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Particle Transport in Inclined Annuli

Abstract:

A new model for the formation and behaviour of deposits in inclined wellbores is formulated.
The annular space is divided into two layers, separated by a distinct plane boundary. While
the lower layer is taken to consist of closely packed cuttings, the upper layer is presumed to
behave as a pure fluid. A force balance for the lower layer decides whether it is stationary or
slides in the upwards- or downwards direction. The position of the deposit surface is governed
by the fluid shear stress at the deposit surface. The proposed model represents a major
improvement compared to an earlier model by Gavignet & Sobey 15.

The predictions from the SCSB-model are in good qualitative agreement with experimental
results obtained by the author, and results published by research groups in the U.S.A, United
Kingdom and Germany. The quantitative agreement is variable, presumably because the
SCSB-model is a somewhat simplified description of particle behaviour in inclined annuli.
However, the model provides a clearer understanding of the physical background for
previously published experimental results.

In order to couple the theoretical work with experimental observations, an annular flow loop
has been constructed. A characteristic feature in the flow loop design is the application of load
cells, which permits determination of the annular particle content at steady state as well as
under transient conditions. Due to delays in the constructional work, it has only been possible
to perform a limited number of investigations in the loop. However, the results produced are

in agreement with results published by other research groups.



Partikeltransport i Skratstillede Annuli

Abstract:

En ny model for partikelaflejringers dannelse og opfersel i afvigelsesboringer prasenteres. Det
annulzre rum inddeles i to lag, der adskilles af en plan granseflade. Mens det nedre lag
antages at bestd af tet pakkede boreskzrver, antages det gvre lag at opfere sig som en ren
vaeske. En kraftbalance for det nedre lag afger om dette er stationeert eller skrider op- eller
nedover. Grznsefladens position bestemmes af den forskydningskraft hvormed borevasken
padvirker partikelaflejringens overflade. Den angivme model reprazsenterer en vasentlig
forbedring af en tidligere model fremsat af Gavignet & Sobey 15.

Modellens forudsigelser er i god kvalitativ overensstemmelse med eksperimentelle resultater
der er opndet i forbindelse med Ph.D.-arbejdet, samt resultater, der er blevet publiceret af
forskningsgrupper i U.S.A., Storbritannien og Tyskland. Den kvantitative overensstemmelse
varierer med de eksperimentelle parametre, formodentlig fordi modellen er en noget forenklet
beskrivelse af partiklers opfersel i skratstillede annuli. Modellen giver dog en klarere forstaelse

af den fysiske baggrund for tidligere publicerede resultater.

Med henblik pd kombinere det teoretiske arbejde med eksperimentelle undersegelser er der
blevet opbygget et anlaeg til studier af annuleer tofasestrpmning. Et karakteristisk traek ved
anleeggets udformning er anvendelsen af vejeceller, der tillader bestemmelse af det annulere
rums partikelindhold under savel steady state betingelser som i forbindelse med transiente
forlgb. P& grund af forsinkelser i opbygningsarbejdet har det kun vzeret muligt at foretage fa
malinger i anlegget. Imidlertid er de opnede resultater i overensstemmelse med resultater
publiceret af andre forskningsgrupper.
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Chapter 1

Introduction.



1.1

1.2

An introduction to cuttings transport.

The material being liberated by the impact of a drilling tool on a geological formation is
denoted cuttings.

During drilling or hole cleaning? a drilling fluid is circulated down through the drill pipe
and back up the annular space on the outside. The drilling fluid has several functions,
but one of the most important is to remove cuttings from the wellbore. If cuttings
accumulate in the hole, drilling becomes inefficient. Energy is devoted to grind the
cuttings into smaller particles, causing slower progress, contamination of the drilling
fluid with debris, increased torque loads on the drill pipe and increased wear on the drill
pipe and -bit. The accumulation may eventually create a resistance to drill string motion
which cannot be overcome, a situation denoted stuck pipe. Insufficient cuttings removal
during hole cleaning may also lead to problems in cementing operationsb and hole
completionC.

Compared to the vertical- or near vertical wellbore, the inclined or horizontal wellbore
permits a larger— or otherwise inaccessible area of exploitation to be reached from a
single drilling rig. Furthermore, the highly deviated wellbore allows a parallel entry into
thin oil conducting layers, providing an increased contact surface between the hole and
the potential production zone. However, the drilling of deviated wellbores also presents
an increased frequency of difficulties which, if they occur at all, are not experienced as
markedly in vertical holes. The physical background for these problems is not always
firmly established, but it is a general perception that at least some of them are caused by
an insufficient removal of drilled cuttings from the hole.

A definition of cuttings transport.
A definition of cuttings transport in a wellbore could be as follows:

Cuttings transport occur if a plane perpendicular to the hole azis in a given interval of
time is passed by a larger volume of cuttings from one side than from the other.

Cuttings transport under steady state conditions always produces a net transport of
cuttings in a given axial direction at any time. The volume of cuttings entering a section
of the wellbore must equal the volume leaving, and consequently the overall transport
efficiency is 100%. However, it is possible to influence the particle concentration,
-behaviour and —distribution in the annular space by changing variables such as fluid
rheology, flowrate, inner pipe eccentricity, etc.

Under transient conditions the direction of net transport and the volume of cuttings
transported may vary with time. The time dependendency makes it possible to define a
transport efficiency, i.e. to compare how fast cuttings are removed from a wellbore in a
given period of time, when the characteristics of the system are varied.

s ‘}){;I; cleaning is the process where cuttings are circulated out of the hole after drilling has
stop

b Cementing is the application of a liquid slurry of cement and water to seal off the casing
from the surrounding formation.

¢ Hole completion is the activities and methods used to prepare the well for the production
of oil or gas.



1.3

Quantification of steady state cuttings transport

Vertical annuli

In vertical annuli, the difference between the fluid velocity and the particle slip velocity
reflects the carrying capacity of a drilling fluid. However, the fluid velocity and the
particle slip velocity may vary with position in the annular space, and the carryin
capacity is generally not calculated according to a well defined procedure. While the lo
fluid velocity normally is replaced by the average linear fluid velocity, the determination
of an average or net particle slip velocity for the annular cross section is relatively
difficult. Therefore the work concerning cuttings transport in vertical wellbores has
largely been a study of particle slippage with respect to the surrounding fluid and the
development and/or application of more or less empirical relations, predicting a
characteristic particle slip velocity under given conditions (see for example Hall et al. 18,
Hopkin 21, Zeidler 49, Walker & Mayes 43, Sifferman et al. 38, Sample & Bourgoyne 34).

Sifferman et al. 38 suggested a non—dimensional measure for the carrying capacity of a
drilling fluid in the form of a transport ratio:

—YaVs _Vp _Cf _
Ry=Yelsote_U (1.3-1)

where vp is the average linear particle transport velocity, va the average linear fluid
velocity and vs the average particle slip velocity. If the annular cuttings concentration is
small, the transport ratio is approximately equal to the ratio between the annular feed
concentration, cf, and the annular cuttings concentration, ca.

Inclined annuli

In deviated wellbores there is no simple coupling between the slip velocity of freely
suspended particles and the annular cuttings concentration. Various quantities have been
used as a measure for the cuttings behaviour under given conditions.

Iyoho 23, Okrajni & Azar 28, Seeberger et al. 36, Becker et al. 5 and Grossmann 17 all used
annular cuttings concentration as the only- or major dependent variable in their work.

Grossmann 17 also described: cuttings behaviour in terms of an "austragswirkungsgrad",
defined as the ratio between cuttings feed concentration and annular cuttings
concentration (i.e. analogous to the transport ratio defined by Sifferman et al. 38 for
vertical annuli). He pointed out that this quantity displays a more marked response to
phangaﬁ? in the experimental variables than cuttings concentration does, when the latter
is small.

Finally, steady state cuttings transport may be characterized by a critical annular fluid
velocity. Peden et al. 29 considered the smallest nominal annular fluid velocities needed
to keep cuttings in full suspension or in an upwards sliding/rolling deposit. Also
Hemphill 20 determined the smallest flowrate keeping particles in suspension while

Martin et al. 25 considered the minimum fluid velocity required in order to transport a
single particle up an annulus.



1.4

Quantification of transient cuttings transport

The quantities of interest in transient removal of cuttings from vertical as well as

" deviated wellbores, are the particle recovery rate and the cumulative recovery fraction.

In a plot of the recovery fraction vs. time, the recovery rate may be determined as the
slope of the curve (Williams & Bruce 44, Zeidler 48, Hemphill 20). This allows a detailed
description of the cleaning process as function of time. A more primitive approach is to
define cleaning rate as the mass of particles present in the annular space divided by the
time required to clean them out (Okrajni & Azar 28, Brown et al. 7). Finally, Martin et
al. 25 measured the minimum flowrate required to attain a given recovery fraction in a
given period of time.



Chapter 2

Previous investigations
of cuttings transport.
- A chronological review.



2.1

Cuttings transport in vertical wellbores.

Pigott 32 (1941), as part of a paper concerning the flow of drilling fluids in wellbores and
mud handling equipment, briefly considered the lift of spherical- and disc shaped
particles in water and a few typical drilling fluids. Particle slip velocities were calculated
from relations derived from Stokes law and Rittingers equation. However, no
experimental verification of the relations was performed.

Hall et al. 18 (1950) performed measurements of particle slip velocities in two vertical
laboratory columns (33 ft. 4" & 9 ft. 114") with fluid circulation. Various particle shapes
and fluids of different densities and rheological properties were included in the work.
Relations expressing particle slip velocity as function of slip regime (see chapter 3.2),
particle characteristics and fluid properties were derived on the basis of experimental
data. The applicablity of the relations were tested in a field scale annular flow loop (1000
ft. 958"/412'8.

Williams & Bruce 44 (1951) performed field- and laboratory investigations of cuttings
transport in vertical annuli. The field investigations were carried out in a 500 ft. 7" /215"

& 27" wellbore, and concerned particle recovery as function of time. The particles were
aluminium discs of varying thickness and diameter. The slope of recovery vs. time curves
was taken as a measure for the cuttings transport efficiency. The effect of drill string
rotation and fluid rheology was considered. The laboratory investigations were performed
in a 5 ft. 4';{1" concentric annulus, in which the fluid could be circulated and the inner
pipe rotated. Here, the effects of particle shape, fluid velocity profile and inner pipe
rotation were considered.

Hopkin 2! (1967), in a 8 ft 41," diameter vertical column investigated particle slip
velocities in fluids circulating up the column. The effects of particle shape and
non-Newtonian fluid rheology were considered. The results were coupled with field
experience in order to estimate the annular fluid velocities needed to ensure adequate
cuttings removal in a wellbore.

Chien 9 (1971), in a purely theoretical work, developed a correlation between the annular
particle concentration and the nominal annular fluid velocity, the densities of the
particles and the fluid, the dimensions of the particles, the dimensions of the wellbore
and the rate of penetration. Chien pointed out that a more efficient use of the drill bit is
achieved when the bottom hole pressure is minimized and showed that the bottom hole
pressure displays a minimum at a specific flowrate.

Zeidler 48 (1972) investigated the transport of drilled cuttings, graded according to sieve
size. In a 15 ft. 3" vertical coulumn, particle settling in quiescent Newtonian fluids was
investigated. Semiempirical relations for the settling velocity of the particles were
derived and applied in an empirical expression for the cumulative recovery of particles
exposed to turbulent flow of water in a 65 ft. 815" /41," vertical concentric annulus. The
effects of non-Newtonian rheology and inner pipe rotation on the annular particle
transport were treated qualitatively.

Zeidler 49 81974), in a Ph.D.-thesis, continued and elaborated his theoretical and
experimental work on the transport of drilled particles. The thesis contains the perhaps
most ambitious attempt ever performed to produce a model for the transport of particles
in vertical annular flow. Zeidler developed theoretical relations for the average axial
velocity and equilibrium concentration of particles being transported in viscous
concentric annular flow of a Power Law fluid. Due to the complexity of the subject, the



resulting expressions were semiempirical in nature and later researchers (Thomas et al. 39
Hussaini & Azar 22) have only to some degree been able to confirm the validity of the
model.

Sifferman et al. 38 (1974) introduced the transport ratio, R, defined as the ratio between
the net particle transport velocity, vp, and the nominal fluid velocity, va. For small
annular cuttings concentrations the transport ratio is equal to the ratio between the
annular cuttings feed concentration, cf, and the cuttings concentration in the annular
volume, cg, i.€. as previously given in eq. (1.3-1)

A comprehensive experimental programme was carried out in field scale vertical annuli.
The results were described in terms of transport ratio vs. annular fluid velocity plots.
Discrete variables were fluid rheology, fluid density, cuttings size, cuttings feed rate,
annular dimensions, inner pipe eccentricity and inner pipe rotational speed.

Walker & Mayes 43 (1975) made the approximation that drilled cuttings in general are
disc shaped and settles flatwise, and developed simple relations for the particle settling
velocity in the turbulent-, transition- and viscous slip regimes (see chapter 3.2). In order
to verify their relations, Walker & Mayes conducted measurements of the terminal
settling velocities of disc shaped particles in a 5 ft. 6" diameter static fluid column. The
density of the particles and the rheology of the fluid were varied in order to obtain results
in all particle slip regimes.

Sample & Bourgoyne 34 (1977) adopted the transport ratio, originally proposed by
Sifferman et al. 38, in the form:

Ry =

5l

= 1
= Vav:s = l‘Vs(v—a) (2.1-1)

Where vp, va and vg are the net particle transport velocity, the nominal annular fluid
velocity and net particle slip velocity respectively. Experimental data indicated that the
particle slip velocity was largely independent of annular fluid velocity, resulting in a
linear relationship between the transport ratio and the inverse annular fluid velocity.
Transport ratios obtained experimentally in annular flow were compared to the
corresponding ratios based on particle slip velocities measured in quiescent fluids, and
calculated from theoretical relations given by previous investigators.

