the lowest frequency aliases of coupled 
bunch modes, that is to say, only those frequencies 
contained between zero and the bunch frequency of 500 
MHz. Such a calculation shows that with a stainless 
steel vacuum chamber, about 50 modes would be 
unstable. If the chamber were in Aluminum, this 
number would be reduced to only about 4. It therefore 
appears that if a stainless steel vacuum chamber is 
adopted, a transverse feedback system with a bandwidth 
of about 50 MHz will be necessary.

B. Transwrse HOM's

The transverse analog of (1) can be written:

Ic =
4rcEsvp i

Ri (2)

where op represents the lesser of the two betatron
tunes. Using this formula, a typical dipole HOM (fr=l 
GHz, Rs=800 kti/m, Q=48000) results in a threshold

current of about 80 mA. The dangerous width of such a 
mode would then be on the order of 50 kHz. This 
implies that the probability of being limited in current 
by such a mode is much smaller (about 6 %) than that 
for longitudinal modes. Nonetheless, the presence of 
such modes in an undamped cavity must be taken into 
account if mode displacement of longitudinal HOM's is 
foreseen as they will tend to limit the useable 
temperature ranges. This effect is all the more 
dangerous as transverse coupled bunch instabilities, 
unlike their longitudinal counterparts, typically lead to 
beam loss.

V. BROAD BAND IMPEDANCE AND 
COMPONENT DESIGN

At the present stage of the project, a detailed 
impedance budget cannot yet be determined as the 
overall vacuum chamber design has not yet been 
completed. It is clear that all efforts must be made to 
build as smooth a vacuum chamber as possible in order 
to minimize broad band related collective effects, reduce 
RF losses per turn and avoid excessive RF induced 
vacuum chamber heating in the high bunch current 
mode of operation. For this reason all bellows and 
pumping holes must be well shielded. In addition 
vacuum chamber transitions (to cavities for example) 
must be made as smooth as possible. It is also planned 
to use special vacuum gaskets which minimize gaps at 
vacuum chamber connections.

In light of the difficulties which have been 
encountered with bellows shielding fingers in other 
laboratories, a program is underway to optimize the 
design of these shields. Vacuum bellows and there 
shields must satisfy the following criteria:

i. ) provide sufficient transverse and longitudinal 
flexibility for mounting and thermal dilation during 
bake-out
ii. ) assure a very good and permanent electrical 
continuity
iii. ) minimise the geometric distortion of the 
electromagnetic boundary conditions seen by the 
beam

Failure to meet requirements (ii) and (iii) would lead to 
an increased loss factor and thus to excessive local 
heating with high bunch currents leading to vacuum 
degradation. In addition a risk of local multipactoring 
and electrical discharges due to the induced fields cannot 
be excluded. Finally excess local heating may lead to 
additional mechanical deformation leading to additional 
loss and an unstable cycle. It is also important to note 
that requirements (i) and (iii) are only relatively 
compatible. Therefore careful attention should be given 
to vacuum chamber and support structure mechanical 
tolerances in order to reduce chamber to chamber 
discontinuities to a strict minimum.
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Since a detailed determination of the expected broad
band impedance does not yet exist for SOLEIL, for the 
purpose of obtaining a rough preliminary estimate of 
the importance of various single bunch phenomena, the 
following values will be used based on a BB resonator 
fit to a total loss factor curve based on literature values 
for the individual loss factors of components used in 
similar machines: [10]

= 0.36 £2, ff = 6.2 GHz, Q = 1

The corresponding transverse broad band impedance, Zj 
can then be estimated by the usual approximate 
formula:

IZr =
2R

[11]

where R is the average ring radius and b is the vacuum 
chamber half-height (19 mm), to be about 100 kfi/m.

It is planned to begin detailed impedance calculations 
on vacuum chamber elements as soon as an initial 
vacuum chamber design becomes available. It is hoped 
to use the 3-D finite element code ANTIGONE [12] for 
this purpose and work has begun in this direction.

VI. BUNCH LENGTHENING

Using the BB model presented in the last section, 
the bunch length as a function of current has been 
calculated using the program BBI [13] with the 
combined effect of potential well and turbulent bunch 
lengthening and assuming SPEAR scaling for the 
impedance. The results are shown in figure 2. We see 
that for the nominal 8 bunch mode current of 10 mA 
the bunch has lengthened by more than a factor 3. 
Nonetheless, because of the extremely short initial 
bunch length, the nominal current length remains below 
1 cm. As for the energy spread, it remains at its natural 
value for the nominal multibunch current of 0.92 mA 
but begins to increase between 1 and 2 mA. At the 
nominal 8 bunch mode current however the energy 
spread has increased by a factor 4. This implies that in 
this mode, a significant reduction in undulator brilliance 
is to be expected for the distributed dispersion optics.

I th -
8(Es/e)v
Zt(Pz)R 1 [12]

to be about 18 mA per bunch. This is larger than the 
nominal 10 mA/bunch current planned for 8 bunch 
operation. This estimate must be considered extremely 
preliminary and further calculations using a more refined 
impedance model will be performed.

Current [mA]

Figure 2 : Bunch lengthening curve (2.7 nm rad)

vni. CONCLUSION

This paper has brought to light a certain number of 
potential difficulties presented by collective effects in 
achieving some of the performance goals of the 
SOLEIL project. The fact that at least two machines 
similar to SOLEIL are currently functioning with good 
performance is reassuring. Nonetheless a great deal of 
work remains to be done, in particular, on the LCB 
instability, transverse mode coupling and vacuum 
chamber impedance for SOLEIL to fulfill its promise of 
providing one of the world's most brilliant medium 
energy synchrotron sources for the beginning of the 
21st century.
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Abstract

We describe the design of main impedance generating elements of DAd>NE vacuum cham
ber and discuss the impact of these elements on single and multibunch beam dynamics.

1. INTRODUCTION

The e+e~ <3> - factory DAONE is presently under construction in Frascati (Italy). It is de
signed as a double ring system with a maximum number of 120 bunches/beam. The short term 
luminosity goal is L —1.3 - 1032cm-2 sec-1 with 30 bunches. The main features of the factory 
have been described in details elsewhere [1]. Table 1 gives the relevant parameters of the 
DA<J>NE main rings.

The basic design choice of achieving the required luminosity with a large total current, dis
tributed over a large number of bunches, makes the operation very critical with respect to cou
pled bunch instabilities. These instabilities have been identified since the very beginning of the 
project as a potentially severe limit on the ultimate achievable luminosity. For this reason, one 
of the primary goals in the machine design was to reduce to a minimum the number of vacuum 
chamber elements creating parasitic high order modes (HOMs) capable to drive the multibunch 
instability and to develop means for damping both the HOMS and the instabilities. This task is 
accomplished by properly designing the RF cavity and by coupling off the HOMs through 
loops or wave-guides to extract energy from the resonant fields, thus reducing at the same time 
the quality factor Q and the shunt impedance R. The residual excitation of beam oscillations is 
damped by means of a bunch-by-bunch digital feedback system.

The single bunch instabilities are also of great importance for DA0NE. In order to achieve 
high luminosity in a short machine the single bunch current must be high. This implies that 
certain single bunch thresholds must be taken into account. Indeed, for DA0NE, the approxi
mate criterion on the limit of the microwave longitudinal instability [2]:

fZj\ ^ 'JfnajE / e){ae0 / E)2 az0 (1)

< n Jeff

gives a small longitudinal impedance limit (ZL / n)^ ~ 0.010 and the turbulent lengthening 
(and widening) regime can hardly be avoided. Here <jzq is the natural bunch length (4.82 mm 
at Vyr=250 kV).
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The energy spread <Je and the bunch length are the key parameters defining Touschek 
lifetime, parasitic losses, luminosity, multibunch instability rise times etc. This demanded 
careful analysis of the broad band impedance of the machine (short range wake fields) and 
simulation of the bunch lengthening process.

The transverse mode coupling does not seem to be a limiting instability for DAONE as it is 
for large machines, LEP for example [3]. Nevertheless, the instability can be destructive for the 
beam and its threshold has to be estimated.

The paper is organized in the following way. In Section 2 we discuss the design of the 
main vacuum chamber elements with analysis of their impedance and possible impact on the 
beam dynamics. Section 3 describes the results of bunch lengthening simulations and gives es
timates for the transverse mode coupling threshold. Section 4 shows the results of the multi
bunch instability simulations. In the Appendix we summarize formulae which have been used 
for multibunch instabilities rise time calculations. More details on the subject of the paper can 
be found in the quoted References.

Table 1. Main DAd>NE Parameters

Energy E 510.0 Mev
Average radius R 15.548 m
Emittance £x / 1/0.01 mm-mrad
Beam-beam tune shift Wfy 0.04/0.04
Betatron tune VX/Vy 5.13/6.10
RF frequency frf 368.25 MHz
Harmonic number h 120
Revolution frequency /o 3.0688 MHz
Max. number of bunches nb 120
Minimum bunch separation sb 81.4 cm
Bunch average current '0 43.7 mA
Particles per bunch N 9.0 1010

Momentum compaction a 0.0058
Natural energy spread &e0 / E 0.000396
Bunch length <?z 3.0 cm
Synchrotron radiation loss u0 9.3 keV/tum
Damping time tc / rx 17.8/36.0 ms
RF voltage Vrf 250 kV
Synchrotron tune y,. 0.0078
Beta functions at IP Px/Py 450/4.5 cm
Maximum luminosity L 5.3 1032 cnrV1
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2. IMPEDANCE GENERATING ELEMENTS

2.1. RF cavity

2.1.1. RF power requirements

DA<J>NE is designed to store a maximum current of 5.24 A in 120 bunches per ring at 

510 MeV. The RF power per ring, given by the sum of the power delivered to the beam and 

that dissipated on the cavity walls, is about 100 kW for 120 bunches at 250 kV gap voltage. 

One 150 kW klystron amplifier per ring will be installed to feed a 368.25 MHz RF cavity.

2.1.2. Shape choice

The choice of the cavity shape has been matter of a long debate. The goal was to reduce 

both the shunt impedance R and the (R/Q) of the cavity ROMs in order to increase the longitu

dinal instability thresholds.

The basic ideas to reduce the HOM impedances were to provide large and long tapered 

cavity beam tubes to let the parasitic modes propagate along them and to couple out the HOM 

energy by means of waveguides (WG) [4].

The tapered tubes are used as a gradual transition from the cavity iris to the ring vacuum 

pipe. A careful analysis of the longitudinal wake potentials made with the code TBCI [5] has 

shown that in a long taper cavity the loss factor of the ROMs is significantly lower than that of 

a cavity with short tubes [6]. This means that, on the average, the R/Q values of the parasitic 

modes are reduced.

Two basic cavity shapes, the so called "nose-cone" and "rounded" profiles, were consid

ered. Calculations performed with the computer codes URMEL [7] and OSCAR2D [8] and ex

perimental measurements made on prototypes have shown that the two models are comparable 

in terms of HOM impedances as illustrated in Table 2. Therefore the rounded cavity was cho

sen since its mechanical design is much simpler. The cavity shape was then optimized in order 

to keep the fundamental mode (FM) impedance above 3 MQ to reduce the dissipated power and 

make the cooling design easier. Much care was also taken to keep the higher impedance HOM 

frequencies far away from harmonics of the beam in order to avoid resonant enhancement of 

the parasitic power losses.
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Table 2. Nosecone vs. Rounded

Nosecone Rounded 1 Nosecone Rounded

Frequency (MHz) 368.3 368.3 0-MM-1 mode:
R/Q(fi) 69.9 61.7 Frequency (MHz) 704.7 696.8
Q 34000 49000 RZQ(O) 4.2 16.0
Rs (MO) 2.37 3.04 Q 30000 50000
ki (V/pC) 0.101 0.129 Rs(kD) 128 800

ko (V/pC) 0.077 0.068 0-EM-1 mode:
kpm (V/pC) 0.024 0.061 \ Frequency (MHz) 565.0 532.7
kt' (V/pC/m) 1.16 1.38 R'/Q (O) 30.3 13.7
kpm /ko 0.31 0.91 Q 42000 54000
kt'/ko *1 mm 0.015 0.02 | Rs' (kD) 1.28 0.74

2.1.3. HOM damping and measurements on prototype.

HOM damping is obtained by opening rectangular slots onto the cavity surface and apply
ing at those positions rectangular WGs which can convey out of the cavity the fields of the par
asitic modes in the TEiq WG dominant mode.

The DAONE cavity is equipped with five WGs. Three WGs are applied, 120° apart for 
symmetry considerations, onto the central body. They are 305x40 mm2 rectangular WGs with 

TE]q cut-off at 495 MHz. Their position allows, on the average, the best coupling with the 
magnetic field H<& of the HOMs. One additional 140x40 mm2 WG, with cut-off at 1070 MHz, 

is placed on each tapered tube to couple some high frequency HOMs which penetrate along the 
pipes and have intense H<j> at that position.

In order to dissipate the HOM power extracted from the cavity, the rectangular WGs are 
converted in double ridge WGs with a smooth and wideband tapered section which is finally 
adapted to 50 Q by a transition to coaxial. The obtained bandwidth is 0.5-3 GHz and 1.2-3 
GHz respectively with standing wave ratio (VSWR) < 2 in the full band. Then, by means of 
coaxial vacuum feedthroughs, the HOM power can be dissipated onto external 50 O loads in 
air [9]. In this way, the application of dissipating materials in ultra high vacuum (UHV) is 
avoided. Moreover the HOM power can be sampled with directional couplers.

The broadband transitions have been designed at LNF with the 3D computer code HESS
[10]. They are manufactured in OFHC copper and have been tested on bench in UHV and with 
RF power [11].
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One broadband transition is shown in Fig. 1. It consists of an initial straight 30 cm section 
followed by an 80 cm tapered double ridge WG terminated with an adapter to a 7/8" coaxial 
output. The 30 cm straight allows the fundamental cavity mode to vanish before entering the 

tapered WG. This avoids having high FM field at the coaxial output. The measured VSWR 
versus frequency response of the WG to coaxial transition is shown in Fig. 2.

Fig. 1 - Broad band waveguide-to-coaxial transition.
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With the use of the described damping system, the parasitic mode quality factors Qs of the 
most dangerous HOMs are reduced, on the average, by two orders of magnitude. In some 
cases, like for the TMqj j, the Q damping is even stronger. Frequency and Q of the FM and 
HOMs have been measured. Also, a careful characterization of the model with the bead pertur
bation method has been carried out for some longitudinal monopoles to measure their R/Q. 
Table 3 shows the FM and HOM Qs obtained on a copper cavity prototype equipped with 
WGs. The last column in Table 3 gives the coupled bunch instability rise time in case of full 
coupling with the damped HOMs calculated with formulae given in the Appendix. The FM 
quality factor decreases by 12 % due to the application of WGs.

Table 3. Cavity Prototype Modes

Mode Freq. (MHz) R/Q (A) Undamped Q
WG

damped Q T (ms)

O-EM-1 357.2 61 25000 22000
O-MM-1 745.7 16 24000 70 1.4
O-EM-2 796.8 0.5 40000 210 14.9
O-MM-2 1023.6 0.9 28000 90 17.5
O-EM-3 1121.1 0.3 12000 300 15.4
O-MM-3 1175.9 0.6 5000 90 25.6
O-EM-4 1201.5 0.2 9000 180 38.4
O-EM-5 1369.0 2.0 5000 170 4.1
O-MM-4 1431.7 1.0 4000 550 2.6
1-MM-l a 490.0 5.1* 30500 650 3.0
1-MM-l b 491.3 5.1* 28500 830 2.4
1-EM-l a 523.5 14.0* 31500 150 4.5
1-EM-l b 549.7 14.0* 32000 50 13.1

(*) Normalized impedance, URMEL definition.

2.1.4. Simulations.

Simulations of the WG loaded DA0NE cavity have been carried out using the computer 
codes POPBCI [12] and HFSS [13] and an analytical method based on the Kirchoff s approx
imation [14].

The code POPBCI can post-process data from any 3D electromagnetic code to calculate the 
resonant frequencies and the beam coupling impedances of waveguide loaded resonators. The 
code considers perfectly matched WGs connected to the cavity body and calculates the longi
tudinal and transverse mode impedances of the resonator as a function of frequency.
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Figures 3 and 4 show Re[ZiJ and Re[Zj] of the DA ONE cavity without and with WGs 
respectively.
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Maximum value of the longitudinal impedance: 3.09 M £2 f [GHz]
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Fig. 3 - Longitudinal and transverse coupling impedances of DAONE cavity 
in the 0 - 1000 MHz frequency band (without waveguide dampers).
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Similar investigations have been performed using the HFSS code which is based on the 
finite elements method. HFSS computes the field distribution in the frequency domain inside 
any passive 3D structure by defining input and output ports. The results are presented in the 
form of a scattering matrix and the parameters Sjj versus frequency are given.

A different simulation method of the DAG>NE cavity with WG loading is based on the so- 
called Kirchoff s approximation. The fields propagating in the WGs are computed considering 
the unperturbed magnetic field on the slot surface as the source term for the WG Green's func
tions. The Q factor of a generic resonance of the loaded cavity (Ql) is therefore:

Ql = (DU / [Pq + Pwg) = \ / [\ / Qq + Pwg / cqU) (2)

where Q0 is the unloaded quality factor, P0 is the power dissipated by the cavity walls and U is 
the energy stored in the cavity. The power Pwg absorbed by the WGs is given by the real part 
of the Poynting vector flux through the rectangular slot.

This method has been applied to the monopolar modes of the DA<J>NE cavity and the re
sults of this analytical simulation are presented in [14]. The results obtained with analytical and 
numerical methods are in rather good agreement.

2.1.5. HQM power loss estimates.

The beam power delivered to the cavity HOMs has been estimated for the 30 bunches initial 
operation [15] of DAd>NE. The beam current expressed as a Fourier series is:

k = exp(;m<u0f) (3)
The total HOM power depends on the cavity monopole spectrum and increases when the 

beam lines Im overlap the cavity spectrum. The power can finally be derived as follows:

p= +£ % 2(R/Q)&,
m=0 HOMs o

1 + Q mcoQ (t)r
\2

X (Or mco,o y

(4)

The above expression has been calculated taking into account the beam and cavity spectra. 
For 30 bunches the HOM power is about 200 W. In the case of full current operation, the 
HOM losses are below 1 kW per WG.
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2.1.6. Present status.

The RF cavity for the DAONE main ring is being fabricated by Zanon S.p.A, Schio, Italy. 
Figure 5 shows a sketch of the resonator equipped with the HOM WGs, the tuning system and 
the main RF coupler. The cavity central body is obtained from a single forged billet of OFHC 
copper and is fully manufactured from the inside by an automatic milling machine to avoid 
large UHV tight weldings. The tapered tubes are made with the same technique. The stainless 
steel flanges have been welded with the electron beam welding (EBW) technique and the vac
uum tightness is ensured by Helicoflex gaskets in the rectangular WG flanges; Be-Cu springs 
guarantee low RF loss contacts; other flanges are standard Conflat type. The cavity cooling is 
provided by 10 mm dia. cooling pipes brazed onto the cavity surface with a low temperature al
loy. Fig 6 shows a picture of the cavity under construction at Zanon. The RF power tests are 
scheduled in July 1995.

Fig. 5 - Sketch of DAONE resonator equipped with HOM waveguides, 
tuning system and main RF coupler.
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Fig. 6 - DAONE cavity under construction at Zanon.

2.2. Longitudinal feedback kicker

Even though the HOMs in the accelerating cavity are heavily damped, the probability for a 
damped HOM to cross a coupled bunch mode frequency is high and, due to the large total cur
rent, the growth rate of unstable modes can be substantially stronger than the natural damping 
rate (compare the data of Table 3 with radiation damping times given in Table 1).
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The required additional damping is provided via a time domain, bunch by bunch feedback 
system [16] based on digital signal processors (DSPs). The digital section is under construc
tion at SLAC in the framework of a collaboration with the SLAC-LBL PEP-II group on feed
back systems for the next generation of factories with intense beams and a large number of 

bunches. In fact, the design specifications are set to meet the ultimate performance specifica
tions of ALS, PEP-II and DAd>NE. A prototype system with a single board digital section is 
running at ALS [17].

The maximum power at the kicker is determined by the voltage gain needed to achieve the 
required damping rate and the maximum synchrotron phase error allowed during injection.

We have some new development with the longitudinal kicker. We have built a prototype 
with two full coverage striplines broadly resonant at - 1.2 GHz, i.e.: 3.25 times the RF fre
quency, series connected with a X/2 line. We have experimented with little surprise how awk
ward can be proper tuning of this device. Furthermore, according to simulations, the stripline 
kicker is very rich in HOM content, requiring a careful laboratory characterization.

Therefore, we have explored the possibility to use an RF cavity kicker whose fundamental 
mode resonates at 3.25 times the RF frequency. Figure 7 shows a cut view of the cavity. The 

88 mm diameter beam tube opens into a 200 mm diameter, 72 mm long, pill-box cavity. To 
obtain the very large bandwidth required (= 180 MHz at least, for 120 bunches operation), the 
cavity is loaded by 6 ridged waveguides followed by broadband transition to 7/8" standard 
coax, very similar to those in the main RF cavity, except that in this case the coupling is ex
tended to the fundamental mode. The 6 waveguides are placed symmetrically on both sides of 
the pill box 120° apart from each other. Three WGs are used as input ports and the other three 
for termination loads. In this way, thanks to the symmetry and since the power dissipated in 

the external load is much greater than the power dissipated in the cavity walls, the system is 
perfectly matched.

The kicker cavity does not need to be tuned in operation, being broadband, nor cooled, 
since almost all the power is dissipated in the external loads. Moreover, the damping waveg
uides couple out the HOM's as well. The behavior of the device has been completely character
ized making use of the HFSS as the fundamental design tool. A cavity kicker prototype has 
been recently built and measured at LNF. Figure 8 shows the theoretical and experimental 
transmission frequency response for the fundamental mode and HOMs up to beam pipe cut
off.

A 750 peak shunt impedance, to be compared to the theoretical 400 Q (measured in a 
prototype: = 300 Q) in the stripline, together with a bandwidth larger than 220 MHz have been 

calculated and measured. The results are shown in Fig. 9.
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The mechanical design is now complete and we intend to place an order to industry for two 
pieces (one per ring) for the initial operation at a reduced number of bunches. According to 
simulations with realistic values of the HOM impedances, a large bandwidth power amplifier of 
~ 200 Watt is enough to damp an initial offset of 100 ps of the injected bunch with the other 29 
bunches at the full design current.

Two cavities per ring will eventually be installed for operation at the full nominal current 
with 3x200 Watt power amplifiers per cavity, each feeding separately a waveguide coupler.

The stripline kicker is a directional device operating in travelling wave mode, and therefore 
its input downstream ports are almost uncoupled to the beam. On the contrary the cavity kicker 
is a totally symmetric standing wave structure so that the power released by the beam reaches 
indifferently all ports. Ferrite circulators are therefore necessary in this case to isolate the output 
section of the power amplifier feeding the cavity.

Fig. 7 - Cut view of longitudinal feedback kicker cavity.
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Fig. 8 - Theoretical and experimental WG to WG transmission frequency response
of longitudinal feedback kicker cavity.
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2.3. Resistive wall

The resistive wall impedance per unit length is given by [18]:

ZL = B(l±V2M fM 
L c 4 id,

zTl n+ms fb)
L ’ 2id,3 ,XUJ

zTy (i + y)z„5 fz,) 
~L~ 2 Kb* FlAaJ

where

is the skin depth; p the material resistivity; Zq the free space impedance (12071Q). Fq , F\x, Fiy
are the form factors depending on the geometrical shape of a vacuum chamber cross section, b

stands for half the vertical chamber size and a is half the horizontal one.

Almost all the DAONE vacuum chamber is made of aluminum, except for a 60 cm long

beryllium vacuum pipe in the vicinity of the interaction point and relatively short pieces of

stainless steel pipe coated with 40-50 |im copper. The vacuum chamber in the bending magnets

is of rectangular shape with cut comers which can be approximated by an ellipse with axes

53 x 100 mm and Fq = 0.95, F\x = 0Al,F\y = 0.845. The beam pipe in the straight sections

has a circular cross section with radius b = 44 mm for which Fq = F\x = F\y = 1. The very

flat rectangular vacuum chamber inside the wiggler magnets (20 x 130mm) can be represented
2 2

in calculations by two infinite parallel plates with Fq = l,Flx - — ,F];y = —-

By summing up the three contributions, the total longitudinal and transverse resistive wall 

impedances are:

ZL=0.3(l + y)V^ fi , Zj-X = 15.34(1 + y)/V« ™ , 2^ = 28.27(1 + ;)/^ ™

Here n is the harmonic number f/f0.
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For a thick wall and not very short bunches the loss factor and the dissipated power per 
unit length due to the resistive wall impedance are given by:

4k =______ £______ @£rf-W — = 1!k£a£4k
dz 4ji2bo^/2i 2 v4y ’ dz 2nR dz (7)

where N is the number of particles per bunch and rtf, is the number of bunches in the beam.
Then, in the case of 120 bunches, the power deposited in the straight sections is 6.9 W/m, 

in the bending magnet vacuum chamber 10.9 W/m and in the wiggler vacuum chamber 
30.4 W/m. The longitudinal impedance estimated at the bunch spectrum roll-off n = 520 is a 
rather small value

^- = 0.013(1+ y)Q 
n

and is not considered to be harmful for the longitudinal single and multibunch beam dynamics 
while the transverse impedance is dominant at low frequencies and can excite the transverse 
multibunch instability.

We have evaluated the transverse instability rise time [19] using the well-known expression 
for the coherent frequency shift [20, 21]. Figure 10 shows the rise time for the first three 
transverse coherent modes as a function of the machine chromaticity £ for 30 bunches in the 
beam.

x [ms]

m = 2

m = 1
m = 0

Fig. 10 - Rise times of transverse resistive wall instability for monopole (m = 0), 
dipole (m = 1) and sextupole (m = 2) modes.
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As we can see, the rise time of the monopolar mode (m = 0) for a slightly positive 
chromaticity is about one order of magnitude faster than the DAONE transverse damping time. 
A transverse feedback system is necessary to damp this instability.

2.4. Transverse feedback kicker

A transverse feedback system is foreseen in order to damp the resistive wall instability and 
control a large number of transverse coupled bunch modes. The system utilizes two button 
beam position monitors in order to detect both the horizontal and vertical beam momenta; 
summing the pick-up signals in proper proportion, the correction signal (in quadrature) at the 
kicker is produced.

Two transverse kickers will be installed in each ring; these kickers are of stripline pair de
sign (see Fig. 11), with one device per transverse plane. In order to use the stripline as trans
verse kicker, two voltages of opposite polarity are applied downstream the beam direction at 

facing ports. The combined magnetic and electric fields give a deflecting Lorentz force in the 
transverse plane.

Fig. 11 - Sketch of transverse feedback kicker.

The striplines are chosen to be 20 cm long; the stay clear aperture of the devices is 88 mm 
(the beam pipe diameter) and the vacuum chamber diameter in this section is 120 mm.

The available space in the machine limits the maximum length of each kicker. Two 50 mm 
long tapers join the kicker vacuum chamber to the rest of the beam pipe in order to minimize the 
losses.

The electromagnetic project has been realized with the HFSS computer code optimizing the 
feedthrough positions, in order to minimize the reflection to the amplifier. The calculated frac
tion of the input power reflected to the amplifier is less than 2%.
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The transverse shunt impedance versus frequency on axis is shown in Fig. 12.

f [MHz]

Fig. 12 - Transverse shunt impedance of transverse feedback kicker 
(solid line - analytical result; points - HFSS numerical simulation result).

The coupling impedance of the kicker at low frequencies can be evaluated as the impedance 
of a pair of striplines [22]:

ZL{(o) = 2 Zs
\2

U n. sin2 — + j sin—cos— 
V c cc

Zt[cd) =
b2

(4 \2

<0Oy

(8)

where Zs is the characteristic impedance of the transmission line formed by a strip and the vac

uum chamber wall; / is the stripline length; #Qthe stripline coverage angle; Zj is the trans

verse impedance in the direction perpendicular to the striplines.
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At frequencies (0 / 2n « c / 41 = 315MHz eq. (8) gives for such a kicker:

<Po
2n

- = y 0.0640 
R

Zr
. 8 ZJ 

J n2b2 smif <P, kQ
f =Jl73m

(9)

Due to the periodic behavior of (8) these values have to be considered as an upper limit in 
the low frequency range. The maximum value of the real part of the impedance Re.ZL / n 
within the low frequency range is 0.040 at f = 375 MHz.

Analysis of high frequency kicker behavior with MAFIA and HFSS have shown that some 
HOMs do not couple to the feedthroughs and remain trapped in the kicker structure. The 
strongest is the mode at f = 2.303 GHz with Rs = 2.67 kQ and Q = 1971. The longitudinal 
coupled bunch instability rise time is about 1 ms at full coupling. If this happens the instability 
can be damped, in principle, by the longitudinal feedback system. But the power loss due to 
the mode can be high. Although the mode is at the tail of the bunch spectrum (for 3 cm bunch 

length), it is close to the spectrum line 25 • (30/q) = 2.302 GHz in the 30 bunches operation. 
There is a high probability of full mode coupling with the spectrum line. This would give 1 kW 
power loss. In order to extract this mode we plan to install an antenna on the kicker taper.

2.5. Interaction region

The interaction region (IR) for the KLOE experiment [23] is 10 m long and is shown in 

Fig. 13. The low-/) permanent quadrupole triplets are 46 cm away from the interaction point 
(IP) and are confined in a cone of 9° half aperture, leaving a material free solid angle for the 
apparatus of ~ 99%. It is a requirement of the experiment to have a large (radius 10 cm) aper
ture vacuum chamber at the IP as transparent as possible to the produced particles.

The outer parts of the IR vacuum chamber are made of stainless steel with a copper coating 
inside to reduce the ohmic losses. The inner section, bulb-shaped at the IP, is made of 0.5 mm 
thick pure beryllium, directly brazed onto the stainless steel pipe.

The beryllium bulb-shaped cavity (see Fig. 14 for details) is harmful to the beam dynam
ics. It traps both monopolar and dipolar HOMs which can result in longitudinal and transverse 
multibunch instabilities and excess RF power loss [24]. Table 4 shows the parameters of three 
dangerous monopole modes while Table 5 gives estimated rise times for the dipole mode and 

quadrupole mode instabilities, Tj and T%, respectively.
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Fig. 14 - Central part of interaction region vacuum chamber. 

Table 4. Modes trapped in the spherical part of IR

f [MHz] R/QIO] Q

1324.2 15.2 34500
1877.1 14.0 36100
2353.8 7.45 37100

Table 5. Power losses and instability rise times

f [MHz] Ti [ms] T2 [ms] Pi [W]

1324.2 0.006 0.012 1109.4
1877.1 0.006 0.008 531.2
2353.8 0.011 0.011 131.1

Note that the dissipated power may be enormous even for a single bunch rotating in the 
machine when full coupling of the HOM with the closest bunch spectrum line occurs (Pi in 
Table 5). This situation has a rather high probability since the spectrum lines are situated at 
each harmonic of the revolution frequency and due to the temperature drift the HOM can be 
moved on a spectrum line.
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The possibility of using long tapers from the IP to the first quadrupole magnet instead of 
the beryllium cavity also has been investigated. It was shown that this would not remove the 
problem of trapped modes completely and, what is even more important, such a thin beryllium 
structure could collapse under the 1-2 atm. pressure [25].

In order to avoid RF radiation a solution with a thin Be screen of 50-60 pm thickness has 
been proposed. Its radius is equal to that of the beam pipe and the length =20 cm, shielding the 
bulb-shaped part of the vacuum chamber. This thickness is enough to screen frequencies start
ing from the first harmonic of the revolution frequency and, on the other hand, transparent for 
the experiment. The total estimated resistive wall loss in the screen is about 4 W in case of 120 

bunches in both electron and positron beams. The synchrotron radiation produces only a small 
additional heating of the beam pipe (1-2 W) near the IP [26]. The first Be sample prototype has 
been delivered from K-TEK and is under test at the Frascati Laboratory.

The tapers in the IR are very smooth and give mainly an inductive contribution to the 
impedance (see below).

The IR for the FINUDA experiment [27] is simpler because the vacuum chamber near the 
IP is just a cylindrical Be pipe.

2.6. Vacuum port screen

Lumped vacuum ports in the straight sections are screened by a mesh of rounded end 22 
mm long and 8 mm wide longitudinal slots. The longitudinal distance between slots is varied 
randomly within ±10% in order to break the periodicity and destroy possible coherent buildup 
of the wave radiated by the slots [28].

The low frequency longitudinal and transverse impedance of a slot in a circular vacuum 
chamber of radius b is calculated analytically [29]:

ZT(co) = jZ0 ^am2.4e^Sscos(<ps - 

n b
<Pb)

(10)

where ae and am are the electric and magnetic polarizabilities; as is the unit vector directed 
onto the slot; (ps and % are azimuthal angles of the slot and beam in the vacuum chamber 
cross section containing the slot.

132



For slots with rounded ends and 0.1<w//<l, where w is the slot width and l the slot 

length, ae and am can be found with an accuracy better than 1% by applying the following 

approximations [30]:

<x, =- — w2l\ 1-0.765- + 0.1894 
e 16 1 /

It 2. 1-0.0857 —-0.0.0654|—
/ U

(11)

For a single pump screen containing 90 slots eq. (10)-(11) give:

^ = ;1.68 10"3Q and ZT = j 27.0— 
n m

In the case of DAONE the bunch is longer than the slot sizes and the low frequency formu

lae (10)-(11) are valid almost for all the bunch spectrum. The real part of a slot impedance is 

much smaller than the imaginary one and has been calculated in [31]:

ReZL(tu) = Z0
6tt3Z>2c4

co (12)

The corresponding loss factor is:

= zo
(qe2 + q2)c

(13)

An estimate for the DAONE pump screen gives the negligible value k\ = 2.8 10-5 V / pC. 
We should mention that the expressions (12), (13) were obtained for infinitely thin vacuum 

pipe walls. Due to the finite thickness of the beam screen, which is comparable to the slot 

width in the DAd>NE case, some additional reduction of the impedances (~ 60%) is expected.
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2.7. Antechamber slots

Four 10m long vessels constitute the vacuum chamber of the bending and wiggler sections 

of each ring. A continuous 10 m long slot separates the beam channel from an antechamber 

where the synchrotron radiation absorbers and the pumping stations are situated. The width of 

the slot very smoothly changes between 20 mm at the absorber location and 10 mm in the 

wiggler vacuum chamber. Different cross sections along the bending section are shown in 

Fig. 15. The depth of the slot is always longer than its width. This attenuates beam coupling to 

the antechamber.

In order to estimate the beam impedance, calculations were carried out with MAFIA (see 

Fig. 16). Due to the known fact that the dependence of the impedance on the slot length satu

rates for long slots we assumed for the simulation a 50 cm long slot which, being much longer 

that the bunch, is adequate to describe the slot impedance. The slot width was taken to be 2 cm 

and the depth 2.5 cm. The coupling impedance was found by performing the Fourier transform 

of the long range wake field given by MAFIA.

Figure 17 shows the real and imaginary part of the impedance. As it can be seen, the 

impedance is small and mainly inductive up to rather high frequencies. The low frequency part 
of the impedance is less than ZL / n = j6.6-10-5 Q. No dangerous HOM were found in such 

a structure.

Fig. 15 - Some of arc vacuum chamber cross sections (only half of the arc is shown).
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Fig. 17 - Real and imaginary part of the antechamber impedance.
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2.8. Beam position monitor (BPM)

The beam position monitor (BPM) system is the primary diagnostic system. We have 41 

BPMs in each ring and 12 in the common part of the interaction regions. They consist of four 

"button" electrodes mounted flush with the vacuum pipe. The design helps maintaining cou

pling impedance and parasitic losses within acceptably low values in spite of the large number 

of units.

Since the vacuum chamber cross-section is largely variable along the ring circumference, 

we have developed six different designs, but in all of them the same type of electrode (SMA 

50-MB from Ceramex, France) is used (see Fig. 18).

0 14.8

Fig. 18 - Button electrode for DA<J>NE BPMs.

The button electrode is mainly sensitive to the beam electric field. The usual equivalent cir

cuit representation of an electrostatic monitor is a current generator of the same value of the im

age current intercepted fraction, shunted by the electrode capacitance to ground (~ 5pF in our 

case).

The button is connected to the detector circuit by means of a short run of coaxial cable 

having characteristic impedance Rq = 50 Ohm and terminated into an Rq resistor.
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Taking a circular vacuum chamber of radius b as reference, it is useful to write the signal 
impedance Zq for a centered beam as:

ZB = F<pR0 j(Q / 0)2
1 + jco / ti>i

(14)

where toi = 1/RqCb and (02 = c/2r, with Cb the button capacitance to ground, r the button ra
dius, c speed of light, 9 the coverage factor = r/4b and F a form factor depending on the cham
ber geometry and on the electrode position in the chamber (F = 1 for circular geometry).

In this way the signal impedance is written as a frequency-depending part which is a 
function of the button characteristics (radius and capacitance to ground, equal for all the BPMs) 
times a constant factor including geometric factors and the termination resistance. In the various 
BPM designs the values of F range from ~ 0.7 to 1 and the values of 9 from ~ 0.03 to 0.125.

Following the arguments of Ref. [32], the low frequency component of the longitudinal 
coupling impedance (per button) can be written as

Zl{cd) = 9 ZB[(o) (15)

and

Zl
n

= f<P2ro
' Qh } ja> 0 / a>2 

kq)2 Jl + ja/ox
(16)

with too the angular revolution frequency. Note that for a matched electrode (CO1/CO2) = 1.
Taking into account all the BPMs, this gives a fairly small value (3.3TO"3 ft) for Z/n, with 

the imaginary part mainly inductive at low frequency and vanishing at high frequency and a 
maximum of the real part at a frequency f = (Oi/2n.

However, this method of evaluation of the coupling impedance is likely to underestimate 
the result, since it takes into account only that part of fields contributing to the output signal 
formation. In fact, some modes which do not dissipate their power in the external terminations, 
have been found with MAFIA. The first one is the mode of TEji type establishing around the 
electrodes. Since the electric field is maximum at the button circumference and zero at the center 
connection, no signal is generated outside. The frequency of the mode (~7 GHz) is beyond the 
bunch spectrum and does not give any substantial contribution to the power loss. Neither it is 
dangerous for the multibunch stability.
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The same is valid for the other modes of that kind at higher frequencies. However, these 

modes give some additional inductive contribution to the impedance at low frequency. The low 

frequency impedance of a BPM can be evaluated as the impedance of an annular narrow slot in 

the vacuum chamber wall. Since the polarizabilities are not known for the slot we calculated the 

inductive impedance of a single button with MAFIA and applied eq. (10) as a scaling law for 

different BPM designs taking into account also the geometry of the vacuum chamber and the 

button position in it. For all BPMs such an estimate gives ZL / n < 0.01 Q.

2.9 Tapers

In order to reduce the coupling impedance it is necessary to produce a vacuum chamber as 

smooth as possible. Long tapers, connecting vacuum chamber components, are used in 

DA<t>NE to avoid sharp discontinuities in the vacuum chamber cross section.

The diameter of the beam pipe in the interaction region increases from 88 mm at the inter

action point to 200 mm at the gate valve location at a distance of 3.3 m from the IP by means of 

a system of very gradual azimuthally symmetric tapers, shown in Fig. 13. After the valve, a

1.1m long taper with the angle less than 4° is used to connect the 200 mm round beam pipe to 

the 200 x 54 mm rectangular pipe in front of the splitting magnet. Simulation of such a structure 

with ABCI gives a low frequency inductive impedance ZL / n = j0.033 Q and a loss factor 
k[ = 2.58 ■ 10"3F / pC for 3 cm bunch length.

Smooth transitions connect the circular beam pipe of the straight sections (with a diameter 

of 88 mm) and the rectangular beam pipes after the splitting magnet (88x54 mm). Figure 19 

shows an example of such a connection between the rectangular chamber in the splitting mag

net and the straight section. The tapers between the rectangular dipole vacuum chamber and the 

straight section are essentially the same, but steeper (with the angle of 13.9°) due to the limited 

space allowed. For the taper impedance estimates, in simulations with ABCI, we use an az

imuthally symmetric structure and then multiply the results by the azimuthal filling factor. 

Summing up the contributions from all the tapers of that kind gives ZL / n- j0.063 Q.

There are other tapers between the rectangular vacuum chamber in the bending sections and 

the very flat rectangular chamber inside the wiggler magnets (130x20 mm). These tapers are 

the closest to the beam and to decrease their influence on the beam dynamic the taper angle has 

to be as small as possible. In the present design the angle is less than 2.5°. The total contribu

tion of the tapers in 4 wiggler section is ZL / n = y'0.027 Q.
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Fig. 19 - Transition between rectangular and round beam pipes.

2.10. Scrapers

A scraper system [33] will be used in DA0NE to reduce the lost particles background in
side the KLOE and FINUDA detectors. It consists of two vertical and two horizontal scrapers 
in each ring. Fig. 20 shows the horizontal scraper.

The central part of the scraper (target) is made of W and has a thickness of 5 cm to stop al
most completely the electromagnetic shower produced by 500 MeV electrons. In order to 
minimize the contribution of such a discontinuity to the coupling impedance the target joins the 
neighboring vacuum chamber by means of long tapers in the beam direction which are made of 
a lighter material.

During machine operation the position of the scraper can be varied to find a compromise 
between a good life time and an acceptable background in the detectors. At injection the scrap
ers must be open to exploit the whole available aperture.

The impedance calculations were carried out for the case of maximum target penetration 
into the vacuum chamber.

Figure 21 shows the real and imaginary part of the impedance calculated as Fourier 
transform of the wake field given by MAFIA. The impedance remains inductive until ~3 GHz 
and the low frequency contribution can be estimated as j0.0155 £2.

The design of the vertical scraper is the same, except that the targets are moved in the verti
cal direction and the maximum penetration is smaller than the horizontal one.
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Fig. 20 - Horizontal scraper design.

Z[Q]

f [GHz]

Fig. 21 - Horizontal scraper broad band impedance.
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2.11. Bellows

The mainly inductive contribution to the beam impedance is expected from bellows con
necting the machine arcs with the straight sections. The bellows have to allow both the longi
tudinal expansion and the bend in the horizontal plane. It was decided to avoid any sliding 
contacts in the bellows which can be burned out due to the high current flowing on the bellows 
screen. Moreover, if, for any reason, there is no contact between the sliding surfaces the ca
pacitance between the sliding contacts can create a resonant circuit with the rest of the bellows. 
This is a potential danger for the multibunch stability and a source of power losses.

The bellows design proposed for DAd>NE is shown in Fig. 22. The bellows screen is 
made of thin (0.5 mm) strips oriented in the vertical plane and separated by 4 mm gaps. The 
width of a strip is 6 mm, i. e. wider than the gap between the strips in order to attenuate radia

tion outside the screen.

Fig. 22 - Bellows design.

The strips are produced by a hot forming method and have a waved shape. This allows 
longitudinal expansion. In the working regime the strips are supposed to be almost straight.

Preliminary simulations with MAFIA show that the bellows are inductive at low frequency 
with a rather small impedance of ZL / n = /0.006Q. Simulations in frequency domain indi
cated a cluster of low shunt impedance low Q HOMs with wave length X =21, l being the 
length of the slots between the strips. However, we can not completely rely on the numerical 
simulation for such a complicated structure which were carried out with a rough mesh due to 
memory and CPU time limitations. Because of that a bellows prototype was ordered to DOIG 
SPRING, UK and the coupling impedance will be measured.
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2.12. Other inductive elements

There is a large number of small discontinuities in the DAONE vacuum chamber, of differ
ent kinds, shapes and sizes. These are shallow cavities in flanges and valves, gaps in BPM as
sembly, slots for the synchrotron radiation monitor etc. Due to the limited space allowed, we 
do not show the corresponding drawings.

Despite of small sizes, the overall contribution of these elements to the inductive 
impedance, up to rather high frequencies, can not be neglected. We have used both the analyti
cal expressions of [34] and numerical simulations with ABCI in order to evaluate the contribu
tion. The overall estimated impedance Zi/n is smaller than jO.l fi.

2.13. Space charge impedance, Laslett tune shift

The space charge coupling impedance of a uniform disk beam with transverse size "a" in a 
smooth round beam pipe of a radius "b" is purely imaginary [35]:

To give an estimate we take a =< oy >, which is the smallest average transverse size and 
b = 2.65 cm as an average beam pipe radius. This gives:

= —jIAmQ, and Zj = — jl\4.9kQ / m 
n

The Laslett tune shift [36] for a tri-gaussian bunch can be written in the following form 
[37]:

Avv
_ (NT / B)Pyre NT@yre f 1 £\ £\ £2!

27T/JV <Xu(<Tx + G ) ity f)2y2B h2 (19)

where Nt is the total number of particles in the ring; B = ^2naz / is the bunching factor 

with Sb the bunch spacing; h is the half-height of the vacuum chamber; g is the half-height of 
the magnetic gap. The coefficients £\ and £2 are the form factors for the vacuum chamber and 
magnetic gap (can be found, for example, in [38]).
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The first term in (19) is a direct space charge term Av*c and can serve as a measure of the 
space charge tune spread in a bunch [37]. For DAd>NE it is negligible:

Av£c = -4.4 • HT4 (120 bunches)

i. e. about two orders of magnitude smaller than the beam-beam tune spread.
The second term in (19) is due to induced charges and currents in the vacuum chamber 

walls and magnet poles. A rough pessimistic estimate gives for DAONE:

Av^“* = —1.16 • 10-2 (120 bunches)

which can be compensated, if necessary, by adjusting the machine linear optics.
Here we have considered only the vertical tune shift because the direct space charge term is 

much smaller for the horizontal plane due to the larger horizontal beam size and, in turn, the 
second term gives a slightly smaller value than Av^ but of the opposite sign.

3. SINGLE BUNCH THRESHOLDS

3.1. Bunch lengthening

In the study of the single bunch dynamics, the wake potential over the bunch length is of 
main interest. This implies that, in the frequency domain, the bunch does not resolve the details 
of the actual machine impedance and it rather experiences an average effect. The reduced fre
quency resolution was the main justification for using different broad-band models, when the 
machine impedance is substituted by a simple model with a limited number of parameters, ex
tracted from the results of experiments or numerical simulations.

However, when the bunch length changes over a wide range the parameters of the model 
essentially depend on the bunch length. For example, the wake of an RF cavity can be induc
tive for long bunches and capacitive for short bunches.

For DA<J>NE, where the bunch length changes from a "natural" length of 5-6 mm to the 
nominal value of 3 cm, it is impossible to characterize the broad band impedance of a vacuum 
chamber element by a single value at different bunch lengths. In order to get an idea of the rela
tive contributions of the elements to the total machine impedance, in Table 6 we show the con
tribution of the main inductive elements (remaining inductive in the foreseen bunch length 
range), while Table 7 shows the loss factors of the elements contributing to the power loss at 
the nominal bunch length.
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Table 6. Impedance of main inductive elements

Element Im Zl/n [O]

Tapers 0.156
Transverse feedback kickers (low frequency) 0.128
Scrapers 0.062
Bellows 0.024
Resistive wall (at roll - off frequency) 0.013
BPMs 0.01
Vacuum pump screens 0.02
Injection port 0.0031
Antechamber slots 0.0005
Synchrotron radiation < 0.015
Space charge -0.0021
Other inductive elements 0.1

Total 0.53 Q

Table 7. Elements contributing to power losses

Element k[, V / pC at oz = 3 cm

RF cavity 0.129
Third harmonic cavity 0.157
Longitudinal feedback kicker 0.120
Transverse kickers 0.064
Injection kickers 0.047
IR taper system 0.0026
Scrapers 0.00007
Injection port 0.00004

Total 0.52

In order to simulate the bunch lengthening process we undertake a numerical tracking using 

the wake potential of a short gaussian bunch with az = 2.5 mm (see Fig. 23) as the machine 

wake function. The computer codes ABCI [39] and MAFIA were used to calculate the wake 

potential for DA0NE.
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Fig. 23 - Total DAd>NE wake potential for 2.5 mm gaussian bunch.

The tracking method is essentially the same as that successfully used in the bunch lengthen
ing simulations for the SLC damping rings [40, 41], SPEAR [42], PETRA and LEP[43]. The 
motion of Ns super particles representing the beam is described in the longitudinal phase space 
by [41]:

£i(n) = £,-(n-l)-^^£i(n-l) + 2<7eoJ”/?i(/i) + Vrrf + vind^z0

XP V XP

Zi (n) = z,(/i-l) + £,(n)
D

(20)

where £, (n) and z, (n) are the energy and position coordinates of the i* particle after n revolu
tions in the storage ring. Tq is the revolution period; Tethe damping time; the slope of the 
RF voltage; R, the random number obtained from a normally distributed set with mean 0 and 
rms 1.

On each turn all the super particles are distributed in Nbin bins and the induced voltage Vjnd 
is calculated by [43]:

O i=1'Nbi*
Vind^zp = “TT X^*(z/)w5(zy-Zf)

Z,<Zy

(21)
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Note, that zy in the expression (21) are the coordinates of the bin centers and the induced 
voltage at the positions of the super particles is found by a linear interpolation over the 
Vind(zj)- Here N^(z, ) is the number of super particles in the bin with the center at z,- and 
wg(z) is the machine wake function.

For the simulation we have used Vry = 127 kV. This corresponds to the natural bunch 
length of 6.8 mm. Ns = 200000 particles are tracked over 4 damping times and the average 
bunch properties, as rms length, rms energy spread, coordinate of the centroid, are calculated 
by averaging over the last damping time. These bunch characteristics with the bunch 
distribution are shown in Fig. 24. The bunch distribution gets more bulbous than a gaussian 
and is tilted forward. Such a distribution corresponds to the inductive - resistive machine 
broad band impedance.
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0.012 -
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Fig. 24 - Bunch lengthening in DA<DNE at Vrf = 127 kV: 
a) Bunch shape; b) Bunch centroid coordinate; c) Relative rms energy spread; 

d) rms bunch length as intensity function.
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As it can be seen in Fig. 24c) the microwave threshold is at N = 1 ■ 1010particles per 

bunch. Despite such a low threshold the bunch length still does not reach the nominal value of
<rz = 3cm. We should remark here, that in the simulation we did not included the impedance 
contribution from the bellows between the machine arcs and straight sections because their final 
design was not finalized yet. The wake fields due to the bellows give some bunch length 
increase. Nevertheless, a third harmonic cavity is foreseen for DAONE as an additional means 
for the bunch length control [44,45].

3.2. Transverse mode coupling threshold

In order to estimate the threshold average current (Io)th for the transverse mode coupling 
instability in DAd>NE we use the approximate formula [21] which is valid for the coupling of 
lowest transverse modes (m = 0 and m = -1):

(j \ _ *(E/e)vs 4 (22)

Here the imaginary impedances of vacuum chamber elements must be summed up weight
ing by the betatron function at their locations.

The bunch arriving from the accumulator ring is expected to be longer than 3 cm and, due 
to the fact that the synchrotron period is two orders of magnitude shorter than the damping 
time, the bunch never reaches its "natural" value of 4.8 mm. Numerical simulations of the 
bunch lengthening show that it never becomes shorter than 1 cm for the nominal bunch current. 

By substituting DAONE parameters in eq. (22) and choosing cz = 1 cm we get the impedance 
limit:

X{[lmZr]/?),}<0.55M2

The broad band transverse impedance calculations were carried out with MAFIA and ABCI 
performing Fourier transform of the short range wake fields. Figure 25 shows the calculated 
transverse impedance of some main impedance contributing elements (in the case of 1 cm 
bunch length and Fourier transform over 30 cm wake).

Figure 26 shows the overall contributions to the weighted impedance. As it can be seen the 
total impedance weighted by the beta function is well below the threshold value 0.55 MQ in all 

the frequency range of interest
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Simulations for other bunch lengths have shown that the situation is even safer for longer 
bunches.

f [GHz]

Fig. 25 - Imaginary part of transverse broad band impedance of some vacuum chamber elements: 
a) resistive wall; b) RF cavity; c) transverse feedback kicker, d) longitudinal feedback kicker.

pimZrtQ]

f [GHz]

Fig. 26 - Imaginary part of DAONE transverse broad band impedance.

148



4. MULTIBUNCH INSTABILITY SIMULATIONS

A time domain simulation code [4,46] has been developed in order to investigate the effect 
of the bunch-by-bunch feedback system on the multibunch dynamics.

We have simulated the instabilities with the feedback off, considering the injection of one 
bunch (with an error of 100 psec) all the others (29) being in the equilibrium state.

phase [rad]

5000 turns

Fig. 27 - Phase oscillations of a perturbed bunch with the feedback off.

phase [rad]

HIMM S | j f i i

5000 turns

Fig. 28 - Phase oscillations of the injected bunch with the feedback off.
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Figures 27, 28 show the oscillations of perturbed and injected bunches during the first 

5000 turns. This instability can be easily damped by an ideal kicker with a peak voltage of 

400 Volt as shown in Fig. 29. Since the RF cavity kicker has a limited bandwidth, it differs 

from the ideal case, showing a reduced efficiency of about 20% as shown in Fig. 30.

phase [rad]

iiiiiy.

eooo {Urns Booo40002000

Fig. 29 - Phase oscillations of the injected bunch with an ideal kicker.

phase [rad]

eooo tUms 800040002000

Fig. 30 - Phase oscillations of the injected bunch with the RF cavity kicker.
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5. CONCLUSIONS

We have described the design of the main DAd>NE vacuum chamber elements with an 

analysis of their impedance and impact on the single and multibunch dynamics. The list of pre

sented elements is far from being complete, but enough to demonstrate the design strategy.

Our main concern was the coupled bunch instabilities. Because of that, strong efforts have 

been undertaken to reduce the number of vacuum chamber elements capable to create danger

ous ROMs and to develop techniques for damping the HOMs and the instabilities.

The RF cavity is, certainly, the main contributor to the strongest HOMs which, if not 

damped, could give a multibunch instability rise time in the order of tens of microseconds. 

Damping is obtained by strongly coupling HOMs to rectangular waveguides (WG) placed onto 

the cavity surface. In order to dissipate the extracted power outside the vacuum chamber the 

rectangular WGs are converted in double ridge WGs by a smooth and wideband tapered sec

tion which is adapted to 50 Q by a transition to coaxial.

Even though the HOMs are heavily damped, the instability growth rate is substantially 

stronger than the natural damping rate. This demanded the development of feedback systems. 

A bunch-by-bunch feedback system will be used with an overdamped cavity as a longitudinal 

feedback kicker. The cavity has about 200 MHz bandwidth with 750 Q peak shunt impedance. 

The HOMs of such a cavity are also strongly damped. A transverse feedback system is also 

foreseen for DAd>NE in order to damp residual transverse oscillations after injection, trans

verse resistive wall and transverse coupled bunch instability.

Maximum care has been taken to screen possible resonating volumes (bellows, central bulb 

shape part of the interaction region vacuum chamber etc.).

Numerical tracking has been performed in order to simulate the bunch lengthening process. 

Broad band wake fields were calculated with numerical codes MAFIA and ABCI. Relative 

contribution of the inductive elements and loss factors of main lossy elements can be found in 

Tables 6 and 7, respectively. As expected, the bunch is in the turbulent lengthening regime 

with the threshold reached at N ~ 1010 particles. However, the bunch lengthens to a value 

(2.1 cm at Vrf =127 kV) smaller than the nominal one of 3 cm and additional lengthening may 

be necessary. A third harmonic cavity is planned for this purpose.

The transverse mode coupling instability does not seem to be the limiting instability for 

DAONE. The estimate has shown that the nominal bunch current is about one order of magni

tude lower than the threshold due to the transverse mode coupling.

Ion trapping effects are the subject of a separate paper [47].
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APPENDIX

Multibunch longitudinal and transverse instability 
for high Q resonators (HOMs)

The instability rise time and the coherent frequency shift are obtained by solving the equa

tions (we use the formalism of J. L. Laclare in Bunched Beam Coherent Instabilities', CAS 

Advanced Accelerator Physics, CERN 87-03, p. 264, Vol. I)

j{(oc - ma>s) = - (longitudinal)

Zr(p)J%(*)/«[((p+ vXfy)a)0 - dr (transverse)

where Ct)c is the coherent synchrotron frequency, m is the mode oscillation number, (Os is the 

unperturbed synchrotron frequency, If, is the beam current, T} is the slip factor, E / e is the 

nominal energy (eV), ZL is the longitudinal resonator impedance, gQ (f) is the stationary dis

tribution in the phase space, co0 is the angular revolution frequency, Jm(x) is the Bessel 

function of the first kind, c is the speed of light, Zj (p) is the transverse impedance, vxy is 

the betatron number, 6)g = vx y6)0t; / rj, and ^ is the chromaticity. In case of Gaussian 

bunch we can solve the integrals analytically and obtain

j(o)c-ma)s) =
0)S(E / e)2nox

Ibm11 exp(-p2too<r^)/m(p2<Oo<J?)^~^ Gongitudinal)

(transverse)

where a% is the time bunch length and Im{x) is the modified Bessel function.

154



Usually the impedance is computed at the frequency p(0D + m(Os (longitudinal) or 
[p- vX y}(a0 - mcos (transverse), obtaining a rise time that in full coupling condition is

JL hmrl
(Os{E! e)2na\

exp {-p2coloi)ln[p2G)l(ty^ (longitudinal)

1 _ Ib°>r rurmel 
To 4n(E/e)vXty 1

exp[-CT*((-p+ vXfy)(o0 - <o4f vXty)(0o - <»{)2 j
(transverse)

with Rs the longitudinal shunt impedances, ar the HOM resonant frequency, and RlfRMEL the 
transverse shunt impedance as given by URMEL code. The impedance should instead be 
computed at p(oQ + coc (longitudinal) and [p - vx - m(Oc (transverse), that is the 
equations have to be solved self-consistently. In the worst case of full coupling condition, if 
Ci)c« (Or, the instability rise time obtained for both longitudinal and transverse case is

with Ty the HOM filling time.
From the above equation, if Ty«T0, the rise time coincides with t0, but when the cavity 

HOM filling time is comparable or higher than the instability rise time, the difference can be
come significant.

Landau damping

To evaluate the effect of the Landau damping on the single HOM multibunch instability, we 
use the dispersion integral that, in case of Gaussian bunch, can be written as

\ = ZL(p)G-\y)

with h the harmonic number, and

G~\y) = -j 4 IbVP
n(h(OsGxf (ptu,

'o<rt)2 J exp(-x)Jm(pa>o0T'l2x)
dx

x-y

8(<uc -mo>s) 
ma)sha)j;a\

The integral has a principal value and an imaginary part. By imposing Im[y] —> 0+, the 
curve of G(y) in the complex plane gives the multibunch instability threshold for a given 
impedance ZL(p).
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Abstract
After a review of the main LHC parameters, and a brief description of the RF and vacuum 
systems, the coupling impedances of the main machine elements are given, as well as the 
resulting thresholds for instabilities.

1 Introduction: The LHC parameters
The LHC is a high field, high luminosity hadron collider. Its main role consists in colliding 
two proton beams at a sufficient center of mass energy and sufficient luminosity to possibly 
discover and study the Higgs boson. It will also collide heavy ions, in particular lead. At 
a later stage collisions between protons in LHC and electrons in LEP can be arranged if 
required.

Since the LHC is to be build in the existing LEP tunnel, its energy is limited to 7 TeV per 
beam by the maximum bending magnet field of 8.4T technically feasible and economically 
affordable.

The luminosity in p-p mode is limited by beam-beam effects at L = 1034cm2s-1 for a 
beam intensity of 0.53A. Each beam is made of 2835 bunches of 10n p each, distributed 
along the ring in a complicated manner (Fig. 1) due to the need to accommodate injection 
and dump kicker risetimes. The main LHC parameters are displayed in Tables 1 and 2.

The basic layout of the machine (Fig. 2) mirrors that of LEP, with eight straight sections 
each approximately 540 meters long available for experimental insertions or utilities. The 
two high luminosity insertions are located at diametrically opposite straight sections, point 
1 (ATLAS) and point 5 (CMS). Two more experimental insertions are located at point 2 
(ALICE Pb ions) and point 8 (B physics). These straight sections also contain the injection 
systems. The beams cross from one ring to the other only at these four locations.

The remaining four straight sections do not have beam crossings. Straight sections 3 
and 7 contain two beam collimation systems with only classical magnets. Straight section 4 
houses the RF systems and section 6 the beam dumping systems.

Two of the LHC systems are particularly important in determining the beam coupling 
impedance and will be briefly described: these are the RF and vacuum systems. A summary 
of the LHC coupling impedance and instability thresholds will then be given. A more 
thorough description of impedances and collective effects in LHC can be found in [1].
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Figure 2: Schematic layout of LHC
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Table 1: LHC performance parameters

Energy E [TeV] 7.0
Dipole field B [T] 8.4
Luminosity L [cm 2 s a] 1034
Beam-beam parameter £ 0.0034
Total beam-beam tune spread 0.01
Injection energy Ei [GeV] 450
Circulating current/beam ■fbeam [A] 0.53
Number of bunches kb 2835
Harmonic number hrf 35640
Bunch spacing Tb [ns] 24.95
Particles per bunch nh 1.05 1011
Stored beam energy Es [MJ] 332
Normalized transverse emittance (fl~f)a2/f3 £n [mrad] 3.75 10"6

Collisions
Beta-value at I.P. /?* [m] 0.5
r.m.s. beam radius at I.P. <7* [//m] 16
r.m.s. divergence at I.P. a'* [//rad] 32
Luminosity per bunch collision Lh [cm*2 s-1] 3.2 1026
Crossing angle <f> [//rad] 200
Number of events per crossing nc 19
Beam lifetime 7"beam [h] 22
Luminosity lifetime n [h] 10

Table 2: LHC parameters related to RF

Injection Collision
Intrabean scattering
Horizontal growth time Th [h] 45 100
Longitudinal growth time tp [h] 33 60
Radiofrequency
RF voltage Vk [MV] 8 16
Synchrotron tune Qs 5.5 10"3 1.9 10"3
Bunch area (2a) Ab [eV.s] 1 2.5
Bucket area Arf [eV.s] 1.46 8.7
Bucket half-height A p/p 1 10~3 3.6 10~4
r.m.s. bunch length <7S [m] 0.13 0.075
r.m.s. energy spread 4.5 10-4 1.0 10"4
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2 LHC RF and feedback systems
The LHC bunch length must be small enough to keep the unavoidable degradation of lumi
nosity due to the beam crossing angle tolerable. The longitudinal emittance on the other 
hand must be sufficiently large to reduce the Intra Beam Scattering (IBS) induced growth 
rate of the transverse emittances, both at injection and in collision. Both conflicting require
ments are satisfied with an RF operating at 400 MHz and a bunch longitudinal emittance of 
1 eVs at injection and 2.5 eVs at 7 TeV. The RF voltage needed to achieve that is modest 
(8 MV at injection and 16 MV in collision) and is provided by eight superconducting cavities. 
These have the advantage of a very low coupling impedance (very large beam pipe diameter) 
and allow to control the very severe beam loading conditions. The r.m.s. bunch length is 
13 cm at injection and 7.5 cm in collision.

Apart from the fundamental mode, two transverse high order modes do not propagate 
through the large beam pipes in between cavities. These will be damped with tuned antennas 
close to the cavities. Propagrating modes will be damped by broad band antennas or ferrite 
rings. In this way RF cavities will not contribute a significant part of the LHC impedance 
budget.

The feedback systems will also be located in section 4 with the RF. The longitudinal 
feedback has a bandwidth of ± 20 MHz (bunch by bunch feedback) centered at 200 MHz. It 
uses two copper cavities per beam, fed by tetrode amplifiers. Its parameters are dominated 
by the need to damp injection transients, which are particularly large because of the strong 
beam loading effects during the injection of the twelve consecutive batches. The high power 
bandwidth of the amplifier is much smaller that ± 20 MHz because high power is needed only 
against injection transients. The transverse feedback is also wide band (bunch by bunch) to 
damp resistive wall and high order mode induced instabilities. It will be powerful enough 
at low frequencies (about 1 MHz) to damp large injection errors fast enough to preserve 
transverse emittance.

3 Vacuum and beam screen
Because of the small diameter (approximately 40 mm) of the beam chamber and the low 
vacuum pressure needed to preserve beam lifetime, a distributed pumping is mandatory. 
This is naturally provided by cryogenic pumping on surfaces at a temperature of a few K. 
However in the LHC a non negligible synchrotron radiation power (3.7 kW per beam) added 
to the heat load due to beam induced currents in the chamber walls (about 2 kW) must 
be absorbed at low temperature. It would be excessively expensive to absorb this power at 
the temperature of the magnet coils, which is 1.9 K. Therefore a second inner chamber is 
introduced, to shield the vacuum chamber at 1.9 K from both the beam induced currents 
and the synchrotron radiation. This ‘beam screen’ is individually cooled at about 20K by 
helium flowing through small pipes attached to it (Fig. 3)

The beam screen has a large number of small holes to allow the molecules desorbed on 
its surface by the synchrotron radiation photons to be pumped on the 1.9 K outer vacuum 
enclosure. These holes cover about 5% of the inner surface of the beam screen. Their 
dimensions should be small enough to reduce the amount of electromagnetic power generated 
by the beam which escapes into the coaxial structure between the two chambers. There it 
propagates at the speed of light and could build up coherently to large values. Elongated slots
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COLD BORE (1.9K)

SQUARE BEAM SCREEN 
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EVERY 1700 mm

PUMPING SLOTS

Figure 3: Schematic view of beam screen showing the supports, the cooling pipes and the 
slots

are preferred because this reduces the coupling impedance presented to the beam compared 
to round holes for the same total surface. The slots have a width of 1.5 mm and their length 
varies/in a random fashion around an average of 8 mm to minimize modes trapped below the 
cut-off frequency of the pipe. The spacing of the slots is also randomized, and RF absorbers 
are attached to the outside of the screen to avoid synchronism between beam and TEM 
waves in the coaxial part.

4 LHC effective impedance
Tables 3 and 4 give the effective impedances evaluated respectively at injection energy where 
the bunch length is 13 cm and at high energy where it is 7.5 cm.

Table 3: LHC effective impedance (in fZ) at 450 GeV.

INJECTION Im (ZL/n)eff /3avIm(ZT)eff x 10~6
Space charge -0.0058 -442.4
Shielded bellows 0.0815 139.5
Monitor tanks 0.0400 203.0
Pumping slots 0.0156 37.1
Total broad band 0.1313 -62.8
Strip-line monitors 0.127 446.6
Abort kickers 0.007 181.2
SC cavities 0.010 0.4
Total low frequency 0.144 628.2
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Table 4: LHC effective impedance (in fl) at 7 TeV.

TOP ENERGY Im(ZL/n)eff /?avIm(ZT)eff x 10-6
Space charge -3.3 x 10"5 -28.6
Shielded bellows 0.0815 139.5
Monitor tanks 0.0400 203.0
Pumping slots 0.0156 37.1
Total broad band 0.1371 351.0
Strip-line monitors 0.073 257.9
Abort kickers 0.004 108.5
SC cavities 0.010 0.4
Total low frequency 0.087 366.8

Table 5: Summary of parasitic losses for LHC at 7 TeV.

Power loss 
[kW]

FOR A SINGLE BEAM Power loss per 
unit length [mW/m]

3.67 Incoherent synchrotron radiation 216
< 0.54 Coherent synchrotron radiation <32

1.97 Resistive wall (20° K) 74
0.27 Welds 10
0.26 Pumping slots 10

< 0.80 Shielded bellows < 30
< 1.03 Leaks in bellows gaps <38

8.54 TOTAL 410

At injection space charge is dominating the transverse impedance. The bellows are shielded 
in a way similar to the LET ones, which are well known from field calculations and beam 
measurements. Table 5 summarizes the parasitic losses at 7 TeV.

5 Single bunch intensity threshold
The longitudinal microwave instability has a threshold of 6.4 1012 p at injection and 3.1012 at 
7 TeV, well above the nominal bunch population of 1011 p. Landau damping of longitudinal 
modes is ensured by RF bucket non linearities for bunch populations smaller than 2.1012 p 
at injection and 2.1011 at high energy. In fact, the most dangerous single bunch effect in the 
LHC is the possible loss of Landau damping for longitudinal modes at 7 TeV.

The transverse mode coupling instability has a threshold of 6.1011 p at injection and
1.5 1012 p at high energy. Landau damping of transverse modes is provided at the nominal 
bunch intensity of 1011 p by a tune spread in the beam of 10-3, which will either be provided 
naturally by the machine non-linearities, or otherwise can be supplied by the system of 
octupolar correctors.
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6 Transverse resistive-wall instability
This is a strong instability for machines which have a large total current, especially for very 
large machines like the LHC. The growth time r expressed in number of revolution periods 
T is

t _ 2E/e
t ~ pzTr

where E/e is the energy in electronvolts, / the total beam current and j3 the betatron 
function. The transverse impedance Zt is given by:

2c fp\ R
Zt = ¥ Uj U’

where c is the speed of light, b the beam chamber half-height, p the resistivity of the chamber 
material and 8 the skin depth at the lowest betatron frequency w, and R the average machine 
radius. Since p/8 scales like p1^2R~1^2, Z? scales like p1!2Rl h/b3. In addition, comparison 
of existing machine designs shows that fl has a tendency to increase like R1/2, so that r/T 
scales like b3/p1^2R2.

This reveals the problem of resistive-wall instability in high-energy colliders: R is large, 
and since the beam shrinks at high energy, one is tempted to decrease b in order to reduce 
cost.

This can only be compensated by reducing p, which is achieved by coating the inner side 
of the LHC beam screen with 50 pm of copper. In this way the growth time, which would 
be about 3 turns with a stainless steel tube, and therefore unmanageable, is increased to 300 
turns.

7 Conclusion
State of the art precautions applied to the design of the LHC elements seen by the beam en
sure stability as far as single bunch effects are concerned. In the same way the beam induced 
heat load to the cryogenic system is kept at a manageable level. Multibunch instabilities 
with growth times exceeding 100 turns, are damped by feedback.

