STy O\M
VD g
(A, ==

FR9601317
o
ARR’IVEE—Z CIRST]
27 g, j 004072] B
Cm . R
(ot
-t
o

RAPPORT DES/184

CLAIRE,

UN OUTIL DE SIMULATION
EVENEMENTIELLE
POUR LE TEST
DES LOGICIELS

RAGUIDEAU J., SCHOEN D.,
HENRY J.Y., BOULC'H J.

28=- 10

G0 INSTITUT DE PROTECTION ET DE SURETE NUCLEAIRE
DEPARTEMENT D'EVALUATION DE SURETE

RAPPORT DES/184 {

CLAIRE,
UN OUTIL DE SIMULATION EVENEMENTIELLE
POUR LE TEST DES LOGICIELS

RAGUIDEAU J.", SCHOEN D, ",
HENRY J.Y.", BOULCH J.

Specialists' Meeting on
"Advanced Control and Instrumentation Systems
in Nuclear Power Plants :
Design, Verification and Validation”
(IAEA, IWG-NPPCI, IWG-ATWR)
ESPOO (FINLAND), 20-23 juin 1994

LETI, DEIN
DES/SAMS Juin 1994

CLAIRE
Un outil de simulation événementielle
pour le test des logiciels

Jacques RAGUIDEAU
Dominique SCHOEN

Commissariat a I’'Energie Atomique
LETI (CEA -Technologies avancées)
DEIN - CE/S F91191 Gif sur Yvette Cedex

Jean-Yves HENRY
Jacques BOULC'H

Institut de Protection et de Siireté Nucléaire
Département d'évaluation de la siireté
CEA CENFAR
B.P. 6 - 92265 Fontenay-aux-roses

RESUME : CLAIRE fournit un environnement purement logiciel permettant de
valider des applications temps-réel distribuées, soit au niveau des spécifications,
soit au niveau du code.

L'outil offre les facilités graphiques de modélisation de 1'application et de son
environnement; il effectue de fagon treés efficace la simulation du modéle entré
et assure le controle de 1'évolution des données dynamiquement ou en temps
différé.

1 - INTRODUCTION

L'outil CLAIRE a été initialement réalisé pour répondre aux besoins de 1'Institut de Protection
et de Siireté Nucléaire (IPSN) dont le rdle est d'effectuer les analyses de slireté qui permettent
d'évaluer les dispositions prises par les exploitants d'installations nucléaires.

Dans ce cadre, I'IPSN est amené a réaliser des études de dossiers pour ces installations.
Certains systemes ont un degré de criticité tel qu'il est apparu nécessaire de disposer d'outils
de simulation devant permettre 1'exécution de tests spécifiques sur les logiciels qu'ils integrent.

Le besoin était de disposer d'un outil permettant de décrire 1'environnement de logiciels afin
d'évaluer leur comportement en réponse a des entrées normales ou a des fautes. L'outil devait
permettre la simulation d'applications temps-réel distribuées sans altération de leur
comportement temporel.

La multiplicité et la complexité des environnements ainsi que la souplesse souhaitée rendant
difficile voire impossible toute simulation matérielle, le choix d'une simulation purement
logicielle s'est imposé.

Ce besoin de modélisation et de simulation releve en fait d'un souci commun i tous les
réalisateurs de logiciels complexes: comment dépasser le stade des tests unitaires, ou les
débogueurs peuvent suffire, pour valider une application temps-réel dans son ensemble?

Cette interrogation devient tout a fait cruciale pour les logiciels de "sireté" dont les
défaillances peuvent entrainer des situations catastrophiques.

Les phases de spécification de ces logiciels particulitrement critiques bénéficient déja de
formalismes permettant d'effectuer des vérifications sur ces spécifications: les réseaux de
Pétri, les langages synchrones apportent chacuns des réponses dans le domaine qui leur est
propre: vérifications temporelles, vérifications de propriété de sireté.

Outre le fait que ces formalismes ne sont pas toujours applicables 2 la taille et a la complexité
des applications, ils ne permettent pas une validation sur le code réellement implanté dans ces
installations critiques.

CLAIRE permet a la fois d'effectuer des vérifications de propriétés de slreté a partir d'une
modélisation de spécifications mais également de valider le code final en simulant le
comportement de ses interfaces matérielles et logicielles. I1 permet d'observer et de
commander dynamiquement le déroulement de Ia simulation, mais également d'enregistrer les
évolutions des entités simulées pour les analyser apres coup.

