
FR960 317

o

o<

RAPPORT DES/184 f

CLAIRE,
UN OUTIL DE SIMULATION

EVENEMENTIELLE
POUR LE TEST
DES LOGICIELS

RAGUIDEAU J., SCHOEN D.,
HENRY J.Y., BOULC'H J.

OGGI INSTITUT DE
DEPARTEMEN

PROTECTION
T D ' E V A L

ET DE SURETE NUCLE AIRE
UATION DE SURETE

R

BARP.QRT P.E53/184i

CLAIRE,
UN OUTIL DE SIMULATION EVENEMENTIELLE

POUR LE TEST DES LOGICIELS

RAGUIDEAU J.*, SCHOEN D. *,
HENRY J.Y. , BOULC'H J.

Specialists’ Meeting on
"Advanced Control and Instrumentation Systems

in Nuclear Power Plants :
Design, Verification and Validation"
(IAEA, IWG-NPPCI, IWG-ATWR)

ESPOO (FINLAND), 20-23 juin 1994

LETI, DEIN
DES/SAMS Juin 1994

CLAIRE
Un outil de simulation tvtnementielle

pour le test des logiciels

Jacques RAGUIDEAU
Dominique SCHOEN

Commissariat a I'Energie Atomique
LET1 (CEA -Technologies avancees)

DEIN - CE/S F91191 Gif sur Yvette Cedex

Jean-Yves HENRY
Jacques BOULC'H

Institut de Protection et de Surety Nucleaire
Departemeru devaluation de la surete

CEA CENFAR
B.P. 6 - 92265 Fontenay-aux-roses

RESUME : CLAIRE foumit un environnement purement logiciel permettant de
valider des applications temps-reel distributes, soit au niveau des specifications,
soit au niveau du code.
L'outil offre les facilites graphiques de modelisation de V application et de son
environnement; il effectue de (agon trts efficace la simulation du modele entre
et assure le controle de revolution des donates dynamiquement ou en temps
difftrt.

1 - INTRODUCTION

L'outil CLAIRE a ttt initialement rtalist pour rtpondre aux besoins de 1'Institut de Protection
et de Surett Nucltaire (IPSN) dont le role est d'effectuer les analyses de surett qui permettent
d'tvaluer les dispositions prises par les exploitants d'installations nucltaires.
Dans ce cadre, 1'IPSN est ament & rtaliser des ttudes de dossiers pour ces installations.
Certains systtmes ont un degrt de criticitt tel qu'il est apparu ntcessaire de disposer d'outils
de simulation devant permettre l'extcution de tests sptcifiques sur les logiciels qu'ils inttgrent.

Le besoin ttait de disposer d'un outil permettant de dtcrire I*environnement de logiciels afin
d'tvaluer leur comportement en rtponse & des entrtes normales ou k des fautes. L'outil devait
permettre la simulation d'applications temps-rtel distributes sans alttration de leur
comportement temporel.
La multiplicitt et la complexitt des environnements ainsi que la souplesse souhaitte rendant
difficile voire impossible toute simulation mattrielle, le choix d'une simulation purement
logicielle s'est impost.

1

Ce besoin de model!sation et de simulation relive en fait d'un souci common k tous les
r^alisateurs de logiciels complexes: comment depasser le stade des tests unitaires, ou les
d6bogueurs peuvent suffire, pour valider une application temps-reel dans son ensemble?

Cette interrogation devient tout a fait cruciale pour les logiciels de "surete" dont les
ddfaillances peuvent entrainer des situations catastrophiques.
Les phases de specification de ces logiciels particulifcrement critiques bdneficient d6j& de
formalismes permettant d'effectuer des verifications sur ces specifications: les r£seaux de
Petri, les langages synchrones apportent chacuns des reponses dans le domaine qui leur est
propre: verifications temporelles, verifications de propriete de surete.
Outre le fait que ces formalismes ne sont pas toujours applicables & la taille et & la complexite
des applications, ils ne permettent pas une validation sur le code reellement implante dans ces
installations critiques.
CLAIRE permet k la fois d'effectuer des verifications de proprietes de surete A partir d'une
modeiisation de specifications mais egalement de valider le code final en simulant le
comportement de ses interfaces materielles et logicielles. II permet d'observer et de
commander dynamiquement le deroulement de la simulation, mais egalement d'enregistrer les
evolutions des entites simuiees pour les analyser apres coup.

