

ABDAN

Associação Brasileira para o Desenvolvimento das Atividades Técnicas e Industriais na Área Nuclear

A ENERGIA NUCLEAR
PARA PROTEÇÃO
DO MEIO AMBIENTE

Jair Albo Marques de Souza

IBQN - DEDOT - BIBLIOTECA

ABDAN - Associação Brasileira para o Desenvolvimento das Atividades Técnicas e Industriais na Area Nuclear

A ENERGIA NUCLEAR PARA PROTEÇÃO DO MEIO AMBIENTE

JAIR ALBO MARQUES DE SOUZA

Rio de Janeiro 1992

SÚPLICA DO LIVRO

Não me manusere com mãos sujas. Não escreva em minhas páginas. Não rasgue nem arranque minhas folhasi Não apole o cotovelo sobre minhas páginas durante a leitura; Mão me deixe sobre cadeiras ou lugares que não sejam meus; Não me deixe com a lombada para cima; Não coloque entre minhas folhas objeto algum mais espesso que uma folha de papel; Não dobre os cantos de minhas folhas para marcar o ponto em que parou) use para isso uma tira de papel ou marcador apropriado; Terminada a leitura, devolva-me an lugar certo ou a quem deva quardar-me; e Ajude-me a conservar-me limpo e perfeito e eu o ajudarei a ser feliz.

(Traduzido do Espanho)

APRESENTAÇÃO

A questão do Meio Ambiente se constitui atualmente na maior preocupação das populações, tanto nos países desenvolvidos como naqueles em desenvolvimento. Em particular, a poluição da atmosfera, gerando as chamadas chuvas ácidas e o "efeito estufa", está sendo objeto de estudos profundos e deverá ser um dos principais assuntos a serem discutidos na Conferência Mundial do Meio Ambiente a ser realizada no Rio de Janeiro, a ECO-92.

Para a poluição atmosférica contribuem os meios de transporte, os setores residencial e agricola, a indústria e o setor elétrico.

Neste trabalho, o autor faz uma análise minuciosa do que vem ocorrendo na Europa e nos Estados Unidos em termos de redução desta poluição.

A leitura do trabalho permite concluir que grande parte da redução da emissão de poluentes se deve ao setor elétrico, na medida em que este utilizou a energia nuclear para substituir parcialmente a geração de energia termelétrica convencional.

Ao patrocinar a publicação deste trabalho, a ABDAN pretende desmistificar a noção de que a energia nuclear seria prejudicial ao meio ambiente, demonstrando exatamente o contrário, isto é, que devido aos cuidados e aos controles das emissões provenientes das usinas nucleares, esta fonte de geração de energia elétrica se constitui na realidade num fator importante de proteção do ambiente em que vivemos.

Algumas palavras sobre o autor:

O autor é engenheiro eletricista, formado em 1965, pela Universidade Federal do Rio Grande do Sul e engenheiro nuclear, diplomado em 1966, pelo Instituto Militar de Engenharia (IME) do Rio de Janeiro, em nível de pós-graduação. Em 1969 obteve o título de "Master of Sciences in Nuclear Power" da Universidade de Londres - Inglaterra e a seguir o DIC do Imperial College of Science and Technology", Londres. Possui cursos de especialização em planejamento energético na França (Banco Mundial, Nações Unidas e AIEA) e nos Estados Unidos (MIT). Foi orientador de várias teses de mestrado nas áreas de economia da energia nuclear e expansão de sistemas elétricos no Instituto Militar de Engenharia e Universidade Federal de Minas Gerais. É especializado em economias de centrais elétricas, expansão de sistemas elétricos e impactos ambientais de sistemas elétricos, tendo trabalhado nestas áreas na Inglaterra, Suécia e Alemanha e, por designação do Governo Brasileiro, durante oito anos na Agência Internacional de Energia Atômica (AIEA), órgão especializado das Nações Unidas, em Viena-Austria. Durante sua estada na AIEA atingiu os postos profissionais mais altos da organização, tendo sido responsável pelo planejamento e

realização de vários cursos na área de estudos de demanda de energia e planejamento da expansão de sistemas elétricos, tendo também coordenado a publicação de um manual de planejamento da expansão de sistemas elétricos, que é utilizado nos cursos de treinamento da AIEA, por diversas empresas de energia elétrica de países em desenvolvimento e pelo Banco Mundial. Realizou várias missões de assistência técnica da AIEA e Banco Mundial a países em desenvolvimento na área de estudos de demanda de energia global e energia elétrica e de planejamento da expansão de sistemas elétricos (Tunisia, Marrocos, China, Tailândia, Malásia Turquia, Peru, Venezuela). Trabalha atualmente como Assessor Técnico do Diretor Presidente da NUCLEN, sendo representante da empresa no GCPS-Grupo Coordenador do Planejamento dos Sistemas Elétricos e na Câmara Técnica do COMASE-Comitê Coordenador das Atividades de Meio Ambiente do Setor Elétrico.

Rio de Janeiro, abril de 1992

A ENERGIA NUCLEAR PARA PROTEÇÃO DO MEIO AMBIENTE

Jair Albo Marques de Souza

Fevereiro de 1992

1. Introducão

Apesar do desenvolvimento impressionante da energia nuclear nesses últimos trinta anos e de suas vantagens ambientais e econômicas em relação às alternativas para produção de energia elétrica, o grande público continua a questionar a sua necessidade e conveniência.

Qualquer sistema energético causa algum impacto ambiental. O que é importante é que os aspectos ambientais da indústria nuclear como um todo, incluindo a produção de energia e todo o ciclo de combustível associado, se comparam favoravelmente com as alternativas existentes para produção de energia elétrica em grandes quantidades.

A energia nuclear é a única tecnologia empregada para a geração de energia elétrica que desde os seus primórdios, vem considerando os possíveis impactos sobre o meio ambiente. Constitui-se ela na primeira atividade humana na qual as pesquisas sobre segurança sempre acompanharam os desenvolvimentos tecnológicos. Assim é que as centrais nucleares são licenciadas, segundo critérios rígidos de segurança, por entidades governamentais independentes. Os sítios são também sujeitos a processos de aprovação específicos. A participação do público em todos estes processos de licenciamento e de aprovação de relatórios de meio ambiente é permitida e mesmo incentivada em muitos países.

Não obstante o acidente de Chernobyl, o pior de toda a história da energia nuclear para uso comercial de produção de energia elétrica, não existe indústria no mundo que possa apresentar uma performance tão excelente do ponto de vista de segurança como a indústria nuclear.

Todos estes aspectos de segurança e de proteção ao meio ambiente sempre foram automàticamente incorporados ao custo final da energia nuclear, sendo que em muitos países é feita também uma provisão para a gestão e disposição final dos rejeitos nucleares, inclusive aqueles decorrentes de um descomissionamento final da usina após o término de sua vida útil. Em outras palavras, todos os custos relativos à segurança e ao meio ambiente são incorporados ao custo da usina nuclear, o que certamente não ocorre no caso das usinas termelétricas convencionais. Ainda assim, a energia nuclear é, de um modo geral, competitiva com a energia termelétrica convencional, mesmo nestas condições desfavoráveis de comparação.

Apesar do acima exposto, o grande público ainda considera a energia nuclear para produção de energia elétrica como um ônus e não como um benefício. Este estudo se propõe a demonstrar que, ao contrário, a energia nuclear, em condições normais de operação, constitui-se em uma das fontes, para a produção de energia elétrica, das mais benéficas ao meio ambiente, capaz de contribuir de modo positivo para melhorar a qualidade de vida e diminuir o rítmo atual de deterioração de nosso meio ambiente.

A energia nuclear gerou 1901 TWh de energia elétrica em 1990 ou cerca de 17% do total de energia elétrica produzida no mundo por todas as fontes no mesmo ano, sendo a terceira fonte mais empregada para esta finalidade, após o carvão e a hidreletricidade. No mesmo ano, a energia hidrelétrica contribuiu com cerca de 19% do total. Isto demonstra que a energia nuclear, apesar de ser uma tecnologia relativamente nova, pois comecou a ser empregada para produção de energia elétrica há apenas cerca de 30 anos, é uma tecnologia madura, plenamente desenvolvida, e suprindo quantidades de energia elétrica da mesma ordem de grandeza da energia hidrelétrica, uma tecnologia que vem sendo empregada há cerca de um século.

Se a produção de energia elétrica por centrais nucleares (1901 TWh) fosse produzida por centrais termelétricas a carvão modernas, dotadas dos mais sofisticados equipamentos para redução de emissão de poluentes, e atendendo a normas rigorosas de contrôle, como as adotadas nos países da OCDE, seriam emitidos adicionalmente pelo setor elétrico mundial cerca de 3 milhões de toneladas de SO₂, 1 milhão e meio de toneladas de NO_x e meio milhão de toneladas de material particulado poluente sòmente no ano de 1990. A energia nuclear, em particular, evitou a emissão de cerca de 1900 milhões de toneladas de CO₂ no ano de 1990, isto é, cerca de 9% do total mundial das emissões de gás carbônico no mesmo ano, em decorrência da queima de combustível fóssil.

Além da evidente eliminação de emissões adicionais por parte de centrais termelétricas convencionais, a energia nuclear evitou a mineração adicional de cerca de 850 milhões de toneladas de carvão sòmente no ano de 1990, evitando assim acidentes em minas de carvão com risco de vida de cerca de 480 mineiros de carvão, número este baseado no desempenho médio da indústria de mineração de carvão de países desenvolvidos.

Neste trabalho serão discutidos vários exemplos práticos dos benefícios decorrentes da utilização de energia nuclear. Os resultados mais marcantes foram os registrados na França. Em virtude da utilização intensiva da energia nuclear na França, cerca de 75% do total da produção de energia elétrica em 1990, a emissão de poluentes reduziu-se a mais da metade desde 1980.

A comparação principal deste estudo será com a geração termelétrica a carvão, a única alternativa prática disponível a nível mundial à energia nuclear para geração de energia elétrica em grandes quantidades, que serão necessárias a longo prazo.

O carvão, o principal combustível alternativo ao urânio, a nível mundial, libera à atmosfera gases de combustão que se constituem em uma das maiores fontes de poluição do meio ambiente. Em decorrência do processo de combustão, são produzidas grandes quantidades de cinzas e de outros rejeitos. Cinzas volantes, óxidos de enxofre e de nitrogênio, metais tóxicos, agentes cancerígenos e mutagênicos, bem como substâncias radioativas são liberados em grandes quantidades devido ao processo de combustão e podem causar graves danos ao meio ambiente e à saúde humana, mesmo a grandes distâncias dos locais de emissão. As cinzas contém elementos tóxicos como o arsênio, mercúrio e chumbo, além de nuclídeos radioativos, inclusive o Rádio-226. Apesar disto, as emissões das usinas a carvão não estão sujeitas a contrôle rigoroso como no caso das centrais nucleares. Apenas recentemente, técnicas de controle e convenções internacionais começaram a ser aplicadas. Um fato comum normalmente desconhecido, por exemplo, é que as pequenas quantidades de radioatividade liberadas pelas centrais nucleares são, em muitos dos casos, inferiores àquelas emitidas por centrais a carvão, fato este que passa desapercebido pelo público em geral e mesmo por parte dos operadores de centrais a carvão.

2. As emissões provenientes de centrais termelétricas.

O processo de combustão ocorre nas usinas termelétricas convencionais, nas caldeiras industriais, nos sistemas de calefação residenciais e no tráfego dos veículos motorizados. Estes processos, todos, liberam efluentes sólidos e gasosos, que podem eventualmente causar efeitos negativos na biosfera, nos edifícios, etc. Na discussão que se segue, maior ênfase será dada às emissões das usinas elétricas, mas se fará, sempre que possível, uma comparação com o total emitido por todas as fontes, para se ter uma idéia da magnitude do problema.

Além da liberação de energia térmica(calor) que ocorre em qualquer tipo de central térmica, nuclear ou convencional, - cerca de 2/3 do calor produzido é liberado para a atmosfera -, as usinas termelétricas convencionais ainda emitem produtos gerados durante o processo de queima do combustível, o que não ocorre nas centrais nucleares.

Entre estes produtos, destacam-se:

- * material particulado poluente proveniente das cinzas do combustivel queimado;
- * óxidos de enxofre produzidos pela combustão do enxofre contido no combustível;
- óxidos de nitrogênio produzidos como resultado da combustão;
- * dióxido de carbono(CO₂), o gás carbônico.

Depois de emitidas e transportadas para longe dos locais de emissão, as substâncias poluentes, poderão, mediante processos químicos complexos, serem transformadas em poluentes secundários, tais como o ozônio troposférico e partículas finas de sulfatos e nitratos. As emissões antropogênicas desestabilizam o equilíbrio químico da atmosfera.

Já foi comprovado que uma série de poluentes atmosféricos, entre eles os óxidos de enxofre e nitrogênio, o ozônio e fluoretos afetam o metabolismo básico de células vegetais e diminuem sensivelmente o crescimento das plantas.

Os efluentes aéreos, particularmente o material particulado poluente em suspensão, podem influir no micro-clima e prejudicar a visibilidade. Eles constituem-se, ainda, na origem de vários impactos prováveis sobre a saúde humana. Assim, por exemplo, já foram estabelecidas ligações entre material particulado poluente e uma série de doenças pulmonares, o ataque a edifícios, monumentos e vestuário e perdas de safras agrícolas.

O dióxido de enxofre, SO₂, figura entre os principais poluentes do ar em muitas regiões do mundo, sendo a origem de grandes perdas econômicas ao reduzir a produtividade florestal. A fotossíntese é particularmente afetada pelo SO₂/6/. Em concentrações ambientais elevadas, o dióxido de enxofre afeta os sistemas respiratórios, humano e animal, e pode, também, causar grandes perdas de safras agrícolas. Existem provas definitivas de que o SO₂ transportado pelo ar pode provocar alterações na estrutura básica e funções das folhagens de árvores. O dióxido de enxofre afeta diversos processos fisiológicos e bioquímicos das coníferas. Entretanto o efeito mais grave causado pela emissão de SO₂, sobretudo pelas usinas termelétricas a combustível fóssil, está relacionado, através de uma transformação na atmosfera, com a deposição ácida, comumente chamado de "chuva ácida" (Figura-1).

A deposição ácida pode danificar materiais e tecidos sensíveis, trazendo perigo a ecossistemas aquáticos, safras agrícolas e à saúde humana. A deposição ácida é a causa principal da morte de florestas ("Waldsterben") em muitos países da Europa. Na Tcheco-eslováquia 60% das florestas estão afetadas, 50% na República Federal da Alemanha, 38% na Austria e 38% das coníferas da Suiça sofrem as consequências deste efeito. A deposição ácida também é a causa principal do declínio ecológico de lagos e rios da região leste do Canadá e dos Estados Unidos/8/. As vegetações em estado de apodrecimento, o plâncton e os vulcões são fontes naturais importantes de SO₂. No entanto, é a queima do carvão a fonte principal. Na Europa cerca de 85% do total das emissões provem da queima do carvão/9/. Nos Estados Unidos as usinas termelétricas a carvão foram responsáveis por 68% do total da emissão de dióxido de enxofre no ano de 1987/32/.

Outros poluentes são os óxidos de nitrogênio. Eles tem efeitos negativos nas saíras agrícolas e são a causa principal de misturas fotoquímicas de neblina e fumaça, a mais trágica delas tendo ocorrido em Londres em 1952 com a morte de 4000 pessoas. Além de também formar ácidos como no caso do dióxido de enxofre, os óxidos de nitrogênio geram também ozônio (O_3) , especialmente na presença de hidrocarbonetos. Entretanto, são os veículos os maiores responsáveis pela emissão de NO_x com cerca de 40 a 80% do total das emissões deste poluente. Os veículos são, por exemplo, responsáveis por cerca de 40% da emissão de NO_x no Reino Unido. Na Suiça, no outro extremo, este valor atinge cerca de 80%/15/. Na França os veículos emitiram 70% do total/11/. Os veículos à gasolina, por outro lado, respondem por cerca de dois terços(2/3) do total das emissões de veículos, e os veículos a diesel respondem pelo terço restante.

O ozônio, um poluente secundário, é um oxidante foto-químico e o principal componente da mistura de neblina e fumaça ("smog") encontrada nas grandes cidades. Enquanto o ozônio na atmosfera superior é benéfico à vida por atuar como uma blindagem às radiações ultravioletas emitidas pelo sol, ao nível do solo, uma alta concentração de ozônio é prejudicial à saúde e ao meio ambiente. O ozônio danifica as plantas em geral e vários materiais, desde a borracha aos téxteis, acelera o processo de formação de chuvas ácidas e pode causar crises de asma e bronquites.

Naturalmente as emissões de dióxido de enxofre, óxidos de nitrogênio e material particulado podem ser reduzidas, em grande parte, em uma usina termelétrica convencial pela utilização de vários processos tecnológicos, porém todos estes processos apresentam suas limitações e exigem altos investimentos.

Qualquer redução nas emissões de poluentes sómente é possível pelo aumento tanto dos custos de investimentos como dos custos operacionais. Em uma caldeira de carvão, do tipo convencional, o carvão é moido até atingir uma consistência parecida com a do talco, para então ser soprado para a fornalha onde sofre a combustão. Os poluentes gerados durante a combustão incluem, entre outros, o dióxido de enxofre, os óxidos de nitrogênio e os materiais particulados. Estes poluentes são transportados para a chaminé pelos gases de combustão. O contrôle destes poluentes requer a utilização de precipitadores eletrostáticos ou filtros para a eliminação de parte dos materiais particulados, como as cinzas volantes. Para a remoção de dióxido de enxofre utiliza-se purificadores de gases(" scrubbers") ou modifica-se a combustão. A redução dos óxidos de nitrogênio pode ser atingida pela utilização de queimadores especiais. Estes controles poderão significar um aumento no custo de construção de uma usina de cerca de 15 a 25% e os custos de produção de energia elétrica sofrerão um aumento de 10 a 15%, conforme estudos americanos/8//20//43/, ou de 10 a 23%, conforme estudos da Conferência Mundial da Energia/14/. A Diretoria de Meio Ambiente da OCDE estima que os custos de controle ambiental de usinas termelétricas a carvão representem, aproximadamente, 15 a 25% do custo final de geração de energia elétrica, incluindo uma dessulfurização de 90% dos gases de combustão e a desnitrificação/21/.