8 Reference
[1] F. Ruggiero, Single beam collective effects in the LHC, LHC note 313 and proceedings of 
the workshop on Large Hadron Colliders, Montreux, October 1994.
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Pumping slot design for KEKB LER

Ken-ichi Kanazawa
KEK National Laboratory for High Energy Physics

In the design of the vacuum system for KEKB, Pumping slots are backed up by mesh 
to prevent the penetration of beam induced field which causes heat up of pump elements. For 
the LER the design of the slots looks like a drawing (a) in Figure 1. As shown later the 
conductance of the structure (a) is same as the structure (b). If finite thickness for a mesh is 
required, the structure (c ) whose conductance is lower than (a) or (b) must be adopted. The 
purpose of this note is to look for an advise to select a good design to prevent the beam 
induced field and also to draw an attention to the calculation of the conductance.

<I> <L>

Fig.l Various possible design of LER slots for a pump port.

The conductance C of a slot as shown in Fig. 2 under the molecular flow condition 
(the mean free path of a molecule is determined by the geometry of a vacuum chamber and no 
collision between molecules) is given as the combination of 
the conductance of a thin hole : Ca = ^ vA, and
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the conductance of a long pipe: Cd = CA-y p

e-e^+Q (,)

where,
A=wl ,the area of the opening
F=2(l+w)d ,the area of the inside wall,

v is an average velocity of gas molecules, and a is a correction factor close to 1 which 

weakly depends on the ratio of w to 1.

w

Fig.2 A slot with the aperture of 1 x w in a wall with the thickness of d. 

C can be written as,

C = Ca

1 + 3 F 
16a A

(2)

If 3 F 3 F-----T« 1, C is equal to Ca- And if------%» 1 : C is equal to Cd
16a A 16a A

If there are N slots, the combined conductance of slots Cn is given as,

Cn = N C, Cn NCa NCd (3)

The conductance C% for a crossed double slots like the structure (a) is calculated according to 
the similar combination law as Eq.l. But in this case it must be taken into account that the 
entrance area to the second slots is A'(sum of square holes) and not equal to NA.
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J___!_ + _!_ + JLn_ a\+_J_
CX " NCA + NCdi +CA'U NA^ + NCd2 (4)

CA' NCdi + NCd2

1 ■ + 1
Ca1 NCdi+d2

A'The factor (1- ^-) arises as a correction because A' is not so deferent from NA. Similarly, 

the inverse of the conductance for the structure (b) is given as,

11 1 
NCa NCdi+d2 Ca:(1"NA)

1 1 
Ca1 + NCdi+d2

,which is equal to

The conductance of the structure (c) can be calculated in the same way as Eq.(4). For the 
structure (c), the conductance of the thick mesh is smaller than NCd2- Therefore The 
conductance of structure (c) is lower then (a) and (b).

Reference
H. Kumagai et al, 'Vacuum Science and Engineering', Shokabo, Japan, 1970, in Japanese.
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Impedance of the PEP-II DIP Screen*

C.-K. Ng
Stanford Linear Accelerator Center 

Stanford University, Stanford, CA 94309, USA

and

T. Weiland
University of Technology 
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D64289, Darmstadt, Germany.

Abstract

The vacuum chamber of a storage ring normally consists of periodically spaced pump
ing slots. The longitudinal impedance of slots are analyzed in this paper. It is found 
that although the broad band impedance is tolerable, the narrow-band impedance, as a 
consequence of the periodicity of the slots, may exceed the stability limit given by natural 
damping with no feedback system on. Based on this analysis, the PEP-II distributed-ion- 
pump (DIP) screen uses long grooves with hidden holes cut halfway to reduce both the 
broad-band and narrow-band impedances.

"Work supported by Department of Energy, contracts DE-AC03-76SF00515.



1 Introduction
For achieving the required pumping speed, the dipole chamber in the High Energy Ring 

(HER) of the PEP-II B-Factory was designed with periodically spaced pumping slots on 
one side of the chamber walls [1]. From the standpoint of beam dynamics, the broad-band 
and narrow-band longitudinal and transverse impedances should be kept to small values 
to avoid single-bunch and coupled-bunch instabilities. It turns out the longitudinal broad
band impedance is normally small compared with the impedance budget of the ring, while 
the longitudinal narrow-band impedance due to the periodicity of the slots may exceed 
the stability limit given by radiation damping with no feedback system on. It is known 
that hidden slots can reduce both the broad band and narrow-band impedances by several 
orders of magnitude [2]. Furthermore, in the PEP-II DIP screen design, hidden holes are 
used to prevent possible TE radiation into the pump chamber. Thus, the final design of 
the DIP screen consists of six continuous grooves of 5.64 m long on one side of the dipole 
chamber walls, and 3 mm holes with spacing 1 mm are cut halfway in the chamber wall 
along each groove.

The paper is organized as follows. In the next section, a generic vacuum chamber 
model used in our analysis is described. Section 3 and section 4 calculate the longitudinal 
broad-band and narrow-band impedances of the slots, respectively. In section 5, the 
impedance of the PEP-II DIP screen is evaluated. Section 6 gives a summary of our 
results. It should be pointed out that here only longitudinal impedance is studied. The 
analysis of the transverse impedance of slots can be found in Ref. [3].

2 Vacuum Chamber Model

Figure 1: Three dimensional view of a generic vacuum chamber model with four pumping 
slots connecting the beam chamber with a pump chamber which houses the vacuum 
pumps. For the purpose of impedance analysis the pumps are replaced by a conducting 
wall. The inner width is 9 cm, the inner height 5 cm, the slot width 3 mm, and the 
longitudinal slot spacing 1 cm. The only free parameter is the slot length Laiot and the 
number of slotted sections.

Various models of the vacuum chamber have been analyzed for the PEP-II. However, 
as the basic physical picture is the same for all the different models, only a generic one 
is considered here. Fig. 1 shows the three-dimensional view of a generic vacuum chamber 
with slots on one side. The dimensions have been chosen close to the PEP-II design[l],
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but may be considered as a generic chamber layout for electron/positron storage rings. 
Actually, the vacuum chamber of PEP, PETRA and HERA are almost identical in size. All 
results presented here are per vacuum chamber slotted section and not for the full length 
of the final chamber. Thus depending on the slot length one has to multiply the single 
section results with an appropriate factor. For the PEP-II this factor is approximately 
1000/T,;<,,(m).

3 Longitudinal Broad-band Impedance
The impedance in general depends on the slot length and it saturates when the length 

is about several times of its width [4]. The pumping requirements are normally set by the 
total pumping channel cross section. Thus it is worthwhile to investigate the influence of 
the length of a slot in order to find an optimum slot length from the impedance point of 
view. The impedance and wake potentials were computed for slot lengths of 2, 3, 4, 5, 10, 
20, 40, 80, 160, 320 and 640 mm. As can be seen from Fig. 2, the wake potential converges 
quite rapidly with the slot length and no significant increase is observed for a slot length 
greater than 40 mm. Thus long slots are preferable. Furthermore, the Wakefield is found 
to be purely inductive in nature. From the low frequency spectrum of the wakefield, the 
inductance is determined and its length dependence is shown in Fig. 3. The inductance 
converges very quickly to a saturated value of 4.0 x 10-5 nH. The loss parameter has 
similar variation behavior and its saturated value is 7.9 x 10“7 V/pC. This parameter 
is a good indication of the effective real part of the impedance weighted with the bunch 
spectrum. The real part of the impedance is obviously rather small compared to the 
imaginary part. The inductance of all the slots in the ring is approximately 1 nH.

Bunch charge density

Particle Postlon s/cm

Figure 2: Wake potential as a function of slot length.
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Figure 3: Inductance as a function of slot length.

4 Longitudinal Narrow-band Impedance
Narrow-band impedances are mostly locally confined resonant modes in cavities. A 

second type of resonant impedance is given by the waveguide character of a vacuum 
chamber. Basically being a periodic structure, it carries traveling waves with longitudinal 
and transverse modes just like any traveling wave accelerating structure. There are two 
possibilities to address this particular impedance, namely frequency and time domain 
approaches. Strong effects may be found by time domain simulations of a few sections, 
and weaker effects by modeling the chamber as a periodic structure in frequency domain.
(a) Section-to-section resonant effects

In order to identify strong section-to-section effects the wake potentials were com
puted for pieces consisting of 1,2,4 and 8 sections, with 4 slots per section (see Fig. 1). 
On the scale where the wake potential is inductive, no significant build-up of a resonant 
type of impedance has been observed. However, this does not mean that the resonant 
impedance is negligible but only that it is small compared to the inductive broad band 
impedance. Very narrow impedances cannot be found this way but need to be analyzed 
by frequency domain approaches.
(b) Traveling Wave Analysis

As a single mechanical unit, a vacuum chamber is made from 100-200 sections, 
and an analysis based on infinitely repeating structure is relevant. Thus we can compute 
traveling waves for any given phase advance per cell. Such a computation results in a 
Brillouin diagram as one normally finds in linear accelerator designs where similarly long 
structures (100-200 cavity cells) are used in one unit.

For the vacuum chamber there exist two types of modes. One group shows almost 
“empty waveguide” mode patterns. A second group shows fields concentrated in the slot

169



region with almost no field in the center of the vacuum chamber. Examples of these modes 
for 40 mm slot length are shown in Figs. 4 and 5. In Fig. 6, we show the Brillouin diagram 
for the structure. The loss parameters, quality factors and shunt impedances for the first 
seven synchronous waves are listed in Table 2. The mode shown in Fig. 5, a TMu-like 
mode, has a strong beam coupling. The narrow-band impedance of this mode is about 
8 kfZ for the ring, which is roughly a factor of 2 higher than the radiation damping limit 
at the mode frequency.

Figure 4: The real part of the electric field of mode 2 with / = 3.616 GHz and phase 
advance 120° per section.

Figure 5: The real part of the electric field of mode 4 with / — 3.996 GHz and phase 
advance 120° per section.

Phase Advance per Period / degree
Figure 6: The Brillouin diagram for the vacuum chamber with a slot length of 40 mm 
and a period of 50 mm. The line light is the solid straight curve. The synchronous modes 
are marked by circles.
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Mode </V° //GHz &/(V/C) Q Rg/mVl
1 163 3.27 1892 5000 1
2 143 3.63 383 35000 1
3 133 3.80 20170 15000 25
4 120 4.00 148000 27000 318
5 120 4.00 3129 8000 2
6 97 4.37 8129 10000 6
7 75 4.74 23960 37000 60

Table 2. First seven synchronous modes and the associated impedances, quality factors, 
loss parameters and shunt impedances.

5 PEP-II DIP Screen
From the analysis in the previous two sections, it can be seen that the contribution 

of the longitudinal broad-band impedance to the total impedance budget of a ring is 
normally small. The longitudinal narrow-band impedance due to the periodicity of slots 
may pose problems to coupled-bunched instabilities. The introduction of hidden slots [2] 
will reduce the broad-band and narrow-band impedances by several orders of magnitude, 
thus avoiding the complication of randomizing the slots for suppressing the impedance of 
the resonances excited by the periodic placement of the slots [5].

The final design of the PEP-II DIP screen consists of six continuous grooves of 5.64 m 
long, 3.75 mm wide and about half the chamber wall thickness located on one side of 
the dipole chamber walls. Several features of the screen design are in order. First, as 
seen in section 3, when the length of the groove is greater than a few times of its width, 
the impedance saturates, and hence the impedance of a 5.64 m long groove along the 
dipole chamber minimizes the longitudinal broad band impedance. Second, about half
way deep in the chamber wall, hidden slots are cut along the groove for pumping purposes. 
Simulations showed that the impedance of a hidden slot is several orders of magnitude 
smaller than that of a slot of the same length directly cut at the chamber wall. The 
electromagnetic fields seen by the discontinuities of the hidden slot are suppressed because 
of the exponential drop-off of the fields into the groove, and consequently the Wakefield 
excitaiton is also reduced exponentially. Third, TE mode traveling waves excited in the 
ring will radiate into the pump chamber through the slots which may damage the ion 
pumps. The use of holes instead of slots along the grooves can suppress the TE radiation 
at the expense of increasing the impedance. In the PEP-II design, 1288 hidden holes each 
with diameter 3 mm are cut along each groove. Measurements showed that no radiation 
was observed through the holes [6]. Fourth, the slots are slanted at 45° to protect the 
distributed ion pumps from single bounce X-rays scattered from the opposite side of the 
chamber walls.

The impedance of the DIP screen can be separated into two parts: the impedance of 
the grooves and the impedance of the hidden holes. The impedance of the six grooves
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is found to be 1.88 x 10-4 nH. The hidden hole structure is shown in Fig. 7; only half 
of the structure is modeled because of symmetry. The longitudinal wakefield is shown in 
Fig. 8, from which the impedance of a column of holes in the six grooves is found to be 
4.82 x 10-7 nH. Taking into account of 1288 holes in each groove, the total contribution 
of all the 192 DIP screens in the HER to the impedance is 0.16 nH, which is less than 1% 
of the ring impedance budget.

Figure 7: MAFIA model of the PEP-II DIP screen. Ten hidden holes are used in the 
calculation.

Hidden holes

Particle Position s/cm

Figure 8: Longitudinal wakefield of the hidden hole structure shown in Fig. 7
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6 Summary
The PEP-II DIP screen design uses hidden holes in continuous long grooves which 

reduces the longitudinal broad band impedance to very small value, decreases the narrow- 
band impedance below the limit for coupled-bunch instabilities, and suppresses TE radi
ation into the pump chambers.
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Pumping Slots: Impedances and Power Losses
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Abstract

Contributions of pumping slots to the beam coupling impedances and power losses 
in a B-factory ring are considered. While their leading contribution is to the inductive 
impedance, for high-intensity machines with short bunches like e+e~ B-factories the 
real part of the impedance and related loss factors are also important.

Using an analytical approach we calculate the coupling impedances and loss factors 
due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects 
of the slot tilt on the beam impedance are also considered, and restrictions on the 
tilt angle are derived from limitations on the impedance increase. The power leakage 
through the slots is discussed briefly.

The results are applied to the KEK B-factory.

1 Introduction
A common tendency in design of modern high-intensity accelerators is to minimize beam- 
chamber coupling impedances to avoid beam instabilities and reduce wall heating. From 
this viewpoint, narrow slots oriented along the chamber axis are the best choice for pumping 
holes since they provide the highest ratio of their pumping area to the contribution of slots to 
the broad-band impedance, e.g., [1]. However, if a long slot has some small tilt with respect 
to the chamber axis (for example, due to manufacturing errors), its beam impedance can be 
much higher than that of an untilted slot. In the present paper limitations on the allowed 
value of the tilt angle are analyzed.

At low frequencies the coupling impedance of slots is mostly inductive. To achieve high 
luminosity, the e+e~ B-factory design requires high currents (of the order of or above 1 A) 
and rather short bunches (with r.m.s. length cr < 1 cm), see [2]. Because of the short bunch 
length, the beam sees coupling impedances up to very high frequencies, a few tens of GHz, 
and due to the high currents it can create essential heat deposition via higher-order mode 
losses. Therefore, it is important to know the coupling impedances of the chamber elements, 
including the real part, up to rather high frequencies to calculate loss factors and beam 
power losses.

In Section 2 the analytical approach used is shortly described, and then it is applied to 
analyze the slot tilt effects. A modification for long slots is also considered. Using these 
results, an expression for the loss factor of long slots on the vacuum chamber of an arbitrary 
cross section is derived in Section 3. Specific results for the low (LER) and high energy ring
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(HER) of the KEK B-factory are given in Section 4, as well as a discussion of the power 
leakage through slots.

2 Coupling Impedance of Slots

2.1 Analytical Theory
An analytical theory for calculating coupling impedances of small discontinuities of the 
vacuum chamber including pumping holes and slots based on the Bet he theory of diffraction 
on small holes [3] has been developed in Refs. [4, 5, 6].

Let us consider an infinite cylindrical pipe with an arbitrary cross section S and perfectly 
conducting walls. The z axis is directed along the pipe axis. A slot in the chamber wall has 
width w and length /, w <C /, and its center is located at the point (b, z — 0). We assume 
that a typical slot size h (i.e., its width w) satisfies h <?C b, where b is a typical size of the 
chamber cross section. Let u be an outward normal unit vector to the boundary dS, f be a 
unit vector tangent to dS in the chamber cross section S, and {z/, f, z} form a right-handed 
basis.

In the frequency range where the wavelength is large compared to the typical hole size 
h, and at distances l such that h b, the fields scattered by the hole into the beam
pipe are equal to those produced by effective electric P and magnetic M dipoles [3]

= -XEoEf/2; MT = (V»TT*XtWC)/2;
= (^^ + ^,^)/2, (1)

where superscript ’A’ means that the external (beam [4, 5] or corrected, self-consistent [6]) 
fields are taken at the hole. Then the coupling impedance produced by an arbitrary-shaped 
hole can be expressed in terms of its electric and magnetic polarizabilities, \ and ^ [4, 5, 6].

These polarizabilities are purely geometrical factors and depend on the hole shape. For 
example, for a circular hole of radius o in a thin wall xp = 8a3/3 and % = 4a3/3 [3]. In 
general, ^ is a symmetric 2D-tensor, which can be diagonalized. If the hole is symmetric, 
and its symmetry axis is parallel to z, the skew terms vanish, i.e., xpTZ — xpZT = 0. In a more 
general case of a non-zero tilt angle a between the major symmetry axis and z,

V’tt = Vu cos2 a + xp|| sin2 a ,
0TZ = 4>zt = (V’ll - ^i) sin Q cos a , (2)
tpzz = ip± sin2 a + V’h cos2 a ,

where ip\\ is the longitudinal magnetic polarizability (for the external magnetic field along 
the major axis), and is the transverse one (the field is transverse to the major axis of the 
hole).

The longitudinal impedance at low frequencies is dominated by its inductive imaginary 
part [7]

m = (*,r - X) , (3)

where Z0 — 120tt f2 is the impedance of free space, k = u/c, and ev is merely a normalized 
electrostatic field produced at the hole location by a filament charge placed on the chamber 
axis.
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For a narrow slot with length l and width w such that w l, the relation ip|| 3> ip± 
holds. If the slot is untilted, i.e., a = 0, the only contribution to the magnetic polarizability 
comes from ip±:

V’tT - IpTZ - 0 .
The leading terms in % and V’x for w <C l are the same:

X ~ = Cw2l + 0(w3) , (4)

where the value of coefficient C depends on the slot shape, see in [1]. Due to cancellation of 
these leading terms in the difference (ipTT — %), the imaginary part of the impedance Eq. (3) 
is independent of the slot length for narrow long slots. For example, for a narrow rectangular 
slots with rounded ends in a thin wall (wall thickness t <K tu), C — 7r/8 in Eq. (4) and

fpTT — X — 0.267rv3 - O.lrn4// . (5)

For the case of a thick wall, t w, coefficient C is smaller, C = 1/tt, and the impedance is 
also reduced, see in [5].

The function e2 gives the impedance dependence on the slot position in the cross section 
of the vacuum chamber. For a particular case of a circular pipe of radius 6, e„ = 1/(27rb). 
In the case of the KERB LER b = 50 mm, see Section 4 for a detailed description. For 
a rectangular chamber of width a and height b with a hole located in the side wall at
x = a, y ~yh

where

£(u, v) =
(—1)*sin[7r(2/ + l)u] 

“ cosh[7r(2/ + l)u/2]

(6)

(7)

is a fast converging series; the behavior of £(u, v) versus v for different values of the aspect 
ratio u is plotted in [7]. The impedance decreases very fast if the slot is displaced closer to 
the corners of the chamber, i.e., when yn —> b or —> 0.

For a general cross section one can use a 2D electrostatic code to calculate e2. For 
example, the KERB HER chamber has the rectangular cross section 104 x 50 mm2 with 
rounded ends of radius 25 mm. In the NEG part of the chamber the large dimension is 
the horizontal one, and 6 rounded-end slots 4 x 100 mm2 are located symmetrically with 
respect to the horizontal plane on the rounded part of the chamber in planes inclined to 
the horizontal one by the angles 4.4°, 13.3°, and 22.1°. In the Q part of the HER chamber 
the large dimension of the same cross section is oriented vertically, and 6 symmetric slots 
4 x 120 mm2 are on the flat wall at angles 9.1°, 25.6°, and 38.7° from the horizontal plane. 
Figure 1 shows the function e2 for the RERB HER chamber, normalized to that for a circular 
pipe of radius 50 mm (LER), versus the slot position (</? = 0 corresponds to the plane of the 
largest chamber dimension). Note a strong dependence of the slot impedance on the slot 
position in the cross section of the chamber.

The real part of the slot impedance [6] is non-zero only above the lowest cut-off frequency 
of the chamber1

ReZ(k) =
8 + tp.2TT (8)

1 As long as the radiation through the slot is neglected, cf. [6]
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Figure 1: Slot impedance (in units of that for circular pipe of radius 50 mm) versus slot 
position (y/degrees) in the HER chamber cross section

(v,/,;)211

m | ’

where s — {nm} is a generalized index, (3„ — (k2 — k2)1^2, (3's = (k2 — k'2)1^2, and the 
sums include only a finite number of the eigenmodes propagating in the chamber at a given 
frequency, i.e., those with k3 < k or k'a < k. Here k2m, enm(r) are eigenvalues and orthonor- 
malized eigenfunctions (EFs) of the 2D boundary problem in S:

(V + knm^ enm = 0 ; Cnmlas = 0 i (9)

where V is the 2D gradient in plane S. Similarly, EFs hnm satisfy the boundary prob
lem (9) with the Neumann boundary condition V„hnm|as = 0, and k,2m are corresponding 
eigenvalues.

At frequencies well above the chamber cutoff, the dependence of Re Z on frequency can 
be derived as follows [6]. The average number n(k) of the eigenvalues ks (or k's) which are 
less than A;, for kb 1, is

n(k) ~ ^-k2 + 0{k) , (10)

+ x2
< <
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where S is the area of the cross section. Using this property, one can replace sums in the 
RHS of Eq. (8) by integrals as /* dk-^n{k). The result is

Re z = +*2) • (11)

The same answer has been obtained [7] simply by calculating the energy radiated by the 
dipoles into a half-space. The reason is clear: at high frequencies the dipoles radiate into 
the waveguide the same energy as into an open half-space.

The transverse coupling impedance has the same dependence on the polarizabilities as 
the longitudinal one, see in [7, 6].

2.2 Modification for Long Slots
Rigorously speaking, Eqs. (8)-( 11) are restricted to wavelengths large compared to the slot 
length. For higher frequencies or longer slots (but still for wavelengths larger then the slot 
width), one can modify the Bethe approach replacing the slot by a distribution of dipoles and 
taking into account phase shifts in excitation and radiation of these dipoles depending on 
their longitudinal position [8]. It does not change the result for the imaginary part, Eq. (3), 
but modifies Re Z.

Taking into account that for long slots 0 ~ x (— w2//tt in a thick wall), we get

ReZ(k)
<

£
s

[1 — cos kl cos f3sl\ (12)

+ E ^^k)' l1 - c°s kl cos (3'sl}} .

Figure 2 shows the real part of the slot impedance for the LER as a function of frequency.

2.3 Effects of Slot Tilt on Impedance
2.3.1 Restrictions due to Im Z

As was discussed above, for an untilted narrow long slot the imaginary part of the impedance 
(3) is independent of the slot length due to the cancellation of the leading terms in (0TT — x)i 
see Eqs. (4). However, if the slot is tilted by some small angle a <K 1, the situation changes 
drastically since its large longitudinal magnetic polarizability t/’n also contributes, cf. Eqs. (2):

V’tt = 4>± + (V’H — '0J./2)a2 + 0(q4) . (13)

The ratio of impedances of the tilted and untilted slot as a function of the tilt angle is

= l+i(a)=!l+aJ^L. (14)

Respectively, if the maximal allowed fraction of the impedance increase 8 is given, Eq. (14) 
gives a restriction on the allowed tilt angle:

1/2

a < V'x — x
V’n ,

(15)
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f

Figure 2: Longitudinal impedance (Z/mfZ) per slot versus frequency (//GHz): the real part 
(solid line) is small compared to the imaginary one (dashed).

For a specific case of a narrow rectangular slots with rounded ends in a thin wall, the 
polarizabilities in Eq. (14) are

i>\\ = ^ - 0 ! V1! - X - 0.267to3 . (16)

Then from Eq. (14) follows

*to) - “2 {i) (to§-j) • (17)
and restriction (15) takes the form

a < VS (y) (in" - |) • (18)

Figure 3 shows this restriction for different values of the slot aspect ratio w/l.

2.3.2 Restrictions due to Re Z

In a similar way, considering an increase of the real part of the impedance due to a small 
tilt of the slot gives

Re Z(k,a) 
Re Z(k)

1 + SR(a) ~ 1 + a2
*11

V’i + x2 "
(19)
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0.05 0.1 0.15 0.2
w/l

Figure 3: Allowed tilt angle (a/radian) versus slot aspect ratio w/l for 8 = 0.5: solid line is 
due to Im Z, dotted one is from Re Z.

For the case of a narrow rounded-end slot, this leads to

= (in™ -j) , (20)

and the restriction on the tilt takes the form

a < 3^5/2 (”) (in ^ ^ . (21)

One can see that Re Z gives the restrictions on the slot tilt similar to those due to Im Z, cf. 
Fig. 3.

2.3.3 Averaged Limitations

One should note that in practice the impedance increase <S(a) has to be averaged with a cor
responding tilt angle distribution. Assuming a Gaussian distribution due to manufacturing 
errors with average tilt a = 0 and r.m.s. tilt angle ao, the average value of the increase 8 will 
be given again by Eq. (17) with substitution a —> a0, since 8 oc a2. Figure 3 remains valid 
for this case also, if 8 is considered now as an averaged value over the Gaussian distribution 
with r.m.s. a. Note also that the allowed tilt angle scales as y/8.

The restrictions on the tilt angle of long slots from impedance requirements obtained 
above are rather tough for very long slots. They are shown in Fig. 3 for the case of a
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narrow rectangular slot with rounded ends: the maximal allowed angle for a given impedance 
increase (taken to be 8 — 0.5, i.e., 50%) is plotted versus slot aspect ratio w/l. For the 
KEKB LER, where the ratio w/l — 0.04, it means that the limit on the allowed tilt angle is 
a ~ 0.01 rad ~ 0.6° to prevent the slot impedance from increasing more than 50%.

2.4 Near Cutoff: Trapped Modes
It has been demonstrated [9] that a small discontinuity, such as a hole or slot, as well as 
an enlargement on a smooth waveguide can result in the appearance of trapped electromag
netic modes with frequencies slightly below the waveguide cutoff frequencies. The trapped 
modes produce narrow resonances of the coupling impedance near the cutoff. For a circular 
waveguide with many small discontinuities the phenomenon has been studied in [10], and for 
the case of an arbitrary chamber in [6]. Using results [9, 10], in this section we consider the 
trapped modes in the LER (in fact, only TM-modes since TE-waves easily leak out through 
the slots and, therefore, their trapping obviously fails to exist).

There are M — 8 pumping slots in one transverse cross section of the LER. With respect 
to the lowest TMqi trapped mode, all M slots in such a group work as a chamber enlargement 
with “effective” area A in its longitudinal cross section [9]:

A =
MV’tt Mw2l 

4nb 4tt26
= 6.5 mm2 .

The frequency shift down from the TMqi cutoff frequency f\ ~ 2.3 GHz for the trapped 
mode is

2 10 -5
(22)/i 2 U2,

where gi ~ 2.405 is the first root of Bessel function J0; i.e., Af ~ 45 kHz. This gap between 
the trapped mode frequency and the cutoff is rather small, being only marginally larger than 
the resonance width due to the energy dissipation in the walls

7i/u>i = 8/{2b) ~ 1.35 • 10"5 ,

where 5 is skin-depth in the copper.
However, the length of the region which would be occupied by the field of the trapped 

mode for such a single discontinuity is l\ = bz /{g\ A) — 3.3 m. Since this length is longer than 
the longitudinal separation g = 1 m between the adjacent groups of the pumping slots, the 
adjacent groups interact each other. According to [10], the number of discontinuities, which 
work as a single combined one, is Nefj — ^2l\/g ~ 2.6, and the new “effective” length
of interaction L — \Jl\g/2 = 1.3 m. Due to this interaction the frequency gap increases 
Af N2jjAf ~ 0.3 MHz, which makes it large compared to the resonance width, so that 
the trapped mode can exist.

Should discontinuities be far separated, g > U, the total impedance of the ring would 
be just a sum of contributions Ri = Z0g\A*/(nSb5) from all N = 2nRjg discontinuities on 
the ring (R is the machine radius): ReZ/n = NRi/n = 2nbR\f{gg,i). The interaction of 
discontinuities changes the estimate above by replacements N —> N/Nejj and R\ —> N/jjR\

Re Z 2 2nb 4Z0A2
"V = = W
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It gives Re Z/ti ~ 1 fZ for the narrow-band impedance produced by the trapped modes in 
the LER. This value for the narrow-band coupling impedance at such a high frequency does 
not seem to be dangerous.

In fact, the pumping slots are not quite identical, they have some distribution of areas. 
It causes a frequency spread of resonances produced by different discontinuities, and can 
reduce the total narrow-band impedance due to the trapped modes essentially, see [10] for 
details.

3 Beam Power Losses
The power per unit length of the beam chamber dissipated due to beam fields scattered by 
the slots is

P' = , (24)

where N,i is the total number of slots, Sb is the bunch spacing, frev = c/(2nR) is the 
revolution frequency, % is the bunch charge. The loss factor per slot K is defined as

1 /°°
K = — / duRe Z(u) exp

7T JO

ua
c

(25)

where a — az is the r.m.s. bunch length.
Substituting Eq. (12) into Eq. (25), for long slots and short bunches, when l/a 3> 1, 

one can replace fast oscillating functions in the integrand by their average values. Then the 
integrals are evaluated analytically, which yields a simplified expression for the loss factor

K =
8tr1/2^

t -p(-*,V) + V =xp(-fr„V)

This expression for the particular case of a circular pipe of radius b becomes

Zoc(^/f): f ^ 1
K

167r7/264cr n=0m=l 1 d" <$n,0
exp +

n=l m=1 r'n~" 11

(26)

(27)

where finm is mth zero of the Bessel function Jn(ar), and n'nm satisfy J'n(fi'nm) = 0. This result 
was obtained earlier in [11]2. Figure 4 shows the loss factor per slot for different values of 
the r.m.s. bunch length a for the KEKB LER. The design value for the KEK B-factory is 
<7 — 4 mm. The numbers in Fig. 4 were checked using a more complicated expression than 
Eq. (27) including length-dependent terms: the results are very close to those in Fig. 4 for 
these large values of l/cr.

The dependence K(cr) in Fig. 4 can be roughly approximated as K oc a~3, cf. [11]. To 
check this dependence, we consider a rectangular pipe of cross section a x b, in which case

2The overall factor in Ref. [11] was incorrect: it should be multiplied by 1/(4tt2).
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Figure 4: Loss factor per slot [K/( 10 6V/pC)] versus r.m.s. bunch length (cr/mm).

the eigenvalues and EFs have simple form, and summation in Eq. (26) for short bunches can 
be carried out easily. The resulting loss factor is

K ~ _ ^W/Q2 y2 (± Vh\
~ 167t3/2(t3 " 16tt3/262<73 S U’ b) ’ (28)

where E is defined by Eq. (7). In this case, K oc a~3 explicitly. It can be proved also for 
an arbitrary cross section in the case of long slots, when l/a 1 but still a > w, using 
the property (10) of the eigenvalues. Replacing sums in the RHS of Eq. (26) by integrals as 

—> fk dk-^n(k) and performing integrations yields K oc a~3. As follows from Eq. (25), it 
means that effectively for long slots the averaged behavior of the real part of the impedance 
is

Re Z oc k2 . (29)

For comparison, for holes or short slots Re Z oc k4, see Eq. (11), and according to Eq. (25) 
the loss factor K oc cr-5.
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4 Results for KEK B-factory

4.1 KERB Low Energy Ring
The LER vacuum chamber is a circular pipe with inner radius b = 50 mm and wall thickness 
t = 6 mm. The circumference of the ring is 3016 m, and about 1800 m of the beam pipe 
have long pumping slots to connect it with pumping chambers containing the NEG pumps. 
The slots are of rectangular shape with rounded ends, with width w = 4 mm and length 
l = 100 mm. They are located in groups of 8 parallel slots near the bottom of the beam pipe 
— 8 slots per meter — with the total number of pumping slots in the LER about 14400.

Another type of slots in the LER vacuum chamber are narrow longitudinal slots 1.2 mm x 
35 mm in RF connectors. The number of slots per connector is 40, with about 100 connectors 
in the ring.

As was mentioned in Section 2, for a thick wall, the impedance should be multiplied by 
a thickness correction factor [5]. This factor is about 0.6 for long elliptic holes [5], but it is 
unknown for the case of a very long slot with rounded ends and parallel sides. For a cautious 
estimate one can take this factor equal to the ratio of the leading terms of the polarizabilities 
for an infinitely long slot in a thick and thin wall, namely 8/tt2 [1]. Due to additivity of 
the impedances at frequencies below the chamber cutoff frequency (2.3 GHz), the analytical 
results of Section 2 give reliable estimates of the LER total coupling impedances due to slots 
in this frequency range, see Table 1.

Table 1: Reactive Impedances of LER Slots

Slots \Z/n\/ mfl \Zl\! (kfl/m)
Pumping 0.8 0.6

RF connectors 0.1 0.035

Since the pumping slots in LER are located near the bottom of the chamber, they con
tribute mostly to the vertical transverse impedance (the value in Table 1), cf. Ref. [7].

The design value of the beam current in the LER is 2.6 A, bunch spacing is 0.6 m, and 
the number of bunches is 5120. Using results of Section 3, we calculate loss factors and beam 
power losses due to the beam interaction with the slots in the LER, see Table 2.

Table 2: Power Losses due to LER Slots

Slots % / (V/pC) P' / (W/m)
Pumping 4.6 • 10-6 per slot 0.3

RF connectors 1.5 • 10-6 per conn. -

One can conclude that the broad-band impedances of the slots are on the level of a few 
percent of the total estimated impedance budget of the LER, \Z/n\tot — 15 mfZ [2], and the 
power loss is rather small compared to that due to synchrotron radiation.
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4.2 KERB High Energy Ring
The KEKB HER chamber has the rectangular cross section 104 x 50 mm2 with rounded 
ends of radius 25 mm, and the wall thickness is t = 6 mm. In the NEG part of the chamber 
the large dimension is the horizontal one, and 6 rounded-end slots 4 x 100 mm2 are located 
symmetrically with respect to the horizontal plane on the rounded part of the chamber, see 
description in Section 2.1. In the Q part of the HER chamber the large dimension of the 
same chamber is oriented vertically, and 6 rounded-end slots 4 x 120 mm2 are symmetrically 
located on the flat wall. The total coupling impedances of the slots are calculated as described 
in section 2.1, and the results are shown in Table 3. All HER slots contribute only to the 
horizontal transverse impedance.

Table 3: Reactive Impedances of HER Slots

Slots Z/n j mfl |ZX|/ (kfl/m)
NEG 0.4 1.5

Q 0.7 0.8

Due to the lower beam current in the HER (1.1 A instead of 2.6 A in the LER), the 
power loss due to HER slots a few times lower than that in the LER, see above.

4.3 Power flow through slots to the pumping chamber
A few possible sources of power leakage through the slots to pumping chambers are discussed, 
and estimates are given for the KEKB LER taken as an example [11].

4.3.1 Power flow due to direct beam fields on the slots

When the beam field illuminates a slot, it produces scattered fields both inside the beam 
pipe and outside, in the pumping chamber. The energy radiated by these outside fields into 
the pumping chamber can be calculated in the same way as for the beam pipe. One should 
only use so-called ’’external” polarizabilities of slots instead of the ’’internal” ones which we 
used above, cf. [5]. For the case of the thick wall (thickness t is larger than the slot width 
w) these ’’external” polarizabilities are much smaller than the ’’internal” ones:

(0-» x)ext - exp (-7Tt/w) (0, X) • (30)

Since the power loss is proportional to the polarizabilities squared, one can easily realize 
that the power flow to the pumping chamber due to this source is negligible:

P[ ~ exp (—2nt/w) P{n ~ 0.03 mW/m .

4.3.2 Power flow from transverse currents due to the beam betatron motion

One should note that the relation (30) works only for the electric and transverse magnetic 
polarizabilities. The term ’’transverse” here means that the beam magnetic field is directed
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perpendicular to the slot largest dimension, and this is correct for the case of the beam lon
gitudinal motion when there is only the azimuthal component of the beam magnetic field. 
However, if the transverse motion of the beam is taken into account there is also some longi
tudinal magnetic field of the beam on the slot. In this case the longitudinal magnetic dipole 
moment is induced on the slot. It is proportional to the longitudinal magnetic polarizability 
of the slot, which is equal to [1]

7r/3
12

8/ nt
In---- h -w 2 w

(31)

and is much larger than the transverse one, = w2l/n + 0(w3)1 for long slots. In addition, 
its ” internal” and ’’external” values are almost equal, because the magnetic field parallel 
to the slot easily penetrate through it. So, we have to estimate the power flow due to this 
effect.

Since the power radiated in TE-modes P'H oc Re Z oc M2, where M — ipH/2 is the 
effective magnetic dipole moment induced by the beam magnetic field H on the slot, we will 
consider the ratio

r = Ml = ml .
Mv

The ratio of fields Hzf Hv can be approximated by the ratio of the beam current components, 
j±/j — y/n, where v ~ 45 is the betatron frequency, and n = w/wo is the longitudinal 
harmonic number, with wo = c/R being the revolution frequency. Then

7r2/2 ( SI 7rt 7\ 1 i/wo
r —------ I In----- 1----------- ----

12m2 \ w 2m 3/ w
which is about 0.2 at the beam pipe cutoff frequency. We are interested in frequencies above 
the chamber cutoff, and because (33) decreases with frequency increase, one can conclude 
that the power flow into the pumping chamber P'2 from this source is less than 1/25 of the 
power radiated in TE-modes into the beam pipe, which is about one half of the total P',
i.e., about 0.15 W/m, see Table 2. As a result,

P2 < 6 mW/m .

4.3.3 Power flow due to the fields scattered by slots to the beam pipe

It is mentioned above that the total power P' radiated by slots into the beam pipe is divided 
almost evenly between TM- and TE-modes: P'E ~ P'H ~ P'/2 = 0.15 W/m. These modes 
propagate in the beam pipe and reach following slots. For TM-waves penetration through the 
longitudinal slots is exponentially small, see above. However, TE-waves have a longitudinal 
magnetic field (the wall currents are transverse to the slots), and contribute to the energy 
flow into the pumping chamber. The minimal (optimistic) estimate for that power flow 
would be

p,min = J^LP>H ~ 4 mW/m ,
A-wall

where A,t/Awau — 0.025 is the fraction of the wall surface occupied by slots. On the other 
hand, the most pessimistic (maximal) estimate is to assume that the total energy of TEl- 
modes will leak out through slots:

P^max = p>H ~ 0.15 W/m .
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Of course, a part of the energy in TE-modes will be lost in the walls of the beam pipe, so 
the last number gives the upper estimate.

Concluding this section, one should mention that there is one more source of the power 
leakage through the slots to the pumping chamber: TE-modes generated in the vacuum 
chamber by the beam due to its interaction with large elements like RF chambers, etc. 
Such modes can easily leak out through long slots. This source is believed to be the most 
dangerous one, however, it is difficult to make estimates for the related power flow. A simple 
remedy to prevent the power flow to the pumping chamber (due to this or all other sources 
of HOM) would be placement of thin metallic grids on the outer part of the pumping slots.

5 Summary and Conclusions
The analytical methods are applied to analyze effects of the beam interaction with pumping 
slots in the vacuum chamber of a B-factory. Using earlier obtained analytical expressions, 
the slot contributions to the longitudinal and transverse broad-band coupling impedance are 
calculated for the LER and HER of the KEK B-factory. The existence of the trapped modes 
due to the slots and their contribution to the narrow-band impedance are considered.

New analytical results include an analysis of the influence of the slot tilt on the coupling 
impedance and derived restrictions on the tilt angle. Besides that, an expression for the loss 
factor of long slots for the case of short bunches is derived for an arbitrary cross section of 
the vacuum chamber. Using this result, the power losses due to the beam interaction with 
pumping slots in the KEK B-factory are calculated. The power flow through the slots to the 
pumping chamber is also discussed.

The specific calculations for the KEK B-factory show that the pumping slots contribute 
a few percent to the total broad-band coupling impedance budget. The trapped modes due 
to the slots (if any) can produce only a small narrow-band impedance at frequencies near the 
chamber cutoff. Calculated beam power losses are small compared to those from synchrotron 
radiation, and the power flow to the pumping chamber is well below the allowed level.

The author would like to thank the KEK for the partial support of his participation in 
the workshop. This work was also supported in part by the U.S. Department of Energy.

References
[1] S.S. Kurennoy, SSC Lab Report SSCL-636, Dallas, 1993; in Proceed, of the 4th EPAC, 

edited by V. Suller et al, (London, 1994), p.1286.

[2] Y.H. Chin, in these Proceedings.

[3] H.A. Bethe, Phys. Rev. 66, 163 (1944).

[4] S.S. Kurennoy, Part. Acc. 39, 1 (1992).

[5] R.L. Gluckstern, Phys. Rev. A 46, 1106, 1110 (1992).

[6] S.S. Kurennoy, R.L. Gluckstern, and G.V. Stupakov, in Proceed, of PAC95 (Dallas, 
1995); Phys. Rev. E 52, No. 4 (to appear in Oct. 1995).

187



[7] S.S. Kurennoy, in Proceed, of the 3d EPAC, edited by H. Henke et al, (Berlin, 1992), 
p.871; more details in Institute for High Energy Physics (Protvino) Report No. IHEP 
92-84, 1992 (unpublished).

[8] G.V. Stupakov, Phys. Rev. E 51, 3515 (1995).

[9] G.V. Stupakov and S.S. Kurennoy, Phys. Rev. E 49, 794 (1994).

[10] S.S. Kurennoy, Phys. Rev. E 51, 2498 (1995).

[11] S.S. Kurennoy and Y.H. Chin, KEK Preprint 94-193, Tsukuba, 1995.

188



Bellows Design and Testing for KEKB
Y.Suetsugu

National Laboratory for High Energy Physics,

1-1 Oho, Tsukuba, Ibaraki 305, Japan

Abstract

A bellows assembly with an RF-shield has been developed for the KEK 
B-Factory (KEKB). The RF-shield is a usual finger-type but has a 
special spring-finger to press the contact-finger on to the beam tube 

without fail. The mechanical workings of the RF-shield is tested 
using a trial model and no mechanical problem is found except for the 
dust production. The necessary contact force, 50 g/finger, is 
obtained experimentally transmitting the 508 MHz microwave up to 80 
kW through the trial model.

I. Introduction

In parallel to the general design of vacuum system, the bellows assembly with an 
RF-shield has been developed and tested for the KEK B-Factory (KEKB)[1], The RF- 
shield screens the corrugations of bellows from bunched beams and makes the wall 
current flow smoothly to reduce the excitation of the higher order mode (HOM) [2-4]. 
The maximum beam current of the Low Energy Ring (LER) of the KEKB is 2.6 A with 
5000 bunches and 4 mm bunch length. The peak current and the RMS current are 156 
A and 17 A, respectively. The RF-shield has to keep a good electrical contact while 
absorbing the thermal expansion and contraction during beam operations or baking.

The usual RF-shield is the finger-type which consists of lots of narrow sliding 
fingers around the beam tube to bridge the gap of bellows [2,3]. Each finger (we call it 
as the contact-finger here) should touch the beam tube with a appropriate contact force to 
keep a sufficient electrical contact The most important point for the finger-type RF- 
shield is the strength of the contact force. The larger the force, of course, the better the 
electrical contact, but the more intense the abrasion (dust generation) during the 
mechanical workings. There has been, however, no practical data for the contact force 
so far.

We developed a bellows assembly with a RF-shield of usual finger-type but 
having the special spring-fingers other than the usual contact-fingers to press surely the 
contact-fingers on to the beam tube. The mechanical test was performed using a trial
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model To find the necessary contact force experimentally, the excess heating was 
checked transmitting the 508 MHz microwave up to 80 kW through the model. We 
report here the structure of the bellows assembly and the results of the experiments.

II. Structure
The bellows assembly designed for the KEKB LER is schematically drawn in 

Fig. 1. The main components of the RF-shield are the inner tube, the contact-finger and 
the spring-finger. The contact-fingers are pressed on to the inner tube from outside of 
it by the spring-fingers with an appropriate contact force. The electrical contact is kept 
at the edge of the inner tube. Since the contact-finger is outside of the inner tube, the 
impedance of bellows assembly is small sufficiently. For 1 mm thick inner tube, for 
example, the calculated broad band impedance (Z7n) and the loss factor (k) of a bellows

assembly for the LER are 4.23x10'^ W and 2.5x10"3 V/pC, respectively. Every

spring-finger presses one contact finger independently. The contact-finger does not have 

to provide a spring action and can be made of a thin metal strip. The contact force, 
therefore, does little change even if the bellows is bent or set with some transverse offsets 
due to misalignment For the KEKB, the RF-shield should absorb the 
expansion/contraction of 20 mm and the offset of 1 mm, but no tilting (shearing). The 
required lifetime is 105 times for the 
expansion/contraction with 1 mm 

stroke. The cooling water 
channels are attached considering 
the reflected power of the 
synchrotron radiation (SR), Joule 
loss and HOM loss at the inner 
surface.

Figure 2 shows the outlook 
of a trial model of the bellows 
assembly (bellows and RF-shield).
The model is for the LER and has a 
circular cross section. The inner 
diameter is 94 mm and the nominal 
total length is 160 mm. The 
contact-finger is 0.2 mm thick 
Beryllium-Copper (Cl720) and has 
the width of 5.5 mm and the gap of

Cooling channel

Inner tube

Contact-finger
Spring-finger

Figure 1. Schematic drawing of the bellows 
assembly for LER.
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0.5 mm. The spring-finger is also 0.3 mm thick Beryllium-Copper (Cl720) with the 
width of 4.6 mm and the gap of 2.4 mm. The tip of the spring-finger, where the spring-

finger pushes the contact-finger, has a curvature of 5 mm and is coated with TiN (1 pm 

thick). Both of the contact-fingers and the spring-fingers received the heat treatment at 

315 °C. The inner tube is 1 mm thick Stainless Steel (SS304) and is surrounded by 50 

contact-fingers. Other parts of the bellows assembly is also made of Stainless Steel.

Figure 2. Out look of the bellows (left) and the RF-shield (right).

III. Mechanical Working Test
The mechanical workings of RF-shield was tested using the trial model in 

atmosphere and under the pressure of 1x10 ^ Torn The RF-shield was expanded and

contracted for 5000 times with 20 mm stroke in atmosphere. The contact forces were in 
the range of 150 - 170 g/finger. One stroke took about 10 seconds. We observed no 
kinking or sticking of contact-fingers and found no mechanical problem.

However, we observed lots of metal dusts generated during the working due to 
the abrasion between the contact-fingers and the inner tube or the spring-fingers [3].

The mean size of dusts was about 50 pm. The dust generation is a serious problem

because the dusts will do harm to the stored beam by shortening the lifetime or broadening 
the beam size when passing through or trapped to the beam. Actually the dust generation
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reduces by several orders in vacuum because most of the dusts are the metal particles 
oxidized immediately after the detachment from the surface. The dust generation, 
however, is inevitable for the finger-type RF-shield to some extent An approach to 
reduce the particle is to choose appropriate combination of the materials or the coatings for 
the fingers. We are now undergoing the abrasion test using some practical materials, 
such as Beryllium-Copper with and without TiN coating, Hastelloy or Inconel. The 
second effective solution is to choose a sufficient but not excess contact force. We 
have tried to find the minimum contact force experimentally as described in the following 

section.

IV. Necessary Contact Force
We transmitted the high-power microwave through the bellows assembly and 

check the excess heating of it changing the contact force. The microwave was applied 

because it can simulate more realistic wall current excited by the bunched beam than the 
DC current The bellows model is similar to that descried in Sec.2 but has the length of 

200 mm and the body of Aluminum alloy.

Figure 3 shows a schematic diagram of the experimental apparatus. The 50 Q

coaxial transmission line was formed by the trial model and an inner rod inside. The 
508 MHz CW microwave up to 80 kW is transmitted through it in atmosphere. The 

transmission mode is TEM mode. The wall current therefore, has only axial 
component that is just the same as the real wall current in the beam tube. The microwave 
was supplied from a 10 MW klystron used for the RF cavity of the TRISTAN Main Ring.

Test
Bellows

Dummy
LoadRectangular-coaxial 

T ransformer

Directional
Coupler Cooling

Water
Insulating 
Cover 

RF Shield
Input Power508MHz CW 

Microwave
Reflected Power

Figure 3. Set up for the test to find necessary contact force using 508 MHz microwave.
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The input power was stepped up by 10 or 20 kW and kept for about 10 minutes at each 
power level. About 14 kW microwave power serves the same RMS wall current with 

the 2.6 A operation at the LER. The bellows assembly was insulated thermally and the 
increase of temperatures of the RF-shield (spring fingers, contact fingers and beam tubes 
just near the fingers) was measured at every step. The power losses at the bellows 
assembly for several contact forces were estimated from the surface resistance, the 

specific heat and the increase of 

temperature. 30

The power losses per 10 

kW input are plotted against the 
contact forces in Fig. 4. For the
average contact forces less than 50 
g/finger the excess heating was 
observed. In this case the color 
change due to the high temperature 
and also the arcing spots were 
found on the contact-fingers after 
the experiment The dotted line in 
the figure is the result for the case 
of the minimum power loss, that is, 
calculated without any contact 
resistance.
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Figure 4. The power loss at the bellows 
assembly per 10 kW input of 508 MHz 
microwave for several contact forces. The 
dotted line is the calculated power loss.

The results indicate that the contact force larger than 50 g/finger is necessary. 
Considering the manufacturing or setting error, however, the spring finger should be 
designed to provide the contact force of 100 g/finger at least This value is much less 
than that in the mechanical working test (about 170 g/finger), and the problem associated 
with metal particles may be reduced. Attention should be paid, however, that the 
experiment was performed in atmosphere, where the water vapor in the air will work as a 
lubricant. Furthermore, the frequency of wall current in the experiments is far low 
compared to those in the real beam tube. The test using 2856 MHz microwave to check 
the arcing in vacuum is now in preparation.

V. Summary
The bellows assembly with the RF-shield is developed for the KEKB. The 

RF-shield is a finger-type but has the special spring-finger to press the contact-finger 
without fail. The minimum contact force was surveyed experimentally transmitting the
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microwave up to 80 kW through the bellows assembly in atmosphere. The contact force 
larger than 50 g/finger was found to be necessary to avoid the excess heating. The test 

to check the arcing in vacuum is now in preparation. The test to find the best 
combination of finger materials to reduce the dust generation is also undergoing.
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Abstract

A new concept of damping of resonances in a button elec
trode has been proposed and tested in the BPM system 
for the B-Factory project at KEK (KEKB). Since a very 
high current beam has to be stored in the machine, even 
a small resonance in the ring will result in losing a beam 
due to multi-bunch instabilities. In a conventional button 
electrode used in BPMs, a TE110 mode resonance can be 
trapped in the gap between the electrode and the vacuum 
chamber. In order to damp this mode, the diameter of the 
electrode has been chosen to be small to increase the res
onance frequency and to radiate the power into the beam 
pipe. In addition, an asymmetric structure is applied to 
extract the EM energy of the TE110 mode into the coaxial 
cable as the propagating TEM mode which has no cut-off 
frequency. Results of the computer simulations and tests 
with cold models arc reported. The quality factor of the 
TE110 mode was small enough due to the radiation into 
the beam pipe even in the conventional electrode and the 
mode coupling effect due to the asymmetric shape was sig
nificant on a cavity-like TE111 mode.

I. Introduction
In the KEKB accelerator, the beam current will be of 

several amperes. Since the number of BPMs amounts to 
about 400 per ring, possible resonances in the gap is of se
rious concern to avoid coupled bunch instabilities. On the 
other hand, it is not necessary to take care very much of 
VSWR in a wide frequency range, since only 1 GHz com
ponent of the beam is detected for the beam position mea
surements. The resonances in the BPMs can be classified 
into two categories; one due to a button electrode and an
other due to a ceramic part that is used for a vacuum seal.

II. BPM Structure

We adopted the N-type vacuum feedthrough because it 
has an advantage of high power rating and the enough me
chanical strength compared to that of the SMA type. Con
nectors will be brazed to the block of copper chamber.

The small button size has an advantage that can enhance 
the damping of the TE1T0 mode due to the radiation into 
the beam chamber. On the other hand, the minimum size 
of the button is limited to accomplish the required precision 
of the position measurements, i.e., better than 80 dB in 
the signal-to-noise ratio at the beam current of 10 mA. 
We determined the diameter of the button electrode to be 
12 mm. The gap distance was determined to be 1 mm to 
avoid the multipactering discharge.

The structure of the asymmetric BPM is shown in Fig. 1. 
Three faces of the button are cut out to enhance its asym
metry, and are connected to the center conductor with a 
taper.

Circular Electrode

Asymmetric
Structure

Chamber

N-Typc
Connector

Beam DirectionCeramic

Figure. 1. Illustration of the damped BPM. The diameter 
of the disk is q> 12 mm and the gap size is 1 mm. The dis
tance between the electrode surface and the wall is deter
mined to be 0.5 mm to prevent the synchrotron radiation.

III. Computer Simulations
The damping efficiency of the asymmetric structure has 

been simulated with the computer code MAFIA. Reso
nance frequencies and mode patterns (monopole or dipole) 
are tabulated in Table I. The field pattern of the TE110

Table I
Resonance frequency calculated with MAFIA.

frequenc:y[GHz] mode pattern location (label in Fig. 5)
1.88 Monopole
3.96 Monopole
5.82 Dipole ceramic (Cl)
6.21 Monopole coaxial (Coax)
7.30 Dipole button (Bl)
7.89 Dipole ceramic (C2)
8.88 Monopole

mode at 7.3 GHz is shown in Fig. 2. In this model, the 
BPM is not placed at the chamber wall but at the cylinder 
that has a magnetic-short boundary at the end.

Among these modes, EM energy of the monopole modes 
are extracted to the outside of the BPM and have negli
gible effects on the beam instabilities. The dipole modes 
under cutoff frequency of the coaxial lines, however, are 
trapped inside the BPM. The electric field of the dipole 
mode at 5.8 GHz is localized at the ceramic, so that the
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Figure. 2. Electric field pattern of the TE110 mode. EM 
energy is concentrated at the button electrode.

coupling between this mode and the beam is small. As 
shown in Fig. 2, the TE110 mode at 7.3 GHz is not effec
tively converted to TEM modes. The coupling between the 
two modes can be enhanced by increasing the length of the 
asymmetric structure. However, this method has a disad
vantage of the dipole mode at the ceramic penetrating into 
the beam chamber.

The longitudinal wake potential was calculated for LER 
with MAFIA T3 assuming the bunch length of 4 mm. The 
diameter of the beam chamber is 147 mm. The result

at 7.1 and 15.8 GHz are clearly seen. The least square 
fitting of these peaks gives their peak values and Q. The 
result is summarized in Tablell.

Table II
Characteristics of the two peaks in Fig. 3(b).

frequency[GHz] Imped ance[fi] Q
7.1 2.9 43
15.8 1.4 82

IV. Experiments and Results
We measured at first the transmission characteristics 

(S21) of the electrode with a setup shown in Fig. 4. The

Port 2

Network Andyzer : HP 6510

Figure. 4. The setup to measure the transmission charac
teristics of BPM.

(b)

Frequency [GHz)

Figure. 3. Calculation of longitudinal wake field with 
MAFIA T3: (a) wake potentioal and (b) impedance. The 
bunch length is 4 mm.

is shown in Fig. 3(a). The loss parameter is 2.0 mv/pC. 
Fig. 3(b) is the absolute value of the impedance calculated 
from Fig. 3(a) by Fourier transformation. Two large peaks

TEM-mode signals are fed to the electrode through a ta
per. Figure 5 shows the S21 response of a conventional cir
cular electrode. There are two sharp peaks at 6.2 GHz

— -30 i-

C1.C2: Ceramic 
B1 :TE110 at Button

Coax : Coaxial Mode
(TEM common mode)

Frequency [GHz]

Figure. 5. S21 measurement of circular BPM.(Network
Analyzer IIP 8510)

and 8.8 GHz, which are labeled as Cl and C2 in the fig
ure. We measured the S21 response without ceramic and 
found that these peaks are resonances in the ceramic. The 
difference between the calculation with MAFIA and the 
measurement is explained by two reasons: one is that the 
resonance frequency listed in the Table I is the calculation 
for the damped BPM, and the other is that the measured 
BPM is not brazed. The peak around 8 GHz, labeled as
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B1, appeal's when the button electrode is placed at the off- 
center position. The broad peak labeled as Coax denotes 
the resonance of the whole coaxial structure. In this setup, 
it is difficult to measure the quality factor of the TE110 
mode resonance because only the coaxial mode can be ex
cited.

Next, we excited the TE110 mode directly with the setup 
shown in Fig. 6. Two probes inserted through 02 mm

X Type 
Connector

Without
Ceramic

Probe 2 Probe 1

Circular
Chamber

♦12.0

Figure. 6. Experimental setup of the TE110 measure
ment. Two semi-rigid cable is used as an antenna to excite 
the TE110 mode at the disk. The 13PM was mounted on 
0100 mm circular beampipe, at. those ends absorbers were 
loaded.

holes excite the TE110 mode at the button electrode, while 
the N-type connector is connected to the matched load. To 
avoid ceramic resonances, we did not attach the ceramic 
part during this measurement.

Figure 7 shows the S2i spectrum of the circular elec
trode, where three large peaks are recognized. The first.

-40 -

:TE,m Mode

C TEM like Mode

W : Waveguide Mode

Frequency [GHz]

Figure. 7. Dipole mode resonance of the circular BPM.

an asymmetric electrode showed a small decrease of the 
quality factor.

The second peak marked as B in the figure is identified 
as the TE111 cavity mode inside the BPM. This mode 
is trapped in a coaxial volume behind the button. The 
resonance frequency of this mode is given by k = ^Jk\ + k'£, 
where k is the wave number of the resonance frequency, 
A-(= 2-r/A1-) the wavelength determined by the length of 
the electrode axis, kc the cutoff wave number. The quality 
factor is about 300 with the circular electrode and about 
50 with the damped electrode. Since this measurement did 
not include the ceramic part, the resonance frequency and 
the quality factor may be different from those of the actual 
BPM. We will investigate the coupling of this mode to the 
beam in near future.

The third peak marked as C is the TEM common-mode 
resonance. This mode is harmless because of its low quality 
factor and high coupling to the external circuit. There 
are several sharp peaks marked as W. These frequencies 
are identified as cutoff frequencies of TMrim modes in a 
0100 mm circular chamber.

V. Discussion
The beam current spectrum and the power spectrum of 

the KEKB rue shown in Fig. 8, for a natural bunch length 
a z of 4 mm. This figure shows that we should avoid reso
nances in the frequency range below about 15 GHz.

B C

Frequency [GHz]

Figure. 8. The beam spectrum of KEKB for the natural 
bunch length a z — 4 mm. The solid line shows the beam 
current spectrum I(ui) and the dotted line shows the power 
spectrum P(iv) oc

We estimate the growth time of the instability due to the 
TE110 mode. The R/Q is calculated from the loss factor 
k calculated with MAFIA and from the relationship [1]

R
Q

(i)

peak around 7.8 GHz, marked as A, is TE110 mode at 
the electrode. This resonance frequency is consistent with 
the numerical results of MAFIA. The quality factor of the 
mode was estimated to be 40. Another measurement with

where ivr is the resonance frequency and a, is the bunch 
length in units of time. The experimental results show 
the Q value of the TE110 mode is about 40, leading the 
peak impedance R = 2.9 f2 per one BPM (4 buttons).
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The growth rate of longitudinal coupled bunch instability 
is given by [2]

-V 2 °°

t~1 = 2ET*uj /C (W+^RelZ^o+^le-^,

(2)

where N is the number of electrons (positrons) in the ring 
and E is the beam energy. The calculated growth time of 
the instability is 48 ms in the LER and 58 ms in the HER, 
which are sufficiently larger than the radiation damping 
time of 43 ms in the LER and 23 ms in the HER. The 
calculation is made for the worst case, i.e. we take into 
account only one resonance of BPMs. Therefore, if we only 
think of the TE110 mode, we may adopt the circular button 
in the final design of the KEKB position monitors.

The TE111 mode exists only inside the BPM and it may 
affect little on the beam impedance, however, the coupling 
has not been estimated yet. Since the asymmetric structure 
have good damping effect on the mode, there is still some 
possibility of using the structure.

At hist, we mention about the resonance in the ceramic 
briefly. Since it is difficult to damp these modes, we will 
optimize the thickness of the ceramic to detune the reso
nance from the RF harmonics.

Fabrication tests on brazing the electrode to the cop
per chamber is in progress. There still remain techni
cal problems in the ceramic feedthrough, i.e., some of the 
feedthrough had vacuum leakage troubles after the brazing 
process. We are trying to optimize the detailed structure of 
ceramic part and sealing metal parts to meet both require
ment of the brazing process and the RF impedance issues.
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Abstract

We use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). 
Employing proper termination of the BPM into a coaxial cable, the output signal at 
the BPM is determined. Thus the issues of signal sensitivity and power output can be 
addressed quantitatively, including all transient effects and wakefields. Besides this first 
quantitative analysis of a true BPM 3D structure, we find that internal resonant modes 
are a major source of high value narrow-band impedances. The effects of these resonances 
on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the 
ceramic vacuum seal under high current operation is given.
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1 Introduction
There are several issues of concern for the button-type BPMs in the PEP-II [1] vacuum 

chamber. First, the presence of BPMs in the vacuum chamber contributes significant 
impedances, broad band and narrow-band. For broad-band impedance, the contribution 
of all the BPMs to the total impedance budget can be readily calculated. Narrow-band 
impedances arise from the formation of resonances or trapped modes in the BPM, which 
may have detrimental effects on the beams because of coupled-bunch instabilities, and 
which may produce heating effects above tolerable levels. Second, the power coming out 
of the cable connected to the BPM should not be too high such that it is within the 
handling capability of the diagnostic electronics, but not at the expense of losing the 
signal sensitivity at the processing frequency of 952 MHz. Third, the power carried by 
the trapped modes and by the signal, especially when the beam is offset, may produce 
considerable heating in the ceramic and metallic walls of the BPM. These issues are closely 
related to each other, thus increasing the complexity of designing the BPM. In view of 
these electrical and mechanical requirements, BPMs with 1.5-cm diameter buttons have 
been selected for the PEP-II.

The paper is organized as follows. In the next section, we describe the essential 
features of the MAFIA modeling of the BPM. The calculations are carried out in the 
time domain to obtain the wakefield and other relevant information. In section 3, we 
present the main results of the numerical simulation. The longitudinal broad-band and 
narrow-band impedances, the signal sensitivity and power output at the coaxial cable are 
calculated. We estimate the power dissipation in the ceramic vacuum seal in section 4. A 
summary of the results is given in section 5. In this paper, we are mainly concerned with 
the electrical properties of the BPM. The mechanical design of the BPM can be found in 
Ref. [2].

2 MAFIA Modeling
The detailed layout of the BPM in the arcs of the PEP-II High Energy Ring (HER) 

is shown in Fig. 1. Each BPM consists of four buttons, located symmetrically at the top 
and at the bottom of the vacuum chamber. The HER arc sections have totally 198 BPMs. 
There are 92 BPMs in the straight sections of the HER, and the four buttons are located 
symmetrically at 90° from each other at the circumference of the circular pipe. The BPM 
button is tapered in such a way that the impedance matches that of a 50 fi coaxial line. 
A ceramic ring for vacuum insulation is located near the button region. It has a dielectric 
constant of about 9.5. The inner radius of the ceramic vacuum seal needs to be adjusted 
for optimum matching.

The 3D MAFIA model of the BPM is shown in Fig. 2. Because of symmetry, only one 
quarter of the structure is simulated. One button of the BPM is situated on the top of the 
vacuum chamber, and it tapers gradually to a coaxial line above. The simulation is done 
in the time domain, which consists of two kinds of calculations, namely wakefield and

200



Figure 1: Layout of the 4 buttons of a BPM in the arcs of the HER vacuum chamber.

port transmission calculations. For wakefield calculation, a rigid beam comes in along the 
z-direction. It excites electromagnetic fields at the BPM, which in turn act back on the 
beam. The boundary conditions at the beam entrance and exit planes are set to waveguide 
boundary conditions so that electromagnetic waves traveling to these boundaries are not 
reflected. At the top boundary of the coaxial line, it is treated as an outgoing waveguide 
port, where the transmission of the signal is determined. A two-dimensional eigenvalue 
problem is first solved to determine the propagating and evanescent modes of the coaxial 
line. These modes are then loaded at the port in the 3D time domain calculation. Since the 
beam excites a broad frequency spectrum, a broad-band boundary has to be implemented 
at the waveguide port.

The impedance of a BPM can be evaluated from the wakefield or its Fourier trans
form. From the Fourier transform of the wakefield, we can identify potential resonant 
modes excited by the beam in the BPM. Since the resolution of narrow resonances in the 
impedance spectrum depends on the number of sampling points in the wakefield calcula
tion, we evaluate the wakefield up to a long distance of s — 5 m, where s is the bunch 
coordinate. The transmission calculation at the port gives us the value of the outgoing 
voltage at the end of the coaxial line as a function of time, which corresponds to the signal 
picked up by the BPM as the beam passes through this region of the vacuum chamber.
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Figure 2: 1/4 MAFIA geometry of the BPM in the vacuum chamber. The button region 
is cut out for viewing purposes.

3 Longitudinal Impedances
The high beam current in the PEP-II B-Factory poses stringent requirements on 

impedances and power deposition. BPMs can generate considerable broad-band and 
narrow-band impedances. To avoid single-bunch instabilities, the accepted limit of the to
tal broad-band effective impedance for the prescribed PEP-II current is \Z/n\ejj — 0.5 fl
[1], where n = u}/urev is the harmonic number. It is desirable that BPMs contribute a 
small fraction to the total broad band impedance budget. Narrow-band impedances can 
also be generated as a result of the excitation of trapped modes in the BPMs. Their 
values have to be controlled below some limits so that coupled-bunch instabilities will not 
occur. The most serious higher-order mode excited by the beam is the TEn mode with 
respect to the button axis. Its frequency increases with a decrease in the diameter of the 
button. The acceptable limit of the narrow-band impedance for avoiding coupled-bunch 
instabilities is a function of the frequency f = uj2tt of the resonant mode and is given
by [3]:

(
Re[Z\

kn ) < 3.0(
GHz
f

)e(ua’/c)2, (1)

where <r2 is the bunch length. It should be noted that the above limit is a conservative
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estimate since it takes into account of only radiation damping. Other damping mech
anisms such as feedback will help suppress the narrow-band resonance. The numerical 
factor is given for the Low Energy Ring (LER) with a current of 3 A, and the limit is 
inversely proportional to the current. The exponential factor indicates the decay of the 
beam spectrum at high frequencies.

In the following, we present the numerical results from MAFIA simulations. In our 
simulations, a Gaussian bunch with erz = 1 cm is used and the total bunch length is 
lOcr’s. For the coaxial port, at the range of frequency of interest, only the TEM mode 
propagates. Thus for the output signal at the coaxial line, we only need to consider this 
mode. The MAFIA results shown in the following figures are normalized to a bunch 
charge of 1 pC. The numerical results for impedance, power and other relevant quantities 
for the case with 3 A current (8.3 x lO10 per bunch) are listed in Table 1.

Energy loss by beam 126 W
Power out of one cable 9 W (37 W)*
Transfer impedance at 952 MHz 0.65 fZ
Broad band impedance, \Z/n\ 0.008 fZ (11 nH)
Narrow-band MAFIA
impedance: accepted

6.5 kfZ at ~ 6.8 GHz 
3.4 kfZ

Table 1: Impedance and power of the 1.5-cm BPM. The beam current is 3 A. The 
impedances are for all the BPMs in the ring. "The power in the parentheses is that 
out of the cable which is closest to the beam when it is 1 cm offset from the axis.

In Fig. 3, we show the longitudinal wakefield as a function of the beam coordinate s. 
It can be seen that, for 0 ^ s lOcr, the wakefield is roughly inductive. The inductance 
of each BPM is estimated to be 0.04 nH or \Z/n\ — 3.4 x 10~5fZ. The total contribution 
of all the BPMs is 11 nH or \Zjn\ ~ 0.008fl. The total broad band impedance budget 
for all the ring elements is estimated to be 0.31fZ [4], and therefore the BPMs contribute 
a quite small fraction of it. By integrating the wakefield, the loss parameter of a BPM 
is found to be 2.7 x 10~3 V/pC. For N — 8.3 x 1010 and a bunch spacing of 1.2 m, this 
gives a power loss of 126 W by the beam. In Fig. 4, we show the impedance spectrum as 
a function of frequency. A sharp peak of 25 fZ is seen at around 6.8 GHz, which should 
be compared with the TEn cutoff frequency of 6.4 GHz of an ideal coaxial waveguide 
with the button dimensions. The frequency and impedance of the TEn mode are in 
satisfactory agreement with measurements [5]. The total impedance of all BPMs due to 
this resonant mode is 6.5 kfZ, which is about twice the accepted value calculated by Eq. 1. 
This resonance can be suppressed to a small value by introducing asymmetry [6, 7] at the 
button at the cost of increased mechanical complexity. Since the narrow-band impedance 
is small compared with the feedback power (~ 100 kfZ) used for damping the RF cavity 
higher-order modes, we rely on the feedback system to suppress this resonance.
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4 Signal and Power Output
In Fig. 5, we show the output signal of the TEM mode at the coaxial line as a function 

of time. The signal dies off rapidly after the transient excitation during the passage of the 
beam. The power output can be evaluated by integrating the signal voltage over time. 
When the beam is offset from the center of the chamber, the monitor closest to the beam 
will transmit the highest power. The power carried by the signal for this monitor for an 
1 cm offset beam is 37 W, which can be handled by the diagnostic electronics. Fig. 6 
shows the Fourier transform of the output signal divided by the beam current spectrum. 
The frequency content of the signal is quite broad band and there is no evidence of high 
narrow peaks up to 10 GHz. In particular, at 952 MHz, the transfer impedance is 0.65 Cl, 
which is above our minimum requirement of 0.5 Cl.