2 - PRINCIPES DE L'OUTIL

Les principes sur lequels CLAIRE est basé sont la modélisation par flots de données et la
simulation événementielle de cette modélisation. Le choix "événementiel” est lié a la validation
de code: la production d'un événement constitue la réaction associée aux passages du code par
des états attendus: valeur du PC, écriture 4 une adresse donnée... Ce choix s'applique sans
difficulté aux validations de spécifications.

2.1 - Modélisation

Un modele flot de données est aisément exprimable sous forme graphique. La modélisation
adoptée dans CLAIRE consiste & décrire de fagon hiérarchique descendante les différents
éléments de 1'application, selon un formalisme proche de celui de la méthode SA/RT.

Chaque entité est représentée par une boite, chaque boite peut se décomposer et se raffiner en
boites de niveau inférieur. Les boites feuilles de la décomposition sont des procédures écrites
en langage C dans lesquelles est décrit le role fonctionnel de la boite.

Ces boites échangent des flots d'information symbolisés par des fils. Ces flots peuvent étre
définis comme continus ou discrets. Les modifications des flots discrets vont déclencher les
procédures feuilles auxquelles ces flots aboutissent.

2.2 - Simulation événementielle

Toute modification d'un flot est associée a la création d'un événement. Les informations
portées par un événement sont la variable concernée, la valeur a affecter a la variable, la date
d'échéance c'est a dire l'instant auquel cette affectation devra se faire, et enfin la liste des
fonctions a déclencher lors de cette affectation.

Les événements créés par les procédures sont placés dans un échéancier et ordonnés en
fonction de leur date d'échéance. La simulation exploite cet échéancier, met & jour les données
et active les fonctions associées aux flots déclenchants.

3 - ROLE DE L'OUTIL

CLAIRE permet d'effectuer des validations de spécifications et des validations de codes
exécutable.

3.1 - Validation de spécifications

L'outil permet de réaliser des modélisations de systémes a partir de leurs spécifications. Les
éléments entrant dans la décomposition sont décrits suivant le degré de finesse nécessaire: ils
peuvent étre décrits comme des boites noires si on ne s'intéresse qu'aux interactions avec
1'extérieur ou comme des boites blanches si on s'intéresse au fonctionnement interne.

Un élément "boite noire" peut, lors d'une modélisation plus fine, étre remplacé par sa
modélisation "boite blanche", voire a terme par son algorithme réel. Cette facilité permet de
valider des applications de fagon incrémentale.

Il est possible avec CLAIRE de faire des modélisations assimilables aux réseaux de Pétri et
donc d'effectuer des validations sur le comportement temps réel de 1'application modélisée. La
transposition consiste a associer les fonctions aux transactions et les jetons aux événements:
une fonction est déclenchée quand un jeton (un événement sur une donnée) arrive sur une place
d'entrée de la transition qu'elle réalise. La fonction évalue ses conditions sur les jetons
d'entrée et si elles sont satisfaites, la fonction absorbe les jetons, c'est a dire réinitialise ses
conditions d'entrée, exécute son corps puis place des jetons dans ses places de sortie, c'est a
dire crée d'autres événements qui sont les jetons d'entrée d'autres fonctions.

L'avantage de cette transposition réside dans la possibilité de décrire et d'éxécuter des
applications tres conséquentes, ce qui est difficile avec les réseaux de Pétri.

3.2 - Validation de logiciels

L'outil peut étre utilis€ pour tester des logiciels exécutables, distribués sur un ou plusieurs
microprocesseurs. Il permet d'étudier leurs comportements dans les cas limites et d'évaluer
leur résistance aux fautes.

Les boites décrivent alors 1'environnement des logiciels & valider: interfaces matérielles ou
logicielles, évolutions des parametres de 1'installation...

Des boites associées non plus a 1'environnement mais a une stratégie de tests, peuvent étre
intégrées a4 la modélisation: observateurs chargés de détecter 1'occurrence de tel ou tel
événement ou oracles permettant la comparaison a2 un comportement de référence.

L'environnement est décrit selon la méthode proposée plus haut, le logiciel a tester donne lieu
a une boite particuliere dans la description graphique et a une procédure particuliere au sens de
la simulation événementielle.

Les entrées/sorties de cette procédure correspondent aux échanges du microprocesseur avec
son environnement. La procédure est réalisée par un simulateur de microprocesseur qui regoit
en parametres le code 2 exécuter et une description de la correspondance entre les échanges et
les événements internes.