Thomas et al. 39 (1982), using the same flow loop as Zeidler 48 49 except for a larger
diameter inner pipe, attempted to verify the model outlined by Zeidler for vertical
annuli. The attempt was performed in connection to a study of the effects of inner pipe

rotation and -eccentricity on cuttings behaviour in vertical annular flow.

" Hussaini & Azar 22 (1983), also by means of a slightly modified version of the Zeidler
flow loop, pursued a further verification of the Zeidler model. The work also treated the
effects of fluid flowrate and rheology on the annular particle concentration.



2.2

Peden & Luo 30 (1987) noted that the drag coeffecient for a sphere moving through a

~ Power Law fluid could be expressed in the general form:

A
Cq = (2.1-2)
Y

where A and ¢ depends only on the particle slip regime and the Power Law flow
behaviour index. Re'p is a particle Reynolds number defined for a Power Law fluid. The

expression was adapted to discs and rectangular plates.

Cuttings transport in deviated wellbores

Iyoho 23 (1980) was the first to perform comprehensive experimental investigations of
steady state cuttings transport in inclined annuli. The experimental work was carried out
in a large scale (40 ft/5"/1.9") annular flow loop located at the University of Tulsa.
Apart from annular inclination, the work treated the effect of annular fluid velocity, fluid
rheology, annular flow regime, annular eccentricity, inner pipe rotation and particle feed
concentration. The effect of the mentioned variables was quantified in terms of the
annular cuttings concentration and a generalized transport ratio.

Becker 3 (1982) used the Tulsa University flow loop facility to investigate the effect of
fluid density and annular geometry on steady state cuttings transport in inclined annuli.
Dependent variables were annular cuttings concentration and the torque required in
order to rotate the inner pipe at 50 rpm.

Okrajni & Azar 28 (1985) used the Tulsa University flow loop to perform investigations
of steady state transport and transient removal of cuttings in an inclined annulus. The
effects of fluid rheology, annular flowrate, annular flow regime, annular eccentricity and
inner pipe rotation were considered. Dependent variables were annular cuttings
concentration and transient cleaning rates.

Gavignet & Sobey 15 (1986) presented a simple "two layer model" for the steady state
transport of cuttings in deviated wellbores. In the model, the cuttings are presumed to be
transported in a closely packed deposit, sliding up the wellbore, driven by the fluid shear
stress exerted on the deposit surface. Resistance to cuttings transport appear in the form
of friction between the sliding deposit and the annular walls. The model predictions
showed an order of magnitude agreement with experimental results by Iyoho 23.

Martin et al. 25 (1987) pointed out that the model outlined by Gavignet & Sobey 15
contains parameters which in practice are inaccessible. As a countermeasure a model
based on directly accessible variables was proposed. The model utilizes the experience
that the non-dimensional quantity

K =4/ReFr (2.2-1)

where Re is a Reynolds number and Fr a Froude number, depends largely on annular
inclination and fluid viscosity. Input to the model are annular dimensions, annular
inclination, fluid rheology, fluid density and particle density. Output is the minimum
annular flowrate needed in order to obtain a given recovery fraction during a given period



of time. The model was based partly on experimental results obtained in a 16 ft. 105" /5"
annulus and a 10 ft. 45" cylindrical pipe respectively, partly on field data.

Grossmann 17 (1988), used the Buckingham Il-theorem and similarity theory to build a

laboratory scale flow loop (3 m. 50 mm/32 mm) and select operational parameters which
should produce results identical to the ones obtainable with field parameters in a full
scale geometry. A comprehensive experimental programme was carried out, and detailed
qualitative and quantitative descriptions of the transport phenomena under different
steady state conditions were outlined. Variables were nominal annular fluid velocity,
annular inclination, fluid viscosity, annular eccentricity, inner pipe rotation, particle size
and particle feed rate. Dependent variables were the annular particle concentration, a
particle transport ratio ("Austragswirkungsgrad"), the axial annular pressure gradient,
the average particle transport velocity and the part of the annular cross sectional area
not occupied by a deposit.

Seeberger et al. 36 (1989) performed experiments which indicated that an oil based- and a
polymer water based drilling fluid with similar rheological properties, produce identical
cuttings behaviour in inclined wellbores.

Brown et al. 7 (1989), in a field scale annular flow loop (50 ft. 8"/5"), considered the
transient cleaning of a wellbore annulus as function of inclination, fluid flowrate, fluid
rheology and inner pipe eccentricity. Two quantities were determined: 1) The minimum
annular velocity required in order to initiate the removal of particles from the annulus
and 2) the cleaning rate once particle transport was initiated. The experimentally
determined fluid velocities, required to initiate cuttings removal, were compared with
predictions from the Gavignet & Sobey 15 model.

Becker et al. 5 (1989) performed experiments in the Tulsa University flow loop facility in
order to investigate the correlation between annular cuttings concentration and various
quantities used to characterize the rheology of drilling fluids in field practice.

Peden et al. 29 (1990) quantified the cuttings transport process in terms of the minimum
annular fluid velocity keeping cuttings in upwards motion. Two types of minimum
transport velocity were considered: 1) The lowest nominal fluid velocity keeping particles
in full suspension, and 2) the lowest nominal fluid velocity needed to keep a particle
deposit in forwards/upwards motion. The dependence on annular inclination, annular
dimensions, fluid rheology, inner pipe eccentricity, inner pipe rotation and particle size
was investigated in a 22 ft. (outer pipe diameter not reported)/2.5" & 3.5" flow loop,

located at the Heriot-Watt University in Edinburgh.

Hemphill 20 (1990) used the Tulsa University flow loop facility to investigate the effect of
oil based drilling fluids on steady state cuttings behaviour and transient cuttings
removal. In the steady state experiments, the minimum annular flowrate keeping
particles in upwards sliding/rolling motion was determined as function of annular
inclination, fluid rheology and oil to water ratio. In the transient cuttings removal
experiments, the dependence of particle recovery on time was determined as function of
annular inclination, oil to water ratio, fluid rheology and inner pipe rotational speed.
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Chapter 3

Some variables affecting
cuttings transport and
behaviour.



3.1

Cuttings transport is a two phase solid-liquid flow in an annular geometry. A rather
large number of variables affect particle behaviour in a wellbore. Among these are:

Annular inclination

Fluid rheology

Annular flow regime
Particle size- and shape
Particle- and fluid density
Fluid flowrate

Annular eccentricity

Inner pipe rotational speed
Particle feed concentration
Annular dimensions

.
—t
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Please note that in this thesis, inclination always is measured relative to vertical, unless
it is otherwise specified.

Annular inclination

In a deviated wellbore, gravity and buoyancy may be separated into axial- and radial
components. Even if fluid dynamic forces to some extent act in the radial direction, these
radial forces are weak compared to the radial body forces under most drilling conditions,
and the net gravitational force makes cuttings settle out of the fluid and form a deposit
on the low side of the wellbore.

The appearance and behaviour of a deposit depend on the physical conditions in the
wellbore and are often complex. For a detailed description of the various patterns of
behaviour, the reader is referred to the works of Iyoho 23 and Grossmann 17.

Iyoho 23, Becker 3, Okrajni & Azar 28 and Grossmann 17 observed that annular cuttings
concentration increased with annular inclination. Under some experimental conditions
the growth was monotonous, while under other conditions it reached a maximum,
typlica.lly between 40 and 50 degrees, decreasing slightly with a further increase in
inclination.

Peden et al. 29 observed that the minimum transport velocities (see chapter 1.3.2)
increased with hole angle, typically reaching a maximum value between 40 and 60
degrees, whereupon they decreased with a further increase in inclination. Hemphill 20
reported similar results for a number of oil based muds.

Martin et al. 25 found that the minimal fluid velocity required to transport a single
particle up an annulus displayed a maximum between 30 and 60 degrees.

Brown et al. 7, in transient cuttings removal, noted that the interval around 50-60
degrees represented the most difficult annular inclinations to clean. Hemphill 20 reported
similar results.

11



3.2

Fluid rheology

The force on a freely suspended particle in an infinite fluid may be given by the
expression:

Fra = Ca Ap (12 pn u3) (3.2-1)

where Ap is a characteristic surface area for the particle, pp the fluid density and up the
velocity of the particle relative to the fluid. The expression defines the drag coeffecient,

Ca.

The drag coeffecient is normally plotted against a particle Reynolds number, Rep,
defined in a manner suitable for the particle and fluid in question. In a range of low Rep
viscous forces dominate the fluid-particle interaction, and the particle is said to be in
viscous slip. If Re; is gradually increased, the particle enters a transitional regime where
neither viscous nor momentum forces can be ignored. With a further increase in Re; the
particle slip becomes turbulent, and momentum forces dominate the interaction between
the fluid and the particle. The behaviour of a particle in turbulent slip is independent of
fluid rheology.

Due to the difference in physical background it is necessary to discern between annular
flow regime and particle slip regime. However, they are not independent. In the viscous
fluid flow regime, particle motion may take place in either the viscous—, transitional- or
turbulent particle slip regime. In the transitional fluid flow regime, particle motion may
take place in the transitional- or turbulent particle slip regime, while in turbulent fluid
flow regime, particle slip always takes place in the turbulent regime. It is not always
simple to determine the particle slip regime for freely suspended particles in annular flow,
and often it is attempted to relate particle behaviour to the fluid flow regime instead.

The particle slip velocity is largely constant in Newtonian annular flow. However,
pga.rtlc}es in Yiscqus— or transitional slip through non-Newtonian fluids "feel" a local fluid
viscosity which is a result of shear from annular flow, particle slippage and inner pipe

rotation. Consequently the slip velocity varies with annular position in these slip
regimes.

Under normal drilling conditions, the number of particles in free slip is small in inclined
annuli. The effect of rheology on particles sliding or saltating along the deposit
surface/annular wall is not well defined. However, it is expected to be related to the
effect of rheology on wall shear stress in rough pipes (compare fig. A3/1 and fig. 4.2.4/1).

For the particles in the interior of a deposit, the effect of rheology in viscous interstitial
flow may be given in terms of the Ergun equation. (see egs. (4.2.2-2) and (4.3.2-1))

Reported results — Vertical annuli

The difficulties in handling non-Newtonian rheology are reflected in papers concerning
cuttings transport in vertical annuli. Williams & Bruce 44 outlined slip velocity relations
valid for turbulent slip only, where particle behaviour is independent of fluid rheology.
Chien 9 chose to define constant viscosities for non-Newtonian fluids. Zeidler 48 proposed
an effective viscosity based on the shear stress and shear rate at the annular wall. Walker
& Mayes 43 proposed to use the ratio between local fluid shear stress and shear rate as

12



w}iscosity in their relations for particle slip velocities, and outlined a partly empirical
technique to estimate these quantities.

Hopkin 2! found that the particle slip velocity decreased with increasing fluid viscosity in
the viscous slip regime.

Sifferman et al. 38, in viscous annular flow and under steady state conditions, observed
that cuttings transport ratios increased with viscosity.

Reported results - Inclined annuli

Both Okrajni & Azar 28 and Becker et al. 5 reported that annular cuttings concentration
was independent of fluid rheology in turbulent flow.

Okrajni & Azar 28 found that an increase in plastic viscosity resulted in lower cuttings
concentrations at all inclinations.

Becker et al. 5 investigated the effects of a number of rheological parameters commonly
applied in the field. These were yield point, plastic viscosity, yield point to plastic
viscosity ratio, Power Law flow behaviour index, Power Law consistency index, Fann
V-G readings, an effective viscosity and initial- and 10 minute gel strengths. A general
trend for the results obtained in viscous annular flow was that annular cuttings
concentration decreased with an increase in the rheological parameters considered.
However, Hemphill 20 found contradictory results for a number of oil based drilling
fluids, where the annular flowrate needed to keep cuttings in an upwards rolling/sliding
motion increased with some of the same rheological parameters.

Peden et al. 29, in addition to water, operated with a low—, a medium- and a high
viscosity polymer solution, characterized in terms of apparent viscosity vs. shear rate
plots. In a concentric annulus, the effect of fluid rheology on cuttings behaviour was
observed to depend on the annular dimensions and the type of minimum transport
velocity considered. However, no clear correlation was established between the minimum
transport velocities and fluid rheology. Peden et al. pointed at transitions between the
viscous- and turbulent flow regimes as a possible explanation for the observed
inconsistensies. However, no effort was performed to check this hypothesis.

Hemphill 20 found that highly viscous "sweeps" in transient cuttings removal gave lower
cuttings recovery rates and smaller cumulative cuttings recovery fractions than low
viscosity "sweeps".

Authors comment

Drilling fluids are generally non-Newtonian, shear thinning, sometimes viscoelastic and
may possess a yield stress or gelling properites. The inability to describe such fluids in
terms of a few parameters is a serious restriction to experimental work where the effect of
rheology is to be considered. Furthermore, even if a fluid could be characterized with a
few rheological parameters, it is normally impossible to vary one of the parameters
without affecting the value of the others, i.e. the rheological properties cannot be
separated and investigated independently of each other. This makes the results of
experimental work with non-Newtonian fluids inconsistent and difficult to interpret.

It is noteworthy that the simplest (and consistent) investigation of rheological effects on
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3.2.1

cuttings transport and behaviour appears not to have been performed yet: The effect of
variations in viscosity of Newtonian fluids in the viscous flow/slip regime.