The sensitivity of a BPM is generally determined by the signals picked up by the 
different monitors when the beam is off center. We define the sensitivity function as:

5,- = h (2)

where i can be either x or y. For Sx, dx is the offset in the x-direction, and A and B are 
the signals picked up by the top right and top left monitors respectively. For Sy, dy is 
the offset in the {/-direction, and A and B are the signals picked up by the right top and 
right bottom monitors respectively. Fig. 7 shows the sensitivity functions Sx and Sy as 
functions of frequency. It can be seen that the frequency dependences of Sx and Sy are 
similar and are extremely flat up to about 5 GHz. Their values at 952 MHz satisfy our 
position resolution requirements.

f/GHz
Figure 7: Sensitivity functions of the 1.5-cm BPM as functions of frequency.
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5 Power Dissipation
The high power throughput of the signal and the presence of HOMs in the BPM may 

generate considerable heating effects. Due to the transient behavior of the problem, the 
calculations of the power loss in the ceramic and in the metallic walls are carried out by 
fourier-transforming the time evolutions of the electromagnetic fields in the BPM. The 
energy dissipation in the ceramic during a single bunch crossing is given by:

P = J (3)

where

Ew{x) = J E(x,t)eiwidt, (4)

Time [ns]

Frequency [GHz]

Figure 8: (a) The time history of the electric field and (b) its Fourier transform for a 
typical location in the ceramic vacuum seal.
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and Ci is the imaginary part of the dielectric constant. The time dependence of the 
electric field and its Fourier transform at a typical location in the ceramic vacuum seal is 
shown in Fig. 8. A resonant peak appears in the Fourier spectrum, corresponding to the 
trapped TE mode in the BPM. Since the Q value of the resonance is about 100, we do 
not expect heating enhancement due to multi-bunch effects. Therefore it is sufficient to 
use the above formulas to determine the power dissipation. Assuming the ceramic has a 
dielectric constant of 9.5 and a loss tangent of 0.0007, we find that the ceramic loss is ~
0.35 W when the beam is offset by 1 cm at 3 A. At the junction of the ceramic and inner 
molybdenum center pin where heating effects are of more concern than the outer wall, 
the power loss is found to be ~ 0.007 W, assuming copper conductivity. The introduction 
of other material such as nickel on the surface of the center pin will increase the power 
dissipation roughly by an order of magnitude. ANSYS were used to estimate the thermal 
and structural stabilities of the BPM under these conditions with an additional heat 
source of 0.25 W/cm2 from scattered synchrotron radiation. A maximum temperature 
of 110°C was found on the button and a temperature gradient of about 30°C in the 
ceramic. ANSYS simulations showed that the temperature and stress distributions are 
acceptable [2],

6 Summary
We simulated the PEP-II BPM using MAFIA and showed that the 1.5-cm button 

type BPM has the required transfer impedance and signal sensitivity. The broad band 
impedance is a small fraction of the ring impedance, and the narrow-band impedance can 
be suppressed by the feedback system. The power dissipated in the ceramic vacuum seal 
was estimated, and temperature and stress distributions were found to be acceptable from 
ANSYS simulations.
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Abstract

This paper introduces the principle of a new slotted kicker simply, which is made by 
using vacuum pipe itself with proper slits as current conductors, and then, presents 
a rough estimation of its longitudinal and transverse impedance , respectively. Cal
culation shows that its impedance is reduced significantly compared to our present 
air-coil kicker.

1. Introduction

For further luminosity upgrading of BEPC (Beijing Electron Positron Collider), several 
approches were proposed, among which mini-/? insertion was the most promising. However, 
the crucial factor for the BEPC mini-/? scheme is the reduction of bunch length from present 
6-7 cm to about 3 cm. Hence, finding an approach to shorten the bunch length becomes a 
very important issue. In BEPC, the bunch lengthens according to following scaling low:[l]

a,{cm) = 0A04(^)^ (1)

Where I is the bunch current, cvp the momentum compaction factor, v, the synchrotron 
tune and E the beam energy. Therefore, for the purpose of it, the coupling impedance 
should be decreased from present about 4.0 fi to 1.6 fl. Measurements show that the most 
contribution to the impedance comes from 4 kickers and 40 bellows. Based on this motive, 
we are developing a slotted-pipe kicker model which has low impedance, and then replace 
the present kickers by the new kicker.

In this paper, we will brifely introduce the principle of a new slotted-pipe kicker, and 
then emphase to presents the formulas for calculating impedance of the kicker.

2. Principle of Slotted-pipe Kicker

Before introducing the new kicker, we would like to simply describe the structure of the 
present kickers in BEPC. The present kickers are air-coil magnets which has two current
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metal plates surrounded by a large vacuum tank, as shown in Fig.l. For this kicker, there 
are some sources of impedance, such as larger tapers. According to the measurements[2], 
the longitudinal impedance of the kicker (Z/n) is about 0.25 Q. So it is necessary to design 
a new kicker to replace the old one. However, in accordance with our present situation, 
we had better improve it on the basis of present kickers. This new slotted-pipe kicker is 
principally based on the design of G.Blokesch [5], which use the vacuum pipe wall itself 
with properly arranged slits as current conductors. The schematic diagram and cross 
section of the slotted kicker are shown in Fig.2. These two parallel conductors on both 
sides of the beam axis form an inductive loop, and the six slits between the conductors 
are connected to ground which is one of the most important features different from the 
current kicker. Due to our racetrack pipe, the central metal plates are the nearest to the 
beam. So these plates carry away most of image currents travelling with the beam along 
the beam pipe, and thus through qualitative analysis, the impedance is reduced greatly.

In designing a new kicker, the first is to meet the requirements of magnetic field, such 
as field strength, good field region and so on. The second is to make the impedance as 
small as possible. Hence the relation between field requirements and low impedance needs 
to be compromised. In BEPC, the parameters of kicker for injection are as follows: 
•kicker magnet field strength / Bdl = 200G's.m,
•good field region x = ±227717??,
•field error=±2%.
For the purpose of meeting the field listed above, 8 slots such as 3, 4, 5, G. and 7, 8, 9, 
10 are made. Note that the width of slots, w, should be as narrow as possible, since the 
imaginary impedance is almost proportional to ir3[4]. In order to form an inductance on 
the basis of above 8 slots, transverse slots must be cut, such as 1 and 2 shown in fig.2. 
Impedance study[6] shows that the t ran verse slots contribute to more impedance than the 
longitudinal slots, since these transverse slots cut field lines. Whereas, we should also make 
the width of tranverse slots as small as possible.

3. Calculation of longitudianl impedance for new kicker

At frequency below cutoff, the cross talk among the slots is neglected. So the impedance 
of this kicker is the summation of these slots, including 8 longitudinal slots and 2 trans
verse slots. In order to solve question conveiently, we approximate the racetrack pipe into 
circular pipe, i.e., its radius of circular pipe is the short semiaxises. And thus the upper 
estimation of impedance for this racetrack structure is given. Applying to Betlie theory[3], 
S.Ivurennoy derived formulas for calculating impedance of slots whose width w and length 
1 are smaller than radius of beam pipe b as follows: [4]

Z( tv, -iZv ■V mag ± W /) 
C 47T2/)'2

(2)

where amo9, ae/ are the electric and magnetic polarizabilities of the slots, respectively. How
ever, for our new slotted kicker, the width is smaller than b, but its length is larger than 
b. So our case violate the condition of equation (2). Fortunately, Stupakov[7] extends the 
theory to the limit l>b (w is still smaller than b). He thought that the impedance of these 
slots comes only from the ends of the slots, i.e., the impedance of long slots is independent

210



of their length. So, the impedance of long slots is the same as that of short slots given in 
equation (2).
For a rectangular-end slot oriented in the beam,

aet = - 0.5663j + 0.139S(y)2) (3)

<W = ^r«’2/(l + 0.3577J - 0.0356(y )2) (4)

0'm|| — 0 (5)
For a round-end slots oriented in the beam,

aei = — ——tc2Z( 1 — 0. <65— + 0.1894( — )2) 
16 l l

(G)

ami = —iv2/(l — 0.0857-— 0.0654( — )2) (7)

om|| = 0 (8)
Therefore, for a rectangular slots:

cvm -j- cie = t<,3( 0.1814 — 0.0344y) (9)

For a round-end slots:

am + cte = ic3( 0.1334 — 0.05y). (10)

Considering the impedance value and the effect of high volts, we 
with rounded-end. Now substituting equation (10) into (2), one can 
of a slot oriented in the beam:

should make the slots 
obtain the impedance

Z(lo) = — iZo
iv te3( 0.1334 — 0.05j)

(ID
c 4;T2b2

In the 8 longitudinal slots of our slotted kicker, there are four slots whose width is 7 mm, 
and another four slots whose width is 9 mm. Here, note that the thickness of the wall 
is smaller than the width of slots. So their impedance is calculated directly using the 
equation (11): The impedance of the slots with the width of 7 mm is,Z(u.’)/n= *0.2 x 10-5, 
and also for the 9mm wide slots, Z(cv)/n=i0.43 x 10-5fl. Totally, the 8 longitudinal slots 
contribute to the impedance of about *2.5 x 10-5fZ.
The impedance of transverse slots can be estimated approximately as follows:

°'w
7r/3

24((»(%) + ^_Z)' (12)

Since, for narrow transverse slots, the electric polarizability cve is smaller than the lon
gitudinal magnetic polarizability «„i|| by an order of magnitude and can be neglected in 
calculating impedances. Hence,

<!■„, + CVc =
7T/3

24(M%) + ^ -k)
(13)
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Generally speaking, one can replace the circle by regular octagon with side a—tt b/4[5j. 
For our transverse slots of slotted kicker, one can estimate the impedance of four transverse 
slots with length a and width w. Applying to equation (13), one can obtain:

7r
°e + Ocm — —( — )

b3
(14)

3V4 ' (ln*g + ^ - 5)’

Substituting the equation (14) into (2), the impedance due to transverse cut with the 
width 7 nun and the thickness 3 nun is Z(tv)/n=i3.0xl0~4fi!. Now one can easily find that 
the transverse slots made more contribution to impedance than longitudinal slots. The 
total longitudinal impedance of this slottd kicker is Z/11=/3.25 x 10~4f2.

4. Transverse impedance of slotted kicker
The dipole transverse impedance is defined as

. +00
Z±(u>) = -— / dze-,kz[E + Zj x H}±

(IV J
15)

The transverse impedance of longitudinal slots reduces to[7]

Z±i — i(0-1334 — 0.05—), 

and likewise, its formula of transverse slots can be obtained:

7 _ ,-jEl________ l________

(10)

(17)

After substituting parameters into equation (16) and (17). the total transverse impedance 
is very little.

5. Conclusion and Future work
At the frenquency below cutoff, the real part impedance of this kicker is zero, and the 

imaginary part is about 10-4 magnitude. Therefore, through analysis, the slotted kicker 
has very low impedance. Of course, further work is to simulate this kicker using 3-D 
MAFIA to confirm our results given above.

Acknowledgements
The author would like to express his thanks to Prof.Wang shuhong, Drs.Zhao zhentang 

and Hao Yaodou for their help, and special thanks to Prof. M.Tigner for his fruitful 
suggestion. Also we thank others from injection group for their kind help.

References
1. Q.Qing et ah, proceedings of 1995 International Acc.C’onf..Dallas,USA.
2. G.W.Wang, Ph.D. desertation
3. H.A.Bethe, Pliys.Rev. 1944
4. S.S.Iiurennoy, IHEP 92-84, UNK
5. G.Blokesch, et al.,NIM A338( 1994)
6. V.Thiagarajan, et al., SSCL-650
7. G.V.Stupakov, Phys.Rev.E, Vol.51,1995

212



conductor

Fig.l Schematic map of the present kicker

Structure

conductor

of a slotted-pipe kicker

213



Debye Potentials, Electromagnetic Reciprocity 
and Impedance Boundary Conditions 
for Efficient Analytic Approximation 
of Coupling Impedances in Complex 

Heterogeneous Accelerator Pipes

Stefania Petracca
Dip. Fisica Teorica e S.M.S.A. Universita’ di Salerno, 

and I.N.F.N. Salerno, Italy.

Abstract
Debye potentials, the Lorentz reciprocity theorem, and (extended) Leontovich 

boundary conditions can be used to obtain simple and accurate analytic esti
mates of the longitudinal and transverse coupling impedances of (piecewise 
longitudinally uniform) multi-layered pipes with non simple transverse geome
try and/or (spatially inhomogeneous) boundary conditions.

1 Introduction
The interaction of relativistic charged particle beams with the sorrounding chamber 

is often conveniently described in terms of coupling impedances. There is a wide 
Literature concerning coupling impedance properties and computation (see [1] - [9], 
and references quoted therein), but only few analytic solutions are available, for those 
simple cases where both the Laplacian is separable in the transverse coordinates and 
the boundary conditions are simple (e.g. perfect conductors).

In most practical situations, where the cross sectional pipe geometry is not simple 
(e.g., a square with rounded corners, as in the proposed LHC liner design), and several 
electrically different wall materials are used, one has to resort to numerical solutions.

As compared to extensive numerical simulations, however, analytic solutions, 
though approximate, may give an immediate insight into the relative role of the 
machine parameters, thus providing valuable design hints.

In this paper we rely on some popular methods from classical Electromagnet
ics to obtain general (though approximate) formulas for computing beam coupling
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impedances (and related quantities, e.g., the parasitic loss) in complex pipes with 
non simple transverse geometry, consisting of several co-axial tubes, possibly made 
of different materials. In representative cases (e.g. the circular cross section chamber 
with resistive wall) our method reproduces the known exact solution. Most of the 
above results have been developed by the Author in connection with the LHC study 
at CERN.

The paper is organized as follows. In Sect. 2 we introduce as a preliminary tool the 
Debye potential formalism for accelerator pipes [11]; in Sect. 3 we present some gen
eral formulae obtained by applying the Lorentz reciprocity theorem, connecting the 
coupling impedances of a (piecewise longitudinally uniform) pipe with complicated 
transverse geometry and/or boundary conditions to those of a simple one, assumed 
known, whereof the non-simple pipe differs by suitably small perturbations [12]. Un
der the same section we also discuss the accuracy of the approximations involved, and 
compute the pertinent parasitic losses. In Sect. 4 we use the equivalence between 
plane TEM waves in stratified media and voltage waves through cascaded transmis
sion lines to obtain equivalent impedance boundary conditions at the internal surface 
of a pipe whose wall may consist of several (circumferentially inhomogeneous) lossy 
layers with different electrical and magnetic properties, possibly intermingled by non 
conducting (e.g., vacuum) gaps. In Sect. 5 a simple impedance boundary condition 
describing a (perfectly conducting) perforated wall is introduced. Conclusions follow 
under Sect. 6. The reciprocity theorem, transmission line equations, and the compu
tation of the interaction constant for (plane, regular) dipole lattices are summarized 
in Appendix A, B and C. MKSA units are used throughout.

2 Electromagnetic Fields in Piecewise Uniform 
Pipes from Debye Potentials

In this section we sketch a general and systematic framework for computing the 
electromagnetic fields generated by a relativistic beam in longitudinally uniform pipes 
consisting of several co-axial shells made of different materiafs [11]. Anisotropic, non 
perfectly conducting, corrugated or slotted walls are allowed, in principle. The Reader 
will find similarities with the approach formulated by Schwinger and Marcuvitz to 
solve Maxwell equations in waveguides [13]. The formalism provides an alternative 
derivation of Chao’s results [14] for cylindrical pipes, and is entirely phrased in vector 
form.

Starting from Maxwell equations, where e, h are the electric and magnetic fields, 
d, b the inductions, p, j the charge and current densities, and using the obvious 
decompositions:

V = Vt + dzu2, f = ft + fzUz, (1)
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where / is any of the functions e, h, b, d, and the suffix t stays for transverse, we 
obtain, separating transverse and longitudinal terms:

(V, x et) — -dt bzuz,

(Vt x ht) = (dt dz +jz)uz, 

uz x (dzet — Vtez) = -dtbt,

(2)
nz x (dzht ^thz^j = dtdh 

Vt ■ dt — —dzdz + p,

Vfbt- -dzbz.

If the source-term is a transverse sheet1 of charge traveling in the (positive) z- 
direction with constant velocity v0:

p(x, y,z,t) = p$(x, y)6(z - v0t), 

j — v0p uz,
(3)

ps being a surface charge density, we expect the same z, t dependance for all functions 
involved. Thus we switch to the spectral representation:

- If00-
f(x,y,z,t) = — / F(x,y,k) exp[-jk(z - vQt)] dk. (4)

Z7T J — oo

Furthermore, assuming the medium described by material constitutive relationships 
of the following form2:

d(r, t) = / e(r) e(r,t — t) dr, b(r,t) = / p,(r) h(r,t — t) dr, (5)
J — oo J — CO

the following spectral material equations are obtained:

D(x,y,k) =e (kv0) E(x,y,k), B(x,y,k) =P (kv0) H(x,y,k), (6)

where e, P denote the frequency-dependent complex permittivity and permeability

^More general (undeformable) charge profiles can be represented, using z—convolution, viz.: 
p(x, y,z - v0t) - p(x, y, z) * 6(z - v0t).

2These are rather general, allowing for dielectric (magnetic) losses as well. The only restrictions 
are: isotropy (which could be removed at the expense of some complication), homogeneity and 
time-in variance.
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(Fourier transforms) of the material medium. Using eq.s (3) to (6), into (2), one gets:

(V, x Et) = -jkvo P (kv0) Hzuz,

(V, x Ht) = (jkvo e (kv0) Ez + psv0)uz, 

uz x (-jk Et - VtEz) = -jkvo P (kv0) Ht,
(7)

Uz x (—jA: Ht - VtHz) = jAruo e (&u0) Et,

Vt- Et = jk Ez + ps/ e (Arvo),

Vt • //t — jk Hz.

The next step involves resolving the (transverse) field vectors into their irrotational 
and solenoidal parts [15]:

Ft = Ft{sol) + Ft{irr). (8)

Using eq.s (8) into (7), one easily obtains from the first and last pair of equations:

' (V, x EM = -no % (W (V, - #M) Uz,

(V, x #("')) = „o % (&uo) (V, - EM) uz-
(9)

The 3rd and 4th equation in (7), on the other hand can be written as equalities 
between a solenoidal and irrotational vector, which can be therefore set both to zero. 
Accordingly, the 3rd equation yields:

' u, x E|"'-) = vo % (&vo)

% (&vo)
Uz x < Ef(trr.) V, k* v0 t1 (kvo) Hi(sol.)

(10)

while the 4th gives:

( Uz X Ej'"') = -Vo 7 (tvo) EX" \(irr.)

Uz X
,>r.) _ V,V< •H(t‘rr ) - -vo % (Avo) E}"')

The first equations in (10) , (11) can be also written:

(11)

E\sol) = -v0 ? (A:v0) uz x H\trT \ H\,oL) — v0 e (kv0) uz x Et(,rr ), (12)

217



which shows that knowledge of the irrotational parts alone is sufficient to recover the 
complete (transverse) field. Using the 1st (resp. 2nd) equation in (12) into the 2nd 
equation in (11), (resp., (10)) one gets:

f V«V« • £<(,rr') - P[1 - Vq e (kv0) P (kvo)] H[itt) = 0,

| V,Vt • £t(,rr') - k2[ 1 - Uq e (H) P (H)] £t(irr") = vtps/ C (H)-
(13)

Next we let:

= -V«$, ^,(<rr-) = ,

into eq. (13), thus obtaining:

(14)

VtVt<f> - /r2[ 1 - Vq t (kv0) P (H)]$ = -ps/ e (H) + C,
(15)

{ V,Vt* - A:2[ 1 - vg e (H) P (HP = C#.

Note that if and only if [1 — vl e (kv0) P (Au0)] f 0 the (as far undetermined) 
constants C, C' can be set to zero, via a trivial transformation of the potentials. 
From the last pair of eq.s in (7) we finally get:

I Ez = jk[l - vl t (kvQ) P (H)]$ - Cjjk,
\ Hz = jk[l - vl t (H) P (H)]^1 - C'/jk,

and hence 4> and ^ are nothing but the Debye potentials of the electromagnetic field 
[16]. Once the Debye potential have been computed, the complete solution of the EM 
problem is available: eq.s (16) give the longitudinal components Ez, Hz, eq.s (14) 
furnish the irrotational parts of Et, Ht, and finally eq.s (12) yield the solenoidal parts 
of Et, Ht.

2.1 Boundary Conditions
Usually, the beam pipe consists of several co-axial shells with different electro

magnetic properties t and p. The boundary conditions to be satisfied by the fields 
and inductions across the interface between different media are well known: n x e 
and n x h must be continuous n being the unit vector normal to the interface.3

Another class of possible boundary conditions are those of the impedance type,
viz.:

n x n x E- Zw H 0, (17)

3It can be readily proved that the further boundary conditions on the inductions, namely that 
h • d and h ■ b should be continuous across the interface follow automatically from the continuity of 
n x e and h x h.
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where Zw is the (complex) Fourier transform of the wall surface impedance operator 
evaluated at u> = kv0. Conditions of this kind are credited to and named after M. A. 
Leontovich [18], and can be conveniently used in a variety of problems (see [17] for a 
review), including non-perfectly conducting, anisotropic, pierced or corrugated walls.

The standard and impedance boundary conditions can be easily rephrased in 
terms of the potentials 0 and 'P.

For the standard b.c., using eq.s (14) and (12) one gets:

h x E = (h x uz)
v—' 2

jk 7 <P + C/jk +

+ n x [—+ vq M (kvo) uz x Vt\P],

h x H — (h x uz) 7 $ + C"/j& +

+ n x [—Vf'P — Vo e (kvo) uz x V<<P],

(18)

where 7= (1 — v% t (kv0) F (kv0))-1/2. It is noted that the 1st and 2nd term on the 
r.h.s of eq.s (18) represent the transverse and longitudinal part of n x E, h x H, and 
must be therefore separately continuous across the interface between two different 
media. Equations (18) accordingly yield a total of four (component) equations.

Impedance boundary conditions, on the other hand rephrase into:

h x ||(n x uz)[jk 7 $ + C/jk\- Zw (-V,^ - v0 e (kvQ)uz x V($)| +

+ (n x (-V,4> + u0 (kv0)uz x Vt^)- Zw uz[jk 7 ^ + C'/yA:]}} = 0 (19)

Here the 1st and 2nd term in the innermost curly brackets represent transverse and 
longitudinal vectors and must therefore separately vanish at the boundary. Equation 
(19) accordingly splits into a total of two (component) equations.

3 Coupling Impedances and Debye Potentials
In a pipe with longitudinally-invariant cross section the force produced by a 

point charge Q running parallel to the pipe axis, with (constant) velocity f30c and 
transverse coordinate r"o, on another point charge q traveling on a parallel trajectory, 
with transverse coordinate rj at an (axial) distance s behind, is a function of r0, rj 
and s only, and can be derived from a scalar potential, w, called the wake potential 
per unit lenght4:

F(ri,r0, -s) = -qQ Vw(rur0,-s). (20) * i

4In pipes with longitudinally varying cross section the fields depend separately on z, t, and 
Lorentz force is no more a function of s = z — /?qcZ. However, one can subdivide the pipe into 
subsections L, < z < Z,,-+1 such that:

fi Fdz = —qQV Wi, i = 1,2,...
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where V = {dzilz, }. The principal parts of the longitudinal and transverse wake 
force in the limit as ro, fi —» 0 are:

Fs = -qQdaw(Q,0,s), (21)

F±. = -9<9Vr-,Vr-0 w(r1,r0,s)|r-o=r-=0 • r0 ~ -qQd„ w (s) • r0, (22)

where w (s) is the transverse dyadic wake potential per unit length, obeying the 
Panofsky- Wentzel theorem:

ds w(s) = VflVr-0 u;(r1,Fo,s)|r-=f.i=0. (23)

The spectral coupling impedances per unit length are defined as follows [20], [21]:

z"=it/'-* (^) ■ = bT—i (S) - (24)
where Ta_► denotes the s —> k Fourier transform operator, with k = u>/(30c.

The wake potential per unit length w can be computed from the electric Debye 
potential <f> produced by the leading charge Q as follows [12]:

w(rur0,s)= ^ ^ <t>(ri,r0,-s), (25)

whence, using eqs. (20) to (24):

Z||(w)=;t^^$(0,0,t), (26)

and* 5:
Sx M = *(f„,f,,t)|-=-=0. (27)

4 Coupling Impedances in Complex Structures 
From Reciprocity Formulas

According to eq.s (26), (27), computing impedances requires the explicit knowledge 
of the (electric) Debye potentials. Unfortunately, eq. (15) can be solved only in a 
few simple cases, where the pipe geometry and (electromagnetic) material properties 
are simple. In all other cases, impedances must be computed numerically.

where W, is a function of (r, ro, s) only, and is called wake funtion [19]. For longitudinally uniform 
pipes one has /, = F(Li+1 — Li), and w = Wi/(Li+1 — Li).

5The tensor nature of the transverse impedance first emphasized by Vaccaro [22] and related to 
the same property of Laslett coefficients [10] is clearly exhibited.
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Nonetheless, in many practical istances, the actual pipe geometry and mate
rial properties of the pipe can be viewed as perturbations of a simpler pipe, where 
Helmholtz equation is separable and the wall is a perfect conductore, for which the De
bye potentials are known. It turns out [12] that in this case the coupling impedances 
can be approximately computed in analytic form to a high degree of accuracy, pro
vided the perturbations are not too large, by resorting to Lorentz reciprocity theorem 
(see Appendix A) as follows.

Let $o(r, ^o) and $(r, fq) the (^-domain) electrical Debye potentials of the elec
tromagnetic fields produced by the charge densities:

Po = Q6(r- r0)8(z - 0oct), p = Q8(r - r\)8(z - fact) (28)

in two vacuum pipes differing by some alterations in the boundary geometry and/or 
electrical properties. We call the problem described by 5>o (assumed known) and <3> 
(unknown) as unperturbed and perturbed, respectively. Thus:

V?$;-A:(l-/% = -^6(r-fL), V^-^(l-^)$ = -^6(r-r.), (29)
Co Co

where r denotes the transverse position, Q is the electric bunch charge, V( is the 
transverse gradient, /3q = Vo/c, eo is the vacuum dielectric constant, and the asterisk 
means complex conjugation.

Multiplying the first equation in (29) by 0 and the second one by 0%, subtracting 
and integrating over the pipe cross section S one gets the following reciprocity formula 
(see Appendix A):

(30)
where dS is the boundary of S, and Green’s theorem has been used to convert the 
surface integral into a contour one. It is expedient to rephrase the l.h.s. of (30) in 
terms of fields instead of potentials (16), thus getting:

vOz ^ = v,*;. ^ = _^brr.) a^ = (31)

0 lil&s Z\uall Hc as - Y0Z,wall

;&(!-/%) ;6(i-/%) ;&(!-/%)
+ (32)

where Yq = Zq1 , and Z0 = \JpojtQ is the free space wave impedance. The second 
equality in (32) follows from a Leontovich boundary condition at the pipe wall

un x [un x E - ZwaiiH= 0, (33)

where Zwau is the (complex) characteristic impedance of the wall, evaluated at u = 
kv0. The unit vectors {uz,uc,un} are defined in Fig. 1.
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Fig. 1 - Unit vectors relevant to eq.s (32)

Note that the fields £bn> Eqz refer to the unperturbed situation, and are thus known, 
while Hc, En, Ez refer to the perturbed situation, and are unknown. Using (31) and 
(32) in (30) one obtains the following (exact) relationship:

1 {/asyoZ».»£„irl(r,ro) (Do ££"■■»(*?,)+u

j(s£„-,(r-r„)£('v'l(f,r1M<} = i |4;(f,,fb) - *(r„,r,)] . (34)

From eq.s (34) and (26), letting f0, r) —► 0, we get [12]:

Z||(w)-Z.||(w) = {y„ £ [/?„£«•"■»(?, 0) + S0->£l-' l(r, 0)] M-
/W

(35)

where we used the well known fact that the longitudinal impedance of a perfectly 
conducting pipe (unperturbed situation) is a pure reactance [20].

Furthermore, from the dyadic Panofsky-Wentzel theorem (23), applying the dyadic 
differential operator to both sides of the identity (34), letting ro, —> 0,
and then using (27), we get:

Zi M- Zol (W) = [y« j(sZ„„,,V,„£«r>(r,r„) V„ |/i„£i'" >(f, f,) +

+0i' £<*°' '(f, f,)] it- i V,„£0-, (f, r0)V,-, El"'>(r, f,) it } . (36)
J dS J r 0 — = U

Equations (35) and (36) relate the perturbed and unperturbed coupling impedances6. 
They show the different roles played by the boundary and material perturbations in

6The longitudinal and transverse impedances are obviously independent of the total charge, as 
the fields in (35) and (36) are proportional to Q.
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a particularly clear fashion. As a matter of fact, the r.h.s of eq.s (35) and (36) is the 
sum of two terms: the first is nonzero if and only if Zwau is not identically zero on the 
boundary dS, and accordingly accounts for the effect of the constitutive properties 
of the (imperfectly conducting) wall7. The second integral term on the r.h.s. of eq.s 
(35) and (36) on the other hand, is non-zero if and only if the unperturbed axial field 
component E0z is not identically zero on dS, and thus accounts for the effect of the 
geometrical perturbation of the boundary. Accordingly the second integral in (35) 
and (36) effectively spans only the geometrically perturbed boundary subset dS — dSo-

4.1 Approximate (Perturbative) Formulae
Equations (35) and (36) as they stand are exact but of little use, since if the fields 

in the perturbed geometry were known, one could compute the coupling impedances 
directly, using eq.s (24). However, following a standard procedure of microwave en
gineering [23], we may approximate the unknown fields in the perturbed geometry by 
those produced by the same source term in the unperturbed geometry, in order to com
pute the perturbed coupling impedances using (35) and (36). The error introduced 
in by this substitution can be estimated as follows. Let us denote as:

8 = M (dS - dSo), (37)

the measure (length) of the difference between the perturbed and unperturbed bound
ary, and let further:

ZWaii — Zwau A, Zwau - ^ , A = maxgs I^Ua//] i (3b)

Using the following power expansion for the unknown field:

l+m> 1
F = Fo+ FimA'/r, (39)

!,m=0,oo

and similar expansions for the unknown impedances in eqs. (35) and (36), we recog
nize that the approximate formulae correspond to keeping only the linear terms in the 
formal development of the impedance perturbations in powers of A and 8. Therefore 
the error made after taking E ~ E0 is at least of second order in the assumed small 
parameters 8 and A.

In many instances, the exact coupling impedances depend linearly from A and/or
8. In those cases, our approximate procedure returns the exact solution. This hap
pens, e.g., for the circular pipe of radius b with resistive wall, where eq. (35) becomes:

rf Ewa U
_______________________________ z" = mT'

7Note that in the local spirit of Leontovich boundary conditions, Zwau can vary from point to 
point along dS, thus describing quite general inhomogeneous cross-section contours, consisting, e.g., 
of different materials.
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In fact, letting

E(r,^.i) = Eo(F,nu) = ;
Q f r - f*o,i r — foA(b/rOAy

2xe0 ( |f - r0,i|'2 |r - f0,i(6/r0,i)2|2 J ’
(41)

where Eq is the known exact solution for a circular pipe of radius b with perfectly 
conducting wall8 into (35) and (36), taking into account that:

\\mVr-0E0(f,7-0) = lirn Vf,Eo(F,r,) =
r0-«0 ri ~*0 7T£o 0* T

and using:

where a is the wall conductivity, we obtain:

Z_,, = Zo(l-f^-)-'/2,
kv0t0

Z\\ —
M/*o [1 + j sgn(u>)]

•2a 2irb
, (cr >> kv0e0),

(42)

(43)

(44)

and

k {Zl - Zoi) = + ityUy), (a » kv0e0), (45)

in complete agreement with the exact solution reported in [24].

4.2 Parasitic Loss Formula
Once the perturbed longitudinal impedance (35) has been computed, it is possible 

to calculate the energy lost by the beam due to the finite conductivity of the chamber 
wall (parasitic loss [25]). The energy lost per unit pipe length (J m-1) is9:

A£ r+oc , x
=/-oo du> Re{Z\\^} ’ (46)

where /(w) is the beam current frequency spectrum. As already emphasized, the 
space charge term (second term in r.h.s. of (35)) does not contribute to the resistive 
part of Zjj, and the unperturbed impedance is purely reactive. Hence, from (35):

^f = T$ZT iui |/(iv)|2isdl Re + (Mr")}. (47)

8The field (41) is produced by the charge Q at 7r0, and its image at f0(b/r0)2.
9As the particle velocity is purely longitudinal transverse forces don’t make any work.
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5 Computation of Wall Impedance 
for Multi-Layered Pipes

Accelerator pipes are usually composed of several conducting shells with differ
ent electrical properties, possibly separated by non-conducting (e.g., vacuum) lay
ers. In order to compute the electromagnetic field within such structures one has to 
solve, in principle, Maxwell equation in each homogeneous region, enforcing the usual 
boundary conditions (continuity of the tangential field components) at the interfaces 
between material media with different properties). In many instances, on the other 
hand, one is only interested in computing the field in one region S only, e.g., the 
beam chamber. In this case, impedance boundary conditions, when applicable [17], 
can substantially improve computational efficiency. Impedance boundary conditions 
have been assumed to apply in deriving eq.s (35), (36).

In the simplest case, impedance boundary conditions read:

n x h x E - ZwauH\s = 0, (48)

where S is the boundary of the problem’s domain, Zwaii describes the external 
medium, and h the outward unit vector normal to S. The heuristic principle be
hind them is discussed below.

For a plane wave incident on an optically lossy half-space, the transmitted field 
wave-vector is normal to the interface plane S, for any angle of incidence. Thus in 
the lossy half-space including 5+ (the face of S inside the lossy medium) one has in 
the spectral domain:

- - z _ a \-1/2
h • e — h • H — 0, h x E = Z H, Z — Z0 [ 1 — j---- ) , (49)

V IVCq /

where Z is the characteristic impedance of the lossy material, Zq — 376.7 ohm the 
free space wave impedance, and h unit vector normal to S poynting toward the lossy 
medium. The tangential field components being continuous across S’, equation (48) 
holds true on S~ (the face of S outside the lossy medium) as well.

The applicability of Leontovich conditions to more general situations relies on 
the following heuristic arguments. The plane-wave incident field assumption can be 
relaxed, provided the medium is sufficiently lossy over all the plane wave spectrum of 
the incident field. The plane interface assumption, on the other hand, can be relaxed 
provided S can be viewed as locally plane within the first Fresnel zone drawn on the 
(plane) wavefront tangent to S+. The radius of the first Fresnel zone goes to zero with 
the wavelength inside the medium, i.e., as |n| goes to infinity, n being the boundary 
material refraction index. A sufficient condition which fulfills all requirements above 
is [17]:

lm(n) k R > 1 (50)
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throughout the whole k—spectrum of the incident field, R being the (local) curvature 
radius of the boundary surface. Equation (50) is met in a wide variety of practical 
relevant cases, and Leontovich conditions are accordingly widespreadly used in mi
crowave engineering.

For multilayered lossy walls, we can capitalize on the well known analogy between 
transverse electromagnetic (TEM) plane-waves in transversely homogeneous, longi
tudinally stratified media, and voltage (current) waves in cascaded trasmission lines 
tracts [26]. The analogy is embodied in the fact that the electric and magnetic field 
components in a layer with (complex) constitutive parameters e,p and thickness L, 
obey the same equations (see Appendix C) as the voltage and current waves in a 
trasmission line tract of lenght L, characteristic impedance Z0 — (p/e)1/2 and wave 
number /3 — ^(tp)1/2. The distance along the (locally common) normal to the lay
ers corresponds to the transmission line longitudinal coordinate z, the electric and 
magnetic field components correspond to V and I. In a lossy medium (3 has a large 
(negative, frequency dependent) imaginary part a = (a [up)1/2, whose reciprocal is 
the so called penetration-depth, 8s = (2upa)-1/2. A layer for which L 8S can be 
thought of as being infinitely thick for all practical purposes.

As an illustration, consider a pipe wall consisting of two lossy layers (see Fig. 2a), 
the outermost one being so thick and lossy as to be considered to extend to infinity.

□ - 1
zo,-Po,*L

1 T

Fig. 2 - Pipe with two-layer wall (a) 
and equivalent trasmission line circuit (b)

The equivalent wall impedance Zwau to be used in applying Leontovich boundary 
condition (48) at the innermost surface S~, is the input impedance Z(z) of the 
transmission line circuit shown in Fig.2b, and can be accordingly computed by using 
the transport formula for the (voltage) reflection coefficient F(z), viz.:

P(z) = r(0)e2^2, (51)

and the relationship between the reflection coefficient and the impedance10:

10For the sake of the Reader who might be unfamiliar with transmission line theory, these concepts 
are reviewed in Appendix C.
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(52)Z(z) Zo
i + r(z)
i-r (*)•

by successively computing the following quantities: Z(0)=(/i2/e2)1^2 —> F(0) —► 
T(—L) —► Z(—L) = Z^aiils-. The whole procedure can be iterated to apply to 
multi-layered walls.

As a further, perhaps less intuitive example, consider the situation in Fig. 3.

Fig. 3 - Lossy shell separating vacuum chamber from vacuum gap (a) 
and equivalent trasmission line circuit (b)

In this case, the assumption of (lossy) TEM propagation in the direction (locally) 
normal to the boundary is not justified a priori within the vacuum layer. Accordingly, 
whenever the lossy layer thickness isn’t large w.r. to 6s, one has to solve Maxwell 
equations both in the pipe and in the vacuum gap. However, it is not necessary to 
solve Maxwell equations in the lossy layer. In the spirit of Leontovich boundary 
conditions, it is instead possible to relate the tangential fields at Sf to those at S{" 
via a transmission matrix (see Appendix B), viz.:

f -n x Eian(S}) = Ah x Etan{Si ) + B Htan{Si) ^
I #,.*(#) = C A X E,_(^r) + Z> Aan(Sr). ^ ^

The reason for using a transmission matrix instead of an impedance or scattering 
one is that the overall transmission matrix of cascaded transmission line tracts is just 
the product of the individual transmission matrices, which makes the extension to 
multilayered lossy shells separating vacuum regions almost immediate.
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6 Impedance Boundary Conditions 
at Perforated Walls

In the proposed LHC design, gas desorption due to synchrotron radiation and 
subsequent surface deposition on the beam screen limits the efficiency of the beam 
pipe vacuum system, unless many small perforations are drilled on its surface, allow
ing for a transfer of the excess gas to a cold bore wall, where the pumping capacity 
is adequate [27]. Making the holes small enough (in terms of a typical synchrotron 
wavelenght) is necessary to prevent significant radiation exposure of the cold bore.

The effect of so many (~ 106 m-1) holes on the beam coupling impedances should 
be carefully investigated, in order to optimize their shape, size, number and distri
bution. Equations (35) and (36) can still be used to compute approximate coupling 
impedance values, using suitable local impedance boundary conditions on the perfo
rated wall area.

Extensive work in connection with perforated pipes has been done by Kurennoy 
[29], Gluckstern [30] and Co-workers, in the frame of Bethe’s theory [28] of diffraction 
from small holes11. For the longitudinal impedance per unit length of a circular beam 
pipe with radius b carrying N\ holes, per unit length, both Authors find 12:

Z, —jZo ko
(t*e T Qm)

47r2b2
TVa

■ Zo kp (ae -f Qm) 
J 2nb st sz (54)

where ko = lu/c is the free-space wavenumber, c being the vacuum light-velocity, 
ae,m are the electric and magnetic polarizabilities of each hole, and we assumed these 
latter to form a regular array with spacings st and sz in the transverse and axial 
directions of the beam pipe, respectively, so as to let:

Nx
2xb

3(3;
(55)

By comparing eq.s (54) and (40), which applies to a circular pipe, one is led to 
the heuristic conclusion that the perforated wall can be described by an impedance 
boundary condition with13:

Zwall —
• Zo&o , , ,

-J ------(tit + Qm).
3(3;

(56)

The single hole polarizabilities ae>m depend on the hole shape and size and the wall 
thickness (see [33], [34] for a list of available results). For the simplest case of circular

11A notable result of Kurennoy’s analysis, whose interest lies beyond the pumping-hole issue, is 
related to the occurrence of trapped modes in the neighbourhood of pipe discontinuities [31]. On the 
other hand, Gluckstern improved over Bethe’s results by including a nonzero wall thickness [32].

12Kurennoy has also computed the (negligible) real correction to (54) resulting from radiation 
leakage through the holes [36].

13The exact solution of the canonical problem of plane wave incidence on a conducting plane 
bearing a 2—dimensional regular array of holes, and of the corresponding (lowest order) impedance 
boundary conditions yields twice the value (56) [37]
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holes in a thin plane, one has [28] ae — — (2/3)^, am = (4/3)r„, r0 being the hole 
radius. For holes drilled in a plane with thickness w such that w/r0 > 2 one has with 
good accuracy14:

a («)

e,m
v(°)0.56 „(*> ✓J0) f>-€e,m(w/r o)

Ue,m c > (57)

where the superfix (e), (i), (0) refers to the external, internal and zero wall thickness 
polarizability, £e 2.405, £m ~ 1.841.

It would be desirable to improve eq. (56) by i) including the effect of electro
magnetic coupling among the holes, and ii) taking into account the effect of the 
imperfectly conducting cold-bore wall.

Electromagnetic coupling among the holes can be accounted by using in (56) the 
effective electric polarizabilities a'em of each hole, in the presence of the others, viz.:

oce Q„
1 Ce,mCXe

(58)

where the coupling constants depend on the induced dipole orientation. In a relativis
tic beam pipe, the induced electric dipoles are normal to the perforated wall, while 
the magnetic ones are tangent, and for circular holes, parallel to the (transverse) 
magnetic field. Then (see Appendix C) 15:

Ce = Ci = s"

c„

12
5tt

_6_ 

57r

+ 8tt /V0(2tt),

- 8tt K0(2ir),

where A'o denotes the Bessel function of the 3rd kind.

(59)

(60)

Next we may wish to include the effect of an external, coaxial imperfectly con
ducting tube (cold-bore). For the special case of a circular liner of radius b surrounded 
by a coaxial colde-bore tube of radius a, according to [39] one has16

Z\\ = . Zp kp
3 4tr262 (®e T )

(qe +Qm)2

(ae +am)+j stsz6s{ 1 + b/a)
(61)

where 6s is the field penetration depth into the walls of the coaxial region. If («e + 
am) < stsz<5s(l + b/a) by comparison with (40) one is led to the following wall 
impedance:

14Equations (57) are obtained by regarding the thick hole as a cut-off circular waveguide [32], 
[35].

15Equations (59), (60) imply a quasi static (st,s2 << A) assumption, which could be removed 
at the expense of some complications (See Appendix (7).

16In [39] the assumption of one hole per each pipe cross section contour is implicitly made, viz., 
S( = 2tt6.
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Ztmil j
Zghp
StSz

(oce + am) + j
(ge T am)‘2 

stSz8s( 1 I- b/a)
(62)

to describe an (imperfectly conducting) perforated tube of radius b surrounded by 
another imperfectly conducting tube with radius a.

It is interesting to note that eq. (62) is obtained by computing the parallel 
impedance of (56) and

Zeq — Zm( 1 T —) (63)

which represents the surface impedance at r — b accounting for the losses in both 
walls of the coax region, where Zm is the characteristic impedance of the walls17.

It should be noted, however, that the above discussed corrections to (56) should be 
taken as meaningful only by comparison with terms of higher order in k ■ (hole size), 
in the expansion of ae m, [40| which are neglected when using Bethe’s formulas for

7 Conclusions
We outlined a simple approach to the analytic computation of beam coupling 

impedances and related quantities in accelerator pipes with complex geometric and 
(electromagnetic) constitutive features.

The accuracy could be further improved by including higher order impedance 
boundary conditions [381, and using the variational form of the reciprocity (reaction) 
theorem |23J. Work in both directions is currently in progress.
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Appendix A - Lorentz Reciprocity Theorem
Reciprocity is a general property of self adjoint (integro-differential) operators 

[41] defined in a domain U, for which:

Ml)
where (•, •) denotes the (functional) scalar product over any subdomain of U.

The reciprocity theorem is readily established as follows. Let:

£ f — u, C, g = v, M2)

describe two different situations, where C is the problem Green operator, the source- 
terms / and g are in general different, and the two situations may also differ in a 
sub-domain AU C U, where, e.g., the medium physical properties could have been 
changed. Taking the product of the complex conjugate of the second equation in 
(A2) by /, subtracting the first equation multiplied by g*, and integrating over the 
problem domain U one gets:

(/,r«n - (f/,/) = (%*,/) - (9*,w).

In view of (Al), the last identity takes the form:

(A3)

For the special case where AU =

- K,/) - (/,")

= 0 one gets the simplest result:

(A4)

- {g\u). (A5)

The (functional) scalar products (v*,f) and {v*, /) are technically called reactions, 
and thus the reciprocity theorem in its simplest form states that the reaction of the 
source / on the field v* is equal to the reaction of the source g* on the field u.

In isotropic media, the Green function of the Maxwell equations is self-adjoint, 
and the reciprocity theorem can be accordingly established in full generality [42]. The 
corresponding formulation in terms of reactions has been thoroughly emphasized by 
Rumsey [43].

Appendix B - Transmission Line Concepts
Voltage and current waves in uniform transmission lines are described, (in the 

time harmonic or frequency domain representations), by:

y(z) = yM^* + /(z) = - y-<^=], (#i)
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where V+, V are the complex amplitudes of the forward and backward voltage 
waves, /?, Yo are the medium propagation constant and characteristic admittance, 
respectevely.

The (voltage) reflection coefficient:

rw := = r(oj (B2)

is the ratio between the complex amplitude of the reflected and incident voltage 
waves. Using eq. (S3) in (SI) we get:

U(z) - [1 + F(z)], /(z) - YbU+e'^ [1 - F(z)]. (S3)

The local impedance on a (uniform) transmission line is defined by:

Z(z)
y(z) _ n-r(z) 
/(z) °i-r(z)' (S4)

Equations (S2) and (S4) allow to obtain the input impedance of a homogeneous 
transmission line tract of length l terminated into a load impedance Zl- In fact, 
once Z(0) = Zl is known, so is F(0) from (S5). Then eq. (S3) gives F(—£), 
and from this using again (55) one gets the input impedance Z(—£). Iterating the 
above reasoning, one can easily compute the input impedance of several cascaded 
homogeneous transmission line tracts, like in Fig. 2b. Equations (S2) and (54) also 
show that the input impedance of a transmission line extending to infinity, for which 
V — 0, is Zq at any z.

To obtain the trasmission matrix of an homogeneous transmission line tract, con
sider the two port network representing a line tract with propagation constant [5 and 
characteristic impedance Zq — 1/Yo, where V2,12 and U are the voltage and cur
rent at the output (z = 0) and input (z — —l) ports, respectively. The trasmission 
matrix relates the output quantities to the input ones as follows:

V2 - -4 l 'i | - 31\ 
12 ~ C\\ } "DIi.

(SG)

Specializing (Bl) at the output and input ports z = 0, —£ gives:

U2 = p y-, /g - y^[y+ _ y-], (57)

Yi y+ei# f y - U" (58)

whence one easily obtains V+ and V_ as functions of V\, I\. Substituting back in 
(B7) and comparing with (B8) one gets:

.4 - cos(^), C = Yo cos(/3f)5 = - j Zo am(/)f), D = - j sm(^f). (59)
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Appendix C - Effective Polarizability in a Plane 
Regular Array

In this Appendix we summarize the approach developed by Brown (44] and 
Bennett [45] to compute the effective (electrical or magnetical) polarizability a' of 
a single hole (possibly noncircular) in a plane regular array. The induced dipole 
moment / is related to the pertinent field component by:

/ = a(Fo + Fw), (Cl)

where a, is the polarizability of a single hole, Fq, is the incident field, and Fint is 
the interaction field acting on the each and any hole due to the presence of all other 
holes. These latter are due to the very existence of the induced dipoles, and can thus 
be written:

fL = C/, (C2)

where C depends only on the dipole orientation and the array geometry, not on the 
type of field (electric or magnetic).
According to eq.s (Cl), (C2), the effective polarizability is given by:

^ r^c' iC3)
The interaction constant depends on the direction of the dipoles. It is convenient 
(superposition) to solve for the simplest cases where each induced dipole / is parallel 
to one of the co-ordinate axes. For the canonical problem sketched, of a plane regular 
array of ^-directed dipoles placed at rnm — (na)ux + (mb)uy. the interaction constant 
will be denoted as Cy.

The general solution of this problem, which implies no restriction about the ratio 
between the dipole spacing and the wavelength has been obtained by Collin (48]. 
Here we shall confine to the simple case where a quasi-static approximation can be 
invoked (hole spacing << wavelength), which is appropriate for our present purposes.

The field at f — 0 (electrostatic or magnetostatic) due to all other dipoles at 
rnm / 0 can be derived from a scalar potential, viz.

<t> = Uy ' 23

Hence, from (C4),

4tt r3 ’
Fy = -d<t>/dy\?=o- (C4)

£ 2 (mb)2 — (no)'-1

1 OC 1 OC 'DO
i s E £

4* M/(0,0) + MT/2

2(mf>)2 — (naf
n— 1 m~ — oc [(mf>)2 + (na)2]5/2
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6
5tt{>3

2
Vb

^ /2m7r\2 (2mnna\M—J
(C5)

where the Poisson summation formula [46]

E/M = ^^[/](2mx/0), (C6)

T being the Fourier transform operator has been used together with [47]:

f[(z2 F ^ 2fTo(aw) (C7)

and the exponentially fast decay to zero of Kq with increasing argument.
More or less obviously, if the induced dipoles were directed along the x—direction, 

one should interchange a and b in eq. (C5). Hence:

Cx
6

5?ra3
2nb

a
(C'8)

Finally, for z —directed dipoles the interaction constant can be written:

1 (mb)1 2 -f (na)2

1 f 2(mb)2 — (na)2 2(na)2 — (mb)2 )
471 (n,J?(0,0) 1 Km6)2 + (na)2]5/2 + [(na)2 + (mb)2]5/2)

= + (C9)

where the last equality is obtained by comparison with eq.s (C’5), (C6).
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Observations Involving Broadband Impedance Modelling *

J. Scott Berg
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Abstract
Results for single- and multi-bunch instabilities can be significantly affected by the precise model 

that is used for the broadband impedance. This paper discusses three aspects of broadband impedance 
modelling. The first is an observation of the effect that a seemingly minor change in an impedance 
model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct 
a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the 
mathematical form of an impedance which follow from the general properties of impedances.

1 Introduction
Computing instability thresholds and growth rates requires good models for broadband and narrow-band 

impedances.
In some cases seemingly minor changes in the broadband impedance model can cause significant changes 

in instability thresholds, as shown in section 2. Thus, the broadband impedances in the ring should be 
modelled more carefully. In section 3, this is done for the high-frequency tails of the r.f. cavities in the 
PEP-II B factory. Section 4 of this paper describes some of the mathematical properties that an impedance 
is required to satisfy, and some of the resulting constraints that these properties place on the form of a 
broadband impedance model.

2 Effect of Impedance Cutoff
The various small objects in the PEP-II ring have been modelled to have an impedance that is primarily 

inductive [1], The impedance should be cut off so that the transverse impedance goes to zero at infinity. 
This can be done by writing the transverse inductive impedance as

(1 -VjJ/wc?/2' K ’
where L is the low-frequency inductance, and u>c is a cutoff frequency. The choice of 3/2 in the exponent 
is based on the assumption that the high-frequency tail of the impedance consists of a large number of 
resonances that give a roll-off similar to a single cavity [2].

The choice of the cutoff frequency u>c has a strong effect on where transverse single-bunch mode coupling 
occurs, as shown in Fig. 1. The characteristic frequency cutoff of the bunch distribution foc/2-rtai for this 
example is 4.77 GHz. Notice that there is a strong variation in the mode coupling threshold even for values 
of the u>c well above this frequency.

This result demonstrates that seemingly minor details of the impedance model can have significant effects 
on the resulting analysis of coherent instabilities.

An important qualification to this example is that this analysis only included the m = 0 and m = 1 
transverse modes (see [3, 4, 5]). As demonstrated in [6, 7, 8], when one includes impedances that have a 
high-frequency component, as we do here (the real part of (1) peaks at tan(7r/5) % .727 times the cutoff 
frequency), higher order modes should be included for a complete picture. As can be seen from the definition 
of Kk in [3, 4, 5], Kk peaks at kfoe/Altai. Thus, m should be at least high enough so that K^k (the diagonal 
term for row k in our eigenvalue system) has its peak at higher frequencies than any significant impedances 
for k > m. It is not clear whether m should be twice that value, so that even off-diagonal terms with 
significant overlap are considered even if their corresponding diagonal terms are negligible.

‘Work supported by Department of Energy contract DE-AC03-76SF00515.
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FIGURE 1: Real parts of mode frequencies for a single bunch, plotted versus total beam current. The 
parameters for the PEP-II B factory are used. The beam becomes unstable at the point where two mode 
frequencies coincide. Different sets of lines represent different values of inductance cutoff u>c as described in 
the text. The impedance is otherwise the model used in [3].

3 Model of High-Frequency Cavity Tails
Section 2 suggests that a good model for the high-frequency impedance behavior is important. An 

important part of that behavior can come from the high-frequency impedance due to r.f. cavities.
The impedance of the r.f. cavities in PEP-II has been modelled to consist of the known higher-order 

modes plus a high-frequency tail. The real longitudinal wake of any device must satisfy the following 
physical considerations [9]:

• It must be real

• It must be causal

• It must be energy-conserving

• It must have no effect on a DC beam.

Since the total wake for the cavity satisfies these properties, then if the higher-order modes used are the real 
resonant modes of the cavity, it is expected that the remaining wake should also satisfy these properties.
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The longitudinal impedance due to a single isolated cavity rolls off as w 1//2 at high frequencies [10]. 
Nearly the simplest possible impedance that satisfies the above properties and rolls off as (V-1/2 is

iA ('+^-YU2\ wo + iay \ wo-iaj

-1/2'

(2)

This model is “simple” in the sense that it consists of only a pair of symmetrically placed branch cuts in 
the lower half plane. The only simpler model would be one where there was a single branch cut along the 
negative imaginary axis. It turns out that such a model does not have enough freedom to describe the cavity 
tails.

The model (2) will be used to describe the cavity tails; the parameters A, wo, and a will be found based 
on the actual cavity properties. Other models have been proposed for an impedance with an w-1/2 roll-off. 
See [11, 12].

Real Part 
Imaginary Part

Frequency (GHz)

FIGURE 2: Impedance of a PEP-II r.f. cavity model found with ABCI.

The total wake of the cavity is obtained by running a model of the PEP-II r.f. cavity through the program 
ABCI for m = 1 (to get the transverse wake) [1,13]. The resulting impedance is shown in Fig. 2. The narrow- 
band impedances from this rough model of the cavity are expected to be similar, but not quite the same, as 
the known resonant modes of the cavity. Because of this discrepancy in the resonant modes (and the fact 
that the integration time is relatively short compared to the resonant mode decay times), the impedance of 
the known cavity modes cannot simply be subtracted from the total cavity impedance. Instead, the wake
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due to the known cavity modes is subtracted from the total wake given by ABCI, and the result is Fourier 
transformed to obtain the impedance. This impedance is shown in Fig. 3.

Imaginary Part, ABCI 
Real part, fit to model 
Imaginary part, fit to model

f (GHz)

FIGURE 3: Impedance of the PEP-II r.f. cavity with higher-order modes subtracted. Also shown is the 
model [Eq. (2)] that was fit to this impedance. The parameters of the model are A = 45.1344 kfi/m2, 
a = 1.34722 GHz, and wg = 2.4 GHz.

The parameters of the model (2) are fit by matching the low-frequency limit of the model to the low 
frequency limit of the imaginary part of the impedance, and matching the high-frequency limit of the model 
to the average of the real and imaginary parts of the impedance. The value of loq is fixed for this fit. An 
initial guess of ljq = 2 GHz is made, since this frequency is just above the last of the known cavity modes. 
The value of wo is adjusted, while maintaining the matching of the low- and high-frequency limits, to give 
the best fit (as judged by eye). The resulting w0 turned out to be 2.4 GHz. A comparison of the fit model 
and actual impedance (after removal of known higher-order modes) is shown in Fig. 3. The agreement can 
be seen to be very good.

To obtain the good agreement that was found here, all three parameters in the model were necessary. 
This is an advantage of this model over the models used in [11, 12], which have fewer degrees of freedom. 
Note that the cavity tails give a small but non-negligible contribution to the inductance.

This analysis could be improved in the following ways: the value of the parameters could be found by 
a nonlinear fit instead of fitting one parameter by eye; the wakes could be computed with ABCI for longer 
times; a better way of subtracting the higher-order modes could be found; and better windowing could be
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done on the data (to smooth out the oscillations).

4 General Properties of Impedances
As stated earlier, there are four properties that longitudinal impedances must satisfy [9]:
• The impedance must correspond to a real wakefield. Thus, [Z(—tv*)]* = Z(cu).

• The impedance must correspond to a causal wake. Thus, it must be analytic in the upper half plane 
(i.e., no poles or branch cuts).

• The impedance must be energy-conserving. Thus, the real part of Z(w) must be non-negative for 
real ui.

• A DC beam should be unaffected by wakefields. Thus, Z(w) must be zero at w = 0.
This section discusses the constraints that these facts, in particular energy conservation, put on the imped
ance models that one can construct.

FIGURE 4: Integration contour for Z'(w)/Z(u>). Dashed lines represent branch cuts; the single dot at the 
origin is a pole of Z'((v)/Z(tv).

Assume that one has an impedance that rolls off like (—iw)" as w —> oo in the complex plane. Integrate 
Z'(w)/Z(w) around the contour shown in Fig. 4. The contour should pass over any zeros or poles of Z on 
the real axis, or any branch cuts that touch rhe real axis, as shown.

The integral around the contour is

i 53 Qk + . (3)

where N zeros, poles, or branch cuts intersect the real axis, each of order a* respectively (e.g., a* = — 1 for 
a simple pole). The change in phase along the segments on the real axis is A<j>. Equation (3) is equal to 
2tri times the number of zeros, including multiplicity, in the upper half plane, nz- Note that nz must be a 
nonnegative integer, since no poles or branch cuts can be in the upper half plane for Z. Since the real part 
of Z(uj) must be positive along the real axis, the absolute value of the change in phase must be less than or 
equal to tt along any given segment between zeros, poles, or branch cuts. Thus, since there are N + 1 such 
segments, —(N+ 1)tt < A<f> < (N + 1)tt, resulting in the inequality

N-1

~(N + 1) < 2nz + 53 ak ~ u - ^ + 1' (4)
k—0
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As an example, say no branch cuts or poles of the impedance touch the real axis. Then the a* are 
integers that are greater than or equal to 1. Thus, the sum of the a* is an integer greater than or equal to 
TV. Since nz is a non-negative integer, equation (4) then constrains v > -1, but places no constraints on 
the upper limit for v.

5 Conclusion
This paper has shown how in some cases, knowing the details of the broadband impedance of a machine 

can be important. Because of this, a model of the high-frequency tails of the PEP-II r.f. cavities was 
constructed. This model gave a good approximation to the behavior due to those tails for a model of the 
cavity run through the program ABCI. The general properties of impedances place constraints on the model 
for the broadband impedance that one can use. These constraints contributed to the decision to use the 
model of equation (2) for the cavity tail impedance.

Much of this work, especially that in sections 2 and 3 is preliminary and requires more research, as 
indicated in comments in those sections.

Finally, thanks to Sam Heifets for many helpful discussions.
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A Fast Beam-Ion Instability

G. V. Stupakov

Stanford Linear Accelerator Center, Stanford University, P.O. Box 4349, Stanford, CA 94309

Abstract

The ionization of residual gas by an electron beam in an accelerator generates 

ions that can resonantly couple to the beam through a wave propagating in 

the beam-ion system. Results of the study of a beam-ion instability [1,2] are 

presented for a multi-bunch train taking into account the decoherence of ion 

oscillations due to the ion frequency spread and spatial variation of the ion 

frequency. It is shown that the combination of both effects can substantially 

reduce the growth rate of the instability.

I. INTRODUCTION

A fast beam-ion instability which is caused by the interaction of a single electron bunch 

train with the residual gas ions, has been studied recently in Ref. [1,2]. The instability 

mechanism is the same in both linacs and storage rings assuming that the ions are not 

trapped from turn-to-turn. The ions generated by the head of the bunch train oscillate 

in the transverse direction and resonantly interact with the betatron oscillations of the 

subsequent bunches, causing the growth of the initial perturbation of the beam.

The nature of the instability closely resembles the beam-breakup instability due to trans

verse wakefields. It differes from instabilities previously studied [3-9], where the ions, usually 

treated as being in equilibrium, interact with a circular electron or proton beam. The insta

bility we discuss can occur in a transport line, linac, or a storage ring with a clearing gap 

to prevent ion trapping.
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An important element that has to be included into the treatment of the instability is 

a frequency spread within the ion population. It is known that the frequency spread and 

associated with it decoherence in an instability problem usually results in Landau damping 

effect and in some situations can suppress the instability. We show that although the ion 

frequency spread does not fully suppress the instability, it decreases the growth rate making 

it in a typical situations two or tree times smaller than that predicted without decoherence 

effects.

We also consider spatial modulation of the ion frequency due to the variation of the 

beta and dispersion functions along the beam path. It turns out that combination of this 

variation with the frequency spread can substantially weaken the instability. This is not a 

very important effect in a FODO lattice, but it could prove to be much more significant 

in other lattices such as the TEA or Chasman-Green structures used in many synchrotron 

light sources.

For the sake of simplicity, we focus on the interaction of an electron beam with ions, 

although similar effects apply to a positron beam trapping free electrons.

The variation of the ion frequency w,- included in this paper is caused by two sources. 

One of them is due to the horizontal beam density profile in a flat beam which causes the 

local ion frequency to depend on the horizontal position. Another source of spread in is 

the nonlinearity of the ion oscillations inside the beam.

For analytical study we adopt a model that treats the bunch train as a continuous beam. 

This model is applicable if the distance between the bunches /{, is smaller than the betatron 

wavelength, /;, <C c/up and the ion oscillation wavelength lb <C c/w,. This condition is well 

satisfied for multi-bunch machines such as the PEP-II High Energy Ring [11] or the NEC 

Damping Ring [12]. We assume a one-dimensional model that treats only vertical linear 

oscillation of the centroids of the beam and the ions.

The paper is structured as follows. In Section II, the differential equations of motion 

are derived. Section III discusses averaging of the equations based on different time scales 

associated with oscillations and growth of the instability. The ion frequency spread and
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resulting decoherence of ion oscillations are analyzed in Section IV. Analytical and numerical 

solutions of the equations for the NLC Damping Ring and PEP-II High Energy Ring are 

presented in Sections V and VI respectively. They are compared with direct computer 

simulation of the instability in Section VII. Effects of spatial ion frequency variation are 

discussed in Sections VIII and IX. The results are summarized in Section X.

II. THE EQUATIONS OF MOTION

We will assume a rigid vertical motion of the beam and define the offset of the centroid at 

time t and longitudinal position s as y& (s, t). The distance s is measured from the injection 

point at t = 0. The equation for the beam centroid, including the interaction with the ion 

background, is

(cdt <9s) ^^t) — K' ~s)(s>*) — y<>(si^)) • (1)

The left hand side of this equation accounts for the free betatron oscillation of a moving 

beam (we assume Vbeam « c ). On the right hand side, we included the force acting on the 

beam from the ions whose centroid is offset by y, (s,t). In the linear theory, this force is 

proportional to both the relative displacement between the beam and ions centroids and the 

ion density. Assuming a continuous electron beam with a uniform density per unit length, 

the ion density increases due to collisional ionization as ct — s (it is equal to zero before the 

beam head arrives at the point s at time t — s/c). After separating the factor ct ~ s on the 

right hand side of Eq. (1), the coefficient k is

 4Ajonre
” ZlCCTy (<TX + CTy)

where 7 denotes the relativistic factor for the beam, re is the classical electron radius, ax<y 

denotes the horizontal and vertical rms-beam size respectively, and A,on is the number of 

ions per meter generated by the beam per unit time. Assuming a cross section for collisional 

ionization of about 2 Mbarns (corresponding to carbon monoxide at 40 GeV), we have
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A,0„[m *s x] « 1.8 • 109nc[m ]pfla»[torr] , (3)

where ne is the number of electrons in the beam per meter, and pgas the residual gas pressure 

in torr.

To find the equation for ions, we will assume that they perform linear oscillations inside 

the beam with a frequency w,-. Furthermore, we will allow a continuous spectrum of w,- given 

by a distribution function / (tv,-) normalized so that

J f (wj dw, = 1 (4)

(in Sec. VIII we will consider a more general case when / also depends on s). The spread 

in Wj at a given position s (and for a given ion species) is caused by several sources; they are 

discussed in more detail in Sec. IV. The distribution / (w^) is peaked around the frequency 

w,- = w,0 corresponding to small vertical oscillations on the axis,

.w,o =
4nerpc2 1/2

(5)3A<7y (ax + (Ty)_

where A designates the atomic mass number of the ions, ne the number of electrons in the 

beam per unit length, and rv the classical proton radius (rp % 1.5 • 10~16cm ). Typically, 

the frequency spread Aw,- is not large; we assume Aw, < w,0.

We also have to distinguish between the ions generated at different times t' because 

they will have an initial offset equal to the beam coordinate y&(s,f'). Let us denote by 

yi (s, t\t', Wj) the displacement, at time t and position s, of the ions generated at t' (t' < t ) 

and oscillating with the frequency w,. We have an oscillator equation for yi

d2
dt2

with initial condition

yi (s, t\t', w,-) + w2 [y{ (s, t\t\ w,-) - yb (s, /)] = 0 , (6)

yi (s,f'|t',wi) = yb(s,t') ,
dt = 0 . (7)

t=t'

Finally, averaging displacement of the ions produced at different times t' and having different 

frequencies w, gives the ion centroid yx (s, t)
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1
(8)Vi(s,t) = J dt' j du)if {ui)yi(s,t\t',Ui) .

Equations (1), (6)-(8) constitute a full set of equations governing the development of the 

instability in the beam-ion interaction.

III. AVERAGING OF THE EQUATIONS

Equation (6) can be easily integrated with the initial conditions (7) yielding

~ yb(s,t) - J — ^ coswj(( - t")dt" .
t1

Now using Eq. (8), Eq. (1) reduces to an integro-differential equation

'Id d
c dt + 2/6 (-5, t) + yb (s, t) — —K J (ct1 — s)

where D (t — t1) denotes a decoherence function defined as

D (t — t') — j du>i cos oji (t — t')f (w,) .

(9)

(10)

(11)

This function represents the oscillation of the centroid of an ensemble of ions with a given 

frequency distribution / (u,) having an initial unit offset.

Instead of t and s, it is convenient to transform to new independent variables z and s, 

where z = ct — s. The variable z measures the distance from the head of the beam train 

and for a fixed z the variable s plays a role of time. Denoting

V (»,*) = w(s,s + z) , (12)

Eq. (10) takes the form

ds2
y(s,z) + ^y(s,z) = -kJ (z - z')iz' . (13)

If D (z) = cos w,z (no frequency spread), Eq. (13) reduces to the equation derived in Ref. 1. 

We will assume that the interaction between the beam and the ions is small,
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(14)

where / denotes the length of the bunch train, so that the instability develops on a time 

scale which is much larger than both the betatron period and the period of ion oscillations. 

Typically this inequality is easily satisfied. In such a situation, the most unstable solution 

of Eq. (13) can be represented as a wave propagating in the beam with a slowly varying 

amplitude and phase,

y (s, z) = ReA (s, z) e-'“Wc+i^/c , (15)

c2kI < UJ2q, U)p ,

where the complex amplitude A (s, z) is a ‘slow’ function of its variables,

din A
ds

U>0 din A
dz <C ^tO (16)

For a fixed z, the s-dependence of Eq. (15) describes a pure betatron oscillation, while, for 

a fixed s (that is in the ion frame of rest), the z-dependent part implies oscillations with the 

frequency iv,-0. Hence the wave resonantly couples the ions and the electrons.

Substituting Eq. (15) into Eq. (13) and averaging it over the rapid oscillations with the 

frequencies u>,0 and w^, one finds

dA (s, z) few#
ds 4w/

J z'A (s, z')D (z — z) dz , (17)

where the function D (z) is

D (z) = / dw,/ (w,) . (18)

One of the advantages of the above approach is that it allows a simple scaling of the 

instability with the vacuum pressure. Indeed, the only place where the pressure p enters 

Eq. (17) is the parameter k which is proportional to p (see Eqs. (2) and (3)). By introducing 

a new variable sk instead of s, we can eliminate k from the equation. This means that 

increasing the pressure n times is equivalent to the shrinking the s axis by the same factor. 

Thus, having solved Eq. (17) for one particular value of pressure, we can use the result for 

various p by simply rescaling the s variable, s oc p-1.
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IV. ION DECOHERENCE

The frequency spread of the ions at a given longitudinal coordinate s stems from several 

sources. One of them is a variation of the electron density in the beam along the horizontal 

axis. Since the ion frequency scales as the square root of the electron density, u>i oc y/n^, 

ions located at different coordinates x in a flat beam will have different w,\ For a Gaussian 

distribution of electrons in x, ne oc exp (—x2/2<t2), and we obtain u>i (x) oc exp (—x2/4<t2) . 

Hence,

lv, (-r) - uiio = D,o exp (-x3/4<r3) - 1 (19)

where o^0 is the frequency at x = 0.