L'outil peut méme dans ce cas étre utilis¢é comme un débogueur de code puisqu'il permet
d'accéder aux différents registres et valeurs de la mémoire interne du microprocesseur.

4 - COMPOSANTES DE L'OUTIL

CLAIRE se compose des éléments suivants: un éditeur graphique, un générateur de code, un
noyau de simulation, un analyseur de résultats.

L'éditeur graphique permet la manipulation des boites et fils de la modélisation et assure la
vérification de la cohérence des informations entrées.

Le générateur de code analyse la description graphique entrée par 1'opérateur. Un formalisme
de dénomination des boites permet au générateur d'identifier les boites "modules” auxquelles
seront associés les fichiers source C qui sont les unités de compilation.

Le générateur de code exploite les flots de données décrits dans le graphique pour créer
automatiquement les parties déclaratives de chaque module. Il génere les déclarations de
procédures et insére le code C associé entré pour chaque boite terminale dans la description
graphique.

Ces modules sont compilés. L'édition de liens qui crée le module exécutable de la simulation
réunit les modules générés associés a l'application et les modules composant le noyau de
simulation.

Le noyau de simulation exploite un échéancier contenant des événements datés. Ces
événements sont produits par les procédures lors des modifications, immédiates ou différées,
des valeurs des flots. Ils sont insérés dans 1'échéancier 4 une place correspondant a la date a
laquelle ils doivent étre exécutés.

A la date prévue, le noyau de simulation affecte aux flots les valeurs portées par les
événements, provoque I'exécution des procédures associées aux flots déclenchants et mémorise
la nouvelle valeur du flot.

L'analyseur de résultats facilite 1'exploitation des fichiers souvent trés volumineux contenant
1'évolution des flots au cours de la simulation.

Cette analyse statique des résultats complete 1'analyse dynamique effectuée par les
observateurs qui peuvent, pendant la simulation, détecter des situations programmées.
L'analyseur de résultats permet, lui, de naviguer a posteriori dans les événements issus de la
simulation pour les analyser plus finement,et éventuellement détecter des situations non
voulues.

L'analyseur offre des facilités graphiques de tracé de courbes, de chronogrammes ou de
tableaux de valeurs; des possibilités de zoom, de modifications d'échelle, de repérages entre
courbes sont également offertes.

5 - PROGRAMMATION DU MODELE

La programmation consiste & décrire le fonctionnement des boites feuilles de la description
graphique; seule la partie exécutive des procédures est a effectuer par le programmeur: la
partie déclarative est prise en compte par le générateur de code.

Le langage C a été choisi comme langage de programmation pour les procédures modélisant
1'environnement. C'est également le langage de développement du noyau de simulation ce qui
favorise 1'intégration du tout.

Le choix du langage C résulte bien sir de sa large diffusion mais aussi de ses caractéristiques
pour traiter le probleéme : compilation séparée, portée des variables, structuration des données,
manipulation des fonctions qui permet d'associer une adresse de fonction a un événement et
donc d'avoir une simulation performante.

4

De plus, en disposant du langage C pour développer ses procédures, 1'utilisateur dispose de
toute la puissance de ce langage et de toutes ses possibilités d'interface avec des produits
existants: il peut faire appel A toutes les procédures de la "run time library", utiliser
XWINDOW pour animer sa simulation...

Le développement du modele qui constituera la simulation ne nécessite donc 1'apprentissage
d'aucun langage spécifique dédié au test: il est a la portée de tout développeur C.

6 - APPLICATIONS DE L'OUTIL

6.1 - Expérience d'évaluation des logiciels des systémes classés 1E

6.1.1- Présentation de la démarche d'évaluation

Le processus d'autorisation de fonctionnement des centrales nucléaires comprend des étapes
obligatoires qui donnent lieu notamment 4 un examen détaillé du contréle-commande.

Cet examen prend en compte les aspects li€s aux technologies (circuits intégrés, logiciels) qui
ont été choisies par le fabricant pour les systémes programmés qui assurent des fonctions
classées de siireté.

L'appui technique (IPSN) de 1'autorité de stireté (DSIN) a pour charge de réaliser toutes les
investigations qu'il juge nécessaires afin de s'assurer que les méthodes et techniques mises en
ocuvre par le fabricant et 1'exploitant garantissent, pour les logiciels des systemes classés 1E,
la sireté attendue et permettent une testabilité et une maintenabilité suffisantes. Pour ce faire,
il porte plus particulietrement son attention sur les aspects suivants:

- méthodes de développement des logiciels rationnelles et rigoureuses suivant un plan
précis d'assurance de la qualité (documentation et code);

- regles strictes de programmation pour la production d'un logiciel testable et
maintenable (code);

- tests mis en oeuvre pour assurer un taux de couverture suffisant aussi bien chez le
fabricant que sur site (simulation).