Com base em estudos específicos conduzidos pela Conferência Mundial da Energia para centrais termelétricas utilizando carvão do tipo antracita/14/, o custo para redução de emissões é estimado conforme indicado na tabela que segue, como percentagem do custo básico:

Exemplos de Custos de Proteção Ambiental em Usinas Termelétricas Novas, Utilizando Antracita como Combustível. (*)

Item	Aumento nos investimentos específicos (%)	Aumento nos custos de geração
Dessulfurização dos gases de combustão	8,0 - 14,0	9,0 - 12,0
Desnitrificação dos gases de combustão	5,5 - 11,0	5,4 - 9,6
Precipitação das cinzas volantes	1,0 - 2,0	0,8 - 1,2
TOTAL	14,5 - 27,0	15,2 - 22,8

É pouco provável que, na prática, a simples soma dos custos de equipamentos de dessulfurização e desnitrificação, e precipitadores, seja válida. Pode ser, por exemplo, que a desnitrificação isolada não seja necessária. Estão sendo desenvolvidos sistemas combinados para eliminação de SO₂ e NO_x, que eventualmente poderão vir a ser adotados. O desempenho requerido do precipitador eletrostático poderá eventualmente ser menor porque o próprio sistema de dessulfurização dos gases de combustão poderá contribuir para a eliminação de algum material particulado poluente. Por outro lado, se todos os equipamentos de contrôle forem exigidos, poderá, na prática, haver limitações de espaço, o que resultará em algum custo adicional além do decorrente da simples soma. Ao se tomar em consideração estes fatores, chega-se a conclusão que o aumento dos custos de investimentos para comtemplar as tres categorias de controle ambiental se situaria entre 9 e 30% do custo básico da usina, isto é, custo da usina sem juros e aumento de preços reais durante a construção. O aumento do custo de geração de energia elétrica, seria entre 10 e 23%.

^(*) Os investimentos necessários para uma usina já existente são bem maiores dos que os necessários em uma usina nova, podendo alcançar cerca de 25% só para equipamentos de dessulfurização, por exemplo. No caso de centrais nucleares é dificil, senão impossível, apurar os custos de proteção ambiental, porque as centrais nucleares sempre foram projetadas com medidas indispensáveis de proteção já incorporadas. Algumas estimativas consideram que cerca de 20-40% do custo total de uma central nuclear estão ligados à proteção radiológica ambiental.

Existem algumas estimativas no sentido de que novas tecnologias, chamadas "limpas", tais como o emprego do leito fluidizado, poderiam reduzir os custos acima discutidos em cerca de um terço ou mais. Ao contrário dos purificadores de gases ("scrubbers), que capturam os poluentes saidos da caldeira quando sobem pela chaminé, a combustão em leito fluidizado e a gaseificação do carvão consomem hidrocarbonetos e removem os poluentes gasosos durante o próprio processo de combustão. No método do leito fluidizado, o carvão prèviamente triturado é misturado com calcáreo e queimado como uma massa ou "fluido", suspenso em uma caldeira por uma almofada de ar. A mistura turbulenta do carvão com calcáreo e ar no leito fludizado apresenta dois resultados: o carvão é completamente queimado e as partículas de calcáreo iniciam uma reação que remove o dióxido de enxofre. Adicionalmente a temperatura mais baixa empregada no processo diminui a formação de óxidos de nitrogênio /43/.

No caso de usinas termelétricas a carvão situadas no Estado de Baden-Württenberger, na região sudoeste da República Federal da Alemanha, o custo da desnitrificação situa-se entre 3 a 8 DM(Marcos Alemães) por quilo de NO_x eliminado. O valor médio para caldeiras com extração de cinzas por via líquida é de 4,60 DM/kg NO_x e de 6,90DM/kg NO_x para caldeiras com extração de cinzas por via seca, a preços de 1987 (1DM=0,55US\$). Os custos específicos de dessulfurização de gases de combustão estão na faixa de 3 a 6 DM/kg SO₂ eliminado. Naquela região da República Federal da Alemanha, se se utilizar equipamentos de dessulfurização, as emissões diminuiriam do valor de 104.000 t de SO₂ por ano em 1987 para 19.000 t de SO₂ por ano em 1995, com custos anuais de 330 milhões de Marcos Alemães/30/.

Nos Estados Unidos e em vários países da Europa, estão sendo exercidos, atualmente, contrôles rigorosos nas emissões de dióxido de enxofre por usinas termelétricas. Nestes países os óxidos de nitrogênio estão se tornando agora os maiores culpados pela poluição do ar, pois a deposição ácida produzida pelos mesmos está se aproximando daquela produzida pelo dióxido de enxofre/9/. A atmosfera da Europa e América do Norte está, atualmente, muito mais reativa do que há algumas décadas e isto acelera o processo de acidificação.

Na maioria dos processos empregados atualmente para diminuir o enxofre nas usinas termelétricas, o enxofre é retido por um material à base de cálcio. Em pouco dos processos o enxofre pode ser regenerado a partir do absorvente e eliminado em forma de enxofre elementar ou de ácido sulfúrico. Deve-se notar, entretanto, que se deverá dispensar muita atenção ao tratamento dos licores residuais e da eliminação do material sólido/14/. Para a redução dos poluentes emitidos por uma usina termelétrica a carvão de 700 MWe, é necessário o tratamento de cerca 2,3 milhões de metros cúbicos de gases de combustão por hora. Utilizando-se o processo de cal-gesso, haverá uma demanda de 9 toneladas de calcáreo por hora (para um carvão com teor de enxofre de 1,3 % e normas de emissão de SO₂ de 400 mg/m³). Resulta deste processo 15 toneladas de gesso por hora. Admitindo-se 5000 horas efetivas de operação equivalente à plena carga, ou seja um fator de capacidade de 57%, serão consumidas cerca de 45.000 toneladas de calcáreo anualmente e produzidas 75.000 toneladas de gesso por ano, que, de alguma maneira, deverão ser removidas do sítio.

Em resumo, uma redução significativa dos poluentes emitidos por usinas termelétricas a carvão é técnicamente possível. O processo é, entretanto, caro e o problema está sendo, na realidade, transferido, em parte, do ar para a água e solo devido aos efluentes e acumulo dos resíduos/16/.

Uma outra questão importante a se considerar é que as emissões de poluentes não se constituem apenas em um problema localizado. Há implicações de âmbito mundial. O problema não fica só restrito àqueles países onde se encontram as centrais poluidoras. Um país pode receber quantidades consideráveis de material poluente de outro país, o que se constitui em um assunto extremamente delicado, causando forte pressões políticas. O Canadá, para se citar um exemplo, recebe, no inverno, ar carregado de óxidos de enxofre e de nitrogênio originários da Eurásia. É também bastante conhecido o pleito colocado pelo Canadá aos Estados Unidos ligado ao problema das chuvas ácidas de origem americana, que tem atacado várias regiões canadenses. Estima-se, também, que metade das chuvas ácidas que caem na República Federal da Alemanha tenha origem em outros países.

As usinas termelétricas a carvão também liberam grandes quantidades de materiais pesados ao meio ambiente. A quantidade destes poluentes depende do tipo, origem do carvão empregado e do modo de operação da usina. Para usinas operando na base da curva de carga, os seguintes valores podem ser atingidos:

Arsênio	:	90 kg/MW(e)
Bário	:	300 kg/MW(e)
Cádmio	:	10 kg/MW(e)
Cloro	:	20 kg/MW(e)
Cobre	•	30 kg/MW(e)
Chumbo	:	70 kg/MW(e)
Manganês	:	70 kg/MW(e)
Mercurio	:	20 kg/MW(e)
Níquel	:	130 kg/MW(e)
Vanádio	:	140 kg/MW(e)
Zinco	:	220 kg/MW(e)

Deve-se enfatizar que existem grandes diferenças entre os carvões e que determinado carvão pode apresentar uma maior quantidade de um certo metal e menor de outro. O exemplo a seguir foi indicado por estudos da Conferência Mundial da Energia /44/, utilizando especificações de um determinado tipo de carvão considerado "limpo" que levaram as liberações anuais por uma central operando com este carvão indicadas na tabela que segue.

Constituinte	g/t	kg/a/MW(e)
Arsênio Cádmio Cobre Chumbo Mercúrio Rádio Tório Urânio Zinco	30,0 1,0 12,0 12,0 0,1 2,7 x 10 ⁻⁷ 1,7 0,78 86,0	75,0 2,5 30,0 30,0 0,3 6,8 x 10 ⁻⁷ 4,3 2,0 215,0
TOTAL	144,0	359,0

Conforme o sistema de filtros utilizados, entre 1 a 10% da quantidades de metais liberadas poderá vir a ser dispersada na atmosfera juntamente com os óxidos de enxofre e nitrogênio e dióxido de carbono.

Como pode-se verificar acima, as quantidades destes metais não são pequenas. De fato, a quantidade de metais pesados tóxicos produzida como rejeitos decorrentes da produção de uma certa quantidade de energia elétrica pela combustão de carvão, é mais do que dez vezes maior do que a quantidade de combustível nuclear descarregado e mais do que trinta vezes a quantidade de rejeitos radioativos de alta radioatividade resultantes da produção da mesma quantidade de energia elétrica por uma central nuclear (*).

Se normas semelhantes às existentes para as centrais nucleares, fossem aplicadas às centrais termelétricas a carvão, estas substâncias, altamente tóxicas, não poderiam ser liberadas para o meio ambiente. Teriam que ser removidas, contidas e isoladas. O que normalmente acontece é que as cinzas são lavadas e descarregadas em lagos, onde estes elementos químicos sofrem lixiviação, libertam-se e penetram no sistema aquático.

^{(*) 1} MW(e) de uma central nuclear operando com um fator de capacidade anual de 75%, descarrega cerca de 25 kg/a de combustível, consistindo de urânio, plutônio e produtos de fissão. Se este combustível descarregado for reprocessado, esta quantidade é reduzida para 10 kg/a de rejeitos de alta radioatividade, que é mantida de maneira controlada e de forma completamente segura, e completamente isolada do meio ambiente.

Todos estes metais pesados são altamente perigosos para a saúde humana. O chumbo é um agente cancerígeno e teratogênico e ataca os rins e o cérebro. Ele é também tóxico para muitas espécies vegetais e animais. O cádmio é também um agente cancerígeno e teratogênico e suspeito de ser um fator causador de disfunção renal, hipertensão e arterioesclerose. Ele também é toxico para peixes e algumas plantas. O níquel é agente cancerígeno, causa danos aos sistemas gastrointestinal e nervoso e dificulta a reprodução de várias espécies aquáticas. O arsênio é um agente cancerígeno e teratogênico e causa danos ao fígado e rins. Ele tem efeito tóxico sobre algumas plantas. A liberação de mercúrio, em particular, pode causar sérias implicações ecológicas adversas. O mercúrio é agente teratogênico e pode causar, em pequenas doses, danos aos rins e fígado. Em doses mais altas, ele causa a síndrome tóxica aguda conhecida como doença de Minimata, para lembrar a catástrofe ocorrida no Japão que levou a descoberta do alto potencial tóxico imprevisto dos compostos orgânicos deste metal. O mercúrio também acarreta falhas do sistema genético e inibe o crescimento de várias espécies de peixes. A descarga de mercúrio em massas de água e sua interação com microorganismos resultam na transformação de componentes inorgânicos, o que representa grave perigo para a biota e à vida humana/34/.

Além das emissões descritas anteriormente, as usinas termelétricas a carvão ainda liberam para a atmosfera nuclídeos radioativos contidos naturalmente no carvão(urânio, tório, rádio, polônio e radônio). Assim os rejeitos de cinza produzidos por centrais térmicas a carvão podem conter concentrados destas substâncias radioativas em níveis que não seriam permitidos para emissões de uma central nuclear. Estima-se que o meio ambiente receba, por unidade de energia elétrica produzida, sete vezes mais radioatividade resultante da combustão de alguns antracitos do que por centrais nucleares/31//39/. Deve-se, entretanto, chamar a atenção, que esta radiação emitida por centrais térmicas a carvão é diminuta quando comparada com a radiação natural e com as radiações decorrentes de aplicações clínicas de diagnósticos e com a radiação de "fallout" de explosões nucleares. Os efeitos para a saúde decorrentes da emissão de material particulado, NO_x, SO₂ e metais pesados, são muitas vezes mais significantes do que os efeitos associados com a liberação de radioatividade.

No que diz respeito as emissões, a energia nuclear é mais limpa do que a energia termelétrica a combustíveis fósseis. A energia nuclear não produz dióxido de carbono nem causa chuvas ácidas. Não emite metais pesados cancerígenos e teratogênicos. As emissões de centrais nucleares são diluidas e controladas de modo a se enquadrarem em normas estabelecidas por órgãos regulatórios. A emissão de radioatividade é baixa, controlada, e da mesma ordem de grandeza da radiação natural de fundo do meio ambiente. Em particular a radiação emitida por centrais nucleares é inferior à emitida por algumas centrais termelétricas a carvão.

Em termos de rejeitos, a energia nuclear, dentre as alternativas térmicas para produção de energia elétrica, é a única que utiliza uma tecnologia que contém de modo seguro e controlado os seus resíduos.

Torna-se, assim, claro que a utilização da energia produzida por centrais nucleares, gerenciadas e operadas de modo apropriado e de acordo com normas próprias, pode evitar poluições sérias. A título de exemplo, e como indicado na figura 2 e na tabela que segue, uma usina nuclear de 1300 MWe pode evitar, quando comparada com uma usina a carvão do mesmo porte, a emissão das seguintes quantidades de poluentes:

- 2.000 toneladas de material particulado, mesmo se a usina a carvão possuir equipamentos especiais para a remoção de partículas como ciclones, precipitadores eletrostáticos e filtros especiais;
- * 12.000 toneladas de SO₂, mesmo se a usina a carvão possuir equipamentos de dessulfurização;
- * 6.000 toneladas de NO_x , mesmo se a usina a carvão possuir equipamentos de desnitrificação;
- * 8,5 milhões de toneladas de CO₂, não havendo tecnologia que evite esta emissão.

Comparação de uma Central a Carvão e uma Central Nuclear Usinas de 1300 MWe operando com um fator de utilização de 6500 horas efetivas equivalentes a plena carga (fator de capacidade = 74,2%, geração 8,45 TWh)

(lator de capacidade = 74,270, geração 0,43 r viii)							
Usina	Carvão	Nuclear					
Capacidade Instalada Combustível Consumo anual de combustível	2 x 650 MW(e) antracita 2,8 milhões toneladas	1300 MW(e) Urânio enriquecido 32 t U enr. (170 t U nat.)					
Utilização de terra para mineração e rejeitos Espaço para estocagem de combustível	415 ha 25 ha (reserva de 2 meses)	5 ha alguns m² somente					
Necessidade de transporte de combustível	33.000 vagões por ano	5 caminhões por ano					
Emissão de CO ₂ Emissão de SO ₂ c/contrôle Emissão de NO _x c/contrôle Emissão de material particu- lado com contrôle	8.500.000 t CO_2/a 12.000 t SO_2/a 6.000 t NO_x/a 2.000 t/a	0 0 0					
Rejeitos anuais	220.000 t cinzas/a 120.000 t cinzas volantes 70.000 t enxofre/a 130.000 t gesso/a	rejeito de alta radioati- vidade contido em um cubo de 1,5 m de lado					

3. O dióxido de carbono (CO₂) e o Efeito Estufa

Contrário ao que acontece com as outras emissões decorrentes do processo de combustão de combustíveis fósseis - emissões de SO_2 , NO_x , material particulado, metais pesados - não há meio prático e econômico conhecido para evitar e/ou controlar as emissões de dióxido de carbono(CO_2), produto inerente do processo de combustão.

A combustão de combustíveis fósseis e outras atividades humanas, aumentaram a concentração do CO₂ na atmosfera de cerca de 25% desde a era pré-industrial até os nossos dias, pondo fim a milênios de estabilidade da atmosfera. Existem riscos diversos relacionados com a emissão de CO₂. Um dos possíveis resultados é o chamado "Efeito Estufa" que pode causar, de acordo com a maioria dos especialistas na matéria, um aumento da temperatura da superfície terrestre, com consequências imprevistas sobre o clima do planeta (figura 3). (*)

Os fatos básicos da problemática CO₂/efeito estufa são conhecidos há muito tempo e há informação abundante sobre o assunto. Em resumo, os principais pontos são os seguintes/7/:

- * o teor de CO₂ no ar cresceu desde 1860, início da fase pré-industrial, de um valor de 280 ppm até cerca de 350 ppm nos dias de hoje, em termos de Carbono contido, um aumento de 25%. A tendência de crescimento é exponencial conforme mostra a figura 4 /19/. A figura 5 indica a tendência atual /17/. O aumento atual em ppm é de cerca de 1,5 ppm por ano (ou cerca de 0,5% por ano) /45//47//50//51/;
- a principal causa de emissão de CO_2 é a combustão de carvão, derivados de petróleo e gás (cerca de 2/3). O desflorestamento, as queimadas etc., são responsáveis por 1/3 do total emitido por todas as fontes;
- * a emissão de CO_2 está aumentando atualmente a uma taxa de 2 a 3% ao ano. Com uma taxa de de aumento de 1% ao ano, dentro de 50 a 100 anos, o teor de CO_2 no ar seria de 500-600 ppm;

^(*) Na realidade trata-se de um "Efeito Estufa Adicional", adicional porque é aquele efeito que se se sobrepõe ao efeito estufa que ocorre normalmente na natureza, devido a concentrações normais de gases estufas existentes no planeta, principalmente o vapor d'água e o CO₂, efeito este que leva a uma temperatura média de 15° e permite manter a vida no planeta terra. A palavra adicional é frequentemente omitida nas discussões sobre a matéria, mas não deve ser esquecida no contexto deste trabalho.

