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ABSTRACT

We consider the theory of the massive real vector field with spin 1, (the real Proca
field), and its solutions. First the field equations with dual symmetry [1] are written,
and the 4-pseudo vector is chosen to be zero. The constants of motion for the real
Proca field, constant “electric” real Proca field, the uniform motion of a point charge
in the real Proca field, uniform motions in the “Coulomb” field, dipole and multi-pole
free momentum, constant “magnetic” field, and the field of a point charge in motion, are

presented.
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1 Introduction

The conventional Maxwell equations are based on the hypothesis that the photon has zero
mass.

Some experiments are based on the idea, whether a photon has a mass, or not [2]. But
new experiments are done by quasi-real photon-proton collisions, the photon remnant
produced in resolved photon interaction has been isolated. The selected events contain
two high-pr jets with pr > 6GeV, and n < 1.6, and 130 < W,, < 270GeV. The mean
value of pr for photon remnant, 2.1£0.2GeV, is substantially larger than the Monte
Carlo expectation [3]. It is important to mention that physicists are interested in self
interaction, preacceleration, runaway solutions, and finite-size effects. Some calculations
are presented for nucleus-nucleus collisions at p;, = 200GeV/c. The experimental data
would then signal the onset of new phenomena such as a quark-gluon plasma [4].

It is known that since 1930, when the conventional Maxwell Lagrangian was modified
by a mass term, Proca Lagrangian was obtained in 1936 [5]. Luis de Broglie [6] had a
large influence on a younger generation like Proca and Petiau, and he tried to explain
that the photon has a mass.

Yukawa first introduced mesons in 1934, when he postulated the existence of a “heavy
particle” which would mediate the transition by a proton state to neutron state [7].
The new field of force had a potential function satisfying the Klein-Gordon equation
and an interaction energy between two particles given by what is now known as the
Yukawa potential. In 1936 Proca [5] elaborated on the theory by generalizing the Maxwell
equations to fields with nonzero mass (the Proca equations).

Today, the Proca field may be interesting for physics. Proca’s work was discussed very
rigorously. Yukawa and Sakata [8] constructed the theory of the charged scalar field.

Historical, dual symmetry first appeared in classical electrodynamics, where Maxwell
equations for the free electromagnetic field are invariant under the transformations

E— +B , B — :FE
Heaviside observed this peculiarity, but its meaning, as a symmetry, appeared much later
(Larmor, 1928).

In the general case, Maxwell equations can include the magnetic current [9]. In that
case we have to discuss the magnetic monopole. Dirac was the first to propose the
monopole to quantize the electric charge [10].

In 1974, ’t Hooft and Polyakov found the solution of the magnetic monopole making
spontaneous symmetry breaking. In this case the monopole will come out as a topologi-
cally non-trivial finite-energy solution.

Today, physicists are interested in mono-pole solutions in supersymmetric theories [12].

We would like to consider the Proca field on the dual-symmetry basis as a mathematical
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artifact, in which we include dual fields, and the dual tensor [1]. It should be a general
Lagrangian. Also we would like to find some static and quasi-static solutions of that field.

The paper is organized as follows. The Lagrange equations, the canonical Proca field
equations with the source, density and a current energy, are discussed in Sect.2. The
constant “electric’ real Proca field, “electric” energy of a point charge, the field of a
point charge in the “Coulomb” field, dipole and multi-pole orbital momentum, and the
system of charges in an exterior field will be discussed in Sec.3. In Sec. 4. the constant
“magnetic” field, “magnetic” momentum, the relationship of the “magnetic” and the
mechanical momentum will be discussed. Our results will be found in Sect.5.