Annular flow regime

A special case in the consideration of rheological effects on cuttings behaviour is the
comparison of cuttings behaviour in viscous- and turbulent annular flow. The case is
denoted "special" because there is negligible effect of rheology in turbulent annular flow,
where fluid momentum forces are dominant, i.e. comparisons are made between a
situation where rheology is significant and another, where it is not. The different flow
regimes are normally obtained by varying the fluid rheology, while other variables such
as densities and flowrate are kept constant.

In vertical or near vertical annuli, cuttings are more or less freely suspended in the
annular space and particle slip regime is of importance. In viscous annular flow, particle
slip may take place in the viscous-, transitional- or turbulent slip regimes. In turbulent
annular flow particle slip always takes place in the turbulent slip regime, where the slip
velocity attains a maximum value. It is therefore expected that viscous flow produces a
lower annular cuttings concentration than turbulent in vertical/near vertical annuli.

In deviated wellbores with a deposit, the majority of the cuttings are transported in a
narrow zone on- and immidiately above the deposit surface, and the distribution of the
fluid dynamic forces in the annular space becomes important. The turbulent fluid
velocity profile displays considerably larger fluid velocities than the viscous profile in the
layer immidiately above the deposit surface. Therefore, turbulent annular flow is
expected to produce a lower annular particle concentration than viscous annular flow,
when a well defined deposit is present.

Reported results - Vertical annuli

Hopkin 2! in low viscosity fluids found that the particle slip velocity was constant and
independent of rheology. However, if the viscosity was raised beyond some point, the
particle slip velocity became dependent on rheology and decreased towards zero with
further increases in viscosity. This behaviour presumably reflects a shift from turbulent
to viscous slip.

Williams & Bruce 44 found that low viscosity muds gave better cuttings removal than
high viscosity muds. This was apparently due to the interaction between the disc shaped
particles and the velocity profile in turbulent and viscous flow respectively. In turbulent
flow the particles were observed to be transported smoothly and flatwise, while in viscous
flow they performed recirculatory movements, which prolonged their residence time in
the annular section.

Reported results - Inclined annuli

Okrajni & Azar 28 found that viscous annular flow gave lower annular cuttings
concentrations than turbulent at inclinations between 0 and 45 degrees. Between 45 and
55 degrees, the two flow regimes performed equally well, while turbulent flow gave the
lowest annular concentrations for inclinations between 55 and 90 degrees. Very similar
observations were made by Becker et al. 5.

14
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Iyoho 23, for a single annular inclination of 40 degrees, observed that a low viscosity fluid
in turbulent flow produced largely the same annular cuttings concentrations as a high
viscosity mud in viscous flow.

Grossmanns 17 results showed that in vertical annuli, there was only negligible difference
between the annular cuttings concentration obtained with a high viscosity fluid in
viscous flow and a low viscosity fluid in turbulent flow. However, at inclinations of 45
and 90 degrees, the high viscosity fluid gave markedly higher annular cuttings
concentrations than the low viscosity fluid, at practically all the flowrates considered.

Okrajni & Azar 28 in transient cuttings removal observed a pattern similar to the one
observed for.steady state cuttings transport. Between 0 and 45 degrees cleaning rates
were highest in viscous flow, between 45 and 55 degrees hole cleaning in the two regimes
was equally efficient, while between 55 and 90 degrees cleaning rates were highest in the
turbulent regime.

Brown et al. 7, in transient cuttings removal, observed that water in turbulent flow gave
higher cleaning rates than a polymer solution in viscous flow at all-, and in particular the
low annular inclinations.

Particle size and —shape.

Particle size is normally accounted for through some characteristic dimension. A frequent
choice is the diameter of a sphere with the same volume as the particle in question.

Cuttings are generally of irregular shape, and a simple geometrical characterization is
difficult. Several methods have been proposed (see for example Garde & Ranga Raju 14
p.16) but the concept of sphericity introduced by Wadell 42 appears to be of fundamental
importance. Sphericity is defined as the surface area of a sphere with the same volume as
the particle in question, divided by the actual surface area of the particle.

Particles with three mutually perpendicular axes of symmetry are orientationally stable
in free viscous slip, i.e. they tend to preserve the orientation originally imposed on them.
This was experimentally confirmed by Pettyjohn & Christiansen 31. Heiss & Coull 19
shovyefi that the resistance to viscous slip depends on the shape and orientation of the
particle.

Outside the viscous slip regime, the orientation of freely settling particles is in general
not arbitrary. In the transition from viscous to turbulent particle slip regime, the
particles gradually attain a preferred orientation with the largest possible cross sectional
area perpendicular to the direction of motion. For isometric particles the resistance to
particle motion increases with decreasing sphericity, the sphere meeting the smallest
resistance of all particle shapes (see for example Pettyjohn & Christiansen 31). Above
some particle Reynolds number in the turbulent slip regime, non-spherical particles tend

to develop a spinning or pitching motion (Willmarth et al. 45).
While the influence of particle size in inclined annuli with a deposit has been treated by

several researchers, the effect of particle shape does not appear to have recieved any
attention.
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Reported results - Vertical annuli

The described behaviour of non-spherical particles in free slip has largely been confirmed

in experiments related to cuttings transport. An exception is the lack of a preferred
orientation at low particle Reynolds numbers. Peden & Luo 39, for discs and rectangular
plates in quiescent fluids and with a suitably defined particle Reynolds number, found
that for Rep<l the preferred orientation was edgewise, for 1<Rep<10 the particle tended
to perform unstable zig—zag movements in the transition to flatwise slip, which occurred
for Rep>10. These observations were largely in accordance with earlier observations by
Walker & Mayes 43 for disc shaped particles and by Zeidler 49 for ellipsoidal particles.

Particle slip in viscous shear flow may give rise to complex particle behaviour. A
noticeable example was given by Williams & Bruce 44, who observed and proposed a
hypothesis for the fact that disc shaped particles may perform recycling movements along
the annular walls. The recycling phenomenon, which also is described by Zeidler 49, was
considered the reason why large particles in transient cuttings removal sometimes are
more easily removed from the wellbore than small. This reverse order effect is presumed
to occur when the size and shape of the small particles make them more exposed to
recycling than particles with a larger size and/or different shape. The small particles
%usth then travel a longer virtual distance than the latter, before they reach the surface of
arth.

Reported results - Inclined annuli

Peden et al. 29 considered two different particle size fractions. For low viscosity fluids in
turbulent flow they observed that the large particles required higher minimum transport
velocities than the small, at all inclinations. However, for a high viscosity fluid in viscous
flow, the large particles required lower minimum transport velocities than the small, in a
range of annular inclinations.

Grossmann 17 conducted experiments in turbulent flow with three particle size fractions,
one containing small particles, another large particles and a third containing a mixture of
the small and large particles. The behaviour of the mixed particle fraction was largely
similar to the fraction with large particles alone, while the small particle fraction gave

lower annular particle concentrations than the large- and mixed fraction.

Martin et al. 25 studied the transient recovery of particles transported in pipe flow. With
a thixotropic fluid in viscous flow they observed that large particles were transported
more easily than small particles at all inclinations. They suggested this phenomenon to
b%.l (I:aused by the embedment of the small particles in a stagnant sublayer at the pipe
wall.

Particle- and fluid density.

The difference in density between the cuttings and the drilling fluid affects the buoyancy
of the cuttings. The less the difference, the less the net gravity on the cuttings.

For particles moving in the transitional- or turbulent slip regime, the response to an
increase in drilling fluid density is twofold: The cuttings become easier to transport due
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3.5

to the increase in buoyancy, and the ability of the drilling fluid to transport the cuttings
grows due to the increase in fluid momentum.

In deviated wellbores where a deposit has formed, the large resistance to flow trough the
interstitial voids normally ensures viscous flow in the interior of the deposit.
Consequently the influence of fluid momentum on the deposit is restricted to the cuttings
on- and above the deposit surface. However, an increase in fluid density increases the
buoyancy of the cuttings, reducing the intergranular friction as well as the friction
between the deposit and the annular walls. This reduces the stability of the deposit,
making it more exposed to erosion and sliding.

Reported results - Vertical annuli

Sifferman et al. 38, under steady state conditions, observed that increasing the density of
the fluid led to higher particle transport ratios, especially at relatively low annular fluid
velocities.

Williams & Bruce 44 in transient cuttings removal found that increasing the density of
the fluid gave higher particle recovery rates.

Reported results - Inclined annuli

Becker 3 4 investigated the effect of fluid density variations on annular particle
concentration. He solely treated viscous annular flow, and consequently his results should
reflect the effect of buoyancy, but not of fluid momentum. He observed that an increase
in fluid density led to reductions in annular particle concentrations at all inclinations
considered and that weighted fluids produced a less steep rise in annular particle
concentration with inclination, than less— or unweighted fluids.

Fluid flowrate

Annular flowrate has a marked effect on cuttings behaviour in vertical as well as inclined
annuli. If the flowrate is too low, cuttings accumulate in the annular space until the fluid
velocity becomes large enough to ensure a net transport of cuttings. While the cuttings
remain suspended in vertical annuli, the accumulation in inclined annuli occurs in the
form of a deposit.

Reported results - Vertical annuli

Sifferman et al. 38, under steady state conditions and for all combinations of system
variables considered, observed that the particle transport ratio increased with annular
flowrate. While the slope of a transport ratio vs. flowrate curve was steep at relatively
low fluid flowrates, it levelled out at higher flowrates. This reflects that there is an upper
limit to the particle slip velocity (attained in turbulent slip), while there in principle is
no upper bound for the fluid velocity.
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3.6

Hussaini & Azar 22, under steady state conditions and in viscous annular flow, observed
that annular cuttings concentration decreased with increasing flowrate in all the
rheologically different fluids considered.

Reported resuits — Inclined annuli

Iyoho 23 observed that the higher the fluid flowrate, the lower the annular cuttings
concentration at all inclinations, fluid viscosities and flow regimes. Similar results were
reported by Okrajni & Azar 28.

Grossmann 17 observed that the higher the annular flowrate, the lower the annular
cuttings concentration at all inclinations, annular eccentricities, fluid viscosities, inner
pipe rotational speeds, particle sizes and particle feed rates.

Annular eccentricity

An eccentric annulus is characterized by variations in the distance across the annular gap
with angular position. The annular fluid velocity distribution is strongly affected by
annular eccentricity. Some examples of velocity distributions for a Newtonian fluid in
viscous eccentric annular flow are shown in fig.3.6/1.
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Fig. 3.6/1 The distribution of fluid velocities for a Newtonian fiuid along the symmetry axis
of an eccentric annulus. The eccentricities shown are: (a) 0% (concentric), (b)
50%, (c) 90%. The ratio between the inner- and outer pipe radius is 0.4. The non
dimensional axial fluid velocity on the ordinate is defined as v/v,, where v is the
annular fluid velocity and vo=(-dP/dz)R?/s .

The asymmetric distribution of the fluid velocity leads to variations in particle transport
velocity and -behaviour with position in annular space. In vertical annuli the reduced
particle transport velocities in the narrow parts of the annulus may to some degree be
compensated for by a corresponding increase in the transport velocities in the wide parts.
In inclined annuli, the creation of a narrow low fluid velocity regions enhances the
deposition of particles.
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Reported results - Vertical annuli

Sifferman et al. 38, under steady state conditions and in viscous flow, observed that a
100% eccentric drill pipe (i.e. placed against the wall) resulted in slightly higher
transport ratios than a concentric pipe.

Thomas et al. 39, under steady state conditions and in viscous flow, varied the annular
eccentricity. The effect on particle transport velocities and annular particle concentration
was observed to be weak and inconsistent.

Williams & Bruce 44 investigated transient cuttings removal in a 500 ft. experimental
wellbore and observed that with highly viscous fluids, the cumulative recovery fractions
were larger for a concentric- than for an eccentric drill string, i.e. cuttings were being
retained in the eccentric wellbore.

Reported results - Inclined annuli

Iyoho 23, with water in turbulent flow, observed that the effect of eccentricity was small
for low annular inclinations, while at larger inclinations, a +50% (i.e. 50%-downwards)
eccentric annulus resulted in the highest annular particle concentrations, followed by a
—5g% (i.e. 50%-upwards) eccentric annulus and a concentric annulus in the mentioned
order.

Okrajni & Azar 28 observed that a +50% eccentric position of the inner pipe gave
increased annular cuttings concentrations compared to a concentric annulus, at all
inclinations and in both flow regimes. The effect was slight for relatively low annular
inclinations, while it became more marked at higher inclinations.

Peden et al. 29 considered three annular eccentricities: -50%, 0% and +50%. At all
inclinations and in viscous flow, the lowest minimum transport velocities occurred in the
-50% eccentric annulus. However, which of the two annular configurations, concentric- or
+50% eccentric, that displayed the lowest minimum transport velocities, appeared to
depend on annular inclination.

Grossmann 17 considered a broad range of annular flowrates in the turbulent regime. He
observed that eccentricity had only negligible effect on annular particle concentration in
vertical annuli. However, in inclined annuli, the experimental results showed that,
compared to the concentric configuration, a +90% eccentric inner pipe could result in
both increased and reduced annular particle concentrations.

Brown et al. 7, in transient cuttings removal, observed that a shift from a concentric to a
+75% eccentric annular configuration resulted in reduced cleaning rates. In turbulent
flow the reduction was relatively small at low annular inclinations while it became more
marked at higher inclinations. In viscous annular flow the reduction was very pronounced
at all inclinations.