To find the decoherence function D, we will utilize a simple one-dimensional model that 

assumes that the ion frequency of horizontal oscillations is much smaller than the vertical 

frequency w,-, and neglects the horizontal ion motion on the time scale of the decoherence. 

In this model, the ion distribution in x is the same as the electron distribution (because the 

rate of ionization is proportional to ne),

fi 0*0 = J- exp (-x2/2cr2) ,
V 27T<7r

and Eq. (18) takes the form
OO

D{t)— j dxfi (x) exp {-iuiot 1 - exp (-x2/4<r2)]} .

(20)

(21)

Note that in this model we overestimate the effect of the decoherence. For flat beams, a 

typical ratio of the horizontal and vertical oscillation frequencies is roughly 3. Thus, the 

horizontal motion of the ions modulates the vertical oscillation frequency between w# 

and u>i (x) making the average w, smaller than uj1 (x). To fully account for this effect, one 

has to deal with the two-dimensional ion motion which would make the consideration much 

more involved.

At this point, we note that Eq. (21) has been defined as the average offset of the ions at 

a given s. However, the quantity relevant to the electron-ion coupling is the average force
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that acts on the electron beam. The force differs from the average displacement because the 

ion density decreases with z and thus the ion electric field at the beam edges is suppressed 

relative to that at the bunch center. To account for this effect, we correct D (t) by including 

the electron density ne in the integrand of Eq. (21)

°o
D (t) = const j dxfi (z) ne (z) exp — fl — e-*’/4 ajbj

(22)

where the constant in Eq. (22) must be chosen such that D (0) = 1. This gives

00

D(t) = —j=— j dxexp — iujiot ^1 — e~x /4<r^ — z2j<72j . (23)

— OO

The plots of the real and imaginary parts of this function are shown in Fig. 1. Asymptoti

cally, for large values of ul0t,

D (t) « (1 + iau}iot) 1/2 , (24)

where the numerical factor a = 1/4.

Another source of ion decoherence is the nonlinearity of the electron potential. It results 

in a dependence of on the amplitude of the oscillation and causes an additional spread 

in the oscillation frequencies w,-. We have numerically computed the decoherence function 

due to nonlinearity in a manner similar to the approach of Ref. 13 ; it is also plotted in 

Fig. 1. One can show that the decoherence due to nonlinearity has the same asymptotes as 

Eq. (24) with a somewhat smaller a. In what follows, we will use the simple form given by 

Eq. (24) for D (t) in which we put a = 3/8 to account for the additional decoherence due 

to the nonlinearity.

V. ANALYSIS

Let us for a moment ignore the ion decoherence in Eq. (17) and put b (z) = 1. In 

this case, the equation can easily be solved analytically. Differentiation with respect to z, 

reduces Eq. (17) to the differential equation

250



(25)
d2A(s,z)

dsdz
KUJj Q
4wp

zA(s, z) .

For the initial condition A (0, z) = 1, the solution is

a(s'2) = /o(2V^) ’ (26)
where Iq is the zeroth order Bessel function of imaginary argument. This solution was 

found in Ref. 1 using a different method. For large values of the argument the asymptotic 

expansion of the Bessel function yields

A (S, z) % ^2TTZ^JKU}i0s/2u)pj exp (^Z\JKU>i0s/2Uf^j , (27)

which indicates an instability with a characteristic time r « 2up/Ku>i0l2c, where l is the 

length of the bunch train. Note that since A (s, z) oc exp {z/l^Js/, the characteristic 

time t does not represent an e-folding time, and the instability develops much slower than 

it would be in the case of normal exponential growth oc exp (s/cr).

VI. NUMERICAL RESULTS

To study the effect of the decoherence in more realistic cases, we wrote a computer code 

that numerically integrates Eq. (17) with D (t) given by Eq. (24). The two input parameters 

for the code are the characteristic time r = 2ujp/ Kuiol2c, and the train length u>i0l/c.

Simulations have been performed for the NLC Damping Ring and the PEP-II HER. In 

the NLC Damping Ring (see relevant parameters in Ref. [1]), we assumed a residual gas 

with a vacuum pressure of p = 10~8 Torr and an atomic number of A=28. This corresponds 

to a characteristic time of r = 45 ns and a bunch length of u>iol/c = 150. The results are 

depicted in Fig. 2 for the initial condition A (0, z) = 1; for comparison, in Fig. 3, we 

plot the solution of Eq. (27) for the same parameters but without the decoherence. The 

plots show the growth of the beam centroid at 10 positions evenly spaced along the bunch 

train. Comparing Fig. 2 and 3, shows the decoherence slowing down the instability. To 

characterize the growth rate of the instability, we defined Tgrowth as an e-folding time for the
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last bunch in the train. Since the instability is not exponential, Tgrowth varies with time. For 

the time interval 1 ps < t < 2 ps, we find that Tgrowth fa 0.5 ps without decoherence and 

Tgrowth « 1 /zs with ion decoherence; the decoherence decreases the growth rate by a factor

of two.

Figures 2 and 3 illustrate the growth of the instability from an initial condition Eq. 

(15) which is the most unstable perturbation. In reality, the initial noise in the beam will 

contain different harmonics of which only one or two, having a spatial period 2?rc/w,o, are 

very unstable. Assuming that the number of bunches in the train equals Nb and their 

displacements are uncorrelated with the rms value of 6, a simple statistical argument shows 

that the amplitude of harmonics in the bunch will be of the order of 8 jy/Nl- To illustrate 

the effect of random initial positions, we integrated Eq. (17) including the effect of the ion 

decoherence with the initial condition corresponding to uncorrelated displacement with 6 = 1 

for 90 bunches in the NLC Damping Ring. The result is shown in Fig. 4 for p = 10~9 and 

p = 10-8 (as noted in Section III, variation of the pressure simply re-scales the horizontal 

axis in the plot). The figure shows that the development of the instability is somewhat 

delayed until the amplitude of the unstable mode with an initial value S jx/90 ~ 0.1 reaches 

the value comparable to 1; for p = 10-8, this occurs after roughly 5ps. After this point, the 

growth proceeds at about the same rate as in Fig. 2.

For the PEP-II High Energy Ring, we assumed a vacuum pressure of p — 10-9 Torr and 

A=28. This corresponds to a characteristic time r = 5.5ps and a bunch length oJioljc — 220. 

The bunch offsets at 10 positions in the train are shown in Fig. 5 as a function of s for the 

initial condition A (0, z) = 1. From this figure, we estimate that the e- folding growth time, 

on the time interval 200 ps < t < 400 ps, is roughly Tgrowth fa 150 ps. As noted before, this 

growth time depends on the interval considered.
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VII. COMPUTER SIMULATIONS

Direct macro-particle simulations of the instability have been performed [2] using a 

computer code described in Ref. 1. In the simulations, each of the bunches is repre

sented by 10,000 macro-particles and they interact with the ions which are represented 

by roughly 50,000 macro-particles. In this manner, the beam and ion distributions evolve 

self-consistently as the beam is tracked through the magnet lattice.

The results of a simulation for the NLC Damping Ring with a vacuum pressure of p = 

10-8 Torr are shown in Fig. 6 where we have plotted the oscillation amplitude, normalized 

by x/Nmacro/fy', this allows for a direct comparison with Fig. 4. Comparing Fig. 6 with 

Fig. 4 shows a good agreement for the growth rate of the instability during the initial 

stage (t < 6 fis ). At later times, the macro-particle simulation exhibits saturation which is 

presumably due to the nonlinearity of the beam-ion force as the amplitude of the oscillations 

become comparable to the rms beam size ay \ this occurs at a value of 100 in the normalized 

units of the plot.

VIII. EFFECT OF SPATIAL ION FREQUENCY VARIATION

An inhomogeneity of w, has different effect on the instability depending on the typical 

scale Xi on which the ion frequency varies. If this scale is much smaller than a half of 

the wavelength Atnsl associated with the instability, A,ns* = 2tt/(up + w,), (about 15 m for 

CO ions in the HER of the PEP-II), A, <C A,nst, fluctuations of w,- can be considered as 

an effective frequency spread in the ion population which contributes to Landau damping 

mechanism. In the opposite limit, A, >• A,nst, one has to deal with the problem where the 

unstable perturbation propagates in a system which characteristics slowly vary is space.

Here we consider only the effect of long-range variation of the w,-. They result in breaking 

the synchronism between the ion and electron oscillations and suppression of the resonant 

interaction between the species. We will show that this effect may result in a substantial

253



weakening of the instability.

The governing equation (17) remains valid in the case of slow modulation of the ion 

frequency if one considers the distribution function / (a, a;,) and the decoherence function 

D (s, z) as depending on a. Eq. (18) now takes the form

D (a, z) = / dwj (a, w,) (28)

We further assume that / (a,w,) is such that

/ (a,Wi) =::: F (w, - w,o - <ta,- (a)), (29)

where (a) <C w,o. This means that moving to a new location a shifts the distribution 

function in w,-space as a whole but does not change its form. Putting Eq. (29) into Eq. 

(28) yields

D(a,z) = e'^(')'/"Do(z), (30)

where

D0 (z) — J duiF (u>) eiuztc (31)

is the decoherence function in the homogeneous case given by Eq. (24). We see that 

inhomogeneity effectively modifies the decoherence function.

IX. NUMERICAL RESULTS AND ANALYSIS

Equation (1) has been integrated numerically for the parameters of the HER of the 

PEP-II assuming the gas pressure p = 10-9 torr of CO (A=28), and

Sui0 (a) = au>i0 sin (2?ma/C,) (32)

where C is the circumference of the ring and a is the relative variation of the frequency. 

Fig. 7 shows the result for 10% variation of w,o, a — 0.1, and n = 1. Note the exponential 

growth of the amplitude with an estimated e-folding time re — 400/is (cf. with 150 pa in
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the homogeneous case). Fig. 8 shows the result for a = 0.3 and n = 1, with the e-folding 

time about 800 fis.

The exponential nature of the instability and the increase of the growth time can be 

explained in the following way. Inclusion of the ion frequency variation makes the decoher

ence function Eq. (30) such that it is effectively localized on a scale that is much smaller 

than the characteristic distance (in z) on which A (s, z) varies. This allows us to neglect the 

variation of the z'A (s, z') in the integrand of the right hand side of Eq. (17) and put it in 

front of the integral,

dA(s,z) Ktv.o
~ ZS\\S,Z)

0ds

z oo

—^zA (s, z) f D (s, z — z') dz* % —-^zA (s, z) f D (s, zf) dz\ 
4 CO/3 J 4u)a J

(33)

Furthermore, since the instability is developing on a large time scale, we can average the 

function D (s, z) over s. This gives

(34)

with the exponential solution

A(s,z) = Ao(z) exp (s/cr.), (35)

where

1 KUi0C
Te = ~a-------24u>0

J D(s,z')dz^j , (36)

and the angular brackets denote averaging over s. Eq. (36) can be rewritten as

t:' = bi(j D[s'z,)t)' (37)
xo '

where r = 2u>@/ku^cI2 is the characteristic time introduced Section V (r = 5.5fis for the 

HER of the PEP-II), and / is the length of the bunch train. Using Eqs. (37), (30) and (24), 

one finds

- = 1 i-L. [
2 r l alu.ft J

<%./o(f)

•°5 (1 + ia(/a) 1/2' (38)
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Numerical integration for the above examples gives re = 350/rs for a = 0.1, z = l, and 

re — 760fis for a = 0.3, z — in good agreement with the simulations.

Asymptotically, for a > 0.3, the integral in Eq. (38) approaches 1, yielding a simple 

formula for re,

Te
l alui0 

It------------ (39)
Z C

In order to apply the above analysis to a particular lattice, it is necessary to include many 

spatial harmonics in Eq. (32). This has not been accomplish yet. To get a rough estimate 

of the amplitude of the ion frequency variation we plotted in Fig. 9 the ion frequency (CO) 

in the PEP-II HER as a function of the position in the ring. The plot indicates that one 

can expect 10-20% variation of w,- in the ring.

X. DISCUSSION

In this paper, we described a fast beam-ion instability which can develop in a train of 

bunches with a clearing gap. We have included into consideration the ion frequency variation 

due to the nonlinearity of the beam-ion force in both the x and y planes. In general, the 

dependence of w,- on the horizontal motion is the more important effect and strictly should 

be described with a two-dimensional treatment of the ion motion. There are other sources 

of ion frequency spread that we have not considered although they can be included in our 

formalism in a straightforward manner.

In all cases, the variation of the ion frequency causes Landau damping and slows the 

instability growth rate. In the two examples that we studied, the growth rate was reduced 

by roughly a factor of 2. For longer bunch trains, where the factor a>t0//c becomes larger, 

the reduction of the growth rate should be more pronounced. We should also note that we 

have characterized the instability with an approximate e-folding time Tgrowth. While this 

differs from the characteristic time r that more accurately describes the instability which 

grows as exp(^/f/r), it provides a more intuitive estimate of the impact of the instability.
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For example in the PEP-II HER, Tgrowth is roughly 150 fis while r % 6 /xs. This growth 

rate could be decreased further by adding additional clearing gaps in the bunch train [1], 

For example, a second gap will increase the instability rise time to roughly Tgrowth ss 0.6 ms 

which is inside the bandwidth of the feedback system.

Our analytical model is confirmed by comparison with a macro-particle computer simu

lation and shows a good agreement. An important effect which is not included in the model 

but will also suppress the instability is the tune spread in the electron beam. The tune 

spread can arise from the beam energy spread and the chromaticity of the optical lattice, 

the nonlinearity of the lattice, the space charge force due to the ions or the electrons them

selves, or the beam-beam collision in a colliding beam storage ring. For example, in the 

PEP-II High Energy Ring with a beam-beam collision parameter £ = 0.03, the estimated 

decoherence time for the betatron oscillations is 200 fxs and it is comparable with the growth 

rate of the instability.

We have shown that even slight variation of the ion frequency along the beam path 

makes the instability truly exponential and, what is more important, further suppresses the 

growth rate. For synchrotron light sources, where the ion frequency variation is very large, 

this mechanism can be a strong stabilizing factor for the fast-ion instability.
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FIGURES

Figure 1. Real (1) and imaginary (2) parts of the function D (t) given by Eq. (23), and 

the asymptotes of Eq. (24) (dashed lines). Curves 3 and 4 shows real and imaginary parts 

respectively of the decoherence function due to nonlinearity of the ion motion.

Figure 2. Growth of an initial unit offset in the NLC Damping Ring at 10 different points 

in the train (the line corresponding to the first point is superimposed on the abscissa) with 

ion decoherence.

Figure 3. Growth of an initial unit offset in the NLC Damping Ring at 10 different 

points in the train (the line corresponding to the first point is superimposed on the abscissa) 

without decoherence.

Figure 4. Instability in the NLC Damping Ring with random initial condition and with 

ion decoherence.

Figure 5. Growth of an initial unit offset in the PEP-II High Energy Ring.

Figure 6. Macro-particle simulation of of the instability in the NLC Damping Ring with 

a vacuum pressure of 10-8 Torr and A=28; the position of every 10th bunch is plotted.

Figure 7. Instability in the PEP-II High Energy Ring for 10% variation of the ion 

frequency. The vertical scale is logarithmic.

Figure 8. Instability in the PEP-II High Energy Ring for 30% variation of the ion 

frequency.

Figure 9. The oscillation frequency for CO ions in the PEP-II HER as a function of the 

position in the ring.
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Saturation of the Ion Induced Transverse Blow-up Instability

S.A. HEIFETS

Stanford Linear Accelerator Center 

Satnford University, Stanford, CA 94309

Introduction

In a recent paper111, T. Raubenheimer and F. Zimmermann described a new, 

fast transverse instability caused by the interaction of a train of bunches with the 

residual gas. Ions produced by transversely offset bunches in the head of a train 

induce oscillations of the tail of the train. The ions may be cleared out by a gap after 

one revolution, but the memory remains in the train. Amplitude of oscillations keeps 

growing exponentially as exp^Jsjsc until the amplitude of a bunch centroid is on the 

order of the transverse rms a of a bunch. The rise time sc of the oscillations of a 

bunch centroid for the PEP-II HER was found to be a fraction of a millisecond, even 
taking into account the spread of ion frequencies121.

Computer simulations111121 confirm the exponential growth. However, the results 

of the simulations show that the exponential regime holds only for a short period of 

time and then changes to a much slower growth. Initial growth is rapid; it would 

be difficult to observe it directly in experiments. From a practical point of view, the 

important questions are, what is the amplitude at which a transition to slow growth 

takes place and, secondly, what is the growth rate after that transition compared to 

the rate, which could be handled with a reasonable feedback system.

The exponential regime is limited by nonlinearity of the beam-ion interaction. As 

a result, exponential growth at large amplitudes is replaced by a linear dependence 

of the amplitude on time. The transition from exponential growth to a linear regime *

* Work supported by DEpartment of Energy contract DE-AC03-76SF00515
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depends on the initial conditions: exponential growth is noticeable only for very small 

initial amplitudes. An estimate of the growth rate at large amplitude is obtained and 

compared with computer simulations.

For completeness, the basic formulas of the original paper are re-derived.

Basic equations

First, we reproduce the basic equations of the paper [1]. Consider a train of 

bunches n = The head of the n-th bunch is located at the position z(s) =

s — zn of the ring at the moment s = ct where zn — (n — l)sj is the distance of the 

bunch from the head of the train.

The vertical motion of electrons of the n-th bunch is described by the equation

d2y(s,zn) 
ds2

+ uly{s,zn) redU 
7 dy ’

(1)

where uif, is a betatron frequency (in cm J), and the potential U of the beam-ion 

interaction is
f dr*

U{r,s) — ———n,(r,x). (2)
J |r-r|

The ion density nt(r, s) is given by the initial density n®;

ni{r ’55) = ^ J dr 8[x - Xk(r ,s)]5[y - s)]6[z - z^n^r ). (3)

Here, X&(r, s) and Yk(y', z, s) are trajectories of ions generated by the k-th bunch at 

the location z of the ring. The initial value y' for F*, Yk{y', z, — y', is equal to the 

offset y' = yb(sk-,zi-) of the k-th bunch at the location z of the ring at the moment 

Sk < s, Sk = z + Zk.

Ions are generated uniformly along the ring with the rate

dNj

dz
0.06(

torr
cm (4)

where p is the residual gas pressure and the ionization cross-section is assumed to be

271



2 Mbarn. Initial distribution of ions is defined by the density of the parent bunch

n°i(r) = -J^p(x)p(y-Vb(z + 2k,zk)), (5)

where p(x), p(y) are Gaussian distributions with rms ax, ay, respectively. We assume 

a flat beam ax » cry, and take aXiV constant around the ring, and for all bunches. 

Therefore, the ion frequencies for ions with atomic number A,

2 _ 2 iVjrp
Ux,y Asbayax ’

are also constant. The frequency spread in a nonlinear regime is produced automati

cally by nonlinearity of the motion.

For a flat beam we take Xk(r,s) = x cos t/’x, 4>x = wz(s — s*), and s* = z + z^. 

Then
00

U(r,s) = \Z4tt^~p(x)Y^ dy e~x^y~Yk{-y 'z's)? p(y' - yb(z + zk,zk)). (7)

k o

Here p(x) has rms cos2 V’z — cr2/2. The equation for a bunch centroid is obtained 

by averaging Eq. (1) with the density pn(r, s) = Nbp(x)p(y - yb(s, zn))p{z - (s - zn)) 
of the n-th bunch. The following relation simplifies the result

/ dX
[l + 2A2<r2]3/2e (8)

Averaging Eq. (7) gives

2W(r,s)
‘~o~yjviz 5Z J dy'[yb(sizn) ~Yk{y',s-zn,s)]

y k,Zk<Zn

pW
l

llb(s - Zn + zk,zk)\ J dye
~ ^3"[yt(S'Zn)~%(9,>S —Zn’S)]2

(9)
o

Here yb(s — z„ + z&, zk) is the offset of the k-th bunch at the moment sk = z + zk when 

it generates ions at the same location z — s — zn, where the n-th bunch is situated 

at the moment s.
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Define the position >m(s, zq) of the group of ions generated by the m-th bunch 

at the location zq

^rn(-S, Zg) — hm(l/6(z0 T Zm, Zm)i Zq, s) (10)

with the initial condition Ym(zo + zm, zq) — yj(zo + zm, zm) at s = zq + zm. Equation

(1) gives after averaging

*7 / \ 1 2
2 ( \ V"'' r / s V> , M / l -^r[j/fc(s.zn)-V»:(s,S-r„)]2

u;62/(s7zn) = -ks6 2^ l2/6(s,zn)->,jl.(s,s-zn)] / ofi?e 2<Tv
C Zn Q

d2yb{s,zn) , 2

Here

/c =
4re <fAr, 1

(11)

(12)
3qSj, ds crxCTy

Note that parameter if of the paper^is K = kzq where zg is the total length of the 

bunch train.

In the linear approximation |yj — Y\\ << cry, we can take the dependence of the 

trajectory Y^y, z, s) on the initial condition y in the form Yk{y, z, s) = y cos 'tpy + Yo(s) 
and obtain

dU 4 1 dNi v^r i \ t \i
< — >= -------------JZ 2^W^,Zn) - Efc(s,s - Z„)].

3 <7x^y dz. (13)

In another extreme case ax » |y$ — Vjt| >> cry, Eqs. (8), and (9) give 

< >— s^Sn[l/i(s) zn) — Yk(ynk, s — z», s)]. (14)

The force Eq. (11) depends on a sign of (t/& — T*).

The motion of ions at the location zq can be considered similarly. The ion centroid 

is described by the equation

d2Ym(s,z0) 2 -d&gal_«
- —ace 2<ri

,z0) ^ r H2[frm(<.*o)-y>,(j.J-*o))2

* [Em(s,zo)-i/i(s,s-z0)] I drje 2a» . (15)

Equations (10), (11), and (15) can be generalized for the case when ions are not
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cleared out after one turn. A centroid of ions, generated by the m-th bunch on the 

l > 0-th turn, is described by y^,(s,z0) = Ym(yb(z(i + zm + 1C, zm), zq,s) with the 

initial condition Y^zq + zm + lC,zo) = yb(zo + zm + lC,zm) at s = zq + zm + 1C. 

Equations (11), (15) take the form

d2yb(s,zn)
ds2

1
uby(s,zn) = -KSby^lyb(s,zn)-Y/l(s,sc~zn)] / dye

k,l l

~ dhl [yb(s>zn) — Yk (S<SC — Zn )]2

^}%(6,Z0) —u2e
l

. . f-
[ym(s,z0)-y6(s,(s-z0)c)] j dye

o

2a

Here C is the circumference of the ring, sc = s mod (C), and the sum over k is taken 

over bunches with z* < zn.

Linear approximation

Equations (11) and (15) give in the linear approximation \yb(s. z) — Y"| << ay the 

system of equations

d2yb(s,zn)
+ ^6 y{s,Zn) = -KSb [yb(s,zn) -Yk(s,s - Z„)],

k,zk<z„

----“ ~UJy[Ym(s, z) — yb(s, S — z)\. (17)

The second of Eqs. (17) has a solution

Ym{s, z) = yb{z + zm, zm) cos[wj,(s - z - zm)] + Y^(s, z), (18)

S
Ymisi z) — uy j dsyb(s\s-z)s\n[ujy(s-s')].

Z + Zm

Equations (17) and (18) show that effect of the ions is equivalent to a transverse 

wakefield.
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The solution was found in the original paper111 in power series

yb(s,z) = A0]Tz/(m)(5,z), y(m) = cos(u}hs-ujyZ+ i;Q). (19)

Indeed, substitution of the term y(m\s, z) in the right hand side (RHS) of Eq. (17) 

gives the next term y(m\s, z) provided the small terms of the order of (cuj,z/2m)-1, and (u,'i,s/2m)-1 
can be neglected. These conditions, compared to the original paper111, include the ad

ditional factor m. From the expansion in Eq. (19), it is easy to see that significant 
m ~ J are large, and neglected terms are small provided

seff << 1,
1 K

Seff ’
2u$ f—

(20)

Under these conditions, Eq. (18) gives the result in

yb(s,z) = AoIo(uyzyJs/seff)cos(ujbS - u)yz + V’o)- (21)

The solution grows exponentially as exp[u>yzy/sjseff]. This expression depends only 

on two parameters: number of bunches in the train nj, and characteristic time sc

rv e(n/nb)y/sjs^^ J_ — (uySf>nb) ^22)
CIO Sc $eff

For larger s >> se//, the solution can be found in series

Vb{s, z) — — ^2 —i"(o—)m cos(w&s - u)yz + -—) (23)
S 771! ZWA Zm

giving oscillatory dependence on time

yb{s, z) = Ao^j~cos(vbs - uyz + ^~). (24)

This solution describes oscillations with the amplitude modulated in time s with 

frequency 2cjj/kz.
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The PEP-II HER parameters are: E = 9 GeV, pressure 5 nTorr, ox = 0.1 

cm, Gy — 0.02 cm, bunch spacing sj = 1.24 m, number of bunches rib — 1650, 

Nb — 8.3 x 1010 (at the average beam current h — 3 A), and = 0.07 m-1 

(for Ub — 23.5). That gives dNi/ds = 24.9 cm-1, u>y = 0.96 x 10~2/x/A cm~l, 

k = 2.1 x 10-15 cm-3, seff — 1.2 x 109 cm for A — 28. In this case zmax is larger 

than the ring circumference. Clearly, the regime shown in Eq. (24) can not be 

achieved, and the exponential growth of Eq. (22) can be stopped only by nonlinear 

effects.

The nonlinear regime

Exponential growth, as it was noticed in the original paper1’1, tends to saturate at 

large amplitudes. Let us consider this regime in more details. Eq. (17) shows that Yk 

grows faster than a bunch centroid yj. Ions can be cleared out by a gap in the bunch 

train, but memory is retained in the beam, and the amplitude of ions is determined 

by the amplitude of bunch centroids. Motion becomes substantially nonlinear when 

the amplitude growth, Eq. (21), changes the ion frequency u;'(a/ay)2 ~ 1 where the 

nonlinearity of ion oscillations u' = duy/d(a/ay)2 on the order of u' ~ O.lcvy. This 

provides criterion for the time when transition to the nonlinear regime for the last 

n&-th bunch takes place:

\ff-^ysbnb)\f~~- l^)' (25)
V sc y seff

Clearly, the exponential regime can be expected for s >> sc only if the initial ampli

tude ao is small.

In the substantially nonlinear regime when amplitudes of ions and electrons are 

large, |yt — Lfcl > cry, the equations of motion are

+o>byb(s,zn) = ~^KGySb^2sign[yb{s,zn) - Yk(yb(s,s- *„)], (26)

d zo) ~ Vb(s,s- z0)]- (27)

The analysis of these equations is complicated. To achieve a qualitative result,
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we proceed as follows. Take yb(s, zm) = o(zm) cos <5(s, zm) where, by analogy with 

the linear case,

zm) = ^bs ~ {^b + ljJy)zm + [LS. (28)

Note, that

$(s,s — zq) — —^(s, zq) —— — [cVj,s — (w& T uy)zQ — /zs]. (29)

Hence, yb{s, s — zq) = a(s — zq) cos \5(s, zq). The RHS of Eq. (27) is

-J~ayulsign[Ym(s, z0) - o(s - z0) cos 'f (s,z0)].

We assume

Em(s, zq) = y6(zo + Zm, zm) + Am(z0) cos[\5(s, z0) + , (30)

where the first term corresponds to the initial condition ym(zo + zm, zq) = yb(zo + 

zm, zm) for ions generated by the m-th bunch at location zq of the ring, and the second 

term describes oscillations of these ions induced by kicks of the following bunches. 

The argument of the sign function oscillates with s with frequency uy. The main 

Fourier harmonics of the sign function oscillates with the same frequency, confirming 

the choice of the solution shown in Eq. (29). From Eq. (27) it follows that Am ~ ay, 
but the phase depends on the relation between amplitudes of different bunches.

Substitute now Ym(s,s — zm) in Eq. (26) using

ym(s, s - zm) = yb(s, zm) + cos[<5(6, z„) - £mj. (31)

The RHS of Eq. (26) takes the form

r~ n —1
- Jy sign[q(zn) cos $(a,z„) - o(zt) cos $(s, zt) - cr„cos($(s,z„) - <m)].

‘ (32)

It oscillates with the frequency ub in the resonance with the betatron oscillations.
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The solution of Eq. (26) grows linearly with time

yb{s,zn) Ctjl cos$(s,z„) - ( K°--S-b )sdn sin $(s, zn) (33)

where coefficients dn depend again on the relation between the amplitudes of different 

terms in the sum of Eq. (32). The result, Eq. (33), can be written in the form Eq. 

(28) with the frequency shift fi — Kaysi,/(2u>b), making analysis self-consistent. Note 

that the frequency shift fi kills resonance and stops amplitude growth but it happens 

only at very large numbers of turns.

Depending on the correlation of signs of different terms in Eq. (32), the amplitude 

squared is proportional to n or to n2. Such uncertainty translates in the computer 

simulations to a non-monotonic growth of an amplitude for different bunches with 

the bunch number: the amplitudes of different bunches vary by several orders of 

magnitude and a bunch with a larger number does not necessarily have a larger 

amplitude. Assuming random signs of different terms in Eq. (32), we get the estimate 

for the time dependence of the amplitude of the n-th bunch when the amplitude is 

large

CTy seff
(34)

As discussed below, this estimate qualitatively agrees with numerical simulations, 

although it does not predict rather random variation of amplitude with time for 

individual bunches.

Because full scale modeling is time consuming, a simple code was used to model 

the instability based on Eqs. (17), (26), and (27). Equation (34) is compared be

low with the code to demonstrate that the estimate in Eq. (34) is consistent with 

Eqs. (17), (26), (27). Equation (34) is also compared with Raubenheimer’s tracking 

simulations.

A train of bunches was modeled in the code as a train of macroparticles, a single 

macroparticle per bunch. Bunches generate a macroparticle representing ions at all 

locations around the ring separated by a bunch spacing. Ions are generated by all
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bunches, which pass a given location and then are retained at this location for a 

specified number of turns, or until their amplitude is less than a certain aperture 

(3 x 103<Tj, was used in the simulations). The interaction between ions and bunches is 

described as a kick to ions and bunches proportional to the difference of the positions 

of the microparticles if the difference is smaller than cry, inversely proportional to the 

difference if the difference is larger than 10cry ~ <tz, and as a constant kick dependent 

only on the sign of the difference in other cases. Variation of the ion frequencies 

around the ring and variation of the betatron frequencies of the individual bunches 

were optional.

The results of the simulations with this code are shown in Figs. 1-5. The train 

of nj = 80 macroparticles moves in the 130 rf bucket long ring. Bunch spacing is 

s* = 0.42 m, the ion frequency u>y corresponds to uiyS^/c = 1.55, the interaction 

is defined by seff = 2.35 x 105 m, and characteristic time sc, defined by l/sc = 

(uySin^/seff, is sc = 15.3 m. The initial amplitude is not zero only for the first 

bunch 7/i (0)/cry = 10-6.

Under this conditions, the linear theory predicts that the amplitude of the n- 

th bunch grows to (an/cry)2 = 0.1 after s — sn — 2450(n^/n)2 m. Fig. 1 shows 

the result of the simulations where all ions are cleared out after each turn and no 

frequency spread is included both for ions and bunches. The results qualitatively 
reproduce the main features of the exact simulations11112*. They give an exponential 

growth in agreement with linear theory, and show that exponential growth slows 

down at large amplitudes. The behavior predicted by Eq. (34) for the same bunches 

is superimposed with the results of the code in the lower part of Fig. 1. The curves 

obtained without any fitting confirm that the estimate Eq. (34) derived from Eqs. 

(26) and (27) agrees reasonably well with the code describing the same equations.

Fig. 2 is calculated with the same conditions but ions were retained in 10 turns 

rather than cleared out after the first turn. Results are similar but behavior of 

different bunches is much less systematic than in the first case. Quadratic dependence 

on s is seen more clearly if results are plotted in the usual (not semi-logarithmic) scale, 

Fig. 2b. Note that the amplitude of the first bunch grows because the ion are not
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cleared out completelly by the gap. However, the amplitude of the first bunch remains 

smaller than that for the last bunch in the train by two orders of magnitude.

The effect of the frequency spread of ions was studied by G. Stupakov'21. Fig. 

3 shows the variation of the amplitude with time for the same parameters but ion 

frequency is varied periodically five times around the ring with 10% amplitude. The 

ions are cleared out in one turn.

Fig. 4 is calculated under the same conditions but betatron frequency is increased 

from bunch to bunch monotonically, increasing totally by 5% along the bunch train.

Fig. 5 compares Eq. (34) with the Raubenheimer tracking code. Parameters of 

the NLC damping ring were used: E = 2GeV, = 90, A = 28, = 1.5 x 1010,

pressure 10-7 Torr, s& = 0.42 m, j3y — 8 m, ax — 42/im, ay — 7.7/im. That gives 

sc = 0.82 m, seff = 1.3 x 104 m, and uySb = 1.4. Agreement is reasonable.

Raubenheimer’s numerical simulations for the ALS ring (w^s;, = 0.5) give seff =
1.7 x 104 m in good agreement with the linear theory for this machine. If this regime 

continued, the amplitude of the last bunch in the train of 150 bunches would grow 

to yb/cry ~ 5 x 109 at s — 1500 m. The simulations show that this quantity is in the 

range of 0.1 to 10.0 for different bunches in the nonlinear regime after s = 1500 m. 

The estimate Eq. (34) for the last bunch is 0.3. Note that the range of the amplitudes 

for different bunches agrees with linear dependence on n in Eq. (34).

For parameters of PEP-II, se// = 1.2 x 107 m, uyS(, = 0.22, and = 1658, 

equation (34) gives (yb/&y) = 7.5 x 10_7(s/m)y/n/nft, or yj = a in 4.5 msec for the 

last nj = 1650 bunch. This rate is smaller than the PEP-II damping time but can be 

managed with the bunch-by-bunch feedback system.

We can estimate the amplitude, at which the transition from the exponential 

regime of Eq. (22) to the linear regime of Eq. (34) takes place by calculating s at 

which both formulas give the same result:

\l~—(uysbn) = lnt(—)(—)(w,s*)Vn]. (35)
V se// °0 seff
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The break point amplitude for the n-th bunch is

J/_) _ ln2(cry/g0) 

cry 4cuj,sjn3/2

It is very small in the tail of the train, indicating that tail of bunches is always 

described by Eq. (34). In the head of the train, the break point amplitude can be 

large but time Eq. (35) in this case is large too, and growth can be stopped by a 

feedback system.

Conclusion

Ion-induced fast transverse instability is constrained by nonlinear effects. Non

linear effects stop exponential growth of the amplitude at fractions of the rms bunch 

size. At large s the exponential growth described in the papers1'1 l2lis replaced by the 

much slower linear growth of the amplitude. An estimate of the growth rate in this 

case is given by Eq. (34). The estimate is qualitatively consistent with numerical 

simulations. Instability at PEP-II can be controlled by the bunch-by-bunch feedback 

system with damping time of less than 4.5 ms.
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Figure Caption

Fig. 1 Comparison of the results of simulations (above) with Eq. (34). Lines are 

for different bunch numbers. All ions are cleared out after each turn and no frequency 

spread is included both for ions and bunches. Below: results of Eq. (34) are added, 

no additional parameters are used.

Fig. 2 The same as Fig. 1, but ions are retained for 10 turns. The same data are 

plotted in logarithmic (above) and linear (below) scales.

Fig. 3 Effect of ion frequency variation. The ions are cleared out in one turn.

Fig. 4 Betatron frequency variation is included.

Fig. 5 Comparison of Eq. (34) with the Raubenheimer’s tracking code.
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A coupled bunch instability due to 
beam-photoelectron interactions in KEKB-LER

Kazuhito OHMI

KEK, National Laboratory for High Energy Physics 
Oho, Tsukuba, Ibaraki 305, Japan

1 Introduction
LER of KERB is designed to storage the positron beam of 2.6A with multibunch oper
ation. N), = 3.3 x lO10 positrons are filled in a bunch and the bunch passes every 2ns 
through a beam chamber. In such a positron storage ring, a coupled bunch instabil
ity due to beam-photoelectron interactions^] may become serious. In Photon Factory 
2.5GeV storage ring, a coupled bunch instability has been observed in positron storage[2]. 
The instability was characterized by a low threshold current [Ith = 15 ~ 20mA) and a 
broad width of betatron sidebands. The instability has never observed in electron stor
age. Photoelectrons are produced when synchrotron photons emitted by positron beam 
hit the beam chamber. Most of the photoelectrons stay in the beam chamber during less 
than 0.1msec. However a bunch produces a very huge number of photoelectrons, and the 
succesive bunches continue to supply them intermittently. The stationary distribution 
of photoelectron are formed like electron cloud. The positron beam passes through the 
photoelectron cloud. A coupled bunch instability is induced by the photoelectron cloud 
which mediates bunch to bunch coupling.

Let us consider the synchrotron radiation and photoelectron production quantitatively 
in the case of KEKB-LER. The number of photon emitted by a positron is expressed by,

where a and 7 are the fine-structure constant and the Lorentz factor, respectively. Here, 
the bending radius is assumed to be a constant. In KEKB-LER, 7 = 6850, so that N — 
453 in a revolution. The chacteristic energy of the photon is ~ 6keV. The photoelectron 
conversion rate of the photon is assumed to be 0.02. The energy distribution is 5±15eV[3]. 
Total number of photoelectron produced by a bunch is 3 x 1011 in a revolution. The 
conversion rate is measured by using photons with incidence perpendicularly on a metal 
surface. In the case of photons with a small angle of incidence, it is enhanced by several 
times or more. The other hand, all of photons would not move such as been simulated. 
Anyway there is some ambiguity for this value.

1
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Table 1: Parameters of KEKB-LER

Beam energy 3.5GeV
e+ in a bunch 3.3 x lO10
beam size (x/y)(m) 5.4 x 10~4/7.6 x 10-5
RF frequency 508 MHz

In KEKB-LER, beam chambers have been designed to be cylindrical cupper pipe with 
a diameter of 9.6 cm. The same analysis as PF ring[l] has performed with those of 
KEKB-LER, see Table 1.

2 Photoelectron motion in the beam pipe
The photoelectrons produced at the chamber wall propagate to the beam position by 
an attractive force of positron beam. The photoelectrons are not trapped by the beam 
because of the light mass, if we consider the linear dynamics. However the time dependent 
nonlinear force from bunched beam may trap the photoelectrons for a short time. The 
trapping time will be far shorter than that of ion trapping in electron rings.

Now we consider a motion of photoelectrons produced by a bunch with a computer 
simulation technic. Each photoelectron, which started at beam chamber wall and inter
acted with the positron beam, was tracked. A cylindrical chamber with a diameter of 
10cm was used as a model chamber. Fig.l shows the motion of photoelectrons. The 
coulomb force by bunched beam with a gaussian distribution were considered. Though it 
would be better to consider a space charge effect of the photoelectrons, it did not domi
nate for the beam charge. The group of photoelectrons arrives at the beam position after 
interacting with the following 5 or 6 bunches. Because of the stochasticity of the time 
dependent force, a considerable rate of the photoelectrons were not absorbed into the 
chamber wall after twice of time arriving the beam center. After passing 100 bunches, 
1.5% of initial photoelectrons was remained.

Photoelectrons are supplied continuously by bunches arriving one after another. A 
stationary distribution of photoelectrons are formed by an equilibrium of the supply and 
absorption. Since most of the photoelectrons are absorbed after passing the following 
100 bunches, the stationary distribution is obtained by accumulating photoelectrons pro
duced succesively. Fig.2 shows the stationary distribution. It is interesting to estimate 
how many photoelectrons in the beam chamber. Fig.3 shows the number of photoelec
tron accumulated in the beam chamber. There is about 15 times of the photoelectrons 
produced by a bunch.
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Figure 1: Motion of photoelectron produced by a bunch, (a) Distribution after passing 5 
bunches, (b) 6 bunches, (c) 7 bunches, and (d) 8 bunches.
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5"0

Figure 2: Stationary distribution of photoelectrons

Bunch

Figure 3: Number of photoelectron in the beam chamber. It is normalized by the number 
of photoelectron by a bunch.
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Figure 4: Horizontal and Vertical wake force. The wakes by 0.5mm and 1mm displace
ments are marked by tilt boxes and crosses, respectively

3 The coupled bunch instability due to photoelec
trons

The positron beam passes through the stationary distribution of photoelectrons. Let us 
consider a loading bunch with a virtual displacement. If the loading bunch is shifted to 
the direction of positive-y, photo-electrons are attracted toward the new position. The 
loading bunch feels a kick in the negative-!/ direction from the stationary distribution. On 
the other hand, the following bunches feel kicks from a positively displaced distribution, 
and are kicked in the positive-y direction. We can interpret the momentum kick as being 
the wake force of the transverse dipole mode. The characteristics of the wake function is 
the same as that of an impedance problem, that is, it is negative near the loading bunch.

The wake force was obtained by doing above procesure with a computer. Fig.4 shows 
the wake force. The 100-th bunch is a loading bunch. The wake forces were calculated for 
the loading bunches with displacements of 0.5 mm and 1mm. The wake force is observed 
in following several bunches. The short-range feature results from the light mass of an 
electron. The vertical wake force kicks the following several bunches with good linearity.

We can observe two type of wake in the Fig.4. One is the short range wake which 
is shown in vertical and has good linearity. Another is that observed in horizontal and 
vertical. The horizontal wake did not show linear characteristics. In the vertical wake, 
linearity is not also good for backward of a dozen bunches. These, horizontal and vertical 
tail, are approximately equal in strength. As mension above, a portion of photoelectrons
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Figure 5: Growth rate of the vertical instability

are trapped in the beam chamber. The wake characteristics seems to be caused by the 
trapped electrons kicked by the loading bunch. The wake was satulated with the loading 
displacement of 0.5mm. The wake is anticipate to be sensitive for the boundary condition 
of chamber and self space charge of the photoelectrons. It may not enough to be estimated 
by this simulation. Now we consider only the linear wake.

We obtained a growth rate by the wake force. Fig.5 shows the growth rate. It is 
very high rate, 2500s-1. We should note that the growth rate depends linearly on the 
photoelectron conversion rate (0.02 is used here).

4 How to cure
We should consider how to cure the problem. We have some ideas as follows,

• Bunch to bunch feedback.

• Magnetic field.

• Bunch train.

The bunch to bunch feedback is expected to be 1msec (100 turn). The feedback is not 
enough to care the instability. Thus the problem is how the instability can be suppressed 
such as to care the feedback system. We consider to control magnetic fields so as to restrict 
the motion of electrons, because energy of photoelectrons are several eV near the surface 
of beam chamber. If photoelectrons come from horizontal direction, we can consider 
solenoid and vertical bending fields. Fig.6 shows the wake force when the magnetic fields 
is applied. The strength of wake was reduced remarkably. However it is not so easy to 
apply the magnetic field everywhere synchrotron radiation illuminate.

Another method is to operate with bunch trains. The wake force has a range of 
several bunches. Thus if we put a dozen of empty backets, most of the photoelectrons 
will absorbed into the beam chamber and first bunch of trains will be not affected by 
photoelectrons. However the photoelectron cloud is formed very rapidly. We should 
remember that photoelectrons produced by a bunch approach closely to following fifth or 
sixth bunch. Thus length of the bunch train will be limited by the formation of the cloud. 
In a preliminary calculation, if 20 bunches are joined, we are lucky.
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Figure 6: Wake force when applying solenoid fields of 20G.

5 Summary
The photoelectron instability may be serious for KEKB-LER. The growth rate exceeds 
damping rates of various mechanism: radiation, head-tail, and feedback.

Parpaps it is essential to remove the photoelectrons around the positron beam ex- 
plicitely. If we apply magnetic fields of about 20G, the growth rate will be reduced. 
Using bunch trains may cure the problem easily, though it will be not enough. In that 
case, the problem is how the luminosity is reduced by the limitation of the length of bunch 
train.
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Study of an Instability of the PEP-II Positron Beam 
(Ohmi Effect and Multipactoring) *

S.A. HEIFETS
Stanford Linear Accelerator Center 

Stanford University, Stanford, CA 94309

The transverse instability in the Photon Factory has been observed and described 
by Ohmi[11as an instability of a positron beam in a storage ring induced by photoelec

trons. (I would like to mention that W. Stoeffl also pointed out that photoelectrons 
may produce an effective wake-field somewhere in the middle of 1994). The photoelec

trons are produced by synchrotron radiation in the beam pipe wall and accelerated 

by the transverse electric field of the beam. A transverse kick given by the pho

toelectrons to the trailing bunches depends on the off-set of the previous bunches. 
The situation is, in general, analogous to the beam break-up ^induced by the regular 

transverse Wakefields, and to the recently described ion-induced transverse instability 
of an electron beam131.

The processes defining the density distribution of the photoelectrons are quite 

complicated. Detailed description of the instability requires computer simulations, 
as has been done in Ohmi’s original paper. It is useful to have a simplified model of 
the instability to get a quick estimate of the growth rate of the instability and the 
relative importance of the parameters. The model described below uses parameters 
of the LER of the PEP-II B-factory[41.

The paper is organized in the following way. First, Ohmi effect induced by direct 
flow of primary photoelectrons is studied for the PEP-II parameters. The production 
rate and kinematics take into account the antechamber of the LER. We discuss the

* Work supported by Department of Energy contract DE-AC03-76SF00515
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effect of the secondary emission of electrons in the AL chamber, where the yield 

is larger than one. Resonance multipactoring is considered, and then the average 

density of the secondary electrons is estimated taking into account the space-charge 
effect and the interaction with the beam. We show that in the extreme case there is 
a self-consistent regime similar to the regime of the space-charge dominated cathode. 

Finally, the rate of ion production by accumulated electrons and the possibility of the 

ion induced pressure instability is discussed.

Kinematics of the radiation

Consider a short dipole Id < \j2bp with length Id, and bending radius p. A 
photon emitted at the azimuth 6 upstream from the end of the dipole, 0 < 9 < 

Id/p, propagates downstream into the beam pipe of the straight section, covering the 

distance ly = ptand + s/ cos 0 before it hits the beam pipe wall. The photon hits the 

wall of the beam pipe with radius b at distance

s~b/e- p6/2, (1)

counting downstream from the end of the dipole. The distance /7 is larger than the 
distance le = pO + s passed by the parent electron to the same moment. The delay 

is Al = ly — le ~ pO3 /12 + bO/2. The maximum delay is for the photons emitted at 

the entrance to the dipole, 6 = Id/p, (A/)max ~ b\Jb/2p. For the LER parameters, 
Id = 0.45 m,p— 13.75m, b = 4.5cm, 7 = 6. x 103, the delay is small compared to 
the bunch length 07: the maximum delay is 1.3 mm, while 07 = 1 cm. Neglecting 

the delay, we assume that the primary photon and the parent electron remain on the 
same azimuth during the life time of the photon.

The photons are radiated uniformly along the orbit within a dipole. The energy 

radiated per unit time and the solid angle dQ in the frequency range duo is given by 

the well known formula

dW
duo

00

p 6tt3loq
(2)

where wo is the revolution frequency, e = (I/7)2 + a2, a is the radiation angle with 

the trajectory plane, and df2 = cos adadO.
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The number of photons per unit azimuth, and the total number of the radiated 

photons per dipole are respectively:

de
5qQ7 Ntot

2^3' ^
5

2Vlaol^d- (3)

The angle a defines the vertical displacement of a photon y = l7a. Eq. (1) relates 

s and 6 giving the distribution of photons dn/dt — dW/hu :

# = £ “ ^dyt-ld^T2b-p - s^K^c^) + £si„2 aKU—^2)]
dt 6tt3 u>q p(s2 + 2bp) 11/3' 3wq

(4)
where ivq = c/p, ao = e2/(hc) = 1/137, and e = (I/7)2 + y2/{s2 + 2bp).

Let us estimate the number of photons which strike the edges of the antechamber 
12/| > hgj2, where hg = 1.5 cm is the antechamber full height for PEP-II. In the most 

of the following, we ignore the photoelectrons produced in the antechamber, assuming 

that they loose memory on the offset of the parent bunch while drifting to the beam 
pipe. The photoelectrons that may be accelerated by the field of the beam and affect 

the beam stability are generated mostly on the edges of the slot of the antechamber. 

The electrons on the upper and lower decks of the slot may be pulled into the beam 
pipe by the field of the beam leaking inside of the slot, but their number is relatively 

small.

The maximum distance photons can travel in the beam pipe is limited by the 

bend of the beam pipe in the downstream dipoles, smax < 9 m. In this case, t — 

y2/(s2 + 2bp), and number of photons radiated by a positron per one dipole is

d2 n ao toduj
-)2[1-

dsdy 3tt2 u2 ^2 + 2bp + 2bp y/s2 + 2bp

Integration over frequencies gives

w
3tv'o

(5)

d?rt
dsdy

aoV3
[1-

\/s2 + 2 bp
yj s2 + 2bp

(6)
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At large s2 » 2bp,

where

n~f(s, y)
d2n b
dsdy sy2 ’

1h
aox/3

- 0.4 x 10'2.
7T

(7)

(8)

This gives the number of photons hitting the edges of the antechamber downstream 

from a dipole

dN~f 4ao\/3 b
ds 7T shg ’

^ = W3^_ln(W)
7T

(9)

The minimal distance smin can be defined from the condition (lo/3u>o)y3 < (s2 + 

26p)3/2, otherwise the number of photons from Eq. (5) is exponentially small. The 

distance s cannot be too small because y2 > (hg/2)2, and the photon energy should 

be large enough to produce a photoelectron: hu > 7o, where Iq ~ 4.5 eV is the work 
function of a beam pipe wall. This limits

« > Smi„ = (10)

PEP-II parameters give smi„ — 3.5 m, larger than \j2bp — 1.1 m.

Eq. (9) gives iV7 = 0.045 per positron per dipole. This is about 2.2% of the total 

number of photons given by Eq. (3) iV*0< = 2.06 for PEP-II parameters.

Kinematics of the photo-electrons

The average number of photoelectrons generated by 7V& particles per bunch per 

unit length is
dNe
ds

iV,
(smax 5 min)

Nb (11)

where the yield rjey is the number of electrons per incident photon. This yield depends 
on the photon energy and the incident angle, which varies from 1.5 mrad at s ~ smin 
to 0.15 mrad at s = smax. Ohmi uses r/e-y ~ 0.1 photo-electrons per photon. For the 

PEP-II parameters, Nb = 8.3 x 1010 at the beam current 3 A, dNe/ds = 6.8 x 105 

cm-1.
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The initial photoelectrons have density ne(s,x,y,0) = rieiNBn-((s,y)6(x — b) 

within the range |j/| > hgf2, smin < s < smax.

The photoelectrons have an initial energy on the order of a few eV-s. The trans

verse electric field of the parent bunch gives a kick to the photoelectrons

x _ 2Nse2 x fv^ _ 2Nsro
X) - c x2 + j/2’ Vmax ” b

where re is the electron classical radius. This corresponds to (u/c)max = 1.0 x 10~2, 

and energy mv2 j2 = 26 eV at 3A beam current.

This energy is large compared to the initial energy of photoelectrons coming 

out from the wall. Because the field lines are perpendicular to the wall, the photo
electrons get only horizontal kick from the parent bunch. The electrons are distributed 

vertically with the height on the order of hg = 1.5 cm. An initial vertical velocity 

corresponding to the energy 1 eV would displace the electron vertically by the distance 

2.5mm << hg when the next bunch arrives for the PEP-II bunch spacing si = 120 

cm. The actual displacement is even smaller due to cos 9 distribution of the initial 

photo-electrons. We may, therefore, neglect the initial energy of the photo-electrons 
so that the distribution of the photo-electrons over the horizontal velocity after the 

parent bunch passed by is

p{v) = J dp(z) 8[vx(z) - v]. (13)

Here, p(z) is the longitudinal density of the bunch, and vx(z) = umax f^^dz' p(z') is 

the velocity of a photoelectron due to radiation of positrons at the location z within 

a bunch. In Eq. (13) we neglect the time delay between a photon and the parent 
positrons.

Integration in Eq. (13) gives a uniform distribution within the range 0 < v < 

umax: p(v) — (l/umax)0(umax — v). As a result, the distribution of the electrons in 
the horizontal direction at moment t after the parent bunch is also uniform within a
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strip with length Ax = t>maxf:

ne(s,x,y,t) = r/77/e7
Nb b 

Ax(t)s(y - y[)2'
(14)

The density is nonzero in the range |y| > hg/2, smi„ < s < smax. Here we mod
ified Eq.(8), introducing the offset ylc of the parent bunch centroid. The vertical 

distribution remains unchanged.

At the moment t\ = sb/c, when the next bunch comes to the same azimuth s, 
Ax = Vmax-Si/c. For PEP-II parameters at 3 A current, Ax = 1.28 cm, Ax << b. 

The density in this moment is independent on Nb. The maximum average density 
at |y| = hg/2 is nmax = 3.6. x 105 cm-3 at PEP-II parameters. Later the strip is 

stretched because the kick is larger for the particles at the end of the strip that is 

closer to the beam. At the arrival of the next bunch, the strip is 2.2 cm long and 

the head of the strip is at a distance x = 3.47 cm from the wall, close to the beam. 
When the next bunch comes, the head of the strip is 0.25 cm away from the opposite 
wall and the bunch is 5.3 cm long. The centroid of the strip moves vertically from a 

position above beam line to the position below it before it hits the wall.

The head of another strip of electrons produced by the next bunch coincides with 
the tail of the strip of the previous bunch. The beam makes a continuous ribbon of 
photoelectrons flowing from the wall toward the beam with varying density due to 

the stretching of each strip.

Effect of the photoelectrons

Consider for the sake of simplicity the 1-D case, y = yc = 0.

The photoelectrons give a kick to the positrons dpy/ds = — (d/dy)e2U, where 

U(s, x, y) is the potential defined by the density Eq. (14), properly modified in time

AU{s,x,y) - -47rnc(s,x,y). (15)

Taking into account the interaction of a bunch only with the group of photoelectrons 
closest to the beam, we get the equation of betatron oscillations in the vertical plane
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x = 0

d2y 
ds2

+ kfa = re dU(s,0,y) 
7 dy

(16)

where kp = vy/Ro is defined by the vertical betatron tune vy and the average radius 
of the machine Rq.

Considering the potential of a strip of electrons with the length Ax and the 
centroid at xc, we can estimate

dU(s,0,y)
dy

= 2 J dx'dy'ne(x',y' y-y
xc)2 + (y- y1)2'

(17)

where ne is given by Eq. (14).The integration over y' is in the limits |y'| > hgj2 

The equation of motion takes the form

d2y 
ds2 (18)

where A = rj1rie1Ni)brel'y. The RHS of Eq. (18) is nonzero in the range smin < s < 

smax after each dipole, and

j(y V)-— / dx'dy'_________ lzk!_______ .
Ax J (y1 - y[)2 (x1 - xc)2 + (y- y')2

(19)

Consider expansion of the RHS of Eq. (18) in y and ylc. The term driving the insta
bility is proportional to the offset ylc. Other terms give a negligible small correction 

to the betatron tune and orbit distortion. The driving term is

J =
8tt .

(20)

in the case Ax >> xc, and Ax ~ hg, and J is smaller than this for large xc >> hgf2, 

Xc — Ax by a factor Axhg/(nx2).
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The offset of the accelerating bunch affects the density distribution and is sup

pressed by a factor 7rhg/8b << 1. Equations (18), and (20) give

d2y 
ds2

+ kpy — — \ylc, (21)

where the averaged A is

A = 8lW"7(w-Jsl)/>!Axln S' (22)

The vertical component of the kicks changes the width of the distribution and the 

vertical offset of the centroid of the group of photoelectrons simultaneously without 

changing this result.

Oscillations of the first bunch in a train of bunches with the amplitude Ai, yi(s) = 
Aoe*^3, excite oscillations of the following bunches with the amplitude of the n-th 
bunch growing with the distance s as

Vn+l oc
Ai . As

(tt-)"-n! v 2k
(23)

The amplitude of the n-th bunch

A„+i OC ^=c»ln[eA*/(2ni(J)] (24)
Vn

starts growing at s > sn = 2nkp/(e\), e = 2.718... Consider the worst situation of a 

3 A beam bunch, when the head of the strip is only 1 cm away from the beam and 
Ax = 2.2 cm. Although at a lower current this distance can decrease, the reduction 

of Nf, does not make the situation worse.

For the PEP-II parameters, A = 0.6 x 10~6 m~2 for T)n = 0.1, and average current 

3 A. The amplitude of the second bunch becomes equal to the amplitude of the first 

bunch after 100 turns, or 0.73 msec and then propagates to the tail of the beam with 
the same rate from bunch to bunch.
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Effect of the background electrons and multipactoring

The instability described above is due to interaction with a single group of pho

toelectrons.

The interaction with other groups of photoelectrons or with electrons existing in 

the beam pipe may give a similar effect. Such “background” electrons is the media 

interacting with the beam and the electron density defines the beam instability. The 
background electrons may be generated by different mechanisms: inelastic collisions 

of the positron beam with the residual gas, photoeffect on the residual gas, diffusion 

of photoelectrons from the antechamber, generation of electrons by the scattered 
synchrotron radiation, by secondary electron emission, etc.

The secondary electrons may be accelerated by the transverse field of the beam 
to large energies and, hitting the wall, produce new electrons. The number of fast 

electrons can be enhanced at certain currents when secondary electrons are produced 
at the moment when another bunch is passing by. Such a beam induced multipactor
ing may lead to a substantial increase in the electron density, provided that the yield 

rjee of the secondary electrons is more than one.

The interaction with the background electrons is the main concern in the dipoles 

where the magnetic field prevents the photoelectron from drifting toward the beam, 
because the Larmor radius of such electrons is of the order of 20 fim. The electrons 

move primarily in the vertical plane, because the longitudinal cross-field drift and 
the drift caused by the space charge are slow. The multipactoring of the background 

electrons in the dipoles may lead to large electron densities. It is worthwhile noting 
that instability of the KEK Photon Factory probably is the result of some processes 

in the dipoles.

The average number of photoelectrons per unit length from Eq. (11) generated 
by the primary synchrotron radiation of a bunch with Nb — 8.3 x 1010 positrons 

is dNey/ds = 6.8 x 105 cm-1, and the initial density in a stripe of photoelec
trons nmax = 3.6 x 105 cm-3. The density of a stripe which centroid moved to 

the beam, is smaller, about 2. x 105 cm-3. The question here is whether the den
sity of the background electrons can be much larger. In a steady state regime, one
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could expect the equilibrium electron density given by the condition of neutrality: 

n = ArB/(7r62Sj)) = 1.5 x 107cm-3. However, the background electrons are not in 

equilibrium, and the answer may depend on such details as the energy dependence of 
the yield of the secondary electrons.

Fig. 1 shows dependence of the yield t]ee on the energy of the incident electron 

for A1 oxide and the distribution of the secondary electrons. The distribution at large 

initial energy Eq >> E^in has two maxima. The high energy peak is at E ~ Eq 

and corresponds to a backscattered incident electron. The width of the first maxima 

describing real secondary electrons is about 5 eV. Fig. 2 shows the yield for the 

different materials.

The kick from the transverse electric field of a bunch changes the velocity of 
an electron located at distance r from the beam by v(r), Eq. (12), and electrons 

hitting the wall can produce secondary electrons, if r/b = (Nbro/b)y2rnc?/E^. 

This condition is easy to satisfy: r/b = 0.7 for the PEP-II parameters at 3A current.

As mentioned above, the motion of an electron may be quite complicated, an 

electron can be kicked several times by bunches before it reaches a wall. At the high 
Nb corresponding to the 3 A current for PEP-II, an electron experiences on average 
three kicks before it reaches the wall. At lower currents, the situation is even more 

complex: the number of kicks increases, seeFig. 3, an electron can come back to the 
wall where it started, and, in general, motion becomes quite stochastic, see Fig. 4. 

Neglecting the effect of the space charge, it is easy to show that electrons at large 
distances from the beam are indeed unstable. The coordinate and impulse of an 

electron are changed from bunch-to-bunch as

x , sb A
x H----- px\me Px Px — Px

2Nbe2x 
c(x2 + a\)

(25)

Here, cr< is the transverse rms bunch size. The electron is stable if the trace \SpM\ < 2 

where M is the matrix transforming Ax, Apx to Ax, Apx. Calculations give

^SpM = 1 + Nbresb x2 - a?
2 (x2 + <72)2 ’

(26)

which is larger than one for |x| > |cr<|. Hence, the motion is random, and electron
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trajectories tend to cover all phase space at large distances.

It seems that if multipactoring occurs, fast electrons may multiply to large den

sities and become dangerous for beam stability. The process stops, however, due to 

the finite energy spread Eq of the secondary electrons. This results from both the 

initial distribution in energy of the secondary electrons (see Figs. 1, 2), and from the 

difference in the kick gained from a bunch with a finite bunch length 07.

As a result of the initial spread in velocity Au, the primary group of electrons 

is extended by Az = Avsbjc at the time when the interaction with the next bunch 
occurs. Interaction with the bunch transforms Ax into additional spread in velocities 

and, as result, in the difference in time At when electrons hit the wall. The effective 

yield of secondary electrons is r)eff = rjAt^a/c). Estimate gives

Veff _ Nbr0cri feme2
tj 2bsb V Eo ' ( }

For PEP-II parameters, the ratio is of the order of 10-2 at 3 A current, and even 

smaller for smaller Nb. This result agrees with what can be expected from a stochastic 

behavior of electron trajectories at low currents. Hence, the resonance multipactoring 
does not lead to a large electron density. Effect of the secondary electrons is considered 

below. The space-charge effect changes the dynamics of the background electrons and 

has to be taken into account in the estimate of the equilibrium density.

Fig. 5 shows the variation of the electron density with time for the 1-D problem. 

The result was obtained by tracking photoelectrons taking into account the space- 

charge effect, interaction with the beam, and the secondary electron emission at the 

walls.

The equilibrium density of the background electrons

Let us estimate the steady-state density of the background electrons. The density 

depends in the self-consistent way on the average space charge of electrons and on 

the yield of the secondary electrons from the walls.
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The problem is quite complicate and consideration is restricted to the 1-D problem 

for particles within the range 0 < x < 2b, |t/| < hg/2 with the density n(x,v,t) being 
independent on the longitudinal and vertical y coordinates.

The dimensionless variables are used

X SbV ct

Z=2V U=Z27c T=Z7b (28)

The equations of motion in this units are

dz du
5? = u- 0<2<1- (29)

where the total force Ft includes periodic kicks from the beam with the period t — 1 

and the space-charge force F(z), given by the Poisson equation

Ft = 0F(z, t) - o_- a = bJ b, fd = A-Krasl
2 z - 1

(30)

Ft
W(z)

dz dz = n(z), (31)

(32)

Here n(z,r) = f dun(u,z,r) is the density with the usual dimension cm-3 defined 

in such a way that n(x,t) = n(z, r) for corresponding z and x. The total number of 

particles is ntot = J n(x)dx = 2b f n(z)dz. We use the Vlasov equation:

dn(z,u,T) dn(z,u,r) dn(z,u,r)
+ u----- o---------h rt-dr dz du

[<9o^(t)+t?o«/^]$(—u)5(l —z)—un(u, 1)5(1—z)0(u) + [77oJ^$(u)+un(u, O)0(—u)]5(z).

(33)
where we neglected collisions between the electons, but included the interaction of 
electrons with the beam and the average effect of the space charge. The source terms
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in the RHS include the term proportional to the flux dNe/ds of photoelectrons per 

unit length of the beam pipe per bunch:

Qo = 1
2bhg

/TV,
{ ds )• (34)

Other terms describe particles loss at the wall and the secondary emission of the 

electrons. For Al, the maximum yield tjq = 2.6 corresponds to the energy 400 eV of 

the incident electron, rolling off to r) = 1 at Em^ = 50 eV and Emax = 2.6 keV. Eq. 

(33) uses notation

— timin

J\ = J udun(u,z); J^L — — J udun(u, z) (35)

for the number of incident electrons able to produce the secondary electrons, where

Umin - ( l)^2- - (36)

The distribution of the secondary electrons is described here by the function 0(u), 

which is non zero only for u > 0, and normalized to one, J0°° du$(u) — 1. The 

distribution may be characterized by moment urns

(37)

$(w) has a sharp maximum at the energy of few eV. We will neglect another peak 

with the energy close to the energy of the incident electron with a small yield.

The equilibrium density can be obtained by deriving a set of equations for the 

momentums of n(u,z,r). Let us define moment urns

oo u
J+(z) = j udun(u,z), J~(z) = — j udun(u,z),
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(38)

oo U

n(z)T+(z) — J u2dun(u,z), n(z)T~(z) = J u2dun(u,z).

Both J± > 0 and the total current J(z) = n(z)v(z) is J(z) = J+ — J~. Similarly, 

T{z) — T+(z) + T~(z). To close the system of equations, we assume that the third 

moment urns can be approximated as

oo 0j u3dun(u,z) ~ J+(z)T+(z), J u3dun(u,z) = —J~(z)T~(z). (39)
0 —oo

Integrating Eq. (2-5) over du, udu, and u2du gives the system of equations

dn(z,r) dJ{z,r)
(40)

dJ + M^r)T_
OT OZ

3nMT ^J(z,r)T _w = ))|
8t dz

(41)

(42)

and the boundary conditions:

j (1) = [Qo^(t) + 7?od+], J+(0) = TjoJl . (43)

T"(l)n(l) = u0[<5o5(r) + T+(0)n(0) = uoVoJv_, (44)

T(l) 7(1) = -«S[Qo«(r) + VoJV+] + T+(l)7+(l),

T(0)7(0) = ulmJl - J-(0)T-(0). (45)

Averaging in time over the period t — 1 changes this equation only by replacing 

5(t) —> 1 and taking away terms with derivatives over r.
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After averaging, Eq. (40) gives J(z) = To = const. Eq. (42) then gives the energy 

conservation

+ (/W = const = (46)2 ' " 2 2 

where U(z) is defined by Eq. (34) with the conditions U(0) = U(\) = 0. Eqs. (41), 

(42) give together

n2T = const = A2 - n(0)2T(0) = n(l)2T(l)

and the remaining equation defines the density

a ,42
dz n

= Ft(z)n(z).

It follows from Eqs. (46), (47) that T(0) = T(l), n(0) = n(l).

Define and from Eqs. (45). This gives

T(0) = Uq H--- — To], T(l) = Uq-\-------------- 7—r[Qo + IJoJ'l + To].
n(0)

Condition T(0) — T(l) defines To:

n (I)'

2To — —\Qq + 770 (T+. + T^)].

(47),

(48)

(49)

(50)

Hence,

By definitions,

T(l) - uq + 2^y[^° + 7?o(T+ + Jl)].

T( 1) = j u2dun(l,u) = (u)2 ■+(ii- Ti)2.

Identify (u — u)2 = fig, u = uq, then, the boundary conditions are

n (0) = n(l), 2n(l)u0 - Qo + rio(Jl + Jl).

(51)

(52)

(53)

We now need to define the current Jv of high energy particles going toward the 

wall. This cannot be done from the steady-state equations: particles in the steady
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state move in an effective potential, and they return to the wall with exactly the same 

energy they leave the wall. To define Jv, we go to the basic equation of motion (31). 

A kick from a bunch has to increase the energy of a particle to the the range from 

Em[n to £max. This means that a particle has to be at the distances from a bunch in 

the range

Ur] <
a

(2z ~ 1)
Uri (54)

where umin, Umax are defined by Eq. (36). If umin is large compared to the velocity u 
of a particle before kick, then

Ji = (55)

where the integral is taken over the range Eq. (54). The minimum distance from the 

beam here is Az = a/(2umax) and has to be replaced by the dimensionless transverse 

rms bunch size crx/2b if Az < crx/2b.

The minimum distance from the beam here is Az = ct/(2wmax) and has to be 

replaced by the dimensionless transverse rms bunch size ax/2b if Az < <rx/2b.

Taking another derivative over z in Eq. (48), we get

7TzlTzi = Atn + T*( 2*-ip- (56)

The first term in the RHS describes the space-charge effect. It is small compared to 

the second term describing the average field of the bunch for the densities n < 2a//3, 

or n < 5. x 106 cm-3 for PEP-II at 3 A current.

Neglecting the space-charge term, we get the solution

"(2)~^ll + 25ln|5^T11-1/2 (57)

where, for simplicity we put u\ — u\
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The density Eq. (57) is of the order of n ~ Qq/2uq, or n = 4.0 x 105 for PEP-II 

at 3 A current. That is larger than nmax of the initial density of a strip, but decreases 

logarithmically at the beam position z = 1/2 due to the interaction with the beam.

At very large densities, the RHS of Eq. (56) is dominated by the space-charge 

term. Neglecting the second term, we get the solution similar to the problem of the 

space-charge dominated current from a cathode:

"w = (|)1/3'7^72|2/3' (58)

This solution should be matched with the solution Eq. (57), which is always correct 

in the close vicinity to the bunch.

Result of the numeric integration of Eq. (56) are shown in Fig. 6. The equilibrium 

density is maximum at the wall and is much larger than the density of the photo

electrons, n ~ 5. x 107 cm-3.

The equation was solved numerically for the variable y(z) — n(l)/n(0). The 

solution depends on two parameters a, uq, for different values of the parameter 0 = 

0n( 1). After the solution of the equation with the boundary conditions y(0) = t/(l) = 

1 was found by the shooting method, the integrals Jv — Jv/n( 1) can be defined. 

Then, the boundary condition Eq. (53) defines the solution n(z) — (3/[/3y(z)\, which 

corresponds to
<«, [1 _

2 uo(3

The quasi-equlibrium solution for given Qo exists only for certain range of t/q > 0 

as it can be seen from Eq. (59). Outside the range, the solution is unstable what 

corresponds to the avalanch of the secondary electrons.