2 Lagrangian equations

The Lagrangian of the real Proca field generated by point sources in the dual symmetry

formulation is:
L=Lp+ Liny + Lp, (1)

L = l[—l aﬂFaﬁ+F2—G2+I‘L2(AaAa—bqba)] -
8r Ll 2

Jqe A% — jgab® —mgy/1 — vz — Mgy /1 — v, (2)

where

Faﬂ = aaAB —_ aﬁAa — ‘—;‘-Eaﬁec (6£bc — abe) , (3)
G = 9, A%, (4)
F = 3,b°, (5)

Here A® is a 4-vector field, and b“ is a 4-pseudo-vector field, with k being a scalar constant.
Indices “q” and “g” denote the charge for the current, and charge for the pseudo-current
respectively. The Lorentz metric is 7,, = diag(l, —1,~-1,—1), and also A = ¢ = 1. The

field equations are:
(8,07 + K7) A* = 4mjt, (6)

(8,0" + K?) b* = 4mjt 7)
These are clearly invariant under the dual transformations [1]
A" = A%cos\ + b%sin), (8)
b = b*cosA — A%sina, (9)
where X is a free constant. According to (3) F*% and F°? transform as

Fozﬂ —_ Fa,@’ Fvaﬂ —_ __Faﬂ
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or
Flg = Fapcos) + Fogsin), (10)

F'op = Fopcosh — Fogsin), (11)

where

FoB . 9o — P %gaﬁfc (35Ac _ 3cA£) ,

The currents also transform as:
Jg = JgcosA+ jgsind, ji* = jgcosA + jgsinA, (12)
g = Jgcosh — jasinh,

2.1 The canonical equations for the real Proca field with sources

The Lagrangian density is

£ o= o [(-00d~ VA~ (ratdy? — (~58 — V)" + (roth)]

—-Zl; [(—aoﬁ— V5)" — (04 + VA)Q]

e (4 )~ (-]
—pgA° — jq - pgbo - jga*‘ Lyp. (13)

where
A% = (A% A), b* = (b°,).

Now we will write the canonical field equations:
Oa(FP +n*P) + k%A% = 0, (14)
Oa(FP + 1% F) 4 k2P = O
Fo = 948 — ScoPE (0K — o),
Fob = 525 — %e"[’« (85 AC - 8%,
G = 0,A%, F = J,b%,
and it is a simple exercise to show
rotB = 6oE + gradG — 2A + 477, (15)
roth = —9,B — gradF + k% — 47rj"g,
divE = —8,G — k2A° + 4mpq,



divB = —8F — k2° + 47 pg,
E = —8,A — gradA® — rotb, (16)
B = —8yb — gradt® +rotA,

G = 8o A° + divA,

F = 90" + divb.

Also, it is simple to see that the canonical equations, (15) and (16) have a proper dual
symmetry. Equations (16) define the vector of “electric” and “magnetic” field and the

Lorentz condition.

2.2 Density and the current of energy

Dual symmetry combined with the 4-vector field and 4-pseudo vector field (egs. (14),
(15), (16)), will be separated in two solutions:

A% £0, b =0, (17)

B* £0, A*=0.

In this paper we would like to consider the case when 4-pseudo vector is chosen to be

zero. Then equations (15), (16) become:
rotB = &F — k?A + 47rfq, (18)

TOtE = —80§,

divE = —Kk2A° + 4mp,,

divB = 0,
E = —8,4 — gradA°, (19)
B= rot/_l‘,

BoA? + divA = 0,

and, after a short calculation, and after the integration in the whole space, and neglecting
the element in which the field in the infinite goes to zero, we obtain our first result, the
energy density and the Pointing vector of the real Proca field, respectively:

8=%[E2+}§2+n2(/1°+22)]. (20)
5= (Bx B+wad). (21)



Using the Noether theorem, we have the energy-momentum 4-vector:

1 . -
P = / [E% + B% + G2 + £*(A% + A%) — 28°A°G + 24°3°G)d?z, (22)
Pi= ;;ﬂE>d3+ﬁAM+GVﬁ+AWQf (23)

Having a good choice of the scalar constant G, it is easy to see that (22), and (23) agree
with (20), and (21).