L'évaluation des logiciels est réalisée en prenant en compte notamment les résultats des deux
analyses suivantes:
- I'analyse des documents (conception du logiciel, procédures de qualité, maintenance),
- I'analyse dynamique a 1'aide de 1'atelier CLAIRE, réalisée sur le code binaire fourni
par le fabricant de logiciel.

L'analyse dynamique a pour objectif de montrer le comportement du logiciel soumis:

- & des stimuli dont les valeurs sont prises parmi les conditions prévues par le domaine
nominal de fonctionnement du systéme qui utilise le logiciel sous test (étude de consistance),

- A des stimuli dont les valeurs correspondent a des cas de dysfonctionnement du syst¢me
qui utilise le logiciel sous test (étude de robustesse).

La démarche adoptée pour 1'évaluation des logiciels du systéme de protection des Réacteurs a
Eau sous Pression est présentée ci-apres pour la partie qui concerne 1'analyse dynamique.

6.1.2 - Etude de consistance

L'étude de consistance permet de vérifier les valeurs prises par les sorties du systéme (par
exemple la commande d'arrét d'urgence) lorsque les entrées prennent des valeurs choisies par
I'analyste dans le domaine nominal de fonctionnement du systéme de protection.

L'atelier CLAIRE permet de réaliser la simulation du fonctionnement par le déroulement du
programme binaire sans avoir besoin du matériel (carte de l'unité centrale, cartes
périphériques...) qui est utilisé sur le site. Il permet :

- la constitution d'un environnement qui reproduit les échanges entre chaque
microprocesseur et les circuits (horloge, circuit de communication, mémoires...) qui lui sont
associés dans chaque unité du syst¢me de protection installé sur le site,

- l'exécution des programmes binaires des unités du systtme de protection par un
simulateur de microprocesseurs, avec la production de fichiers spécifiques qui tracent toutes
les interactions entre les microprocesseurs et leurs environnements, avec mention du temps
d'exécution,

- la présentation, sous une forme synthétique (chronogramme, courbes...), des valeurs
prises par les différentes variables surveillées, afin de permettre une analyse des résultats de
simulation.

La reconstitution de I'environnement du programme binaire et du microprocesseur qui
I'exécute est obtenue par le développement de logiciels spécifiques qui remplacent les matériels
sollicités par ces programmes. Ce développement est fait en utilisant essenticllement une
description graphique basée sur la méthode SA/RT.

L'exécution des programmes tient compte des valeurs des variables d’entrée données par les
jeux d'essais congus pour cette étude de consistance.

Dans un premier temps, une sélection des conditions de fonctionnement normales du systeme
de protection sera exécutée pour s'assurer de l'adéquation de la modélisation obtenue par
I'environnement développé pour cette étude. Dans un second temps, des exécutions seront
réalisées pour vérifier le comportement des logiciels du systtme lorsque celui-ci est mis en
situation de fonctionnement particuliere (dégradation de la logique de vote 2/4 par exemple)
prévue dans la spécification.

Le systeme simulé et ses jeux d'essais seront réutilisés pour vérifier la non régression du bon
fonctionnement de chaque version de ces logiciels.

6.1.3 - Etude de robustesse

Cette étude a pour objectif principal de juger du comportement des logiciels de 1'ensemble
représentatif soumis 3 des jeux d'essais, définis auparavant, qui représentent des
dysfonctionnements du systtme de protection ou des systtmes lui délivrant des informations.
Les jeux d'essai sont focalisés sur les composants critiques ou sensibles détectés lors des étapes
précédentes. Elle met en place une analyse qui présente un aspect complémentaire aux tests
réalisés par le fabriquant.

Cette étude utilise les outils de simulation décrits pour 1'étude de consistance, afin de
constituer un environnement plus complet permettant notamment d'atteindre certaines variables
internes des logiciels qui sont représentatives de dysfonctionnements recherchés.

Les résultats des simulations obtenus avec les différents jeux d'essais pour la robustesse
doivent étre analysés pour identifier 1'état de chaque variable de sortie des logiciels impliqués
dans ces simulations.