- com uma duplicação do teor de CO_2 , em relação a era pré-industrial, haverá, segundo os resultados de diversos modelos climáticos, um aumento médio de temperatura de 2 a 4°C. O aquecimento será mais acentuado nas altas latitudes e nas vizinhanças dos polos o aumento médio de temperatura seria de 6 a 8°C:
- em consequência, haveria modificações drásticas das condições climáticas mundiais, com efeitos profundos nos eco-sistemas globais, na agricultura, nos recursos hidráulicos, com graves consequências sócio econômicas a nível mundial.

O carvão é o maior emissor de CO_2 por unidade de energia produzida, como indicado na figura 6, e qualquer política visando a diminuição de CO_2 na atmosfera passa necessàriamente pela diminuição da utilização desta fonte de energia.

A combustão de combustíveis fósseis está emitindo cerca de 22 bilhões de toneladas de CO_2 (6 bilhões de toneladas de C) por ano e o aumento líquido anual na atmosfera é de cerca de 12 bilhões de toneladas de CO_2 por ano, a diferença sendo devido à existência de grandes sistemas absorvedores, os oceanos e as florestas, que estão se tornando saturados ou diminuindo a um rítmo veloz /34/.

A figura 7 indica a evolução das emissões de CO₂ no mundo, por combustíveis fósseis, durante o período de 1960 a 1986, identificando as fontes principais. Em 1985, como indica a figura 8, o setor elétrico mundial foi sòzinho responsável por 26% de toda a emissão de CO₂ do mundo, da qual 74% foi devida a combustão de carvão, o combustível mais utilizado a nível mundial no setor elétrico (As centrais a carvão suprem 40% do total da energia elétrica gerada no mundo).

Como demonstrado pela figura 9, as emissões de gás carbônico mais do que triplicaram entre 1950 e 1980 e a contribuição por regiões vem mudando de acordo com o crescimento industrial regional que se realiza de forma diferenciada. Em 1950 a América do Norte e a Europa Ocidental, juntas, contribuiram com 68% das emissões globais. Trinta anos depois esta parcela caiu para 43%. Em contraste, a contribuição da China, países em desenvolvimento da Africa, América Latina e sudeste da Asia, cresceu de 7 para 20% no mesmo período. A situação em 1987 está indicada na figura 10.

Hoje em dia, quase um quarto da emissão total de gás carbônico do mundo é devido a combustão de combustíveis fósseis sòmente nos Estados Unidos. Esta contribuição americana é dividida aproximadamente entre os processos industriais, produção de energia elétrica e transporte. Os consumos residencial e comercial desempenham papeis mais modestos no processo. Sômente o setor elétrico americano é responsável pela emissão de 7,5% de todo o CO₂ emitido no mundo /37/.

Neste contexto deve-se chamar atenção para o papel desempenhado pela energia nuclear. Só no ano de 1990, se a produção de energia elétrica por centrais nucleares em todo o mundo, que foi de 1901 TWh, fosse feita por centrais a carvão, cerca de 1,9 bilhões de toneladas adicionais de CO₂ seriam liberadas para a atmosfera. Isto significa que a energia nuclear no ano de 1990 evitou a emissão adicional de 9% de todo o CO₂ emitido no mundo, ou 25% se sòmente o setor elétrico for examinado. Estes são valores consideráveis se for levado em conta que grande parte do gás carbônico emitido permanece na atmosfera, havendo um efeito cumulativo com o passar dos anos.

O gás carbônico, no decorrer dos últimos cem anos, foi o maior causador do efeito estufa, mas, infelizmente, na presente década, outros "gases estufas" tornaram-se importantes como decorrência do desenvolvimento de novos processos industriais. Outros causadores do efeito estufa são o vapor d'água, o metano(CH₄), o óxido nitroso(N₂O), o ozônio(O₃) troposférico (baixa atmosfera) e os clorofluorcarbonos, também chamados popularmente de "freons". Atualmente o CO, continua como o maior causador do efeito estufa, mas sua contribuição caiu para cerca de 50%. Os clorofluorcarbonos, usados como refrigerantes em geladeiras e aparelhos de ar condicionados e na produção de espumas plásticas, contribuem com cerca de 15% para o efeito estufa(*). O metano, o N2O, e os demais "gases estufas" contribuem com os restantes 35% (figura 11). O crescimento recente da concentração de N₂O na atmosfera está, também, intimamente ligado ao aumento da utilização dos combustíveis fósseis, especialmente carvão, e constitui-se em fator adicional de preocupação /33/. Varios destes "gases-estufas" tem vidas longas na atmosfera, décadas ou séculos, o que significa que as suas concentrações atmosféricas respondem muito lentamente a mudanças nas taxas de emissão /50/. Particularmente o CO₂ emitido para a atmosfera hoje influencia a concentração atmosférica do CO₂ séculos no futuro. Para se atingir um estabilização na concentração nos níveis atuais seria necessário uma redução imediata nas emissões antropogênicas da ordem de 60-80%.

Existem, ainda, ligados ao "Efeito Estufa" fatores de realimentação positiva ou negativa, que podem acelerar ou diminuir o efeito, e que tornam a sua análise ainda mais difícil e complexa. Entre as realimentações positivas cita-se o fato de que à medida que a atmosfera aquece, a quantidade de vapor d'água que ela pode conter aumenta e como o vapor d'água é um dos mais importantes "gases estufas", há, então uma amplificação do processo. Os processos de realimentação negativa podem causar uma certa redução no aquecimento, mas infelizmente, não uma compensação do aquecimento.

^(*) Os clorofluorcarbonos alem se serem "gases estufas" - seus efeitos, por molécula são cerca de 14 a 17000 vezes mais poderosos do que o CO₂ - constituem-se, também, no principal destruidor da camada de ozônio estratosférico que se constitui em uma blindagem protetora contra os perigosos raios solares ultravioletas.

Atingiu-se, finalmente, um consenso científico nos últimos anos de que realmente o aumento da concentração do CO₂ na atmosfera tem relacionamento direto com o aumento da temperatura média da terra. Até agora, no presente século, os anos de 1980, 1983, 1987 e 1988 foram os mais quentes, e 1988 foi o mais quente de todos desde que sistemas de medidas confiáveis foram postos em prática. Há atualmente evidência científica suficiente demonstrando que este aquecimento não faz parte de variações naturais, mas que, ao contrário, é causado pelo aumento da concentração na atmosfera de dióxido de carbono e de outros gases decorrentes do uso industrial.

É importante não subestimar os riscos ambientais de longo prazo causados pelas centrais termelétricas a combustíveis fósseis e processos industriais. Mesmo que nossa sociedade decida parar com as emissões antropogênicas dos "gases estufas", a concentração atmosférica ainda crescerá por cerca de 25 a 30 anos devido à inércia dos grandes sistemas. Com o aumento médio das temperaturas existe risco da elevação dos níveis dos oceanos e mares. Como, aproximadamente, metade da população mundial habita próximo ao mar, ignorar este risco, mesmo que ele apresentasse uma probabilidade baixa de ocorrência, seria no mínimo irresponsável por parte dos líderes políticos mundiais. De acordo com o "Laboratory for Coastal Research, University of Mariland", os oceanos jã teriam se elevado, em média, cerca de 15 cm durante os últimos cem anos. Como consequência, cerca de 90% das praias americanas estão em processo de erosão a uma taxa de mais de 30 cm por ano e muitas áreas, ao longo da costa atlântica e do golfo, estão sofrendo erosão a uma taxa de 90 a 150 cm por ano /37/.

As previsões de que o efeito estufa aconteceria foram feitas há, pelo menos, cinquenta anos e sua possibilidade foi discutida nos meios científicos há cem anos atrás. Nada foi feito, entretanto, neste período para evitá-lo ou mitigá-lo. É de se esperar agora que, quando os seus efeitos começam a se fazer sentir, ações mais responsáveis sejam tomadas em futuro próximo. Alguns cientistas julgam que o efeito estufa não pode ser mais evitado e que, agora, só é possível atuar em sua intensidade.

Se a humanidade não quer se comprometer a mudanças ambientais irreversíveis, devem ser tomadas imediatamente ações mais-responsáveis. Existe a necessidade atual para um sentimento global de responsabilidade a nível mundial. A humanidade vive em um mundo complexamente interdependente no qual a atmosfera é um recurso comum de sobrevivência.

As consequências potenciais para o meio ambiente e para a humanidade são tão graves que os delegados da Conferência Sobre as Alterações na Atmosfera, realizada em Toronto, no Canadá, em junho de 1988, recomendaram um corte no consumo de combustíveis fósseis de 1/5 até 2005, objetivando uma redução nas emissões de CO_2 de 50%. Para muitos especialistas estes objetivos não são suficientes.

O carvão é o maior emissor de gás carbônico por unidade de energia produzida e, portanto, qualquer programa sério de redução de emissão de CO_2 , tem que considerar, obrigatòriamente, sua substituição por outras fontes de energia. Como 80% das reservas de carvão do mundo estão controladas pelos EUA, União Sovética e China, a problemática do CO_2 /efeito estufa está nas mãos das grandes potencias continentais e no tipo

de liderança que seus dirigentes estiverem dispostos a realizar. Em particular, um quarto de toda a emissão do CO₂ mundial é feita no território dos Estados Unidos. Estados Unidos e URSS juntos são responsáveis por 40% da emissão de CO₂ no mundo. Assim qualquer programa sério de de redução do CO₂ deve partir da iniciativa destes países. Os países em desenvolvimento, com exeção da China, tem muito pouco a fazer, a não ser seguir o exemplo que vier dos países mais desenvolvidos. É necessário um enfoque internacional de cooperação e o mundo industrializado, responsável pela maior parte do problema ambiental a nível mundial, deve agora liderar o processo de recuperação. Como os demais poluentes decorrentes do processo de combustão de combustíveis fósseis, o CO₂ e o efeito estufa dele decorrente, não é um problema regional ou nacional, mas sim de âmbito mundial. Os seus efeitos espalham-se por todo o planeta. Cabe aos nossos líderes decidirem se querem ou não legar um mundo melhor do ponto de vista de meio ambiente às futuras gerações.

Neste contexto, a energia nuclear, que não emite CO₂ e que apresenta uma folha de serviço iniguatável do ponto de vista de segurança, pode e deve desempenhar um papel importante na solução do problema. Apesar de parecer ilógico para muitos pseudo-ambientalistas, a energia nuclear constitui-se nos dias atuais, na única opção a nível mundial para diminuir a degradação atual do nosso meio ambiente e promover um continuado desenvolvimento econômico.

Já começa a haver uma percepção mundial neste sentido, como verificado no congresso da "Conferência Mundial de Energia" realizada em Montreal, no Canadá, em setembro de 1989 e no recente simpósio sobre "Energia Elétrica e Meio Ambiente" realizado em Helsinki, Finlandia, em maio de 1991.

4. A deposição Acida e alguns dos seus efeitos

A deposição ácida, ou mais corretamente, os poluentes que são a sua causa, representam um interferência em grande escala nos ciclos biogeoquímicos, através dos quais os organismos vivos interagem com o seu ambiente.

A acidificação representa um risco potencial de danos às raízes das plantas com o subsequente risco de declínio da produtividade do ecosistema. A deposição ácida contribui para os efeitos negativos sobre os sistemas aquáticos, agricultura, florestas, peixes, animais selvagens, ecosistemas, saúde pública e bem estar da população, materiais como metais, madeiras, pinturas e obras de alvenaria. Os ataques sofridos pelo Partenon e pelas estátuas de mármore da Acrópole, na Grécia, são exemplos dos efeitos da acidificação sobre monumentos de valor histórico.

Norte são encontradas provas da acidificação do solo, atribuíveis à emissão de poluentes. Em certas áreas, principalmente no sul da Suécia e na República Federal da Alemanha, a acidez do solo aumentou em até 1 pH durante os últimos cinquenta anos/15/(*). O efeito principal é a concentração, cada vez maior, no solo de soluções de alumínio (tóxicas para plantas e peixes) e de metais pesados, inclusive o manganês e o cádmio, sendo o último de importância significativa nas águas de superfície e subterrâneas. No Canadá os danos causados pela deposição ácida são da ordem de 1 bilhão de dólares por ano/48/. Metade da ferrugem que ataca os carros canadenses tem origem nas chuvas ácidas. Os danos resultantes da acidificação do solo devido a chuvas ácidas no território europeu noroeste da União Soviética atingem cerca de um bilhão de rublos por ano. Nesta região aplica-se cerça de 1,5 milhões de toneladas de óxido de cálcio na luta contra a acidificação /31/.

Os peixes, particularmente a truta comum e o salmão, desapareceram de diversos lagos e rios da Escandinávia, a partir dos anos 50. Ao que tudo indica, uma quarta parte dos lagos suecos estão acidificados ou "mortos". Muitos lagos("loch") da Escócia também já se encontram sem peixes. O mesmo se passa no Canadá e em parte da região leste dos Estados Unidos. Cerca de 14.000 lagos canadenses estão acidificados e biológicamente mortos. De acordo com um trabalho recente do "Science Council of Canada", outros 10.000 a 40.000 lagos canadenses terão o mesmo destino caso a deposição ácida não seja reduzida/48/. A morte dos peixes se deve, geralmente, ao envenenamento por alumínio liberado pelo ácido e que é transportado aos lagos e rios.

A mistura de alumínio e ácidos nos lagos e rios afeta, também, profundamente a ecologia da água doce. O principal resultado é um ecosistema alterado com um menor número de espécies.

As florestas sofrem igualmente com a deposição ácida. As águas ácidas escoando no solo eliminam substâncias nutrientes e liberam alumínio que é absorvido pelas raízes das árvores. Sem absorverem nutrientes essenciais, tais como o magnésio e o cálcio, as árvores morrem de inanição. O dióxido de enxofre também ataca diretamente antes da formação de ácidos, as folhas e espinhos, dificultando o processo de fotosíntese. É um fato inconteste que os danos causados às florestas se multiplicaram no continente europeu nos últimos anos. A República Federal da Alemanha tem sofrido particularmente e o termo alemão "Waldsteben", ou morte das florestas, é empregado indistintamente em todo o continente europeu.

^(*) Sendo o pH uma função logaritmica, a diminuição de uma unidade pH significa um aumento de acidez de dez vezes. A água pura tem um pH de sete, o suco de limão, 2 e o ácido de bateria, 1, para se dar uma idéia do assunto. Uma chuva com pH quatro é dez vezes mais ácida do que uma chuva com pH 5. As chuvas ácidas são geralmente definidas como chuvas de pH médio anual inferior a cinco.

Em 1986, um estudo europeu classificou cerca de 29% das árvores da Holanda como moderada ou gravemente atacadas. A república Federal da Alemanha tinha 20% de suas árvores nesta categoria e a Tchecoeslováquia e a Suiça, 16% cada. Um levantamento da situação no Reino Unido registrou um total de 29% /9/.

As coníferas são as maiores vítimas da poluição no ar. Um inventário realizado em 1984 na República Federal da Alemanha revelou que cerca de 87% dos abetos, 59% dos pinheiros e 51% dos abetos vermelhos estavam seriamente atacados/16/. Verificou-se que, no mesmo ano, uma área florestal de 2,5 milhões de hectares estava danificada/18/.

A tabela que segue mostra a evolução das áreas florestais danificadas na República Federal da Alemanha/38/.

Area florestal afetada na República Federal da Alemanha (%)

Categoria de dano (*)	Ало			
	1983	1984	1985	198 6
 Danos leves Danos moderados & 4. Danos graves e florestas mortas 	24,7	32,9	32,7	34,8
	8,7	15,8	17,0	17,3
	1,0	1,5	2,2	1,6
2 + 3 + 4	9,7	17,3	19,2	18,9
1 + 2 + 3 + 4	34,4	50,2	51,9	53,7

(*) sem danos: até 10% danos moderados: 26-80%

danos leves: 11-25 %

danos graves: acima de 80%

Verifica-se, assim que mais de 50% da área florestal é afetada de alguma maneira na RFA.

Algumas espécies de plantas sofrem mais do que as outras. O abeto, particularmente, foi danificado em cerca de 83 % em 1986 na RFA. A tabela seguinte indica os danos por tipo de árvores e para as categorias de dano de 1 a 4:

Area florestal afetada (%)

Espécie/ano		1985	1986
abeto vermelho	("spruce")	52,2	54,1
pinheiro	("pine")	<i>5</i> 7, <i>5</i>	54,0
abeto	("fir")	87,3	82,9
faia	("beech")	54,6	60,1
carvalho	("oak")	55,3	60,7
outras espécies		30.6	<u>34,2</u>
·	Total	51,9	53,7

A situação geral na Europa é muito grave como pode-se observar pela seguinte tabela que lista os danos em todas as categorias:

Area Afetada Das Florestas Européias em 1986

Holanda	: 55 %	R.F. Alemanha	: 54 %
Suiça	: 50 %	Grā-Bretanha	: 49 %
Tchecoeslováquia	: 41 %	Austria	: 37 %
Bulgária	: 34 %	França	: 28 %
Espanha	: 28 %	Luxemburgo	: 26 %
Noruega	: 26 %	Finlândia	: 25 %
Hungria	: 25 %	Bélgica	: 16 %
Polônia	: 15 %	Suécia	: 15 %
DDR	: 12 %	Iugoslávia	: 5%
Italia	: 5%		

Na Europa como um todo cerca de 22% da área florestal total está de alguma maneira afetada.

Nos Estados unidos o declínio florestal foi mais dramático nas coníferas de alta altitude. Para florestas situadas acima de 850 m nos Adirondacks, nas "Green Mountains" de Vermont e nas: "White Mountains" de New Hampshire, uma comparação dos registros históricos com os levantamentos atuais mostra que mais de 50% dos abetos vermelhos morreu nos últimos 25 anos /42/.

