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ABSTRACT

We consider the theory of the massive real vector field with spin 1, (the real Proca 
field), and its solutions. First the field equations with dual symmetry [1] are written, 
and the 4-pseudo vector is chosen to be zero. The constants of motion for the real 
Proca field, constant “electric” real Proca field, the uniform motion of a point charge 
in the real Proca field, uniform motions in the “Coulomb” field, dipole and multi-pole 
free momentum, constant “magnetic” field, and the field of a point charge in motion, are 
presented.
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1 Introduction

The conventional Maxwell equations are based on the hypothesis that the photon has zero 
mass.

Some experiments are based on the idea, whether a photon has a mass, or not [2]. But 
new experiments are done by quasi-real photon-proton collisions, the photon remnant 
produced in resolved photon interaction has been isolated. The selected events contain 
two high-p-r jets with pr > 6GeV, and 77 < 1.6, and 130 < W7p < 270GeV. The mean 
value of pt for photon remnant, 2.1±0.2GeV, is substantially larger than the Monte 
Carlo expectation [3]. It is important to mention that physicists are interested in self 
interaction, preacceleration, runaway solutions, and finite-size effects. Some calculations 
are presented for nucleus-nucleus collisions at piat, — 200GeVjc. The experimental data 
would then signal the onset of new phenomena such as a quark-gluon plasma [4].

It is known that since 1930, when the conventional Maxwell Lagrangian was modified 
by a mass term, Proca Lagrangian was obtained in 1936 [5]. Luis de Broglie [6] had a 
large influence on a younger generation like Proca and Petiau, and he tried to explain 
that the photon has a mass.

Yukawa first introduced mesons in 1934, when he postulated the existence of a “heavy 
particle” which would mediate the transition by a proton state to neutron state [7]. 
The new field of force had a potential function satisfying the Klein-Gordon equation 
and an interaction energy between two particles given by what is now known as the 
Yukawa potential. In 1936 Proca [5] elaborated on the theory by generalizing the Maxwell 
equations to fields with nonzero mass (the Proca equations).

Today, the Proca field may be interesting for physics. Proca’s work was discussed very 
rigorously. Yukawa and Sakata [8] constructed the theory of the charged scalar field.

Historical, dual symmetry first appeared in classical electrodynamics, where Maxwell 
equations for the free electromagnetic field are invariant under the transformations

E —> ±B, B —> tE

Heaviside observed this peculiarity, but its meaning, as a symmetry, appeared much later 
(Larmor, 1928).

In the general case, Maxwell equations can include the magnetic current [9]. In that 
case we have to discuss the magnetic monopole. Dirac was the first to propose the 
monopole to quantize the electric charge [10].

In 1974, ’t Hooft and Polyakov found the solution of the magnetic monopole making 
spontaneous symmetry breaking. In this case the monopole will come out as a topologi­
cally non-trivial finite-energy solution.

Today, physicists are interested in mono-pole solutions in supersymmetric theories [12]. 
We would like to consider the Proca field on the dual-symmetry basis as a mathematical
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artifact, in which we include dual fields, and the dual tensor [1]. It should be a general 
Lagrangian. Also we would like to find some static and quasi-static solutions of that field.

The paper is organized as follows. The Lagrange equations, the canonical Proca field 
equations with the source, density and a current energy, are discussed in Sect.2. The 
constant “electric” real Proca field, “electric” energy of a point charge, the field of a 
point charge in the “Coulomb” field, dipole and multi-pole orbital momentum, and the 
system of charges in an exterior field will be discussed in Sec.3. In Sec. 4. the constant 
“magnetic” field, “magnetic” momentum, the relationship of the “magnetic” and the 
mechanical momentum will be discussed. Our results will be found in Sect.5.