2 - PRINCIPES DE L'OUTIL

Les principes sur lequels CLAIRE est base sont la modeiisation par flots de donnees et la
simulation evenementielle de cette modeiisation. Le choix "evenementiel" est lie a la validation
de code: la production d'un evenement constitue la reaction associee aux passages du code par
des etats attendus: valeur du PC, ecriture k une adresse donnee... Ce choix s'applique sans
difficulte aux validations de specifications.

2.1 - Modeiisation

Un modeie flot de donnees est aisement exprimable sous forme graphique. La modeiisation
adoptee dans CLAIRE consiste k decrire de faqon hierarchique descendante les differents
elements de 1'application, selon un formalisme proche de celui de la methode SA/RT.
Chaque entite est representee par une boite, chaque boite peut se decomposer et se raffiner en
boites de niveau inferieur. Les boites feuilles de la decomposition sont des procedures ecrites
en langage C dans lesquelles est decrit le rdle fonctionnel de la boite.

Ces boites echangent des flots d'information symbolises par des fils. Ces flots peuvent etre
definis comme continus ou discrets. Les modifications des flots discrets vont dedencher les
procedures feuilles auxquelles ces flots aboutissent.

2.2 - Simulation evenementielle

Toute modification d'un flot est associee k la creation d'un evenement. Les informations
portees par un evenement sont la variable concemee, la valeur k affecter k la variable, la date
d'echeance c'est a dire 1'instant auquel cette affectation devra se faire, et enfin la liste des
fonctions k dedencher lors de cette affectation.
Les evenements crees par les procedures sont places dans un echeancier et ordonnes en
fonction de leur date d'echeance. La simulation exploite cet echeancier, met k jour les donnees
et active les fonctions associees aux flots dedenchants.

2

3 - ROLE DE L'OUTIL

CLAIRE permet d'effectuer des validations de specifications et des validations de codes
executable.

3.1 - Validation de specifications

L'outil permet de realiser des modeiisations de systemes k partir de leurs specifications. Les
elements entrant dans la decomposition sont decrits suivant le degre de finesse necessaire: ils
peuvent 6tre decrits comme des boites noires si on ne s'interesse qu'aux interactions avec
l'exterieur ou comme des boites blanches si on s'interesse au fonctionnement interne.
Un element "boite noire" peut, lors d'une modeiisation plus fine, etre remplace par sa
modeiisation "boite blanche", voire k terme par son algorithme reel. Cette facilite permet de
valider des applications de fagon incremental.

II est possible avec CLAIRE de faire des modeiisations assimilables aux r6seaux de Petri et
done d'effectuer des validations sur le comportement temps reel de 1'application modeiisee. La
transposition consiste k associer les fonctions aux transactions et les jetons aux evenements:
une fonction est ddclenchee quand un jeton (un evenement sur une donnee) arrive sur une place
d'entree de la transition qu'elle realise. La fonction evalue ses conditions sur les jetons
d'entree et si elles sont satisfaites, la fonction absorbe les jetons, e’est k dire reinitialise ses
conditions d'entree, execute son corps puis place des jetons dans ses places de sortie, e'est k
dire erde d'autres evenements qui sont les jetons d'entree d'autres fonctions.
L'avantage de cette transposition reside dans la possibilite de decrire et d'executer des
applications tr&s consequentes, ce qui est difficile avec les reseaux de Petri.

3.2 - Validation de logiciels

L'outil peut etre utilise pour tester des logiciels executables, distribues sur un ou plusieurs
microprocesseurs. II permet d'etudier leurs comportements dans les cas limites et d'evaluer
leur resistance aux fautes.
Les boites decrivent alors 1'environnement des logiciels k valider: interfaces materielles ou
logicielles, evolutions des parambtres de Vinstallation...
Des boites associees non plus k 1'environnement mais k une strategic de tests, peuvent etre
integrdes k la modeiisation: observateurs charges de detecter 1'occurrence de tel ou tel
evenement ou oracles permettant la comparaison k un comportement de reference.

L'environnement est decrit selon la methode proposee plus haut, le logiciel k tester donne lieu
k une boite particuli&re dans la description graphique et k une procedure particulibre au sens de
la simulation evenementielle.
Les entrees/sorties de cette procedure correspondent aux echanges du microprocesseur avec
son environnement. La procedure est realisee par un simulateur de microprocesseur qui regoit
en parametres le code k executer et une description de la correspondance entre les echanges et
les evenements internes.