5. As Reduções das emissões no Setor Elétrico

5.1. Resultados Práticos

Há. atualmente, um número crescente de dados decorrentes da experiência prática, que se constituem em evidência de que a substituição de energia térmica convencial por energia nuclear leva a diminuições significativas dos poluentes ambientais, como será discutido a seguir.

FRANCA

A tabela que segue mostra a evolução das emissões de SO_2 por diversos setores na França no periodo entre 1980 e 1988 /11/:

Emissões de SO₂ (kt/ano) na França (1 kt = 1000 toneladas)

Апо	1980	1988	Variação		% па	
Setor			kt	(%)	redução	
Transporte	127	127	0	0	0,0 %	
Processos industriais	302	189	- 113	-37	5,3 %	
Transformação energética(*)	210	107	- 103	-49	4,9 %	
Indústria e agricultura	1053	323	- 730	-69	34,5 %	
Residencial, terciário e aquecimento urbano	423	208	- 215	-51	10.2 %	
Setor Elétrico	1224	267	- 957	-78	45,1 %	
TOTAL	3339	1221	-2118	-63	100.0 %	

^(*) Refinarias de petróleo e complexo de gás de Lacq

Verifica-se que as emissões de SO₂ diminuiram de 63% no período de oito anos considerados e que o setor elétrico contribuiu com cerca de 45% do total da redução das emissões de todos os setores em conjunto. No setor elétrico houve uma redução impressionante das emissões de cerca de 80% durante o mesmo período. Essa redução foi possível pela adoção de nova orientação energética, destacando-se a conservação de energia, a substituição de derivados de petróleo, com teor de enxofre de até 4%, por carvão com teor de enxofre de no máximo 1% ou por gás, desenvolvimento de novas fontes renováveis de energia, porém, sobretudo, pela substituição de usinas termelétricas convencionais por centrais nucleares. Assim,

durante o período de 1980 a 1986 a produção de energia elétrica cresceu de 40%, a produção de energia elétrica por centrais nucleares quadruplicou e sua participação na produção de energia elétrica total aumentou de 24 para 70%. A figura 12 ilustra claramente este fato. Hoje a participação da energia nucleoeléletrica na produção total de energia elétrica na França é superior a 75%.

A situação referente às emissões de material particulado poluente decorrente da combustão está indicada no quadro seguinte /11/:

Emissões de material particulado poluente (kt/ano)

Ano	1980	1988	Vari aç ão		% na	
Setor			kt	(%)	redução	
Transporte	54	76	+ 22	+41	-15,0 %	
Processos industriais	205	132	- 73	-36	49,7 %	
Transformação energética	13	8	- 5	-39	3,4 %	
Indústria e agricultura	39	21	- 18	-46	12,2 %	
Residencial, terciário e aquecimento urbano	25	15	- 10	-40	6,8 %	
Setor Elétrico	91	28 -	- 63	-69	42,9 %	
TOTAL	427	280	-147	-34	100.0 %	

Verifica-se, que houve durante o período uma redução total das emissões de material particulado, emitido por todos os setores, de 34 %. Também, neste caso, foi importante a contribuição do setor elétrico, responsável por 43 % do total da redução. A centrais nucleares desempenharam um papel fundamental, como discutido anteriormente. Cabe assinalar que as emissões de material particulado aumentaram de cerca de 41 % no setor transporte.

No tocante as emissões de NO_x, a situação é a seguinte/11/:

Emissões de NO_x (kt/ano)

Ano	1980	1988	Vari	Variação	
Setor			kt	(%)	redução
Transporte	1033	1260	+ 227	+22	-125,4 %
Processos industriais	138	106	- 32	-23	17,7 %
Transformação energética	26	17	- 9	-35	5,1 %
Indústria e agricultura	222	97	- 125	-56	69,0 %
Residencial, terciário e aquecimento urbano	95	78	- 17	-18	9,4 %
Setor Elétrico	321	96	- 225	-70	124,3 %
TOTAL	1835	1654	- 181	-10	100,0 %

Houve uma redução total muito pequena nas emissões de NO_x no período considerado, devido, principalmente ao aumento das mesmas no setor transportes, que anulou pràticamente, a redução significativa obtida no setor elétrico. O setor elétrico foi mais uma vez o responsável pela maior redução de emissões, embora sua participação no total das emissões fosse pequena(17%) em comparação com o setor transporte(56%). A redução das emissões obtidas no setor elétrico resultaram, principalmente, do aumento substancial da participação da energia nuclear na geração elétrica.

No que se refere ao dióxido de carbono, a quantidade liberada para atmosfera teria sofrido um aumento de cerca de 220 milhões de toneladas em 1986, na França caso a energia elétrica produzida por centrais nucleares tivesse sido gerada por centrai térmicas convencionais/12/. Isto representa cerca de 1% do total do gás carbônico emitido no mundo no mesmo ano.

A figura 12 mostra o desenvolvimento da geração de energia elétrica n França no periodo 1975-1985, onde pode-se notar a diminuição significativa, a partir de 1976 da geração termelétrica convencional no parque gerador francês. As evoluções das emissõe de dióxido de enxofre, óxidos de nitrogênio e de material particulado seguem padrõe semelhantes. A figura 12 também mostra, claramente, que a diminuição de geraçã termelétrica convencional só foi possível graças a um aumento considerável da produção c energia elétrica por centrais nucleares, levando, no fundo, a diminuição das emissões do gase poluentes.

<u>REINO UNIDO</u>

A tabela que segue mostra a evolução das emissões de SO₂ por todos os setores no Reino Unido durante o período 1980-1985 /25/:

Emissões de SO_2 no Reino Unido(kt SO_2 /ano) (kt = 1000 t)

a)por setor:

Апо	1980 1985		Vari	% па	
Setor			kt	(%)	redução
Transporte	50	40	- 10	-20	1,0 %
Refinarias	280	140	- 140	-50	12,8 %
Comércio e Serviço Público	200	120	- 80	-40	7.3 %
Indústria e Agricultura	1050	550	- 500	-48	45,9 %
Doméstico	220	200	- 20	- 9	1,8 %
Setor Elétrico	2870	2350	- 340	-12	31,2 %
TOTAL	4670	3580	-1090	-23	100,0 %

b)por tipo de combustível:

1	Апо	1980	1985	Variação		% na
Combustível				kt	(%)	redução
Carvão		3020	2530	- 490	-16	45,0 %
Combustível sólido		100	100			
Derivados de Petróleo		1550	950	- 600	-39	55.0 %
TOTAL		4670	3580	-1090	-23	100.0 %

Verifica-se que houve uma diminuição total de 23 % nas emissões de SO_2 durante o quinquênio considerado e que o setor elétrico participou com cerca de 31 % na redução total. A redução no setor elétrico foi sòmente de 12 % durante o periodo, porém sua participação em termos de redução total nas emissões foi bastante significativa, 31%, apenas superada pelo setor indústria/agricultura.

A evolução da energia elétrica produzida por diversos tipos de centrais no quinquênio estudado está indicada na tabela que segue/24/:

Energia Elétrica produzida no Reino Unido

Ano Tipo	198	0/81	1985	Variação	
	TWh	(%)	TWh	(%)	(%)
Carvão	174,1	82,3	181,5	79,5	+ 4,3
Derivados de petróleo	14,7	7,0	8,2	3,6	-44,2
Gás	-	•	0,4	0,2	-
Nuclear	22,7	10,7	37,9	16,7	+67,0
Hidrelétrica (*)	0.1		(0.5)	(0.2)	•
TOTAL	211,6	100,0	227,6	100,0	+ 7,6

^(*)menos a energia líquida de bombeamento utilizada nas usinas reversíveis de bombeamento.

Depreende-se desta tabela que a energia nuclear desempenhou um papel importante no suprimento de energia elétrica no Reino Unido, durante o período considerado. A geração de energia elétrica aumentou de 7,6% no quinquênio. A geração por centrais térmicas a carvão cresceu sòmente de 4,3% e a produção por centrais térmicas a óleo caiu de 44%. É assim evidente, que a produção de energia elétrica por centrais nucleares substituiu a geração a óleo e evitou um grande aumento da geração a carvão no período. É também evidente que desempenhou, assim, a energia nuclear um papel importantíssimo na redução das emissões poluentes.

A figura 13 /23/ mostra mais claramente a redução das emissões causadas pela substituição de combustíveis fósseis por energia nuclear, na produção de energia elétrica no Reino Unido, desde 1960.

CANADA/NEW BRUNSWICK /22/

O exemplo que segue mostra que mesmo um sistema elétrico pequeno com uma central nuclear pequena, bem administrado, pode desempenhar um papel importante na melhoria do meio ambiente.

A New Brunswick Power, uma empresa de energia elétrica canadense, possui e opera uma só usina nuclear em Point Lepreau, com um reator CANDU 600, com capacidade líquida nominal de 635 MWe. Esta unidade entrou em operação em 1983, tornando-se uma das usinas que vem apresentando uma das melhores performances operativas, no mundo, desde aquela data. Presentemente a unidade supre cerca de 30% da demanda da Província de New Brunswick. Adicionalmente, cerca de 230 MWe são exportados para empresas associadas da região nordeste dos Estados Unidos.

Desde 1983 a central de Point Lepreau vem substituindo geração térmica convencional, que, no caso específico, utilisaria óleo combustível n.6. A New Brunswick tem licença operativa para consumir óleo residual com teor médio de de enxofre de $2,8\%_r$ em média por ano civil, em suas usinas termelétricas a óleo.

A operação da central de Point Lepreau contribuiu para reduzir as emissões de SO_2 , NO_x , CO_2 e material particulado poluente. Estas reduções, para os anos fiscais (abril a março) 1982/83 até 1986/87 são as seguintes:

REDUÇÕES NAS EMISSÕES DE POLUENTES DEVIDO A OPERAÇÃO DA CENTRAL NUCLEAR DE POINT LEPREAU

ANO PRODUÇÃO FISCAL NUCLEAR		Reduções médias nas emissões (1000 toneladas)						
	(TWh)	SO ₂	NO _x	Partículas	CO ₂			
1982/83	0,671	8,1	1,08	0,55	472			
1983/84	5,139	61,8	8,27	4,10	3612			
1984/85	5,010	60,2	8,07	4,70	3522			
1985/86	5,394	64,8	8,68	4,40	3790			
1986/87	5,265	63,3	8,48	4,30	3702			

NOTAS:

- 1. As emissões de SO₂ evitadas foram em média de 26,5 lb/MWh conforme os dados da NB.
- 2. As emissões evitadas de NO_x foram em média de 3,55 lb/MWh conforme os dados da NB.
- 3. As emissões evitadas de material particulado foram em média de 1,80 lb/MWh conforme os dados da NB.
- 4. As emissões evitadas de CO₂ foram em média de 1550 lb/MWh conforme os dados da NB.

Outra maneira efetiva pela a qual a New Brunswick reduziu as emissões foi através de compra de energia elétrica de empresas vizinhas. A maior parte desta energia comprada foi de origem hidráulica, tendo portanto, os mesmos efeitos que a energia nuclear no que diz respeito às emissões. A combinação destes dois efeitos simultâneos permitiu que a New Brunswick Power Co, reduzisse suas emissões durante um período de efetivo crescimento da demanda de energia elétrica.

A figura 14 mostra o papel desempenhado pela New Brunswick nas emissões de SO₂ durante os últimos anos. A participação mais significante das emissões de SO₂ resulta da combustão de cerca de 500.000 tons de carvão de alto teor de enxofre da Provincia de New Brunswick. As variações nas quantidades consumidas deste combustível influem de modo importante nas emissões de SO₂ de New Brunwick. Nota-se, na figura, as reduções decorrentes da central nuclear e da energia comprada. O decréscimo no setor industrial desde 1980 deve-se a adoção de equipamentos antipoluentes na indústria de papel.

REPUBLICA FEDERAL DA ALEMANHA

Os dados que serão discutidos a seguir referem-se à antiga República Federal Alema, hoje parte da nova Alemanha reunificada em 1990, com a antiga República Democrática Alema, ou Alemanha Oriental.

A tabela que segue indica a evolução das emissões de SO_2 por diferentes setores na República Federal da Alemanha no período de 1980 a 1989 /26/.

Emissões de SO₂ (kt/ano) na RFA

Апо	1980	1989	Variação		% па	
Setor			kt	(%)	redução	
Transporte	105	75	- 30	- 29	1,4 %	
Residencial e agricultura	330	135	- 195	- 59	8,8 %	
Indústria	870	415	··455	- 52	20,6 %	
Setor Elétrico (*)	1900	370	-1530	- 81	69.2 %	
TOTAL	3205	995	-2210	- 69	100,0 %	

(1 kt = 1000 t)

^(*) Inclui autogeração industrial e outras transformações energéticas.

Verifica-se que durante os nove anos considerados houve um decréscimo nas emissões totais de SO₂ de 69 %, e cerca de 69 % da redução total foi realizada pelo setor elétrico. No setor elétrico houve um decréscimo das emissões de 81 % durante o periodo de nove anos. Esta redução foi possível pela utilização de sistemas de contrôle nas centrais a carvão, mas, sobretudo pela substituição de centrais termelétricas convencionais por centrais nucleares. Entre 1980 e 1989, a geração de energia elétrica cresceu de 19,6 % na RFA, a produção de energia elétrica por centrais nucleares cresceu de 242% e a sua participação na produção total de energia elétrica cresceu de 12 % para 34% no mesmo período.

A estrutura de produção por diferentes fontes geradoras no setor elérico, na RFA, foi a seguinte /27/:

Energia Elétrica Produzida por Tipo de Usinas

Ano Tipo	1980		1989		Variação
	TWh	(%)	TWh	(%)	(%)
Carvão (1)	206,0	55,9	213,2	48,3	+ 3,5
Outros (2)	13,6	3,7	14,6	3,3	+ 7,4
Óleo	25,7	7,0	9,9	2,2	-61,5
Gás	61,0	16,5	34,7	7,9	-43,1
Nuclear	43,7	11,9	149,4	33,9	+241,9
Hidro, Solar e Geotérmica	18,7	5,0	19,2	4,4	+ 2,7
TOTAL	368,7	100,0	441,0	100,0	+ 19,6

⁽¹⁾ antracita e linhita (2) gases de processos e mistura de combustível

Pode-se verificar, pela análise da tabela acima, que a energia nuclear desempenhou um papel importante no suprimento de energia elétrica na RFA durante o período considerado. A produção de energia elétrica cresceu de 19,6% no período. A produção por centrais termelétricas a carvão cresceu de apenas 3,5%, a produção por centrais termelétricas a óleo caiu de 62% e a produção por centrais a gás caiu de 43%. A energia nucleoelétrica, mais do que triplicando no período, preencheu o vazio deixado pela geração a óleo e gás e evitou um aumento considerável da geração a carvão durante o período. É também evidente, assim, que a energia nuclear desempenhou um papel fundamental na redução da emissão de poluentes por ter substituido parte da geração termelétrica convencional.

A título de complementação será mostrada, nas duas tabelas que seguem, a evolução das emissões de material particulado poluente e de NO_x durante o mesmo quadriênio na República Federal da Alemanha.

Emissões de material particulado(kt/ano)

Ano	1980	1989	Variação		% na	
Setor	,		kt	(%)	redução	
Transporte	62	71	÷ 9	+ 15	- 2,3 %	
Residencial e agricultura	65	31	- 34	- 52	8.6 %	
Indústria	430	158	-272	- 63	68.5 %	
Setor Elétrico (*)	130	30 -	-100	- 77	25.2 %	
TOTAL	687	290	-397	- 58	100,0 %	

(1 kt = 1000 t)

Verifica-se, neste caso, que o setor industrial, com 69%, é o principal responsável pela redução total obtida de 58% nas emissões de material particulado por todos os setores na RFA e no período de nove anos. O setor elétrico sòmente participou com 25% no total da redução das emissões, durante o período, apesar de ter sido o setor elétrico aquele em que as reduções relativas de emissões de material particulado foram as maiores, 77% no período. Assim, neste caso, não está muito claro o possível papel desempenhado pelas centrais nucleares para a redução do total de emissões de material particulado.

^(*) Incluirautogeração industrial e outras transformações energéticas.

Ano	1980	1989	Variação		% па	
Setor		!	kt	. (%)	redução	
Transporte	1580	1850	+ 270	+ 17	-128,6 %	
Residencial e agricultura	140	105	- 35	- 25	16,7 %	
Indústria	405	290	-115	- 28	54,8 %	
Setor Elétrico (*)	800	470	-330	- 41	157,1 %	
TOTAL	2925	2715	-210	- 7	100,0 %	

(1 kt = 1000 t)

Verifica-se, neste caso, que houve um redução total relativamente baixa nas emissões de NO_x , no período de nove anos considerado, devido, principalmente, ao aumento das emissões no setor transporte. O setor elétrico desempenhou um papel importante neste caso, pois mais do anulou o grande aumento das emissões do setor transporte.

O total de emissões de CO_2 , na RFA, foi de cerca de 750 milhões de toneladas de CO_2 in 1985, das quais cerca de 39% foi realizado pelas centrais termelétricas convencionais do setor elétrico, conforme indicado na figura 15. O carvão foi responsável por cerca de 50% destas emissões, embora o carvão tenha suprido sòmente 1/3 do total de 304 Mtce de energia fóssil suprida como energia primária. Os derivados de petróleo e gás natural, responsáveis por 2/3 do total do consumo de combustíveis fósseis, emitiram a outra metade do gás carbônico.

^(*) Inclui autogeração industrial e outras transformações energéticas.

FINLANDIA

A tabela que segue mostra a evolução das emissões de SO_2 por diferentes setores, na Finlândia, entre 1980 e 1986 /40/.

