

XA9950096

IAEA-SM-361/46

APPLICATIONS OF COMPOUND-SPECIFIC CARBON ISOTOPE RATIOS IN ORGANIC CONTAMINANT STUDIES

R. ARAVENA¹, D. HUNKELER¹, Y. BLOOM¹, B. BUTLER², E. EDWARDS³,
S.K. FRAPE¹ AND E. COX⁴

¹Department of Earth Sciences and ²Biology, University of Waterloo,
Waterloo, Ontario, Canada

³Department of Chemical Engineering and Applied Chemistry, University of
Toronto, Toronto, Ontario, Canada

⁴Geosyntec Consultants International, Guelph, Ontario, Canada

Groundwater contamination, by organic compounds, is one of the major environmental problems in water resources today. Through interaction between groundwater and streams, lakes and wetlands, these contaminants can eventually impact surface water. Petroleum hydrocarbons and DNAPLs (Dense-non aqueous phase liquids) such as chlorinated solvents are the most common organic groundwater pollutants

The focus of the research on organic contaminant in groundwater has been on the behavior and fate of organics in the subsurface and remediation technology. The development of compound-specific isotope analysis on organic contaminants has opened new possibilities for the application of stable isotopes in groundwater research. The isotope approach has focussed on the evaluation of isotopic fingerprints in chlorinated solvents [1] and BTEX [2] and in the evaluation of isotopic fractionation associated with biotic and abiotic degradation of organic compounds [3, 4,5]. This paper will discuss recent advances on the application of compound-specific carbon isotope analysis in organic contaminant studies in groundwater. Analytical techniques will be discussed and laboratory and field isotope studies related to biodegradation of organic contaminants will be presented. Chlorinated solvents will be the primary focus.

It is expected that the area of major impact on the application of compound-specific isotope technology will be in the understanding of the attenuation of organic compounds in groundwater. There is a need for new tools to evaluate the efficiency of remediation technologies and the process of natural attenuation of contaminants in groundwater. These applications are based on the expected isotopic fractionation associated with degradation of organic compounds. Microcosm and field experiments are being carried out to evaluate isotopic patterns observed during degradation of organic compounds. No significant fractionation has been observed for degradation of BTEX under oxidizing conditions and reducing conditions [4]. However, abiotic and biotic degradation of chlorinated solvents is accompanied by a large isotopic fractionation [3, 6]. The following example illustrates the carbon isotope fractionation measured during biodegradation of TCE (Figure 1). This test was run using a bacteria consortium obtained from a TCE contaminated site. The largest isotope fractionation was observed during the dechlorination of cis-1,2-dichloroethene (cDCE) to vinyl chloride (VC) and VC to ethene. The $\delta^{13}\text{C}$ values for cDCE and VC increased from -30 to -10 ‰ and from -38 to $+8\text{ ‰}$, respectively. The $\delta^{13}\text{C}$ of the ethene changed from -60 to -30 ‰ , the isotopic composition of the initial TCE. Similar carbon isotopic pattern has been observed on microcosm using cDCE and VC as initial compound [7]. This pattern has also been observed for PCE degradation under field and laboratory conditions [7]. These results

and new developments of compound-specific deuterium analysis in organic compounds open new possibilities for the application of stable isotopes to assess natural attenuation of organic compounds in groundwater and remediation technologies.

REFERENCES

- [1] van Warmerdam, E.M., Frape, S.K., Aravena, R., Drimmie, R.J., Flatt, H., and Cherry, J.A. Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents. *Applied Geochemistry*, 10: 547-552 (1995).
- [2] Dempster, H.S. Sherwood Lollar, B., and Feenstra, S. Tracing organic contaminants in groundwater: A new methodology using compound-specific isotopic analysis. *Env. Sci. Tech.* 31: 3103-3197 (1997).
- [3] Aravena, R., Beneteau, K., Frape, S., Butler, B., Abrajano, T., Major, D., and Cox, E. Application of isotopic finger-printing for biodegradation studies of chlorinated solvents in groundwater. In: G.B. Wickramanayake and R.E. Hinchee (Eds.), *Risk, Resource, and Regulatory Issues: Remediation of Chlorinated and Recalcitrant Compounds*. Battelle Press, Columbus, OH. pp. 67-71 (1998).
- [4] Kelley, C.A., and Hammer, B.T. Concentrations and stable isotope values of BTX in gasoline-contaminated groundwater. *Env. Sci. Tech.* 31:2469-2472 (1997).
- [5] Sturchio, N.C., Clausen, J.L., Heraty, L.J., Huang, L., Holt, B.D. and Abrajano, Jr. T.A. Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer. *Env. Sci. Tech.* 32: 3037-3042 (1998).
- [6] Vaillacourt, J., Frape, S., and Aravena, R. Chlorine and carbon isotopic trends during the degradation of trichloroethylene with zero-valent metal. Proceeding of GSA Annual meeting, Toronto, (1998).
- [7] Hunkeler, D., Bloom, Y., Aravena, R., Edwards, E., Cox, E., Butler, B., and Frape, S.K. Application of stable- isotope ratios to assess biodegradation of chlorinated hydrocarbons in aquifers. Proceeding AGU Fall Meeting, San Francisco (1998).

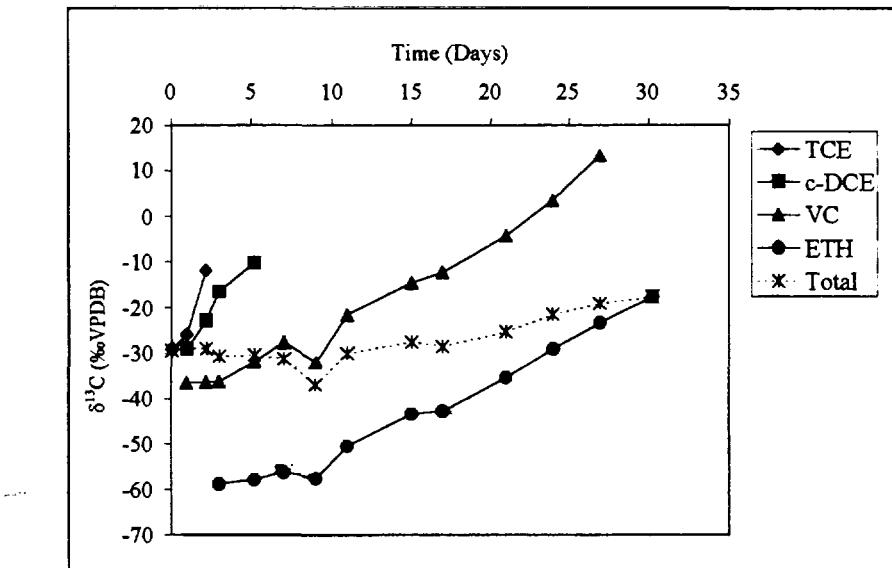


Figure 1. $\delta^{13}\text{C}$ patterns for TCE, cDCE, VC and ethene during biodegradation of TCE