L'outil peut meme dans ce cas etre utilise comme un debogueur de code puisqu'il permet
d'acceder aux differents registres et valeurs de la memoire interne du microprocesseur.

3

4 - COMPOSANTES DE L'OUTIL

CLAIRE se compose des elements suivants: un editeur graphique, un gdndrateur de code, un
noyau de simulation, un analyseur de resultats.

U editeur graphique permet la manipulation des boites et fils de la modelisation et assure la
verification de la coherence des informations entrees.

Le generateur de code analyse la description graphique entree par l'operateur. Un formalisme
de denomination des boites permet au generateur d'identifier les boites "modules" auxquelles
seront associes les fichiers source C qui sont les unites de compilation.
Le gendrateur de code exploite les flots de donnees decrits dans le graphique pour creer
automatiquement les parties declaratives de chaque module. II g6n&re les declarations de
procedures et insere le code C associe entre pour chaque boite terminate dans la description
graphique.
Ces modules sont compiles. L'edition de liens qui cr6e le module executable de la simulation
reunit les modules gdndres associes k V application et les modules composant le noyau de
simulation.

Le noyau de simulation exploite un dchdancier contenant des evenements dates. Ces
evenements sont produits par les procedures lors des modifications, immediates ou differees,
des valeurs des flots. Ils sont insdres dans Vechdancier k une place correspondant k la date k
laquelle ils doivent etre executes.
A la date prevue, le noyau de simulation affecte aux flots les valeurs portdes par les
evenements, provoque Vexecution des procedures associees aux flots declenchants et memorise
la nouvelle valeur du flot.

V analyseur de resultats facilite 1'exploitation des fichiers souvent tits volumineux contenant
revolution des flots au cours de la simulation.
Cette analyse statique des resultats complete V analyse dynamique effectude par les
observateurs qui peuvent, pendant la simulation, detecter des situations programmees.
L'analyseur de resultats permet, lui, de naviguer a posteriori dans les evenements issus de la
simulation pour les analyser plus finement,et dventuellement detecter des situations non
voulues.
L'analyseur offre des facilites graphiques de trace de courbes, de chronogrammes ou de
tableaux de valeurs; des possibilites de zoom, de modifications d'echelle, de reperages entre
courbes sont egalement offertes.

5 - PROGRAMMATION DU MODELS

La programmation consiste k dec lire le fonctionnement des boites feuilles de la description
graphique; seule la partie executive des procedures est k effectuer par le programmeur: la
partie declarative est prise en compte par le generateur de code.
Le langage C a ete choisi comme langage de programmation pour les procedures modeiisant
1'environnement. C'est egalement le langage de developpement du noyau de simulation ce qui
favorise 1'integration du tout.

Le choix du langage C rdsulte bien sur de sa large diffusion mais aussi de ses caracteristiques
pour trailer le problems : compilation separee, portee des variables, structuration des donnees,
manipulation des fonctions qui permet d'associer une adresse de fonction k un 6venement et
done d'avoir une simulation performante.

4

De plus, en disposant du langage C pour dEvelopper ses procedures, l'utilisateur dispose de
toute la puissance de ce langage et de toutes ses possibilitEs d'interface avec des produits
existants: il peut faire appel k toutes les procedures de la "run time library”, utiliser
XWINDOW pour animer sa simulation...

Le developpement du module qui constituent la simulation ne necessite done l'apprentissage
d'aucun langage spEcifique dedie au test: il est k la portee de tout developpeur C.

6 - APPLICATIONS DE L'OUTIL

6.1 - Experience d'evaluation des logiciels des systemes classes IE

6.1.1- Presentation de la demarche d'evaluation

Le processus d'autorisation de fonctionnement des centrales nucieaires comprend des etapes
obligatoires qui donnent lieu notamment k un examen detailie du controle-commgmde.

Get examen prend en compte les aspects lids aux technologies (circuits intEgres, logiciels) qui
ont 6te choisies par le fabricant pour les systemes programmes qui assurent des fonctions
classEes de surete.

L'appui technique (IPSN) de 1'autorite de surete (DSIN) a pour charge de rEaliser toutes les
investigations qu'il juge n6cessaires afin de s'assurer que les mEthodes et techniques mises en
oeuvre par le fabricant et l'exploitant garantissent, pour les logiciels des systemes classes IE,
la surete attendue et permettent une testability et une maintenabilite suffisantes. Pour ce faire,
il porte plus particulterement son attention sur les aspects suivants:

- mEthodes de developpement des logiciels rationnelles et rigoureuses suivant un plan
prEcis d'assurance de la qualite (documentation et code);

- tegles strictes de programmation pour la production d'un logiciel testable et
maintenable (code);

- tests mis en oeuvre pour assurer un taux de couverture suffisant aussi bien chez le
fabricant que sur site (simulation).