Authors comment
The experimental results concerning the effect of annular eccentricity is ambigous.
However, Fig. 3.6/2 should illustrate that in inclined annuli with a deposit, a change in

annular eccentricity may result in a different effect, depending on the relationshi
between the deposit and the inner pipe. The deposit shown in fig. 3.6/2 (a) and (b
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3.7

occupies 5% of the annular volume, while in (c) and (d) it occupies 50%. In (a) and (c)
the eccentricity is -50%, while in (b) and (d) it is +50 %.

It is presumed that particle deposition is related to the fluid velocity and that the
reduced fluid velocity in the narrow regions of the annular space enhances the deposition
of particles.

() (b) (©) (d)

Fig.3.6/2 The relationship between deposit and inner pipe at various combinations of
eccentricity and deposit size. &os Ect.: -50%, deposit: 5% "E'./c‘::.; (b) Ecc.: +50%,
dg i;: 5% v/v ; (c) Ecc.: -50%, deposit: 50% v/v ; (d) : +50 %, deposit:
507 v/v.

When the eccentricity is changed from -50% to +50% in fig. 3.6/2 (a) & (b), it creates a
narrow region above the deposit, promoting further deposition. However, in fig. 3.6/1 (c)
& (d) the same change in eccentricity eliminates a narrow region, making the deposit
more exposed to erosion. Consequently, a given change may result in a decrease as well
as an increase in annular cuttings concentration, depending on the position of the inner
pipe with respect to the deposit, prior to the change.

In transient cleaning of a wellbore, the gradual removal of cuttings from the annular
space means that no particular position of the inner pipe with respect to the deposit is
characteristic for the interaction between the particles and the fluid. However, the
situation where the drill pipe is displaced towards the low side of the wellbore requires
the largest relative increase in fluid flowrate in order to induce particle motion below the
pipe. Consequently, this configuration is expected to be harder to clean than the
concentric or negatively eccentric annulus.

Inner pipe rotation

Inner pipe rotation changes the character of annular flow from axial to helical, imposing
a tangential force on the particles in vertical annuli. The fluid shear stress in simple
couette flow of a Newtonian fluid is inversely proportional to the radial distance from the
rotating pipe squared, and consequently the effect of inner pipe rotation on freely
suspended cuttings is expected to decrease rapidly with distance from the pipe.

In inclined annuli the non-axial fluid dynamic forces caused by inner pipe rotation are
normally weak compared to the net %ravity acting on the cuttings. Furthermore, the

helical nature of the flow disappears if the deposit gets in contact with the inner pipe.
Therefore, the largest effect of inner pipe rotation is expected to occur when there is a
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direct interaction between the pipe and the deposit, i.e. where the deposit structure is
disrupted and cuttings pulled out of the deposit surface by the rotating inner pipe.

Reported results - Vertical annuli

Sifferman et al. 38, under steady state conditions and in viscous flow, observed that
transport ratios increased with inner pipe rotary speed. For water in turbulent flow, a
slight reduction in transport ratios was reported.

Thomas et al. 39, under steady state conditions and in viscous flow, found that inner pipe
rotation increased the particle transport velocity and reduced annular particle
concentration slightly. An increase in rotational speed beyond some point produced no
further effects.

Williams & Bruce 44 in transient cuttings removal observed that particle recovery rates
increased with inner pipe rotation. The effect of inner pipe rotation was pronounced at
low rotational speeds, while an increase in rotational speed beyond some point produced
no further effects.

Zeidler 48, in transient particle removal with water in turbulent flow, obtained markedly
increased particle recovery rates with inner pipe rotation.

Williams & Bruce 44, Zeidler 48 and Thomas et al. 39 all suggested various mechanismns
for the effect of inner pipe rotation. One was that the tangential motion of the particles
in helical flow gives rise to centrifugal forces, which displace the particles into annular
regions with higher fluid velocities. Another was that the inner pipe rotation changes the
fluid velocity profile, making particles less exposed to recirculatory patterns of motion or
sticking to the inner pipe wall.

Reported results - Inclined annuli

Iyoho 23 found the effects of inner pipe rotation to be negligible for various combinations
of annular inclination, annular eccentricity, inner pipe rotational speed and flow regime.
So did Hemphill 20 for a single combination of the mentioned variables.

Peden et al. 29, for viscous flow in concentric annuli, observed that the effect of inner
pipe rotation was negligible in an annulus with a wide clearance, while the minimum
transport velocities were significantly reduced in an annulus with a narrow clearance.

Grossmann 17 observed that inner string rotation reduced the annular particle

concentration at all flowrates in the viscous— as well as the turbulent flow regime, and at
all eccentricities and inclinations considered. The effect was generally weak in vertical
annuli, while it became increasingly pronounced with annular inclination.

Martin et al. 25 reported that inner pipe rotation had little influence on the transport
velocity of a single particle in turbulent annular flow, while it had significant influence in
viscous annular flow.

Okrajni & Azar 28, in transient particle removal and in viscous annular flow, observed

that cleaning rates increased with increasing inner pipe rotational speed. The effect
gradually became more pronounced with increasing inclination.
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3.9

Particle feed concentration

If cuttings were transported with the same average velocity as the fluid, the annular
cuttings concentration would equal the concentration generated at the drill bit, i.e. the
annular feed concentration. However, accumulation caused by particle slip, recirculatory
particle movements and deposit formation results in annular cuttings concentrations
which always are larger than the particle feed concentration.

Reported results - Vertical annuli

Sifferman et al. 38, under steady state conditions and in viscous flow, observed no
consistent effect of variations in the particle feed concentration on transport ratios.
However, due to the definition of the transport ratio (R¢xce/ca), this result must reflect
that the annular particle concentration grows in proportion to the feed concentration.

Reported results - Inclined annuli

Grossmann 17, in turbulent annular flow, observed that the annular -cuttings
concentration increased with particle feed concentration in a concentric as well as an
eccentric annnulus, with or without inner pipe rotation and at all inclinations. The effect
was weak at low inclinations, while it became marked at large inclinations.

Annular dimensions

A change in annular dimensions has, apart from a very significant influence on the
3nnular fluid velocity, consequenses for the relationship between the inner pipe and a
eposit.

Reported results - Inclined annuli

Brown et al. 7 noted that there is a marked difference in the geometrical appearance of a
deposit in two different annular configurations.

Becker 3 investigated the effect of varying the inner pipe diameter, keeping the nominal
linear fluid velocity constant. Increasing the inner pipe diameter from 11g" to 236" in a
5" louter pipe produced a slight increase in annular particle concentration at all
inclinations.

Peden et al. 29 showed that the minimum particle transport velocities were smaller in a
narrow annulus than in a wide. Furthermore, the effect of inner pipe rotation was
strongly affected by the annular dimensions, ranging from a large effect in a narrow gap
configuration to an insignificant effect in a wide gap configuration.
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Chapter 4

Modelling work.
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4.2

421

Background.

The theoretical work in this dissertation was spurred by a critical examination of a model
for the steady state transport of cuttings in deviated wellbores, published by Gavignet &
Sobey 15 in 1986.

Gavignet & Sobey proposed a simple two layer model where the cuttings are presumed to
be transported in a closely packed deposit, sliding upwards along the low side of the
wellbore. The deposit is driven by the fluid shear stress exerted on its surface, while the
friction between the deposit and the annular walls offers resistance to the motion.

However, the model contains at least two defects:

1) Upwards sliding deposits are not the only transport pattern reported from
experimental work. Stationary or downwards sliding deposits are frequently observed
(see for example Iyoho 23 or Grossmann 17). With a stationary or downwards sliding
deposit, the net transport of cuttings in the upwards direction takes place in
suspension above- or in saltation along the surface of the deposit, a behaviour which
cannot be described by the Gavignet & Sobey model.

2) The friction between the deposit and the annular walls is presumed to be the only
resistance to deposit motion, i.e. the model does not account for the presence of an
axial component of gravity in the inclined wellbore.

Even if the predictions from the model are reported to show an order of magnitude
agreement with experimental results published by Iyoho 23, the model by Gavignet &
Sobey must be considered to be inadequate in its physical description of the cuttings
transport process.

In the following an improved two layer model is outlined. The new model allows particles

to be transported in suspension above the deposit and the deposit to be either static or

sliding in the upwards— or downwards direction. For reasons which will become obvious,

tslges;anodeld Illas been named the Shields Concept Sliding Bed model or, in short, the
-model.

The SCSB-model

The two layer concept is not new, but has previously been used in theoretical works
concerning solid-liquid flow in pipes. The SCSB-model is in several respects similar to
models published by Wilson 47, Shook 13 and Doron et al. 1. However, major differences
between this work and the ones mentioned are the annular geometry, the inclination with
respect to vertical and the application of the Shields concept 37 to determine the position
of the deposit surface.

Geometry

Before any equations are given, the idealized geometry which forms the basis for the
SCSB-model should be described.
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4.2.2

The annular space is divided into two layers separated by a distinct, plane surface (see
fig. 4.2.1/1). The lower layer represents a closely packed particle deposit, while the upper
layer represents the mixture of fluid and particles flowing above the deposit.

?.
As
—2,,
Fluid layer \
YAEAN
Porous cuttings layer
1=~ Ac
|
Fig. 4.2.1/1  The two-ayer geometry in the SCSB-model. Fig. 4.2.1/2 Geometrical variables in the SCSB-model.

A number of geometrical variables are defined in fig. 4.2.1/2 (See also Appendix 1). The
terminology is largely in accordance with the one of Gavignet & Sobey 15. The parts of
the outer pipe perimeter in contact with the upper— and lower layer are denoted sp; and
Sc1 respectively. Analogously, the parts of the inner pipe perimeter in contact with the
upper— and lower layer are denoted sp and sc. The length of the interface between the
two layers is denoted s;. The overall cross sectional area of the annulus is divided in two:
iI‘he crzss sectional area of the lower layer, A, and the cross sectional area of the upper
ayer, Ap.

Force balances for the fluid.

Initially, the fluid in the solid-liquid annular flow is taken to be Newtonian (an
expansion of the model to non-Newtonian fluid behaviour is performed in chapter 4.3).
Furthermore, it is presumed that the flow is fully developed and purely axial. Finally it
is presumed that the particle diameter, d., particle density, pc, deposit porosity, ¢, fluid
density, pn, and fluid viscosity, up, all are known parameters.

For the fluid in each of the two layers a force balance may be written. The force balances
of the present work are:

wpper layer: =5 = &= (7o (snrtsmn) + 7151 (4.2.2-1)
2
lower layer:  -3F = 150/‘—"'—9;—(§L + 1.75n lc |“c|3(1“) (4.2.2-2)
dc € dc €
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4.2.3

where z is the axial position, P the modified pressure (P = p+pngz), n the fluid shear
stress exerted on the annular walls, 7; the fluid shear stress exerted on the deposit surface
and uc the nominal fluid velocity in the lower layer (calculated as if the particles
occupied no volume).

Equation (4.2.2-1) states that the pressure gradient in the upper layer is caused by the
fluid shear at the annular walls and the deposit surface. Equation (4.2.2-2) is the Ergun
equation 6 and states that the pressure gradient in the lower layer is equivalent to the
resistance to flow in a column of packed grains.

The elimination of dP/dz between the equations (4.2.2-1) and (4.2.2-2) leads to:

—)2 -
Tl Tm (Smi+Sm2) + TiSi| = 150 £n Ue (1=6)* | ; 75 pn Uc |uc| (1-¢) (4.2.2-3)
m d: e de €

This expression is the key equation in the SCSB-model. It is solved with respect to the
deposit surface position. The solution requires a number of additional relations, which are
given in chapters 4.2.3 —4.2.7, while the solution procedure is treated in chapter 4.2.8.

Shear stress relations.

In the upper layer, the fluid shear stress on the annular walls, r, and on the deposit
surface, 7, are given by:

Tn = % fn Pn Un |Un] (4.2.3-1)

7i = i pn (un’up) | (un’up)| (4.2.3-2)

where up, is the upper layer fluid velocity and up the deposit sliding velocity, both with
respect to the annular walls. While eq. (4.2.3-1) defines the friction factor fn for the
interaction between the fluid and the annular walls, eq. (4.2.3-2) defines the friction
factor f; for the interaction between the fluid and the deposit surface.

For a stationary deposit uy, is zero, and the expressions (4.2.3-1) and (4.2.3-2) differ only
with respect to the value of the friction factors.

If the deposit moves, up takes a non-zero value, and the upper layer fluid velocity
relative to the annular walls and relative to the deposit surface respectively, will be
different. In equation (4.2.3-2) the positive sign is applied for a downwards sliding
deposit, while the negative is used if the deposit slides upwards.
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4.2.4 Friction factor relations.

Fig. 4.2.4/1 is taken from Schlichting 35 (p.580). It shows a resistance number (equal to
400 times the friction factor) vs. the Reynolds number for a Newtonian fluid flowing
through pipes of varying roughness. In laminar flow, the resistance is inversely
proportional to the Reynolds number, but independent of pipe roughness.
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Fig. 4.2.4/1  Resistance to Newtonian fluid flow in rough pipes. (From Schlichting 3, p. 580).

When the Reynolds number exceeds approximately 2100 the flow becomes turbulent. In a
range above 2100, the resistance remains independent of the pipe roughness, and the flow
is said to be hydraulically smooth. However, beyond some Reynolds number the nature of
the resistance gradually changes until it is dependent on the pipe roughness alone. In this
situation the flow is said to be completely rough.