2 Lagrangian equations

The Lagrangian of the real Proca field generated by point sources in the dual symmetry 
formulation is:

C = Cp + Cintr + Cp, (1)

c — —— + F2-G2 + k2 {AaAQ - M“)
8tt 2
jqc.Aa - jgaba - mqSJl - vq2 - mgy/l-vg2,

where
Fap — daAp — dpAa — -£a0K — 9^) ,

G =

F = daba,

(2)

(3)

(4)

(5)

Here Aa is a 4-vector field, and ba is a 4-pseudo-vector field, with k being a scalar constant. 
Indices “q” and “g” denote the charge for the current, and charge for the pseudo-current 
respectively. The Lorentz metric is = diag( 1, —1, —1, —1), and also h = c = 1. The 
field equations are:

(d^ + k2) A11 = 4tt/», (6)

4- %:) = 4n# (7)

These are clearly invariant under the dual transformations [1]

A!Q = AacosX + basin\, 

b,a = bacosX — Aasina,

where A is a free constant. According to (3) Fal3 and Fa/3 transform as

y pap pa0__ > _paP

(8)

(9)
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or
F'a(i = Fa0cosX + Fa0sinX, 

F'ag = Fa0cosX - Fa0sinX,

(10)

(11)

where
Fa0 - dV - 5^6° + - d^A*) ,

The currents also transform as:

*/Q1," = j'JcosA + jgSinA, j™ = jqCosX + jgSinX, (12)
•/a

= jgCosX - jgSinX,

2.1 The canonical equations for the real Proca field with sources
The Lagrangian density is

£ =: i- (-dbA - VA0)2 - {rotA)2 ~ (-<%&- V6°)2 + (rotb)‘ 

[(-doA-V6)2 - (d0A° + VA):

+^k2 [(a°2 “ a2) " (fe°2 “ 01
— P9A° — jq — Pgb0 — jgb+ Cp.

where
A" = (A°,A), ba = (b°,b).

Now we will write the canonical field equations:

W^ + 77^) + ^Af = 0,

da{Fa0 + tf0F) + k¥ - O'

FQ/? = daAy - IeQ^c(<9xl6c - dzetatf),

= ^6^ - L«#<(3(A< - ^6<), 

G = ^A", F = %,y,

and it is a simple exercise to show

rotB = d0E + gradG — k2A + 47rjg,

rotE — —doB — gradF + n2b~ 4irjg, 

divE = —d0G — k2A° + 47rp9,

(13)

(14)

(15)
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(16)

divB = —d0 F — K2b° + 4ixpg, 

E = —do A — grad A0 — rotb, 

B — —dob — gradb0 + rot A, 

G = <90A° + divA,

F = d0b° + divb.

Also, it is simple to see that the canonical equations, (15) and (16) have a proper dual 
symmetry. Equations (16) define the vector of “electric” and “magnetic” field and the 
Lorentz condition.

2.2 Density and the current of energy
Dual symmetry combined with the 4-vector field and 4-pseudo vector field (eqs. (14), 
(15), (16)), will be separated in two solutions:

Aa ^ 0, 6« = 0, (17)

ba f 0, Aa = 0.

In this paper we would like to consider the case when 4-pseudo vector is chosen to be 
zero. Then equations (15), (16) become:

rotB = d0E — k2A + 4 njq, (18)

rotE = — doB, 

divE — —k2AP + 4npq, 

divB — 0,

E = —do A — grad A0, (19)

B = rot A, 

do A0 + divA — 0,

and, after a short calculation, and after the integration in the whole space, and neglecting 
the element in which the field in the infinite goes to zero, we obtain our first result, the 
energy density and the Pointing vector of the real Proca field, respectively:

1
8tt

# + (A* + A%)

5=^(lxB + k2A°A) .

(20)

(21)
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(22)

Using the Noether theorem, we have the energy-momentum 4-vector:

P° = /[E\ + B\ + G2 + k2{£ + A°2) - 2d°A°G + 2A°d°G]d3x,

Pi==~h I^A" X + *2^A° + GVj4° + A<9°G]d3x. (23)

Having a good choice of the scalar constant G, it is easy to see that (22), and (23) agree 
with (20), and (21).