L'Evaluation des logiciels est rEalisEe en prenant en compte notamment les rEsultats des deux
analyses suivantes:

-1'analyse des documents (conception du logiciel, procEdures de qualite, maintenance),
- Vanalyse dynamique k l'aide de 1'atelier CLAIRE, rEalisEe sur le code binaire foumi

par le fabricant de logiciel.

L'analyse dynamique a pour objectif de montrer le comportement du logiciel soumis:
- k des stimuli dont les valeurs sont prises parmi les conditions prEvues par le domaine

nominal de fonctionnement du systems qui utilise le logiciel sous test (Etude de consistance),
- k des stimuli dont les valeurs correspondent k des cas de dysfonctionnement du systems

qui utilise le logiciel sous test (Etude de robustesse).

La demarche adoptee pour V Evaluation des logiciels du systems de protection des REacteurs k
Eau sous Pression est prEsentEe ci-aprEs pour la partie qui conceme l'analyse dynamique.

5

6.1.2 - Etude de consistence

L'etude de consistance permet de verifier les valeurs prises par les sorties du syst&me (par
exemple la commande d'arret d'urgence) lorsque les entrees prennent des valeurs choisies par
l'analyste dans le domaine nominal de fonctionnement du syst&me de protection.
L'atelier CLAIRE permet de realiser la simulation du fonctionnement par le d6roulement du
programme binaire sans avoir besoin du materiel (carte de V unite centrale, cartes
p6riph6riques...) qui est utilise sur le site. II permet:

- la constitution d'un environnement qui reproduit les ^changes entre chaque
microprocesseur et les circuits (horloge, circuit de communication, mdmoires...) qui lui sont
associds dans chaque unite du syst&me de protection install^ sur le site,

- V execution des programmes binaires des unites du syst&me de protection par un
simulateur de microprocesseurs, avec la production de fichiers specifiques qui tracent toutes
les interactions entre les microprocesseurs et leurs environnements, avec mention du temps
d'execution,

- la presentation, sous une forme synthdtique (chronogramme, courbes...), des valeurs
prises par les differentes variables surveilldes, afin de permettre une analyse des r£sultats de
simulation.

La reconstitution de V environnement du programme binaire et du microprocesseur qui
1'execute est obtenue par le developpement de logiciels spdcifiques qui remplacent les materiels
sollicites par ces programmes. Ce developpement est fait en utilisant essentiellement une
description graphique basee sur la m£thode SA/RT.

L'execution des programmes tient compte des valeurs des variables d'entree donndes par les
jeux d'essais congus pour cette etude de consistance.

Dans un premier temps, une selection des conditions de fonctionnement normales du systbme
de protection sera executes pour s'assurer de 1'adequation de la moderation obtenue par
Venvironnement developpe pour cette etude. Dans un second temps, des executions seront
realisees pour verifier le comportement des logiciels du systems lorsque celui-ci est mis en
situation de fonctionnement particuli&re (degradation de la logique de vote 2/4 par exemple)
prdvue dans la specification.

Le systbme simuie et ses jeux d'essais seront reutilises pour verifier la non regression du bon
fonctionnement de chaque version de ces logiciels.

6.1.3 - Etude de robustesse

Cette etude a pour objectif principal de juger du comportement des logiciels de 1'ensemble
reprdsentatif soumis k des jeux d'essais, definis auparavant, qui represented des
dysfonctionnements du systems de protection ou des systbmes lui deiivrant des informations.
Les jeux d'essai sont focalises sur les composants critiques ou sensibles detectes lors des etapes
prdcedentes. Elle met en place une analyse qui presente un aspect compldmentaire aux tests
realises par le fabriquant.

Cette etude utilise les outils de simulation decrits pour Vetude de consistance, afin de
constituer un environnement plus complet permettant notamment d'atteindre certaines variables
internes des logiciels qui sont representatives de dysfonctionnements recherches.

6

Les resultats des simulations obtenus avec les differents jeux d'essais pour la robustesse
doivent dtre analyses pour identifier l'dtat de chaque variable de sortie des logiciels impliquds
dans ces simulations.