Gavignet & Sobey 15 in their model presumed the flow in the upper layer to be turbulent
and applied the following expressions for the friction factors:

2
fo = [4.0 logio(Rem  fa) - 0.4] (4.2.4-1)
£; = 2.0 |4.0 logyo Qb 2 4.2.4-2
= 2.0 |4.0 logyo| g2| + 3.36 (4.24-2)

Rep is a Reynolds number defined as Rep = (pn um Dh)/pim, Dn being the hydraulic
diameter of the upper layer.

These relations originate from two works by Nikuradse 26 27, concerning the flow of
Newtonian fluids in smooth and rough pipes. While (4.2.4-1) is identical to the original

relation derived for hydraulically smooth flow, (4.2.4-2) is a slightly modified version of
the original relation derived for completely rough flow.
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4.2.5

4.2.6

If the friction factors f and f; are calculated from egs. (4.2.4-1) and (4.2.4-2) alone, the
results derived from the SCSB-model are valid only for a situation, where the flow along
the annular walls is hydraulically smooth, and the flow with respect to the deposit
surface is completely rough. However, these limitations are removed with the
introduction of the Artyushkov et al. 1 2 theory in chapter 4.3.1.

A volumetric balance.
A volumetric balance for the fluid and particles in annular flow is given by:

! V = Am Up + Ac(uctub) (4.2.5—1)

Here V is the total volumetric flowrate. Ap and A, are the cross sectional areas of the
upper and lower layer respectively, uc is the nominal fluid velocity in the deposit layer
and up the deposit sliding velocity. The positive sign in the last term is applied for an
upwards sliding deposit, while the negative sign is used for a downwards sliding deposit.
When the deposit is stationary, up is zero.

In drilling operations, the volume of particles being transported is small compared to the
volume of fluid transporting it, and the total volumetric flowrate may be approximated
with the volumetric flowrate of the fluid alone. The latter is presumed to be a known
parameter.

The Shields Concept.

Shields 37 treated the conditions for the incipient motion of a particle resting on a
horizontal plane deposit surface. From theoretical considerations and experimental
investigations, Shields derived the relationship:

To —
m = 0.06 (4.2.6—1)

where 7, denotes the fluid shear stress at the deposit surface at the point of incipient
motion, pp the particle ‘density, p the fluid density, g the gravitational acceleration and
dp the particle diameter.

An adaptation of the Shields concept to the incipient motion of a particle resting on an
inclined deposit is outlined in Appendix 3. If the modified Shields relation is presumed to
be valid for cuttings deposits in inclined annuli, the following expression can be written:

e T = (Tl ¢ sinle)] 0.08 (42.6-2)

where ¢ is the inclination with respect to vertical and ¥, the angle of repose for the -
granular material in question. The dual sign on the R.H.S. of equation (4.2.6-2) reflects
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4.2.7

that the particle may move in the uphill as well as the downhill direction. The positive
sign between the brackets corresponds to a situation where the particle is on the verge of
being pulled along by the fluid, while the negative sign corresponds to a situation where
the fluid is barely able to prevent the particle from sliding downhill under the influence
of net gravity (see Appendix 3 for details). In order to keep the model simple, it is
presumed that the deposit generally tends to slide downwards before the particles on top
of it. The negative sign has therefore been omitted in the present work.

Criteria for deposit behaviour.

In theory, three types of deposit behaviour are possible. The deposit may: 1) be
stationary, 2) slide downwards or 3) slide forwa.rds})upwa.rds. While downwards sliding
cannot take place in an horizontal annulus, due to the absence of an axial component of
gravity, forwards sliding may occur due to the forces invoked by the fluid.

Two functions, f; and f5, are defined in order to determine the deposit behaviour.

fi=risi-Ac %% — (7Tct Set + Te2 Sc2) — Ac (pe—pn) g cos(y) (4.2.7-1)
— e oa dP
fo = 7i8i— Ac gz + (71 Sa1 + Te2 8c2) — Ac (Pcpn) 8 cos(y) (4.2.7-2)

Tc1 is the frictional shear stress between the deposit and the outer pipe wall, while 7¢ is
the frictional shear stress between the deposit and the inner pipe wall (see Appendix 2).
st and scp are the lengths of the outer and inner pipe perimeter in contact with the
deposit respectively. The term (7 St + Tea Sco) quantifies the friction between the
deposit and the annular walls, while A¢ (pc—pn) g cos(y) is the axial component of net
gravity acting on the deposit (see fig. 4.2.7/1).

dz

{rata + rasa)

A

(rasa+ rasa)dz

Ac (pe-pa) g co3(v) dz Ac (pepa) g eo8(y) d2

(a) (b)

Fig. 42.7/1 A force balance for a subelement of the deposit. (a): Friction and net gravity act
in the same direction, (b): Friction and net gravity act in opposite directions.
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4.2.8

The equation f;=0 is a force balance for the deposit per unit axial length, when the axial

. component of net gravity and the friction between the deposit and the annular walls act

in the same direction (see fig. 4.2.7/1 (a)). The equation f=0 is the corresponding force
balance when the net axial gravity and the friction between the deposit and the annular
walls act in opposite directions (see fig.4.2.7/1 (b)).

In order to determine the behaviour of a given deposit, the values of f; and f; are
calculated, using coeffecients of static friction for 7¢; and 72 (see Appendix 2). If {; and
fo both are positive, the deposit slides upwards. If they both are negative the deposit
slides downwards. If the signs of f; and fp differ, the deposit is stationary. These
relationships are shown graphically in fig. 4.2.7/2.

fi(ns) =0
fi(ns) < 0 fi(ns) <0 fi(ns) >0

»

Downwards bed sliding; | Stationary bed Upwards bed sliding

> fy

fa(ns) < O fa(ns) > 0 fa(ns) > 0
fa(ns) =0

Fig. 4.2.7/2 Behavior of the deposit in terms of the functions f; and fz, defined in egs.
(4.2.7-1) and (4.2.7-2).

Note that fa always is larger than f; due to the sign in front of (7¢s S¢1 + Tc2 Se2) and that
according to the definition of 75 (see Appendix 2) the solution to f;=0 or f=0 is valid
only for a deposit at the verge of sliding.

Solution procedure.

The expressions given in the chapters 4.2.3 - 4.2.7 and the Appendices 1 and 2 make it
possible to solve equation (4.2.2-3) in an iterative fashion.

The solution procedure is based on the fact that all of the defined geometrical quantities
(i.e. spi, Sm2, Scty Sc2s Si, Am, Ac and Dn) may be expressed in terms of the angle g,
corresponding to a given deposit surface position (see Appendix 1).

The deposit surface positions that satisfies the equation (4.2.2-3) are the ones which
produce an equal axial pressure gradient in the upper and lower layer. The diagram in
fig. 4.2.8/1 shows how solutions to eq. (4.2.2-3) are determined.

The f-interval between 0 (no deposit) and = (the deposit fills the annular space
completely), is divided into a suitable number of subintervals, whereupon each interval is
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tested for the presence of solutions. If a subinterval contains a solution, the exact
position of the corresponding deposit surface is obtained by an enclosure technique.

For a given size of the deposit (i.e. value of f) the distribution of the fluid between the
upper and lower layer is calculated. If the shear stress 7j in equation (4.2.3-2) is taken to
be equal to the surface shear stress at the point of incipient particle motion in eq.
(4.2.6-2), i.e.

To = Tj (4.2.8-1)

the fluid velocity with respect to the deposit surface is found to be:

_ cos .
(Ilm'.'lIb)=(i)J0.12 (Pepe) 8 dc [ian(y T n¥) (4.2.8-2)

fi po

In order to determine the upper layer fluid velocity relative to the annular walls, up, it is
necessary to determine the value of the deposit sliding velocity, up. This is achieved by
using the functions f; and f; defined in chapter 4.2.7.

As a first guess, the deposit is presumed to be stationry, i.e. up=0. The upper layer fluid
velocity up is then equal to the R.H.S. of eq. (4.2.8-2), and the nominal lower layer fluid
velocity u. is determined from the volumetric balance in eq. (4.2.5-1). The value of uc is
then used in the calculation of f; and f,.

If the signs of f; and fp confirm that the deposit is stationary, it is straightforward to
obtain all the quantities occurring in eq. (4.2.2-3), and it is checked if the equation is
satisfied for the given position of the deposit surface.

However, if the signs of f; and f; show that the deposit slides, the initial assumption that
up is zero, is incorrect. Instead, the nominal lower layer fluid velocity u. is calculated by
solving the equation f;=0 for an upwards sliding deposit, and by solving fo=0 for a
downwards sliding deposit (this is possible because the calculation of f; and f; does not
require any knowledge of up, merely the upper layer fluid velocity with respect to the
deposit surface, which is given by eq. (4.2.8-2)). The solution procedure is iterative and
it should be noted that the coeffecients of static friction are replaced by coeffecients of
kinematic friction in the calculations of r¢; and 7cp. When ue has been determined, up
and uy, are determined from egs. (4.2.5-1) and (4.2.8-2), and it is again possible to check
if eq. (4.2.2-3) is satisfied.
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The Interval Bc[0;x] Is divided into a suitable
number of subintervals, and each is tested for
the presence of solutions to eq. (4.2.2-3).

!

if a subinterval containg a solution, the
corresponding deposit surface position
Is determined by enciosure between the

ond points of the interval. For each §
in the enclosure process, the following
calcutations are performed.

calcutated (See Appendix 1), J

}

Thoﬁ'dedadalfﬂdimfad.of.f‘ , Is detenmined
from eq. (4.2.4-2) and the upper tayer fitid

velocity (Umt 4y, ) is calkcutated from the Shieids

relation using eq. (4.2.8-2).

!

The deposit is presumed to be stationary
Le. u, = 0, and the nominal lower tayer fiuid
velocity, U, Is calcuiated from the voiu-
metric batance eq. (4.2.5-1).

Various quantities in the expressions for f yand {5

(eq. (4.2.7-1) & eq. (4.2.7-2)) are calculated: 1|

(from eq. (4.2.3-2)), dP/dz (from eq. (4.3.2-1)) and

Teq and t.o (from Appendix 2).

Calcuiats new B in the enciosure process

1t is tested if oq. (4.22-3) Is satisfied
according to some suitabie criterion.

Yes

The shear siress, T , betwoen the flukd and
the annuiar walls is calcutated from eq. (4.2.3-1).
The friction factor, {, , Is determined from eq.
(4.2.4-1).

The value of the functions { 4(eq. (4.2.7-1)) and 1> (9. (4.2.7-2))
are calculated using coeffecients of static friction in the interaction
between the deposit and the annutar walls.

4

| I111‘>Othedepodsﬁdadowmnm —

y
[ 1., <0 the deposit siides upwards }——.

IH.,.<0&12 >omdepocithdzﬁomﬂ
anduheonﬁrmedﬁwwb =0 and the

Uy, and uy, are determined by inserting
the comected u, into the volumetric
batance eq. (4.2.5-1), and combining
the result with the known value of

u,,,:%.

rAeurededmﬁmlbwerhyerm )
veloclty, u,, , Is determined by solving
14 =0 Reratively. Coeffecients of kinetic
friction are used this time,

(" A comrected nominal lowes layer fiuid
vebe‘dy,uc,bdetmmiedbysdm

1, =0 Reratively. Coeffecients of iinetic

alrudyalwlatedvah.mo!ummduc

Fig. 4.2.8/1 Digéra.m showing the solution procedure in the SCSB-model with Newtonian
fluid and friction factor expressions calculated from eqgs. (4.2.4-1) and (4.2.4-2).
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43.1

Introduction of non-Newtonian rheology in the SCSB-model.

In chapter 4.2.4 the fluid shear stresses exerted on the annular walls and the deposit
surface were determined on the basis of friction factor relations originally developed for
hydraulically smooth and completely rough pipe flow of Newtonian fluids (Nikuradse 26
27), In chapter 4.2.2 the the Ergun equation was used to calculate the resistance to
intergranular flow.

If the basic structure of the SCSB-model is to be maintained, the introduction of
non-Newtonian rheology requires relations describing the flow of non—-Newtonian fluids in
smooth and rough pipes. A relation similar to the Ergun equation, quantifying the
resistance to a non-Newtonian fluid in interstitial flow, will also be necessary.

The flow of Power Law fluids in smooth- and rough pipes.

Artyushkov et al. 12 developed a semiempirical model for the flow of Power Law fluids in
smooth— and rough pipes (see Appendix 4). The model makes it possible to relate the
friction factors defined in 24.2.3—1 and (4.2.3-2) to 2 Reynolds number for Power Law
fluids flowing in a pipe with a known wall roughness. The Reynolds number is defined as
(see Dodge & Metzner 19):

p Do u2-—n
Re' = (4.3.1-1)

[3[1':1' 1 ] nk 8n-1

where p is the fluid density, D the pipe diameter, u the average fluid velocity, k the
Power Law consistency index and n the Power Law flow behaviour index.

The Artyushkov et al. model covers hydraulically smooth and completely rough flow (for
definitions see chapter 4.2.4) as well as the transition between these. Consequently, it is
possible to avoid the restrictions tied to the relations (4.2.4-1) and (4.2.4-2). However,
the model does not permit a direct determination of the friction factor for a given
Reynolds number. A wall shear stress has to be prescribed, whereupon the corresponding
friction factor and Reynolds number are determined. Therefore, corresponding values of
Reynolds numbers and friction factors are calculated for a suitable range of wall shear
stresses, and a friction factor vs. Reynolds number plot is then constructed.
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4.3.2 The flow of Power Law fluids through granular beds

Kemblowski & Mert] 24 developed a modified version of the Ergun equation, which is
valid for the flow of Power Law fluids through a column of packed grains. The modified
expression is:

2
K
_gg = 150 Beuk (120 4 750w Juk] (1-¢) e (4.3.2-1)
z dz €3 dp €3 fz 2 _ 1 2
pi (s - 1) + &g
where:
k 3 i-n
= 1g(9+5)" (150s¢?)
_ d} e
5 T 150 (=€

ug is the nominal fluid velocity in the column, ¢ the porosity, dp the diameter of the
grains, p the fluid density and the term:

[ e K
/i (nﬁ—1>+~§}

is an empirical function, where py and kx have been determined from experiments and
described in a polynomial form, depending on the Power Law flow behaviour index and a
Reynolds number defined by:

Reyp=——— (4.3.2-2)

When the Power Law flow behaviour index is set to 1, the relation given by Kemblowski
& Mert! returns to the original Ergun equation, derived for Newtonian fluids.