3 Constant "electric" real Proca field
(the equations of the constant "electric" real Proca 
field, the "Coulomb" law)

Equations (18) and (19) simplify to

divE — — k2A° + 47rpq, (24)

rotE — 0,

E = —grad A0,

where the “electrostatic” potential A0 satisfies

(A - k2) A° — -4npq. (25)

Solving this equation, we get, [4, 13]

The “electrostatic” potential propagates to the distance fixed by the constant k, and it is 
the “Coulomb” potential of the real Proca field. Now we can discuss eq. (28):

a. <C k, then we have that the first element in (28) dominates.
b. L , 3> k, then we have that the second element dominates. lr_r?l
c. k —> co, then we can neglect at once the first element in eq. (28), but after some 

calculation we can neglect, also the second element.
One region exists, which is the total difference of electromagnetic field, and we can 

say that effective action of the Proca field increases with 1/r2. Probably, we can expect 
an essential difference with the electromagnetic field on a distance Ar — 10_9m.
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3.1 The “electric” energy of a point charge
According to 4-vector energy momentum, the “electric” energy is determinated by

P° = _L j {e2 + k2A°2) d3x. (29)

Knowing that E — VA°, and divE = — «2A° + 4-kp, eq. (29) becomes

P°=\J pAaSx. (30)

Now, it is interesting to write the “electric” energy for two point charges

P° — 2 + 2^2j^2 + 2^ + 2^2^r (31)

The first two elements present the self “electrostatic” energy of charges, and the second 
two elements present their interaction. It is easy to see that the self-energy of a point 
charged particle is infinite as in the electromagnetic case. This shows that the interaction 
of the field and a point charge is generally not well defined. With the radiative correction, 
this interaction can be solved as in the electrodynamics field [4, 13, 14], but this problem 
is still open. The energy of the interaction charges can be written as

(32)

In general, for more charges
(33)

3.2 The field of a point charge which has a uniform motion
At this point we can calculate the field of a uniformly moving charge

^4° — (34)r*

c-t-*/a/i-(^/c)2
r*

where
(35)

and

Here 9 denotes the angle between the direction of motion and radius vector, R. For 9 = 0

(37)
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and for 8 = tt/2 we get

Ex = q
R
R3 y/1 - (v/c)‘

(1 + kR) e —kR (38)

3.3 The motion of a point charge in the “Coulomb” field
Another interesting exercise is the motion of a point charge in the “Coulomb” field. The 
Lagrangian of the system is

Cp — mc2\J\ — (u/c)2 + -A • v — qA°. (39)

which is formally equal to that in the Maxwell theory. So the equations of motion are 
analogous to those in electrodynamics,

dp
— qE H—v x B, 

dt c

which leads to the following equation in polar coordinates

d2u
(#2

+ U ?(■*:) -k/u

(40)

(41)

3.4 Dipole and multi-pole orbital momentum
At distant points of a point charge system (26) takes the usual multi-pole expansion form

d2
A°{r) = 53 9i— - 53%ngrad-----+ 1/6D„

ldxndxm'
(42)

where
D„ ~ ^ ' 9* v 8nmJ , (43)

t,n,m

which is the quadripole momentum system of charges [15]. Equation (42) gives

E = (3d • f) f (1 + «r) e— - r2d (l + - vk2) e^} . (44)

for the dipole “electric” field. This is one of our results. One useful result is the potential 
energy of two dipoles

P° = " (r2 (cM2) (l + kR - frn2^ e~KR - 3 (re d^j (re d2) (1 + kR) . (45)

Up to now we have worked on the electric solutions of our equations. Let us now turn 
our attention to the magnetic solutions.
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4 “Magnetic” field

Like in electrodynamics, the constant “magnetic” field does not exist in the Proca field. 
That constant “magnetic” field should appear as a consequence of the motion of a point 
charge in the finite part of space-time. This motion is stationary and it is interesting to 
consider the time averaging effect of this motion. Equation (18) denote the “magnetic” 
field, and after time averaging, and knowing that elements which have time derivation for 
the finite motion, are equal to 0, it becomes

(46)rotB — —k2A + 4tt7,

divB = 0,

B — rot A, 

divA — 0.