L'analyse est poursuivie, au niveau des sorties du systéme, pour identifier les conséquences
des dysfonctionnements introduits et d'en tirer les conclusions sur 1'adéquation des
comportements du syst¢me en regard des missions qu'il doit assurer.

6.2 - Validations de spécifications

Le projet ESCRIME en cours de développement au CEA consiste a évaluer les architectures de
contrfle-commande des centrales nucléaires du futur: il s'agit de trés gros systemes répartis,
dans lesquels les préoccupations de type temps-réel, anciennement confinées au plus bas niveau
des automatismes, deviennent omniprésentes, en raison des croissances de !'automatisation du
systeme, des contraintes d'optimisation du processus, et des exigences en matiere de stireté de
fonctionnement.

L'application de contréle-commande gere une hiérarchie d'objectifs:

- au plus haut niveau, 1'objectif global s'exprime sous une forme 'externe’, telle que le
profil de puissance a fournir au réseau.

- cet objectif global est transformé dynamiquement en une suite d'objectifs courants (par
exemple : amener la tranche dans 1'état d'arrét intermédiaire diphasique), en fonction de 1'état
du réacteur, de la disponibilité de ses sous-systémes...

- l'objectif courant est finalement décliné en objectifs fonctionnels concernant les
grandeurs physiques telles que la pression, la température, la réactivité... Ces objectifs sont
atteints au moyen de la mise en oeuvre de sous-systeémes physiques et de boucles de régulation
de bas niveau.

Les comptes rendus et messages d'erreurs remontant d'un niveau conduisent le niveau
supérieur A revoir sa stratégie pour respecter ses objectifs, ou, a défaut, a faire remonter
I'erreur. On en arrive ainsi a mettre en oeuvre des logiciels de prise de décision complexes.

L'évaluation d'un tel systtme nécessite en premier lieu un outil permettant d'évaluer son
comportement dynamique, en jouant des scenarii prédéfinis ou interactifs, en observant
graphiquement 1'évolution de grandeurs physiques simulées.

Le systtme est décrit dans le formalisme CLAIRE sous forme de boites hiérarchisées,
échangeant des flots de données et de contrdle. Les boites du dernier niveau de décomposition
sont &crites en C, ou peuvent incorporer des codes complexes existants: dans la réalité, le
contrdle-commande est bien sir rebouclé par le processus physique; dans sa version simulée
avec CLAIRE, il est rebouclé 2 un simulateur de process déja existant qui est figuré par une
des boites de la description hiérarchique.

La phase de simulation est interactive, certaines variables du systtme simulé étant représentées
par des objets graphiques tels que potentiometres, cadrans... Ces éléments peuvent, de plus,
influencer le cours de la simulation en répercutant les actions graphiques de 1'utilisateur vers
les variables et contrdles du simulateur.

L'utilisateur peut choisir dynamiquement les variables représentées, afin de pouvoir traiter des
applications de grande taille, comportant un grand nombre de variables.

Des observateurs peuvent étre juxtaposés au systtme simulé, afin de détecter en ligne des
situations telles que :

- blocage,

- indéterminismes,

- insuffisance de ressources CPU,

- non respect de contraintes temporelles,

- non respect de séquences d'événements.

Une mesure de couverture peut étre effectuée.

Les simulations peuvent étre rejouées afin de rechercher la cause d'une situation anormale, et
afficher les résultats sous forme de courbes, extraction de configurations...

7 - EXTENSION

Les travaux en cours portent sur 1'extension des possibilités d'interactions de 1'opérateur au
cours de la simulation : actuellement, le suivi dynamique du déroulement de la simulation se
fait de fagon textuelle. Des moyens graphiques de visualisation et de commande rendraient ce
suivi plus aisé.

Il est prévu :

- d'offrir & I'opérateur de choisir le mode de représentation le plus approprié
(potentiometre,cadran,texte...) pour suivre 1'évolution dynamique de ses variables,

- de modifier la valeur courante d'une variable avec ce méme mode de représentation,

- d'enrichir les moyens actuels de contrdle de la simulation en prévoyant notamment des
possibilités de pas a pas et de modulation de la vitesse d'exécution.

8 - DISPONIBILITE

CLAIRE est écrit en langage C et XWindow; il est disponible sur Vax/VMS et est en cours de
portage sur SUN.

Les simulateurs de microprocesseurs actuellement disponibles sur VAX sont ceux des M6800,
M68000, M68010, M68020, 18051, 18086.