4.3.3 The effect of non-Newtonian rheology on the solution procedure.

In the non-Newtonian version of the SCSB-model, the Artyushkov et al. theory outlined
in Appendix 4 replaces the relations (4.2.4-1) and (4.2.4-2), while the Kemblowski &
Mert! relation, eq. (4.3.2-1), replaces the Ergun equation, eq. (4.2.2-2). These
modifications do not change the fundamental structure of the SCSB-model, as it is
described in chapters 4.2.2 - 4.2.8. They are merely refinements that allow the
consideration of a wider range of Reynolds numbers and the greater rheological
complexity contained in the Power Law model. However, they do create some
complications in the solution procedure described in chapter 4.2.8.
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The fact that the Artyushkov et al. model does not permit a direct determination of the
friction factor for a given Reynolds number makes the application of the theory into the
SCSB-model somewhat unhandy. A different f(Re')-plot occurs for each discrete
combination of wall roughness and Power Law flow behaviour index. This is unfortunate
because the systematic variation in the deposit size in the iterative solution procedure
affects the relative roughness of the deposit surface. Consequently, a new f(Re')-plot has
to be generated in each iterative step.

In order to simplify the calculation procedure, a series of f(Re')-plots have been

calculated in advance for discrete values of Power Law flow behaviour indices and
roughnesses. Some plots of this type are shown in figs. 4.3.3/1 — 4.3.3/4.

If the constant value of the friction factor in completely rough flow is presumed to be
valid for the transition to hydraulically smooth flow also, it is possible to construct a
single friction factor vs. Reynolds number plot for the transitional/completely rough
region (see fig. 4.3.3/5 (a) — (d). Note the change in the abcissa between (b) and (c)).

For a number of discrete Power Law flow behaviour indices, Forsythe polynomials have
been fitted to curves of the type given in figs. 4.3.1/1 and 4.3.1/5 (d), allowing a fast
estimate of the friction factor for a given combination of Power Law flow behaviour
index, surface roughness and Reynolds number.

The resistance to a Power Law fluid flowing in the upper annular layer now is
determined in the following way:

1) If the flow is viscous, the friction factor is calculated from the well known
relation f = 16/Re'. According to Dowell Schiumberger 12 the Reynolds number
at transition between viscous and turbulent flow can be estimated from:

Re! = 3470-1370

where n is the flow behaviour index.

2) If the flow is hydraulically smooth, the friction factor is determined from the
friction factor vs. Reynolds number curve of the type shown in fig. 4.3.3/1. In the
present work the curves have been generated for discrete values of the Power
Law flow behaviour index n, the range 0.5 — 1.5 being covered in steps of 0.1. The
curzzie corresponding to the flow behaviour index nearest to the one specified is
used.

3) If the flow is in the transitional/completely rough region, the friction factor is
determined from the friction factor vs. roughness curves given in fig. 4.3.3/5 (d).
Again, the flow behaviour index range 0.5 - 1.5 is covered in steps of 0.1, and the
curve for the index nearest to the one specified is used.

In Re' (see eq. (4.3.1-1)) the hydraulical diameter of the upper layer replaces the pipe
diameter, the fluid density pn replaces p and the the upper layer fluid velocity un replaces
u. When the deposit is stationary, the same upper layer fluid velocity is used to
determine the fluid shear stress exerted on the annular walls and the deposit surface.
However, a sliding deposit leads to different upper layer fluid velocities relative to the
annular walls and to the deposit surface respectively, and two different Reynolds
numbers are calculated in order to determine the friction factors fp anf f;.
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Fig. 4.3.3/5 Construction of a friction factor vs. roughness plot covering completely rough
flow and the transition to hydraulically smooth flow. The values for completely
rough pipe flow is presumed to be valid in the transition regions too (dashed lines
in Fa) , leading to the simplified plot shown in (b). The independence of the

Reynolds number makes it possible to establish the interpolation curve shown in

(c). In (d) interpolation curves for a range of flow behaviour indices are shown.

37



44

The application of the Kemblowski & Mertl relation on the lower layer in the
SCSB-model is straightforward. In egs. (4.3.2-1) and (4.3.2-2), un replaces uy, dc
replaces dp and pp replaces p.

Fig. 4.3.3/6 shows the solution procedure after the introduction of non-Newtonian fluid
rheology. The major differences compared to fig. 4.2.8/1 are:

-~  that the interfacial friction factor, f;, is determined from the Artyushkov et al.
theory and not from the Nikuradse relation eq. (4.2.4-2). Note that the
determination of an interfacial friction factor in the Artyushkov et al. model
requires an upper layer fluid velocity, which is determined from eq. (4.2.8-2).
However, eq. (4.2.8-2) requires the interfacial friction factor to be known, and
consequently the determination of the interfacial friction factor and the
corresponding upper layer fluid velocity has to be performed iteratively.

-  that the lower layer pressure gradient now is given by the modified Ergun
equation given by Kemblowski & Mertl, i.e. eq. (4.3.2-1) replaces eq. (4.2.2-2).

- that the friction factor fy, is determined from the Artyushkov et al. 1 2 theory and
not from the Nikuradse relation eq. (4.2.4-1).

Table 4.3.3/a lists the differences between the "simple" Newtonian version of the
SCSB-model outlined in chapters 4.2.2 — 4.2.8, and the more complex version resulting
from the introduction of non-Newtonian rheology.

Some general comments to the SCSB-model.

It is important to realize that the SCSB-model is based on a simplified description of the
cuttings transport process. Before the predictions from the SCSB-model are compared
with experimental results in chapter 5, a number of limitations in the model should be
mentioned.

1) In the SCSB-model, the deposit is described with a distinct plane surface between the
upper and lower layer. However, experimental evidence shows that plane bed surfaces
exist only under some conditions, while the formation of movable bedforms (i.e.
ripples and dunes) is common (see for example Gonzalez 16, Garde & Ranga Raju 14).
The occurrence of moveable bedforms increases the resistance to fluid flow compared
to the resistance displayed by the plane deposit surface.

2) The SCSB-model is valid only when a distinct deposit has formed, i.e. at relatively
large annular inclinations relative to vertical. At low inclinations, the weak radial
body forces tend to make a deposit unstable, and downwards sliding slugs and
intermittent breakups of the deposit occur. This is reflected in a poor agreement
bﬁtween t)he SCSB-model predictions and experimental results at low inclinations (see
chapter 5).

3) Consider fig. 4.4/1. The contours outlined in the annular cross sectional area are
regions through which some given proportion of the total volumetric flowrate passes.
When the upper layer cross sectional area is of a regular shape as in fig. 4.4/1 (2), a
description of the upper layer geometry in terms of the hydraulic diameter is
reasonable. However, in fig. 4.4/1 (b), the shape of the upper layer is complex. The
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inner pipe tend to create narrow regions, where the local fluid velocities will be
strongly reduced compared to the velocities in the wider parts (see fig. 3.6/1), and the
description of the geometry in terms of the hydraulic diameter is poor. In the
SCSB-model the position of the deposit surface is governed by the fluid shear stress at
the surface, but the reduced shear stresses in narrow regions are not reflected in a
model using a hydraulic diameter. Consequently, in situations where the inner pipe
“shields" the deposit from the impact of bulk flow, it is expected that the
SCSB-model predicts a smaller deposit than the one actually occurring.

(a)

Fig. 4.4/1 Sketched contours of the anpular regions through which the majority of the
:irolurqet.ric flowrate passes (e.g. 85%1). (a) unshielded deposit, (b) shielded
eposit.

4) The determination of two different Reynolds numbers in the space above the deposit
at the same time, when the deposit slides, may be considered a somewhat dubious
arrangement.

5) It should be noted that the annular particle feed concentration does not enter the
SCSB-model, even if the annular cuttings concentration has been reported to depend
on it ( Grossmann 17, Sifferman et al. 38).
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The interval B£[0;x] is divided into a suitable
number of subintervals, and each is tested for
the presence of solutions to eq. (4.2.2-3).

corresponding deposkt surface position _
is determined by enciosure between the Proceed to check the rest of
end points of the interval. For each B the subintervals for sclutions

in the enclosure process, the following

calculztions are performed

P oy J_ Calkuiate new B in the enciosure process
I [

Cormesponding values of interfacial friction factor, { ;, it is tested If eq. (4.2.2-3) Is satisfied

and upper tayer fluid velocity (up, + Uy, ) are determined sccording to some suitable criterion,

Reratively by combining the Shields relation eq. (4.2.8-2)

and the Astyushicov et al, theory (see Appendix 4).

Yes

The deposit is presumed to be stationary The shear stress, tyy, , between the fluld and
Le. uy, = 0, and the nominal lower tayer fkid

velocity, u , is calcuiated from the volu- The friction factor, fy , is determined from the
metric balance eq. (4.2.5-1).

Artyushiov et al, theory in Appendix 4.

the annutar walls is caicutated from eq. (4.2.3-1).

t 3
Variomquamiﬁuhﬁne@fesmfor(.‘wlz
(eq. (4.2.7-1) & eq. (4.2.7-2)) are calculated: T

(from eq. (4.2.3-2)), dP/dz (from eq. (4.3.2-1)) and Um and u,, are determined by inseting
%y andzy (from Appendix 2). the comected u into the volumetric
batance eq. (4.2.5-1), and combining
l the iewa with the known value of
The value of the functions £ (eq. (4.2.7-1) and {, (9. (4.2.7-2) Ym=t% -

are caiculated using coetfecients of static friction in the interaction
between the deposit and the annutar walls.,

4 ﬁmednuwmhyuﬂuid
It1, > 0the deposit slides downwards I R velocity, u,. , is determined by sotving
[ L {4 =0 kesatively. Coeffecients of kinetic

friction are used this time.
.

J

(" A comected nominal lower layer fiuid

¥
ufz <0ﬂndepooitt!§daupwards ]——. velocity, u,, , s determined by solving

fg = 0 keratively. Coeffecients of kinetic

jon are used this time.
\. J

IH1<0&1? > 0 the deposit is stationary
and it Is con m-nedﬂutub =0 and the

uhudyuwatedwuadumm u.

Fig. 4.3.3/6 Diagram showing the solution procedure in the SCSB-model after the
introduction of the Artyushkov et al. ! 2 theory and the Kemblowski & Mert] 24
modification of the Ergun equation.
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Simple version Complex version

Newtonian fluids Power Law fluids
(Chap. 4.2) {Chap. 4.3)

Basicequation | - [r. (sat+2a3) + 11 u] = * [r- (sar+tas) + 11 sx] = 150 .'bs_:g g <

150 &= I.l’g !1-{!2+ 1.75 Ea lc lu:l !1"(! +1.75 £x 8 lug] (1-1) JLKz ]
d e de & de @ |J i1 +

Geometrical relations App.1 identical
Ta = }fu fala Iull
Shear stress relations identical
1= 411 pa (Uatup) |(uatup)]
Friction factor relations|  f, = [4.0 1ogio(Rew ¥ fa) -0.4]'c Aryusbkor et i3 theory
B (App. 4)
f=20 [4.0 105.0[%%] + 3.36]
Volumetric balance V = Ay tg + Auctuy) identical
The Shields concept T - [cos g ] . identical
(rodified form) wPa) & m{%} :sin(y)] 0.06
Criteria for fi= nn-Acgg-(rata-Ha 2a) i
deposit aliding z identical

~Ac (ppa) g co3(y)

{but dP/dz given by the Kemblowski
etal 2 modgilﬁmﬁon of the Ergun
dP equation.)

r=nsi-Acgz + (tasa + 1ata)

- Ac (ppa) g c08(¥)

Table 4.3.3/a A comparison of the elements in the simple Newtonian version of the
SCSB-model and the more complex version resulting from the introduction of
the Artyushkov et al. 1 2 theory and the Kemblowski & Mertl 24 modification of

the Ergun equation.
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Chapter 5

A comparison of
predictions from the
SCSB-model with

experimental results.



In this chapter, The predictions from the SCSB-model are compared with experimental
results obtained by the author and selected results from the works of Brown et al. 7,
Iyoho 23 and Grossmann 17.

The predictions from the SCSB-model are produced as output from the computer
programs described in Appendix 5. It is important to realize that these programs make a
sharp distinction between the possible flow regimes for the upper layer fluid. One version
operates under the precondition of viscous flow, another under the precondition of
turbulent flow. If a transition takes place somewhere in the range of the independent
variable being investigated, 2 shift in the program used for the calculation is required.

While Iyoho 23 and Grossmann 17 performed their experiments under steady state
conditions, where cuttings were fed continuously to an annular section, the experimental
procedure used by Brown et al. 7 was different: The annulus was loaded with cuttings
until they occupied 15% of the total annular volume, and the maximum flowrate allowing
the cuttings to remain in the annulus was determined, without cuttings being fed to the
annulus. However, this variation in experimental approach makes no difference to the
SCSB-model, as it does not account for the influence of particles on the properties of the
fluid flowing above the deposit surface.