L'analyse est poursuivie, au niveau des sorties du syst&me, pour identifier les consequences
des dysfonctionnements introduits et d'en tirer les conclusions sur V adequation des
comportements du systdme en regard des missions qu'il doit assurer.

6.2 - Validations de specifications

Le projet ESCRIME en cours de ddveloppement au CEA consiste k ^valuer les architectures de
contrdle-commande des centrales nucldaires du futur: il s'agit de trds gros systemes repartis,
dans lesquels les preoccupations de type temps-rdel, anciennement confindes au plus bas niveau
des automatismes, deviennent omnipresentes, en raison des croissances de l'automatisation du
systeme, des contraintes d*optimisation du processus, et des exigences en mature de suretd de
fonctionnement.

L'application de contrdle-commande gdre une hierarchic d'objectifs:
- au plus haut niveau, l'objectif global s'exprime sous une forme 'exteme', telle que le

profit de puissance k foumir au reseau.
- cet objectif global est transforme dynamiquement en une suite d'objectifs courants (par

exemple : amener la tranche dans l'etat d'arret intermediate diphasique), en fonction de l'etat
du rdacteur, de la disponibilite de ses sous-systemes...

- l'objectif courant est finalement decline en objectifs fonctionnels concemant les
grandeurs physiques telles que la pression, la temperature, la reactivite... Ces objectifs sont
atteints au moyen de la mise en oeuvre de sous-systemes physiques et de boucles de regulation
de bas niveau.

Les comptes rendus et messages d'erreurs remontant d'un niveau conduisent le niveau
superieur k revoir sa strategic pour respecter ses objectifs, ou, & defaut, k faire remonter
1'erreur. On en arrive ainsi k mettre en oeuvre des logiciels de prise de decision complexes.

L'evaluation d'un tel sy steme ndcessite en premier lieu un outil permettant d'evaluer son
comportement dynamique, en jouant des scenarii predefinis ou interactifs, en observant
graphiquement revolution de grandeurs physiques simuldes.

Le sy steme est ddcrit dans le formalisme CLAIRE sous forme de boites hidrarchisdes,
dchangeant des flots de donndes et de controle. Les boites du dernier niveau de decomposition
sont dcrites en C, ou peuvent incorporer des codes complexes existants: dans la rdalitd, le
contrdle-commande est bien sur reboucld par le processus physique; dans sa version simulde
avec CLAIRE, il est reboucld k un simulateur de process ddj& existant qui est figure par une
des boites de la description hidrarchique.

La phase de simulation est interactive, certaines variables du systdme simuld dtant reprdsentdes
par des objets graphiques tels que potentiomdtres, cadrans... Ces elements peuvent, de plus,
influencer le cours de la simulation en rdpercutant les actions graphiques de l'utilisateur vers
les variables et controles du simulateur.

7

L'utilisateur peut choisir dynamiquement les variables representees, afin de pouvoir trailer des
applications de grande taille, comportant un grand nombre de variables.

Des observateurs peuvent etre juxtaposes au syst&me simuie, afin de ddtecter en ligne des
situations telles que :

- blocage,
- ind6terminismes,
- insuffisance de ressources CPU,
- non respect de contraintes temporelles,
- non respect de sequences d'ev6nements.

Une mesure de couverture peut etre effectude.

Les simulations peuvent etre rejou6es afin de rechercher la cause d'une situation anormale, et
afficher les resultats sous forme de courbes, extraction de configurations...

7 - EXTENSION

Les travaux en cours portent sur Vextension des possibility d'interactions de l'opdrateur au
cours de la simulation : actuellement, le suivi dynamique du ddroulement de la simulation se
fait de faqon textuelle. Des moyens graphiques de visualisation et de commande rendraient ce
suivi plus ais6.
II est prdvu :

d'offrir & l'operateur de choisir le mode de representation le plus approprie
(potentiom&tre,cadran ,texte...) pour suivre revolution dynamique de ses variables,

de modifier la valeur courante d'une variable avec ce meme mode de representation,
d'enrichir les moyens actuels de controle de la simulation en prdvoyant notamment des

possibilites de pas a pas et de modulation de la vitesse d'execution.

8 - DISPONIBELITE

CLAIRE est ecrit en langage C et XWindow; il est disponible sur Vax/VMS et est en cours de
portage sur SUN.

Les simulateurs de microprocesseurs actuellement disponibles sur VAX sont ceux des M6800,
M68000, M68010, M68020, 18051, 18086.

8