3 Constant “electric” real Proca field
(the equations of the constant “electric” real Proca

field, the “Coulomb” law)

Equations (18) and (19) simplify to

divE = —Kk?A° + 47 p,, (24)
rotE = 0,
E = —gradA°,

where the “electrostatic” potential A° satisfies
(A - &%) A° = —4mp, (25)

Solving this equation, we get, (4, 13]

-

o\ ke dk
A0 (7) = / A(k)e* R (26)
(,r-.') — fk tki" Fq)(dk) — % L |f+°° kstg’]c'rzt'il:;rql dk (27)
r_.q____w‘e—lclr rq|
and )

= K K=y (= =

E:q(|F—F|3+|F—FI2>e | g (7 — 7). (28)
q q

The “electrostatic” potential propagates to the distance fixed by the constant «, and it is
the “Coulomb” potential of the real Proca field. Now we can discuss eq. (28):

R r.,| < K, then we have that the first element in (28) dominates.

b. o > then we have that the second element dominates.

a.

c. K — oo, then we can neglect at once the first element in eq. (28), but after some
calculation we can neglect, also the second element.

One region exists, which is the total difference of electromagnetic field, and we can
say that effective action of the Proca field increases with 1/r%. Probably, we can expect

an essential difference with the electromagnetic field on a distance Ar = 107 ?m
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3.1 The “electric” energy of a point charge

According to 4-vector energy momentum, the “electric” energy is determinated by
1 ~ 2
0 2, 2402\ 53
P.,SW/(E + k2A )dx. (29)

Knowing that E = VA°, and divE = —k2A4° + 47p, eq. (29) becomes
P°= % / p A8z, (30)
Now, it is interesting to write the “electric” energy for two point charges
P’ = %plA? + %PzAg + %plAg + %PzA?- (31)

The first two elements present the self “electrostatic” energy of charges, and the second
two elements present their interaction. It is easy to see that the self-energy of a point
charged particle is infinite as in the electromagnetic case. This shows that the interaction
of the field and a point charge is generally not well defined. With the radiative correction,
this interaction can be solved as in the electrodynamics field [4, 13, 14], but this problem

is still open. The energy of the interaction charges can be written as

1 1 qlq2 el
2o A% 4 =, A — wlf1=7a] 32
291 2+2p2 1 IFI_F2|6 ( )
In general, for more charges
1 %9 —nlfs-751 (33)

257 I =73

3.2 The field of a point charge which has a uniform motion

At this point we can calculate the field of a uniformly moving charge

A0 = L=/ 1=/ (34)
T*
A= q_sze_r*/\/l_(v/c)z’
T*
where
r¢? = (z —vt)? — (1 - (v/c)2> (y2 + z2) (35)
and

I

R 1-(vfe)p? 1= (0/)sin®8\ . |1 (v/c)2sin?
B )" (HKRJ I- (/e )e RJ -y 0

Here 6 denotes the angle between the direction of motion and radius vector, B. For 8 = 0

—

Ey = qﬁ—s— (1 - (v/c)2) (1 + kR

= ) e’“RT/‘i“i’f’C’ﬁ“ﬁ, (37)

1—(v/c)?
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and for § = w/2 we get

= g T K C_NR.
EL =g pEy (1+&R) (38)

3.3 The motion of a point charge in the “Coulomb” field

Another interesting exercise is the motion of a point charge in the “Coulomb” field. The

Lagrangian of the system is

(’ g el
L, = mc*\/1 — (v/c)? + éA o — qA°. (39)

which is formally equal to that in the Maxwell theory. So the equations of motion are
analogous to those in electrodynamics,

dp _

— q -
- 4

which leads to the following equation in polar coordinates

d*u _my K\ _e/u
= p(l-i-a)e . (41)

3.4 Dipole and multi-pole orbital momentum

At distant points of a point charge system (26) takes the usual multi-pole expansion form

Pl PRl 62
A7) = Zi:qi - Tigrad . + l/ﬁDnmm, (42)
where
Dy = Z ¢ (3$m$¢m - T25nm) ) (43)
in,m
which is the quadripole momentum system of charges [15]. Equation (42) gives
E = 1 [(Bd ) r) F(l+kr)e ™ — T2J(1 + kT — rn2) e""] : (44)

for the dipole “electric” field. This is one of our results. One useful result is the potential

energy of two dipoles
P = ;15{7"2 (d_;(i:z) (1+nR-—r’m ) -—3(rod ) (FOJQ) (1+nR)e"‘R}. (45)

Up to now we have worked on the electric solutions of our equations. Let us now turn
our attention to the magnetic solutions.