Iyoho 23 observed that when fluid circulation was stopped, downwards sliding deposits in
a Perspex annulus occurred for annular inclinations below approximately 60 degrees
relative to vertical. It indicates a coeffecient of static friction for the deposit/wall
interaction of approximately 0.6. This value is adopted in the present work. The
corresponding coeffecient of kinetic friction is estimated to be approximately 0.3.

The relative wall roughness in the Artyushkov et al. theory is determined as the height of
the roughness protrusions divided by the pipe radius. In the SCSB-model, the analogous
quantity would be dc/Dp. However, cuttings are of irregular shape, and it is expected
that they will be positioned so their largest dimension is parallel to the surface plane.
Theéeﬁ%e the deposit surface roughness in the present calculations has been estimated to
0-5 c h.

Due to the presentation in the original works, three different types of plots will occur in
the comparison between the predictions from the SCSB-model and experimental data:

1) Plots of annular cuttings concentration vs. annular inclination for discrete values
of the volumetric flowrate (in the following denoted c(y)-plots). The
SCSB-model predictions in these plots are obtained from the programs
SCSB-CT and SCSB-CV described in Appendix 5.

2) Plots of annular cuttings concentration vs. nominal annular fluid velocity for
discrete values of the annular inclination (in the following denoted c(v)-plots).

The SCSB-model predictions in these plots are obtained from slightly modified
versions of the programs SCSB-CT and SCSB-CV described in Appendix 5.

3) Plots of the nominal annular fluid velocity required in order to sustain a given
annular cuttings concentration vs. annular inclination for discrete values of
annular eccentricity. In the following, this type of plot is denoted a v((p)-plot and
the SCSB-model predictions are obtained from the program SCSB-VT described
in Appendix 5.
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5.1
5.1.1

c(yp)-plots

General remarks

A general form of a c(y)-plot predicted by the SCSB-model is sketched in fig. 5.1.1/1.
Parts of this general form occur in all ¢(¢)-plots derived from the SCSB-model.

The separate upper branch (H-I on fig. 5.1.1/1) represents an extensive
forwards/upwards sliding deposit, filling out most of the annular space. However, this
type of deposit has not %een observed in any experiment and in order to attain greater
clarity, the branch is omitted in the figures given in chapter 5.1.2.

The lower branch on fig. 5.1.1/1 contains several patterns of deposit behaviour:

The section between the inclinations A and B represents a relatively small
forwards/upwards sliding deposit. The cuttings concentration decreases slightly with
decreasing inclination (i.e. from A towards B) because the growing axial component of
net gravity reduces the deposit sliding velocity. The reduced sliding velocity leads to an
increased upper layer fluid velocity with respect to the deposit surface, i.e. a larger
surface shear stress, and erosion takes place.
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Fig. 5.1.1/1  ¢(¢)-plot, general form.

Below the inclination B, the deposit becomes stationary, and its size increases rapidly
with decreasing inclination. Between the inclinations C and D, multiple solutions (apart
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5.1.2

from the H-I branch) appear. They reflect that apart from a "free" deposit below the
inner pipe, two more deposit sizes are possible due to frictional stabilization from the

pipe.

Below D, the stationary deposit keeps on growing with decreasing annular inclination.
Between the inclinations E and F, the SCSB-model again predicts multiple solutions.
The various possible patterns of motion is (1): Large forwards/upwards moving deposit,
2): Stationary deposit, (3): A relatively large but slowly downwards sliding deposit, and
4): A relatively small but fast downwards sliding deposit. Between F and G the slowly
sliding deposit solution disappears.

The inclination G is the smallest inclination where a stationary deposit can occur. Below
the inclination G, the frictional forces between the deposit and the annular walls are

unable to keep the former from sliding, and the SCSB-model allows only a large upwards-
or a small downwards sliding deposit. In chapter 5.1.2, the agreement between the
SCSB-model and the experimental results are poor for the lower annular inclinations.
When the deposit slides downwards, it tends to form sliding slugs, which is
intermittently formed and dissolved again. This complex behaviour is not well described
by the SCSB-model, where a well defined plane deposit is presumed to occur at all
inclinations. However, the predicted breakdown of the deposit below G in fig. 5.1.1/1 is
reflected by steep decreases in the experimentally measured cuttings concentrations.

In the intervals of annular inclinations where the SCSB-model predicts more than one
solution, it is generally not known if a given solution is more stable than another.
However, the experimental evidence outlined in chapter 5.1.2 indicates that there is only
one annular cuttings concentration corresponding to a given inclination, and that a large
stationary deposit 1s favoured whenever this is possible.

Specific remarks

Due to numerous difficulties in the construction of the flow loop described in chapter 6,
only few experimental data have been obtained from it. However, even if no
comprehensive experimental programme has been carried out, the results obtained by the
author are very similar to results reported by other researchers.

In figs. 5.1.2/1 and 5.1.2/2 the predictions from the SCSB-model are compared with
experimental results obtained in the flow loop at DTH. While the results plotted in fig.
5.1.2/1 have been obtained with a concentric inner pipe, the results in fig. 5.2.1/2 have
been obtained with an +50% eccentric conﬁgura.tion. In fig. 5.1.2/2, the experimental
conditions are close to the ones used by Iyoho 23, and his results are included in the figure
for comparison. It should be noted that despite the large difference in annular particle
feed rate, the results obtained by the author and Iyoho do not differ significantly, i.e. it
indicates that the size of the deposit is only weakly dependent on this variable.

Figs. 5.1.2/3 - 5.1.2/6 are c(y)-plots based on experimental parameters and results
reported by Iyoho 23.

Fig. 5.1.2/3 concerns cuttings behaviour in a Carbopol solution. The predictions from the

SCSB-model are characterized by the sudden disappearance of solutions when the
annular cuttings concentration exceeds some given value. The reason for this behaviour is
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that the deposit size forces a shift from viscous- to turbulent flow above the deposit
surface. For the lowest of the discrete volumetric flowrates, the flow regime does not
become turbulent before downwards deposit sliding is initiated. The predictions in fig.
5.1.2/3 have been obtained with a computer program valid for viscous flow only, and it
might be expected that supplementary sections to the theoretical curves could be
obtained with further calculations, using the version of the computer program valid for
turbulent flow. However, an attempt of this type fails, presumably because the applied
model of Artyushkov et al. 1 2 tends to overestimate the interfacial friction factor in the
transition from laminar to turbulent flow (compare the Artyushkov et al. model
predictions in fig. A4/2 with the Nikuradse data plotted in fig. 4.2.4/1). However, if the
annular cuttings concentration is presumed to decrease gradually with annular
inclination after the onset of turbulence (i.e after the disappearace of solutions), some
qualitative agreement between model and the experimental results is seen.

Fig 5.1.2/4 and fig. 5.1.2/5 concern cuttings behaviour in two different Bentonite
suspensions, where the flow regimes are different. Fig. 5.1.2/6 concerns cuttings
behaviour in water in turbulent flow. The amount of experimental data is small in these
figures. However, the experiments show cuttings concentrations within the same order of
magnitude as the model predictions. A slightly poorer quantitative agreement between
theory and experiments at the high volumetric flowrates may be explained by a shielding
of the deposit below the inner pipe (see chapter 4.4).

46



Fig. 5.1.2/1

Fig. 5.1.2/2
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Fig. 5.1.2/3
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Fig. 5.1.2/5
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5.2
5.2.1

c(v)-plots
General remarks

A general form of a c(v)-plot as predicted by the SCSB-model is shown in fig. 5.2.1/1.
Not all of the branches outlined occur at the same time. Some of them are present at one

inclination, while they are absent at another. However, parts of this general form occur in
all ¢(v)-plots derived from the SCSB-model.

In analogy with the c(p)-plots, a separate upper branch (G-H on fig. 5.2.1/1) frequently
appears. It represents an extensive forwards/upwards sliding deposit, filling out most of
the annular space. However, this type of behaviour has not been observed in any
experiment and in order to attain greater clarity, the branch is omitted in the figures
given in chapter 5.2.2.

The branch A-B represents a relatively fast downwards sliding deposit. The branch is
absent at large annular inclinations with respect to vertical, where downwards deposit
sliding cannot take place.

The branch D-E is of variable length and typically appears for annular inclinations
around 45-50 degrees. The solutions on this branch corresponds to a slowly downwards
sliding deposit.

F AN

Forwards sliding
deposit (slow)

Stationary
deposit

/

Transition between

Annular particle concentration (%v/v)

Downwards sliding stationary-, upwards—
deposit (slow) and downwards
sliding deposit
Downwards sliding
deposit (fast) Forwards sliding
‘ deposi: (fast)

Lo W

A B C
Nominal annular fluid velocity (m/sec)

Fig. 5.2.1/1  ¢(v)-plot, general form.

The branch F-B represents a stationary deposit. At relatively large annular inclinations,
the branch passes continuously into the branch B-C, which corresponds to an upwards
sliding deposit. However, below some annular inclination, the two branches detach from
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5.2.2

each other, and void gaps of variable size occur (see for example figs. 5.2.2/3, 5.2.2/6 and
5.2.2/7). The SCSB-model does not predict any solutions in these gaps.

The disappearance of solutions in branch F-B may be caused by the transition from
viscous to turbulent flow. As mentioned in chapter 5.1.2, the Artyushkov et al. theory
tends to overestimate the interfacial friction factor in this region, and the required shift
in computer program may not produce continuous solutions.

However, the void gaps described also occur in situations where there is no change in flow
regime. The reason for this phenomenon presumably is, that a stationary deposit can be
eroded only until some critical point, where the annular wall friction no longer is large
enough to prevent the deposit from sliding downwards. When the deposit starts to slide
against the direction of fluid flow, the fluid velocity relative to the deposit surface is
increased, enforcing further erosion of the deposit. The erosion of the deposit will
continue until it has disappeared completely, or it has attained a new equilibrium size.
The replacement of a relatively large stationary deposit with a relatively small
downwards sliding deposit would be analogous to the situation in in fig. 5.1.1/1, where
the annular inclination is reduced below the point G.

If the abrupt disappearence of predicted solutions from the SCSB-model corresponds to a
deposit that becomes unstable and rapidly is broken down, it would be in reasonable
accordance with the experimental results given in chapter 5.2.2. The evidence of a
breakdown is supported by the fact that the gaps in branch F-B are absent or small at
large annular inclinations, while they get larger and larger with decreasing inclination
(see for example fig. 5.2.2{3 or fig. 5.2.2/6). This is expected because the friction between
the deposit and the annular walls decreases with inclination, while the axial component
of gravity acting on the deposit increases. Furthermore, the gaps in F-B seem to be
larger in a concentric- than in an eccentric annulus (compare figs. 5.2.2/6 with 5.2.2/7
and 5.2.2/8 with 5.2.2/9), which could be caused by the stronger frictional interaction
between the deposit and the annular walls in the latter configuration.

The appearence of (small) gaps at high inclinations (see figs. 5.2.2/6, 5.2.2/7 and
5.2.2/9), where downwards sliding deposits cannot occur, is not fully understood, but it
may lie within the formulation of the SCSB-model.

Around the point B in fig. 5.2.1/1, a transition from an upwards- to a downwards sliding
deposit (or vice versa) takes place. According to the diagram in fig. 4.2.7/2 a direct
transition should not be possible. However, the range of nominal annular fluid velocities
where a stationary deposit-exists, depends on the size of (7¢ Se1 + Tc2 Sc2) compared to
the other terms in the equations (4.2.7-1) and (4.2.7-2). If it is small, the transition may
appear to take place directly.

Specific remarks

Figs. 5.2.2/1, 5.2.2/2, 5.2.2/3, 5.2.2/4 and 5.2.2/5 are based on experimental parameters
and results reported by Iyoho 23. The parameters being varied are fluid rheology, annular
inclination and annular fluid velocity.

Fig. 5.2.2/1 concerns cuttings behaviour in a Carbopol solution in viscous flow. The
disapperance of solutions above approximately 0.70 m/sec for =40 and =60 deg. is
caused by a transition from viscous to turbulent flow, similar to the one described for fig.
5.1.2/3 in chapter 5.1.2 (note: there is no transition for ¢=80). It is noteworthy that the
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disappearance of theoretical solutions is reflected in a slight increase in the slope of the
corresponding experimental curves. If there is a connection, it indicates that Iyoho for
the mentioned inclinations traversed the boundary between viscous and turbulent flow,
even if the experimental data was reported to have been obtained in the viscous flow
regime. Furthermore, it indicates that turbulent flow produces lower annular cuttings
concentrations than viscous flow in inclined annuli. However, this is contradicted by the
experimental evidence summarized in chapter 3.2.1, where turbulent and viscous flow
were found to be equally efficient in cuttings removal for the annular inclinations around
50 degrees.

Fig 5.2.2/2 concerns cuttings behaviour in a Bentonite suspension in viscous flow. Figs.
5.2.2/3 and 5.2.2/4 concern cuttings behaviour in water in turbulent flow, while fig.
5.2.2/5 concerns cuttings behaviour in a Bentonite suspension in turbulent flow. The
somewhat crude nature of the SCSB-model taken into consideration, the qualitative and
quantitative agreement between theoretical predictions and experimental results are
found to be good, except for combinations of high annular inclinations and large annular
fluid velocities.

Figs. 5.2.2/6, 5.2.2/7, 5.2.2/8 and 5.2.2/9 are based on experimental parameters and
results reported by Grossmann 17. All data are obtained with Newtonian fluids in
turbulent flow. The parameters being varied are annular fluid velocity, annular
inclination, particle size and inner pipe eccentricity.