Emissões de SO_2 (kt/ano) na Finlândia (1 kt = 1000 t)

a) por setores

Ano	1980 1986		Vari	ação	% na
Setor		:	kt	(%)	redução
Transporte	10	7	- 3	- 30	1,1 %
Refinarias	60	31	- 29	- 48	11.1 %
Processos Industriais	185	112	- 73	- 40	28,0 %
Agricultura	14	7	- 7	- 50	2,7 %
Aquecimento Doméstico	59	17	- 42	- 71	16,1 %
Aquecimento Distrital e CHP	62	61	- 1	- 2	0,4 %
Vapor Condensado	70	17	- 53	- 76	20.3 %
Usos Industriais da Energia	124	71	- 53	- 43	20,3 %
TOTAL	584	323	-261	- 45	100,0 %

(1 kt = 1000 t)

b)por tipo de combustível:

		1980	1986	Variação		% na	
Setor				kt	(%)	redução	
Carvão		80	72	- 8	- 10	3,1 %	
Óleo Combustível		276	126	-150	- 54	57.5 %	
Turfa		3	7	+ 4	+ 133	- 1,5 %	
Rejeitos Industriais		104	47	- 57	- 55	21,8 %	
Processos		121	71	- 50	- 41	19,1 %	
TOTAL		584	323	-261	- 45	100,0 %	

^(*) CHP = "Combined Heat and Power Production" (Produção Combinada de Calor e Energia)

Verifica-se que houve no período de seis anos uma diminuição nas emissões totais de SO₂ de 45 %, e que da redução total cerca de 40 % foi realizada pelo setor elétrico. Este setor conseguiu uma diminuição de 55 % durante o período de seis anos. Esta redução foi possível graças a adoção de novas orientações no setor, como a substituição de óleo combustívei(o pior combustívei no que se refere as emissões de SO₂) por combustívei com menor teor de enxoîre (turfa e carvão), substituição de calefação individual por calefação distrital com CHP, e substituição de combustíveis nos processos industriais(por exemplo em fábrica de papeis) por energia elétrica.

A energia nuclear também desempenhou um papel importante na substituição de energia termelétrica convencional como indicado na tabela que segue. Entre 1980 e 1986, a energia primária usada para produção de energia elétrica na Finlândia cresceu de 33.3 %, a produção de energia elétrica por centrais nucleares cresceu 2,6 vezes e sua participação na produção de energia elétrica total subiu de 20 a 40%. A parcela da energia nuclear no total de energia produzida na Finlândia esteve em torno de 17 por cento. Embora seja difícil calcular a quantidade exata de redução das emissões de SO2 devido a energia nuclear, porque este valor dependeria da quantidade relativa do diferente tipo de geração por ela substituida(e isto dependeria, por sua vez, dos custos relativos das diversas fontes de energia), a tabela que segue demonstra claramente que a energia nuclear veio a substituir uma quantitade significativa de energia termelétrica convencional, evitando assim emissões adicionais de SO₂. A produção de energia elétrica por centrais nucleares permaneceu pràticamente constante desde 1984, substituindo 4,5 Mtep de outros combustíveis, principalmente carvão em centrais de vapor condensado. Isto significa que a energia nuclear evitou na Finlândia e no período 1984-1986, emissões adicionais de cerca de 110000 toneladas de SO₂, 54000 toneladas de NO, e 15 milhões de toneladas de CO, por ano.

A energia primaria utilizada para produção de energia elétrica durante o período analisado de seis anos, foi a seguinte para a Finlândia /40/:

Energia Primária utilisada para a produção de energia Elétrica na Finlândia

Апо	19	80	19	986	Variação
Tipo	Mtep	(%)	Mtep	(%)	(%)
Hidrelétrica	2,5	28,7	3,0	25,9	+ 20
Nuclear	1.7	19,5	4.5	38,8	+ 165
Carvão	2,5	28,7	1.3	11.2	- 48
Óleo combustível	0,7	8,1	0.2	1,7	- 71
Gás	0,3	3,5	0,3	2,6	0
Importação	0,3	3,5	1,5	12,9	+400
Outros	0,7	8,0	0,8	6,9	+ 14
TOTAL Mtep	8,7	100,0	394,9	100,0	+ 33,3
Consumo de Eletricidade	39,9 TWh		53,7	34,6	

A tabela que segue mostra, a título de complementação, a evolução das emissões de NO, durante o mesmo período na Finlândia.

Emissões de NO, (kt/ano) na Finlândia

Ano	1980	1986	Varia	ação
Setor			kt	(%)
Transporte	105	136	+ 31	+ 29
Aquecimento Individual	14	8	- 6	- 43
Aquecimento Distrital e CHP	22	41	+ 19.	+ 86
Vapor Condensado	44	7	- 37	- 84
Usos Industriais da Energia	30	38	+ 8	+ 27
TOTAL	215	230	+ 15	+ 7

(1 kt = 1000 t)

Verifica-se que não houve diminuição das emissões nesta área específica. Houve, mesmo, um aumento de 7% durante o período de seis anos. Isto resultou de uma grande expansão do tráfigo rodoviário causado pelo número crescente de automóveis particulares e da substituição dos pequenos fornos individuais de aquecimento pela calefação distrital com grandes fornos centralizados.

ESTADOS UNIDOS

Em relação aos Estados Unidos, estimou-se o limite inferior das reduções das emissões poluentes devido à utilização da energia nuclear, utilizando-se estimativas de reduções de geração termelétrica a base de carvão, derivados de petróleo e gás em conjunto com as suas normas respectivas de emissão. Os valores assim obtidos constituem-se em limites inferiores de redução, porque o início da construção das centrais termelétricas convencionais, um dos parâmetros que determinam as aplicações das normas, tem sido interpretado de maneira muito liberal. Assim uma grande parte da energia termelétrica substituida por energia nuclear, teria sido originada em centrais que, certamente, não cumpriram as normas exitentes na época.

Inicialmente foi estimado o papel que as diversas fontes termelétricas convencionais teriam desempenhado caso inexistisse a energia nuclear. A base de raciocínio se baseou na premissa de que nenhum tipo de central, sòzinha, por exemplo, centrals termelétricas a carvão substituiriam totalmente a energia nuclear inexistente. De acordo com características próprias e fatores típicos de disponibilidade, a energia nuclear seria substituida por mais de um tipo de centrals termelétricas.

A estimativa de base foi realizada por Lenox e Mills/28/. Em termos de país, a ausência de centrais nucleares seria compensada por uma composição complexa de diversos tipos de centrais. Esta composição foi determinada, para cada ano e região dos Estados Unidos, simulando-se a utilização de combustível por região. Inicialmente simulou-se a utilização no passado para obter-se o uso do combustível, a partir do modo de utilização normal de cada tipo de central termelétrica. Em todos os casos utilizou-se uma órdem de mérito, despachando-se prioritariamente as usinas com menor custo marginal de operação. Considerou-se também as peculariedades e restrições impostas por cada região. Baseadas nestas hipóteses, a tabela que segue e a figura 16 indicam as gerações adicionais de termoeletricidade a carvão, óleo combustível e gás, que seriam necessárias na ausência da energia nuclear e para o período entre 1973 e 1986.

A seguir admitiu-se que todas as centrais termelétricas com combustível fóssil estariam cumprindo com o Titulo 40 do Código de Regulamentação Federal dos EUA. Este Código contém normas de controle de materiais particulados poluentes, óxidos de enxofre e óxidos de nitrogênio, aplicáveis as emissões de caldeiras de grande porte nos Estados Unidos. As emissões para cada caso foram estabelecidas a partir destas normas e admitindo-se um rendimento de 10.000 BTU/kWh para todas as centrais. Admitiu-se, mais ainda, que todas as centrais termelétricas consideradas tiveram os seus inícios de construção antes de 18 de setembro de 1978, quando normas mais rígidas entraram em vigor.

Das considerações acima descritas, estabeleceu-se as seguintes taxas de emissão:

Material particulado: 0,10 lb por milhão de BTU ou 0,45 kg/MWh(e)

SO₂ óleo comb.: 0,80 lb por milhão de BTU ou 3,63 kg/MWh(e) carvão: 1,20 lb por milhão de BTU ou 5,45 kg/MWh(e)

NO óleo comb.: 0,30 lb por milhão de BTU ou 1,36 kg/MWh(e) carvão: 0,70 lb por milhão de BTU ou 3,18 kg/MWh(e) gás: 0,20 lb por milhão de BTU ou 0,91 kg/MWh(e)

Conforme discutido anteriormente, estas taxas de emissões são conservadoras. Por exemplo, a Associação Nacional de Carvão dos Estados Unidos ("National Coal Association")/41/, relatou que a taxa de emissão média de SO₂ para o carvão nos Estados Unidos foi 2,68 lb/MBTU em 1980 e 2,06 lb/MBTU em 1968, valores bem superiores ao adotado de 1,20 lb/MBU, utilizada neste estudo.

As reduções de dióxido de carbono(CO₂) foram estimadas admitindo-se teor de carbono e calor específico típicos para o combustível, convertendo-se, a seguir carbono em dióxido de carbono equivalente. Para o óleo combustivel admitiu-se um teor de carbono de 85% e calor específico de 19.000 BTU/lb. Para o carvão admitiu-se 60% e 10.000 BTU/lb, respectivamente. A eficiência de combustão do carbono é de cerca de 99%, permanecendo o carbono não queimado nos rejeitos. Com estas premissas as taxas de emissão de CO₂ utilizadas neste estudo são de 1,00 kg/kWh(e) para termelétricas a carvão e 0,70 kg/kwh(e) para termelétricas a óleo combustível.

Utilizando-se as taxas de emissão acima mencionadas, a redução de emissões devido a existência do programa nuclear nos Estados Unidos foi estimada e indicada na tabeia da página seguinte. Cabe ressaltar mais uma vez que os resultados obtidos constituem-se em limites inferiores, porque nem todas as centrais termelétricas em operação no período considerado seguem as normas estabelecidas como suposto no cálculo. Contudo, os valores obtidos são significativos (figura 17). Assim a economia total em SO₂ devido a existência do programa nuclear americano foi de aproximadamente 1.600.000 toneladas de SO₂ no ano de 1986, que é da mesma ordem de grandeza do total de emissões produzidas por todos os setores na França no mesmo ano. A mesma comparação é válida no tocante a NO_x e às emissões de material particulado poluente. Cabe assinalar, entretanto, que a nível nacional, todas estas economias representam menos do que 10% do total das emissões nos Estados Unidos e em cada categoria, conforme indicado pela Agência Americana de Proteção ao Meio ambiente ("United States Environmental Protection Agency")/29/ e indicado na figura 18.

Nos Estados Unidos há muita possibilidade de diminuições de emissões de SO_2 , já que a maior parte das emissões estão sendo causadas por grandes fontes concentradas puntuais. Dois terços de todas as emissões de SO_2 nos Estados Unidos são produzidos pelas empresas de energia elétrica, sendo que 94% deste total provém de centrais termelétricas a carvão. Duzentas usinas respondem por mais de 85% de todas as emissões originadas no setor elétrico, ou seja por 57% do total de todas as emissões de $SO_2/29/$.

ESTIMATIVA BAIXA PARA REDUCAD DE EMISSOES MOS ESTADOS UNIDOS DEVIDO AO PROGRAMA MUCLEAR

Produca	o substituid	a por ene	rgia nucl	ear	Material		\$02			NO	X	ı	(202		
Ario	Carvao	Oteo	Gas	Total	Particulado	Carvao	Oleo	Total	Carvao	Oleo	Gas	Total	Carvao	Ol eo	Gas	Total
		(IWh)		(1000 tons)		(1000 ton:	s)	(1000 tons)		j	•((milhoes d	e tonela	das)
1973	19.4	70.5		89.9	40.5	105.7	255.9	361.6	61.7	95.9	0.0	157.6	19.4	49.4	0.0	68.8
1974	31.2	89.9		121.1	54.5	170.0	326.3	496.4	99.2	122.3	0.0	221.5	31.2	62.9	0.0	94.1
1975	60.3	118.3		178.6	80.4	328.6	429.4	758.1	191.8	160.9	0.0	352.6	60.3	82.8	0.0	143.1
1976	68.8	125.3		194.1	87.3	375.0	454.8	829.8	218.8	170.4	0.0	389.2	8.86	87.7	0.0	156.5
1977	106.0	130.0		236.0	106.2	577.7	471.9	1049.6	337.1	176.8	0.0	513.9	106.0	91.0	0.0	197.0
1978	163.2	112.7		275.9	124.2	889.4	409.1	1298.5	519.0	153.3	0.0	672.2	163.2	78.9	0.0	242.1
1979	118.5	134.3		252.8	113.8	645.8	487.5	1133.3	376.8	182.6	0.0	559.5	118.5	94.0	0.0	212.5
1980	115.2	136.3		251.5	113.2	627.8	494.8	1122.6	366.3	185.4	0.0	551.7	115.2	95.4	0.0	210.6
1981	128.8	145.3		274.1	123.3	702.0	527.4	1229.4	409.6	197.6	0.0	607.2	128.8	101.7	0.0	230.5
1982	137.7	151.0		288.7	129.9	750.5	548.1	1298.6	437.9	205.4	0.0	643.2	137.7	105.7	0.0	243.4
1983	152.6	110.4	31.3	294.3	132.4	831.7	400.8	1232.4	485.3	150.1	28.5	663.9	152.6	77.3	15.7	245.5
1984	160.1	127.8	40.2	328.1	147.6	872.5	463.9	1336.5	509.1	173.8	36.6	719.5	160.1	89.5	20.1	269.7
1985	175.6	109.5	88.5	373.6	168.1	957.0	397.5	1354.5	558.4	148.9	80.5	787.9	175.6	76.7	44.3	296.5
1986	223.2	112.5	82.3	418.0	188.1	1216.4	408.4	1624.8	709.8	153.0	74.9	937.7	223.2	78.8	41.2	343.1
					i i			i				i				

J.A. Harques de Souza 22 novembro 1989

material	particulado=	0.45	kg/Huh
\$02	Carvao=	5.45	kg/MUh
	oleo=	3.63	kg/HUh
NUA	CBLA40=	3.18	kg/MWh
	oleo=	1.36	kg/Muh
	984=	0.91	kg/MWh
co2	carvao=	1.00	kg/kWh
	oleo=	0.70	kg/kWh
	gas=	0.50	kg/kWh

BELGICA

As emissões de SO₂ oriundas do setor elétrico belga diminuiram de 362.000 toneladas em 1980 para 120.000 toneladas em 1986, isto é de 66%. Isto foi conseguido graças a substituição de óleo combustível pesado por óleo de melhor qualidade, mas sobretudo pelo uso intensivo da energia nuclear. No período de 1980 a 1986, a participação da energia nuclear na produção total de energia elétrica aumentou de 25 para 67%, tendo havido, em consequência, uma substituição de energia termelétrica convencional por energia nuclear, com impacto direto na melhoria do meio ambiente.

5.2. Comentário sobre os casos estudos.

Cabe chamar a atenção que, na análise dos diversos casos reais apresentados para vários países neste estudo, as comparações foram feitas em termos de impactos positivos causados pela simples substituição de geração termelétrica convencional por energia nuclear. Não se tentou por exemplo avaliar o efeito indireto da substituição de combustível fóssil por energia elétrica, e em consequência por energia nuclear, no lado do consumidor, como por exemplo a substituição de combustível fóssil utilizado para aquecimento e cocção por energia elétrica, como ocorreu em diversos países, devido a conveniência de utilização e/ou preço mais baixo da energia elétrica.

6. Conclusões

Constitui-se em um fato notòriamente conhecido atualmente, que as opiniões de milhões de pessoas podem ser influenciadas por informações inadequadas e, frequentemente, incorretas sobre os problemas ambientais, sobretudo no que se refere à utilização da energia nuclear para produção de energia elétrica.

Existe uma probabilidade bastante alta de que o aumento do carvão na matriz energética mundial, como é a tendência atual, levará a impactos ambientais negativos.

Os aspectos transnacionais e transcontinentais do problema da poluição devem ser sempre lembrados. As chuvas ácidas e o "efeito estufa" não se constituem em problemas sòmente locais, mas encerram implicações a nível mundial.

A energia nuclear constitui-se hoje na única alternativa realista para produção de energia elétrica em níveis tais que possa mitigar a taxa presente de degradação de nosso meio ambiente e diminuir o risco de futuras catástrofes climáticas causadas pelo "efeito estufa". A energia nuclear supriu cerca de 17% das necessidades em energia elétrica do mundo em 1990 e evitou emissões adicionais de CO₂ de cerca de 25% no setor elétrico ou de 9% no total de

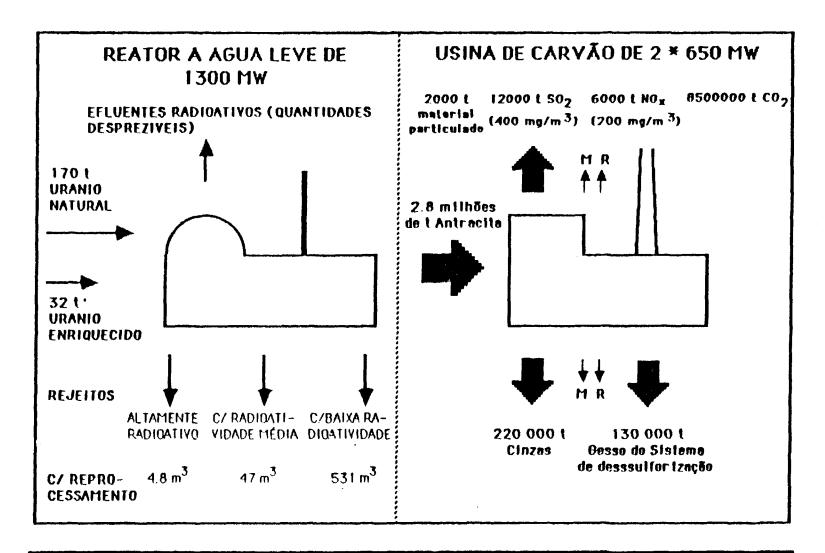
emissões decorrentes do suprimento energético global por combustíveis fósseis. A humanidade deverá reconhecer, oportunamente, a importância da energia nuclear no contexto do problema CO_2 /"efeito estufa" e compreender que quanto maior for a participação da energia nuclear, maiores serão os benefícios proporcionados ao meio ambiente. Além disto, quanto mais cedo as decisões forem tomadas, melhor para o contrôle dos problemas. As inércias dos grandes sistemas energéticos constituem-se em um fato real e muitas das mudanças feitas só se fazem sentir décadas à frente.