The particular solution of A A = —4njq, according to (43) and (45) (for the point charge) 
is

A = q < vq\r - rq\ -/c|r-r^|

>t (47)

and for the system of the point charges the vector potential is

a = 5><
Vi

r — Ti
3-/c|f-fi| >t (48)

Knowing that B — rot A, and after some calculation, we get a new result, the “magnetic” 
vector for a point charge

B = rotA = q < ^ ^ (1 + k |r - r9|) e~K|r-r,?l >t . (49)
\r ~ rq\

This corresponds to the Biot-Savart law in electrodynamics. In the limit of k —► 0, these 
expressions agree with electrodynamics. For a large k, and k |r — r*| >> 1, the activity 
of the field is small, and the second element in the small brackets is much larger than 
the first one. In other cases the activity of the field is limited according to the system of 
charges.

4.1 “Magnetic” momentum
By analogy with electrodynamics, we consider the time averaged “magnetic” field which 
is far from the system of charges. Equation (48) can be expanded in 1/r, and keeping the 
first element of this expansion, we get

A = (fi xul}xr >t, (50)
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(51)

where J2i QM ~ d/dt^i = 0. Equation (50) can be written in the form:

A = l±^e-,tr(^xr1 = (Ve"K7r) x fh,

where
rh ~ 1/2 52 qifi x v^. (52)

i
The corresponding vector of “magnetic” field is our result

B — (e~Kr/r5Sj |(rrm) |s (r + «r) + «2r2j — m (1 + «r) r2|. (53)

4.2 “Larmor’ theorem
By analogy of electrodynamics we consider the system of points charges in the “magnetic” 
field. According to (40) the force which acts on the system is

F = Y1 Wi x H- (54)
i

The time averaging of this force equals zero, but the time averaged momentum of the 
force is not equal to zero:

K = 1/2< (f; xvi)xH>t. (55)
i

The Lagrangian function is

£ = 52 rrn!2 (vi + Qx n)2 - U, (56)
i

where
u' = u + f2 x f, (57)

and fi — e/2mB is the rotating angular velocity of the moving system, and U is the 
potential energy for the charge in the “electric” field. Also, v is the velocity in the new 
coordinate system, and v' is the velocity in the old coordinate system. On the other hand, 
the Lagrangian function for the close system of charges in a homogeneous “magnetic” field, 
is

Ch = 52 9iAi eui = 52 %/2 (n x Vi) B. (58)
z i

Comparing (56) and (57), it is easy to see that equation (56) represents the Lagrangian 
for the system of charges in a constant homogeneous “magnetic” field in the static sys­
tem. Using the two relations for the Lagrangian functions, one can see that in the non- 
relativistic limit, the behavior of the system of points of charges with finite motions in 
the central-symmetric “electric” field, and also in the “magnetic” weak field, is equivalent 
to the motion of the same system of points of charges in the same “electric” field in the 
coordinate system with uniform motion, and angular velocity. This is the theorem which 
corresponds to the Larmor theorem in electrodynamics.
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5 Conclusion

The real Proca field contains one vector field (Aa) and one pseudo-vector field (i>Q).We 
have considered the case when the 4-pseudo vector is chosen to be zero.

The static and quasi-static real Proca field is considered in the dual-symmetry field 
theory. The real Proca field is considered as a physical object equal to the electromagnetic 
field, but this theory is not a gauge theory.

Interesting results in this article are: The constant of motion, in a general way, includ­
ing one vector field, and one pseudo-vector, the “Pointing” vector (21), energy density 
(20), “electrostatic” field (28), the parallel and the orthogonal vector of the “electric” field 
(37), (38), “electric” field for the dipole and multi-pole orbital momentum (44), the po­
tential energy of the points charges (45), the “magnetic” vector of a point charge (49), 
the vector of the “magnetic” field (53), the“Larmor” theorem.

The main results of electrostatics and magnetostatics [15] are very similar to those in 
the real Proca field, but the essential difference appears in the exponential factor which 
suppresses this field.

The motion of one particle in the static real Proca field is very interesting. When 
k (mass term) goes to 0, then one can obtain the Biot-Savart law, but when n goes to 
infinity, then one has a different result for H.

The fundamental problem in electrodynamics is the self field, and now, we see that it 
persists here too.

One of the open questions is the solution of the “magnetic” mono-pole, and in that 
case it is important to include also 4-pseudo vector field.
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