The self-consistent regime is described here approximately using averaging in 

time. If yo is two small, the bunch-to-bunch modulation of the density become large 

and all electrons can go to the wall within before another bunch arrives. The minimal 

7/o can be obtained from the first relation Eq. (55) estimating the current to the wall 

J+ as J+ = f1 dzn(z).^ Zmax v '
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Effect of Ions

The inelastic collisions in the residual gas with pressure p have a typical cross- 

section <7C ~ 2 Mbarn and, at normal temperature, generate electrons with the rate 

dNe/ds = 0.06 (p/torr) cm-1 per positron. The photoeffect on the residual gas gives 

rate comparable with the rate of inelastic collisions. For a pressure p = 5 ntor (the 

density of the residual gas at normal temperature ng = 1.5 x 108 cm-3) this rate is 

2 x 104 smaller than the rate of photoelectron production.

Let us consider therefore the rate of ionization of the residual gas by the photo- 

and background electrons. The potential problem here is the induced de-gasing from 

the wall, which may produce pressure instability.

The photoelectrons hitting the walls do not cause the problem. They are produced 

with the rate
d?Ne (dNe h
dsdt v ds ’ eNf)

where Ib is the average beam current. This rate is very high,of the order of 1014 

cm-1 sec-1, and the electrons can produce neutrals hitting the walls. However, the 

yield of neutrals per electron is smaller than that for ions. More than that, this effect 

is independent of pressure and, hence, does not lead to the run-away increase of the 

pressure of the residual gas, although more pumping may be required. Similarly, in 

the case of the formation of the equilibrium plasma, the flux of ions to the wall is 

equal to the flux of the photoelectrons in the beam pipe. This flux is large, but again 

does not depend on the residual gas density ng.

Photoelectrons can also ionize residual atoms, which, hitting the wall, produce 

more neutrals. This process increases effective yield of the neutrals produced by ions 

at the walls and reduces the threshold of the pressure build-up. The cross section of 

the ionization of the residual gas is of the order of cr, ~ 10-16 cm2 at low energy. The 

rate of ion production per electron moving from wall-to-wall is then

dsdt
2bngcri(

dNe 
ds }

h
tNb (61)

Comparing this yield with the rate of ions produced in the inelastic collisions of the
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beam with the residual gas

d2Nj
dsdt

— ngac h
e

(62)

we see that the rate in Eq. (61) is small, only few percent of the rate in Eq. (62), 

even with the relatively low ac.

The rate of ions produced by the background electrons with density ne may be 

higher. An electron produces an ion within the ionisation length / = (nffcr,)-1, and if 

the average velocity of the electrons is v, they produce

——— = nqnecri\abv 
dsdt (63)

ions per unit length of the beam pipe with the dimensions a x b. This rate is 

d2Ni/dsdt — 2.0 x 107 cm-1 sec-1 for ne = 105 cm-3, v/c = 10—2, and b = 2a = 5 

cm. This has to be compared with the rate from Eq. (63) d2Ni/dsdt = 6.0 x 109
—l —lcm sec .

Thus, the rate of the ion production by the electrons is small compared to the 

rate of ion production by the beam.

Finally, ions may, in their turn, affect the density of the background electrons. 

The ionization of the residual gas may produce more than enough ions to make a 

neutral plasma, which would change the space charge effect and the dynamics of the 

background electrons. The Debye length at the plasma density n = 107 cm-3 and 

the temperature of the order of Emin — 50 eV is of the order of 1.6 cm. Plasma with 

these parameters may affect the condition of the equilibrium. However, the ionization 

rate is relatively low: the cross section a ~ 10-16 cm2 corresponds at this density 

to ionization length 3. x 107 cm or to the ionization time 20 msec at the electron 

velocity v/c = 5 x 10-3. This time is much larger than the revolution period 7 /zsec, 

but the ion density can increase up to 104 cm"3. The 100 m gap in the bunch train 

will clear electrons, and their space charge drags ions to the wall. However, the gap in 

the PEP II positron ring is partially filled, and ions can survive and be accumulated 

to make the low-density neutral plasma.
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The plasma oscillations at such density have the wavelength 2tt/y/Airr^n of the 

order of 100 m, too large to affect the beam.

Conclusion

The production rate and dynamics of the photoelectrons are studied for the PET

IT parameters. The growth rate of the transverse instability driven by the primary 

photoelectrons is of the order of 0.7 msec for the PEP-II parameters. This is compara

ble with the rate of instability driven by ions in the HER: the large flux of the primary 

photoelectrons is compensated by the low density and small number of interacting 

bunches.

The multipactoring at resonance currents cannot produce large electron density 

due to the final energy spread caused by the finite bunch length and the intrinsic 

energy spread of the secondary electrons.

Production of the secondary electrons may lead to large average densities. This 

effect is studied in the 1-D model, taking into account the space-charge effect, inter

action with the beam, and production of the photoelectrons.

The ions can be produced in electron collisions with the residual gas with density 

of the order of the electron density. They may not be cleared out by a partially filled 

gap. While going to the wall, the ions can increase the rate of production of neutral 

atoms and increase pressure of the residual gas.
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Figure Captions.

1. The yield of the secondary electrons: dependence on the energy of the incident 

electron (below, from R. Kollath, Phys. Z. 38, p. 202, 1937), and the energy spectrum 

of the secondary electrons (above, from J. R. Brinsmade, Phys. Rev. 30, p.494, 1927).

2. Dependence of the yield of the secondary electrons on initial energy for different 

materials, LBL Engineering Manual.
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3. Dependence of number of kicks an electron receives travelling from wall to wall 

on current.

4. Examples of the trajectories in the phase plane for three different location 

around the ring (i.e. for different transverse rms at) at I = 0.015 A.

5. Dependence of the average density on time in the 1-D model including both 

effects of the photoelectrons and of the secondary emission. dNe/ds = 6.8 x 105, 

770 = 2.6. Time in units s&/c.

6. Density profile for the same case as in Fig. 5.
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Distributed Ion Pump Related 
Transverse Instability in CESR1

J.T. Rogers and T. Holmquist2
Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853 USA

An anomalous damping or growth of transverse coupled bunch modes is observed in the 
Cornell Electron Storage Ring (CESR). The growth rates and tune shifts of these modes are a 
highly nonlinear function of current. Unlike an instability produced by the coupling impedance 
of the vacuum chamber, the magnitude of the growth rate first increases, then declines, as the 
beam current is increased. The effect is known to be related to the operation of the distributed 
ion pumps, as it disappears when the pumps are not powered. We review the observations of 
this effect, and show that it can be explained by the presence of electrons trapped in the CESR 
chamber by the field of the dipole magnets and the electrostatic leakage field of the distributed 
ion pumps. Photoelectrons are introduced into the chamber by synchrotron radiation and can 
be captured in or ejected from the chamber by the passage of the beam. The transverse position 
of the beam thus modulates the trapped photoelectron charge density, which in turn deflects the 
beam, creating growth or damping and a tune shift for each coupled bunch mode. Predictions of 
the dependence of growth rate and tune shift on bunch current and bunch pattern by a numerical 
model of this process are in approximate agreement with observations.

1 Distributed ion pumps
CESR contains both lumped ion pumps and distributed ion pumps (DIPs). Within the length of each 
bending magnet, the CESR vacuum chamber contains two DIPs, shown in cross section in Fig. 1. The 
pump anodes are operated at 7.4 kV.

------ 190mm-----
MAGNET POLE

BEAM CLEAR ZONE 
90 mm X 50 mm

65mm

175mm

Figure 1: Cross-section of the CESR vacuum chamber inside the bending magnets. The distributed ion 
pump is in the chamber on the right. A small number of DIPs (those within the hard bend magnets) have 
copper shields (dotted outline).

A series of slots, shown in Fig. 2, allows gas to flow from the beam chamber to the pump chamber. These 
slots also allow electromagnetic fields to penetrate from one part of the chamber to the other. The coupling 
of the bunch current to the DIP anode has been simulated on the bench by sending a nearly Gaussian pulse

'This work has been supported by the National Science Foundation.
2Reporting for the CESR Operations Group.
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Figure 2: The pattern of pumping slots between the beam chamber and pump chamber.

down a thin conductor placed along the beam chamber axis. The measured coupling amplitude for a current 
pulse with ol = 2.7 cm is 2 x 10-4 [1], The slots also allow the DC electric field produced by the DIP anode 
to leak into the beam chamber. A numerical computation of the leakage field [2] shows that at the center of 
the beam chamber the dipole and quadrupole components of the electric field are 320 V/m and —2.1 x 104 
V/m2, respectively. Significant higher-order multipole fields are also present. The direct influence of the 
dipole and quadrupole leakage fields on the orbit and tune of the beam have been observed [2]. Distributed 
ion pumps in the CESR hard bend magnets have additional copper shields with offset slots, shown as the 
dotted outline in Fig. 1, which are intended to prevent scattered synchrotron radiation from entering the 
DIP. These shield the beam chamber from the DIP field.

In the center of each bending magnet, between the two DIPs, there is a circular port in the partition 
between the beam chamber and the pump chamber which may also electromagnetically couple the two 
chambers. The effect of this port has not been investigated to date.

2 Anomalous instability
An anomalous transverse coupled bunch instability (“anomalous antidamping”) is observed in CESR [3]. 
Unlike an instability caused by the coupling impedance of the vacuum chamber, the growth rates and tune 
shifts are strongly nonlinear functions of beam current. The absolute value of the growth rate is largest at 
the intermediate currents encountered during CESR injection, and becomes dramatically smaller at higher 
currents. Thus the anomalous instability is troublesome during positron injection from a state where the 
is no current in the machine. During colliding beam operation, the instability is suppressed, probably by 
Landau damping from the beam-beam force. The instability occurs for electrons as well as positrons, but is 
not as severe or reproducible for electrons as it is for positrons. The growth rates are very reproducible for 
positrons, over periods of years, and do not depend on the residual gas pressure. All of the data presented 
here have been taken with positrons in CESR.

The anomalous instability is much stronger in the horizontal plane than in the vertical plane. Coupled 
bunch modes at positive frequencies are damped; those at negative frequencies are antidamped (tend to 
grow). The absolute values of both the growth rate and tune shift are largest for the lowest frequency mode 
and decrease with mode frequency.

The current at which the absolute value of the growth rate reaches its maximum value has a mild 
dependence on the number of bunches, unless the bunches are closely spaced, as shown in Table 1. The 
instability “sees” two bunches which are spaced by 28 ns or less as a single bunch, and bunches spaced by 
280 ns or more as separate. The growth rate is dramatically reduced when a gap is present in the bunch 
pattern.

Table 1: Bunch current at maximum |a|
Number of trains Bunches per train Minimum bunch spacing Bunch current at |a|maz

1 1 2562 ns 7=1=1 mA
3 1 854 ns 7=tlmA
7 1 364 ns 5 ± 1 mA
9 1 280 ns 4 =t 0.5 mA
9 2 28 ns 2.2 ±0.3 mA
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The anomalous instability is present only when the distributed ion pumps are powered [4]. It disappears 
quickly when the DIPs are turned off, with a time constant consistent with the discharge of the power supply 
filter capacitors. There should be no rapid change in the residual gas pressure because of the continued 
gettering of the DIPs. The instability reappears immediately when the pumps are turned on. The growth 
rate is proportional to the number of DIPs (without copper shields) powered [4, 5], The DIPs with shields 
have no detectable effect on the beam.

We have measured the growth rate of the /o — A = 171 kHz coupled bunch mode (which has the largest 
growth rate) as a function of bunch current and DIP anode voltage [5]. For this measurement, several CESR 
DIP power supply chassis were modified so that their output voltage could be varied continuously. We made 
measurements with eight and 35 DIPs under voltage control. The growth rate per DIP was found to be very 
nearly the same for eight and 35 pumps powered. At the full 7.4 kV anode voltage the growth rate per DIP 
was found to be the same for eight, 35, or all 141 unshielded pumps powered. Figure 3 shows the growth 
rate vs. bunch current for seven values of the anode voltage. We used the present CESR bunch pattern of 
9 trains of 2 positron bunches with a bunch spacing of 28 ns. Figure 4 shows the growth rate per pump 
plotted as a function of anode voltage for eight values of the bunch current. Note that the growth rate is 
approximately linear with DIP anode voltage.

t-B—I

\lV=2

2.5 3 3.5
Current per bunch (mA)

Figure 3: Growth rate of the A — A mode vs. positron bunch current for distributed ion pump anode 
voltages from +1.1 to +7.4 kV. Eight DIPs were powered. The background growth rate with these eight 
pumps turned off has been subtracted. Error bars on alternate sets of data points have been omitted for 
clarity.

3 Photoelectron trapping
We present the hypothesis that slow electrons trapped in the CESR beam chamber are responsible for the 
anomalous instability. These electrons are produced through photoemission by synchrotron radiation striking 
the beam chamber walls and are trapped in the combined dipole magnetic field and electrostatic leakage 
field from the distributed ion pumps, shown in Fig. 5. The passage of the beam can capture or eject some of 
these photoelectrons. In this way the transverse position of the beam modulates the trapped charge density, 
which in turn produces a time-dependent force on the beam.
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Figure 4: Growth rate per pump of the fo—fk mode vs. DIP anode voltage for positron currents from 1.5 to 
3.5 mA per bunch. Eight DIPs were powered. The background growth rate with these eight pumps turned 
off has been subtracted. These are the data of Fig. 3, divided by the number of DIPs powered.
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Vertical (m)

Horizontal (m)

Figure 5: Potential inside the CESR vacuum chamber due to the DIP leakage field.

Slow photoelectrons in the CESR chamber will be confined to very small orbits in the horizontal plane 
by the 0.2 T magnetic field of the CESR dipoles. The quadrupole component of the leakage field from the 
DIP slots confines the electrons vertically. Positive ions are expelled by this field. The combination of the 
magnetic and electric fields acts as a Penning trap for electrons, much like the ion pump itself. Because 
of the horizontal dipole component of the pump leakage field, the trapped electrons undergo an ExB drift 
down the length of the magnet, with a velocity of the order of 1.6 x 103 m/s. Thus a trapped electron is lost 
from the 6.5 m long magnets in about 2 ms. Electrons are removed by interactions with the beam on a far 
shorter time scale, so their drift velocity may be neglected. The cyclotron frequency of the trapped electrons 
is 5.6 GHz, so their cyclotron motion is unimportant at the frequencies of the coupled bunch modes. The 
vertical motion, with frequencies of the order of 10 MHz or less, dominates the dynamics.

4 Simulation of photoelectron trapping
A numerical model of photoelectron trapping was produced to calculate the coupled bunch growth and tune 
shift. In this model, we calculate the trajectories of electron macroparticles moving under the influence of 
the electric field of the distributed ion pumps, a bunched positron beam, and the space charge of the other 
photoelectrons. Only vertical motion of the electrons is allowed because of the strong dipole magnetic field.

Electron macroparticle velocities and positions and the electric field in the chamber are updated each 
time step of 0.5 ns. If the trajectory of the macroparticle has taken it outside the chamber boundaries, 
it is removed. Secondary emission is modeled by injecting one or more macroparticles, depending on the 
secondary emission efficiency, which is a function of the incident macroparticle energy. During the beam 
passage, smaller time steps are used. In each of these small time steps, several photoelectron macroparticles 
are injected with a uniform distribution of velocities from zero to vmax, and all velocities, positions, and the 
electric field are updated.

The oval shape of the CESR beam chamber is represented by a non-cartesian computational grid. While 
the vertical coordinate is linear, the horizontal coordinate is curvilinear, thus matching the profile of the 
chamber. Simulation results presented in this article were accomplished with a 17x17 grid, with the exception 
of the DIP potential and electron charge density plots, where a 33x33 grid was used.

There is considerable uncertainty in the value of the photoemission rate for the aluminum vacuum 
chamber. We have used a value which nearly reproduces the measured current dependence of the instability 
growth rate. This value is consistent with an extrapolation of the photoemission rate measured at DCI [7] 
to CESR parameters. The simulation physical parameters are summarized in Table 2.

326



Table 2: Simulation physical constants
Q* Fractional horizontal tune % 0.5
To Revolution period 2.562 fis
Px Average /3 in dipole magnets 19 m
P Beam momentum 5.3 GeV/c
Talot Total pump slot length 408 m
Rpe Photoemission rate 0.4 m-1
%OI Maximum photoelectron velocity 8 x 10&m/s

5 Simulation results

5.1 Time dependence of trapped charge density
Figures 6, 7, and 8 show the magnitude of the trapped electron charge density for the present CESR bunch 
pattern of 9 trains of 2 bunches, with bunches in a train separated by 28 ns. In these figures, the pumping 
slots are to the left, and the beam is in the center of the chamber at the origin of the coordinate system. 
The simulation has been run long enough for the charge density to reach an equilibrium. Figure 6 shows the 
charge density immediately before the passage of the first bunch in a train. Figure 7 shows the charge density 
10 ns after the passage of the bunch. The newly emitted photoelectrons are evident as bands at the top and 
bottom of the chamber. The space charge in this band is sufficient to drive the lagging electrons back into 
the chamber wall. The acceleration of the new photoelectrons by the DIP leakage field is significant on the 
left side of the chamber. At the extreme left, the photoelectrons have already crossed the chamber and have 
been lost.Figure 8 shows the charge density immediately before the passage of the second bunch in the train. 
Most of the new photoelectrons on the right side of the chamber will be driven to larger amplitudes by the 
positron bunch and be lost, while those on the left will be kicked to smaller amplitudes and be trapped.

Vertical (m)

Horizontal (m)

Figure 6: Magnitude of the trapped electron charge density just before the passage of the first positron 
bunch in a CESR bunch train.

327



Horizontal (m)

Figure 7: Charge density 10 ns after the passage of the first bunch in a train.

-0.02

0.02

Vertical (m)

Horizontal (m)

Figure 8: Charge density just before the passage of the second bunch in a train, 28 ns later than Fig. 6.
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Trapping also occurs on time scales longer than the average transit time of the electrons across the 
chamber. The space charge of the newly emitted photoelectrons slows the electrons emitted later during the 
bunch passage, trapping them on low amplitude trajectories.

Although secondary emission is included in this calculation, it has been found to have a negligible effect 
on the trapped charge density.

5.2 Current dependence of growth rate and tune shift
In the simulation the beam was moved horizontally at the tune frequency with an amplitude of 5 mm. The 
force on the beam at that frequency was used to calculate the growth rate and tune shift of the lowest 
frequency coupled bunch mode. The growth rate and tune shift for the 9 train x 2 bunch pattern are shown 
in Fig. 9. The current dependence of the calculated growth rate is similar to that experimentally observed 
(Fig. 3), but the magnitude is 2.5 times smaller. The reason for this discrepancy is not known.

250 -

200 -

150 -

100 -

Bunch current (mA) Bunch current (mA)

Figure 9: Growth rate and tune shift of the lowest frequency coupled bunch mode.

5.3 Variation of bunch pattern
Because the transit time of the photoelectrons across the chamber is shorter than the bunch train spacing in 
CESR but longer than the bunch spacing in B-factories, the behavior of the photoelectrons in B-factories with 
closely spaced bunches may be very different than that observed in CESR. Figure 10 shows the calculated 
photoelectron charge density in the CESR chamber just before the positron bunch arrival, when the bunch 
spacing and charge are varied over a wide range. CESR operates in the upper right corner of this diagram if 
trains of bunches are considered to be nearly equivalent to single bunches. With the DIP field present (left 
figure), charge is trapped. When the DIP field is turned off (right), charge is not trapped and the instability 
is absent. However, there is a large charge density present for bunch intervals characteristic of B-factories 
even in the absence of a DIP leakage field.

Figure 11 shows regions of bunch spacing and charge where the electron density is primarily due to 
electrons which can move freely in the vertical direction (white) and due to trapping assisted by the DIP 
leakage field (gray). Secondary emission has a negligible effect on the electron density everywhere in this 
space.
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Figure 10: Calculated photoelectron charge density in the CESR beam chamber just before a bunch arrival 
as a function of e+ bunch spacing and charge. Left: DIP leakage field included. Right: no leakage field from 
DIPs.

2 4 a 16 32 64 128 256

bunch spacing (ns)

Figure 11: Regions where vertically free or trapped photoelectrons dominate. The shaded areas represent 
regions where trapping assisted by the DIP leakage field is responsible for most of the photoelectron density.
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6 Cures
The are several ways in which the effects of the anomalous instability can be suppressed. Transverse feedback 
has been successfully used to stabilize the beam against this instability [8, 9]. The presence of a gap in the 
bunch pattern has been used during positron injection to reduce the growth rate. One half of the bunch 
pattern, consisting of adjacent bunches, are filled past the most unstable current level, after which the 
remainder are filled. This method is no longer used because the present feedback system suffices to stabilize 
the beam. Because the growth rate is proportional to the DIP anode voltage, we are currently modifying 
the DIP power supplies to produce a variable voltage which can be remotely controlled. We have found that 
the DIP pumping rate is approximately constant with voltage from 1.8 kV to the normal operating voltage 
of 7.4 kV at the present CESR chamber pressure [10].

The shields installed in the hard bend pump chambers completely suppress the anomalous instability. It is 
possible to fit similar shields into all of the CESR DIPs, although this is the most costly and time-consuming 
solution. It has been observed that the m = 1 vertical head-tail mode is stabilized by the operation of 
the distributed ion pumps [4], We note that the peak of the frequency spectrum for this mode occurs at 
approximately 2.4 GHz, with substantial spectral density at the 5.6 GHz cyclotron frequency of the trapped 
photoelectrons. The photoelectrons may be damping this mode by absorbing energy from the head-tail mode 
before being lost by collision with the chamber. We may want to retain the effect in a controlled way. The 
combination of reduced DIP anode voltage and transverse feedback is expected to be more than sufficient 
to stabilize any bunch pattern planned for the CESR upgrade.

7 Conclusions
We believe the anomalous instability in CESR can be explained by the trapping of photoelectrons by the 
combination of the magnetic field of the bending magnets and the electrostatic leakage field of the distributed 
ion pumps. The photoelectron trapping model successfully describes the qualitative features of the observed 
instability. Secondary emission is found to have a negligible effect in our numerical simulation. For the 
closely spaced bunches of B-factories a high density of photoelectrons is present in the chamber even in the 
absence of the DIP leakage field. By a combination of reduced DIP anode voltage and transverse feedback, 
we can adequately suppress the instability in CESR.

The authors wish to acknowledge the work done by the many members of the CESR Operations Group in 
characterizing this instability. We particularly wish to thank M. Billing, D. Sagan, and D. Hartill of CESR, 
and K. Ohmi, S. Heifets, and J. Byrd for helpful discussions.
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Transverse mode coupling instability for leptons in the
CERN SPS

T. Linnecar, E.N. Shaposhnikova

CERN, Geneva, Switzerland

Abstract

The intensity of leptons accelerated in the SPS machine is limited by a vertical transverse 
instability. The results of measurements of the thresholds for this transverse instability are 
compared with theoretical predictions for different broad band impedance models of the SPS. 
The threshold intensities found for the transverse instability and the position of the losses 
in the cycle enable the parameters of the broadband resonant impedance to be specified.
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1 Introduction
The fast transverse single bunch instability was first observed in PETRA, [1]. Subsequently 
similar effects were seen in several other machines. The phenomena was explained in Ref. [2] 

by the coupling of head-tail modes, their natural mode frequencies shifting with increasing 
beam current due to the interaction with the machine impedance.

It was predicted in Ref.[3], with the help of empirical rules, that this instability would 
occur with the lepton beams that would be present when the SPS was used as the LEP 
injector. Theoretical approaches based on the numerical solution of an infinite matrix equa

tion derived from the Vlasov equation, [4]-[6], gave an estimation of the maximum lepton 
intensity which could be injected without losses into the SPS. The assumed transverse shunt 
impedances were Zt — ISMQ/m and Zt — 47.7MfI/m for a broad-band resonator having 
quality factor 1 and resonant frequency 1.3GHz.

Following all these predictions fast losses of the lepton beam were indeed observed during 
the first injection tests into the SPS in 1987. The results of measurements made at this 
time allowed a further estimate of the transverse impedance (Zt = 23MfI/m) assuming the 
broad-band model with Q — 1 and fres — 1.35GHz, [7]. On the other hand, it was shown in 
Refs.[7]-[9], that the experimental results at injection could be better explained using another 
impedance model with <5 = 6 (and Zt — 102MfZ/m), a model that had been suggested for 

the SPS in Ref.[10].
Both analytical estimations and the results of simulation, [8],[9],[11], implied that the 

threshold of the transverse instability should increase during the cycle so that the maximum 
intensity per bunch that could be injected into LEP would be defined by the limitations in 
the SPS at 3.5GeV. However the first tests, using different injection schemes, [11], where 
acceleration to 18GeV was achieved, indicated that a transverse instability occurred during 

acceleration at about 12GeV leading to strong losses. Experimentally it was found that this 
could be alleviated by increasing the longitudinal emittance with RE shaking.

From the time that the SPS started its operational life as a lepton injector the magnetic 

field cycle has remained effectively unchanged but the RE system has continued to evolve. 

These changes in the RF hardware and the ways in which the systems are used have modified 

the beam parameters and behaviour during acceleration. The original design for the accel

eration system operated at 200MHz. Subsequently a 100MHz RF system, which had been 
designed and installed to permit the transfer of long bunches from the CPS in pp operation, 
was brought into service for the same purpose for the lepton beams to increase the threshold 

for instabilities at injection, [12]. More recently, a 352MHz superconducting system has 

been installed. These latter cavities are used to provide extra accelerating voltage later in 
the cycle when the bunch length has become sufficiently short.
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At the moment the experimental situation is as follows. If no artificial blow up of the 

lepton bunches is provided during the cycle the intensity of the lepton beam in the SPS 
is limited by losses in the middle of the cycle. The interesting peculiarity observed with 
this “high energy” instability is that it is restricted both in the time when losses occur 
(approximately from 170ms till 270ms after injection, or from 6GeV to 13GeV) and in the 

intensities for which they occur (from 1.4 x lO10 to 1.9 x lO10). At injection the operational 
bunch of length az — 30cm and relative energy spread <Je! E = 10-3 is stable up to an 
intensity of 2.1 x lO10. Above this intensity the bunch suffers first from the transverse mode 
coupling instability and then, above 3.5 X lO10, from the longitudinal microwave instability. 
The microwave instability has not been observed at higher energies.

The purpose of the present work is to attempt to explain the facts which have been 
observed, in order to be able to predict the behaviour of the beam with future possible 

changes of the parameters of the RF systems, or of the magnetic field cycle, and to provide 
information on the ways in which these limitations may be overcome or avoided. At the 
same time more information about the impedances and impedance models applicable to the 
SPS is of immense value for predicting the behaviour of very intense proton beams in the 
SPS, such as those to be used for LHC injection.

The complete analysis of the threshold for the transverse mode coupling, TMC, instability 
during the acceleration cycle requires:

- knowledge of the beam parameters during the cycle (by measurement or by simulation);
- the choice of the correct impedance model;

- the application of a theory of transverse mode coupling instability which works both 

for long (injection) and for short (top energy) bunches;
- estimations of the influence of other collective effects on the threshold.

These various subjects are discussed in the paper together with recent experimental 

results. For more technical details on the measurement methods see Ref.[13].

2 Machine conditions and experimental description
In normal operation each lepton cycle in the SPS is used to accelerate four electron or 
positron bunches from 3.5GeV to 20GeV. Chromaticity is positive in both planes (~ +0.2) 
and the tunes are set to nominally 0.61 horizontally and 0.58 vertically. The octupoles are 
off, the natural octupole strength in the machine is approximately 3m~3.

For the studies presented here the machine was operated with only one bunch, the selec
tion being made by switching off the last three injection kicker pulses. This was necessary 

since not all of the measurement techniques at our disposal are capable of distinguishing be
tween the various bunches. At the same time we eliminate the possibility of coupled bunch
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effects. One possible area in which the latter may be important is the longitudinal phase 
plane due to the presence of the RF phase loop. This loop, which is installed to damp out 
injection errors and maintain phase stability at low energies where the leptons are not nat
urally damped, is locked on to one bunch only - the master bunch. The n = 0 dipole mode 
is damped in this way but if higher modes exist ,e.g. n — 1, then the master bunch may 
have a smaller longitudinal emittance compared to the others as it is the only one locked 

strongly to the RF. The selection of one bunch implies the master bunch. The other machine 
parameters were unchanged from the operational values.

The various measurement possibilities at our disposal were as follows, [14],[15]:
1) Intensity measurement of each bunch individually along the cycle;

2) Bunch length measurements:
a) bunch profile at fixed time, based on a sampling technique, where the profile is 

made typically of 100 points taken at the revolution frequency,
b) continuous bunch length along the cycle for each bunch separately. This mea

surement is based on the acquisition of the amplitude of two frequency components in the 
bunch spectrum which together give an estimation of the bunch length;

3) Vertical, horizontal and longitudinal wideband monitors. The transverse stripline 
monitors and the longitudinal wall-current monitor have a flat transfer impedance over a 
wide frequency range and are used in

a) instability identification,
b) growth rate measurements,

c) spectral analysis.

3 Threshold calculations
To calculate the threshold for the transverse mode coupling instability we used the code 

MOSES, [16], which searches for solutions of Sacherer’s integral equation with mode coupling 

included.
After expansion of the perturbed distribution function in both azimuthal (modes m), and 

radial (modes k) coordinates in longitudinal phase space, using orthogonal functions with 

coefficients a, the matrix eigenvalue equation for coherent frequencies f2 has the form,

[6],

(A — m) ajf1* =
oo oo

n=—oo 1=0
(1)

where A = Q—u?0
CVs , up and tos are betatron and synchrotron frequencies.
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The matrix elements are given by

(2)
p~ — 03

Here = p' — £/a, p' = p + fZ/ivrey, p is an integer, u>rev is the revolution frequency, £ is 

the chromaticity, a is the momentum compaction factor and Zj_ is the transverse impedance 
function. For the case where the impedance model is represented by a resonator,

Zt
Zj.H

Wr
" i-tr)'

where Zt is the transverse impedance and u>res is the resonant frequency. 

For the Gaussian bunch the intensity parameter K has the form

(3)

K =
StT2Esu!s

(4)

where 0Z is the beta-function, N is the number of particles per bunch and the bunch spectrum 
functions are

Imk (P< ) —
1 -x^+2ke~2x (5)

(|m| + k)\k\
where x — (p^az)2/(2R2), az is the bunch length corresponding to one oe in energy distri

bution, R is the machine radius.
The appearance of an imaginary part in the solutions of eq.(l) for the coherent frequencies 

fZ with increasing intensity gives the threshold intensity Nth- It occurs when the adjacent 
mode frequencies, shifted from their unperturbed values, merge together.

Parameter K shows how results scale with different parameters. In fact if the summation 
over p in eq.(2) is approximated by an integration we can write (for zero chromaticity)

N
Esvs

th ~F^t^resi Q), (6)e2/3zZture

where the function F(atiores, Q) can be defined from numerical calculations. The dependence 
of the threshold on the bunch length crt — ozjc, resonant frequency u>Tea and Q is given by the 

relative positioning in the frequency domain of the machine impedance and bunch spectrum 

functions.
The position of the maximum of the bunch spectrum function with modes m and k 

is
fmax = Pfrev = (M + 2 k)1/2--- (7)

In Figs.l, 2 we show the spectrum calculated for the longest and shortest bunches used 

at present in the SPS, together with the impedance function as given by the two broadband 
models discussed in the Introduction. These models have the same centre frequency for the
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broadband resonator fres — 1.3GHz but differing quality factors, <5 = 1 and Q = 6. It is seen 
that the beam spectrum for short bunches samples the whole impedance function, whether 
high or low Q, whereas the longer bunches with energy concentrated at lower frequencies 
are affected more strongly by the resistive part of the impedance of the lower Q model. So 
the measurements of thresholds for long and short bunches can give information about the 
Q of the model. However, as follows from equation (6) for a fixed value of Q we can define 
the resonant frequency only if the function F(<7ttures) is not simply proportional to atLOTes.

Note that the position of the maximum of the spectrum function is defined only by the 
value of q = |m| + 2k. The amplitudes of modes which have their maximum at the same 

position (the same q) are larger for the modes with the lower azimuthal modes m but higher 
radial modes k (see Fig.2). In other words we cannot ignore the contribution of the higher 
radial modes at least up to A: ~ |m|/2 if coupling of mode m is important.

The general criterion that we used for the choice of the azimuthal and radial modes that 
should be included in the calculation is to increase them until the results no longer change 
significantly. Usually there were a few unshifted azimuthal modes on either side of modes 
which are strongly shifted or coupled.

Following these rules the dependence of threshold intensity on bunch length at injection 
into the SPS was calculated by MOSES for a synchrotron tune vs — 0.008 and the impedance 
model defined by: Zt = 23Mfl/m, Q = 1, fres = 1.3GHz. Results are given in Fig.3. We do 
not take into account Landau damping resulting from betatron tune spread or synchrotron 
frequency spread.

As shown in this Figure, for short bunches (with bunch length az < 10cm) the threshold 

intensity is defined by the coupling of azimuthal modes (0,-1). With increasing bunch length 
the coupling which defines the threshold shifts to the modes (-2,-3) and then (-4,-5) passing 
through shorter regions where coupling between modes (-1,-2) and (-3,-4) can be important. 

It seems that the coupling between the pairs of modes (0,-1), (-2,-3), (-4,-5), and so on, is 

more significant than the other pairs.
In the same Figure we show with dotted lines the thresholds for the coupling of lower 

azimuthal modes while they still exist. Nonetheless these have an order of magnitude smaller 
growth rate (which also decreases with increasing bunch length) than the dominant modes 
which are shown with a solid line. Dominance is determined by comparison with the syn
chrotron period. We expect that during the acceleration cycle when conditions are changing 

rapidly only instabilities with fast growth rates have time to develop.
Note that with increasing synchrotron frequency not only the threshold increases, (due 

to the intensity parameter K), but also the growth rate, 7m(f2 — up)/u>a.
The azimuthal modes used in calculations by MOSES for long bunches were in the range 

(2,-8). The results for the dominant modes did not change significantly with any further
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increase of the azimuthal mode numbers involved in the range available in the code. The 

number of radial modes k taken for calculation increased with the increasing maximum 
azimuthal mode number used in the calculations (up to 7 for longer bunches). Note that 
results can be very different when only a small number of higher radial modes is included 
in the calculations. Usually in this case it is impossible to determine the dominant modes. 

As an example, some results from MOSES are given in Figs.4,5. In these figures the bunch 
length, energy and number of azimuthal modes m is the same but the maximum number of 
radial modes k included is different.

Several positive azimuthal modes should be included in the calculations even when the 

threshold is apparently defined by the coupling of modes with large negative numbers. This 
is explained by the strong shift of the m — 0 mode which influences the negative modes and 

is itself influenced by the positive modes. As also pointed out in Ref. [6], after several modes 
have coupled and decoupled they can no longer be considered pure.

4 Beam parameters in the cycle
The bunch parameters which we need to know for the calculation of the instability threshold 
at a given energy are the synchrotron oscillation frequency and the bunch length.

If collective effects are ignored then the bunch parameters are defined by the magnetic 
cycle together with the RF voltage program, (see Fig.6), and the initial conditions. The most 
recent cycle uses the three RF systems (100MHz, 200MHz and 352MHz), which switch 
on one after the other during the cycle (while the bunch becomes shorter).

The behaviour of the beam changes significantly during the cycle. At injection and 
during the early part of the cycle while the energy is still low the radiation losses are very 
small, there is little natural damping and the long bunches behave like protons. Later on, 
the radiation becomes more and more important, the damping time becomes shorter until 
at top energy this process defines the bunch parameters. The previous history of the bunch 
becomes almost irrelevant.

The bunch length can, in principle, be either measured or calculated. However to use 

the profile measurement implies that the loss point is known in advance. The alternative 
technique providing the continuous bunch length is very sensitive to calibration errors in the 

region of instability, i.e. where the bunches are short. Hence to know the bunch length at 
the loss point we are obliged to use calculation. The synchrotron frequency is also calculated 

and shown in Fig.7.
We assume that during the acceleration cycle the longitudinal emittance is changing
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according to the equation, (see also Ref.[17]):

1 de 2 *2E0{t)
£ dt r(t)

which takes into account radiation damping and quantum excitation. Here r is the damping 
time, <7£0 is the equilibrium energy spread, <je is the current energy spread of the beam and 
£ is the longitudinal emittance corresponding to one <7# of the Gaussian distribution. The 
equilibrium energy spread varies with energy as E] and r ~ E~3.

The emittance found by the numerical solution of this equation along the acceleration 
cycle was used in a code which calculates the bunch parameters (including bunch length and 
synchrotron frequency) for a given emittance £ matched to the bucket in multiharmonic RF 
system.

The comparison between the calculated bunch length and measurements given by both 
the continuous bunch length measurement, taken from the photo in Fig.8, and some profile 
measurements is shown in Fig.9.

5 TMC instability at high energies

5.1 Experimental results

The “high energy” instability, i.e. that which occurs between 6GeV and 13GeV, is seen 
operationally as a sharp loss of bunch intensity. A typical picture of the loss pattern as seen 
on two bunches is reproduced in Fig. 10. The other curve in this photo corresponds to the 
peak detected microwave signal from the vertical wideband monitor. As the photo shows 
this loss can occur in any given cycle on one or more of the four bunches at independent 
times. It was checked that the instability is not a function of the number of bunches in the 
machine.

Observation of the various signals from the wideband monitors shows that the losses 
coincide with strong vertical signals in the 1 GHz range with growth rates typically less than 
a few ms, see Fig.11.

Injecting only a single bunch we recorded the time of the losses together with the intensity 
of the beam just before the loss. It is clear that the instability start time is earlier than the 
loss, but with the typical growth rates that are observed, it is not much earlier.

The results of the measurements corresponding to the cycle shown in Fig.6 are shown 
in Fig. 12. The clustering of experimental points is obvious. The time of the instability 
is limited to between 170ms and 270ms while the intensity range is restricted to between
1.5 x 1010 to 1.8 x 1010 particles per bunch. At injection, intensities above 2.1 x 1010 were 
unstable. For this set of measurements bunches with intensities between 1.8 x lO10 and
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2.1 x 1010 suffered losses around 100ms for reasons other than the TMC instability. The 
measurements shown were taken on two different occasions, the sets being shown by crosses 
and circles.

5.2 Calculation results

To estimate the threshold intensity we used MOSES with the beam parameters calculated 
along the cycle. The results were obtained for different broadband impedance models of the
SPS.

The resonant model is defined by the parameters fTes, Q and Zt. Note that there are 
an infinite number of impedance models which can fit the measurements at some particular 
point but by considering the variation of threshold intensity with bunch parameters we can 
try and restrict the number of models. As a first step we fixed the resonant frequency 
assuming 1.3GHz as has been suggested before.

In Fig. 12 we see the TMC threshold as calculated from MOSES for the two impedance 
models, mentioned earlier, with Q — 1 and Q = 6, scaled using Zt to give a good fit 
around the observed results. For these models this implies Q = 1, Zt = 23MVt/m or Q — 6, 
Zt = 102MfZ/m. The last value coincides with the one suggested in Ref. [9] to fit the results of 
measurements of instabilities at injection for 16cm long bunches. The calculated thresholds 
for both impedance models go through a minimum at around 240ms and the experimental 
points cluster in this dip.1

To explain the fact that there is a maximum intensity observed as well as an earliest 
time we have to look more closely at the behaviour of the two curves at earlier times. 
As we go back towards injection the Q = 6 model supposes that the threshold increases 
continuously. Therefore for higher and higher intensities the loss point should move back 
continuously towards injection. This is not so for the Q — 1 model . Here the threshold 
goes through a peak at 100ms before decreasing towards injection. If this model is correct 
then as the intensity increases the loss point will move back to 150ms and then jump to 
injection. Higher intensities are lost at injection and we will never see in this cycle a beam 
loss between injection and 150ms. Since this is what we observe, there is a strong indication 
that a low Q model is more close to reality. We repeated the calculations with Q = 2 and 
the shunt impedance defined by high energy measurements and found that for these values 
a higher threshold is predicted at injection than that observed.

lrThe points near 170ms belong to the range of bunch lengths, see Figs.3,9, where the threshold is given 
either by coupling between modes (0,-1) or modes (-1,-2) and is very sensitive to small changes in bunch 
length. Note also that points marked as crosses belong to the set where accurate bunch-length measurements 
are absent, but we have some indications that the bunches in this set were more stable after injection and 
hence shorter at later times.
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The different behaviour of the TMC threshold with the model chosen also shows that 
observations at earlier times in the cycle, where the bunches are longer, will allow the SPS 
impedance model to be further refined.

Taking Q = 1 we now consider varying the resonant frequency. In Fig.13 the thresholds 
for fres = 1.5GHz, 1.1GHz and 2GHz are shown and can be compared with the results 
for 1.3GHz, (see Fig.12). As expected from previous arguments we see that thresholds for 
long bunches are insensitive to the choice of resonant frequency which is not the case for 
short bunches. As the resonant frequency increases the dip centred at 235ms decreases in 
amplitude while another appears at 320ms. For resonant frequencies around 2GHz losses 
should occur at this time in the cycle. For fres = 1.7GHz we have two dips separated by a 
small barrier. With the dispersion in bunch length observed during the measurements, for 
fres more than 1.6GHz we would expect losses in the second dip which were never observed. 
For fTes ~ 1.5GHz, the barrier is re-established. If fres is decreased further it is difficult to 
explain the really narrow region of losses observed in the last set of measurements. Note 
that the thresholds calculated correspond to the minimum bunch lengths along the cycle for 
this set.

From all the measurements we conclude that the resonant frequency lies in the range 
1.3GHz to ~ 1.6GHz.

Applying the commonly used analytical formulae, which supposes that F(atu}res,Q) ~ 
(cqu^es) in eq.(6), gives the curve shown as a dashed line in Fig.14 for az > 10cm. This 
result, normalised at injection, suggests that the beam becomes more and more stable along 
the cycle, in contradiction to measurements. The long bunch approximation is normally 
applied for cr2 >> az0 — c/(27r/re3). For fres = 1.3GHz, crz0 = 3.7cm. In our case this 
approximation works for az > 20cm.

A linear approximation,

= 4 x 1Q'°E,!/,(", - 6.5), (9)

where Es is in GeV and az in cm, obtained from the dependence of threshold on bunch 
length over the restricted range 10cm to 30cm in Fig.3 can predict the main characteristics 
of the threshold behaviour in the first part of the cycle, This expression is normalised at 
injection and is shown as a dotted line in Fig. 14.
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6 Instabilities at injection

6.1 Measurements

The parameters of the injected beam into the SPS are well defined due to the fast damping 
times on the flat top in the CPS. Measurements of fast instabilities at injection, much faster 
than the synchrotron period, have the advantage that the beam parameters can be considered 
to be constant.

For the injection measurements the CPS provided injected bunches of different length, 
energy spread and intensity. The range of bunch lengths available was from 15cm to 30cm 
with a relative energy spread of 10-3. For the shorter bunches a relative energy spread of 
0.7x 10-3 was also available. The intensity could be varied from 109 to 3x lO10 leptons/bunch. 
Information on the numerical values for the bunch shape parameters was given by the CPS, 
the intensity was measured at injection into the SPS.

We worked with a single injected bunch captured in a 100MHz bucket, the 200MHz 

system being switched off rather than counterphased to zero voltage. We observed the 
filtered microwave signals from the vertical and longitudinal monitors, simultaneously with 
the bunch current signal. Sometimes we also used the peak detected longitudinal wideband 
signal which gives information on the instantaneous peak density and hence bunch shape 
changes. In all cases we confirmed that there were no horizontal signals present.

Typical results for different strengths of transverse and longitudinal instabilities are given 
in Fig.15. In general instabilities are present in both planes but their signatures make it 
possible to disentangle them. Longitudinal instabilities lead to emittance increase but rarely 
loss, whereas step losses occur with the TMC instability usually after several revolution 
periods. At the same time the relative strength of the two wideband signals is a good 
indication of the dominant instability.

The synchrotron tune is an important parameter; to confirm the voltage measurement 
we also observed the oscillation of bunch form at twice the synchrotron frequency as given 
by the peak detector.

The TMC measurements are given in Fig. 16, where beam intensity is plotted against 
bunch length.

6.2 TMC instability calculations

It is obvious from the measurements that the threshold increases with bunch length. Unfor
tunately the number of experimental points available do not allow the relationship between 
the two to be determined accurately. The threshold is not sensitive to resonant frequency 
for the range of bunch lengths available at injection but is much more affected by changes in
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Q. Using MOSES the dependence of the threshold on bunch length for impedance models 
with fres = 1.3GHz and with different values of Q was found (see Fig.16). These models, 
as defined by the high energy measurements, all fit well at short bunch lengths but can be 
distinguished as expected by their behaviour at long bunch lengths. The Q = 1 model gives 
the best fit. The Q = 2 model, even with the limited number of experimental points is 
already seen to give too high a threshold for the longest bunch.

We note that the calculated curve is certainly not linear and is not even smooth but is 
rather made of several segments with breakpoints. It has previously been shown that these 
breakpoints come from the choice of the dominant mode coupling pair. The measurements 
confirm the choices made, particularly in the region 20cm — 25cm, for the Q = 1 model.

7 Discussion of results

These results on the TMC instability found on the present operational cycle can be used to 
analyse previous or future cycles.

For example, we have analysed the cycle used initially in the SPS for lepton acceleration 
when only the 200MHz system was available. The injected beam had a bunch length of 
<rz=16cm and a relative energy spread of as/E—0.7 x 10-3. The TMC threshold for this 
cycle is also shown in Fig.12 as a dotted line. Intensities higher than lO10 will be unstable. 
In practice not more than 0.8 x lO10 particles were ever accelerated on this cycle with these 
bunch parameters. Note that the losses which were observed at energy 12GeV correspond 
to the minimum of the calculated threshold (around 250ms). Comparing these results with 
that produced for the present cycle, shows the gain obtained by the addition of the 100MHz 

system and the effect of the 352MHz system.
One possible way to avoid the high energy limitations in the present cycle is to increase 

the emittance. RF shaking, (modulation of the RF amplitude with a signal at twice the 
synchrotron frequency), has already been used for this purpose. Another possibility is the 
use of wigglers. We have calculated the effect that a wiggler of the Robinson type with the 
same parameters as those used at present in the CPS, [18], would have on the threshold 
when placed in a region of high dispersion (2.9m) in the SPS. The result is a 20% increase 
in bunch length and threshold intensity in the region of minimum threshold.

We note that we have also used MOSES to check the results of the calculations in Ref. [19], 
where a direct observation of the shift of mode 0 with intensity was made. The value for the 
inductive impedance obtained with this method remains a factor of two higher than we find 
from threshold measurements. However these measurements are in contradiction with later 
tune-shift measurements, [20], where the value Zt = 26.76MfI/m was found.

To obtain more precision in the values for the parameters of the impedance model more
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8 Conclusions

Recent experimental data on the transverse mode coupling instability seen in the SPS both at 
high and low energies, and for short and long bunches, can be explained using an impedance 
model defined by a broadband resonator centred at a frequency fTes between 1.3GHz and 
1.6GHz, with quality factor Q close to 1, and ZtIQ = 23MfZ/m. With the assumptions 
that have been made the accuracy on the last figure is around 10%.

The large variation in bunch length during the lepton acceleration cycle in the SPS, 
(more than a factor 10), and hence the large change in bunch spectrum, provides an effective 
means of determining the parameters of the impedance model applicable to the SPS. The 
fact that we have losses for short and long bunch regimes allows the determination of Zt and 
Q whereas the time of the losses or the position of the minimum threshold at high energies 
gives /re,.

The numerical calculations have been made with the code MOSES. With increasing 
bunch length, the range of azimuthal modes and the number of higher radial modes required 
for convergence of the results produced by MOSES, also grows. Higher radial modes play 
an important role. For long bunches, crz > 20cm, we have taken the threshold intensity to 
be determined by the mode coupling with the dominant growth rate.

stable bunch lengths combined with finer intensity changes are required.
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Figure 1: Long (a) and short (b) bunch spectra and impedance function for the Q = 6 model.
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MODE SPECTRUM AND IMPEDANCE FUNCTION
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Figure 2: Bunch spectra for the modes with q = |m| + 2k = 8 and impedance function for 

the Q = 1 model.
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Figure 3: Threshold calculated at injection in the SPS as a function of the bunch length.
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Figure 4: Real and imaginary parts of frequency shift as a function of intensity for the 

number of higher radial modes k = 0, left, and k = 2, right.
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Figure 5: Real and imaginary parts of frequency shift as a function of intensity for the 

number of higher radial modes k = 4, left, and 6 = 6, right.
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Figure 6: Energy and voltage programs through the cycle.
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Figure 7: Synchrotron frequency along cycle. 
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Figure 8: Photo of continuous bunch length measurement (BL) together with intensity signal 
(I). Time scale 50 ms/division.

EVOLUTION OF BUNCH LENGTH

» 1 • • 1 » * * * * 1

T«ms»

Figure 9: Calculated and measured bunch length evolution. Dashed line corresponds to the 
continuous bunch length measurement, circles are from profile measurements.
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Figure 10: Intensity loss seen on two bunches (11,12) together with filtered vertical signal 

(V). Time scale 20 ms/division.
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Figure 11: Signals coincident with beam loss as seen on vertical (V), longitudinal (L) and 
horizontal (H) monitors. Time scale 20 ms/division, vertical scale lOdb/div.

22

354



THRESHOLD OF TRANSVERSE INSTABILITY
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Figure 12: Measurements of beam losses due to transverse instability during the cycle (filled 
circles and crosses) and calculated thresholds for Q = 1 (solid line) and <5 = 6 (dashed line) 
models for the present cycle. TMC threshold for old 200MHz cycle with Q = 1 impedance 
model (dotted line).
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Figure 13: TMC threshold for fre$ = 1.5GHz (dashed line), 1.7GHz (dotted line) and 2GHz 
(solid line) together with measurements (filled circles and crosses).
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Figure 14: Thresholds obtained by MOSES (solid line), with a linear approximation for bunch 

length dependence (dashed line), and a linear fit to MOSES output at injection (dotted line).
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Figure 15: Photos of injection signals: intensity (I), vertical (V), longitudinal (L), peak 
bunch density (D). (A) is with both instabilities present, (B) with transverse dominant and 

(C) with microwave dominant. Time scale 0.5 ms/division.
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TRANSVERSE INSTABILITY AT 3.5 GeV IN SPS
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Figure 16: TMC threshold measurements at injection showing the cases of strong (filled cir
cles) and weak (crosses) instability and no instability (empty circles). Calculated thresholds 
for three different impedance models with fre3 — 1.3GHz.
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Transverse Multibunch Modes for Non-Rigid Bunches, 
Including Mode Coupling *

J. Scott Berg and Ronald D. Ruth
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Abstract

A method for computing transverse multibunch growth rates and frequency shifts in rings, which 
has been described previously [1, 2], is applied to the PEP-II B factory. The method allows multibunch 
modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch 
mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in 
single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode 
coupling threshold.

1 Physical Motivation
Instability due to transverse mode coupling cannot occur unless two requirements are met. First, there 

must be a mechanism for the rigid (m = 0) motion to drive the head-tail (m = 1) motion, or vice-versa (only 
considering coupling between these two modes). In the case of a single bunch, this driving comes about 
because the head of the bunch sees no wakefield, whereas the tail of the bunch sees the wakefield of the 
entire bunch. The second requirement is that the frequencies of the two types of motion must be similar so 
that one mode can resonantly drive the other. In the case of a single bunch, this comes about because the 
average transverse wake in the bunch usually acts as an effective defocussing force on the bunch centroid, 
reducing the oscillation frequency of the m = 0 mode to the point where it eventually equals the frequency 
of one of the m = 1 modes.

Now consider multibunch modes. A transverse multibunch mode is a mode where each bunch in the 
train executes identical types of oscillations: for example, rigid oscillations (m = 0), or head-tail oscillations 
(m = 1). Calculations up to this point have typically treated these multibunch modes as uncoupled. This 
paper shows that important effects are missed when coupling between these modes is ignored.

One expects some coupling between the multibunch modes for the reasons outlined in the first paragraph. 
Consider an m = 0 multibunch oscillation. Such an oscillation will induce a wakefield, which in general has 
a nonzero slope in most places. This nonzero slope means that each bunch sees a different wakefield at the 
head and the tail. Thus, anm = 0 multibunch oscillation can drive an m = 1 multibunch oscillation. If the 
current is high enough and/or the bunches are close enough together so that the wakefields extend from one 
bunch to the next, the difference in wake seen across one bunch due to previous bunches can be significant, 
even compared to the difference in wake seen across the bunch due to its own wakefield. This can occur even 
when the wavelength of the wakefield in question is much longer than the length of the bunch. B factories 
such as PEP-II at SLAG [3] operate at high currents with a large number of bunches, and thus one might 
expect this driving to be significant.

A broadband impedance corresponds to a wakefield that is short range; the wakefields do not typically 
extend from one bunch to the next. Therefore, when only a broadband impedance exists, mode coupling 
is adequately described by looking at a single bunch. But for narrow-band impedances, such as cavity 
higher order modes, which correspond to wakefields that extend over long distances, a bunch can create 
wakefields that are visible to several bunches behind it. Thus, these narrow-band impedances can easily be 
the mechanism through which the m = 0 and m = 1 multibunch modes drive one another. The decay time 
for the cavity higher order modes in the PEP-II B factory is much longer than the time between bunches 
[3, 4], and thus this driving can be significant.

’Work supported by Department of Energy contract DE-AC03-76SF00515.
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Since these narrow-band impedances couple the various bunches together, they also may cause frequency 
shifts and growth rates in the multibunch modes that are comparable to the synchrotron frequency. Thus, 
there are multibunch modes whose frequencies are shifted in such a way that the corresponding m = 0 and 
m = 1 multibunch mode frequencies coincide at currents that are smaller than the current at which the 
two modes coincided if only a single bunch was considered. Multibunch mode coupling is therefore expected 
to give sharp increases in growth rates at currents that are lower than the corresponding current at which 
single-bunch mode coupling occurs.

2 Basic Formalism
Stability of the beam is determined as follows:

• Start with equally spaced bunches, each bunch having an identical Gaussian bunch distribution.

• Consider small perturbations about that distribution; use the Vlasov equation to obtain an eigenvalue 
equation for the oscillation frequency of these perturbations.

• If that oscillation eigenvalue has a positive imaginary part, the beam is unstable.

After much manipulation, the resulting eigenvalue equation becomes [1]

Km+n(Q, + pcj0)F„(n)<l>n(£l)
n=0

F mi = 1 V' - (n - 2k)u>z}2
nK ’ 2"n! 2=‘\k)SP- K-(n-2fcK

fc=o 
kKk{u) = -ir°C Y f(w + Mawo)t2i(w + Mau>0) 

loL „ \Pocy
- a\(u> + Mquq )2/Pq c2

(1)

(2) 

(3)

where uiq is the angular revolution frequency of the ring, wy is the betatron frequency, u)z is the synchrotron 
frequency, rg is the classical radius of the electron (or the corresponding value for whatever type of particle 
the beam consists of), c is the speed of light, @y is the average (3 function, N is the number of particles in 
a bunch, M is the number of bunches, 70 is the nominal beam energy divided by the rest-mass energy of 
the particle, L is the length around the ring, at is the bunch length, (3qc is the nominal particle velocity, 
and Zx is the transverse impedance. The coherent frequency in the bunch frame is fi, and it will have 
a positive imaginary part if the beam is unstable, p is an integer index describing the multibunch mode 
number; it can take on the values 0... M - 1. A feedback system is modelled by adding an additional term 
to Kk with Z±(quo + fl) replaced by Zpg(qu>o + Cl)e~2’KlqAa^L, where Zpg is the Fourier transform of the 
feedback response, and As is the distance between the pickup and kicker. Here q is the combination p + Met 
in equations (1-3). See [1] for more details.

3 Impedance Model Used for PEP-II
A computer program was written that computes the multibunch mode eigenffequencies as described in 

[1, 2]; the program is able to use an arbitrary impedance. The transverse impedance used is a sum of several 
terms, each corresponding to a different source of impedance. Terms for the resistive wall, an inductive part, 
high-frequency tails for the cavities, and cavity higher order modes are used.

3.1 Resistive Wall
The resistive-wall impedance can be taken directly from [4]. It is given by the formula

zMw) iV2- %W (4)y/—iu)jujQ

where ujq is the angular revolution frequency, is 1.175 MfZ/m horizontally, and 1.61 Mf2/m vertically.
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3.2 Inductive
Many devices, such as bellows, BPM’s, and slots, give an impedance that is primarily inductive. The 

inductive part is obtained by scaling the longitudinal inductive impedance of 83.3 nH [4] by 2c/wb2 [5], where 
b is a characteristic size of the beam pipe. Worst-case values are obtained by performing this scaling with 
b = 2.5 cm (the vertical size of the beam pipe in the bends [3]).

The impedance will not be constant for all frequencies; it is expected to begin to roll off at high frequencies. 
Since the average behavior at high frequencies is expected to be similar to that of a cavity, a high frequency 
roll-off of cv-3/2 is used [6]. On average, the roll-off is estimated to be around 10 GHz [6]. Thus, the model

zMw = -iL
(1 - iw/wc)3/2 (5)

is used, with L — 83.3 nH, and u>c = 10 GHz.
An improvement on this model would be to consider the loss factor from these “inductive” elements as 

well. The choice of the cutoff also needs further study [7].

3.3 Cavity Tails
It is well known that the longitudinal impedance of a single cavity rolls off at high frequency as w-1/2 

[8]. A simple model with the appropriate high-frequency roll-off is

= iA
w

wo + ia
(6)

This model is fit to a model of the cavity run through ABCI for m = 1 [4, 9] with the known higher order 
modes removed. The parameters are found to be A = 45.1344 kfl/m, wo = 2.4 GHz, and a = 1.34722 
GHz [7], This model for the longitudinal impedance is then turned into a transverse impedance using the 
Panofsky-Wentzel theorem [5].

Since the cavities are localized, the impedance must be multiplied by the ratio of the average /? function 
at the cavities to the average (3 function used in equation (3) (typically the average (3 function of the ring) 
[1, 10, 11, 12]. For the PEP-II LER, these values are 12.0066 m and 18.5074 m respectively in the vertical 
direction [13].

3.4 Cavity Higher Order Modes
The transverse cavity higher order modes can be obtained directly from [4], Each mode is considered to 

be a single resonator of the form [5]

Z^es(iWfl) = *eff
x + iQ(l - x2) (7)

As for the cavity tails, the impedance must be multiplied by the ratio of the average (3 function at the 
cavities to the average (3 function used in the formulas.

3.5 Other Sources Not Included
Potentially large resonances due to beam position monitors and the interaction region chamber have not 

been included in this calculation. A preliminary estimate indicates that these resonances will probably have 
only a small effect, but enough that they should be included in the calculation.

4 Results for PEP-II
The impedance model from section 3 was used to compute multibunch modes as described in [1, 2]. The 

computations shown here are for the vertical direction in the low-energy ring, which typically gives the worst 
case results. Table 1 gives the relevant parameters. The operating current assumed in this calculation is 
3.159 A, not 3 A, because the higher current is the total beam current that gets the single-bunch current
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betatron tune vy, u0 37.64
synchrotron tune v. .03362246

bunch length <n 1 cm
circumference L 2199.318 m

average 0 function (A,) 18.5074 m
average 0 function at cavities (A)cav 12.0066 m

energy E 2.5 GeV
operating current I 3 A
number of cavities ncav 24

r.f. frequency /rf 476 MHz
harmonic number h 3492

number of bunches he 1658
number of bunch buckets M 1746

vertical damping time Tv .0576 s

TABLE 1: Parameters for the PEP-II B factory low-energy ring that are used in the calculations here [3,13]. 
Note that energy, current, and number of cavities are worst-case values.

right. This current gives the worst-case values for growth rates for multibunch modes when coupling is 
ignored [14]. Also, getting the single-bunch current right gives the correct results for single-bunch mode 
coupling. The combination of these two effects would cause one to expect that getting the single-bunch 
current right will give the worst-case growth rates for multibunch mode coupling as well.

Only the m = 0 and m = 1 modes are computed in this calculation. Since many of the impedances used 
have potentially significant contributions at high frequencies, it would be useful to also include terms for 
higher m (see equation (3) and [15, 16, 17]).

First, for the purposes of comparison, one can examine the results for single-bunch mode coupling, shown 
in Fig. 1. The single-bunch mode coupling threshold is approximately 14.5 A (8.3 mA per bunch). The 
behavior of single-bunch mode coupling will determine the average behavior for multibunch mode coupling.

Next, one can compute the frequencies of the multibunch modes. Frequencies for multibunch modes when 
coupling is not considered are shown in Fig. 2. Narrow-band impedances cause the various multibunch modes 
to have different frequency shifts; these frequency shifts are approximately centered about the frequency shift 
due to broadband impedances only, which is what would be seen for only a single bunch. The modes with 
the largest downward shifts can have the frequencies of their corresponding m = 0 and m = 1 modes coincide 
as low as 10 A in this case, much lower than where single-bunch mode coupling occurred. Since there is no 
coupling between the m = 0 and m = 1 modes, the frequencies shift almost exactly linearly with current.

If coupling between the m = 0 and m = 1 multibunch modes is included, the picture of the frequency 
shifts appears very similar (Fig. 3). The mode frequencies now shift nonlinearly with current, and the 
frequencies for many modes coincide at even lower currents than if coupling is ignored.

Now consider the growth rates of the multibunch modes. The m = 0 modes without mode coupling 
are shown in Fig. 4. The growth rates increase linearly with current, and are thus nonzero even for small 
currents. The largest growth rates are significantly larger than growth rates that result from single-bunch 
mode coupling. Fig. 5 shows the m = 0 modes with coupling. Now the growth rates no longer increase 
linearly with current. Growth rates increase sharply near the single-bunch mode coupling threshold for modes 
that had low growth rates when coupling wasn’t considered. These are modes which don’t see any of the 
narrow-band resonances, and thus involve little bunch-to-bunch coupling; their behavior therefore imitates 
single-bunch mode coupling. Modes that had high growth rates when mode coupling wasn’t considered are 
affected only slightly by mode coupling because their growth rates were much larger than the characteristic 
growth rates from mode coupling (see Fig. 1).

The m = 1 modes without coupling are shown in Fig. 6. Since coupling is ignored, the growth rates 
increase linearly with current. The growth rates are much smaller than growth rates that occur once single
bunch mode coupling occurs. Thus, when coupling of the m = 1 modes with the m — 0 modes is considered, 
a significant increase in growth rates due to multibunch mode coupling is found, as shown in Fig. 7. Growth 
rates start to increase sharply at currents close to where the frequencies of the m = 0 and m = 1 multibunch 
modes coincided (see Fig. 3). This current is significantly lower than the threshold current for single-bunch
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FIGURE 1: Single-bunch mode coupling, plotted versus total beam current for 1746 bunches. Real and 
imaginary parts of frequencies are shown on the same graph. Real frequencies shift with increasing current 
until two frequencies coincide. Those frequencies continue to be identical for higher currents. Imaginary 
parts are zero until the real parts coincide. The imaginary parts then have a nonzero value for higher 
currents. Note that real and imaginary parts that correspond to the same mode have the same line style.

mode coupling.
Multibunch mode coupling also has an effect at currents below where the mode frequencies coincide. This 

is because the finite growth rates of the multibunch modes effectively broaden the frequency of a multibunch 
mode, and thus coupling can occur at currents lower than the current where the real parts of the frequencies 
are equal. This effect can be seen in Fig. 8. The modes grow nonlinearly with current even at currents much 
lower than 10 A, which was the lowest current where the mode frequencies coincided (see Fig. 3). This effect 
can be seen more clearly when looking at the multibunch modes plotted for a fixed current. Fig. 9 shows 
these modes without coupling, whereas Fig. 10 shows these modes with coupling. These figures are plotted 
for 3.159 A, well below the 10 A where mode frequencies coincide. Without coupling, the m = 1 modes are 
nearly degenerate. When coupling is added, the growth rates of the m = 1 modes change significantly.

A feedback system in PEP-II is designed to damp the transverse rigid motion of the bunches. Such a 
system operates at relatively low frequencies. Thus, it fails to damp the m = 1 growth rates that result from 
multibunch mode coupling, as shown in Fig. 11.

The main problems that are seen from this analysis of PEP-II are m = 1 modes that have growth rates 
significantly above radiation damping, as can be seen in Fig. 10. These growth rates are primarily caused 
by cavity higher order modes at 1435 MHz and 1674 MHz. Some Landau damping [18, 19, 20, 21, 22, 23] 
is expected, but it is not expected to be large enough to damp these modes. Others are studying ways to 
damp these modes in the cavities.

5 Estimate of Mode Coupling Threshold
The sharp rise in growth rate for multibunch mode coupling occurs about when the real parts of the fre

quencies of the modes coincide. One can make a first approximation that the main change in the frequencies
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FIGURE 2: Multibunch mode frequencies, without coupling. Shown are three “fans” of 1746 lines each. 
Each line is the frequency of a single multibunch mode plotted versus current. The upper and lower fans 
contain the m = 1 modes, while the middle fan contains the m = 0 modes.

of the modes is in the shift in the m = 0 mode, ignoring coupling [10, 24]. Thus, once the frequency shift of 
the m = 0 mode is equal to —ivs, instability is expected.

Using equations (1-3) to compute the frequency shift of the m = 0 mode, the threshold current is 
approximately

7th =
E/e

Wes
Zeff = + (po + Ma)u>o)}e-^^M^2^c2

a

(8)

(9)

The contribution to Zeg can be separated into a piece due to broadband impedances, and a piece due to 
narrow-band impedances.

The piece due to broadband impedances is assumed to vary slowly, even over the scale of the bunch 
frequency Mljq. Thus, Zeg can be approximated as an integral

7BBZeff -J— fMujq J
(10)
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FIGURE 3: Multibunch mode frequencies, with coupling. Compare with Fig. 2.

Note that the 1 /M dependence makes the threshold current per bunch independent of the number of bunches, 
as expected. If the broadband impedance is assumed to be constant over the bunch spectrum, this simplifies 
to

(11)

If the main contribution to the impedance is from a scaled inductance of 83.3 nH as in section 3.2 (ignoring 
the roll-off), Eqs. (8) and (11) predict a Zeg of 2.84 Mfi/m, and therefore a mode coupling threshold of 
approximately 20.1 A. This result compares favorably to the actual threshold of 14.5 A, especially considering 
that many other sources of impedance have been ignored.

The contribution to Zeg from narrow-band impedances can be computed by taking the peak of the 
narrow-band impedance. In most cases, it is only necessary to take a single term. However, if impedances 
are separated by a multiple of the bunch frequency, then they must be added together. The largest narrow- 
band impedance in PEP-II is the peak of the resistive wall, which is at 2.68 Mfl/m. Adding this to the Zeg 
from the broadband impedance gives a mode coupling threshold of 10.33 A. This threshold agrees very well 
with where the mode coupling is beginning to have its strongest increase (see Figs. 3 and 7).

These estimates must be considered approximate, not only because other sources of frequency shift (from 
the coupling term, for instance) have been ignored, but also because mode coupling doesn’t give a sharp 
threshold in the multibunch case; the effect occurs even at currents lower than where the frequencies coincide.
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FIGURE 4: Multibunch m — 0 growth rates, no coupling. All 1746 modes are shown.

6 Conclusions
Multibunch mode coupling can cause significant increases in the growth rates of multibunch modes. The 

strongest effects are seen in m = 1 multibunch modes. The effect occurs at currents that are lower than 
the current where mode coupling would occur if only a single bunch were considered. The effect can be 
significant even well below the current where the frequencies of the multibunch modes coincide, although its 
strength increases rapidly at that current.

While this effect is fairly small in PEP-II, it is also clear that this machine is pushing the boundary of 
the importance of multibunch mode coupling.
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Multibunch Mode Number

FIGURE 9: Multibunch modes at 3.159 A total beam current. Coupling is ignored. Note that the two 
m = 1 modes are nearly degenerate. The horizontal axis is the frequency offset of the mode. The lines are 
actually 873 points connected by lines.
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FIGURE 10: Multibunch modes at 3.159 A total beam current, with coupling. Arrows are numbered with 
the frequencies (in MHz) of the cavity higher order modes. The horizontal axis is the frequency offset of the 
mode. The large peak corresponding to the 1435 MHz cavity mode is enhanced nontrivially by multibunch 
mode coupling.
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FIGURE 11: Multibunch growth rates, with feedback. The feedback is modelled as a Gaussian response 
about zero frequency with standard deviation of 125 MHz. Lower lines are m = 0 growth rates, upper lines 
are m = 1.
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Instability

D.V. Pestrikov
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Abstract

In this paper we use a simple model to study the suppression of the transverse 
mode-coupling instability. Two possibilities are considered. One is due to the damp
ing of particular synchrobetatron modes, and another - due to Landau damping, 
caused by the nonlinearity of betatron oscillations.

1 Introduction
Presumably after paper [1] the transverse mode-coupling instability was recognized as a 
universal phenomenon that can limit the bunch intensity in large storage rings. As is 
known, this instability occurs due to merging of frequencies of the bunch synchrobeta
tron modes and thus, it can take place even for reactive coupling of the beam with its 
surroundings. In contrast to the head-tail instability, whose increments for very short 
bunches linearly decrease with a decrease in the bunch length, the increments of the 
mode-coupling instability may have weaker dependences on the bunch length, so that this 
instability will dominate for short bunches (see, for instance, in Ref.[2]). The last circum
stance can be very important for operation of future electron-positron factories, where 
the bunch lengths (cr,) must be comparable, or less than the /3-function at the interaction 
point (typically, in the range us < 1 cm).

If the beam interacts with a non-resonant environment, the description of the mode
coupling instability generally demands solution of an infinite system of the coupled integral 
equations. In many cases, an expansion of unknown eigenfunctions in some orthogonal 
polynomials is employed in order to replace initial system by an equivalent system of alge
braic equations. Approximate solution of these equations enables then the calculation of 
instability increments and stability criteria of modes. Typically, these are calculated ig
noring the effect of the frequency spreads in the beam and corresponding Landau damping 
of modes.

In this paper we study the suppression of the synchrobetatron mode-coupling instabil
ity due to the damping of particular modes as well as due to Landau damping. In colliders 
the necessary frequency spread in the beams can be enhanced by the non-linearity of the
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beam-beam interaction. In order to focus on the properties of the mode-coupling in
stability below we perform the calculations for a simplified solvable model, suggested in 
Ref. [3].