A indústria nuclear é caracterizada por um alto padrão de segurança e de proteção ambiental, havendo necessidade de mantê-los e mesmo aperfeiçoá-los. Cabe à indústria nuclear manter seu alto padrão de segurança e desenvolver tecnologias nucleares aceitáveis pelo público. É, sobretudo, indispensável confrontar os riscos inerentes à energia nuclear com os apresentados por outros setores industriais, principalmente com aqueles utilizados para a produção de energia elétrica (Anexo 1).

Referências Bibliográficas

- /1/IAEA. Expansion Planning for Electrical Generating Systems. A guidebook. TRS 241. Vienna. 1984.
- /2/R.Carle. Electricité de France. The Future of Nuclear Power. XXXI General Conference of the IAEA. Scientific Afternoon. 23 September 1987.
- /3/R.Carle. Electricité de France. IAEA Interregional Training Course on Energy Planning in Developing Countries. Rabat 1987. Opening Remarks. 2 February 1987.
- /4/Dr.Hans Blix. Director General. International Atomic Energy Agency.
- The Present and Future Place of Nuclear Power in the World and its Role in Relation to Environmental Risks and Energy Productions. Speech Delivered at the Seminar on Managing Environmental Risks at Schloss Leopoldskron in Salzburg, Austria on 26 March 1987.
- /5/UNIPEDE. Acceptability and Relative Risks of Different Sources of Energy. Athens Congress. June 9-14, 1986.
- /6/H-S Katainen et allii. Effects of SO₂ on the Photosynthetic and Respiratory Rates in Scots Pine Seedlings. Environmental Pollution 46(1987) 241-251.
- /7/Von H. Krämer, Vorsitzender des Vorstandes der PreussenElektra AG.
- Die Kernenergiekonzeption der Energieversorgungs-Unternehmen. Atomwirtschaft, August/September 1987.
- /8/L.D.Hamilton. Health and Environmental Risks of Energy Systems.
- Symposium on Risks and Benefits of Energy Systems. IAEA/UNEP/WHO. Jülich, 9-13 April 1984.IAEA-SM-273/51
- /9/Fred Pearse. Acid Rain. New Scientist. 5 November 1987.
- /10/A.Bouville. Evaluation de l'impact radiologique de la production
- d'électricité d'origine nucléaire. (IAEA-CN-42/503). International Conference on nuclear power experience. IAEA. Vienna, 13-17 September 1982.
- /11/France. Ministère de l'Environnement. L'Etat de l'Environnement 1987 Edition.
- /12/M.Jean-Pierre Capron, Administrateur Général du Commissariat à l'Energie Atomique, France. "La Politique Nucléaire Française pour le XXIème Siècle". XX Conference Annuelle du Japan Industrial Forum, Tokyo, 14 Avril 1987. CEA. Notes d'Information. Juillet-Août 1987. /13/Nuclear Power and the Environment. Atom. UK. February 1988.
- /14/13th Congress of the World Energy Conference, Cannes. October 1986. Report of Working Group 3: Environmental Effects of Energy-related Pollutants. Electricity Supply and Utilization and the Environment.
- /15/United Nations, Economic Commission for Europe, Air Pollution Studies n. 3. Transboundary Air Pollution, Effects and Control, UN.New York, 1986.
- /16/United Nations. Economic and Social Council. Effects of Environmental Measures on the Construction and Operation of Power Plants. 1986.
- /17/R.E. Munn. Environmental Prospects for the Next Century:Implications for Long-Term Policy Research Strategies. IIASA, Laxembourg. RR-87-15. August 1987.
- /18/P. Kauppi, J. Kamari, M. Posch, L. Kauppi, E. Matzner. Acidification of Forest Soils. IIASA, Laxembourg, RR-85-5, March 1987

- /19/Von H. Flohn. CO₂-Belastung der Atmorphäre. Entwicklung und Konzequenzen. Atomwirtschaft, März 1988.
- /20/Congress of the United States. Office of Technology Assessment. Acid Rain and Transported Air Pollutants Implications for Public Policy
- /21/International Energy Agency. Electricity in IEA Countries. Issues and Outlook. OECD/IEA 1985
- /22/G.L. Titus, Senior Vice-President, Operations. New Brunswick Power, Canada. Personal Information
- /23/W.S. Kyte, Group Head, Emission Controls, Environmental Studies Section. Central Electricity Generating Board. UK
- /24/CEGB. UK. Summary Statistics 1982/83 to 1986/87
- /25/Warren Spring Laboratory, Departmente of Trade and Industry. UK
- /26/Daten zur Umwelt. Umweltbundesamt. BRD.1991
- /27/OECD Energy Statistics -Paris
- /28/Frank H. Lennox & Mark P. Mills. An Analysis of the Role of Nuclear Power in Reducing U.S. Oil Imports. Science Concepts, Inc. Washington D.C. September 1987.
- /29/EPA-450/4-88-001. United States Environmental Protection Agency National Air Quality and Emissions Trends Report, 1986. February 1988.
- /30/A.Voss et allii. Institut für Kernenergetik und Energiesysteme. University of Stutgart. Cost-Optimal Emission Control Strategies. Present at UNDP-World Bank Seminar on Energy planning: Prospects for Europe and Arab States Countries. Vienna, Austria, 22-26 June 1987.
- /31/Yu A.Izrael. Energy Development and its Effects on the Environment. Energy Vol 12, no.10/11 pg 969-974, 1987
- /32/NASAP. The National Acid Precipitation Assessment Program. Interim Assessment. The Cause and Effects of Acid Deposition. Washington, DC. USA
- /33/Dr.Irving Mintzer, World Resources Institute, Washington DC,USA. Communications on energy. Is the heat on . Energy Policy, February 1988.pg 69-72.
- /34/John P.Holdren. Global Environmental Issues Related to Energy Supply: The Environmental Case for Increase Efficiency of Energy Use. Department of Energy and Resources, University of California, Berkeley. Energy, Vol 12 No.10/11 pp 975-992, 1987.
- /35/Deutsche Meteorologische Gesellschaft E.V. (DMG). Deutsche Physikalische Gesellschaft E.V. (DPG). Warnung vor drohenden Weltweiten Klimaänderung durch den Menschen. Juni 1987.
- /36/Prof. Hermann Flohn, Bonn. Treibhauseffekt un Klima. Stand und Perspektiven. Dezember 1986.
- /37/EPRI Journal, June 1988. The Politics of Climate.
- /38/Patient Wald. Mensch + Umwelt. Ein Magazin für Strahlen und Umweltforschung München. September 1987.
- /39/W.Jacobi, H.Schmier, J.Schwibach. Comparison of Radiation Exposure from Coal-Fired and Nuclear Power Plants in the Federal Republic of Germany. IAEA-SM-254/6. Symposium on Health Impacts of Different Sources of Energy. Nashville, 22-26 June 1981. WHO, UNEP, IAEA.
- /40/Ministry of Trade and Industry. Energy Department. Finland.
- /41/Reduction in Sulfur Dioxide Emission at Coal Fired Electric Utilities-The Clean Air Act Continues to Work. National Coal Association. August, 1988.


- /42/Volker A. Mohnen. The Chalenge of Acid Rain. Scientific American. August 1988. Volume 259. Number 2.
- /43/Burning Coal More Cleanly and Efficiently. IEEE Spectrum. August 1986.
- /44/World Energy Conference. Environmental Effects Arising from Electricity Supply and Utilization and the Resulting Costs to the Utility. 1988
- /45/E. Iansiti, F. Niehaus. Impact of Energy Production on Atmospheric Concentration of Greenhouse Gases. IAEA Bullettin. Vol 31. No 2. 1989
- /46/William A.Nierenberg. Atmospheric CO₂:Causes, Effects and Options. The Bridge. Volume 18, Number 3 Fall 1988.
- /47/Richard Houghton, George Woodwell. Global Climatic Change. Scientific American. April 1989. Volume 260. Number 4.
- /48/Benoit Legault. The Environmental Challenge-Mother Nature calls for Help. Ascent. Volume 8. Number 1. Spring 1989.
 - /49/J. A. Marques de Souza, L. L. Bennett. IAEA. Nuclear Power for Environmental Protection. 14 th Congress of World Energy Conference. 17-22 September 1989. Montreal. Canada.
 - /50/World Meteorological Organization (WMO) and United Nations Environment Programme (UNEP). Intergovernmental Panel on Climate Change. June 1990
 - Volume I: Scientific Assessment of Climate Change.
 - Volume II: Potential Impacts of Climate Change.
 - Volume III:Formulation of Response Strategies.
 - /51/WHO/UNEP/WMO/IBRD/OECD-NEA/CEC/CMEA/ECE/IEA/IAEA/IIASA.Senior Expert Symposium on Electricity and the Environment. Helsinki, Finland, 13-17 May 1991.

O PROCESSO DA FORMAÇÃO DE "CHUYAS ACIDAS" E O SEU EFEITO NA ACIDIFICAÇÃO DE LAGOS, MORTANDADE DE PEIXES, ATAQUE A FLORESTA

FR/002-JYC-D19

PR/006-JYC-D19

CONSUMO ANUAL DE COMBUSTIVEL E PRODUÇÃO DE REJEITOS DE UMA USINA DE 1300 MW OPERANDO COM FATOR DE UTILIZAÇÃO DE 6500 HORAS ANUAIS EQUIVALENTES A PLENA CARGA.

- A energia solar penetra na atmosfera sem ser perturbada pelos "gases- estufas".
- 2) A luz solar é absorvida em parte pela terra e é refletida em direção ao espaço em forma de energia calorífica com comprimento de onda maior (Radiação infra-vermelha).
- 3) Os "gases-estufas" absorvem parte desta irradiação e re irradiam grande parte de volta em direção à terra, de maneira análoga ao que se passa em uma estufa ou pela aplicação de um cobertor isolante.
- 4) Concentrações mais altas de "gases-estufas" absorvem mais deste calor irradiado, aumentando a temperatura da atmosfera e da superfície terrestre.

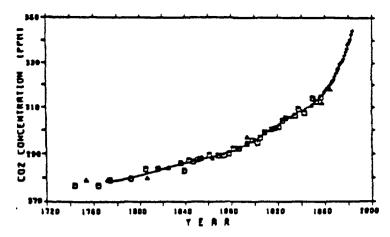


Abb. 1: Zunahme des atmosphärischen CO_T-Gehalts von 1750 bis 1983, aus Messungen an Luftblasen im Antarktis-Eis mit verschiedenen Methoden (Phys., Inst. Bern) und seit 1958 vom Mauna Loa Observatorium, Hawaii (Keeling).

Figura 4. Aumento do teor de ∞_2 na atmosfera entre 1750 e 1983

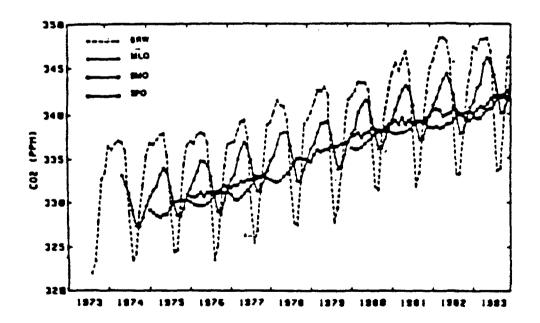
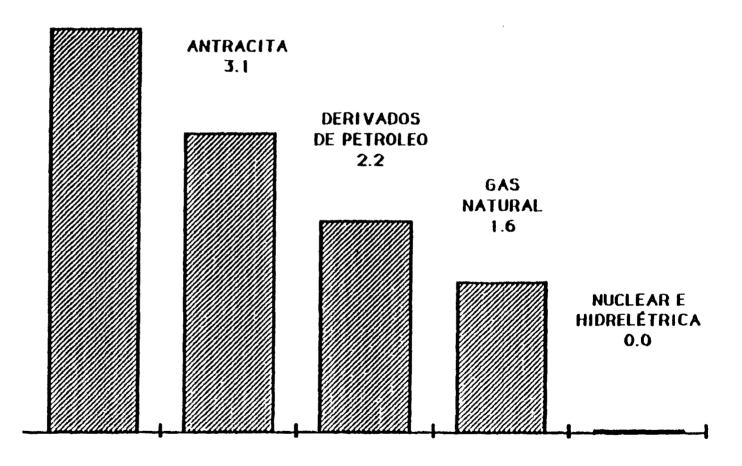
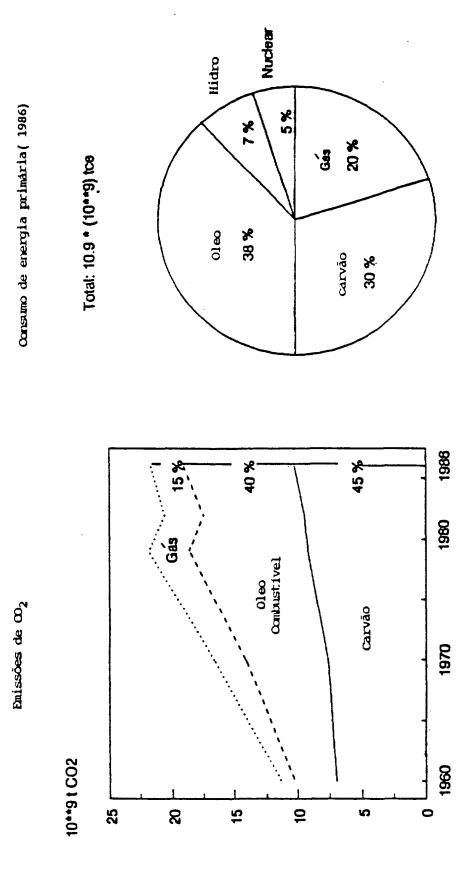
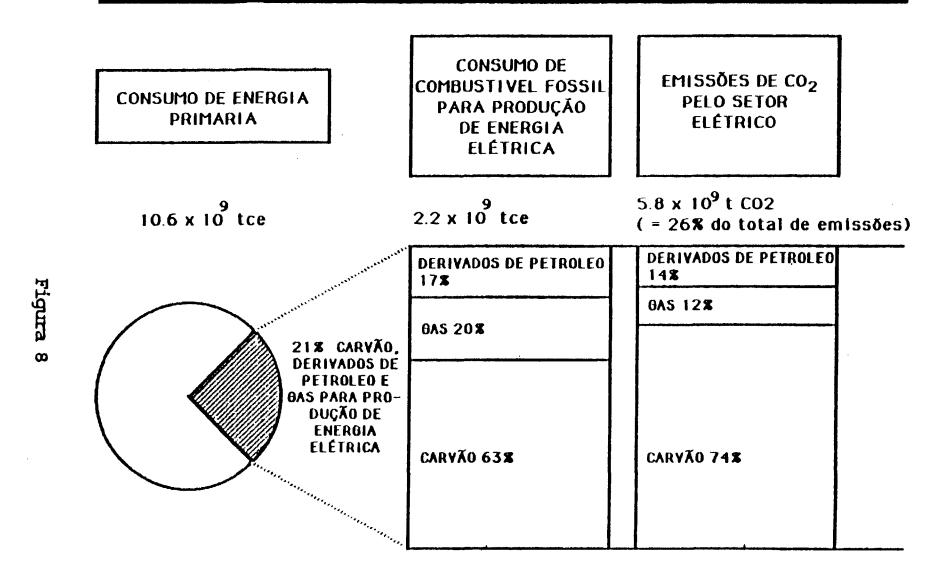
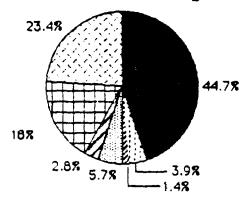
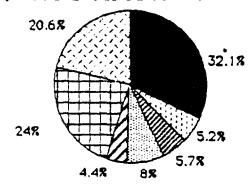
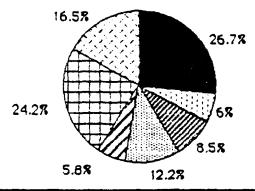



Figura 5. Ciclos amuais e tendência a longo prazo na concentração atmosférica de CO_2 em BRW (Barrow, Alasca), MLO (Mauna Loa, Hawaii), SMO (Samoa) e SPO (Polo Sul)