4 “Magnetic” field

Like in electrodynamics, the constant “magnetic” field does not exist in the Proca field.
That constant “magnetic” field should appear as a consequence of the motion of a point
charge in the finite part of space-time. This motion is stationary and it is interesting to
consider the time averaging effect of this motion. Equation (18) denote the “magnetic”
field, and after time averaging, and knowing that elements which have time derivation for
the finite motion, are equal to 0, it becomes

rotB = —k?A + 47r;‘, (46)

div§ =0,

-

B = rot;f,
divA = 0.
The particular solution of AA = -—47r]_?q, according to (43) and (45) (for the point charge)
is )
A=g< >t (47)

and for the system of the point charges the vector potential is

- U; i

A= Zq, < : — e—n|r—1’.| >t . (48)
i |7 — 73

Knowing that B= rot/f, and after some calculation, we get a new result, the “magnetic”

vector for a point charge

= T X (F—1g)

B=rotA= qg< (L4 k|7 —7) e =l >, . (49)

-

|7 — 74l
This corresponds to the Biot-Savart law in electrodynamics. In the limit of Kk — 0, these
expressions agree with electrodynamics. For a large «, and |7 — | >> 1, the activity
of the field is small, and the second element in the small brackets is much larger than

the first one. In other cases the activity of the field is limited according to the system of
charges.

4.1 “Magnetic” momentum

By analogy with electrodynamics, we consider the time averaged “magnetic” field which
is far from the system of charges. Equation (48) can be expanded in 1/r, and keeping the
first element of this expansion, we get

1+ kr
273

A= e 3 qi < (7 X T) X 7>y, (50)
i
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where ¥, git; = d/dt 5, ¢;7; = 0. Equation (50) can be written in the form:

3 1+ kr —xr{mxF —Kr =
A= e (m")-—.(Ve /T)xm, (51)

where
n‘r',,==1/22q,~ﬁ X ;. (52)

The corresponding vector of “magnetic” field is our result

B= (e""/rs) {(FFfr’z) [3 (r +&r) + rz2r2] — (1 + &) r2} . (53)

4.2 “Larmor’ theorem

By analogy of electrodynamics we consider the system of points charges in the “magnetic”
field. According to (40) the force which acts on the system is

F=Y gt xH. (54)

The time averaging of this force equals zero, but the time averaged momentum of the

force is not equal to zero:

f?zl/zzq,-<(ﬁxa)xﬁ>,. (55)
The Lagrangian function is
L=y m/2(a+0xR) U, (56)
where
V=407 (57)

and () = e/ 2mB is the rotating angular velocity of the moving system, and U is the
potential energy for the charge in the “electric” field. Also, 7' is the velocity in the new
coordinate system, and V' is the velocity in the old coordinate system. On the other hand,
the Lagrangian function for the close system of charges in a homogeneous “magnetic” field,
is
Ly=Y qAievi=Y q/2(7 xv;)B. (58)
i i

Comparing (56) and (57), it is easy to see that equation (56) represents the Lagrangian
for the system of charges in a constant homogeneous “magnetic” field in the static sys-
tem. Using the two relations for the Lagrangian functions, one can see that in the non-
relativistic limit, the behavior of the system of points of charges with finite motions in
the central-symmetric “electric” field, and also in the “magnetic” weak field, is equivalent
to the motion of the same system of points of charges in the same “electric” field in the
coordinate system with uniform motion, and angular velocity. This is the theorem which

corresponds to the Larmor theorem in electrodynamics.
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5 Conclusion

The real Proca field contains one vector field (A,) and one pseudo-vector field (b,).We
have considered the case when the 4-pseudo vector is chosen to be zero.