2 General Equations
We assume that incoherent oscillations of particles in the bunch are described by usual 
equations (see, for example, in Ref. [4])

/21R p dz
z = \i----- COS Pz =

PVz Rd6’
(2.1)

0 — UJq t -f" (p COS lj}z — — UqVz, if) s — •

Here, 2ivR is the closed orbit perimeter, p is the particle momentum, u>o is the revolution 
frequency of the synchronous particle. We consider the modes, when the bunch executes 
the dipole vertical betatron coherent oscillations and assume that the bunch wake fields 
decay much faster than the particle revolution period in the ring (2?r/wo). Then, a solution 
of the linearized Vlasov equation

/(/, t/>2, V5, V>», t) = p(<p)fo(I) + &f{I, V’z, ips, t),

Sf =
VI(dfo/dI)

w — mzu>z — msu3 E
mz=±l

E

results in the following infinite system of coupled equations for synchrobetatron modes of 
the bunch (see, for example, in Ref. [5])

Xn
- 7

= P{?) E F{u-m'sUs) J dy>V-^m3.m'(^,/)Xm;(/),
m’=—oo

<x>

Rms ,m' {(pi y ) — J dn£lm (lVmn)t/m< (^1 (j9)«/mJ (^Tli<p ), du>z
n\ = n + mz-—, 

duo (2.2)

Jr Idfpfdl

W-Wz(/)'
Imtv > 0.

Here, p(p) is the beam distribution in amplitudes of synchrotron oscillations of particles, 
fo is the distribution function in amplitudes of betatron oscillations. If we assume the 
interaction with localized wake fields, the value Om(ojmn) is expressed in terms of the 
so-called transverse coupling impedance of the electrodes, surrounding the beam

(^mn ) —
Ne2u}0

4npi/z
^l(^mn)) ^0ran — ~b UWq, m. = ±1. (2.3)
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In order to simplify the studying of phenomena related to the coupling of synchrotron 
coherent modes we consider the model [3], where

pi}p) — y )> ^m{n) —
iifL (2.4)

7r(n + i"A)’

and the ring chromaticity is zero (di/z/dujs = 0). In such a model we have

Xm(<p) = Cm6((fl - <p2), (2.5)

so that the system of integral equations in (2.2) is replaced by the infinite system of 
algebraic equations for amplitudes Cm

Cm =
iflr

7T

QQ ^ ^

J2 Cm>F(u -m'sujs) / ■ , ■.■T-Jm,{n<f0)Jm's(n<f0).
m'=-oo J n-\-U±

Using

lim------ — = V-----?7r<5(n),
A—>-o n + tA n

where V means the calculation of the Cauchy principal value of integrals,

J2P(n) = J2p{~n), J2p(n) — J-2p(n),

*72p+i(n) = — >^2p+i(—n), J_2p-i(n) = — J2p+i(n),

and that

J ”vl2p(n) J2A;+i (n) ( —l)fc p2
0 n[(2k + l)2 — 4p2] ’

we rewrite Eqs(2.6) in the following form

Co[l - »C(x)] = ^ [C(x - 2k - 1) + F(x + 2k + 1)],

Cm+1 = ^ £ (2*+^_4p3 (* - 2P) + + 2P)1.

_ 4™ ” 
C2p - — 2^

C2fc+l [F(x — 2fc — 1) + F(x + 2fc + 1)],7T2 ^ (2* + l)2 - 4p2

C-2k-\ = —C2t+1, C_2p = C2p.

Here,
flTO

x = ------ , tu =-----.
w, w.

(2.6)

(2.7)

If we neglect in these equations the mode-coupling (|fim| <C ua) and Landau damping, 
the eigenvalues of the problem read

Xr
_ f w, ms = 0,

l m„ ms ^ 0 , (2.8)
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This solution clarifies the sense of the value flm as the coherent frequency shift of the 
betatron mode. If we take into account in Eqs(2.7) Landau damping and ignore the 
mode-coupling, the dispersion equation for betatron mode reads

1 = -nm 1 dl --fo/dI~, Imw > 0,
J u-uz(I)

(2.9)

3 Monochromatic modes
If we neglect Landau damping (taking, for instance, du>z/dl = 0 and, therefore, F(u) = 
1 j{u> — mzuz), then Eqs(2.7) can be solved more or less easily [3]. The result is expressed 
in terms of some dispersion equation, which enables the calculation of eigenfrequencies 
and stability criteria for modes without Landau damping. In this case, the instability 
occurs due to subsequent merging of the betatron (w ~ mzujz) and some of neighbor 
synchrobetatron mods (u> ~ mzuiz ±ms). This general solution has maybe more academic 
than a practical worth. A simplified stability criterion without Landau damping can be 
calculated assuming |m| < 1 and taking into account the coupling of the closest neighbor 
modes only. If we take, for example, flm > 0, the simplified equations describing the 
coupling of the betatron and of the first synchrobetatron mode read

(x — w)Cq — i——Ci,

(x — l)C\ =

(3.10)

According to Eqs (3.10) the eigenfrequencies of the coupled modes can 
roots of the following dispersion equation

be found as the

, m 16m2(x w)(x 1) = , (3.11)

which read
1 + w 1(1 — w)2 16m2

Xt’2= 2 ±V 4
This expression shows that both modes will be stable provided that

(3.12)

(i-u,)2-64!2 >0.
7r* (3.13)

Above the threshold current, which can be calculated from this condition, the frequencies 
of the coupled modes merge (see in Fig. 1) and one of the eigensolutions becomes unstable. 
The stability condition generally does not depend on the sign of fZm. If f!m > 0, unstable 
are the betatron and the first synchrobetatron modes; if $lm < 0, unstable are the betatron 
and the —1st synchrobetatron modes. In both cases the instability occurs, when

M > rrW “ °'552' (3,14)
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Figure 1: Dependences of coherent frequency shifts of the betatron and of the first syn
chrobetatron modes on the bunch current (flm).

Let us now consider the damping of this instability due to damping of the coupled 
modes. That can be the synchrotron radiation damping, or the damping of coherent 
oscillations due to interaction with special system, affecting particular modes of the bunch. 
If we denote as Ai and A0 the frequency shifts of the coupled modes, then unstable modes 
obey the ’resonant condition’ of the sum-type resonance:

ojs = Ai T Aq.

For this reason, the coupling-mode instability can be suppressed only in the case, when 
both coupled modes are damped. As was shown in [6] this is a generic property of such 
kind of the coupled-mode instability. Here, we can illustrate this fact using the following 
simple calculations. Let A0 be the decrement of the betatron mode, while Ax - of the first 
synchrobetatron mode. Then, Eq.(3.11) can be rewritten as

(x — w + *A0)(x — 1 + iAi) =-------—. (3.15)

The roots of this equation are

1 + w — i\+ /(I — w — iA_)2 16iv2
xi,2 = -----------------± "' (3.16)

2 V 4 7r4 ’
where A± = Ai ± A0. Eq.(3.16) results in the following expressions for the decrements of 
modes

Imx =
Aj

1
(3.17)
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(1 — w)2 — A2_ 16ui2
4 7T4

If A + > 0, both decrements will be positive and, therefore, both modes will be stable, 
when ___________________________

A, >
\

After simple calculations this condition can be rewritten as

(1-ra)=Vl + A0A,-l^>0.
Ai

(3.18)

With obvious substitutions this stability condition exactly coincides with that, obtained 
in Ref. [6] for sum-type resonant instability. In both cases, if one of the decrements is 
equal to zero (AqAi — 0), stability condition never holds. This proves the fact that the 
mode-coupling instability can be stabilized only in the case, when both modes are damped.

4 Landau damping
Let us now consider the effect of Landau damping on the mode-coupling instability. It is 
described by Eqs.(2.7). In case of interest these equations cannot be solved directly like it 
was done in Ref. [3]. For this reason, below we focus on approximate dispersion equations 
and their solutions. These approximate equations are obtained solving Eqs(2.7) taking 
into account the coupling of limited amount of modes. If we want to calculate the stability 
criterion, we can trace the variation in the positions of the roots of the dispersion equation, 
when the beam current is increased from a value below threshold. This means that again 
we can take into account the coupling of the betatron and of the nearest synchrobetatron 
modes. The amount of coupled modes generally depends on the ratio of the frequency of 
synchrotron oscillations to the frequency spread in the beam (&u). In the region, where 
us >- <W, stability condition can be found taking into account the coupling of the betatron 
with two first synchrobetatron modes. However, if we want to consider cases, when the 
frequency of synchrotron oscillations is comparable to the frequency spread in the beam, 
amount of coupled modes in equations to be solved must be increased. In any case, if we 
cut Eqs(2.7) at some m = M, these equations get the form

M

) ’ Qm,m,(^')C'm' — 0,
m=0

so that the dispersion equation reads

$(2) = det(Q(x)) = 0. (4.19)

For a given dispersion equation the stability conditions of modes can be calculated using 
the so-called Nyquist stability criterion. As is known, for a dispersion equations of the 
form of Eq.(4.19) this criterion is based on the calculation of the phase advance of the 
function $(2), when 2 varies slightly above the real axes. If the beam distribution function
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Figure 2: Hodographs of <I>(x) for the dispersion equation (4.19). 1: u>s = 3 x 8ljz, 
flm — 1.7 x 6ujz] 2: us = 3 x 6ujz, fZm = -1.7 x 6ojz.

is a nonsingular function of /, both F and 0 are also nonsingular functions in the upper 
half-plane of the complex variable x. For this reason and since

lim 3>(x) = 1,
|r|—kx>

the number of the roots of the dispersion equation in the upper half-plane of the complex 
variable x is equal to the mentioned phase advance of 0 divided by 2ir (see, for instance, 
in Ref.[7]). Since $(x) maps the real axes x into some closed curve in the plane of the 
complex variable $ (the so-called hodograph of $), the Nyquist criterion states that modes 
are stable, if the hodograph of $ does not encircle the origin.

In this paper for the sake of simplicity we calculate hodographs of Eq.(4.19) assuming 
that ijjz is a linear function of /

U!z = WgQ + k/,

and that /0 is an exponential function

/o = e*p(—///o)/lo-

Then,

F(x) = J ue u 8uz
au---------- ■——, z =----- , buz = kV0,

x — zu + lA ujs
(4.20)

= ve y[Ei(u) — i7T0(u)] — 1, v = xjz,
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Figure 3: Stability diagram for uncoupled dipole betatron oscillations.

where Ei(z) is the exponential integral function

Ei(x)
X

and
x > 1, 
x < 0 .

Two of these hodographs are shown as examples in Fig.2. Hodograph 1 in this figure does 
not encircle the origin and therefore, corresponds to stable oscillation. This case agrees 
with the threshold in Eq.(3.14). On the contrary, hodograph 2 in Fig.2 corresponds 
to unstable oscillations. The difference in behavior of modes for positive and negative 
fim is due to effect of the frequency spread in the beam. Analogous behavior shows 
the so-called stability diagram of modes with dipole betatron oscillations, calculated for 
modes without coupling (Fig.3, see, for example in [5] for more detail). Inspecting the 
behavior of various hodographs one can plot the stability diagram for the dispersion 
equation Eq.(4.19). Such a plot (see in Fig.4) indicates the mentioned nonsymmetry of 
the stability diagram relative to the sign of flm and a tendency to an increase in the width 
of the stability band (in flm), in the regions, where u>s 8u>z and u>s <C 8ujz (in both cases 
fim > 0). For high synchrotron frequencies stability condition asymptotically tends to 
that, given in Eq.(3.14). An increase in the width of the stability band at low synchrotron 
frequencies is in general agreement with the behavior of the stability diagram, shown in 
Fig.3. However, for very low synchrotron frequencies (ojs <C 8loz) an instability becomes 
fast relative to synchrotron oscillations of particles and, for this reason, the eigenvalue
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analysis of the beam stability becomes less important than the beam break-up behavior 
of coherent oscillations of the bunch (see, for example, in Refs.[3, 5]).

Figure 4: Stability diagram for the mode-coupling instability (dots: Eq.(4.19)). The 
solid line presents the stability diagram, corresponding to stability condition in Eq.(3.14). 
Oscillations are unstable in the regions 1 and 3.

The instability of the coupled betatron and first synchrobetatron modes in the region 
u>s 6uz and —1 < w < 0 can be illustrated by the following simple calculations. For 
these parameters the eigenfrequencies can be found using equation similar to Eq.(3.11)

1
i n 2

= wF(x)-------—F(x)[F(x +1)4- F(x — 1)],

= weffF(x), weff = rtj^l---- -^-[F(x + 1) + F(x - 1
(4.21)

If we take also |fZm| 6uz, we may expect that increments of unstable modes are small 
compared to the frequency shifts. Accordingly, we write

1 Xf>~~X/Z
F(x) ~-----z7tA(o:), A(x) =----------6{x).

Using for the roots of Eq.(4.21) the form x = Xo + ifi, we can find the frequency shifts xq 
from unperturbed dispersion equation

w 32 w2 1
x« 4-1 =0
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If w is negative, only the roots with xq < 0 must be inspected. For these roots, the 
calculation of 8 in the first approximation of the perturbation theory results in

7T4z 16H xl
(4.22)

This expression is always positive, which corresponds to unstable oscillations. Note, 
however, that below the threshold, given in Eq.(3.14), and in the region, where z <C 1 and 
|in | >- 1, the increments of these instabilities are exponentially small. Accordingly, we 
may state that in real cases, the left border of the stability diagram for the mode-coupling 
instability is very sensitive to ’residual’ damping of coherent oscillations. That can be, for 
example, the synchrotron radiation damping, or single-mode damping like a combination 
of the effect of the so-called fast damping of betatron oscillations [8, 9, 5] and of the 
head-tail damping of the synchrobetatron modes.

In any case, these calculations show that, apart from an increase in the frequency 
of synchrotron oscillations, the stability of the coupled synchrobetatron modes can be 
improved due to Landau damping, provided that fZm > 0. If f2m < 0, for beam currents 
below threshold, given in Eq.(3.14) the position of the stability diagram strongly depends 
on the additional damping of coherent oscillations.
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POTENTIAL-WELL DISTORTION AND MODE-MIXING INSTABILITY
IN PROTON MACHINES
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Abstract

In proton machines, potential-well distortion leads to small amount of bunch length
ening with minimal head-tail asymmetry. Longitudinal mode-mixing instability occurs 
at higher azimuthal modes. When the driving resonance is of broad band, the thresh
old corresponds to the Boussard-modihed Keil-Schnell criterion for microwave instabil
ity. [1] When the driving resonance is narrower than the bunch spectrum, the threshold 
corresponds to a similar criterion derived before. [2] The thresholds are higher when 
the machine operates below transition.

I. INTRODUCTION

Proton bunches are very much different from electron bunches. First, electron bunches 
have a length roughly equal to or shorter than the radius of the beam pipe, whereas proton 
bunches are usually very much longer. Second, the momentum spread of the electron bunches 
is determined by the heavy synchrotron radiation. Protons do not radiate and behave quite 
differently in the longitudinal phase space, with the bunch area conserved instead. These 
differences lead to different results in potential-well distortion and mode mixing. [3]

II. DISTORTION ASYMMETRY

As an example, the bunches in the Fermilab Main Ring have a typical full length of 
~ 60 cm or ~ 2 ns. The spectrum has a half width of ~ 1 = 0.5 GHz. Therefore,
the static bunch profile is hardly affected by the resistive part of the broad band impedance 
which is centered at 1.5 ~ 4 GHz. As a result, the inductive part of the broad band will 
only lead to a symmetric broadening (shortening) of the bunch above (below) transition. 
This conjecture can be tested by means of the Haissinski equation [4]. Strictly speaking, the 
Hai'ssinski equation does not apply to proton bunches where the bunch area is conserved and 
the momentum spread is not a fixed Gaussian. Nevertheless, it should give us an idea of the 
amount of asymmetric head-tail distortion. Adapting the Main Ring bunch at E — 150 GeV 
to a longitudinal Gaussian profile, we take the bunch area as A — 6vaTcrE — 0.15 eV- 
sec, where aT and crE are the rms bunch length in time and rms energy spread. With a

"Operated by the Universities Research Association, Inc., under contract with the U S. Department of 
Energy.
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<■'. I .

Bunch Distance in Unperturbed az
Fig. 1. An estimate of potential-well distortion of a Main Ring bunch from the solution of 

Hai’ssinski equation. Note that the head-tail asymmetry is very small.

revolution frequency of /0 = uj0/2tt — 47.7 kHz, a phase-slip parameter of rj ~ 0.0028, and 
an unperturbed synchrotron tune of us0 = uaQ/uo = 0.00361, we obtain an unperturbed rms 
bunch length of aT = \J= ns or 11 cm. This profile is plotted as dashes in 
Fig. 1. At present, the Main Ring bunch has an intensity of N = 4.5 x 1010 protons and the 
Main Injector under construction has a designed intensity oi N — 6.0 x 1010. The broad band 
impedance of the Main Ring is believed to be Zfn « 5 to 10 fZ and the cut-off frequency 
is ~ 4 GHz, while the broad band impedance of the Main Injector is Zjn < 1 fZ. Here, 
we take as illustration N(Z/n) — 60 x 1010 fZ with the broad-band impedance centered at 
2 GHz. The self-consistent Hai'ssinski equation is then solved and the impedance-distorted 
bunch profile is plotted as solid in Fig. 1. We can see that the asymmetry in the distortion 
is indeed extremely small.

III. POTENTIAL-WELL LENGTHENING

When the small asymmetry in the potential-well distortion is neglected, we can considered 
the driving impedance to be pure inductive. The wake potential is the derivative of the 8- 
function. For a parabolic bunch, the wake force will be linear and can be superimposed 
onto the linearized rf force easily. The potential-well distorted bunch will therefore remain 
parabolic. For this reason, the distribution in longitudinal phase space should be, [5]

V>(t,6)
3 tjcN 

2tTLlIsqTq
TO2

K Ws0 J
(3.1)

where we have used as conjugate variables: r, the time of arrival with respect to the syn
chronous particle, and —t)8/u}so where 8 is the momentum spread. The independent “time”
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variable is s, the distance along the ring. The original half length of the bunch f0 has been 
lengthened to T0/y/K, whereas the momentum spread 8 is shortened by x/k, so that the 
bunch area remains the same. Throughout this paper, the particles are considered to be 
ultra-relativistic, so that their longitudinal velocities are taken to be c, the velocity of light. 
With the addition of the inductive wake potential, the Hamiltonian is modified to

H 2u}soc 2cy
D^/2)i (3.2)

where

D =
3e2Nt] Z 
4x0n ind

(3.3)

The incoherent synchrotron angular frequency is therefore u>, = u>40(l — Dk3^2)1^2. Since the 
distribution ip(r,8) must be a function of the Hamiltonian, to conform with Eq. (3.1), we 
have ___________

V>(t,<5)
3t]cN E2 _ 2c

2tTU}soTq V 0 KOJsO (3.4)

with the constraint
K? = 1 - . (3.5)

Again, consider a 150 GeV Main Ring bunch with 7V = 4.5 x lO10 of bunch area 0.15 eV-sec 
and an inductive impedance of Z/n|jnd % 20 x 1010 Ohms. Then D = 0.204, indicating that 
the bunch has been lengthened by k-1/2 = 1.05 and the momentum spread flattened by 
5%. This implies that we cannot infer the momentum spread naively through the relation 
8 = uj,qtl/t] by measuring the bunch length and the synchrotron frequency, because the 
answer will be ~ 10% too large, giving a wrong idea about the amount of Landau damping. 
Instead, the momentum spread should be measured from Schottky signals or inferred through 
dispersion from the measurement of the transverse profile of the bunch using a flying wire.

IV. MODE-MIXING

The coherent bunch modes will be shifted by the impedance of the vacuum chamber. 
As the current increases, two modes will collide to give an instability. It was illustrated in 
Sec. II that the potential-well distortion has very little head-tail asymmetry, indicating that 
radial modes will not be important and will be neglected. However, we do want to keep the 
effect of the potential-well modification; therefore, the perturbed u>3 will be used in below. 
In fact, going from the coordinates (r,6) to the polar coordinates (r, <f>), where

r = r cos (f> ,

V c . ,------ 8 — r sin <p ,
w.

(4.1)

the potential-well lengthening of the bunch discussed in Sec. Ill has been included already.
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The shifts of the synchrotron side-bands can be derived using Vlasov equation. Here, 
we follow the Sacherer’s approach. [6] The bunch profile of the i-th coherent mode can be 
written as

l(,)(T) = ’ (4-2)
k

where Ak(r) denotes a set of normalized orthogonal profile functions with k nodes between 
— \tl and -f |tl, with tl denoting the total length of the bunch. It can be shown that (see 
Appendix) satisfies the equations

g[(nW - mw.)ZU - , (4.3)
k

for all m’s. In other words, (a^, (Xg \ • • •) is the i-th eigenvector corresponding to the eigen
value fZ = fZ^. In the above, the coupling matrix is given by

—

iusu0Ib m En hmk(uj')Z{u}')ju}'
3B$hVr cos <fia m + 1 En^mm(w')

(4.4)

where u/ = nu>o + fZ, Vj is the potential-well modified rf voltage, which is related to the 
unperturbed rf voltage Vq by Vt/Vq — (cu,/u;,o)2, is the synchronous phase, h is the rf 
harmonic, /*, is the average bunch current, B0 = tlJo is the bunching factor, and hmk(u>') — 
A^(w')A^(w') are the overlap of the spectral functions Am(a/), which are Fourier transforms 
of the profile functions Am(r) introduced in Eq. (4.2).

The profile functions Am(r) should be eigenstates for each corresponding azimuthal mode 
m, when the bunch intensity is small and no mixing occurs. Here, we choose them as the 
sinusoidal densities introduced by Sacherer. [7]

A m(7") — *

The spectral functions are therefore

7r (m + 1)ttt
2Th cos — m even

tl

7T . (m + 1)ttt
m odd— sin -—

2 tl tl

,mm + 1 cos ttx/2

Am (■£) — 1
2tt x2 — (m + l)2

m + 1 sin ttx/2 
2tt x2 — (m -f l)2

m even

m odd

(4.5)

(4.6)

where a dimensionless frequency parameter x — lvtl/tt has been introduced, so that, with 
the exception of m = 0, the spectrum for the mth mode peaks at x « m + 1 and has a full 
width of Ax % 2, as illustrated in Fig. 2. The revolution angular frequency is therefore given 
by xq = uqTl/k. We also introduce a dimensionless current parameter

kfjBs I Tlr 
3BohV0 cos ipa

(4.7)
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Fig. 2. Some of the power spectra hmm(x) of the sinusoidal modes introduced by Sacherer.

which is positive above transition. Unlike the first factor on the right-hand side of Eq. (4.4), 
e is proportional to RR, linearly, where Rs is the shunt impedance of the driving resonant 
impedance centered at nrfo or at xr = 2nr/oT£.

For a broad band impedance the argument a/ = mv0 + fl in the coupling matrix Mmk can 
be replaced by tv = tvjJq. Then Z(tv) and Am(tv) possess definite symmetries. It is easy to see 
that all matrix elements are real. We can also see that modes m and k are coupled through 
Re Z when m — k is odd, and through 2m Z when m — k is even. For each individual 
mode m, the shift in coherent frequency is due to the diagonal element Mmm driven by 
2m Z. Above transition (// > 0 or cosy, < 0), the inductive impedance shifts the frequency 
upward, while the capacitive impedance shifts the frequency downward. These shifts can 
cause two modes to cross each other, but produce no instability because the shifts are real. 
Instability is contributed by the non-diagonal elements. For two adjacent modes to merge 
into one and produce instability, the driving force is the real part of the impedance.

Let us continue with the example of the Fermilab Main Ring which has a broad-band 
impedance centered at xT = 7.5 or fT ~ 1.88 GHz and quality factor Q « 1. The eigen fre
quencies obtained from solving Eq. (4.3) are plotted in Fig. 3 versus the current parameter 
e. We find mode 6 peaks at the inductive part of the resonant impedance and is therefore 
shifted upward. Mode 7 peaks at the capacitive part of the impedance and is shifted down
ward. The real part of the resonant peak merges the two modes into one at e = 0.94, after 
which the bunch becomes unstable. Note that the ordinate of Fig. 3 is normalized with 
respect to the unperturbed synchrotron frequency <v40, and an adjustment for the incoherent 
tune shift

 3 u}aoh(Z/n)md 
s0 2tt2 BqIiVo cos <ps

has been made. This correction pushes all coherent modes downward. When the current is
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Fig. 3. Coupling of modes m = 6 and 7 in the presence of a resonance 
at xT = 7.5 and Q = 1 above transition.

small, the rigid dipole mode m — 1 is not shifted at all. This is to be expected because the 
center of the rigid bunch cannot see any modification of the rf potential due to the bunch 
itself.

We vary Q and compute the threshold eth in each case. The result is plotted in Fig. 4 
versus z — A frTt = xr/AQ, where A fr = fr/2Q is the HWHM of the resonance. Physically z 
denotes the ratio of the FWHM of the resonance to roughly the full width of the spectrum of 
the bunch. Also plotted are threshold curves for resonances centered at different frequencies 
from xr = 3.5 to 10.5. Note that all the threshold curves fall roughly on top of each other, 
and approach a minimum threshold of eth « 0.92 when z reaches ~ 0.6. The latter has 
the physical meaning of the resonance peak just wide enough to cover only two coupling 
modes. A smaller z implies that the resonance peak is too narrow and interacts with only 
parts of the two mode spectra, thus giving a higher instability threshold. A larger z means 
that the resonance will cover more than two mode spectra. For xT — 7.5 say, modes 6 and 
7 will then be pulled and pushed also by the other modes as well so that some cancellation 
will occur, and one may expect the threshold for their collision to be higher also. However, 
Eq. (4.4) reveals that the coupling comes in not through ReZ(u>) but through Re Z(ui)/u, 
whose peak value becomes larger and the peak frequency smaller when the quality factor Q 
is small, although the zero of Urn Z(u>)/u> remains unchanged. Figure 5 shows such a plot 
with xT — 7.5 and Q = 0.2, where the peak of ReZ(u)/u) increases from ~ 1 to 2.6 and 
the position of the peak shifts to x = 1.6. Figure 6 shows the enhancement of Re Z(u>)/u> 
and its frequency position as the quality factor decreases from 100 to 0.001. For this reason, 
when Q is small enough, the lower modes start to collide first. For the case of the resonant 
broad band centered at xT = 7.5 and Q = 0.2 (or z = 9.4), Fig. 7 shows that modes 1 and
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2 start to merge first. Thus, the threshold for large z remains small, which is very much 
different from what Sacherer stated in his paper.

Relative Width of Resonance z = Afr

Fig. 4. Instability thresholds eth and e'th for various widths of the resonance impedance
located at xT = 3.5 to 11.5.

c

u
dC
'9
E

T3Cd
'd0)OS

Frequency Parameter x = cutl/tt

Fig. 5. Comparison of 7Ze Zjn and Im Zjn centered at xr = 7.5 for Q = 1 (dots) 
and Q = 0.2 (solid). Note that when the resonance becomes broader, 

the contributions of Z/n move towards lower frequencies.
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10.00 TTO 10'

Re(Z/n) Freq at Max
— 10'

Quality Factor Q of Resonace at xr = 7.5

Fig. 6. Enhancement of {VeZ/n)max (normalized to Rt) and its frequency position x 
as the quality factor Q of the resonance centered at xT — 7.5 decreases.

Fig. 7. Mode coupling starts at the lowest modes when the driving resonance is much 
wider than the bunch spectrum. Here xT = 7.5, Q = 0.2, tl = 2 ns, or z = 9.4.

V. MICROWAVE INSTABILITY DRIVEN BY BROAD RESONANCES

Microwave instability can occur when the resonance is much wider than the bunch spec
trum. When this happens, many coherent modes are excited. We see that modes 6 and 7 
merge first in Fig. 3 when Q = 1 but modes 1 and 2 merge first in Fig. 7 when Q ~ 0.2. 
In between, when Q ~ 0.45, we find that modes 2 and 3, 4 and 5, 6 and 7 start to merge 
at nearly the same threshold of eth ~ 0.75. Therefore, we can conclude that the threshold
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at the z 1 end is the threshold of microwave instability. This threshold condition can 
be easily rewritten in terms of the energy spread (AS)fwhm = §(AJE)fuu and bunch peak 
current Ip = 7r/(,/(2T£/0) of the sinusoidal profile as

- = (f)2 . (5.1)
nr 16 Ip \ t, /fwhm

which is the familiar Boussard-modified Keil-Schnell criterion [1] of microwave instability 
driven by a broad resonance. The form factor for this type of cosine bunch shape should be 
close to unity, which is close to = 1.3 obtained here. The equivalence of mode-coupling 
and microwave instability had been pointed out by Sacherer [6] and Laclare. [8]

The threshold tth can also be estimated. When the resonant impedance % Z is just wide 
enough to cover two adjacent modes m and m' = m + 1, and the excitation is one with 
xr = \{m + 3) nodes along the bunch, the coupling matrix can be truncated to include only 
these two modes. The coupling matrix of Eq. (4.5) can be rewritten as

Mmm' — t,Ammi i (5.2)

or

4mm' —
*£n hmk(n)[nrZ(n)/n\

(5.3)
I3n ^mm(^)

where Z(n) = Z(n)/Ra. In above, the factor ~y as well as the difference between u>a and 
w,o have been neglected. The eigen equation (4.3) now becomes

n
W,0 - m — eAr 

tAmfm

eA„

— - m' -
= 0 , (5.4)

from which we obtain, with Amm/Am.m -| A 12
m'm | i

n y^sO (Vm + Vm') ± - vm)2 -4e2|A„ (5.5)

where i/k = k + eAn, k = m or m'. The threshold of instability tth is therefore given by

|q/iAmm'| — 2 l^t/i(Am'm' Amm) + 1| . (5.6)

The matrix elements Amm, Am»m/, and Amm» have been computed numerically for any two 
adjacent m, m', with the resonance peak centered at xr — |(m + 3). The result is actually 
very close to tth = 0.92 and depends on m very weakly. It can also be estimated easily. We 
first neglect Amm and Am/m», and get |et/,Amm/| « |. We can approximate the resonance 
,ReZ(x)/x by a rectangular box of height Ra/xr and width wide enough to contain the two 
coupling adjacent spectra, as illustrated in Fig. 8. Each spectral function Am(x) can also 
be approximated by a rectangular box of total width Ax = 2. Since the two spectra are 
adjacent, the overlap is Ax = 1. Therefore, we obtain | A^(n)Am-(n)| « \ 5Zn A^(n)Am(n)
or |Amm'| « thus 23 1. We can now include Amm and Am/m< by further approximating 
Jm Z(x)/x by Ra/xr when x < xr and —Ra/xr when x > xr. We obtain Amm w —Am>m> % |, 
which is an overestimate, and eth = Therefore, \ < tth < 1.
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Frequency Parameter x

Fig. 8. An estimate of the nondiagonal coupling matrix elements by 
rectangularizing We Z and the adjacent coupling spectral modes.

VI. MICROWAVE INSTABILITY DRIVEN BY NARROW RESONANCES

When the resonance is much narrower than the width of the bunch spectrum, we have 
z <Cl. Then, the summation over frequency in Eq. (3.2) can be approximated by

Exr Z (n) l 
hrn

,{n) 7TRsXr T. T
Q ^m^m'\x=xT (6.1)

Since the area under the narrow resonance is concerned here, a new dimensionless current 
parameter

e' = 2Ib(Rs/Q) (6 2)
ZBqIiV cos <f>s

is required. This new threshold t\h is now plotted versus z in Fig. 4. For small z, we 
obtain t'th % 0.75 which is almost independent of xr. Again, this threshold can be computed 
numerically using the truncated 2x2 coupling matrix, or estimated by approximating the 
spectral functions by rectangular curves. When it is cast into the form

R. = VJ_, y(E/e) (AE\2 
Q 16tt th h x E /fwhm

(6.3)

it is just the criterion of microwave instability driven by an impedance resonance that is 
narrower than the bunch spectrum. [2] The form factor is 0.41, which agrees very well with 

~ 0.40. This may be a more appropriate microwave instability threshold for electron 
machines, since electron bunches are short.

We have computed the mode-mixing for our former Main Ring bunch when the driving 
resonant impedance is narrow with a Q — 100. The result in Fig. 9 gives a threshold of
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€’ = 2Ib(R1/Q)/(3B03hV0|cos*1|)

Fig. 9. Coupling of modes m = 6 and 7 in the presence of a narrow resonance 
at xr = 7.5 and Q — 100 above transition.

tth = 10.0 (or e'th — 0.75), which is much larger than that for the broad band impedance. 
This increase in threshold has been explained in Sec. IV, and is a result of the fact that 
the narrow resonance interacts with only a small part of the overlapping spectra. We also 
see that, as t increases, the coherent frequencies here do not shift so much lower than the 
situations in Figs. 3 and 7. This is because the resonances there are rather broad and their 
contributions move towards lower frequencies (Fig. 5).

VII. GOING BELOW TRANSITION

Figure 3 shows that the coherent frequencies tend to cluster together when the current 
e increases. This is because we are above transition, cos <pa < 0. Looking into the diagonal 
elements of Eq. (4.4), modes with m < xT — 1 (> xr — 1) sample the inductive (capacitive) 
part of the impedance and are shifted upward (downward). Below transition, the shifts will 
be in the opposite direction; i.e., diverging outward with increasing |e|. Mathematically, 
(vm> — vm)2 inside the square root of Eq. (5.5) becomes larger. However, this does not mean 
that there will be no instability. This is because the off-diagonal elements eAmmr that are 
responsible for mode merging contribute as squares and therefore do not change sign. In 
fact, from Eq. (5.5), we obtain the threshold

below transition, and

2|Amm/| — | An

1
Cf h 2|Amm»| |Am'm' Amm |

(7.1)

(7.2)
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above transition. It is now clear why the threshold below transition is much higher than the 
threshold above transition. We tried to reverse the sign of cosy?, in the example of Fig. 3 
to obtain Fig. 10 and found |etAi| actually increases from 0.94 to 1.88. This is also true for 
narrow resonances; Fig. 9 becomes Fig. 11 below transition with increases from 0.75 to 
1.8. This conclusion is in sharp contradiction to the statement of Laclare [8] that “below 
transition mode coupling cannot lead to instability.”

The above discussion leads to the conjecture that a bunch in a machine with a negative 
momentum- compact ion factor [9] will be more stable. This idea had been pointed out by 
Fang et al [10] in obtaining shorter electron bunches for colliders.

0.0 0.5 1.0 1.5 2.0
Id = Ib(R,/nI.)/(3Bo3hVo|cos01|)

Fig. 10. The situation of Fig. 3 below transition. Note the increase in threshold |c^|.

|c'| = 2Ib(R,/Q)/(3B03hV0|cos*,|)

Fig. 11. The situation of Fig. 9 below transition. Note the increase in threshold |e^J.
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VIII. CONCLUSIONS

We have explored the effects of potential-well distortion and mode mixing for proton 
bunches. Applications have been made to the Main Ring bunches and the future Main 
Injector bunches. Due to the long length of a proton bunch, the spectrum of its profile 
sees mostly only the inductive part of the broad-band coupling impedance. As a result, 
potential-well distortion only amounts to the lengthening of the bunch with very little head- 
tail asymmetry. A Main Ring bunch will be lengthened by ~ 5%. The higher-order modes, 
however, can see the peak of the real part of the impedance, which will drive adjacent modes 
to merge together to produce instability. When the resonant impedance is much wider than 
the spectrum of the bunch, this mode-mixing threshold is equivalent to the threshold of 
the Boussard-modified Keil-Schnell criterion of microwave instability. When the resonant 
impedance is much narrower than the spectrum of the bunch, such as in electron machines, 
the mode-mixing threshold is equivalent to the threshold of microwave instability driven by 
narrow resonances. For short electron bunches, usually it is modes 1 and 2 that collide first 
as the bunch intensity increases. For proton bunches, however, higher modes start to collide 
first unless the impedance is extremely broad. This is because the proton bunch usually has 
a length equal to many cut-off wavelengths of the vacuum chamber. We have also discussed 
the situation when the machine operates below transition and found that the threshold will 
be pushed to a larger value and thus becoming more stable.

The complete equivalence of mode-coupling instability and microwave instability has 
not been established here. For example, we have not addressed the microwave instability 
driven by a pure space-charge impedance above transition. If we carry out an analysis 
similar to that in Sec. V, we find that coupling occurs only between modes m and m! with 
|m — m'| = 2, 4, • • •. Then, a coupling element and its conjugate gives Amm/Am-m = |Am/m|2 
instead, or the discriminant in Eq. (5.5) will be positive definite. In other words, there will 
not be any instability, contrary to the negative-mass instability observed just after transition. 
This and other issues will be examined further and reported elsewhere.
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APPENDIX

In this Appendix, we derive the equation for coupled bunch modes of (4.3). The Vlasov 
Equation with canonical variables

(A.l)

+%p,=0’ (A.2)

is given by

ds dq
where the ‘prime’ denotes derivative with respect to s, the distance along the ring. The 
distribution function ip is written as unperturbed part ip0 plus a perturbed part xp\ having a 
coherent frequency $1:

ip(r, <j>) = ipo(r) + rpi(r, (p)e~'Qs/c , (A.3)

where the polar coordinates defined in Eq. (4.1) has been used. When the effect of the wake 
potential is included, the Hamiltonian equations are

/ t/8 . / 
q = rsm0 , (A.4)

and

p=-Jrcos4, + ^IS- gpi(w')Z(w')et\ iw'r—iQs/c (A.5)
S Ti

where u' — nu>o + fZ and the spectrum of the perturbed linear distribution is defined as

Pi(w) = J drdSe '“tiPi{t, 6) . (A.6)

The perturbed distribution is now expanded into azimuthal harmonics in the longitudinal 
phase space

Nr,# = EomAm(r)e''''* - (A.7)

Multiplying by e and integrating over <j>, the Vlasov equation becomes 

(fi - rnus)amRm(r) = ^ S Pi(u)Jm{u'r)^U ^
2itREv. r u (A.8)

where ip'Q = dipo/dr. Changing the variables from (t, 5) to (r, <p) and substituting Eq. (A.7), 
the perturbed spectrum of Eq. (A.6) can be simplified to

(A.9)

where
i~mur°°Am(w) =--------  / drrRm(r)Jm(u}r)

n Jo
(A.10)
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is the Fourier transform of the perturbed bunch linear density corresponding to azimuthal 
harmonic m. At low bunch intensity, for each m, the various radial modes can be denoted 
by Rmq(r) with q — 1,2, • • • . Since we are going to neglect radial modes, we only include 
the “most coherent” one with q = m. Then, Am(tv) peaks at tv « (m + 1)tt/r^,, and the 
corresponding perturbed linear density Am(r) has m nodes. Relation (A.10) can also be 
inverted to read

i n f°°
Rmi.i') — / dtvtvAm(tv)</m (tvr) .

JoW.
Using Eq. (A.10), the Vlasov equation can be transformed from Eq. (A.8) to 

(fi - muia)am Jo dr |^m(r)|2~ = ~'^eY h(^)~rKn{^)

(A.11)

(A.12)

Substituting the harmonic expansion of pi, we arrive at the eigen-equation

(U - mtv8)am ~ Y 
k

w
2nv!E Jo dr\Rm^2^

<*k , (A.13)

which is of the same form as Eq. (4.3).
Finally, we need to compute the integral in the denominator of Eq. (A.13). We can write

/ dr {RmirWjr = (77) / drr|Am(r)|2 , 
Jo xpo ip'0 Jo (A.14)

where (r/V’o) denotes some characteristic value of r/ip'0. Since ip0 is normalized to T}N/u>a 
and depends on tl only, we must have

(A.15)

The integral on the right side of Eq. (A.14) can now be performed with the aid of Eq. (A.11) 
to give

too 77 roc
/ drr\Rm(r)\2 = — / dcvtv|Am(tv)|2 . 
Jo tvf Jo (A.16)

We next make use of the fact the Am(tv) has definite symmetry and peaks at tv ~ (m + l)7r/r£. 
Then,

f°o
/ dtvtv|Am(tv)|i 

Jo
(m + l)7TtV0 

— E I^K)I2. (A.17)

Combining Eqs. (A.14) to (A.17), eigen-equation (A.13) takes the form

imItfjjau>o
(fl - mu!a)am = ~F Y

k 3(m + l)BgAkrcos y, Y |Afc(u/) (*k , (A.18)
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where F is a form factor which is of 0(1), depending on the form of the unperturbed 
distribution ip0(r). For example, if we choose

V’o(r)
32r,N (rj _2
7TOJsTl V 4

so that
V»o _ 64^ TV
r 7TW,T^

is no longer r-dependent, we obtain F = 96/tt4 = 0.986.

(A.19)

(A.20)
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Abstract

The mapping which shows equilibrium particle distribution in shychrotron phase space for 
electron storage rings is discussed with respect to some localized constant wake function 
based on the Gaussian approximation. This mapping shows multi-periodic states as well 
as double bifurcation in dynamical states of the equilibrium bunch length. When moving 
around parameter space, the system shows a transition/bifurcation which is not always 
reversible. These results derived by mapping are confirmed by multiparticle tracking.

1 Introduction
Electromagnetic interaction beteween charged particles and the surrounding takes place a 
wake force. This wake force affects the distribution of particles in a beam. Usually, wake 
force is averaged over one turn, and is distributed uniformly throughout the ring. However, 
wake sources are actually highly localized. Thus, assumptions which averaged wake force 
distributes uniformly in the ring might make the behavior of the system unrealistic in 
some cases. To study such position-dependent wake forces it seems to be reasonable to 
start with a single wake source in the ring.

In Ref.(l), using the Gaussian approximation, equilibrium particle distribution was 
investigated by the model using a localized wake, which was assumed to be a step function. 
It was shown that bunch length in the asymptotic state could then have a cusp-catastrophe 
behavior. Here, we extend the study to a wider range of parameters. We will show that 
a system in the equilibrium state exhibits another remarkable dynamical feature, that 
is, states with multi-periodicity. These states can be also coexisted in some cases. It 
illustrates new types of bunch lengthening. The asymptotic state can bifurcate as we 
vary parameters. This process does not always show reversible.

Section 2 describes the model. Section 3. consider the dynamical states of equilibrium 
particle distribution for constant wake function. To check these results, based on the

* Also Department of Accelerator Science, The Graduate University for Advanced Studies

401



Gaussian approximation, in Sec.4 we compare them with those of multiparticle tracking. 
Section 5 is devoted to discussions and conclusions.

2 The Model
Let us assume that there is only one localized wake source in the ring. An extension to 
uniformly distributed wake source is easily obtained by introducing many sources period
ically and increasing the periodicity to infinity, as shown in Ref.(l). More realsitic cases 
in which the wake function varies from position to position in the ring can also be studied 
by a straightforward extension of the present formalism. We consider the dynamics of the 
particle distribution in longitudinal phase space. It is convenient to introduce normalized 
synchrotron variables,

longitudinal displacement energy deviation
X\ =---------------------------------, x2 =----------------------

<7/ <je

where <7; is the nominal bunch length and aE is the nominal energy spread. Here, “nom
inal” means “zero current”. Xi >0 corresponds to the rear part of the bunch.

After one turn in the ring the motion of a particle can be represented by

( Xl
X Ax2 + (1 - A2)1/2f -

where A = exp[—2/Te], Te being the synchrotron damping time divided by the revolution 
time, v the sychrotron tune and r a Gaussian random varible with < r > = 0 and < r2 > 
=1. U is the rotation matrix of the synchrotron oscillation,

U _ ( cos 27vv sin 2771/
X — sin 2777/ cos2ttz/

The wake force is
<j>(x i) = / p(xi — u)W(u)du, (3)

Jo

where p(x) is the longitudinal charge density, which is normalized to unity. Here, W(u) 

is the longitudinal wake function multiplied by eQ/aE, where e is the electron charge and 
Q the total charge in a bunch.

We consider constant wake function in order to dertermine the effects of the wake 
source on the distribution of particles in the beam: where W(u)=a0(u) (0 being the 
unit step function). Since the constant wake is assumed to vanish at a short distance 
behind the particles which produce it, we can neglect the multiturn effects. Because 
particles in the front of a bunch lose energy due to wake fields, we note here that the signs 
of a in the wake function has to be positive.

Since it is not realistic to observe individual particles, we are more interested in some 
statistical quantities, such as

Xi =< Xi >, <7,j =< (x, — X,)(Xj — Xj) > . (4)

and so on, where i,j are 1 or 2, which are the moments of the phase space distribution 
#(xi,x2). Since we assume that the distribution function in phase space always remains 
Gaussian, we need to consider only the first and second order moments.
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Then, each mapping can be described by these moments:

1) Radiation
xx — X\, x'2 = Ax2 (5)

(Tjj — <7\\, <T12 — A<Tj2, <^22 — ^ ^22 4" (1 A ) (6)

2) Wake
x[ = XX, x2 = X2— < <t> > (7)

cr'u = <Tn, <t(2 = 0-12-< (xx - Xi)(/> > (8)

(722 = <722 — 2 < (x2 — X2)<f> > + <<f>2>~ <<j> >2, (9)
where <> denotes the average over all of the particles.
3) Synchrotron Oscillation

X, = Cr'ij = X] Uih°hkUjk (10)
j h,k=1

We always approximate # as

^(^,*2) = 27rv^^:exp[~^S3(7.~/(x» ~ ^)(gj ~ ^j)l- (11)

We thus obtain the mapping for the wake as follows:

Xj = Xx, x2 = x2 - a/2,

<7ll — 0"ll j
/ __

'22 (722
(7x2

(12)

+ a2/12 (13)V'7ro'ii
We note that the mappings for x, and <7,_, are not related to each other. This fact is 

due to the Gaussian distribution approximation.

Then Xj falls into a period one fixed point:

a 1
x?° = xS°

1
2 1 + A

(14)
2 tan(27ri/) 1 + A’

Note that if <f> = 0, we have x?° = 0 and (7tJ = 8{j after many turns.
We can estimate typical values of a, the wake force strength. We consider the TRIS

TAN at 8 GeV (Ref.4) as an example. We can compare our model with the energy loss by 
the wake effect per turn (the loss parameter). The loss parameter per turn is 37.8 MeV 
for 1=5 mA. Setting the nominal energy spread to 3.49 MeV, we obtain a=21.6.
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3 Constant wake function
Let us write the map as S, which is a composition of maps of the radiation, wake and 
oscillation. The mappings can then be described as S(a) = a'",

ai3 Radiation / Wake n Oscillation m
—* an * aij » aij-

If there is a point on the map such that a\ — 5(<7i), <j\ is called the period-1 fixed 
point. If it is stable, it might determine the stationary state of the system. Similarly, 
the period-2 fixed point is defined as: (J\ — S(a2), a2 = S’(cri) and crj ^ cr2. If a\ and a2 
are stable points, they constitute alternating pairs of successive turns in the equilibrium 
state. We can also define period-n states in similar way.

In Ref.(l) it was shown that the equilibrium state was divided into three dynamical 
states when the synchrotron tune v is 0.2; in the first state only the period-1 solution 
is stable; in the second state only period-2 solution is stable; and in the third state the 
system chooses one of them according to the initial condition. The parameter space which 
illustrates these three dynamical states is shown in Fig.l.(a). When we slowly move the 
system along the path from A to G in Fig.l.(a), it shows a period-doubling bifurcation at 
D, and remains as period-2 until F. It then becomes the period-1 state at F and remains 
so until G. The situations are shown in Fig.l.(c). Conversely, when we start from G it 
shows period-doubling bifurcation at F, and remains as period-2 until B. It then becomes 
the period-1 state at B and remains so until A, as shown in Fig.l.(d). This feature 
can be illustrated as in Fig.l.(b). Here, we can see that the system shows hysteresis in 
parameter space C of Fig.l.(a). We can also see that the transitions are continuous at F 
and discontinuous at B and D.

On the contrary, for z/=0.01 the equilibrium states are more complicated, presenting 
the coexistence of states with period-2,3,4, period-1,3,4, period-2,3, period-1,3 and period-
1,4 in addition to the period-1 state and the period-2 state as shown in Fig.2.(a). Fig.2.(b) 
shows the initial values for the an and cr22 conditions which result in the equilibrium 
period-2 state, period-3 state and period-4 state. We obtained these conditions under 
the assumption that cr12=0. According to the initial an and cr22, the system can have 
quite a different equilibrium periodic state. The properties of the transitions of these 
multi-periodic states are depicted in Fig.2.(c). To observe the behavior of the system at 
F of Fig.2.(c), we move the system slowly from I, where it is at period-4 state, to A. The 
system changes to the period-3 state or period-2 state as Te decreases. It depends on 
whether the system exists any fixed point among 4-fixed points at F. From these facts we 
can see that there exists a range of parameter values for which two or three dynamical 
states coexist for a constant wake function. The transition behaviors of the system show 
continuous or discontinuous bifurcations. It is then shown that continuous bifurcation 
only occurs at H. The dynamical process is reversible when we move the system slowly 
between the period-1 state and the period-2 state and returns to its starting point.

We can summarize these facts as follows; As the synchrotron tune is decreased to 
values less than z/=0.23, in addition to the period-1 and the period-2 states, the period-3 
and the period-4 states become stable states in the some parameter space.
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Period-1
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Period-2

Period-1

(c)

Periodicity of the states (t>)

<r„ (d)

Figure 1: (a) the parameter space for z/=0.2 (b) shows the properties of the transitions. 
Here, arrow indicates that the transition occurs along the path in given periodic state, 
(c) and (d) Equilibrium value of an when we slowly move the system from A to G and 
from G to A, respectively.

Periodicity of the state

Figure 2: (a) The parameter spaces for i/=0.01. The dots in (b)-l,2,3 represent the 
initial cru and cr22 which show the equilibrium period-2, period-3 and period-4 states, 
respectively. The parameters are Te=20, a=45. The (c) shows properties of the transitions 
among these states. Arrow indicates that the transition occurs along the path in given 
periodic state.
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4 The MultiParticle Trakcing
We discuss the reliability of the the model presented above, because the model is based on 
the Gaussian approximation in the distribution of particles. We thus need a comparison 
with the multiparticle tracking in order to see whether features obtained from the model 
only come from the results of the simplification in the distribution functions. We apply the 
Eq.(l) to the phase-space coordinates of an ensemble of 10000 particles. The stochastic 
variable r is given by a Gaussian random generator. We observe the dynamical states of 
the distribution of particles for the constant wake function by multiparticle tracking.

We tracked 10000 particles and 20000 turns in the ring according to the map repre
sented by Eq.(l). The initial particle coordinates in synchrotron phase space are given 
by the Gaussian random. We use a sorting routine in order to calculate the wake force 
acting on each particle. That is, the wake force <f> that a given particle experiences from 
wake field can be obtained by the total number of particles preceding it. The param
eter space which illustrates results of the multiparticle tracking for z/=0.01 is shown in 
Fig.3.(a). It is shown that the equilibrium states in the multiparticle tracking present the 
coexistence of states with period-1,4, period-2,4, period-2,3,4 and period-1,2,4, in addi
tion to the states of the period-1 and period-2. But coexistence of states of period-1,3, 
period-1,3,4 and period-2,3 which were shown in moment mapping didnot appear in mul
tiparticle tracking. The properties of the transitions of these multi-periodic states are 
depicted in Fig.3.(b). When we slowly move the system along the path from A to H in 
Fig.3.(a), it shows a period-doubling bifurcation at B and remains as period-2 state until
F. It becomes the period-1 state at F and remains so until H. When we conversely move 
the path, we get same features. Here, we can see that the system shows cusp catastrophe 
at B and F of Fig.3.(a). The dynamical process is reversible when we move the system 
slowly between the period-1 state and the period-2 state and returns to its starting point. 
But the transitions between other states show irreversible. These properties show the 
same results with those of moment mapping.

Synchrotron phase-space distributions of the multiparticle tracking corresponding to 
these periodic states are shown in Figs.(3)-(7). Let us investigate the properties of the 
transition among the periodic states in multiparticle tracking as we change the Te and 
a. The period-4 state after 20000 turns with the parameter Te=31, a=40 and z/=0.01 are 
shown in Fig.4. Besides the core of the bunch distribution one can observe two islands. 
These two islands are rotated around the core per turn and the original distribution is 
appeared after four turns. When a and Te in Fig.4 are decreased, the period-4 state 
changes to uncomplete period-4 state, as disappearing one island, and at last changes to 
the period-2 state which the other island is also disappeared. The period-2 state with 
parameter Te=12, a=40 and z/=0.01 is shown in Fig.5 and the asymptotic states show 
the same distributions per two turns. We can also see the fact that, as the a decreases, 
the period-4 state in larger Te than Fig.4 changes to the period-1 state on the dashed line 
of Fig.3.(a) by way of the uncomplete period-4 state. On the other hand, uncomplete 
period-4 states under dashed line of Fig.3.(a) donot change to the period-2 state, even 
though a is increased. This is because uncomplete period-4 states under dashed line of 
Fig.3.(a) also exist in the above the dashed line. However, uncomplete period-4 states 
with core and one island only exist above the dashed line of Fig.3.(a).
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We can guess from these facts that uncomplete period-4 states of the several types 
can be existed according to the space parameters. This property did not be observed in 
moment mapping with Gaussian approximation. The period-3 state is shown in Fig.6. 
Transition from the period-4 state to the period-3 state which was shown in moment 
mapping doesnot occur in the moment mapping. It is due to the fact that there is no 
coexistence state of the period-2,3 in the parameter space.

One remarkable point is that uncomplete period-4 states under the dashed line of 
Fig.3.(a) also change to the period-2 state, as the Te and a decrease, in the parameter 
space that uncomplete period-3 state and the period-3 state exist. The period-3 state is 
composed of two parts of the different distribution per turns, but uncomplete period-3 
state shows two parts of the same distribution per turns. However, uncomplete period-4 
and the period-4 states in the parameter space that the states of period-2,3,4 exist do not 
change to the period-2 state when Te and a is increased. This shows different property 
of transition from the period-4 state of the moment mapping. Fig.7 is the period-1 state 
which is shown when a in Fig.3 is decreased.

In result, the comparison of results of multiparticle tracking with those of the moment 
mapping show agreements in facts that properties of the period-doubling and coexistences 
of the multiperiodic states exist for the constant wake function. When moving around 
parameter space, the system shows a transition/bifurcatioin which is not always reversible. 
These features are also shown in analysis of moment mapping and multiparticle tracking.

Figure 3: (a) The parameter spaces of multiparticle tracking for t/=0.01. Here 3* and 4* 
indicate uncomplete period-3 and period-4 states, (b) shows properties of the transitions 
among states in multiparticle tracking, arrow indicates that the transition occurs along 
the path in given periodic state.

Figure 4: Phase space distribution for the period-4 state from multiparticle tracking. The 
distribution of the bunch shows core and two islands which rotates around the core per 
turns. The equilibrium state shows same distribution per four turns. The parameters are 
z/=0.01, Te=31, a=40,10000 particles and 20000 turns.
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Figure 5: Phase space distribution for the period-2 state from multiparticle tracking. The 
equilibrium state shows same distribution per two turns. The parameters are z/=0.01, 
Te=12, a=40, 10000 particles and 20000 turns.

Figure 6: Phase space distribution for the period-3 state from multiparticle tracking. The 
equilibrium state shows same distribution per three turns. The parameters are t/=0.01, 
Te=29, o=26, 10000 particles and 20000 turns.

Figure 7: Phase space distribution for the period-1 state from multiparticle tracking. This 
period-1 state is obtained as a is decreased in Fig.7. The parameters are y=0.01, Te=31, 
o=4, 10000 particles and 20000 turns.
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5 Discussions
5.1 Summary
We showed an analytic study of a moment mapping in order to see the equilibrium distri
bution in synchrotron phase space for electron storage rings. It is assumed that there is 
one localized and constant wake source. The results of a moment mapping were compared 
by the multiparticletracking.

In moment mapping the distributions of particles in a beam show three dynamical 
states for u=0.2: the states where the period-1 state is stable; the period-2 state is 
stable; both the period-1 and the period-2 states are stable. We have showed in moment 
mapping that there is parameter spaces where the states of period-2,3,4, period-1,3,4, 
period-2,3 and period-1,3 coexist as stable states for y=0.01. In multiparticle tracking we 
also confirmed coexistences of the multi-periodic states, such as period-2,3,4,period-1,2,4, 
period-1,4 and period-2,4 for v = 0.01.

Here, it is remarkable that these periodic states show continuous or discontinuous bi
furcation to another periodic states under some conditions. The transitions between these 
states then show reversible and irreversible processes, which are also shown in multipar
ticle tracking. In moment tracking we assumed Gaussian approximation in the particle 
distribution in synchrotron phase space. This Gaussian distribution could not explain the 
presence of the islands in phase space which are shown by multiparticle tracking. These 
islands in synchrotron phase space show the deviations from the Gaussian approxima
tion. In result, double bifurcation and coexistences of the multi-periodic states which are 
derived by moment mapping are confirmed by results of multiparticle tracking.

5.2 Conclusions
We showed equilibrium particle distribution and their stability for a localized constant 
wake force with the Gaussian approximation in electron storage rings. Depending on 
the parameters, such as the synchrotron tune, the wake force strength and the damping 
time, model calculation shows double bifurcation and coexistences of the multi-periodic 
states in a distribution of particles in a beam. These facts are also confirmed by multipar
ticle tracking. In the multiparticle tracking it is sometimes difficult to decide the exact 
threshold for the transition between two states. Despite the simplification of the Gaussian 
approximation, within these limitations, in result the model showed good agreement with 
multiparticle-tracking results. What we can argue from this point of view is that we can 
explain to some degrees the dynamical states of the system with Gaussian approximation.
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A Simulation Study of the Sawtooth Behavior 

ALEX CHAO
Stanford Linear Accelerator Center, Stanford, CA 94309, USA

The fact that bunch lengthening sometimes occurs with a sawtooth behavior has 
received some attention recently.[1-6] Various possible mechanisms which might ex
plain the sawtooth behavior have been suggested. In particular, in Ref.6, Baartman 
and D’Yachkov proposed a mechanism that involves an interplay of synchrotron oscil
lation, potential well distortion (which at some moment of bunch oscillation creates 
a double-humped longitudinal beam distribution), quantum diffusion, and radiation 
damping and performed computer simulations to demonstrate this mechanism. Al
though this BD mechanism is not the only possible explanation of a sawtooth be
havior, this note is an attempt to follow up on this trend of thought by yet another 
simulation study, and to draw a few tentative conclusions from this study.

The collective effect is presumably caused by some wake function W(z). We 
assume the wake function is short-ranged and only single-turn wake needs to be 
considered. To enhance the BD mechanism in our simulation, a wake function model 
has been chosen which (a) has a range approximately equal to a few times the natural 
bunch length <rz, and (b) flips sign once in this range (to make it easier to produce a 
second hump in potential well). In fact, we have chosen a wake function W(z) = B'o 
when 0 < z < z0 and —Bo when zQ < z < 2z0. Of course, W(z) = 0 when z < 0. 
With such a choice of wake function, a second beam distribution hump, if formed, 
would be approximately at a distance ~ z0 behind the first hump. One expects that 
when z0 az, the quantum diffusion (needed to transport particles from one hump 
to the other) is too slow to give a clear sawtooth behavior. One also expects that 
when zq <C <rz, the diffusion is too fast and only a chaotic behavior appears. In the 
simulation, parameters B'o and zq are varied.

In our simulation for a damping ring, we launch a beam whose injected longitudi
nal emittance has rms sizes of 5cr5 and 5<rz. The damping time in the simulation has 
been chosen to be 400 turns, synchrotron oscillation tune is 0.0137. We track 1200 
particles typically for 20,000 turns. We also took crz = 5 mm and ~ 0.001.

Figure 1 is a summary of our simulation study. The unit of W0 is not specified. 
When B'o and zQ are varied, we found three regions in the (B'o, z0) space. Region H is 
when a stable Haissinski state[7] is found. In a significant portion of the H region, the 
equilibrium beam distribution is double-humped (thanks to the choice of the wake 
function model). The S region is when there is observed a sawtooth behavior, while 
the C region is when the beam behaves chaotically.

Figures 2(a) to (f) show some of the simulation details for the three cases repre
sented by the three dots in Fig.l: (a,b) WQ = 0.8, z0 = 15 mm; (c,d) W0 = 1, z0 = 12 
mm; (e,f) WQ = 1.5, z0 = 10 mm. (a), (c) and (e) show the instantaneous rms bunch 
length as a function of the number of turns after injection, (b), (d) and (f) similarly
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Fig. 1. Behavior of an injected beam in the (Wo>*o) space.

show the instantaneous rms energy spread. The Haissinski steady state (a,b), the saw
tooth behavior (c,d), and the chaotic behavior (e,f) are apparent. Note that in the 
Haissinski state, the energy spread damps down to the unperturbed value as = 0.001, 
as it should, although the z-distribution of the beam has acquired distinct double 
humps and has an rms different from the unperturbed value.

In a separate study, a case with W0 = 2, z0 = 20 mm is first shown in Fig.3(a,b), 
which exhibits a chaotic behavior. (Here we used 10000 turns tracking.) When the 
injected beam emittance is changed from 5az x 5<t5 to az x as under otherwise the 
same conditions, we obtained Fig.3(c,d), which is a Haissinski state. This indicates 
the fact that how the beam behaves depends on the initial conditions of how the 
beam is injected.

Some tentative conclusions are given below:
(1) We reconfirmed the existence of the BD mechanism.
(2) However, because no double-humped distribution and no large-scale bunch 

shape oscillation have been observed in streak camera experiments, it seems unlikely 
that the BD mechanism alone is responsible for what was observed at the SLC Damp
ing Ring.

(3) The threshold for the sawtooth behavior is not the same as the threshold 
when the Haissinski solution develops a second hump. It is possible to have a stable 
double-humped Haissinski distribution which is stable against sawtooth behavior as 
well as the microwave instability. This observation may be in conflict with some 
phenomenological models of the bunch lengthening effect.
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Fig. 3. Beam behavior also depends on the injected beam emittance. In case Wo = 2, zq = 20 mm, 
the beam exhibits (a,b) chaotic behavior when injected with a large emittance, and (c,d) Haissinski 
state when injected with a small emittance.
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(4) Another question arises as to whether the threshold for the sawtooth behavior 
is the same as the threshold of a microwave instability. More specifically, does the 
solid curve in Fig.l coincide with the microwave instability threshold. This question 
seems to deserve a closer study and is yet to be completed.

(5) The existence and the stability of the Haissinski distribution does not guar
antee a stable beam in a damping ring. The beam, injected with a much larger 
emittance, may choose to stay in a sawtooth state before it damps down to the 
Haissinski state, even when the Haissinski state is stable. This issue should receive 
some attention in the design of damping rings because the beam may not always 
reach the damped state as one might assume.

I would like to thank K. Bane, D. Brandt, J. Gareyte, S. Heifets, R. Holtzapple,
K. Oide, R. Ruth, R. Siemann, G. Stupakov for several helpful discussions.
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Bunch motion in the presence of the self-induced 

voltage due to a reactive impedance with RF off

E.Shaposhnikova

CERN, Geneva, Switzerland

Abstract

Analytic self-consistent solutions have been found for the nonlinear Vlasov equation de
scribing different types of behaviour with time of an intense bunch under the influence of 
voltage induced due to a reactive part of broad band impedance. The problem is solved for 

the particular type of the initial distribution function in longitudinal phase space which is 
elliptic and corresponds to parabolic line density.

This paper is devoted to the consideration of the effects in the machine with RF off. 
In this case the induced voltage is changing with time and can significantly affect bunch 

motion. The same method applied in the case with RF on allows the time dependent effects 
of potential well distortion to be analysed.

Numerical estimations for the CERN SPS show that effect of induced voltage is important 
for beam manipulations with RF off. Measurements of the change in the rate of debunching 
with intensity can be used to estimate the value of the reactive impedance.
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1 Introduction
It is well known that voltage induced due to the interaction of high intensity long bunches 
with the low frequency reactive part of the broad band impedance can produce significant 
potential well distortion when RF is on. Measurements of the resulting bunch-lengthening 
(or shortening) allow the value of the low frequency part of the impedance to be estimated.

The purpose of the present work is to evaluate the possible effect of the induced voltage 
on the motion of the intense single bunch when RF is off. Without the focusing effect of the 
external RF system this bunch normally starts to spread out or debunch. Then the induced 

voltage which affects the bunch motion is also changing with time.
Debunching is often one of the manipulations with the beam in the machine. Smooth 

changing of bunch parameters during debunching is also used to measure momentum spread 
in the bunch and as a method to investigate beam instabilities. However it was noticed al

ready in [1] that measurements of microwave instability threshold during debunching don’t 
give accurate results due to the influence of induced voltage on the variation of beam param
eters. Debunching was recently used during studies of the microwave instability threshold 
for the proton beam in the SPS, [2]. The rate of debunching measured from the decay of the 
peak line density signal was found to be significantly different from the expected value. It 
was suggested, [3], that this fast debunching can also be explained by the defocusing effect 

of induced voltage.
Below the problem is examined in the following way. To introduce convenient definitions 

we start with the trivial case of the debunching of a low intensity bunch. In the next chapter 
we consider first the main equations describing the motion of a dense bunch with RF off but 
in the presence of induced voltage which is changing with time during debunching. With 
a special choice of the initial distribution function (elliptic in phase space with parabolic 

line density) this nonlinear problem has exact self-consistent solutions. These solutions, 
depending on the parameters of the system, describe different kinds of bunch behaviour which 

are analysed. A defocusing type of induced voltage makes debunching faster in comparison 

with the zero intensity case. With a focusing induced voltage, increase of intensity first 
slows down debunching, and then starting from some critical intensity leads to oscillations 

of the line density. From the exact solutions some simplified expressions are obtained for 
the variation of beam parameters during the initial part of debunching and these are used 
later for preliminary numerical estimations of the effect in the SPS. We show the possibility 
of estimating the low frequency part of the impedance from the measured decay of peak line 

density during debunching. Finally the variation of microwave instability threshold during 
debunching is also discussed.

The same method can be used to analyse the effect of induced voltage on the evolution
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of the bunch injected into machine with RF on.

2 Bunch motion with RF off in the low intensity case
Let us start first by considering the debunching of the single bunch in the machine with RF 

off and when any intensity effects are ignored.
In general at the beginning of debunching the initial distribution function of the bunch 

is the function of the Hamiltonian H0 of the system with RF on in the same machine or in 
the injector:

F = F(H0). (1)

If bunches are sufficiently short compared with the RF period, the Hamiltonian of the particle 
in the single RF system can be written in the form

= # + (2)

where f2 is the frequency of linear synchrotron oscillations in the RF system where the bunch 
was created. Here 0O and 90 are initial values of

6 and 6 =
at

a pair of conjugate coordinates we shall use to define the position of the single particle in the 
longitudinal phase space: 6 is an azimuthal coordinate measured from the position of the 

synchronous particle 6 = 0 (when RF was on) and 6 is connected with momentum deviation 

Ap = p — ps from the synchronous value ps by the expression

6 = tvoTj—. (3)
Ps

Here /0 = cv0/(27r) is the revolution frequency and 77 = I/72 — I/72.

Distribution function (1) after integration over 90 gives the initial line density (at t = 0):

Ao = A(9o) = F(<% + n202)<Mo, (4)

where the limits of integration are functions of 0O

g, = (*m(5)

with
Hm = = »i. (6)

Above 6m and 0m are the maximum values of 0O and 90 in the bunch.
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From the normalisation condition we also have

N =
f&m

(7)

where N is the number of particles in the bunch.
Single particle motion when RF is off and any intensity effects are ignored is governed 

by the equation:

dt2
= 0. (8)

The solution of this equation for the particle with initial coordinates (d0, d0) has the form:

d — 6q + dot, (9)

d = dQ. (10)

According to Liouville’s theorem phase space density doesn’t change with time along the 
particle trajectories. To calculate line density during the debunching process we can then 

substitute the solutions (9)-(10), rewritten in the form

do — d — dt, 

do = d,

(11)

(12)

into the initial distribution function (1), and integrate it over d. For the Hamiltonian (2) we 

have

Ho = #o T — <?2
r._!m 2

+ n
,<H
q2'

where
q = q(t) — (1 + fZ2^2)1^2.

The line density can be written as

where the integration variable 0 is defined by

0 = q ^d —

and the integration limits are:

1/2

; n2dt\
q2 )

0/ = (Hm - H2^j = dm ^1 - d2
^92

1/2

(13)

(14)

(15)

(16)

(17)
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The expression for line density (15) should be compared with the expression for the initial 

line density (4). As a result the line density during debunching can be written in the form

A(9,f) = - A0 . (18)

As can be checked easily it satisfies the normalisation condition (7).
Momentum spread along the bunch during debunching can be found from expressions 

(3) and (13).
A useful characteristic of the debunching rate is the time constant

td = 1/fl (19)

This is the time at which the peak line density is reduced by \/2 from the initial value. 

If t <C td. the line density doesn’t change significantly, and for t td the decrease in line 
density is inversely proportional to time.

As we can see, for low intensity bunches the decay of peak line density during debunching

Ap = (l+tW)‘/»‘ (20)

is independent of the form of the initial distribution function assuming that it is the function 
of the Hamiltonian for the short bunch in the single RF system with peak value at 6 = 0.

3 Bunch motion with RF off in the high intensity case

3.1 Main equations

Here we consider the situation when an intense bunch created in the single RF system is 
injected at the moment t = 0 into the machine with RF off.

The equations of motion for the particles under these conditions become

dO
dt

dt

Wo 7)

2ttR

A p
Ps ’

%(9,f),

(21)

(22)

where R is the average radius of the machine. The voltage Ve induced by the interaction 
of the bunch with the low frequency reactive part of the broad band impedance can be 

presented in the form:

Ve(9,t) = —L dl(6,t)
dt

— L&jJq
2A(9,f)

29
(23)
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where 1(6, t) is the bunch current and L is the effective inductance of the machine connected 
with the reactive part of the longitudinal coupling impedance by the relation uj0L = ImZ/n. 
In expression (23) we neglect derivatives describing the slow dependence of A(0,t) on
time during debunching.