LINHITA 4.2


Figura 7


1950 TOTAL DE EMISSÕES 1.6 BILHÕES DE t DE CARBONO / ANO (5.9 BILHÕES DE t DE CO₂ /ANO)

1965
TOTAL DE EMISSÕES
3.1 BILHÕES DE L DE CARBONO / ANO
(11.4 BILHÕES DE L DE CO /ANO)

1980 TOTAL DE EMISSÕES 5.1 BILHÕES DE t DE CARBONO / ANO (18.7 BILHÕES DE t DE CO₂/ANO)

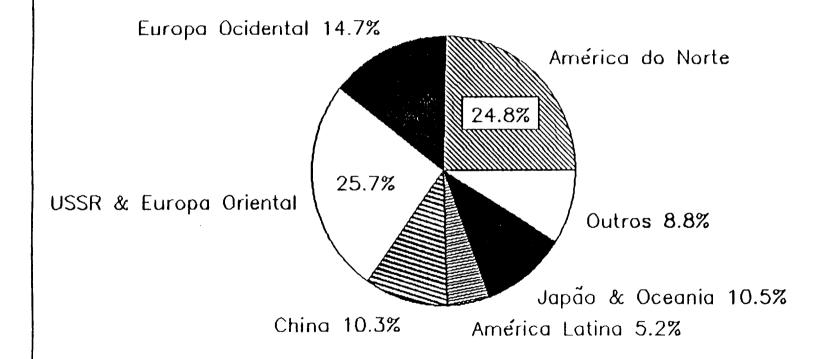
AMÉRICA DO NORTE

EUROPA OCIDENTAL

UNIÃO SOVIÉTICA E PAISES DE ECONOMIA DE PLANIFICAÇÃO CENTRALIZADA

JAPÃO E AUSTRALIA

PAISES EM DESENVOLVIMENTO

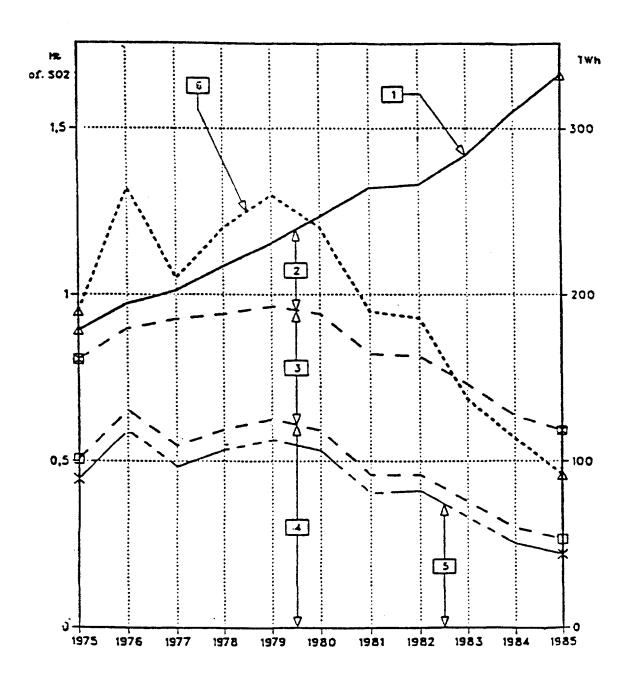

PAISES DE ECONOMIA DE PLANI-FICAÇÃO CENTRALIZADA DA ASIA

OUTROS

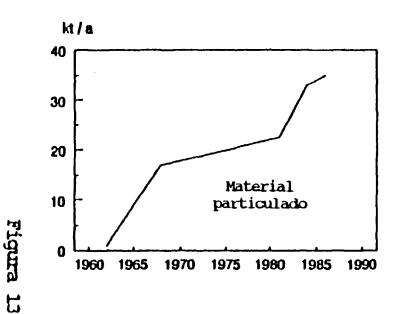
PR/003-JYC-D19

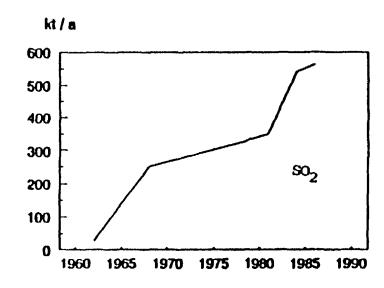
EMISSÕES DE DIÓXIDO DE CARBONO NO MUNDO POR COMBUSTIVEL FÓSSIL

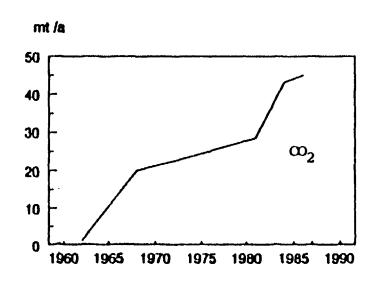
(22000 milhões de toneladas de CO2 em 1987)

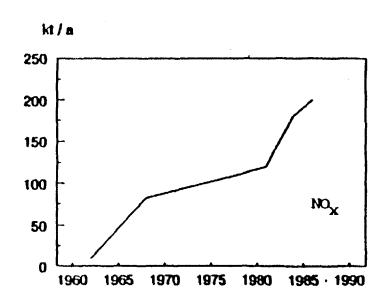


FONTES

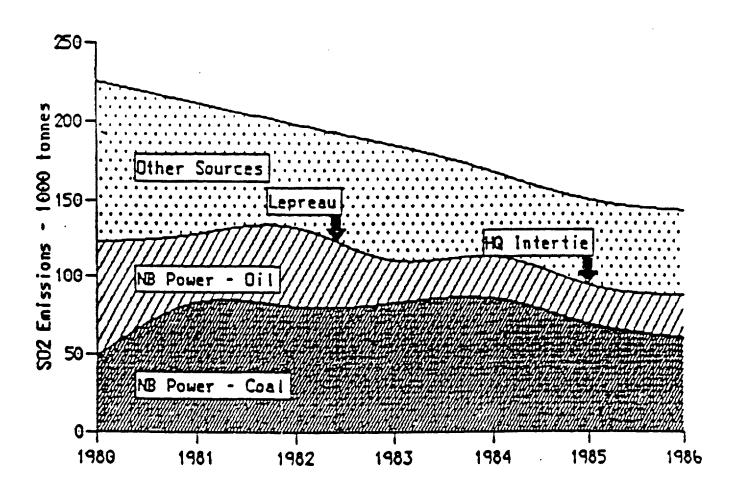

OUTROS 5% DESCARGA ATMOSFÉRICA 繭OZONIO 105 簾 " SMOG " URBANO kandan di bagan kalawan da kirina ya bagi kiriki da 1994, k QUEIMA DE CARVÃO EM N 0 10% CENTRAIS ELÉTRICAS DECOMPOSIÇÃO BACTÉRICA DE MATÉRIA ORGANICA, METANO 10% ARROZAIS. BANHADOS " SPRAYS ", AR CONDICIO-FREONS 15% NADO, REFRIGERADORES DIOXIDO DE QUEIMA DE COMBUSTIVEIS CARBONO 50% FOSSEIS


PR/001-JYC-D19

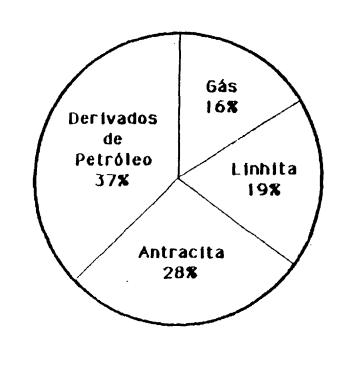

Evolução da estrutura de produção de energia elétrica emissão de SO_2 pelo setor elétrico na França



- Produção total de energia elétrica na França
 Produção por centrais nucleares
- 3 Produção por centrais hidrelétricas
- 4 Produção por térmicas convencionais
- 5 Produção por térmicas convencionais das empresas estatais:EDF & CDF
- 6 Emissão de SO2 pelas centrais elétricas das empresas estatais



Emissões de ${\rm SO}_2$ no sistema de New Brunswick (Canadá)

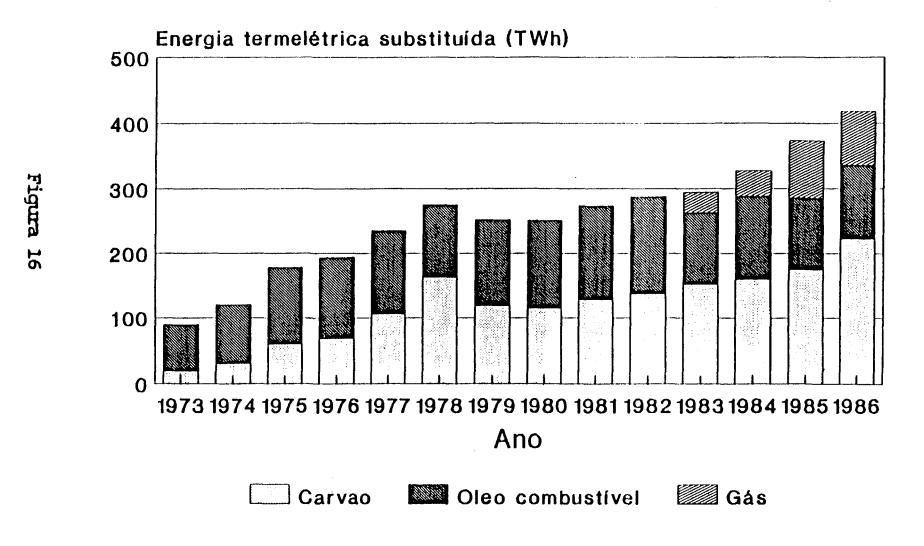

SETORES

VETORES ENERGÉTICOS

Total: 750 x 10⁶ t CO₂

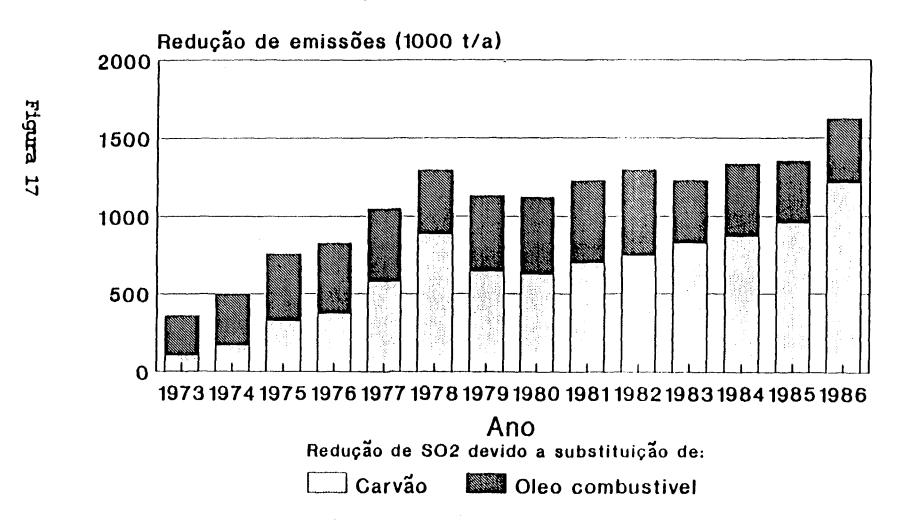
Conversão de Energia	
42%	Centrais
	Elétricas
Outras	<u> </u>
conversões 3%	39%
Consumo Final de Energia 58%	Indústria
!	17%
!	Transporte
	17%
	CONSUMIDORES
	DOMÉSTICOS E
	PEQUENOS CON-
	SUMIDORES 24%

Figura 15

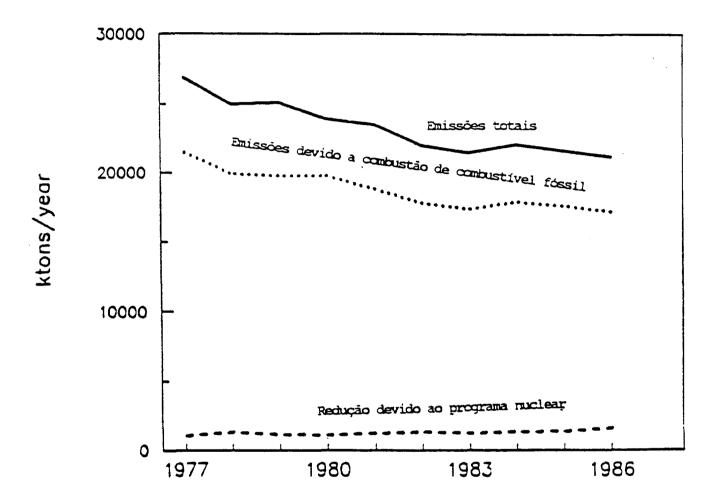


Fonte: Energieblianz der Bundesrepublik

PR/004-JYC-D19


NUCLEN

Substituição de geração termelétrica por energia nucleo-elétrica nos EUA



NUCLEN

Redução de emissões de SO2 devido ao programa nuclear nos EUA

Emissões Totais de SO₂ nos EUA E Estimativa(baixa) de Reduções de Emissões de SO₂ Devido ao Programa Nuclear Americano

Anexo-1

ACIDENTES COM INSTALAÇÕES LIGADAS AO USO PRODUTIVO DE ENERGIA

ACIDENTES EM CENTRAIS NUCLEARES

Cata	Local	Pais	Acidente	Vitimas	Danes
1972	Surry	EUA	acidente convencional de vapor em central nuclear	2	-
19-11-75	Gundremningen	FRA	acidente convencional du rante trabalhos de repa- ração em central parada	2	-
28-3-79	Harrisburg	EUA	fusão do nucleo em conse quência de falha de re- frigeração do reator de Three Mile Island-2	0	severos
26-4-86	Chernobyl	URSS	excursão de reatividade e incendio do reator REMK-4	31	severos

ACTIDENTES DE BARRAGENS COM VITTIMAS

Ano	Barragem	Pais	mortos
1881	Habra	Argélia	400
1889	South Fork	EUA	2200
1895	Bouzey	França	86
1923	Gleno	Itália	500
1929	San Francisco	EUA	450
1959	Vega de Tera	Espanha	150
1959	Malpasset	França	420
1960	Orós	Brasil	>1000
1961	Panshet	India	30-100
1961	Hyokiri	Coréia	250
1963	Vai ont	Itália	3000
1963	Quebrada Chapa	Colômbia	250
1965	El Cobre	Chile	200
1965	Torrejon Tajo	Espanha	30
1967	Koyna	India	180
1967	Sempor	Indonésia	200
1970	Pardo	Argentina	25
1972	Canyon Lake	EUA	240
1976	Santo Tomas	Filipinas	80
1976	Teton	EUA	11
1976	Del Monte	Colâmbia	80
1977	Kelly Barnes	ELIA	39
1979	Morvi	India	>15000
1980	Orissa	India	1000
1982	-	Libéria	200
1982	Tous	Espanha	40
1983	Cundinamarca	Colâmbia	150
1984	San Vicente	Peru	> 20
1986	Guangxi	China	48

ACIDENTES EM MINAS DE CARVAO(1969-1986)

Data	Local/País	Acidente	Vitimas I	<u>Danos</u>
31.03.69	Barrotean/Mexico	explosão de gás e incen-		
32.03.03	DULLUOUS	dio em mina de carvão	178	
07.07.69	Taipé/Formosa	acidente em mina	24	
14.03.70	Breza/YU	explosão de gás metano	45	
04.04.70	Ostrava/Tchecos.	explosão de grisu em mina	26	
06.06.70	Shariq/Paquistão	explosão de gás em mina	30	
07.09.70	Sorrange/Paq.	explosão de gás e desabam	ento 24	
30.12.70	Hyden/EUA	explosão em mina de carva		
17.05.71		explosão em mina de carvão		
16.06.71		catástrofe em mina	51	
18.07.71	Sapporo/Japão	desabamento de galeria	20	
30.10.71	Hunedoara/Romênia	soterramento de uma equip	e 45	
02.12.71	Tschi-tu/Formosa	explosão de gás	36 (48))
07.12.71	Durban/Africa Sul		26	
06.06.72	Bulawayo/Rodesia	3 explosões de gás	434 (42	7)
21.10.72	Teheran/Iran	explosão em mina	34	
02.11.72	Huneloara/Romênia	explosão em mina	36	
02.11.72	Naie/Japāo	grisu em mina de carvão	31	
19.03.73	Calcutá/India	explosão de gás em mina	47	
27.09.73	- /Tailândia	desabamento de galerias	mais de 50	
28.06.74	•	grisu em mina de carvão	32	
27.12.74	Liévin/França	acidente em mina	42	
3.11.75	Figolis/Espanha	explosão em mina	27	
27.12.75	Bihar/India	explosão de grisu em mina		
9/11.03.76		acidente com grisu	26	_
16.9.76	Tete/Moçamique	explosão em mina	mais de 14	
5.10.76	Bihar/India	acidente em mina	mais de 36	
31.12.76	Stario/Tchecces.	explosão de gas em mina	45	
23.07.77	Karvina/Tchecces.		31	
11.05.77	Hokkaido/Japão	explosão em mina de carva		
14.07.77	Amaga/Colombia	explosão em mina de carvã		
17.2.78		grisu em mina de carvão	26	
10.10.79	Beuthen/Polonia	explosão em mina	33	
28.10.79	Moon Gyong/Coréia		42	
30.10.79	Kattowitz/Polonia		22	
29.11.80	Livezeni/Romênia	explosão de gas em mina	49 15	
17.04.81	Redstone/USA	grisu em mina de carvão		
07.05.81		explosão de metano em mina	65	
03.09.81	Latuzi/Tenecoesi.	explosão de gás em mina	93	

(continua)

ACIDENTES EM MINAS DE CARVAO(1969-1986)

Data	Local/País	Acidente	Vitimas	Danos
16.10.81	Yubari/Japão	explosão de gás em mina	93	
1981	- /USA	explosão de pó de carvão i	na	
	·	mina "Palmer"	24	
12.05.81	Zenica/YU	explosão de grisu em mina	3 9	
06.82	Beuthen/Polonia	acidente em mina	10	
29.11.82	Beuthen/Polonia	explosão de gás durante ap	oag <u>a</u>	
	•	mento de carvão autoinflar	nável 18	
82	- /China	avalanche soterra mineiros	s 28 4	
07.03.83	Zonguldak/Turquia	explosão de gás em mina	106	
06.06.83	Nis/YU	explosão em mina	35	
22.06.83	Oroszlany/Hungria	explosão em mira	36	
13.07.83	Barnsley/GB	incêndio em instalação de		
		preparação de carvão	?	12M£
12.09.83	Natal/Af.Sul	grisu em mina	63	
18.01.84	Omuta/Japão	incêndio em mina	83	
21.40.84	Resavica/YU	explosão em mina	33	
20.06.84	Taipé/Formosa	expl∝são em mina	74	
10.07.84	Mei-shan/Formosa	incêndio em mina	121	
10.09.84	Urussanga/Brasil	explosão de metano em mina	a 32	
05.12.84	Taipé/Formosa	explosão em mina	93	
19.12.84	Orangeville/EUA	incêndio em mina	mais de	25
25.02.85	Forbach/França	grisu em mina	22	
17.05.85	Hokkaido/Japão	acidente em mina	62	
14.08.85	Guangxi/China	explosão em mina	21	
22.12.85		a explosão de grisu em mina	a mais de	18
22.03.86	Hunedoara/Romênia	explosão de grisu em mina	17	•
24.12.86	Donezk/URSS	explosão de grisu em mina	- 30	
17.08.87	Seichuan/China	explosão de gas em mina	36	
25.11.88	Las Esperanzas/	explosão e incêndio apos		
	Mexico	airto-ciraiito	- 43	