The static and quasi-static real Proca field is considered in the dual-symmetry field
theory. The real Proca field is considered as a physical object equal to the electromagnetic
field, but this theory is not a gauge theory.

Interesting results in this article are: The constant of motion, in a general way, includ-
ing one vector field, and one pseudo-vector, the “Pointing” vector (21), energy density
(20), “electrostatic” field (28), the parallel and the orthogonal vector of the “electric” field
(37), (38), “electric” field for the dipole and multi-pole orbital momentum (44), the po-
tential energy of the points charges (45), the “magnetic” vector of a point charge (49),
the vector of the “magnetic” field (53), the“Larmor” theorem.

The main results of electrostatics and magnetostatics [15] are very similar to those in
the real Proca field, but the essential difference appears in the exponential factor which
suppresses this field.

The motion of one particle in the static real Proca field is very interesting. When
k (mass term) goes to 0, then one can obtain the Biot-Savart law, but when s goes to
infinity, then one has a different result for A

The fundamental problem in electrodynamics is the self field, and now, we see that it
persists here too.

One of the open questions is the solution of the “magnetic” mono-pole, and in that

case it is important to include also 4-pseudo vector field.

Acknowledgments

I would like to thank the International Centre for Theoretical Physics, Trieste, for hospital-
ity. Special thanks are due to Ms. A. Gatti for her continuous support and encouragement
and the Publications Office for their help. I am grateful to Professor E. Risaoglu for very
useful discussions. Thanks to Dr. G. Senjanovic for a discussion. Many thanks are also
due to my Professor K. Ljolje for recent useful discussions as well as his great help before
the Bosnian war. I would also like to thank Dr. A. Y. Shiekh and Ms. Mungapen for
their great help.

11



References

(1] K. Ljolje, Fortschr. Phys. 36, 1932 (1988);
S. Batric, and K.Ljolje, Il Nuovo Cimento, 107B, 51 (1992).

[2] A.S. Golhaber, M.M. Nieto, Rev. Mod. Phys., 43, 277 (1971),
M.A. Gindsburg, Astronomiceski Journal 40, 703 (1963),
M.A. Gindsburg, Sov. Astron. A J 7, 536 (1964).

[3] M. Derrick and ZUS collaboration, Phys. Letter B 354, 163-177 (1995).
[4] Brian W. Bush and J. Rayford Nix, Annals of Phys. 227, 97-150 (1993).

[5] Proca, J Phys. Radium 7, 346 (1936),
Proca, Compt. Rend. 190, 26 (1930),
Proca, J. Phys. Radium. 193, 832 (1931),
Proca, Compt. Rend. 202, 1366 (1936),
Proca, Compt. Rend. 202, 1490 (1936),
Proca, Compt. Rend. 203, 709 (1936),
Proca, J. Phys. Radium Ser. VII 7, 346 (1936),
Proca, J. Phys. Radium Ser. VII 8, 23 (1936),
Proca, J. Phys. Radium Ser. V (1936).

[6] De Broglie, I, Paris 1940, p. 40.

[7] H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).

[8] H. Yukawa, S. Sakata, Proc. Math. Phys. Japan 19, 1084 (1937).

[9] T. Cheng and L. Li, Gauge Theory of Elementary particle Physics, Oxford 1984.

[10] P.A.M. Dirac, Phys. Rev. 74, 817 (1948),
P.A M. Dirac, Proc. Soc. A 133, 60 (1931).

[11] S.B. Treiman, R. Jackiw, B. Zumino, E. Witten, Current Algebra and Anomaly,
Singapore, 1985.

[12] Summer School in high Energy Physicis and Cosmology (1995), J. Harvey (lecture
notes),
L. Alvarez-Gaumé (lecture notes),
P. Di Vecchia, Duality Supersymmetric Gauge Theories,pre-print NORDITA-
96/57P.

(13] J. D. Jackson, Classical Electrodynamics, New York (1975).
[14] Suraj N. Gupta, Quantum Electrodynamics, New York 1977.

(15] L. Landau, E. Lifshitz, Field Theory, Moskva 1973.

12