Equations (21)-(22) are nonlinear since the induced voltage Ve is defined by the derivative 
of the line density the variation of which with time depends upon the induced voltage. To 
find a self consistent solution to the system of equations (21)-(22) is equivalent to solving 
the nonlinear Vlasov equation for distribution function F = F(0,0,t)

dF -dF looTieVe(0,t)dF 
dt 06 2vRps 30

By analogy with the low intensity case, we can try to find the distribution function at the 
moment t from the initial distribution function

F(0,0, t) = Fq (0o(0,0,f),0o(0,0, t), 0) , (25)

if initial coordinates Qq and Oq are defined as functions of coordinates 0, 0 and t.
In general, there are no regular methods which would allow us to find solutions to nonlin

ear problem of this type. However, in this particular case it turns out that analytic solutions 
can be obtained with a special choice for the initial distribution function. Let us consider 
the case where, at the moment t = 0, the bunch has an elliptical distribution function in 
longitudinal phase space

f=JF°(1"S =jr°(1"e"t) ’ H°<Hm' (26)

This distribution function corresponds to a bunch with parabolic line density

A(0O) = Apo ^1 - , (27)

where Apo = T^Om^j2 and from the normalisation condition we have also Ap0 = 3iV/(40m).
According to (18), the line density of low intensity bunches with this type of particle 

distribution would change with time during debunching as

W)
^po _ A2 
9(f) 1 ' (28)

where function q(t) is defined by expression (14).

For the chosen distribution function the induced voltage can be written at the beginning 
of debunching (t = 0) as

%(*,0) = %9, (29)
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where we define

Vo =
37Vewo ImZ

(30)
2^ »

Before describing the nonlinear solution let us first introduce some preliminary consider
ations which may suggest the form in which we can look for the self-consistent solution in 
the following section.

If we would try to find an approximate solution for this problem by iteration we can 
use first the zero intensity solution (28) to calculate the induced voltage during debunching. 
Then the equation of particle motion giving the next approximation is

<P0 60
dt2 q3(t)

where the parameter
- uo0eVo

has the dimensions of frequency squared and can be written also as

(31)

(32)

e = sgn(T?ImZ) fl,. (33)

Differential equation (31) is linear in 0 with a time dependent coefficient. The general 
solution for the equations of this type can be written in the form

0 — 00 f\(t) + f2{t), (34)

where f\{t) and /2(f) are the fundamental solutions 1 with Wronskian W = /i/2 — /i/2 = 

const.
The next step is to express the initial coordinates as functions of 0, 0 and t and substitute 

them in the initial distribution function (26). As a result for the next iteration one obtains 
the equation

d20 60
<%= 9?(<) " '

where qi(t) = (f2 + fi2/!)1/2. As we can see this equation repeats the form of equation 
(31) but with a different time dependent coefficient. This suggests that if our iteration 

proccess converges we can search for a closed form solution of the same type as presented 

by expressions (34) and (35). This is done in the next section.
Note that equation (31) shows the well known fact that if the low frequency part of the 

coupling impedance of the machine is inductive (ImZ > 0) then the induced voltage has a 
defocusing effect above transition (q > 0) and focusing below transition.

1We were not able to find analytical expressions for functions /i, /2.
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3.2 Nonlinear solution

Using the definitions introduced above the nonlinear self-consistent system of equations 
governing the particle motion during debunching finally can be presented in the form

dt2 2Apo 86
(36)

fi>2
a(o,t) = rQ I 1 -

WO) W,^,<)
61 61

1/2

dd,

where 9% — 6\(6, t) and 62 = 62(6, t) are solutions of equation

1 W,0) WO)

02,
= 0.

(37)

(38)

Suppose that for the particle with initial coordinates (0o,5o) the system of equations
(36)-(37) has a solution which can be written in the following form

6(t) — 60 yi(t) + 60 y2{t),

6(t) = 0oi/\(t) + 9oi/2(t),

where iq and y2 are unknown functions of time with initial conditions:

(39)

(40)

yi(0) = 1, 1/2(0) = 0, (41)

i/i(0) = 0, 1/2(0) = 1. (42)

The Wronskian of this system is

W - 1/11/2 - J/i2/2- (43)

Suppose that
W = const (44)

then from initial conditions (41)-(42) it follows that W = 1.
This assumption allows us to use the same method as used above in the low intensity 

case, and express the initial coordinates as functions of coordinates 6 and 6 at the moment t

60 = 6y2~6y2, 

60 — —6yi + 9y\.

(45)

(46)

Substitution of the expressions (45)-(46) into the initial distribution function (26) makes 
it possible to find the distribution function at the moment t

1/2

F = Tq 1
{6y2 - 6y2)2 {6yi - Oyif

61 %
(47)
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Then the line density (37), after integration over 6 of the above expression and using condition 

(44) becomes
A(0,t)= I** F(0,8,t)d6 Ad° ^ 02Vo

r
1 -

r26±
where we define

r = r(t) = (yl + Sl2yl)1/2. 

The derivative of the line density can also be find

Apo20d\
ae

(48)

(49)

(50)

Now our main differential equation (36) can be rewritten either in the form

d2e e6_
dt2 ~ r3~

or as a system of equations for yi and y2

<Pyi m
(^ + n^|)3/2

d2V2 (-V2

= 0,

0.

(51)

(52)

(53)

It is interesting to note that this last system of equations is also known to describe the 

motion of a body in the (t/i,flj/2) plane under the influence of gravitation with attractive 

force for e < 0 and repulsive for e > 0.
Let us introduce new variables r(t) and £(t) according to the following formulae

2/i = r cos £, t/2 sin£. (54)

Then equations (52) - (53), using these new variables, can be transformed into the form:

+ 2 r£

f — r£2

= 0,

= 0.

This system of nonlinear equations has as first integrals of motion

= Ci,
*' + £ + - = C2,

H r

(55)

(56)

(57)

(58)

Using again gravitation terminology one can say that the first expression corresponds to the 
second law of Kepler (law of areas) and the second equation describes conservation of energy
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in the system. Constants C\ and C2 are defined by the initial conditions (41)-(42) which 

now have the form
r(0) - 1,

f(0) = 0,

Thus for Ci and C2 we get

Ci =

c2 =

((0) = 0, (59)

^(o) = ft. (60)

n, (6i)

ft2 + 2e. (62)

We must check now that the Wronskian (43) of the system satisfies our initial assumption 
(44) that it is constant and equal to one. Indeed using variables r(t) and £(t) and the 

expressions(57), (61) we obtain

ft
Ci
ft

1. (63)

Note, that the solutions found above for yi{t) and j/2((tf) define, in fact, from expression (47) 
a distribution function which is a time dependent solution of the nonlinear Vlasov equa
tion (24). However this method only works due to the special choice of initial distribution 
function, with which the induced voltage is proportional to 6.

3.3 Analysis of solutions

3.3.1 Exact solutions

The integrals of motion found in the 

the form

previous section allow us to rewrite expression (58) in 

y + C(r) = 0, (64)

where
U(r) = _»’(■-IK^+l)

(65)

and constant
a == 1+2jy = 1+ 2sgn(^/ImZ)^|- (66)

This equation can be interpreted as the equation of motion of some particle with the co
ordinate r in the potential U(r). In reality, according to expression (48), r(t) is a positive 

defined function which describes the variation with time of bunch length r

T(t)
t(0)

r{t) (67)
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or of peak line density
i

Ap0 r(t)
with the initial condition

r(0) = 1.

Increasing of r with time means decreasing of peak line intensity - or debunching. 
The solution of equation (64) can be written in the following form:

rdr
nt i;

where we use the definition
p(r) = (r - l)(ar + 1).

(68)

(69)

(70)

(71)

If the solution r(t) is known, then the function £(t) can be found from (57)-(58) and is 
defined by the expression:

£ = ±/r—£r~ (72)

After integration, we have:
r[(02 + e) cos£ — e] = fl2. (73)

Depending on the shape of the effective potential U(r) (or value of parameter a) solutions 
of equation (64) have different character. Let us consider them.

a= 1. If any intensity effects are absent then parameters t = 0 and a = 1, and as follows 
from (65) the potential has the shape

I'M = f (£ - >) • <74>

This potential is shown in Fig. 1. Expression (70) gives in this case the solution (14) already 
found in Chapter 1 for the low intensity case:

r(i) = q(t) = (1 + fl2t2)1/2. (75)

The behaviour of the normalised peak line density \p(t)/Xpo = 1/r for e = 0 (and a = 1) is 
shown in Fig.2.

For cases where the intensity effects are considered and therefore t / 0 there are two 
main types of solutions of equation (64) which correspond to infinite and finite (periodic) 
motion. We analyse them below.

a> 0. The integral (70) gives the solution

f2f —
Jp{r) fl-1 |2 Jap{r) + 2ar + 1 

- ------- + 7T777 ln—------------------------
o

(76)
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where p(r) is defined by expression (71). Motion in this case is only infinite, which means 

continuous debunching (r —> oo with t —► oo). However the character of the debunching 
is different depending on the value of a. If a > 1 the induced voltage has a defocusing 
effect and debunching is faster compared to the low intensity case. For a < 1 debunching is 
slowed down by the focusing effect of the induced voltage. These two situations are shown 
in Figs. 1-2 together with the low intensity case a = 1.

a= 0. This value of parameter a corresponds to the point of bifurcation where the 
character of the solution is changing. From (70) we can find

ft/ = ^(r-l)3/2 + 2(r-l)1/2. (77)

This solution is presented in Figs. 1-4.

a< 0. This case can only occur for a focusing type of induced voltage (7?ImZ < 0) and 
$12 > fl2/2. The potential U(r) has the shape of a potential well and the solutions describe 

oscillations of peak line density with time.
If —1 < a < 0 then the solution found from (70) has the form

nt
y/p(0

+
1 — a

1/22a\a arcsin
2 ar + l — a 

|1 + a\
IT

(78)

where a ^ — 1. In this case oscillations begin with the line density decreasing (which appears 

for some time as if it is debunching). Oscillation amplitude is defined by the inequality

W\<1< 1. (79)

The effective potential well is shown in Fig.3 for a — —0.3 together with the a — 0 case for 

comparison. The corresponding behaviour of bunch line density is presented in Fig.4.
The period of the oscillations of the line density is

7r (1 — a) _ 2ttH2 
0 |o|3/2 (2fl2 — H2)3/2’

(80)

As can be seen from this expression a bunch with an intensity such that fZ2/fZ2 = 1/2 (a = 0) 
has an infinitely large oscillation period and continuously debunches.

The period and amplitude of the line density oscillations decrease (compare Fig.5 with 
Fig.4) with growing absolute value of parameter a (which can be for example due to increasing 
intensity or impedance). As a result at a ~ —1, the period T ~ (2tt)/Q but with oscillation 
amplitude close to zero.

a= —1. This case corresponds to the equilibrium situation when the bunch at the mo
ment t = 0 is in the minimum of the potential well U{r) with solution r — 1 not changing 

with time (see Fig.6). With this value of a, f22 = fl2 and the initial bunch is matched to the 
waveform created by the induced voltage.
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For a < — 1 the amplitude of peak line density oscillations starts to grow with increasing 
absolute value of parameter a:

1 <-< M (81)
r

Oscillations now start at t = 0 with the peak line density increasing and have a period also 
defined by expression (80). The solution found from (70) has the form

fit =
\fpjr) 1 -a 

|a| 2|o|3/2
arcsin

2 ar + l—a
|1 + °l

(82)

where also a ^ — 1.
The effective potential well is shown in Fig.6 for a = —1.3. Corresponding behaviour of 

bunch line density is presented in Fig.7.

3.3.2 Approximate solutions

To estimate these effects it is useful to have simplified expressions to describe the variation 
of beam parameters during debunching (a > 0).

As follows from (65), at the beginning of debunching, when r ~ 1, we can obtain an 
approximate solution by replacing fl2 by (fl2 + e) in the formula (14) and then

r(t) ~ [l + {fl2 + e)t2}1/2. (83)

According to the assumption made to obtain this expression it is valid only at the start of 
debunching for times t •< l/(fl2 + e)1/2.

For r >• 1 i.e. when the initial distribution is strongly debunched, the asymptotic solution 

can be again obtained from (65) by using the same formula (14) with fl2 —> (fl2 + 2e):

r(t) ~ [1 + (fl2 + 2e)t2J1/2. (84)

Both these approximations are shown together with the exact solution in Fig.8 for a = 3. 
As can be seen the exact solution lies between these two limits.

For a rough estimation of the time constant for the debunching of the intense beam at 

the beginning of the process (t <C l/flt and t <C 1 /fl) we can use the following approximate 

formula

tde — l/Vfl2 + C. (85)

As can be seen a change in debunching rate due to intensity effects can be used to estimate 
the inductive part of the broad band impedance if the parameters of initial bunch are known.

However it is interesting to note that if the initial bunch was created in the same machine 

and later allowed to debunch, then the measured time in first approximation is defined 13
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only by the external voltage and doesn’t depend on intensity. Indeed due to potential well 

distortion the matched bunch has dimensions defined by

0m/0m = fl = \J^2S - C,

where ivs is the frequency of synchrotron oscillations with RF on. In this situation the 
measured debunching time will be

tde — 1 j^S'

3.4 Numerical estimations for the SPS

3.4.1 Defocusing effect

Let us start first with the analysis of the case which we had during the MD study, [2], The 
injected bunches of 5-10ns were created in the low frequency RF system (10MHz) of the PS 

and can be considered there as ”short” bunches. For the SPS, the spectrum of these 5-10ns 
long bunches is situated in the inductive part of the broad band impedance with resonant 

frequency of 1.3GHz. Previous measurements and estimations show that the space charge 
impedance of the SPS at 26GeV is much less than this inductive impedance.

Machine parameters were: Es = 26GeV, 7t — 23.4. For this situation we can expect that 
the induced voltage has a defocusing character which makes debunching faster. For the 5ns 
long bunch with emittance £i = 0.2eVs we have

ft = 2?? Apm 
r pa

= 0.21 x 10V\

which should give a debunching time constant in the low intensity case

td = 1/fl = 5ms.

For an intensity TV = 5 x 1010 and the inductive part of the broad band impedance ImZ/n = 

20fZ, we obtain from expression (32)

ftc = 0.22 x 10V1.

This gives a value a ~ 3. Supposing that the initial bunch was close to parabolic then we 
can calculate the decay of peak line density. This is shown in Fig.8 as a solid line together 

with the low intensity case, a = 1, for comparison. The debunching time constant, which 
measurement can provide, is

tde — l/^O2 + fl2t = 3.3ms. 14
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For 10ns long bunches with the same emittance £l — 0-2eVs and intensity N — 5 x 1010 
we can compare the values of

$1 = 51.5s-1 and = 56.6s-1.

Related to these values are the debunching time constants in the low and high intensity 
cases,

tj, — 19.5ms tde — 13.1ms.

In this case parameter a = 3.4.
For both sets of measurements, with ’’short” and ”long” bunches, we can observe a 

significant effect of the induced voltage on the debunching process. Moreover, accurate 
measurements of the decay of peak line density during debunching in this situation can 
give important information about the low frequency part of the coupling impedance of the 

machine.

3.4.2 Focusing effect

The interaction of the bunch with the inductive part of the impedance below transition, or 
with the capacitive above leads to a focusing effect which we would expect to slow down the 
debunching of the intense beam. The debunching time constant (at the beginning of the 
process) becomes

tb = 1/ynz - (86)

Let us estimate the possible effect in the SPS in the present fixed target mode of operation 

with machine parameters Es — 14GeV,7t = 23.4. Then for high intensity bunches with 

parameters t = 5ns,£l = O.leVs,N = 5x lO10, available from the PS for recent MD studies 
at 14 GeV, and using again the value ImZ/n = 20fZ we obtain

n = 0.95 x 10V1 and VLt = 0.68 x lOV1.

In this case a = 0.025. For bunches with a line density close to parabolic the corresponding 
decay of peak line density is described by the curve shown in Fig.2 for a = 0. From the 

previous analysis of different types of possible solutions in this system, at slightly higher 
intensities we could expect to observe rebunching. 15

15

429



4 Microwave instability threshold during debunching

The threshold of the microwave instability can be defined from the Boussard criterion. For 

a parabolic line density it has a form, [4]:

I ZL\ rE,\y\P 

n ~ el(9)

1 2

P
(87)

where formfactor F* = 0.7x3/2 — 1.05x. Here ±Ap is the maximum momentum spread in 
the bunch at the position 0 and / is the local current. During debunching both Ap and / 
become not only functions of coordinate 0 but also of time. By analogy with the case when 

RF is on, [5], for the type of particle distribution in phase space chosen, the ratio

i
does not depend on coordinate 6 and is constant along the bunch even during debunching.

The variation of line density is described by formula (48). The change of maximum 
momentum spread during debunching can be also calculated

Ap(O)
A Pr 02 1 1/2

r(t) [ r2(t)0.2m J

where ±Apm is the maximum momentum spread in the bunch at t

m i

(88)

0. As a result we have 

(89)
P( 0) r(t)

If the effect of induced voltage on the changing of bunch parameters during debunching is 
ignored then the function r(t) is simply replaced by q(t) = (1 + fl2^2)1/2.

Using the expressions for fZ and fZe, criterion (87) can be rewritten in our definitions as

From the analysis of this expression we can make a few conclusions:
(1) If debunching is used as a method to determine the microwave instability threshold 

from criterion (87) it is necessary to take into account the effect of induced voltage on the 

bunch parameters variation. Otherwise (as was noticed first in [1], see also [2]) measurements 

do not give consistent results.
(2) Measurements of the peak line density variation during debunching give simultane

ously information about function P(Z), which can be used to define the threshold intensity 

for microwave instability.
(3) Possible deviations of the value of the debunching time constant of an intense beam 

tde from the low intensity value tj, should lie within some limits defined by the microwave 

instability. 16
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5 Conclusions
Analytic solutions of the nonlinear Vlasov equation describing different types of behaviour 
with time have been found for an intense bunch, with an initial elliptic distribution function, 

under the effect of of self induced voltage in the machine with RF off.
Voltage induced due to the interaction of the beam with the low frequency part of the 

coupling impedance of the machine, as in the case with RF on, can have a significant effect 
on processes when RF is off. Measurements of the change in the rate of debunching with 
intensity can be used to estimate the value of the impedance supposing that the initial 

particle distribution in phase space is close to elliptic.
If debunching is used as a method to determine instability thresholds it is necessary to 

take into account the effect of induced voltage on the variation of the bunch parameters.
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Effective potential well
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Figure 1: Effective potential U(r) describing debunching in low intensity case, a — 1, and 
high intensity case with different types of induced voltage: defocusing, a = 2, and focusing, 

o = 0.
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Figure 2: Variation of normalised peak line density 1/r during debunching for low intensity 

case, o = l, and high intensity case with defocusing, a = 2, and focusing, a — 0, type of 

induced voltage.
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Effective potential well
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Figure 3: Effective potential well U(r) describing oscillations of line density for focusing type 

of induced voltage.
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Figure 4: Variation of normalised peak line density 1/r for focusing type of induced voltage, 

a = —0.3 and a = 0.
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Peek fine density vo notion

Figure 5: Variation of normalised peak line density 1/r for focusing type of induced voltage, 

a = —0.6.
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Figure 6: Effective potential well for equilibrium solution, a = — 1, and oscillation of line 

density, o = —1.3.
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Figure 7: Variation of normalised peak line density 1/r for focusing type of induced voltage, 

a — —1.3.
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Figure 8: Exact (solid line) and approximate (dashed lines) solutions for peak line density 
variation during debunching of intense beam for defocusing type of induced voltage, a = 3, 

together with exact solution for low intensity case, a = 1, (dotted line)
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Abstract
This paper describes the present status of the RF feedback development for the KEK B-Factory 

(KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was 
performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the 
beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability.

I. Introduction
One of the most serious problems in B-factory ac

celerators is how to deal with severe longitudinal 
coupled-bunch instabilities caused by the accelerat
ing mode of heavily detuned RF cavities. These in
stabilities can be avoided if the cavity detuning re
quired to compensate for the reactive beam loading 
can be significantly reduced. For KEKB, a three- 
cavity accelerating system (ARES [1]~[5]) and a su
perconducting cavity (SCO [6][7]) are now being de
veloped [8]. Each type of cavity has a large stored 
energy which contributes to reducing the detuning of 
the cavity [9]. Another possible way to cope with the 
instability problem is to develop an RF feedback sys
tem which can reduce the effective cavity impedance 
responsible for the coupled-bunch instabilities. As a 
backup scheme for the ARES and SCC, we are devel
oping an RF feedback system using a parallel comb
filter.

II. Requirements
The type of cavity which we use determines the 

necessary loop gain of the RF feedback. Table 1 gives 
the expected growth time of the instability and the 
necessary impedance reduction rate for the ARES, 
the SCC and the CMC (choke-mode cavity), which 
is an accelerating cavity of the ARES [10]. The ex
pected damping time due to longitudinal bunch-by
bunch feedback is also shown in the table together 
with the longitudinal radiation-damping time. If we 
use the ARES, RF feedback is not necessary in both 
rings, while the SCC requires RF feedback in LER. 
If we use the CMC, a very sophisticated RF feedback 
system is necessary to reduce the cavity impedance 
to less than 1/100.

The design goal of the feedback is to reduce the ef
fective cavity impedance to the extent that even the 
CMC can be used as the KEKB accelerating struc
ture. Fig. 1 shows the calculated growth rates of 
the longitudinal coupled-bunch instabilities due to 
the accelerating mode when the CMC’s are used in

LER (a) and HER (b). The parameters used in the

B utfch -byjfun ch jWba ck Dimfl n^_R al

lamping I

Beam Current [A]

HER (b)

Bubch-bVrBunch Feedback

: Radiation Dampmg1<aie_;

0.4 0.6
Beam Current [A]

Fig. 1. Calculated growth rates of the longitudinal 
coupled-bunch instabilities caused by the accelerat
ing mode of the choke-mode cavities in LER (a) and 
in HER (b).

calculations are listed in Table 2. The RF feedback 
must reduce the growth rates, at least down to a level 
which can be damped by the bunch-by-bunch feed
back system. This means that the RF feedback must 
have a loop gain of at least 40 dB, and must handle 
more than six modes. Since the revolution frequency
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Table 1
Expected growth time of the instability and the necessary impedance reduction rate for three types of

cavities.

expected growth time Re[Z] must be reduced to
LER HER

ARES 30 ~ 50 ms 100 ~ 180 ms 1/1
see 0.3 ~ 14 ms 23 ~ 54 ms to 1/20
CMC 0.05 ~ 0.2 ms 0.1 ~ 0.3 ms to 1/100

Bunch-feedback damping time 10 ms
Radiation damping time 
(without (with) wigglers)

43 (23) ms 23 ms

Table 2
Parameters used in the instability calculations.

LER HER
Type of cavity CMC (accelerating cavity of ARES)
Total cavity voltage Vc 8.6 15.7 MV
Number of cells Nc 20 32
Cavity voltage/cell Vc/cell 0.43 0.49 MW
Shunt impedance/cell Rsh 5.3 Mft
Unloaded Q Qo 35000
R/Q 147 ft
Maximum frequency detuning A / -232 -82 kHz
Synchrotron frequency fs 1.7 1.6 kHz
Energy loss/turn U0 0.81 3.5 MeV

is about 100 kHz, the frequency range to be covered 
is more than 600 kHz in LER.

III. Principles of the system

For economical reasons, all of the TRISTAN RF 
components, except for the cavities, will be reused 
for KEKB. Its disadvantage from the viewpoint of 
RF feedback, however, is a long group delay, which 
comes from a rather narrow-band klystron as well 
as long distances among the components to form the 
feedback loop. The cables, waveguides and wideband 
amplifiers cause an almost constant group delay of 
about 1 ps, while the klystron causes a frequency- 
dependent group delay of about 0.6 ps at maximum. 
This group delay limits the half bandwidth of the 
loop to around 80 kHz for a 45° stability phase mar
gin [11], while the necessary bandwidth is 600 kHz, 
as mentioned above.

D. Boussard has pioneered an RF feedback scheme 
which overcomes the delay limitations by using a 
comb-filter combined with a one-turn delay [12]. It 
has a large loop gain only in the vicinity of the fre
quencies frf ±nfrev, and is effective when the group 
delay is almost frequency-independent. One way to

compensate for the frequency-dependent group de
lay is to add a phase equalizer in the feedback path 
[13]~[16], The other way is to adjust the phase only 
at the synchrotron sidebands of the revolution har
monics, where the impedance must be reduced [17]. 
This is realized by using a parallel comb-filter, an 
array of resonators, each phase of which is properly 
shifted so as to compensate for the phase difference 
among the sideband frequencies.

A block diagram of the RF feedback system using 
the parallel comb-filter is shown in Fig. 2. A sample 
of the cavity field is down-converted to the baseband 
frequency, then filtered and adjusted in phase (and in 
amplitude, if necessary) by the parallel comb-filter. 
After being up-converted to the RF frequency, it is 
fed back to the RF signal path to the cavity. The 
feedback is done only in the lower side of the RF fre
quency, because all of the unstable modes due to the 
accelerating mode are there. A frequency converter 
which also serves as a single-sideband filter is used 
to eliminate the upper sideband of the RF frequency. 
The parallel comb-filter can be easily and accurately 
adapted to any kind of group-delay properties of the 
loop. It will also be able to automatically track the 
cavity phase which changes with the beam current
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through a change in the detuning frequency. For this 
purpose, however, it will be necessary to store the 
necessary phase compensations of each channel as a 
function of the beam current and the cavity voltage, 
and to remove them properly for use.

RF Input Driver Amp. Klystron Circulator RF Cavity

-tmHMHlS-

Up Converter Parallel Comb Filter Down Converter

Fig. 2. Block diagram of the RF-cavity feedback 
system using a parallel comb-filter.

A bunch signal from a button electrode can also be 
used as an instability signal source; that is, it can be 
fed into the down-converter shown in Fig. 2 instead of 
the cavity pick-up signal. In this system (system B) 
the frequency-dependent cavity phase, which must be 
compensated in the system using a cavity signal (sys
tem A), is no longer a problem. This is because the 
phase of the feedback voltage does not depend on the 
cavity tuning, while that of system A does. Another 
advantage of system B is that when an RF station 
trips or is shut off, and, consequently, its RF feed
back is no longer available, the RF feedback of other 
stations can compensate for any loss of the damp
ing rate. Since a single feedback system may not be 
enough to obtain a loop gain of more than 40 dB, 
combining systems A and B may be an appropriate 
option. In this case, however, the cavity cannot act 
as a kicker, or, the feedback system cannot compen
sate for a loss of the other station’s damping rate, 
because system A always works to reduce the cavity 
voltage to zero.

Another beam-loading effect appearing in B- 
factory machines, other than the longitudinal 
coupled-bunch instabilities due to detuned cavities, is 
the presence of bunch-phase modulation due to gaps 
in the bunch-train [18]. The bunch-phase modula
tion can be greatly reduced by canceling the beam- 
induced voltages at the revolution harmonics, with 
either the RF feedback or the RF feedforward tech
nique [18][19]. It, however, requires a large peak 
klystron power [18][19]. Therefore, it is better to 
keep the RF feedback inactive around the revolution 
harmonics by forming notches there [18]. The bunch- 
phase modulation in HER will be compensated for by

providing a partially filled bunch-gap in LER, whose 
filling factor is adjusted so as to give the same gap 
transient as that in HER [18]—[21]. Another cure for 
the bunch-gap effect is to properly modulate the am
plitude and phase of the RF drive in order to coun
teract the modulations appearing on the cavity [18].

Fig. 3 shows the transfer functions of a 6-channel 
parallel comb-filter with a zero phase shift and an 
HR digital comb-filter with a 1-turn delay. For a 
comparison, the 3 dB bandwidth of both filters is 
taken to be the same value. Both transfer functions 
are almost identical if the filter bandwidth is much 
smaller than the revolution frequency, and if the par
allel comb-filter has infinite channels. The slight dif
ference shown in the figure comes from the fact that 
the parallel comb-filter has only six channels.

*Bel comb-fater with e zeto phiw shift

Frequency (f - frl)/firev

Frequency (f - frf)/frev

Fig. 3. Transfer functions of a 6-channel parallel 
comb-filter with a zero phase shift (solid line) and an 
HR digital comb-filter with a 1-turn delay (broken 
line).

Although the direct RF feedback, in our case, does 
not have a sufficient bandwidth to cure the coupled- 
bunch instabilities (as stated above), it will be a pow
erful measure to reduce the beam-loading effects on 
the cavity operating in the accelerating mode.

IV. RF feedback experiment
A. Experimental setup

We have carried out a preliminary experiment 
concerning the RF feedback using a prototype par
allel comb-filter. Fig. 4 shows the experimental 
setup, which includes a parallel comb-filter, a 1.2- 
MW klystron and a choke-mode cavity. The cable 
length was adjusted so as to give a total constant 
group-delay of 1 ps, which is comparable to that of 
the KEKB RF system. The detuning frequency and 
the loaded Q of the cavity were adjusted to the val
ues used in the instability calculation for LER shown
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in Fig. 1(a). Fig. 5 shows the transfer function of the 
klystron used in the experiment. The 3 dB band
width is about 800 kHz and the maximum group de
lay is about 500 ns. In this experiment, only a very 
low RF power was fed into the cavity, though the 
klystron was operated at an RF power of 200 ~ 300 
kW. A network analyzer was used to measure the 
open and closed-loop transfer functions over a 1 MHz 
frequency range.

Network Analyzer
RF Input

Driver
Amp.(Vj) Circ. Klystron

(O) Circ.

RF Amp.

Puillel _ Dowd 
Comb Filler ” Cotv.UP -

Fig. 4. Block diagram of the experimental RF-cavity 
feedback loop, which includes a parallel comb-filter, 
a choke mode cavity and a klystron.

TOSHIBA E3732 T31A
Vk = 65kV,lb= 11.7 A.iiBP = 0.7
Ptn = 0.2 W, Po = 100 kW ----
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Frequency [MHz)

Fig. 5. Measured transfer function of the klystron 
which was used in the feedback experiment.

The parallel comb-filter comprises five individual 
LC resonators arranged at 100 kHz intervals; each 
resonator has a 2 kHz 3 db-bandwidth. Fig. 6 shows 
the circuit configuration of a channel in the comb
filter. In order to increase the Q value of the res
onator, the apparent resistance of the coil is reduced 
by adding a negative resistance generated by the pos
itive feedback. The center frequency of the resonator 
has a temperature coefficient of about 1 x 10-4/°C. 
The phase shifter uses variable capacitance diodes to

control the phase, and covers the range over ±200°. 
The analogue multiplier is used to control the am
plitude over a range of 0 ~ 100%. Both the phase 
shifter and the attenuator are controlled either by a 
dial at the panel or by an external voltage.

Gain Adj. Analog
Multiplier

Phase
Shifter

IN Buffer

Q Adj. U Temp. Coef. 
Control

Q Multip.
♦ Corn. IN

Adder♦ ControllerA Com. IN

Fig. 6. Circuit configuration of a channel in the 
prototype comb-filter.

B. Results of measurement

Fig. 7 shows the measured open-loop response of 
the amplitude and phase as a function of the normal
ized frequency ((f-frj)/frev)- The center frequency 
of each resonator was set to nfre„ + f,, where /, is 7 
kHz, because the comb-filter had been made on the 
basis of the old KERB design. Although the phase re-

29.75 dB-20

Frequency (f - frf)/frev

M 100

CL-100

Frequency (f - frf)/frev

Fig. 7. Measured open-loop response of the feedback 
system as a function of the normalized frequency (/—
fr})/ frev ■

sponse was adjusted to zero at each frequency by the 
phase shifter, the amplitude response was kept un
changed. The maximum loop gain was 29.8 dB with 
a 0° phase margin and 25.2 dB with a 45° phase mar
gin over a 1 MHz bandwidth. The single-sideband 
filter rejected the unwanted upper side of the RF fre-
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Table 3
Measured real part of the cavity impedance and the corresponding growth time of the instability, with or

without feedback.

Mode
without feedback with feedback

Re{Z+} Re{Z} Growth time Re{Z+} Re{Z} Growth time
[kfi] [kfi] ms ] [kfi] [kfi] [ ms]

4-7 1.70 6.84 —5.85 1.70 4.42 -11.07
4-6 2.13 10.94 -3.40 2.13 11.86 -3.08
4-5 2.74 20.07 -1.73 2.74 42.11 -0.76
4-4 3.65 46.52 -0.70 3.65 97.79 -0.32
4-3 5.10 156.10 -0.20 5.10 262.89 -0.12
4-2 7.61 219.44 -0.14 7.61 38.78 -0.96
4-1 12.51 62.73 -0.60 12.51 51.87 -0.76
0 48.04 49.32 -46.71 48.04 49.32 -46.71
-1 60.36 12.76 0.63 11.27 12.76 -20.16
-2 211.46 7.73 0.15 17.23 7.73 3.15
-3 163.33 5.16 0.19 10.63 5.16 5.48
-4 48.18 3.69 0.67 6.08 3.69 12.55
-5 20.56 2.76 1.68 3.43 2.76 45.18
-6 11.14 2.15 3.33 13.23 2.15 2.70
-7 6.94 1.71 5.75 4.72 1.71 10.00

quency by about 60 dB, as shown in the top of Fig.
7.

The measured closed-loop response is shown in Fig.
8. The top figure shows the normalized magnitude 
(broken line) and the real part (solid line) of the effec
tive cavity impedance, with or without feedback; the 
bottom figure shows the phase of the cavity. With 
the feedback, the real part of the impedance was re
duced by 16 dB to 24 dB at five sideband frequencies. 
The measured values are in good agreement with the 
calculated ones, which were obtained using the mea
sured parameters of the loop components.

The results of the measurements are summarized 
in Table 3, which gives the measured real part of the 
cavity impedances at the upper and lower sidebands 
of the —7 to 4-7 modes, as well as the corresponding 
growth time of the coupled-bunch instability, with 
or without feedback. In LER, the growth time of 
six modes from —1 to —6 was faster than 10 ms, 
as shown in Fig. 1(a); however, in this experiment, 
only five modes were treated, because of limitations 
of available comb-filter channels. With feedback the 
growth times of the —1 and —5 modes became much 
slower than 10 ms, and that of the —4 mode was 
marginal, while those of the —2 and —3 modes were 
still much faster. To stabilize all of the modes, the 
loop gain must be improved by more than 10 dB, 
which will be possible by reducing the bandwidth of 
the filter to less than 1 kHz.

Although the feedback was intended only for the 
— 1 to —5 modes, it affects the impedance of the —6

Frequency (f - frf)/frev

-ICO ■

Frequency (f - frf)/frev

Fig. 8. Measured closed-loop response of the feed
back system as a function of the normalized fre
quency {f ~ frj)/frev

mode while slightly decreasing its growth time. A 
more serious consequence of the feedback was that it 
also reduced the impedances at the lower sidebands 
of the 4-1 and 4-2 modes. In this experiment, these 
two modes were still kept in the damping state due to 
the large synchrotron frequency (/,) of 7 kHz. How
ever, both the 4-1 and 4-2 modes would be unstable 
if /, is less than 2 kHz, as is the case with the new 
lattice design. The impedance reduction at these fre
quencies can be controlled to some extent by nar
rowing the bandwidth of the filter and by adjusting
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the phase of the relevant channels. As a more effec
tive cure, we are planning to provide notches at these 
lower sideband frequencies.

V. Beam Test of RF Feedback 
in TRISTAN MR

The purpose of the beam test was to confirm 
that a coupled-bunch instability caused by the cavity 
impedance could really be eliminated by reducing it 
by means of RF feedback. A beam test was made in 
the TRISTAN Main Ring (MR), whose tunnel will 
be reused for KERB; its RF frequency is about the 
same as that of KERB. Under usual operation, the 
MR beam is stable, owing to a much lower beam in
tensity than that of KERB. One RF station was

i rk

+i -i

Frequency (f - frf)/frev

Fig. 9. Magnitude and the real part of the cavity 
impedance for detuned thirty six cells, with or with
out RF feedback.

Table 4
Machine parameters during the beam test.

e~ beam energy 8 GeV
e~ beam current 6 mA
Number of bunch 4
RF frequency frj 508.6 MHz
Revolution frequency frev 100 kHz
Synchrotron frequency s> 11.6 kHz
Detuning frequency A/ -87.7 kHz
Shunt impedance of 36 cells 239 Mfi
Coupling factor /? 1.3
Growth time of —1 mode 6.5 ms
Radiation damping time Trad 20 ms

therefore put out of operation, and its idling cavities 
were substantially detuned to make the beam unsta
ble. An RF station has two accelerating units, each

comprising a pair of nine APS (alternating periodic 
structure) cells [22]. A total of thirty six cells were 
detuned by 88 kHz (= /rev — /,) in order to set the 
resonant frequency of the cavities to the upper syn
chrotron sideband of the —1 mode. Fig. 9 shows the 
magnitude and real part of the cavity impedance for 
detuned thirty six cells, with or without RF feed
back. The growth time of the —1 mode, estimated 
from the machine parameters given in Table 4, is 6.5 
ms, while the radiation damping time is 20 ms. The 
growth times of the other modes are much slower 
than 20 ms.

Beam

Fig. 10. Block diagram of the RF feedback system 
used in the beam test.

Ib = 6.21 mA, Gain = 13.3 dB

” -so -

Feedback off

Time [ms]
Estimated Damping Time * 181.1

Damping Time ■ 41:36 mr • -
• -Growth Time-*111X99 -tie -

*5. 90

Tune [ms) Tune [ms]

Fig. 11. Measured amplitude of the -1 mode oscilla
tion versus time.

Fig. 10 shows a block diagram of the RF feedback 
system used in the experiment. Since only the —1 
mode could be unstable, only one channel of the par
allel comb-filter was used. The RF switch was used 
to open and close the feedback loop. In order to de
tect the growth and damping of the coupled-bunch
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oscillations a spectrum analyzer was used in a zero- 
scan mode.

Fig. 11 shows an example of the measured ampli
tude versus the time of the —1 mode oscillation. The 
amplitude began to increase exponentially when the 
feedback loop was opened at 0 ms, and turned to 
decrease when the loop was closed at about 90 ms. 
This figure clearly shows the effectiveness of the RF 
feedback. The bottom figures show expanded views 
of the amplitude behavior just after the loop off and 
on. A more detailed report of the beam test will ap
pear soon elsewhere [23].

VI. Summary
A. Purpose and Requirements

• An RF feedback system will be prepared as a 
backup scheme for the ARES and SCC, to pre
vent coupled-bunch instabilities caused by the 
accelerating mode of detuned cavities.

» If the choke-mode cavities are used, the effective 
cavity impedance must be reduced by a factor 
of 100 to make the growth time slower than 10 
ms, the expected damping time of the bunch-by
bunch feedback system. In LER, six modes must 
be damped and the necessary frequency range is 
more than 600 kHz.

B. Feedback System

• In the parallel comb-filter (an array of res
onators), each resonator is tuned at nfrev + /,, 
and used to compensate for any group delay of 
the feedback loop.

» To make the system simple, feedback is done 
only in the lower side of the RF frequency by 
eliminating the upper side with a single-sideband 
filter.

• As an instability-signal source, both a cavity sig
nal and a bunch signal will be prepared. The 
combination of two feedback systems, one using 
the cavity signal and the other the bunch signal, 
may be a promising option to reduce the cavity 
impedance to less than 1/100.

• Picked-up voltages at the revolution harmonics 
will be eliminated by providing notches in order 
to avoid any increase in the peak klystron power.

• In KEKB, a direct RF feedback will not be used 
to cure the instabilities because of its narrow 
bandwidth. It will be used only around the 
RF frequency to reduce the beam-loading effects 
during operation in the accelerating mode.

C. Feedback Experiment

• A preliminary experiment of the parallel comb
filter feedback has been carried out through the 
choke-mode cavity and the klystron.

« The real part of the cavity impedance was re
duced by 16 dB to 24 dB at five frequencies, 100 
kHz apart from each other. The loop gain must 
be improved by more than 10 dB to stabilize all 
of the six modes in LER.

• Some measure is required to avoid excitation of 
the +1 and +2 modes for a synchrotron fre
quency less than 2 kHz.

D. Beam Test

« The RF feedback system has been tested using 
the beam of the TRISTAN Main Ring.

» The coupled-bunch instability of the —1 mode 
was excited by intentionally detuning the RF 
cavities; it was then successfully damped by re
ducing their impedances with the RF feedback.
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PEP-II RF Feedback System Simulation

Richard Tighe 
SLAC

A model containing the fundamental impedance of the PEP- 
II cavity along with the longitudinal beam dynamics and RF 
feedback system components is in use. It is prepared in a 
format allowing time-domain as well as frequency-domain 
analysis and full graphics capability.

Matlab and Simulink are control system design and analysis 
programs (widely available) with many built-in tools.
The model allows the use of compiled C-code modules for 
compute intensive portions.

We desire to represent as nearly as possible the 
components of the feedback system including all 
delays, sample rates and applicable nonlinearities.
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Components

Cavity
A baseband representation of the total number of cavities of 
the ring. Baseband: A DC input representing the klystron 
RF input leads to a DC value representing the cavity voltage. 
Modulations to the cavity are made within a small (10 MHz) 
bandwidth around the center frequency. Forward and 
reflected power signals are recorded.

Beam
Longitudinal dynamics with enough macro bunches (36) to 
simulate coupled-bunch motion throughout the range 
excited by the cavity and feedback. Includes ion clearing
gap.
Two macro-bunches are left empty in HER to represent the 
ion clearing gap (2/36 = 5.56%). Two bunches are partially 
filled in the LER for transient matching.

Direct RF Feedback
Reduces the cavity impedance seen by the beam.

Comb Filter Feedback
Periodic structure applying gain at the synchrotron 
sidebands; one-turn delay. Further reduces the impedance 
seen by the beam. Sample rate: 10MHz, same as in 
hardware.

Group delay equalizer
Mitigates the effects of the in-band and out-of-band delay 
differences.
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Delays
Signal delays in system prevent the application of unlimited 
gain. Loop delay including waveguide, cable, klystron, and 
feedback components is approximately 550ns.

Saturating Klystron
Contains group delay and bandwidth behavior.
Saturation characteristics of klystron. AM gain decreases 
when running into saturation.
The klystron operating point is nominally set to 90% of 
saturated power (95% of saturated voltage) in order to 
compromise between operating efficiency and feedback 
headroom.

Longitudinal (Bunch-by-Bunch) Feedback
Two aspects: Implemented as additional term in beam 
dynamics akin to radiation damping; also connection from 
B-by-B system to RF feedback system.

Adaptive Feedforward

A profile corresponding to 20MHz samples is generated by 
sampling the klystron drive signal over many turns, 
averaging, and modifying the feedforward values in order 
to produce a more constant klystron output. The 
feedforward signal adapts slowly and will not interfere with 
the operation of the feedback loops. An RF reference is 
generated to allow gap induced cavity transients to occur 
without feedback intervention. This reduces power 
fluctuation in the presence of gap transients to less than 2%.
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Analysis and Predictions

Gain, phase, delay setting
Analytic frequency-domain representation used to 
determine gains, phases, margins. The phase margin of the 
combined direct and comb feedback loops is set to 45°.

Modal impedance based on system
Expected modal impedance may be calculated based on 
linear system components.

Performance

Presently takes 3min/lms of beam time on a SPARC 10.

Operation

The model runs with full current at startup. The assumption 
is that the B-Factory will be free of large injection 
transients due to the gradual injection scheme. Slow loops 
(tuner and gap voltage) are preset and disabled.

Uses:
System stability with linear and nonlinear operation
Klystron saturation and gap transients. The effect of the 
nonlinear klystron saturation is what largely requires the 
use of time-domain simulations.
Adaptive Gap Voltage program to follow gap transient.

System parameter variation:
Klystron delay and bandwidth were varied to validate 

the klystron purchase specification.
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Forward and reflected power information
Tracking of reflected voltage in waveguide ahead of cavity 
allowed testing worst-case trip scenarios ( beam dump, 
klystron trip) confirming best window placement.

Test bed for additional components

Summary;

System has shown stable operation for PEP-II nominal HER 
and LER configurations.

PEP-II RF 
Feedback 
System
Adaptive 

Feedforward 
Reference

>
Phase
Shifter

Comb Filter Feedback

Direct Feedback

Cable delay

-w
-»

Klystron
Cavity

Equalizer + 4- Longitudinal
One-turn Delay Feedback

Beam Dynamics 4-

System Block Diagram
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Driving Impedances with RF Feedback: LER 2.25A, 5.1 MV

20-

-10-

•o -20 -

—30 -

-40 -

longitudinal coupled bunch mode number

From a linear impedance calculation the coupled-bunch 
driving impedances for the modes affected by the RF cavity 
fundamental and feedback may be found.
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Damping Times, calculated: HER 1A, 14MV

-1000
-20 -15 -10 -5 0 5 10

Longitudinal coupled bunch mode number

The results of the linear driving impedance calculation is 
converted to expected growth rates for a given 
configuration.
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Damping Times, from simulation: HER 1A, 14MV

E -500

-1000

mode number

The results of the linear time-domain simulation give good 
agreement with the expected values. This allows us to 
proceed and add the saturation effect.
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Spectral Analysis of 2.25A LER, 5.1 MV

0.02 -

mode number turn number

After completing the simulation, the bunch signals are 
converted to their modal components. Here we see all modes 
damping within 500 turns. In fact, the slowest mode to 
damp has a damping time of 150 turns. The radiation 
damping time is 3500 turns.
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HER and LER Phase Transients

677.2 677.4 677.6 677.8 678 678.2 678.4 678.6 678.8
turn

Phase Difference

-0.5 -

677.2 677.4 677.6 677.8 678.2 678.4 678.6 678.8
turn

The gap induced transients in the two rings must be matched to prevent 
excessive collision point variation. Here the transients from the two rings 
are matched to within 0.6° (0.1 Oz). Fine tuning of the simulation 
parameters is possible to reduce this further. Theoretically, the transients 
may be perfectly matched ( assuming equal cavity coupling in the two 
rings)
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500

1000
Turn number

Forward Power Envelope During Adaptation
1200

-----With Feedforward
x No Feedforward

1273 1273.2 1273.4 1273.6 1273.8 1274 1274.2 1274.4 1274.6 1274.8 1275
Turn number

Forward Power Variation, with and without Feedforward.
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The Interaction between a Beam and a Superconducting
Cavity Module:

Measurements in CESR and CESR-Phase III Goals*

S. Belomestnykht, G. FlynnW. Hartung, J. Kirchgessner, D. Moffat, H. Muller,
H. Padamsee, M. Pisharody, and V. Veshcherevicht 

Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853 USA

INTRODUCTION

Plans for the next generation of electron-positron colliders (B-factories and B-factory-like 
machines) call for high beam currents to produce luminosities of the order of 1033. To store 
these high currents in a machine, special attention must be paid to the interaction of the beam 
with discontinuities in the surrounding vacuum chamber. RF cavities are among the biggest 
perturbations in accelerator vacuum chambers and are therefore among the biggest sources of 
beam instabilities. Accelerating structures for new machines are being designed to have smaller 
impedance to reduce the beam-cavity interaction. Several new designs for both normal and 
superconducting cavities are now being considered at various laboratories [1],

The phased luminosity upgrade program for CESR calls for a total current of 1A in two 
beams [2]. The existing normal conducting copper cavities are to be replaced with 
superconducting niobium cavities. Quality factors of less than 100 are required for the 
dangerous cavity higher-order modes (HOMs) [3,4].

Figure 1 shows a schematic of the entire module which includes the cavity, a 24 cm round 
beam pipe, a fluted beam pipe, two ferrite HOM loads, sliding joints, gate valves, and tapers to 
the CESR beam pipe.

The beam tubes were designed so that all of the HOMs propagate out of the cavity and are 
damped by the ferrite HOM loads, which are located outside the cryostat and which are an 
integral part of the beam tube.

Prototypes for the cavity, input coupler, cryostat, and HOM loads were subjected to a beam 
test in CESR in August 1994. Figures 2 - 4 show photographs of the HOM load, cavity, and 
cryostat being installed in CESR. A superconducting (SRF) cavity was installed in addition to 
the four five-cell normal conducting (NRF) cavities. The results of the test have been reported at 
the PAC’95 conference [5-7]. In this paper we review the results from the perspective of the 
CESR Phase III upgrade plan.

SYSTEM PERFORMANCE

The performance of the SRF system as a whole and cavity in particular was quite good. 
Below we briefly review some important results achieved in the beam test.

* Work supported by National Science Foundation, with supplementary support from the US- 
Japan Collaboration.
t Visitor from Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia 
t Visitor from LURE, 91405 Orsay, France
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Figure 1. Schematic of the SRF cavity module.

Accelerating Gradients
Before the beam test, the niobium cavity was tested in a vertical cryostat up to an 

accelerating gradient of 10 MV/m [8]. The cavity was then tested in its horizontal cryostat with 
high RF power (without beam). After processing to 6 MV/m CW, it was installed in CESR.

Throughout most of the test, we kept the accelerating gradient of the cavity at 4.5 MV/m. 
A special run was dedicated to investigation of the behavior of our system at higher gradients. 
At 5 MV/m, the cavity was run stably for 1/2 hour with 100 -110 mA beam current.

The cavity could only be operated for short periods above 5 MV/m, because of increased 
dissipation due to field emission, which caused the cryostat pressure to increase steadily. The 
pressure increase required tuner motion to maintain the correct cavity frequency; eventually the 
tuner ran into its safety stop. Nevertheless, we were able to run the cavity for few minutes with 
beam currents between 95 and 120 mA and a cavity gradient of up to 6 MV/m. A gradient of 6 
MV/m is our goal for Phase III.

Beam Current
The maximum current for the test was 220 mA (in 27 bunches, distributed into 9 trains of 3 

bunches with 1.31011 particles per bunch). The current limit was set not by the performance of 
the cavity but by the heating of other CESR components. The maximum single-bunch current 
was 44 mA (7 1011 particles), with the limit again set by heating of other CESR components. 
Note that the product of the number of bunches times the square of the single bunch current was 
nearly the same as for the 220 mA, 27 bunch case. We are a factor of 6 below the CESR-Phase 
HI goal, which calls for a beam current of 500 mA in 45 bunches (9 trains of 5 bunches) for each 
beam

RF Power
A special experiment was dedicated to delivering the maximum RF power to the beam. 

The relative phase between the NRF and SRF cavities was adjusted so that the bunches went 
through the SRF cavity at the peak of the SRF voltage. The NRF cavities provided longitudinal
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Figure 4. Cryostat being installed in CESR.

beam stability and extracted the excess power delivered to the beam from the SRF cavity.
The maximum power delivered to the beam by the SRF cavity was 155 kW, a factor of 2 

above the world record set by the SRF cavity tested in TRISTAN-AR at 2 MV/m [9], but still a 
factor of 2 less than the Phase III goal. Vacuum bursts and arc trips near the RF window 
prevented us from going higher. We hope that new planar waveguide RF window, recently 
tested at LNS [10], will allow us to reach the Phase III requirement.

BEAM-CAVITY INTERACTION MEASUREMENTS

Studies of the beam-cavity interaction were conducted with a variety of bunch 
configurations: single bunch, 9 bunches per beam, and 9 trains of 2 or 3 bunches per train. 
We used a high energy lattice for most of the experiments; a low energy lattice was also used to
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Table 1. Selected Parameters of the CESR Storage Ring
Parameter High Energy

Lattice
Low Energy

Lattice

Ring circumference 768.4 m
Revolution frequency 390.15 kHz
RF Frequency 499.78 MHz
Beam energy 5.265 GeV 4.400 GeV
SR energy loss per turn 1.0105 MeV 0.4928 MeV
Momentum compaction 0.01142 0.00926
RMS energy spread 6.122 10-4 5.116 10-4

measure the loss factor vs. bunch length. Some machine parameters for these optics are given in 
Table 1.

Power Dissipated in the HOM Loads and Loss Factor
We measured the temperature of the input and output cooling water for each HOM load, 

along with the water flow rate. The values yield the power transferred to the water from the 
ferrite: p= iv/CpaL-o,i=l
where P is the power transferred to the cooling water from the two HOM loads; vy is the water 
flow rate; C is the specific heat capacity of the water; p is the water density; and Tn are the 
output and input temperatures of the cooling water.

This power should be approximately equal to the power lost by the beam due to its 
interaction with the cavity structure below the cutoff frequencies of the beam pipes because (i) in 
our HOM load design [6], other heat transfer mechanisms (conduction through the copper plate 
to the stainless steel shell, and heat radiation) should not give a significant contribution relative 
to the water cooling, and (ii) the HOMs with resonant frequencies below the cutoff frequencies 
of the nearby beam pipes (2.2 GHz and 3.4 GHz) are trapped inside the accelerating structure, so 
all their energy should be dissipated in the lossy material of the HOM loads.

We used the two lattices to obtain bunch lengths between 10 and 25 mm. Uniformly-filled 
bunches were used. Most measurements were done with one or 9 bunches. For uniformly-filled 
bunches, the loss factor is given by

u _ NPfrev_ 
fC — 2 *

*o
where I0 is the average beam current; is the revolution frequency; N is the number of 
bunches.

We do not have a bunch length monitor for CESR, but previous measurements [11, 12] 
indicate that there is no bunch lengthening in the storage ring; so we can calculate the bunch 
length via

? 2 CL h e"\J vjy? - (Uf/e+Ucoh/e)2

£ts = (0™' 2nE0
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Figure 5. The loss factor of the SRF cavity vs. total beam current.
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Figure 6. The loss factor of the SRF cavity vs. current per bunch.

where a is the momentum compaction factor; c is the speed of light; Qs is the synchrotron 
frequency; oE is the energy spread; h is the RF harmonic number, Ea is the beam energy; Vrf is 
the RF voltage; U0 is the energy loss per turn due to synchrotron radiation; and Ucoh is the 
coherent energy loss per turn due to the total loss factor of the ring.

To verify that we do not have bunch lengthening, the loss factor was plotted as function of 
beam current for the same machine optics (high energy lattice) and RF voltage (Figures 5 and 6).
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Figure 7. The loss factor of the SRF cavity assembly (experimental data and prediction).

The theoretical bunch length oj is equal to 15.3 mm for these measurements. One can see that 
the loss factor does not depend on current, i.e. there is no evidence of bunch lengthening.

The experimental results for the loss factor versus bunch length are compared with the 
predictions [6] in Figure 7. One can see that there is some disagreement for the shortest bunch 
length. That disagreement may be due to propagation of some portion of the HOM power into 
the beam pipes for frequencies above cutoff. There is also a big disagreement for the 25 mm 
bunch length. That data point was obtained with the low-energy lattice, using only the SRF 
voltage (with the NRF system switched off and the NRF cavities detuned). Unfortunately, the 
accelerating voltage was not high enough to allow us make measurements with high beam 
current: the total current was limited to 29 mA in 9 bunches due to the poor life time. The signal 
was therefore small, and this data point may have a big systematic error.

The maximum HOM power extracted by the two HOM loads was 2 kW, which is about 10 
times less than needed for CESR-III. In a separate high power test of an HOM load, however, 
we reached a dissipated power of 14 kW (per load) [6] which is higher than the Phase III goal.

Sampling the Wake Potential with Two Bunches
An elegant method of the wake potential sampling, proposed recently by A. Temnykh [13], 

was used in the beam test: with two bunches of equal current, placed close to each other, we can 
measure the power loss due to some impedance. By varying the distance between the bunches, 
we can obtain information about the time structure of the wake potential. Also, we can calculate 
the loss factor and wake potentials for the two-bunch case using computer codes like ABCI [14] 
and AMOS [15] and compare these calculations with the measured values.

Using the definition of loss factor given above, we see that the loss factor for two bunches 
will be equal to the loss factor of a single bunch if the wake potential decays completely before 
the arrival of the second bunch, or if the HOMs with high R/Qs are all detuned far enough from 
harmonics of one half the RF frequency (so that the wake fields are not close to being completely 
in phase or completely out of phase).
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spacing between bunches, m

Figure 8. The loss factor of the SRF cavity assembly sampled by two bunches 
(experimental data and prediction).

The minimum spacing between two bunches is equal to the wavelength of the RF system, 
i.e. 60 cm for CESR. We measured the power dissipation in the HOM loads of the cavity 
module calorimetrically and varied the bunch spacing from 1 to 5 buckets. The measurements 
were done with a beam energy of 5.3 GeV and three different total beam currents: 10, 20, and 30 
mA. Figure 8 shows the measured loss factor in comparison with ABCI and AMOS calculations. 
The agreement is very good.

Total Loss Factor of the Ring
Higher mode losses in CESR have been studied by M. Billing [16]. Scaling laws for the 

loss factor of different components in the vacuum chamber are in good agreement with 
experimental data; we used them to predict the total loss factor of the machine under the 
conditions of our test. Both the predictions and the separate calorimetric measurements of the 
loss factor of the superconducting cavity module show that the loss factor of the SRF cavity is 
much less than the total CESR loss factor. Nevertheless we measured the total loss factor of the 
machine before and after installation of the SRF cavity, to make sure that there were no gross 
errors in the calorimetric measurements. The predicted and measured total CESR loss factors are 
shown in the Fig. 9.

Dipole Loss Factor
We tried to measure the dipole component of the cavity loss factor by displacing a 120 mA 

(in 9 bunches) beam (with a bunch length of about 15 mm) horizontally and vertically by ±10 
mm in the SRF cavity. According to calculations, the monopole component of the loss factor is 
0.43 V/pC, and the dipole component is 0.006 V/pC for a 10 mm beam displacement. The 
cooling water AT was about 3.5 °C for each HOM load. That means that the contribution from 
the dipole component should be of order 0.05 °C. The resolution of our calorimetry is 0.03 °C, 
and the noise level is of the same order. No changes in the cooling water AT were seen in excess 
of the resolution and noise level of the measurement.
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Figure 9. The total CESR loss factor (experimental data and prediction).

Sweeping HOM Frequencies with the Tuner and HOM Spectra
Using the cavity’s fundamental mode frequency tuner, we changed the HOM frequencies to 

investigate the influence of the HOMs on the beam dynamics and to look for any unexpectedly 
dangerous (high R/Q *Q) HOMs. In these tests, the RF power for the SRF cavity was switched 
off and the fundamental mode frequency remained detuned. While scanning the tuner position, 
we were able to maintain a 100 mA beam, and there were no beam instabilities. We 
continuously monitored the HOM power deposited by the beam. The loss factor was calculated 
from the power dissipation in the HOM loads. The dependence of the loss factor on tuner 
position is shown in Figure 10. The small variation of the loss factor shows that there was no 
resonant excitation of HOMs as their frequencies changed. In addition, we measured the tunes 
and damping times of coupled bunch modes with a nine bunch beam, using a spectrum analyzer, 
for two positions of the tuner. The technique of these measurements is the same as described in 
[17]. No significant changes in damping times or tunes were observed between the two tuner 
positions: all changes were within the repeatability of the measurements.

We searched for dangerous HOMs by exciting the cavity via a single-bunch beam of 30 
mA and varying the transverse displacement of the beam. The HOM spectra were observed and 
recorded using a spectrum analyzer.

We used results from URMEL [18] and CLANS [19] (for monopole HOMs) calculations 
[20] and measurements on a copper model of the cavity [21] to compare with the beam test 
measurements. Unfortunately we were not very successful in our attempts to match up the 
HOMs, though we can say that, for monopole HOMs, 0-factors are of order of 100, and for 
dipole and quadrupole HOMs, Q-factors are typically less than 1000. This is consistent with 
previous measurements. No resonant excitation of HOMs or beam instabilities were observed.

Synchrotron Radiation Heating
The position of the SRF cavity in CESR was such that dipole magnets were located < 1 m 

away from one side; on the other side, the closest magnet was >15 m away. Most of the tests 
were carried out with a positron beam, so as not to irradiate the cavity region with an excessive
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Figure 10. Dependence of the cavity loss factor on the cavity tuner position.

dose of synchrotron radiation (SR) from the nearby bending magnet. Near the end of the test, 
however, a 57 mA electron beam (in 9 bunches) was also run through the cavity, to see how the 
cavity performed in the presence of a severe SR dose. With 100 W of synchrotron radiation 
power incident on the stainless steel taper, its temperature increased to 100°C and the vacuum 
degraded from 6 10 9 to 6 10 8 torn The cavity operated stably in the presence of this large SR 
dose and there was no increase in cryogenic losses. In order to reduce the temperature rise and 
vacuum degradation, we plan to add water cooling and SR masks to the tapers.

CONCLUSIONS

The calorimetry and RF power results agree with predictions up to their respective 
uncertainties. The results of wake potential sampling suggest that the wake fields of the SRF 
cavity will not limit the performance of CESR in bunch train operation. No beam instabilities or 
dangerous HOMs were encountered while sweeping the HOM frequencies using the cavity tuner 
or while exciting multipole HOMs by displacing the beam off axis.

The next step in the RF system upgrade for CESR-IH will be to replace one of the NRF 
cavities with an SRF cavity in a new cryostat for a long-term test, which is scheduled to begin in 
late summer of 1996.
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Measurement of the Interaction Between a Beam and a Beam Line 
Higher-Order Mode Absorber in a Storage Ring*

W. Hartung, P. Barnes, S. Belomestnykh, M. Billing, R. Chiang, E. Chojnacki, J. Kirchgessner, D. Moffat,
H. Padamsee, M. Pisharody, D. Rubin, & M. Tigner 

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

“Underneath this chilly gray October sky,
We can make believe the SSC is still alive;
We’ve shootin’ for the Higgs,
An’ smilin’ Hazel’s drivin’ by.” [1]

I. INTRODUCTION
A phased luminosity upgrade of the CESR e+e_ storage 

ring has been initiated [2]. The upgrade program calls for 
the eventual installation of superconducting cavities with 
strongly damped higher-order modes (HOMs). The cavity 
is designed to allow all HOMs to propagate into the beam 
pipe, so that they may be damped by a layer of microwave
absorbing ferrite. RF measurements with a full-size copper 
cavity and loads made of TT2-111R ferrite* 1 indicate that 
the design gives adequate HOM damping [3]. The cou
pling impedance of the ferrite loads and the consequences 
for beam stability in a high-current ring have been pre
dicted [7]. Prototypes for the cavity, cryostat, and HOM 
loads were subjected to a beam test in CESR [4, 5, 6]. To 
further test our understanding of the beam-ferrite interac
tion, beam measurements were done in CESR in December 
1994 on a ferrite load of magnified coupling impedance. 
This test is described herein.

II. LOAD FABRICATION
We designed a test structure with a beam tube diame

ter 2.5 times smaller and a ferrite-bearing length 6 times 
larger than an actual “porcupine” HOM load [6]. The pre
dicted coupling impedance of this test structure is ~ 2 
times the predicted monopole impedance and ~ 10 times 
the predicted dipole impedance of the 8 porcupine loads to 
be installed in CESR. The structure was split into three 
units, with sections of straight beam tube (with pump
ing ports) between them. Each unit consisted of a copper 
tube with 40 TT2-111R ferrite tiles soldered to the inside 
and water cooling on the outside (Fig. 1), incorporating 
features from both the original full-size HOM load [8] and 
the redesigned porcupine HOM load [6]. A total of four ion 
pumps, each rated at 140 L/s, were adjacent to the ferrite 
sections during the vacuum bake and the beam test.

A prototype unit with only 10 tiles was made first for 
evaluation in a high power density RF test with a 500 MHz 
klystron. For this test, the ferrite-lined tube became the 
outer conductor of a coaxial line, with a short placed to 
produce relatively uniform dissipation in the ferrite. An 
average surface power density of 15 W/cm2 was reached 
without visible damage to any of the tiles. The maximum 
(measured) tile surface temperature was 96°C.

'Work supported by the National Science Foundation, with supple
mentary support from U. S.-Japan collaboration.

1A product of Trans-Tech, Inc.

(a) Refrigeration Tubing

Figure 1. (a) Drawing and (b) photograph of one unit of 
the ferrite structure. The ID of the Cu tube is 92.1 mm; 
the ferrite tiles are 50.8 x 25.4 x 3.175 mm3 before radiusing.

III. BEAM TEST RESULTS
The beam measurements on the ferrite section were 

done over several days, interleaved with machine start
up activities following a down period. Some measure
ments were done with 9 bunches, in addition to the 1- and 
2-bunch measurements discussed herein. Positrons were 
used almost exclusively, because we did not have complete 
masking for direct synchrotron radiation from the electron 
beam. The predictions mentioned in this section are based 
on the same type of coupling impedance calculations as was 
done for the HOM loads, i.e. using the AMOS program [9] 
and an analytic approximation [7]. In the calculations, we 
assumed an axisymmetric geometry with a 3.175 mm layer 
of ferrite, and did not split the ferrite into three sections.
A. Calorimetric Measurements

The power dissipation in each unit was obtained calori- 
metrically via the flow rate, inlet temperature, and outlet 
temperature of the cooling water (the volume flow rate of 
water was ~ 50 mL/s per unit for most of the test). The 
monopole loss factor of the ferrite units can be obtained 
directly from the total power dissipation Pj and total beam
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$ measured
------AMOS
----- analytic

Beam current [mA] Bunch az [mm]

Figure 2. Calorimetrically measured single-bunch loss factor (summed over all 3 units) of the ferrite section as a function 
of (a) beam current, and (b) bunch length (with predictions). The RF voltage was adjusted to vary the bunch length. 
Noisy low-current points (I < 20 mA) are omitted in (b).

current I. The measured ijjasa function of I is shown in 
Fig. 2a for a single bunch. The noise in the data at low I 
is due to the poor resolution of the small AT values. At 
higher I, a slight decrease in the measured fcjj as function 
of I is visible. Possible explanations for this effect include
(i) systematic error in the calorimetry, (ii) non-linearity 
in the ferrite response to the RF field, or (iii) the ferrite 
properties’ temperature dependence.

Fig. 2b shows the single-bunch data plotted as a func
tion of the longitudinal bunch size <rx, calculated from the 
measured synchrotron frequency f, (we did not have any 
means to measure the bunch length directly), along with 
the predicted kg. It can be seen that, inasmuch as /, is 
a reliable indicator of the bunch length, the decrease in 

with 1 cannot be explained as being due to changes in 
ir, as a function of I. The measured is smaller than 
predicted by about a factor of 2, perhaps because of the 
afore mentioned idealisations in the model.

We used the Temnykh method [10] to sample the wake 
field: with two bunches of equal charge (f& = current per 
bunch = 20 mA for each), we measured the power dissipa
tion in the ferrite as a function of the spacing At between 
the bunches. In terms of a power loss factor

where N& = number of bunches and fo = revolution fre
quency, we should have2 Pq = *j} if the wake fields 
have vanished by the time the second bunch arrives and 
Pol —» 2kg as Az —* 0. The results are shown in Fig. 3, 
along with a prediction obtained by integrating the calcu
lated coupling impedance with the appropriate form fac
tor. The measurement suggests that the ferrite section’s 
wake fields endure longer than predicted; for Az > one RF

2 we are (justifiably, we think) treating the single-bunch kg and the 
single-pass kg as synonymous.

$ measured
---- AMOS
— analytic

L

Bunch spacing [metres]
Figure 3. Calorimetrically measured and predicted 2- 
bunch power loss factor of the ferrite as a function of spac
ing, with <rz = 14 mm (from /,). Because the RF frequency 
is 500 MHz, the smallest measurable At is 0.6 m.

bucket, however, the measurements and predictions seem 
to agree that the wake field has decayed to zero.

We used magnetic and electrostatic elements to produce 
a transverse displacement of the beam in the ferrite cham
ber and its vicinity. The measured calorimetric single- 
bunch loss factor as a function of displacement is shown 
in Fig. 4, along with a prediction based on the calculated 
monopole and dipole loss factors. Though the measure
ment suggests that there is some dependence on displace
ment, the signal-to-noise ratio is not very favourable.

B. RF Power Measurements
It is possible to infer the total loss factor of a storage ring 

by applying the appropriate book-keeping methods to the 
cavity RF power and synchrotron radiation power [11]. We 
applied this technique with and without the ferrite in order 
to get an independent measure of the power loss due to the
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Cf) measured, /= 25-31 mA
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Figure 4. Calorimetrically measured and predicted loss 
factor of the ferrite section as a function of the vertical 
displacement of the beam, with <rz - 14 mm (from /,).

I

Measured:
— without ferrite 

4— with ferrite 
Predicted:

-----without ferrite
-----with ferrite

Bunch az [mm]

Figure 5. Measured and predicted single-bunch loss factor 
of CESR, with and without ferrite present.

ferrite. The results are compared in Fig. 5. The predicted 
*o of CESR shown in Fig. 5 was obtained from scaling 
laws for various machine elements [12] (updated to account 
for recent modifications). The total fcj] measurement gave 
less accuracy than the calorimetric measurement, but the 
results do not overtly contradict each other.

C. Tune Shift And Damping Rate Measurements 
According to theory, the total ring impedance should 

produce shifts in the frequencies and damping rates of 
coupled-bunch modes. In the “effective impedance” ap
proximation, the shift in the frequency / and damping 
rate a should be proportional to I. We used established 
techniques [13] to measure the lowest-order single-bunch 
transverse mode frequencies (t.e. the horizontal and verti
cal betatron frequencies) and corresponding a’s as a func
tion of I, with and without ferrite. We did the measure
ments with the CESR distributed ion pumps turned off, 
in order to eliminate anomalous growth effects [13]. We

believe that measured differences in slope (A/' = 0 to 13 
kHz/A and Aa' — —4 to —6 ms-1A-1) are below the re
producibility threshold of the measurement.

IV. LOAD PERFORMANCE
The maximum (total) power dissipation in the ferrite 

was was 5.8 kW according to calorimetry (average power 
density = 3.8 W/cm2); this was obtained with I = 142 
mA in 9 bunches. At this current, the pressure gauges 
read < 30 pbar, although pressures as high as 50 pbar were 
recorded (at lower I) during an earlier “beam processing” 
shift. Several vacuum “spikes" occurred in the course of 
the test, with the pressure rising to 100-200 pbar or higher. 
Prior to installation, the pressure in the ferrite assembly 
reached 1 pbar at 17°C after a vacuum bake-out to 150°C.