ACIDENTES NA EXTRAÇÃO DE PETROLEO E GAS

Data	Local/País	Acidente	<u>Vítimas</u>	<u>Da</u>	nos
15.08.75	Golfo do México/MX	incêndio do "Globtik Sun"			
		apos colisão com plataforma			
		de petróleo		10	MUS\$
01.03.76	Mar do Norte/Nor.	tombamento da ilha de perfu			
		ração "Deep Sea Driller"	- 6		MUSS
	Rumaila/Iraque	incêndio em poço de petróle		12	MUS\$
12.01.77	/Formosa	tombamento e afundamento di	3		
		plataforma de perfuração "Scan Sea"		21	MUS\$
02 07 77	The Coid Control		_	41	MUSS
03.07.77	Umm Said/Quatar	explosão de um tanque de gar natural	5 7		
21.04.79	Golfo do México/ELZ	A tembamento da plataforma	de		
		perfuração "Salenergy II"		26	MUS\$
03.06.79	Golfo Campeche/MX	explosão no furo da ilha de			
		perfuração "Ixtoc-I"		>350	MUS\$
27.03.80	Mar do Norte/Nor.	tombamento da plataforma de			
	·	habitação "Alexander Kiella	nd" 123	327	MNKr
06.80	Golfo Po-Hai/China	tombamento de uma ilha de			
		perfuração durante tempesta	de 70		
22.10.80	O.Pacífico/Alasca	tombamento e afundamento da			
		ilha de perfuração "Dan Pri		36	MUS\$
11.12.80	Port Said	afundamento da ilha de perf			
		ção "Ocean Champio"	?	25	MUS\$
28.05.81	O.Atlántico/Angola	tombamento e afundamento da			
		plataforma "Sedco 250"	?	22	MUS\$
27.08.81	/Indonésia	tombamento e afundamento do			
		navio de perfuração "Petron		26	MUS\$
15.02.82	0.Atlantico/	tombamento da ilha de perfu		0.0	
14 07 82		ção de óleo "Ocean Ranger"			MUS\$ MUS\$
01.08.82	W.Cameron/EUA /India	explosão da plataforma "Rig explosão da instalação de	54 :	•	MUSS
01,00.02	/ Huia	perfuração de óleo "Sagar V	ibaell 2	14	MUS\$
กา กุด สา	W.Coast/Australia	afundamento da plataforma d		7.7	بسب
01.05.05	". Coast/ Australia	petroleo "Key Biscayne"	?	50	MUSS -
16,10,83	Mar da Chira	afundamento do navio de per	fura-		
		ção "Glomar Java Sea"	?	30	MUS\$
01.10.84	/Indonésia	explosão no campo de petról			
	,	gas "Bekapai Well BC7"	?	55	MUSS
18.09.85	Bintulu/Malasia	incêndio na plataforma de			,
		perfuração "South Sea III"		24	MUS\$
05.11.85	Gansfjord/Nor.	tombamento de uma barcaça d	e		
	- ,	cimento durante a construção			
		uma ilha de perfuração	10		
24.10.86	Colfo do México	explosão e afundamento da			
		plataforma "México II"		53	MUS\$
21.12.87	Colfo do México	queda e incêndio de um			
		helicoptero em uma ilha de			
		perfuração	14		

ACIDENTES COM VITIMAS NO TRANSPORTE DE OLEO (1969-1986)

Data	Local/Pais	AcidenteVi	timas	Danos
17.02.69	Johannesburg/Af.Sul	colisão de trem de pas-		
		sageiros com trem tanque	20	-
24.07.69	Porquerolles/França	naufragio do navio tanque		
		norueguês "Silfa"	20	50 MSFr
19.05.70	Nakru/Quênia	colisão de onibus com		
		caminhão tanque	20	
	Kristiansand/Nor.	explosão no navio tanque"Pol	10"12	
28.11.70	- /Japão	explosão e incêndio no navid		
		tanque "Thames Maru"	25	•
12.11.71	Canal da Mancha	naufrágio do navio tanque		•
		"Texaco Caribbean" apos	21	21 1/00
20 01 71	Garadanka (Thalia	colisão	21	21 MSFr
22.01.71	Sardenha/Italia	explosão e incêndio do navio	15	
10 00 71	Commo ltiantico	tanque "Universe Patriot" explosão e naufrágio do navi	-	
10.02./1	Oceano Atlântico	tanque "Ferncastle"	7	52 MSFr
27 03 71	Carolina N/EUA	Naurfrágio do "Texaco Oklaho	-	
	Rio de la Plata/Ar	colisão do navio tanque	J.	24 1211
11.05.72	ido de la l'iday al	"Tienchee" com um navio frio	TO-	
		•	igo 83	
28.06.72	Bombay/India	explosão no navio-tanque	-9	
		"Tarsos"	29	11 MSFr
31.01.75	Marcus Hook/EUA	o navio-tanque "Edgar M.Ques		
	, ,	abalroa o "Corinthos"	28	11 MUS\$
12.03.75	Costa da Argelia	explosão no navio tanque		•
		"July Star	• 35	
17.10.76	/França	colisão do navio tanque		
		"Boenlen"		155 MSFr
18.12.76	Los Angeles/EUA	explosão e incêndio no navid		
		tanque "Sansinena"	7	7 MUS\$
01.77	Atlantico Norte	naufrágio do navio tanque		
22 25	a lid amaa	"Grand Zenith"	38	
08.77	Gorki/URSS	explosão de uma instalação o		
12 11 77	Ciudad Juarez/Mex.	petróleo	28	
13.11.//	Clubad Juarez/Mex.	acidente de trem com caminha	37	
27 12 78	Caribe/Colombia	tanque explosão e naufrágio do navi		
23.12.70	CATTIE, COLCIDIA	tanque "Cassiopeia"	5	14 MUS\$
12.10.78	/Cingapura	explosão do navio tanque		11 .000
	/ -1 .3apara	"Spyros"	64	
09.11.78	Manila/Filipinas	explosão do navio tanque	•	
		"Feoso Sun"	31	
22.11.78	Benue/Nigéria	colisão de trem de passagei:		
	•	com caminhão tanque		de 100
		-		
			/	+-i

(continua)

Data	Local/Pais	Acidente Viti	mas	Danos
31.12.78	Costa Norte/Espanha	explosão e incêndio no navio tanque "Andros Patria"	29	
08.01.79	Bantry Bay/Eire	explosão e incêndio no navio tanque "Bételgeuse"	51	55 MSFr
14.03.79	Salonica/Grécia	acidente de ônibus com caminhão tanque	30	33 (2)[1
20.07.79	Caribe/Tobago	incêndio e naufrágio do navio tanque "Atlantic Express" após colisão com o navio tanque		
01.11.79	Galveston/EUA	"Aegian Captain" colisão do navio tanque "Burma	29	43 MUS\$
	Bosforus/Turquia	Agata" com navio carqueiro explosão e incêndio do navio	32	
13.11.73	asions/impara	tanque "Independenta" apos		
27.01.80	Costa Ceste/EUA	colisão com navio carqueiro naufrágio após colisão com	52	40 MUSS
23.02.80	Pylos/Grécia	navio tanque "Capricorn" explosão e naufrágio do navio	26	
11.03.80	Atlântico/Mauritâni	tanque "Irenes Serenade" a explosão e naufrágio do navio	2	6 Muss
	·	tanque "Maria Alejandra"	36	3 MPta
03.04.80	O.Indico/Tanzânia	explosão e naufrágio do navio tanque "Albahaa B."	6	24 MUSS
28.05.80	Swift Current/Canad	á acidente de tráfico com ônibus e trem com carro tanque	23	
	La Venta/México	explosão de um óleoduto	33	
07.03.82	Atlântico/Bermudas	explosão e naufrágio do navio tanque "Golden Dolphin"	9	29 MUS\$
	Madras/India	explosão de um caminhão tanque	20	
25.02.84	Cubatão/Brasil	explosão e incêndio com olecduto mai	s de	500
07.03.85	Guadalajara/México	colisão de caminhão tanque com ônibus	30	
26.05.85	Baia de Algeciras/ Espanha	explosão/incêndio e naufragio do navio tanque "Petragen One"		
01.11.85	Karnatoka/India	explosão de um carro tanque m		
	Aziier/França	colisão e incêndio do navio tanque "Victoria" e o		
07.07.87	Herborn/RFA	"Puyon Maru" no Rio Sena explosão após um acidente de carros de um posto de gasolina	5	
		no centro da cidade	5	

ACIDEVIES EM REFINARIAS E INSTALAÇÕES DE TANQUAGEM DE OLEO

Data	Local/País	Acidente	Vitimas	Danos
	Escombreras/Esp.	incêndio em refinaria	1	30 MSFr
	Ciudad Madero/MX	explosão em refinaria	8	
24.01.70	Semarang/Indonésia	n incêndio apos escape em		
		ólecciuto	50	
17.03.70	Darya Khan/Paq.	explosão de um ônibus em		
		posto de gasolina	28	
05.12.70	Linden/EUA	incêndio na Humble Oil &		
	•	Refining Co.	?	300 MSFr
70	Osaka/Japao	explosão em refinaria	5	
	Sicilia/Italia	incèndio na refinaria Rasiom		49 MSFT
	R.Janeiro/Brasil	incèndio em refinaria	21	
	Triestre/Italia	incendio em deposito de óleo		
04.00.72	irreserc/rouria	do oleoduto Trieste-Ingolsta		12 MSFr
06 01 77	Parama (FID	incêndio em instalação de ol		12 1211
00.01.73	Bayonne/EUA			
25 24 74	Billion at the time	apos colisão de dois navios	?	20.155
	Pitesti/Romênia	explosão em refinaria		30 MSFT
01.06.74	Flixborough/GB	explosão em instalação petro	-	
		quimica	29	31 M£
07.08.74	Wilhelsmshafen/RF	A abalroamento da ponte de		
		descarga no navio tanque		
		"Al Fountas"		26 MIM
10.02.75	Antuerpia/Bélgica	explosão em usina petroquimi	.ca 6	50 MUS\$
		explosão do tanque de gasoli		
		de um onibus	70	
07 11 75	Beek/Holanda	explosão em usina petroquimi	-	108 Mhfl
	Mongstad/Noruega	incèndio em refinaria	?	
			-	VO SHIELE
/ 🕽	Philadelphia	explosão durante o enchiment		
		de um tanque de oleo	8	-15 MUSS
03.01.76	S.Broolyn/EUA	explosão e incêndio em		
		instalação de oleo	vari	
	Mizushima/Japāo	explosão em refinaria		4800 MYen
11.05.77	Abqaig/Arabia S.	rompimento de um oleoduto co	an.	
		incêndio na instalação de		
		transbordo	?	55 Muss
04.06.77	Abqaiq/Arabia S.	explosão na instalação de		
	· ·	transbordo	?	11 MUS\$
08,12,77	Brindisi/Italia	incêndio em petroquímica	?	25 BLr
	Abqaiq/Arabia S.	explosão/incêndio e ruptura	de	
20101170		tubulação em instalação de		
		separação gas/óleo	2	54 MUSS
01 04 90	Tokuyama/Japão	explosão/incêndio em refinar	ria ?	4 BYen
	Shuoiba/Kuwait	incèndio em refinaria	,1a . 2	50 MUSS
			•	4 MNaira
	Warri/Nigeria	incéndio em refinaria		
	Imminghan/GB	incêndio em refinaria		52 MUSS
	Kashima/Japao	explosão/incêndio em refinar		8.7 BYen
	Warri/Nigeria	incêndio em refinaria		10 MNaira
	? Bogotá/Colombia	explosão em tanque-depósito	?	350 MPso
19.12.82	? Tacoa/Venezuela	explosão de tres tanques de		
		óleo na área de usina elétr:	ica 145	150 MBol
02.07.83	Ft.McMurrray/Cana	da incêndio em refinaria de		
		areias betuminosas		? 15 MUS\$
30.08.83	Milford Haven/GB	incendio em refinaria		? ?
		explosão em refinaria	mais	de 30
	Cochin/India	incéndio em refinaria	?	155 MRp
	•	da incèndio em instalação de		
12.00.0	· · · · · · · · · · · · · · · · · · ·	preparação de areias becumi		425 MCS
16 00 0	Dilan Marlinon	breharadao de aretas permim	حتجب	TEN PART
10.00.84	Pulau Merlimau/	indudia en enfinerio		10 14800
24 27 -	Cingapura	incêndio em refinaria		12 MUS\$
	Illinois/EUA	explosão/incéndio em refina	ria/mais	
	5 Big Spring/EUA	explosão em refinaria		? 37 MUS\$
21.12.89	5 Nápolis/Itália	explosão/incendio em refina	ria/mais	; ae 43

EXEMPLOS DE ACIDENTES COM GAS NA VIDA DIARIA

Data	Local/Pais	Acidente	Mortos	<u>Feridos</u>
10.01.85	Londres/Inglaterra	-		
		apartamento de luxo	~10	7
17.01.85	Bruxelas/Bélgica	várias explosões em 6		
		casas vizinhas	> 2	9
18.01.85	Berna/Suiça	explosão em prédio de		
		apartamentos em consequên-		
		cia de defeito na canaliza	ção	
		de distribuição na rua	0	1
20.01.85	Woerden/Holanda	explosão após rompimento		
		na canalização de distribu	ição 4	
26.12.86	Frakfurt/RFA	explosão de gás em prédio o	ie	•
		três andares	2	6
27.12.86	Garmisch-	explosão na canalização de		
	Partenkirchen/RFA	distribuição de um hotel de	9	
		esportes	11	8
03.01.87	Trient/Suiça	morte por sufocamento em		
		chalet por defeito no sis-		
		tema de calefação	1	
05.01.87	Dublin/Irlanda	duas explosões por gas em	fren	
		te de prédio de apartament	cs 2	
21.01.87	Nuremberg/RFA	explosão em prédio devido	a	
		defeito de canalização de	gais 5	3

ACIDENTES COM GAS

Data	Local/País	Acidente Y	/itimas	Danos
20.09.69	Bologna/Itália	desabamento de um edificio		
		de apartamento apos explosão		•
	Comil (Comite	de gás	10	?
25.12./1	Seoul/Coréia	incêndio de hotel por gás pro- pano na cosinha	169	?
72	S.Paulo/Brasil	explosão de gás	37	· ?
	St.Amand les	acidente de trânsito/exlosão de		•
01.02.73	Eaux/França	caminhão tanque de gás líquido	- 9	?
10.02.73	State Isl./EUA	explosão de um caminhão tanque		
		vasio de gás líquido	33	31 MUS\$
23.05.73	Colônia/RFA	explosão/incêndio com gás		
	·	liquido em indústria química		46 MSFT
29.03.75	Eagle Pass/EUA	acidente de transito/exlosão de	3 '	
		caminhão tanque de gás líquido	>17	50 MUSS
26.01.77	Marl/RFA	explosão de tanque de gás em		
		indústria quimica		49 MDM
03.04.77	Umm Said/Quatar	ruptura de um tanque de gás		_
		liquido (extração de gas natura		00 MRyal
12.02.78	Paris Passy/Fran	nça explosão de gas em apartame		
		residencial	13	80 MFFr
11.07.78		explosão de gas após acidente		
	la Rapita/	caminhão tanque com gás líquid		
16 07 70	Espanha	no camping "Los Alfaques"	216	
10.07.78	viramber/liexin	o colisão/explosão de um caminh. tanque com gás líquido	100	
01 11 78	Ciudad de México		100	
01.11.70	México		58	
25.02.78	Waverley/EUA	explosão de vagão tanque desca		
55772377		rilhado	12	
79	Varsóvia/Polonia	a explosão de gás de um edifíci	0	
	, , , , , , , , , , , , , , , , , , ,	bancario	41	
26.02.80	Princess/Canadá	incêndio em instalação de gás	?	55 MC\$
23.10.80	Ortuela/Espanha	explosão de gas em escola	~70	
27.10.80		explosão e incêndio em uma		
		estação de regulagem de um gas	duto?	
25.11.80	Danaciobasi/	explosão de um bujão de gas		
	Turquia	liquido	97	
24.04.81	Bruxelas/Bélgic	a desabamento de uma casa em		
		consequência de explosão de gá	s 22	
21.06.81	Morrisville/EUA	explosão de um recipiete de	_	15700
12 10 81	Manhambia /Thi?	gás propano	;	113 MUSS
12.10.81	Montecchio/Ital	ia explosão de gás na	_	
ים נו די	Dica/Thália	canalização de uma casa	6 > 9	
	Pisa/Itália	explosão de gás em restaurante explosão em instalação de gás	7 7	
TT • 04 • 97	Botang Badak/ Indonésia	expresao em instaração de gas	2	195 MUS\$
28,12,83	. Buffalo/EUA	explosão/incêndio em armazém	· > 6	باللقاء دريا
	- mileso, was	Chical Induit all allesell	7 0	

(continua)

		(0	XIII	uação)
25.03.84	Eltersdorf/RFA	explosão/incêndio em tubulação		
	•	de distribuição de gás	?	
16.08.84	Enchova/Brasil	escape em canalização de gás de		
		uma plataforma de perfuração	>40	
31.10.84	San Francisco/E	JA explosão/incêndio do navio		
		tanque de óleo/gás líquido		•
		"Puerto Rico"		35 MUS\$
19.11.84	Ciudad de México	o/ explosão em instalação de gás		
	Méxido		452	
10.01.85	Londres/Inglater	cra explosão em prédio de aparta-	-	
	•	mentos	~10	
06.10.85	Trandheim/Norue	ga explosão de gás/incêndio na		
		plataforma de perfuração		
		"West Guard"		300 MnKr
23.01.86	Modena/Itália	explosão em um recipiente da gás	5	
		líquido em frente a um prédio	7	
27.12.86	Garmisch-Parteni	circhen		
	R.F.Alemanha	explosão de tubulação de gás		
		liquido em um hotel	11	