A brief inspection of the ferrite chamber after removal 
from CESR revealed that one corner of one tile had broken 
off; it was found lying on the bottom of one of the ferrite 
sections. The piece appeared to have been unsoldered ex
cept along one edge. The remaining tiles have not yet been 
closely inspected for cracks.

V. CONCLUSION
CESR beam measurements with a ferrite-lined section 

of magnified impedance indicate that the loss factor is a 
factor of ~ 2 smaller than predicted; the measured wake 
field endures longer than predicted, but is not visible for 
Az > 4.2 m, which is planned for CESR. The signal- 
to-background ratio made it difficult to pick out effects 
from the ferrite via measurements on the beam only. We 
are working on predictions which model the actual load 
geometry more closely.

We wish to thank all of the Laboratory staff who helped 
to make this beam test possible.
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KEKB Bunch Feedback Systems
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Abstract

Design and the present status of the bunch by bunch 
feedback systems for KEKB rings are shown. The 
detection of the bunch oscillation are made with the 
phase detection for longitudinal plane, the AM/PM 
method for transverse plane. Two GHz component 
of the bunch signal which is extracted with an analog 
FIR filter is used for the detection. Hardware two- 
tap FIR filter systems to shift the phase of the oscil
lation by 90° will be used for the longitudinal signal 
processing. The same system will be used with no 
filtering but with only digital delay for transverse 
system. The cantidate for the kicker and the re
quired maximum power are also estimated.

I. Introduction
The rings of KEKB are designed to accumulate 

many bunches with huge beam current, which will 
cause many strong coupled bunch instabilities both 
in transverse and longitudinal planes. Even with the 
special care for the reduction of the sources of the 
instabilities, impedance of some dangerous modes 
may remain high. Studies on the acceleration cav
ities indicate that growth times of the multi-bunch 
instabilities at KEKB will be of the order of a few ms 
to 10 ms. The transverse instabilities will be gener
ally stronger than the longitudinal ones. Therefore 
the method to analyze and suppress the instabilities 
have the key to achieve the designed quality of the 
rings. The goal of the feedback systems have been 
set to achieve the damping time of one ms for the 
transverse and 10 ms for the longitudinal planes.

We are now developing beam feedback sys
tems with the bunch-by-bunch scheme and mak
ing experiments using TRISTAN accumulation ring 
(TRISTAN-AR). In our feedback systems, we detect 
the individual bunch oscillations separately, shift the 
phase of the signal by 90°, then kick the bunch 
to damp the oscillation. In this paper, we show 
the present status of R & D of feedback systems 
very briefly. Detailed discussions for each part of 
the systems and the results of R & Ds are written 
elsewhere^’I3!'I2!*I4I'l5l. Related parameters of the 
KEKB accelerators are listed in Table 1.

The key technique in the signal processing for the 
feedback system is to store the information of bunch 
orbit deviations for at least one full revolution pe
riod of the ring. At KEKB this is achieved by a pure

hardware digital filter system, which can work in a 
very high-frequency environment. The reasons for 
adapting the digital delay technique are as follows:

• A digital system is more flexible than an ana
log delay with optical fiber cables and other de
vices.

• Static components can be easily eliminated with 
a simple digital filter. In the longitudinal plane, 
the synchronous phases of bunches can vary be
cause of the huge beam loading on the cavities 
introduced by the bunch gap. The elimination 
of the DC offset for an individual bunch is es
sential for saving the (very expensive) power to 
send to the kickers.

• It is easier to adjust phase and delay with digital 
systems. This helps the rapid start-up of the 
system as well as the efficient maintenance.

II. Bunch detection systems
The feedback systems of KEKB consist of three 

parts: the bunch detection part, the signal process
ing part and the kicker part. Figure 1 and 2 show 
the block diagram of the longitudinal system and 
transverse system, respectively. The design of each 
of the three parts are described in the followings.

Longitudinal Bunch Feedback System

Longitudinal
Frontend

2.03GHz

Figure. 1. Block diagram of the longitudinal feed
back system.

A. Longitudinal detection

The longitudinal position (timing) of a bunch 
is converted into the phase difference between the 
pickup signal and a timing-reference signal, which 
is generated by multiplying the accelerating RF sig
nal, as shown in Fig. 3. Hereafter, we call the 
frequency of the reference signal as the ‘detection

470



Ring LER HER
Energy E 3.5 8 GeV
Circumference C 3016.26 m
Beam current I 2.6 1.1 A
RF frequency Irf 508.887 MHz
Harmonic number h 5120
Particles/bunch N 3.3 x lO10 1.4 x 1010
Synchrotron tune I's 0.01 ~ 0.02
Betatron tune Vx/Vy 45.52/45.08 47.52/43.08

Table I
Main parameters of KEKB.

Transverse Bunch Feedback System

Pickup 2Pickup 1

Kicker 1 Kicker 2

AM/PM 11 AM/PM I

Figure. 2. Block diagram of the transverse feedback 
systems.

frequency’. It is chosen to be 4 times of the RF fre
quency, about 4 x frf = 2 GHz. The pickup signal 
is created by combining 3 pulses from 3 longitudi
nally aligned pickup electrodes with a power com
biner. The timing differences of these pulses should 
be adjusted so that the combined signal contains the 
detection frequency component.

Since the output of this circuit is proportional to 
the bunch current, the feedback gain will be pro
portional to the bunch current. However, this gain 
variation is not considered a major problem, since 
the growth rates of the instabilities are also propor
tional to the bunch current.

B. Transverse detection

The transverse position of a bunch is detected by 
the AM/PM method. Figure 4 shows the block di
agram of the circuit. Similar to the longitudinal 
one, the transverse signal is created by combining 
3 pulses from three pairs of pickup electrodes. We

electrodes

low pass filter cue e im

2034.4MHz

combiner

shift

Block Diagram of the Front-End Circuit (long.)

------------------------------------------------------------------------------------------------------------- KEKB -

Figure. 3. Front-end circuit for longitudinal detec
tion system.

will use two sets of detection system placed with the 
distance of about 90° of the betatron phase.

The detection frequency used in the AM/PM cir
cuit is chosen to be 2 GHz. This frequency is not 
sufficient for the 2 ns bunch separation. We will try 
to increase the frequency up to 2.5 GHz.

The DC offset of the detection signal, that is the 
residual closed orbit distortions, may be much larger 
than that of the dynamic range of the ADC. We plan 
to apply an analog DC suppression feedback circuit 
in the front-end circuit.

III. Signal Processing

A. 2-Tap FIR filter for longitudinal system

The functions of the longitudinal signal process
ing part are: (1) create the signal delay, and (2) 
eliminate the static (DC) component.

These functions are realized by a simple 2-tap fi
nite impulse response (FIR) filter. In general, the
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signal from pickup 1 limiting Amp

quas^alnuacWal 
signal from pickup 2 limiting Amp

Front-end Circuit (Transverse)

Figure. 4. Front-end circuit for transverse detection 
system.

relation between the inputs (%,) and the output (y) 

of an FIR filter is expressed by

y= 53 ai xi'
j= i

where aj's are called the filter coefficients. The 2-tap 
filter are the simplest ones among these FIR filters, 
and they will be employed in the KEKB feedback 
systems. The output of the filter is a very simple 
function of the inputs, which can be written as:

V = a{xk - Xj),

so the two coefficients have the same magnitude with 
opposite signs. This ensures that the gain of the fil
ter is zero in the limit of the frequency near zero. 
This also means that the calculations required in 
the operation of the digital filter involves only sub
traction operations and not multiplication’s. Con
sequently, the required hardware of the filter calcu
lation is much simplified.

As the synchrotron tune is much smaller than 
unity, in our case about 0.01, we will use the peak 
gain mode of the filter, in which the positions of two 
taps should be separated by a half of the full period 
of the oscillation. By choosing the taps at the 1/4 
(-90°) and 3/4 period (-270°) relative to the timing 
of applying correction kicks to the beam, the phase 
shift of 90° is performed.

In the transverse plane, we will not use the two- 
tap filter. Only the function of the digital delay will 
be used.

B. Processor board

The heart of the signal processing part, which ex
ecutes the filter calculation, is the digital filter com
plex. It consists of the memory and simple arith
metic units. Since the digital filter complex is a rel
atively low-speed device, two auxiliary devices, that

is fast data demultiplexers (FDMUX) and fast data 
multiplexers (FMUX) will be implemented to con
nect them with very fast devices such as FADC and 
DAC. Figure 5 shows a block diagram of the sys
tem.

The digital filter complex consists of 32 identical 
units, each of which treats the data of 160 bunches 
(5210/32=160). The memory in one unit are aligned 
in two series. Each series is used for one of the two 
taps. Capacity of one memory series is 16 k bytes, 
and it can store the data for 100 turns for each 
bunch. There is one arithmetic logic unit (ALU) 
in one unit and it executes the subtraction of data 
from two series of memories. Additionally, there are 
a bit-shifter to change the gain of the filter up to 
20 dB. The digital filter complex will be assembled 
with wired logic’s or custom LSIs. It will be able to 
process all the data within the one period of revolu
tion of the KEKB rings.

For the practical use it must be made possible 
to rearrange the tap positioning easily and quickly, 
when the working point of an accelerator is changed. 
For this purpose this circuit is equipped with a tap 
pointers which can be modified with a relatively slow 
logic circuit. Detailed design of the board is written 
in Ref. [5],

IV. Power amplifiers and kickers
A. Longitudinal system

The kicker for the bunch feedback system must 
support a wide-band operation while keeping the 
reasonable shunt impedance. At KEKB the band
width of the kicker required for the bunch by bunch 
feedback is 255 MHz.

The required voltage of the longitudinal system is 
given as

Vturn = 2-T0(A£/e)
Te

where re is the damping time of the feedback sys
tem. If we require the damping time of 10 ms with 
AA/e=0.1%, the required voltage for HER is 16 kV 
and 7 kV for LER.

The R Sc D for the KEKB longitudinal kicker 
has been centered on the wideband device, which 
is based on series stripline structure(the series drift 
tube type), originally proposed by G. Lambertson^. 
A combination of the beam pipe and the inner elec
trodes creates a coaxial structure of the character
istic impedance of 25fl. RF power fed by power 
amplifiers propagates as the TEM wave along the 
structure. The frequency of the carrier is 1 GHz 
(=2 x /flp). We plan to use quadrature phase shift 
keying technique with the frequency of 1.27 GHz to 
escape from the beam loading. If we expect the ef
fective shunt impedance of the kicker as about 80 %
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Figure. 5. Block diagram of the filter board.

of the ideal case, that is somehow optimistic assump
tion though, we can calculate the required number 
of the cell-structures of the kicker. In HER, we will 
need 12 x 2 cells kicker (~ 3 m in length) with the 
Rsh ~ 46kfl The required maximum total power 
will be about 6 kW. In LER, we will need 8x2 cells 
kicker (~ 2 m in length) with the Rah ~ 20kf2. The 
required power will be about 3 kW.

Another candidate for our longitudinal kicker is a 
very low-Q resonator with radial-line inputs. This 
kicker has the structure of higher-order-mode free 
and has relatively higher shunt impedance. In this 
case the bandwidth is limited about 180 MHz so it 
may be fairly difficult to use it for 2 ns bunch spacing 
of operation.

B. Transverse system

The damping time of the transverse feedback sys
tem is expressed as

kicker is proportional to the square of the length, 
the shunt impedance at higher frequency reduces 
very rapidly with the length. The length of the 
wideband kicker we have chosen is 30 cm, the shunt 
impedance of which is about 8 kfl at the lowest fre
quency, 3.5 kfl at 250 MHz. To gain the damping 
time of 1 ms at the saturation amplitude of 0.1 mm 
at 250 MHz, we need 730 W at HER, 140 W at LER.

Estimated modes for the instabilities that have 
rapid growth time are localized around the lower 
frequencies, that is from 1 kHz to 20 MHz. It is 
therefore effective to prepare a very long stripline 
kicker to suppress such instabilities other than the 
wideband one. We will use a 3 m-long kicker for 
HER, a 1.2 m kicker for LER. The expected shunt 
impedance at the lowest frequency are 200 kfl and 
100 kfl, respectively. To gain the damping time of 
1 ms at the saturation amplitude of 1 mm, we need 
1.2 kW for HER, 500 W for LER.

2^T0(E/e) 1

where 0m and 0 k is the betatron function at the 
monitor and the kicker, respectively. If we need the 
damping time of 1 ms at maximum amplitude of 
1 mm, the required voltage is 16 kV for HER, 7 kV 
for LER if we assume 0k = 0m — 10 m.

We will use standard strip-line kickers. Though 
the shunt impedance of at very low frequency of a

V. Schedule
We are now fabricating the first set of a prototype 

of full speed (509 MHz) two-tap FIR board with 
1 Mb memory!5!, it is scheduled in completion in the 
end of this October. We will close the feedback loop 
for longitudinal plane with the board and measure 
the characteristics of the feedback system, such as 
the damping time or stability criterion. Other two 
sets of the prototype board will be completed by the
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end of this fiscal year. By using the three boards, 
we will try to close the feedback loops for both lon
gitudinal and transverse planes. Based on the same 
high speed technique, we will also make a transient 
memory board with 40 Mb memory, that can store 
bunch oscillation data of full bunch of TRISTAN- 
AR about 65 k turns. It will be used to study the 
fast ion-trapping effect in the next year.

The first set of the transverse wideband kicker, 
the length of which 30 cm, has successfully been in
stalled in TRISTAN-AR in this September. With 
coming four sets of power amplifiers of 200 W each, 
we expect the transverse damping time of about 
0.5 ms at the saturation amplitude of 1 mm. In the 
high beam current study of TRISTAN-AR sched
uled on the next year, we hope to study the beam 
behavior of time domain with the feedback systems.
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Fast Digital Transverse Feedback System 
for Bunch Train Operation in CESR

J.T. Rogers, M.G. Billing, J.A. Dobbins, C.R. Dunnam, D.L. Hartill, T. Holmquist,
B.D. McDaniel, T.A. Pelaia, M. Pisharody, J.P. Sikora, and C.R. Strohman 
Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853 USA

We have developed a time domain transverse feedback system with the high bandwidth needed 
to control transverse instabilities when the CESR e+e~ collider is filled with trains of closely 
spaced bunches. This system is based on parallel digital processors and a stripline driver. It is 
capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several 
simplifying features have been introduced. A single shorted stripline kicker driven by one power 
amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved 
by sampling the bunch position at a single location on two independently selectable beam revo
lutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping 
rate through the loading of new parameters into the digital processors via the CESR control 
system. The feedback system also functions as a fast gated bunch current monitor. Both vertical 
and horizontal loops are now used in CESR operation. The measured betatron damping rates 
with the transverse feedback system in operation are in agreement with the analytical prediction 
and a computer simulation developed in connection with this work.

1 Introduction
The Cornell Electron Storage Ring (CESR) is being upgraded to allow collisions of short trains of electron 
and positron bunches [1], CESR is now operating with nine trains of two bunches each. We plan to operate 
with nine trains of as many as five bunches in the near future. A transverse coupled bunch instability [2] 
in CESR requires the use of active feedback. Before the present work, a time-domain horizontal feedback 
system based on a coaxial cable delay line and ferrite kicker magnet was used to stabilize the beam [3]. The 
use of bunch trains requires a redesigned transverse feedback system with higher bandwidth.

We chose to build a time domain feedback system because of the large number of coupled bunch modes 
that need to be damped. The minimum bunch spacing compatible with efficient injection fixes its sampling 
rate at 71.4 MHz. We further required that the feedback system accomodate a dynamic beam motion of 
±3 mm and arbitrary changes in tune, produce an error signal normalized to beam current, and provide a 
damping rate of 1000 s-1.

Transverse feedback damping operates by sensing the beam position and applying a deflection to the 
beam proportional to its sensed position after its betatron phase has advanced by n/2 + tin. Because of 
signal processing delays the deflection cannot be applied to the beam on the same turn as the position is 
sensed. The error signal must be delayed by at least one turn. The 2.56 //s revolution period of CESR 
implies a delay-bandwidth product of approximately 500 for the error signal. It is difficult to achieve this 
product by purely analog means, so we chose to delay the error signal digitally, and to implement the current 
normalization and other signal processing functions digitally as well.

2 Signal Processing
We require four independent feedback loops, for electrons and positrons in the vertical and horizontal di
rections. Figure 1 is a block diagram of one digital feedback loop. The beam position signal is derived 
from the button electrodes used by the CESR orbit measurement system. The signals from opposite pairs 
of electrodes are summed in hybrid combiners. The remainder of the signal processing is done outside the 
CESR tunnel for access to the electronics during storage ring operation.

Each receiver channel for the beam signal contains a GaAs SPDT switch that serves as a fast gate, a 
diode rectifier which traps the signal as a charge on a capacitor, and an FET switch which discharges the 
capacitor before the next time the GaAs switch closes. Five parallel channels are are needed (a sixth is left 
unused) because of the limited sampling rate of a commercially available 10 bit ADC.
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Figure 1: Block diagram of one digital feedback loop.

The remainder of the signal processing occurs in five parallel channels. The sum and difference of the 
receiver signals from opposite pairs of electrodes are formed by a pair of operational amplifiers. These 
contain information about the bunch current and the product of the bunch current and beam displacement, 
respectively. These sum and difference signals are then digitized by a pair of 10 bit ADCs. Figure 2 is a 
block diagram of one digital signal processor channel.

The position of the beam is reconstructed from the digitized sum and difference signals. The eight most 
significant bits of the sum word and the 10 bits of the difference word form an 18 bit address for a lookup 
table that stores a 12 bit beam position word. The contents of the lookup table can be tailored to produce a 
damping rate that is any desired function of bunch current. It can also be used to compensate the position 
nonlinearity of the button electrodes, although we have not made use of this feature.

We delay the position word by an integer number of turns in FIFO memory and subtract it from the 
current position. The resulting number is the 10 bit error word, which is insensitive to static displacements 
and has a partially suppressed response to low frequency motions such as synchrotron oscillations. Another 
FIFO memory is used to delay the error word by an integer number of turns before it is used to deflect the 
beam, with the number of turns chosen to provide the correct tt/2 + wk betatron phase advance. Both of 
these delays are established in software and can be easily modified to accomodate changes in the storage ring 
optics, tunes, or feedback hardware location. A 10 bit DAC common to all five channels converts the error 
word to a voltage. The digital signal processor also contains FIFO memory, 512 words deep, that stores the 
bunch current and charge information for diagnostic purposes.

The digital signal processor is constructed of cards which plug into a VME backplane. Four feedback 
loops are needed for the horizontal and vertical stabilization of the electron and positron beams. For 
each of these loops a motherboard is used to provide the internal timing signals and data paths. Each 
motherboard holds five daughterboards, each of which performs the signal processing functions described 
above. Each daughterboard in turn holds a board which contains the analog sum and difference circuits and 
the associated pair of ADCs. Figure 3 is a photograph of the feedback motherboard assembly containing 
the five daughterboards and ADC boards. A microprocessor in the VME crate runs the program which is 
used to enable or disable channels, load the lookup tables, and initialize the system so that it starts in a 
well-defined state. This program also calculates the current in each bunch by scaling and averaging the data 
from the 10 bit sum word. This current measurement is used in the CESR control room display and the
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automated injection procedure. An Xbus to VME interface is used for communication between the control 
system and the feedback microprocessor. External signals from the CESR ultrafast timing system are used 
by the feedback processor to generate its own internal timing.
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Figure 2: Block diagram of a digital signal processor channel.

Figure 3: Feedback motherboard with five digital processor daughterboards. Each daughterboard holds an 
ADC board at its left.

3 RF Electronics
To drive the stripline kicker, we require a wideband RF amplifier with a flat phase response, the ability 
to drive a shorted line stably, and tolerance for some beam induced power returning to its output. After 
a survey of commercially available amplifiers, we chose a 200 W amplifier with a 0.25 to 150 MHz band1.

1 Model 3200L, ENI, Rochester, NY, USA.
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Because the lowest transverse mode frequencies fall below this amplifier’s range, we upconvert the DAC 
output in a modulator. A trigger supplied by the digital feedback motherboard generates a 14 ns long 
bipolar pulse within the modulator. This bipolar pulse is then multiplied by the DAC output in a double 
balanced mixer. The modulator output is used to drive the power amplifier. There is some ringing in the 
mixer, so an improved modulator based on a fast four quadrant multiplier has been designed. A prototype 
of this modulator does not display this ringing and has improved frequency response.

A 180° 3 dB hybrid2 located at the stripline kicker splits the amplifier output into a differential drive for 
the kicker. The hybrid is protected from the beam induced power from the stripline by matched low-pass 
filters. To avoid high frequency resonances in the striplines, the filters need to be purely resistive. They are 
implemented as water-cooled ferrite-loaded coaxial lines.

4 Stripline Kickers
We use stripline kickers because of their high bandwidth. Each kicker contains two electrodes which act as 
50 f2 transmission lines. Each electrode is shorted at one end, which spoils the directionality of the kicker, 
and allows the use of a single kicker driven by a single RF amplifier for both e+ and e~ beams. The transverse 
deflection, voltage induced by the beam at the kicker terminals, and the beam impedance of the shorted 
kicker are the same as those of a kicker with striplines terminated in their own characteristic impedance [4].

The stripline electrodes are formed from OFHC copper sheet, and have a lip on each side to improve field 
uniformity and mechanical rigidity. Two flat copper ground electrodes are placed in the midplane between 
the stripline electrodes. These have the effect of conducting a substantial fraction of the beam image current, 
which reduces the longitudinal coupling of the kickers to the beam, and hence their beam impedance, while 
leaving the intended transverse coupling unaffected. The stripline and ground plane electrodes are cooled 
by water flowing in 5/16 in. O.D. copper tubing welded along their length.

The stripline electrodes and ground plane electrodes are assembled on one of the endplates of the kicker 
vacuum chamber [5]. This endplate also contains the cooling water tubes and one type HN RF vacuum 
feedthrough for each stripline electrode. Ceramic spacers maintain a vacuum gap between the end of the 
stripline electrode and an extension of the beam pipe into the kicker chamber. This gap is designed to 
produce a 10 pF shunt capacitance to prevent arcing in the RF feedthroughs and external RF components 
when CESR is operated with high bunch currents. This shunt capacitance is the limitation on the bandwidth 
of the kicker. The edges of the gap have been rounded to prevent high surface fields.

At the other end of the kicker the stripline and ground plane electrodes are welded into a square frame 
which is surrounded by beryllium copper spring finger contacts. During assembly this frame slides into a 
square ground contact on the other chamber end flange. The assembly process and a detail of the gap and 
feedthroughs are shown in Fig. 4.

The aperture between the electrodes is larger than the the wide axis of CESR beampipe so that syn
chrotron radiation does not intercept the electrodes. Stainless steel transitions from the square opening of the 
kicker chamber to the approximately elliptical beampipe are provided with water-cooled copper absorbers 
to intercept the synchrotron radiation at a grazing angle. The stainless steel vacuum chamber has its own 
ion pump.

The higher order mode loss factor was measured on the bench by launching a pulse on a thin center 
conductor running down the axis of an RF prototype of the kicker. The loss factor for a gaussian bunch 
with al = 2.7 cm is k = 0.018 V/pC. The higher order mode power leaving the kicker RF terminals in the 
presence of beam is half the total power corresponding to the above value of k, suggesting that the other 
half of the power is dissipated in the kicker chamber or radiated down the beam pipe.

5 Operation
All four loops of the digital transverse feedback system have been in operation since November, 1994. It is 
routinely used to stabilize bunch trains in high energy physics operation. Table 1 summarizes the digital 
feedback parameters.

2Model H3099, Werlatone, Inc., Brewster, NY, USA.
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Figure 4: Stripline kicker during assembly. The photograph on the right shows the RF feedthroughs in the 
endplate, the alumina spacers that maintain the gap between the stripline electrode and ground, and the 
ground plane electrodes (visible to the far left and right).

Table 1: Feedback parameters in current operation
L Stripline electrode length 116 cm
w Stripline electrode width 17.5 cm
b Stripline electrode gap 12.0 cm
Zc Stripline impedance 50 SI

k Stripline HOM loss factor 0.018 V/pC
Vpeak Maximum amplifier voltage 143 V
P Beam momentum 5.3 GeV/c
fixiPy Beta function at kicker 25.6, 18.2 m
%max iVinax Dynamic range referenced to pickup 5, 5 mm
Ocx ,OCy Measured damping rate 2.4, 0.58 ms-1

The dominant horizontal instability in CESR, which is related to the operation of the distributed ion 
pumps[2], has a maximum growth rate at 2.5 mA/bunch when CESR is filled with nine trains of two 
bunches each. This is approximately one fourth of the typical operating current. For this reason the current 
normalization is essential to the succesful use of this feedback system. The lookup tables are programmed 
to make the damping rate proportional to current up to 2 mA/bunch and constant above that current. By 
damping the vertical motion of the beam we have been able to lower the vertical chromaticity, thus eliminating 
an m = —1 vertical head-tail instability. The digital phase adjustment has also proven successful. When it is 
properly selected, the tune shift produced by the feedback system is small to be measured (less than 50 Hz). 
In open loop tests the shorted stripline kickers produced the calculated deflection for both e+ and e~ beams, 
and the measured damping rate agrees with the calculated rate. Figure 5 shows a control room display of 
the amplitude of the /o — fh (182 kHz) horizontal coupled bunch mode as a function of time. The horizontal 
feedback has been momentarily gated off, then on again, restoring rapid damping of the instability.
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Figure 5: Amplitude of horizontal betatron motion vs. time. The feedback has been gated off during the 
first 8 divisions, then on again. The vertical scale is 5 dB/div. and the horizontal scale is 2.56 ms/div.
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A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER 
FOR THE DA0NE BUNCH BY BUNCH FEEDBACK SYSTEM

A. Gallo, R. Boni, A. Ghigo, F. Marcellini, M. Serio, M. Zobov

INFN-Laboratori Nazionali di Frascati
P.O. Box 13. 1-00044 Frascati (Roma), Italy

1. Introduction

The multibunch operation of DAONE, and in general of any "factory" machine, 
calls for a very efficient feedback system to damp the coupled-bunch longitudinal 
instabilities. A collaboration program among SLAG. LBL and LNF labs on this sub
ject! 1] led to the development of a time domain, digital system based on digital 
signal processors (DSP) that has been already successfully tested at ALS.

The feedback chain ends with the longitudinal kicker, an electromagnetic 
structure capable of transfering the proper energy correction to each bunch.

The kicker design has to be optimised mainly with respect to the following 
parameters: the shunt impedance (i.e. the ratio between the square of the kick 
voltage and the peak forward power at input), the bandwidth [Irf/2 required at 
least to damp any coupled-bunch mode) and the content of High Order Modes 
that can further excite coupled-bunch instabilities.

A stripline based design has been already proposed and adopted for ALS[2]: it 
consists of a pair of coaxial (with respect to the vacuum vessel) quarter-wave
length electrodes series connected through a half-wavelength delay line. Even 
though this solution can meet our impedance and bandwidth specifications, we 
have learned from experience on a prototype that proper tuning and matching is 
not simple and requires several iterations: moreover such kind of structures 
shows a worrisome content of undamped HOMs.

Therefore, we have explored the possibility of using an "overdamped" RF cavi
ty as longitudinal kicker, in the same fashion as the DA ONE main ring cavity[3] 
except that in this case the waveguide coupling has been enhanced and extended 
to the fundamental mode to enlarge its bandwidth. The strong waveguide cou
pling leads also to a remarkable damping of all the cavity HOMs.
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Since the modeling of this structure is simpler than that of a stripline based 
kicker, the field solutions are easier to calculate, so that in this case we can rely 
on a design based on 3D simulations performed with the Hewlett-Packard code 
HFSSI4],

The result of the design simulation together with some encouraging prelimi
nary measurement performed on a prototype built at LNF are presented and dis
cussed in this paper.

2. Design of the overdamped cavity

A cut view of the final geometry of the overdamped cavity proposed as longi
tudinal kicker is shown in Fig. 1. The very large bandwidth required has been ob
tained by strongly loading a pill box cavity with special ridged waveguides fol
lowed by broadband transitions to 7/8" standard coaxial. Ceramic feedthroughs 
allow in-air connections to the driving amplifiers (input ports) and dummy loads 
(output ports). The waveguides are placed on both cavity sides symmetrically 
with respect to the field distribution of the operating mode. Due to this symme
try it turns out that, if the ports on one side are driven in phase with balanced 
levels and the ports on the opposite side are connected to dummy loads, the sys
tem in principle is perfectly matched at its central frequency, i.e. no power is 
reflected at that frequency by the input ports.

Fig. 1: Kicker cavity cutview.

Moreover the cavity, being broadband, does not need to be tuned nor cooled, 
since almost all the power is dissipated in the external loads.
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The idea of using an RF cavity as longitudinal kicker is based on some simple 
considerations. When all the RF buckets are filled, all possible coupled bunch 
modes are present in a frequency span between nfpp and (n+l/2)fRp. with n any 
integer. Therefore, without an a-priori knowledge of the position of the most 
dangerous HOMs, the minimum bandwidth requirement for the longitudinal 
kicker is fsw=fRF/2. as long as the response is centered onto fc =(n+l/4)fRp [3],
A center frequency fc = 3.25 fRF = 1197 MHz has been chosen so that the result
ing loaded quality factor of the cavity has to be set to about Ql = fc /few= 6.5. 
Therefore, if the damping waveguides are symmetrically placed with respect to 
the fundamental mode field distribution and half of them are used as input ports 
while the remaining as matched terminations, the external Q values are given by:

Qextinp ~ Qextout “ 2Ql= 13 (1)

The R/Q factor of a pill-box cavity resonating at around 1.2 GHz with stay- 
clear apertures of 88 mm is limited to about 60 fi. The kicker shunt impedance 
Rs has a peak value given by:

Rs = Vk2/2Pln = (R/Q) Qextout “ 780 D (2)

This means that the attainable shunt impedance is about twice the value of a 
two-electrodes stripline module[2], while no HOMs are likely to remain un
damped in this structure.

The cavity design has been based on the pill-box cavity profile sketched in 
Fig. 2. The pill-box modes up to the beam pipe cutoff computed by the 2D code 
URMEL [5] are shown in Tab. 1. The Q values reported refer to copper cavity 
walls. Due to the large size of the stay-clear apertures, there was very little mar
gin for the optimisation of the R/Q factor, so that we accepted to base the design 
on a simple pill box shape instead of a more complex nosecone geometry.

Tab. 1: Summary of the pill-box modes as given by the code URMEL.

Mode O-EM-1 O-MM-1 O-EM-2 1-EM-l 1-MM-l

f [MHz] 1227.06 2421.81 2663.60 1729.00 1750.29

Q 22318 20533 41260 23645 25101

R/Q [£2] 54.696 5.129 0.132 17.979 2.888

As a second step, the shape of the loading waveguides has been defined. The 
waveguide cross-section and the pill box side view are shown in Fig. 3. It is a 
single ridged like waveguide with 6 mm gap to lower the TE10 cutoff frequency 
down to 690 MHz. As described in the following, a low cutoff frequency makes 
the conversion of the TE10 waveguide mode to the coaxial TEM mode in a wide 
frequency range easier.

The cross-section area of each waveguide covers about 11% of the available 
surface of the pill-box side and up to 4 waveguides can be applied on each cavity 
side. Actually, only 3 waveguides per side are enough to get a Ql value lower than
6.5 and a bandwidth larger than fRp/2. as shown in the following.
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Fig, 2: Pill-box profile. Fig. 3: Waveguides cross-section on cavity wall

Once the shape of the damping waveguides had been defined, we designed 
the waveguide-to-coaxial transition with the same criteria adopted for the main 
ring cavity [6].

A sketch of the transition cut-view is shown in Fig. 4. The waveguide ridge is 
truncated with a round section where the coaxial inner conductor is connected; 
a short-circuited waveguide section behind the coaxial insertion (the so called 
"back cavity") helps in centering the transition frequency response.

Fig. 4: Broadband transition sketch (section view).

The coaxial size is the standard 50 ft 7/8" which can withstand more than 
1 kW power flow. Moreover, we can use for this coaxial standard the broadband 
ceramic feedthrough already developed for the transitions of the main ring cavi
ty [71.
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The reflection frequency response of the transition computed with HFSS Is 
shown In Fig. 5. The Sn value is lower than 0.25 along the entire frequency band 
up to the beam pipe cut-off; the low cut-off frequency of the TE10 mode of the 
waveguide (= 690 MHz) is crucial to get a good wave transmission in the low fre
quency band.

Frequency (MHz)

Fig. 5: Transition frequency response (HFSS simulation).

Fig. 6: Kicker cavity prototype.

The kicker geometry shown in Fig. 1 is tha assembly of the pill-box cavity 
with three equally spaced broadband transitions of the kind sketched in Fig. 4. 
per side.
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3. The overdamped cavity prototype

A full scale aluminium prototype of the kicker cavity has been manufactured at 
LNF In order to get an experimental proof of the computer simulation results. A 
picture of the inside view half of the prototype structure is shown in Fig. 6. The 
prototype is only suitable for low-power, in-air measurements.

4. Computer simulations and experimental results

4.1 Frequ£Dcy„re9BQRS.e

The transmission coefficient S21 from the three input ports to the three out
put ports for the cavity fundamental mode is shown in Fig. 7. The solid line rep
resents the computed response and has a peak at about 1215 MHz and a band
width as large as 220 MHz.

0.9-

measurements

HFSS data

f [MHz]

Fig. 7: Kicker frequency response.

The measured transmission coefficient is represented by the dashed line 
showing approximately the same bandwidth around a center frequency of about 
1209 MHz. The shape of the measured frequency response appears to be a little 
distorted. This is probably due to the mechanical imperfections of the prototype 
since the response has been found to be very sensitive to any mechanical or elec
trical difference among the six input/output channels.
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The computed and measured frequency response of the two dipole modes 
1EM1 and 1MM1 is shown in Fig. 8. The 1EM1 mode is strongly damped (Ql * 
16 in both simulations and measurements). The resulting peak transverse 
impedance Rl(IEMI) is about 300 £2 while the "actual" transverse impedance, 
that takes into account the beam spectrum roll-off and the form factor corre
sponding to a 3 cm bunch length, is reduced to about 125 £2.

HFSS data
measurements

1MM1

f [MHz]

Fig. 8: Dipolar modes frequency response.

The 1MM1 dipole is less damped than the 1EM1. The simulations give a Ql 
value of about 500 corresponding to 1400 £2 and 550 £2 of peak and "actual" 
impedances respectively. In this case the measured Ql seems to be a factor 3 
lower than the computed value and the impedance values should scale accord
ingly by the same factor. However, the contribution of this mode to the machine 
transverse instability (rise time ^ 4.5 msec in full coupling and 30 bunches) is 
at most comparable to the contribution of the first dipole modes of the DAd>NE 
main ring cavity, that are considered not dangerous for the transverse dy
namics [8],

The 0MM1 monopole mode, mentioned in Tab. 1, looks extremely damped in 
the HFSS simulations (Ql = 10) while it is not clearly detectable and measurable 
from prototype port-to-port transmission measurements.

The investigation of the 0EM2 monopole mode reported in Tab. 2 has been 
considered meaningless since its resonant frequency is too close to the beam 
pipe cut-off.
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4.2 Shunt Impedance calculation and measurements

The most important figure of merit of the kicker is the shunt impedance Rs 
defined as:

hi2
Rs" 2P,w (3)

where Vg is the kicker gap voltage and Pfw is the forward power at kicker input. 
The only straightforward way to compute the shunt impedance is to post-process 
the field solution given by the 3D simulator. In fact, the gap voltage Vg may be ob
tained by integrating the longitudinal E-field on the beam axis including in the 
integration the transit time factor.

What one can get from the HESS field solution is the value of the fields at the 
solution frequency and at the desired phase. The longitudinal E-field on the 
beam axis computed by HESS at 1.2 GHz and 1W forward input power is shown 
in Fig. 9 at 0 and tc/2 phases.

Ez(z,2jcft=0) (from HESS) 
Ez(z,2icft=Jt/2) (from HESS) 
Ez(z)
0z(z)

T I j I ' I

0.48

0.45

0.42

0.39

0.36

*0
E?
%

3
a.

Fig. 9: Longitudinal E-Jleld on beam axis.
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In order to compute the shunt impedance Rs it is convenient to represent 
the longitudinal E-fleld as a phasor, namely:

Ez(z.t) = Re {ez(z) eJItot>,k(z)]} (4)

where the two functions Ez(z) and <l>z(z) can be obtained from the field solutions 
according to:

Ez (z) = V Ez2 (z. cot=0) + Ez2 (z, <ot=7c/2)

(5)

Once the functions Ez(z) and $z (z) have been computed at a certain frequency, 
the gap voltage as a complex phasor is given by:

L/2

Vg(co) = j Ez(z) e J[coz/c' ^z)] dz (6)
4V2

where L is the cavity length and the term coz/c in the exponential accounts for 
the transit time effect.

The amplitude and phase of the phasor Vg(co) is plotted in Fig. 10 for 7 differ
ent frequencies, while the shunt impedance Rs(o)). given by eq. (3), is shown in 
Fig. 11. The impedance peak value is about 750 fi, in good agreement with the 
rough estimate (2).

24- - -100•— Amplitude T 
» Phase

f [MHz]

ar
%
<TO

ftTO

Fig. 10: Gap voltage (Pu=lW).
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It is interesting to remark that the impedance peak value occurs at about
1.2 GHz, i.e. 15 MHz below the transmission peak response, and that the high 
frequency portion of the plot decreases more rapidly than the low frequency one. 
Both effects are due to the fact that, since we are considering a wide frequency 
band, the transit time factor is no longer a constant but decreases linearly with 
frequency.

The shunt impedance of the cavity prototype has been measured with the 
wire method. A 3 mm diameter copper wire has been inserted in the cavity 
along the beam axis and connected to a 50 £2 line through a resistive matching 
network. The coaxial wire-beam tube system is a Zo'=203 £2 transmission line 
and the matching network task is to adapt it to the 50 £2 input/output ports. The 
longitudinal beam impedance Z(ro), defined as the complex ratio between the 
cavity gap voltage and the beam current, can be calculated [9] with some approx
imation, according to:

(7)

where S21 is the complex transmission coefficient between the 2 wire ports 
measured by a Network Analyzer accurately calibrated to take into account the 
cable and matching network attenuations, as well as the linear phase advance 
due to the electrical length of the device.

The quality of the matching is crucial to eliminate or reduce spurious reso
nances in the frequency response arising from the TEM wave reflections at the 
step transition between the 50 £2 and 203 £2 coaxial lines.

800

1000 1050 1100 1150 1200 1250 1300 1350 1400

f [MHz]

Fig. 11: Kicker shunt impedance.
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The reflection coefficient measured at the step transition with and without 
the resistive matching network is shown in Fig. 12 (solid and dashed line re
spectively). The dashed line shows a return loss value of about -4 dB all over the 
measurement bandwidth, corresponding to a 50 £2 line terminated with a 200 ft 
resistor. The solid line. i.e. the matched case, shows a substantially lower return 
loss value increasing with frequency and limited to about -17 dB in the mea
surement bandwidth (1 +1.5 GHz).

The amplitude and phase of the transmission coefficient S21 measured with 
the already mentioned calibration factors is shown in Fig. 13. The amplitude 
minimum, corresponding to the peak power absorption of the device and there
fore to the impedance peak value, is located at about 1325 MHz. This means that 
the wire perturbs the field distribution and shifts the resonant frequency by 
about +125 MHz.

1; 500.19 mu100 »U/ AEF 300 mU L 343.57 m‘
324. 00 0< 1

MARKER

STOP 1 700.000 000 MHz■ 800.060 0001.000 000

Fig. 12: Matching network effect Fig. 13: Wire measurement
on step transition return loss. transmission response.

By applying the simple formula (7) on the data taken with the measurement of 
Fig. 13 the longitudinal beam impedance shown in Fig. 14 has been obtained. 
Both real and imaginary parts of the impedance can be very well fitted with by an 
R-L-C lumped resonator.

The shunt impedance, as defined in (3), turns out to be twice the value of the 
real part of the beam impedance. In Fig. 15 the dashed line represents the shunt 
impedance obtained from the wire measurements, while the solid line is a HFSS 
simulation of the wire measurement. The measurement and simulation curves 
are in rather good agreement and show a similar frequency shift value (+125 and 
+ 160 MHz respectively) and a peak value of 800 £2 and 720 £2 respectively that 
confirm the data of the Fig. 11 plot. However, by reducing the wire diameter in 
the simulations, a lower shift value and a higher impedance have been obtained, 
in better agreement with the experimental results.
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Fig. 14: Beam coupling impedance measured on the kicker prototype.
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Fig. 15: Kicker shunt impedance obtained with the wire method.

The contribution of the basic pill box of Fig. 2 to the machine broadband 
impedance has been estimated by means of the ABCI code [10]. The longitudinal 
and transverse loss factors ki and k? of the device for a 3 cm bunch length are 
=0.12 V/pC and =3.5 V/pC m respectively. With respect to a two-electrode 
stripline module, the ki value is comparable while the kT value is about 50% 
lower. It must be pointed out, however, that such a module can only provide half 
of the kicker cavity shunt impedance.
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5. Power considerations

According to simulations, DAd>NE operation will require a maximum longitu
dinal kick voltage of =400 V with 30 bunches and 1600 V with 120 bunches in 
order to damp an initial offset of 100 psec, a prudent estimate of the maximum 
injection error of the last bunch. A 200 W input power with a single kicker cavity 
per ring will be enough for the 30 bunch operation while 2 kickers per ring fed 
with 600 W each will be eventually required for the 120 bunch operation [11].

On the other hand, the beam current interacts with the device beam 
Impedance, and the power released by the beam can be much higher than the 
incoming power from the feedback system. The plot of the kicker beam 
impedance real part and various configurations of the beam current spectrum are 
shown in Fig. 16. The total power Pb released by the beam for a certain current 
spectrum configuration is simply by:

Pb=XiRe [z(t0n)1 Ifi2 (8)
n

so that the resulting power rates are reported in Tab. 2. The beam spectra 
shown in Fig. 16 include the effect of the roll-off due to the 3 cm DA<I>NE bunch 
length.

Fig. 16: Beam spectrum and cavity coupling impedance.
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Tab. 2: Power released to the cavity by various DAONE beam configurations.

Number of regularly spaced bunches 30 40 60 120

Total Power [W] 2500 3200 4800 9600

Power per guide [W] 420 530 800 1600

Being mainly a standing wave structure, the cavity kicker is not a directional 
device and upstream and downstream ports are almost equally coupled to the 
beam. Therefore, unlike the case of the stripline based kicker, in the cavity the 
beam power reaches indifferently the input and output ports, and the longitudi - 
nal feedback power amplifiers must be protected with ferrite circulators against 
the backward power which can be one order of magnitude higher than the for
ward level. A preliminary market investigation has proven that a custom ferrite 
circulator covering a band wider than the 1+1.4 GHz range at a power rate of 1.5 
kW with an isolation higher than 18 dB can be certainly developed [12].

Conclusions

A cavity kicker for the DAd>NE bunch-by-bunch longitudinal feedback system 
based on a pill-box loaded by six waveguides has been designed and a full-scale 
aluminium prototype has been fabricated at LNF. Both simulations and measure
ments have shown a peak shunt impedance of about 750 fi and a bandwidth of 
about 220 MHz. The large shunt impedance allows to economise on the costly 
feedback power. Moreover the damping waveguides drastically reduce the device 
HOM longitudinal and transverse impedances.

The feedback signal can enter the cavity from the coaxial ports attached to 
the waveguides so that no special input coupler is required. Due to the large 
bandwidth and low internal dissipation, neither tuning nor cooling is necessary.

The mechanical specifications and drawings of the vacuum compatible cavity 
have been finalised and an order for two pieces (one per ring) will be placed 
soon.

One cavity per ring will be sufficient to operate the machine up to 30 bunches 
while a second device per ring together with a feedback power improvement 
will be necessary to reach the ultimate current.
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Summary of the Impedance Working Group

Bruno Zotter *

CERN, Geneva 23, Switzerland

Abstract
Impedance issues are important for B-factories because of the very high beam cur

rents required to achieve the desired luminosities. A number of critical objects which 
are unavoidable inside the vacuum chamber of such machines require not only careful 
design, but sometimes special RF shielding to reduce the induced voltages and energy 
loss to an acceptable level. Bellows shielding, holes in screens for distributed pump 
chambers, beam position monitors, interaction region masks and absorbers for super
conducting cavities were discussed in some detail, as well as some analytic impedance 
models. Feedback kickers were discussed in a joint session with the RF working group. 
Threshold currents were the subject of the instability working group and are not re
ported here.

1 Introduction
The workshop on “Collective Effects in B-factory Accelerators” (CEIBA 95) was orga
nized at the Tsukuba Conference Center, Japan, from 12 to 17 June 1995 by S.Kurokawa 
and Y.Chin from KEK. Three working groups were formed on Impedances, Instabili
ties, and RF (in the order of presentation of the summaries on the last day). However, 
the first 2 mornings were reserved for plenary sessions, with reports on impedance 
and instability issues for the two B-factories projects KEK B (Japan) and PEP II 
(USA), the Phi-factory DAPHNE in Italy, as well as a number of related machines 
such as SPRING-8 (Japan), SOLEIL (France), or LHC and LEP (CERN), and a joint 
session of all working groups was held to discuss two recently uncovered instability 
mechanisms: the “transient-ion instability” which might become important for dense 
electron bunches such as required for B-factories, and the “photo-electron instability” 
which could similarly limit dense positron bunches.

Five half-day sessions were reserved for discussions in the working groups, and well 
over 20 individual papers were presented in the one on impedances. We treated one 
topic per session: pumping slots, bellows shielding, BPMs, IR chambers, and others 
(absorbers, impedance models, feedback kickers). Between 15 and 25 participants 
were usually present for these discussions on impedance issues, out of a total of 70 - 
80 workshop participants.

2 Pumping Slots
The KEK B vacuum chamber is separated from the distributed ion pump (DIP) cham
ber by a screen with rectangular slots (4 by 100 mm). K. Kanazawa (KEK) presented

* Talk given at the workshop on collective effects in B-factories CEIBA 95, Tsukuba, Japan, 
July 1995
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3 possible solutions to reduce the EM fields penetration through the slots: (1) two 
equally thick walls with slots perpendicular to each other, (2) a slotted wall of double 
thickness and a thin plate with square holes, and (3) a slotted wall and a wall with 
square holes of equal thickness. In the discussion it was pointed out that a slotted wall 
of simple thickness, with the thin plate with square holes, should be quite sufficient to 
shield against both TM and TE fields.

For the PEP-II DIP screen, “hidden slots” were described by Cho Ng (SLAC). Long 
grooves (4 m long, 4mm wide) penetrate the screen halfway. The grooves are parallel 
to the beam, but off-axis in order to avoid a direct path for ions - or dust - from the 
pumps. A large number of small circular holes (3 mm diameter) are situated on the 
rear side of the grooves. The narrow groove presents a low impedance to the beam 
and damps TM modes, while the holes damp also TE modes which might be excited 
by mode conversion or turbulent bunches. The design has been modelled with MAFIA 
(K.Ko), and trapped modes have been identified and analyzed. This design was judged 
quite satisfactory, but somewhat of an overkill considering the small contribution of 
the DIP screen to the total impedance budget.

S. Kurennoy (U.Maryland) presented an analysis of impedances and loss factors of 
slots and holes. The results can be expressed in compact form using the electric and 
magnetic polarizabilities. Long slots, parallel to the beam axis, have in general lower 
impedances than round holes for equal areas, in particular if the corners are rounded. 
The cutoff frequency for TM modes is given by the slot width. However, if TE modes 
are excited, they can penetrate slots down to lower frequencies with wavelengths given 
by the slot length. The question of tolerances for relative tilt between beam and slot 
was raised and should be investigated.

The impedance of arrays of holes was discussed by G.Stupakov (SLAC), since a very 
large number of the rather small holes are needed for vacuum reasons. Many “trapped 
modes” can appear just below the cutoff frequencies of each waveguide mode in the 
beam pipe. In order to avoid quadratic power addition of them, it was recommended 
to use “hidden holes” as in PEP-II, or to cover the holes with finer grid meshes to 
reduce field penetration. For the LHC beam screen (“liner”), randomized lengths and 
distances between holes were proposed to avoid such resonant buildup.

3 Bellows Shielding
Y.Suetsugu presented the design of the RF bellows shields for KEK-B. Similar to the 
CERN design with long Be-Cu fingers sliding on an oval SS tube, they have replaced 
the single spiral spring by many short spring fingers, one for each contact finger. In 
this way, the force on each finger can be adjusted, and made equal everywhere. The 
fingers are silver coated, and the SS tube plated with rhodium to reduce abrasion. A 
model has been tested in the lab to determine the best contact force - at 200 g the 
mechanical resistance was too high and rapid abrasion of the fingers was found. For 
forces below 50 g, the electrical resistance went up due to bad contacts, and a force of 
around 100 g was chosen as optimal. A model was successfully tested in TRISTAN.

S.Heifets described the PEP-II bellows shielding. Due to the octogonal cross section 
of the vacuum chamber, the RF shielding is done by 4 fiat slotted sheets made of 
“Glibcop”, which has a better conductivity than Be-Cu. The fingers are rather short 
and supposed to be sufficiently stiff not to require additional springs. Rather wide 
slots are left between the sheets, and concern about coupling to the volume behind 
was voiced. Also the contact may deteriorate when the fingers become hot.
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The design for SPRING-8 was presented by T.Nakamura. Somewhat longer fingers 
made of 1 mm thick Be-Cu are expected to exert enough contact force without addi
tional springs. An earlier “buckling tube” design without sliding contacts - essentially 
a single convolution inner bellows - has been abandoned except for a few radiation 
absorbers which are shielded by a thin, slotted constriction in the vacuum chamber.

The present RF shielding of bellows in DAPHNE, presented by M.Zobov, is based 
on the requirement that sliding contacts should be avoided because of the very high 
beam currents needed in Phi-factories. The shield consists of a number of parallel 
zigzag vanes which permit compression and should stretch almost flat during operation. 
Some concern was expressed about wall currents flowing at an angle to the beam 
due to residual zigzag. It was recommended that the design should be tested before 
installation.

4 Beam Position Monitors (BPMs)
Three talks were given on the “damped” beam position monitors which are developed 
for KEK-B. T.Shintake presented the basic ideas to damp the TE110 resonance: a 
small diameter button to increase its resonant frequency, and an asymmetrically cut 
stem of the button to suppress it. A MAFIA calculation of the asymmetric button 
by T.Obino, essentially agreed with these predictions. However, measurements of the 
quality factor on a model by N.Akasaka failed to show a reduction when excited directly 
with antennas. These results are rather recent and still need more study to be fully 
understood.

Measurements of the button BPMs for PEP-II were presented by J.Corlett (LBL). 
Using a coax wire technique the TE11 resonance was found to be dominant. The 
button diameter was therefore reduced from 20 to 15 mm, and different asymmetric 
cuts were tested: suppression was better with cuts perpendicular to the beam motion. 
Simulations of the BPMs for the high-energy ring with MAFIA were reported by Cho 
Ng. The suppression of the TE11 resonance with cuts and with shorts was investigated. 
Trapped modes were found to create rather long-range wakes. The power loss in 
the ceramic holding the electrode was found to be small (1 W), but the total loss 
quite large (100 W for 3 A beam current). S. Kurennoy showed that the broad-band 
part of the impedance can be estimated simply using the analytic expression with the 
polarizabilities of a annular gap.

5 IR Chambers and Masks
Y. Chin reported computations of the synchrotron radiation masks on both sides of the 
Be chamber in the interaction region, consisting of annular irises cut on one side. The 
code ABCI for rotationally symmetric structures was extended to 3-D (MASK30) in 
order to calculate the fields. Over 200 W of power was found to be generated between 
the masks, but most of it is expected to leak out and will be absorbed somewhere in 
the IR chamber. This chamber is limited on both sides by crotches which radiate up 
to 20 kW of power, and an estimated 0.5 % (100 W) could be absorbed on the Be 
chamber.

A similar IR chamber for PEP-II was described by S.Heifets. Estimates of the 
power generated in the Be pipe are much lower, since the masks are tapered. While 
up to 25 kW could be generated upstream, less than 0.1 % (20 W) are expected to be 
absorbed in the Be tube, which is water-cooled and can stand up to 200 W. However,
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trapped modes, in particular if they are in resonance with the bunch spacing, could 
create up to 400 W and exceed the power rating.

6 Other Impedances
T.Tajima described a beam test in TRISTAN of Ferrite absorbers for KEK-B SC 
cavities. These are produced from micron size powder directly on the vacuum chamber 
wall by a “HIP” (Hot Isostatic Press) process involving high temperatures and pressures 
lasting several hours. For short bunches, the measured loss is somewhat higher than 
computed with ABCI, indicating that the bunch shape is not quite Gaussian, but has 
tails. No arcing was seen, but the beam current in TRISTAN was too small to expect 
it.

Ferrite tiles soldered to water cooled Cu plates for SC cavities in CESR were de
scribed by W.Hartung from Cornell. Calorimetric tests of HOM losses showed no 
change with bunch length, while the total loss factor of the ring varies by a factor 2 for 
rms lengths between 11 and 25 mm. The loss was also smaller than expected, possible 
explanations like loss into beam pipes, edge effects and gaps were found to be too small 
to explain this discrepancy completely.

2 Contributions were concerned with analytic impedance models:
S. Petracca (University of Salerno) explained her approach to compute the impedance 

of multi-layer coaxial pipes for LHC. Using a novel perturbation technique, based on 
Debye potentials and the reciprocity theorem, the impedance of a complex structure 
can be expressed by that of a simpler one plus 2 integral terms. The first one describes 
small geometric deviations, e.g. rounded edges of a square LHC liner, and the second 
one the finite resistivity of the material, e.g. a copper-clad SS wall. Applications of this 
approach to the B-factory problems are foreseen in the weeks following the workshop.

J.Scott-Berg (SLAC) introduced a transverse impedance model which has the cor
rect asymptotic inverse 3/2 power dependence not only for real, but also for complex 
frequencies. The validity of this assumption was questioned by the audience. The 
model fulfills the Kramers-Kronig relations between real and imaginary parts of any 
impedance, and can be fitted to computed cavity impedances after subtracting the 
strongest resonances.

7 General Conclusions
A lot of work has already been done on optimizing the impedances of components for 
the B-factories, but some questions remain which need more study:

• The penetration of TM/TE fields through slots, in particular when they are not 
parallel to the beam motion, such as caused by closed-orbit (tilt tolerances).

• Bellows shielding with sliding contacts may be limited in the maximum current 
they can handle, and solutions with fixed contacts should be studied. The zigzag vanes 
proposed for Daphne may cause problems due to induced transverse currents, while 
the “buckling tube” proposed some time ago for Springs - although abandoned - may 
still be a valid alternative.

• The large power generated in the IR chambers between the crotches needs to 
be absorbed to avoid damage to the central Be tube. Such absorbers could be made 
of Ferrites, which should have good thermal contact to the cooled walls, such as are 
under development for SC cavities. But they also have to be located where they do 
not shadow the experiments.
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• A comparison of shielding against direct synchrotron radiation by masking (KEK- 
B) and by chamber offset (PEP-II) should be made, as these solutions have both certain 
advantages and disadvantages.

• Damping of the TE110 resonance in BPMs by asymmetrically cut stems - although 
predicted by theory and modelling, was not found in experiment. This should be 
understood, and possible alternative designs investigated.

I add some general remarks on the use of computer modelling for field and loss 
calculations, a topic also discussed by K. Ko in a plenary talk:

• There is now widespread use of FTDT (Finite Difference Time Domain) codes 
both in 2-D (TBCI, T3, ABCI) and 3-D (MAFIA, MASK30) - but all of these codes 
approximate inclined boundaries by “staircases”. This leads to slow convergence with 
decreasing mesh size for small taper angles. This is avoided in the code XWAKE 
(Harfoush-Jurgens, FNAL) which can approximate even curved boundaries. Now it is 
available only for axially symmetric (m=0) modes, but the m=l part is nearly ready, 
as has been recently announced at the PAC95 in Dallas.

• Finite element codes - which permit triangular meshes - have mostly been used 
only in the frequency domain, except in the time domain codes PRIAM (2-D) and 
ANTIGONE (3-D) which have been developed recently (Lemeur, LAL-Orsay). These 
codes still need to be tested thoroughly.

• Pure frequency domain codes (SUPERFISH, URMEL) are useful for narrow-band 
impedances, but do not handle correctly “open boundaries”. Impedances can also be 
obtained by Fourier transforming wake potentials of short bunches, but care must be 
taken to use long enough wakes and proper windowing techniques to get correct results.

With these limitations of numerical codes, analytic estimates and perturbation 
approaches are still often a valid alternative to get first estimates and scaling laws.

In conclusion, I would like to emphasize that all critical issues concerning impedances 
in B-factories are actively being worked on, in excellent collaboration between hardware 
designers and accelerator physicists.
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WORKING GROUP ON COLLECTIVE EFFECTS
SUMMARY

Jacques Gareyte 

CERN, Geneva 23, Switzerland

Abstract
This report is a summary of a selection of the contributed papers presented and of the 
discussions held in the Working Group on Collective Effects at the CEIBA 95 Workshop. B 
factories need increased beam currents compared to previous machines. Therefore a large 
and concerted effort is developing to better understand the intricacies of the well established 
theories of “classical” instabilities, and in parallel to explore possibilities for new potentially 
dangerous mechanisms. Whereas in the domain of “classical” instabilities current progress 
increases our confidence that necessary beam parameters can be achieved, other destabilizing 
mechanisms due to ions or photoelectrons seem to pose problems and require further work.

1 Introduction
The theory of beam instabilities is now a mature field and the calculation of coupling 
impedances, which is a most necessary ingredient to apply the theory, is a well mastered 
subject. However, past experience has shown that any increase in beam intensity or density 
usually reveals new, unthought-of phenomena.

With the B factory projects, we make a considerable leap forward as far as beam intensity 
is concerned, and I take no risk in predicting a lot of fun to the physicists who will have to 
commission these machines.

At present we are in the design phase and we must of course do our best to anticipate 
problems and propose solutions: this was the aim of our working group on Collective Effects. 
We heard a large number of presentations by 17 of the participants. Others contributed full 
time or part time to the discussions.

Two recently uncovered instability mechanisms were discussed in a joint session of the 
three working groups. These are a transient ion instability which might affect long trains 
of dense electron bunches, and an instability induced by photoelectrons which might affect 
trains of dense positron bunches. Discussions on these very important subjects were extended 
in the working group sessions. Another set of interesting communications concerned progress 
made recently in the understanding of mode coupling effects in the transverse as well as in 
the longitudinal directions of motion. We heard other talks on ” multiperiodicity, limit cycle 
and chaos in bunch lenghtening with localized impedance” (E.S. Kim), “simulation and 
understanding of sawtooth effects in SLC damping ring” (A. Chao), “ a simple model with 
damping of the mode coupling instability” (N. Dikansky), “on saturation of a longitudinal 
instability” (J. Byrd), “physical understanding of microwave instability by simple analytical
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model” (S.X. Fang), and “debunching in proton rings” (E. Shaposhnikova). Although they 
also reveal recent and interesting progress, these last talks will not be summarized here, as 
they seem to be less focused on the urgent preocupations of B factory designers. They can 
be found in the proceedings.

2 Ion Effects
K. Yokoya (KEK B), G. Stupakov (PEP II) ans S. Heifets (saturation effects) introduced 
the subject by their comprehensive presentations.

Ion induced instabilities are well known to plague storage rings for negatively charged 
particles (electrons and antiprotons). As a matter of fact the first electron-electron stor
age ring, the Princeton-Stanford machine, saw clearly in 1962-64 the effects of ions being 
accumulated in the potential well of the electron beam. In this machine it did not create 
an instability, on the contrary it allowed to store ten times more beam current than with
out ions. The reason was that ions created a large tune spread which stabilized the beam 
against the resistive-wall instability. In other machines a beam-ions instability was observed 
for instance in the CERN antiproton accumulator. The cure is to leave a gap in the beam 
to prevent accumulation or to shake the beam at a frequency close to the ions bouncing 
frequency.

Modern large high-energy storage rings have a small number of widely spaced bunches, 
and are not prone to ions effects.

In B factories on the contrary there are many dense, closely spaced bunches. A large 
number of ions are created at each bunch passage, and a sufficient fraction of them may 
remain long enough inside the beam enveloppe to create problems: a small initial transverse 
displacement of an electron bunch produces a deflection of the ion cloud which in turn 
influences subsequent bunches. The perturbation may resonantly grow along the bunch 
train to attain large amplitudes at the end of the train after a few revolutions around the 
machine. There is no need for long-term ion accumulation and there is no need for a closed 
loop interaction around the ring as in classical coupled-bunch instabilities. This is more 
reminiscent of multibunch beam break-up in Linacs.

First calculations gave frighteningly small growth times both for PEP II and KEK B, of 
the order of a few turns. However many effects have to be considered which may consider
ably reduce the growth rate of this instability. For instance the fact that the beam is fiat 
introduces a spread in the vertical bouncing frequencies of ions which see different electron 
densities according to the horizontal position at which they are created. The change of beta 
functions around the ring and the existence of different ion species also create a spread of 
frequencies which reduces the growth rate. Also the growth rate calculated at vanishingly 
small amplitude is not sustained at amplitudes of the order of a R.M.S. beam size: there is 
a saturation effect. Even taking this into account present calculations give growth times of 
the order of 100 turns, which is still cause for concern.

Following a suggestion by D. Brandt, G. Stupakov applied the theory developped at 
SLAG to the ESRF operating with a large number of bunches. With a partial pressure of 
CO of 10-9 Torr he estimated the growth time to be of the order of one turn, whereas this 
instability is not observed in reality. If this is confirmed, it could imply that something 
important has been left out in the theory.

Clearly further work is needed to better understand this potential instability.
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The effectiveness of a feedback system in damping the ion instability was discussed. 
There is no much, doubt that provided the growth time is long enough (say a few tens of 
turns) a feedback system can suppress the dipole bunch motion. However it was pointed out 
that in this kind of two-beam instability, the quadrupole collective motion is potentially not 
much weaker than the dipole one. Collective quadrupole modes have been observed in the 
CERN A A (antiproton -ions) and in LEP (electron-positron beam-beam). It is suggested to 
study the possibility of higher order modes in simulation by artificially blocking the dipole 
motion.

The working group further recommends that experimental studies be carried out on ex
isting machines, with the ESRF and the Taiwan light source as possible suitable candidates. 
One should try to see the effect, possibly by increasing the residual gaz pressure, and then 
observe its spectrum (ion frequencies?), compare with positron beams, and try to cure it 
through feedback and beam shaking. A proposal to get rid of the ions is to have small 
regularly spaced holes in the beam, in order to resonantly excite the motion of the ions 
(J. Seeman).

3 Photoelectron effects
An instability affecting only positrons was recently discovered in the KEK Photon Factory. 
This seems to be a new phenomenon and is currently explained by an interaction of the 
positron beam with a cloud of photoelectrons present in the vicinity of the beam in the 
vacuum chamber.

M. Isawa made a very interesting presentation of the main features of the Photon Factory 
instability, K. Ohmi described the theory proposed to explain this and its implications for 
KEK B, and G. Lambertson reported on the work done on this subject in the framework 
of PEP II studies.

The instability seen in the Photon Factory affects the vertical beam oscillations during 
the accumulation of a multibunch positron beam. It appears at a low threshold (one tenth 
of maximum current) and its signature is a broad spectrum of betatron sidebands spanning 
about half the 500 MHz total range between RE lines. J. Byrd showed the results of mea
surements carried out on CESR (Cornell) which display symptoms very similar to those. 
The classical transverse coupling impedance which should be invoked to explain the Photon 
Factory instability is unphysically large and anyway this should affect equally the electrons, 
which is not the case.

Therefore the explanation put forward by K. Ohmi seems convincing: a large number of 
photoelectrons are created on the inner surface of the vacuum chamber. In the portion of the 
beam pipe outside bending magnets these electrons are transversely accelerated towards the 
beam by the electric field of the positrons. Simulations, at KEK as well as at LBL show that 
indeed an important cloud of electrons can accumulate in this way in the chamber. Wether 
multipacting on the walls could increase further the electron density is being debated.

After the passage of a certain number of bunches at the head of the train, there are enough 
electrons in the vicinity of the beam to affect the oscillation of the following bunches. As 
we have seen with ions, a displaced particle bunch then perturbs the charge distribution, 
leaving behind a wake which in turn deflects following bunches. Simulation predicts a wide 
band spectrum of betatron frequencies, in good agreement with observations at the Photon 
Factory.
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It was discussed wether this instability could be cured by a fast feedback system, or 
wether one could prevent the photoelectrons from drifting towards the beam by applying a 
modest vertical or solenoidal magnetic field in the straight sections of the machine.

The working group recommends to pursue theoretical investigations and to carry out 
experiments on existing machines (CESR and BEPC seem to be suitable candidates). One 
could vary 7 to change the photon flux, vary the radial beam position to detect any influence 
of the distance of the beam to the electron emitting wall. Changing Q or Q' should have no 
effect. It would be interesting to record the modes spectrum, try to shake the beam or make 
small longitudinal holes to reduce the electron density, and last but not least compare with 
an electron beam. Influence of applying magnetic fields in the straight sections should also 
be tested.

J. Rogers described an instability observed in CESR on the positron beam which was 
recently explained by electrons being trapped along the electric field lines leaking out of 
the ion pumps inside the bending magnets. In some respects this is reminiscent of the 
phenomenon discussed above. Clearly the occurence of trapping fields generated by pumps 
or other items can be easily avoided in B factories. But it was conjectured by S. Heifets that 
the field lines of the dense beam itself could as well trap electrons inside bending magnets. 
Photons scattered in the vacuum chamber could generate electrons at the right place with 
the required energy.

4 Transverse Mode Coupling
The Transverse Mode Coupling of dense single bunches has been thorougly investigated. It 
is the main performance limitation of LEP and of its injector the SPS. The two following 
reports show that further progress is being made in this area.

E. Shaposhnikova presented a study which shows that it is possible to predict the T.M.C. 
threshold with a high degree of accuracy, provided one takes into account a sufficient number 
of high order radial modes for each head-tail mode involved in the coupling process.

J. Scott Berg showed that coupling between head-tail single bunch modes can influence 
coupled bunch instabilities in the case of the B factories intense multibunch, beams. Long 
range or medium range wake fields couple bunches together. This leads to multibunch 
instabilities where usually the rigid mode m =0 of individual bunches is involved. This kind 
of instability can be damped by feedback. However the same long or medium range wake 
fields produce also a large tune shift of certain coupled bunch modes so that m=0 and m=-l 
head-tail modes merge at a lower value of the beam current than they would in the case of 
single bunches. Provided that a wakefield component exists at a sufficiently high frequency 
to couple modes m=0 and m=-I, the mode coupling instability can then occur at a lower 
threshold.

The threshold for this phenomenon calculated for PEP II parameters is higher than the 
design current. However, the important question is wether all modes will be damped in this 
situation in presence of feedback; simulations show that this might not be the case, and 
therefore this phenomenon has to be considered seriously.
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5 Bunch Lengthening and Longitudinal Mode Coupling
Mode Coupling has been first proposed by Sacherer in 1977 to explain turbulent bunch 
lengthening. Whereas the same concept has been easy to apply in the transverse case, 
progress in understanding its detailed mechanism in the longitudinal case has been very 
slow. The main reason is probably that potential well deformation occuring in parallel 
considerably complicates the dynamics.

The apporach of Oide and Yokoya now sheds more light on the subject. A strong mi
crowave instability occurs, as predicted by Sacherer, when two azimuthal modes couple. But 
a weaker instability can manifest itself at lower threshold, which can be described as coupling 
of radial modes pertaining to the same azimuthal mode, as a consequence of potential well 
deformation.

K. Oide presented results of simulations for the KEK Low Energy Ring. In the regime 
of radial mode coupling a very strong synchrotron damping of the collective motion (orders 
of magnitude larger than single particle damping) suppresses turbulent bunch lenghtening. 
This surprising result was discussed in the working group but no obvious explanation could 
be found. Disregarding this strong damping the threshold for microwave instability is just 
above the design current.

K. Bane analysed in the light of the Oide-Yokoya technique the situation of the SLC 
damping ring before and after the effort undertaken to reduce its coupling impedance. Befofe, 
a strong bunch lengthening was observed accompanied at large bunch current by turbulence 
and a “sawtooth” variation of the bunch length.

Oide’s programme reveals in this situation a strong instability due to coupling of quadrupole 
and sextupole modes. After the reduction of the impedance (which affected the inductive 
part but not much the resistive part) bunch lengthening was reduced but surprisingly tur
bulence now occured at a lower bunch current. Oide’s programme in this situation indeed 
predicts instability at lower current through radial mode coupling inside the quadrupole 
azimuthal mode.

Other interesting developments in the domain of bunch lengthening and longitudinal 
mode coupling were presented by S.X. Fang and K.Y.Ng. They show that the rather in
tuitive argument according to which below transition ( oc<0 ) bunch lengthening should 
be diminished and mode coupling should occur at a higher current is indeed borne out by 
detailed calculations in the case of realistic coupling impedances. Bunch lengthening is re
duced below transition because the interaction with the wake fields tend to increase the 
bunch density towards the tail of the bunch, so that the main part of the wake then develops 
behind the bunch. The reverse is true for oc>0, the head is dense and its wake strongly 
perturbs the tail. Mode coupling is pushed to larger currents below transition because low 
order modes tend to be pulled apart whilst the reverse occurs above transition.

6 Conclusion
Steady progress is being made in the understanding of “classical” instabilities. With a good 
knowledge of the coupling impedances, thresholds and growth rates can be predicted with 
sufficient accuracy. The design of B factories poses challenging problems in this area, but 
there is evidence that solutions exist.

However as we enter a new domain of beam intensity and density, we can expect new
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phenomena to appear. In this workshop the cases of ion induced instabilities (for the electron 
ring) and electron induced instabilities (for the positron ring) have been discussed at length. 
They seem to be potentially dangerous but we are at present far from mastering these 
subjects in sufficient detail.

Further theoretical and experimental work is urgently needed.
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