The qualitative accordance between Grossmanns experimental data and the predictions
from the SCSB-model is good, while the quantitative agreement seems to depend on the
experimental conditions.

If the abrupt disappearence of predicted solutions from the SCSB-model corresponds to a
deposit that becomes unstable and rapidly is broken down, the quantitative agreement
between theory and experiment is good for the low inclinations in the concentric as well
as the eccentric annulus.

In analogy with the plots in figs. 5.2.2/3, 5.2.2/4 and 5.2.2/5, the quantitative agreement
between model predictions and experimental results are generally poor for combinations
of large inclinations and large fluid velocities. The divergences do not appear to be
strongly related to eccentricity (compare fig. 5.2.2/6 (ecc.=0%g with fig.5.2.2/7
(ecc.=+90%) and fig. 5.2.2/8 (ecc.=0%) with fig.5.2.2/9 (ecc.=+90%)), while it to some
degree seems associated with particle diameter, as the divergence is more pronounced for
the smaller particle size than for the large (compare fig. 5.2.2/6 (d.=0.74 mm) with
fig.5.2.2/8 (d¢=0.4 mm) and fig. 5.2.2/7 (dc=0.74 mm) with fig.5.2.2/9 (d¢=0.4 mm)).
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Fig. 5.2.2/1

Fig. 5.2.2/2
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—

D=0.127 m, d=0.0482 m, p=2620 kg/m?, ps=1000 kg/m3, d.=0.00635 m,
k=0.437 Pa sec?, n=0.61, ecc.=+50%, rot.=50 r;m. ;{z,=36s deg,, c.f:o.s, 7:=0.6,
74=0.3, Myeed=0.15 kg/sec.
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Fig. 5.2.2/3
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Fig. 5.2.2/4

Fig. 5.2.2/5
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D=0.127 m, d=0.0482 m, p.=2620 kg/m3, pe=1000 kg/m3, d.=0.00635 m,

k=0.039 Pa sect, n=0.68, ect.=+50%, rot.=50 tpm, ¥;=36 deg., ¢,=0.5, 15=0.6,
179=0.3, Mgeeq=0.15 kg/sec.
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Annular inclinction: 0 deg.

5
8

Fig. 5.2.2/6  Annular particle concentration vs. nominal
fluid velocity for discrete inclinations. Fluid:
Newtonian.  Flow regime: Turbulent.
Unconnected data points: Predictions from
the SCSB-model. Fully drawn curves:
Experimental results by Grossmaan 1.

D=0.208 m, d=0.127 m, p=2600 kg/m3,
pa=1000 kg/m3, d.=0.00074 m, k=0.008 Pa
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deg., cp=0.5, 7:=0.6, 74=0.3, Mfeed=0.25
kgsec.
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Fig.

5.2.2/7 Annular particle concentration vs. nominal fluid velocity for discrete inclinations.
Fluid: Newtonian.  Flow regime: Turbulent.
Predictions xf.xr'om the SCSB-model. Fully drawn curves: Experimental results by

Grossmann

Unconnected data points:

D=0.208 m, d=0.127 m, pc=2600 kg/m3, pa=1000 kg/m?, dc=0.00074 m,
k=0.008 Pa ‘sec, 0=1.0, ecc.=+00%, 1oL.=0 rpmm, $r=35 deg.. cre0.5, 7u=0.C.
74=0.3, Meeed=0.25 kg/sec.
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Fig. 5.2.2/8

Annular particls concentration (%v/v)

Annular particle concentration (sv/v)

8 8 8
8 8 8

aasagaaselaenaessaslanssesnaalesssstannjsses
~

3
3

0.00

1
1 %
40.00 T—¢
i [ \
- '.
3 . \\
30.00 3 3
3 .
] %
] o)
20.00
s TN
-4 [ ]
3 . \
p [
10.00 3% 3+
:.f"' - \
3 . \
: [ ]
; L N
onw L) LELIRS L v T LIRS Tr7y Y;ﬁr L TT
0.00 0.50 1.00 1.5

Annular particle concentration vs. nominal
fluid velocity for discrete inclinations, Fluid:
Newtonian, Flow regime: Turbulent.
Unconnected data points: Predictions from
the SCSB-model, Fully drawn curves:
Experimental results by Grossmann ¥.

D=0.208 m, d=0.127 m, p.=2600 kg/m3,
pa=1000 kg/m3, d.=0.004 m, k=0.008 Pa
sec, n=1.0, ecc.=0%, rot.=0 rpm, ¥%=36
deg., cp=0.5, 7;=0.6, 174=0.3, Mfeed=0.25
kg/sec.

Annular inciination: 30 deg.

-

3-0.-8-5-8.0-0.-4.-0.5-8
rOASAS IS S g

Nominal ennular fluld

Annular inclination: 70 degq.

1.50
Nominal onnular fluld velocity (m/s)

Annuler inclinetion: O deg.

40.00
3 b
> .
3 ]
gso.oo ]
5 .
S :
s .
£ .
8 20.00
= 3
] -
£ .
2 ]
510.00 4
3 o
[~ e
5 : II\
0005 050 0 100 15
Nominal ennular fluld velocity (m/s)
. Annuiar inclination: 45 deg.
1%
p a
40.00 n
- a
3 3 % \
HEEEN
£ 30.00 - -
3 ] A)
B3 )
s . \
2 3 A
220.00 3 O
- 3 \e
$ 3 A
g 3 \
510.00 3 D\
2 3 \
< : \\
0.00 4=ttt ..Y>YTY
0.00 0.50 1.00 1.50
Nomincl ennular fluld velocity (m/s)
Annular Inclination: 90 deg.
: .0
3 [ ]
p [
40.00 oy
- L
3 : 3 \
} o no N
3 ; . \
5 30.00 = 2
=] p % \
B 3 1 \
c
s ; .
gzo.oo ] . \
[*]
- E ‘e \
3 3 o \
£ :
I 4 o
5 10.00 ] . \
“ L ]
< 3 s N
3 '-. \
0.00 T A A
0.00 0.50 1.00 1.80

Nominal ennular fluld velocity (m/s)

59



8
8

8
8

)
o
3

B

Annular particle concentration (sv/v)
8

5
8

g
8

B
8

-

Annular porticle concentration (8v/v)

Fig. 5.2.2/9  Annular particle concentration vs. nominal fluid velocity for discrete inclinations.
Fluid: Newtonian. Flow regime: Turbulent. Unconnected data points:
Predictions from the SCSB-model. Fully drawn curves: Experimental results by
Grossmann 17,

D=0.208 m, d=0.127 m, p=2600 kg/m3, p,=1000 kg/m3, dc=0.004 m, k=0.008
Pa sec, n=1.0, ecc.=+90%, rot.=0 rpm, ¥;=36 deg., p=0.5, 75,=0.6, a=0.3,

Mieed=0.25 kg/sec.
Annuler incliingtion: 0 deg. Annular inclination: 45 deg.
3 i
p 3 ‘)
- 4°'w - a
: ~ : e
3 > 3 .
] > ] A
3 2 . ﬂx
: £30.00 J "
3 2 E .\
: I IR
3 S 3 3
. £ ] s
. © 20.00 < b
- - -
3 3 3 g
3 %’ 3 A
3 J . A
3 J [y
3 510.00 A AN
- 3 o -
3 =5 3
: £ 1
] \ 3 -
p L\‘_~A Jasadanalanadannjanajag
S SS4ES 040 TTCOG LG40 04 400004 0.00 A RS REASERE RN N EEE S a s s s o
0.00 0.50 1.00 1.50 0.00 0.50 1
Nominal cnnular fiuld velocity (m/s) Nominal onnular fluld velocky (m/s)
Annular inclination: 70 deg. Annular Inciination: 90 deg.
3 '. bs Y
3 . ] °
- 3 w'm - r
3 . 3
] . €y 3 +
] -. } 3 '. N
3 . < . e \
- o =mw - .‘ ‘
3 . 2 E 8
g I A
3 o \\ g 3 % \\
3 e k e
E . © 20.00 4 L
: % \\ ] E ' \\
f - 4
3 T ~ 2 9 -—
3 < AN & 3 '- ™
. 2 e 5 10.00 3 " >
] . Y 3 3 .
3 b E 3 L
3 < . 7
-t -y ®
TR S Sl s S PUPS GUP PUve 0.00 Jrrrrrrrrr et b e s 40y
0.50 1.00 1.5 0.0 o 1.00 1.80
Nomina! onnuiar fluld velockty (m/s) Nomingl ennuler fiuld velocity (m/s)

60



5.3
5.3.1

5.3.2

v(p)-plots:

General remarks

Brown et al. 7 chose to present their experimental results as plots of the maximum
annular fluid velocity allowing a specific annular cuttings concentration vs. annular
inclination. The appearance of the general v(()-plots is similar to the appearance of the
general c(y)-plot outlined in fig. 5.1.1/1, except for the fact that the dependent variable
is fluid velocity instead of annular cuttings concentration.

Specific remarks

Fig. 5.3.2/1 concerns cuttings behaviour in water in turbulent flow, and is based on
experimental parameters and results reported by Brown et al. 7. The parameters varied
are annular inclination and eccentricity. While the qualitative agreement with the
SCSB-model is reasonable, the quantitative agreement varies with eccentricity and
inclination. It ranges from very well for the eccentric annulus at relatively high annular
inclinations to very poor for the concentric annulus in the range of lower inclinations.
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Fig.53.2/1 Maximum pominal annular fluid velocity allowin§ a 15 %v/v cuttings
concentration in an 8"/5" annulus vs. inclination and for discrete eccentricities.
Fluid: Water. Flow regime: Turbulent. Unconnected data points: Predictions
from the SCSB-model. Fully drawn lines: Experimental results by Brown et al. 7.

D=0.208 m, d=0.127 m, p.=2680 kg/m3, p.=1000 kg/m3, d.=0.00635 m,
k=0.001 Pa sec, n=1.0, rot.=0 rpm, ¥=36 deg-, ¢,=0.5, 7%=0.6, pa=0.3.
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Chapter 6

The flow loop.



6.1

6.2

6.3

In order to couple the theoretical work with experimental observations, an annular flow
loop has been constructed. The design of the flow loop is sketched in fig. 6.3/1.

Specifications:

Dimensions (length/outer diameter/inner diameter) 6 m/0.127 m/0.0508 m
Inclinations 0 - 90 deg.

Inner pipe eccentricity 0-*.100%

Fluid flowrates 0 - 40 m3/hr

Inner pipe rotation 0 - 200 rpm

Particle feed rates 0 - 10.0 kg/min

Fluid reservoir volume 2500 1

Particle hopper volume 1 m3

Note that the mentioned particle feed rate range has been obtained with 5 — 7 mm
particles. It may be different for other particle sizes.

Equipment:

Two 11.5 kW centrifugal pumps

Flow meter

Pneumatic pinch valve for flowrate control

Tachometer for measurement of inner pipe rotational speed
Temperature sensor at the outlet of the annular section
Load cells for the determination of annular particle content
Load cells for the determination of particle feed rate

Heat exchanger for the maintenance of a constant fluid temperature
Differential pressure transducers

Computerized data logging

Video equipment

A description of the loop.

When the flow loop is in operation, the fluid leaves the reservoir (1) due to the action of
the centrifugal pump (5) and passes through the heat exchanger (3), the flow meter g)
and a pneumatic pinch valve (8) before it picks up particles from the hopper (12), fed by
the auger (11) down into the fluid stream. After having passed the annular section, the
particles are separated from the fluid on a perforated conveyor belt (29). The fluid is
returned to the reservoir (1), while the particles are transferred to the temporary
reservoir (31).

The fluid reservoir (1) is a 2500 1 open cylindrical polyethylene vessel, equipped with a
0.22 kW stirrer (2).

The temperature of viscous fluids tends to increase by the action of the impeller blades in
the centrifugal pump (5). In order to maintain a constant temperature, a 5 m? u-tube
heat exchanger (3) has been installed. The fluid temperature measured at the exit of the
annular section (27) is compared with a setpoint value, and a three band controlier
decides if the valve (4) is to be open or closed, i.e. whether cooling water is led to the
heat exchanger or not. With this simple arrangement, it is possible to keep the
temperature of the loop fluid within *_ 0.50C.
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The flow loop is equipped with two 11.5 kW centrifugal pumps. However, for reasons
which are described in chapter 6.4.2, normal operation of the flow loop only allows the
use of one pump at the time. However, both pumps may be used in the process of mixin
fluids with more than one component, if the mixture is recirculated to the reservoir (1%
through the recirculation shunt (6).

The volumetric flowrate in the flow loop is determined by means of a magnetically
inductive flow meter (7). The flowrate is controlled by a pneumatic pinch valve (8). A
simple (PID) control algoritm operating in conjunction with the data logging program
ensures that the annular flowrate is equal to a given setpoint value.

(22)
(21) Pedble Tachometar
Jolzs

{20) DP-Transducers

(19) Ecoratricty e
regulaton

/

(18) Stralghteniag
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8 B £
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® () Conrtega &) coniing
Poeumatic  Flow pam, water (1) Fluid reservoir
0.93 kW pinch valve meter 1s tcv wilve 25001

Fig. 6.3/1 Sketch of the flow loop. The fully drawn lines indicate the fluid flow while the
dashed lines indicate control signals.

Under the influence of gravity, particles are fed vertically down into the fluid passing
below the bottom outlet of the particle hopper (12). The rotational speed of the auger
gll), which acts as a physical barrier to the particles leaving the hopper, controls the
eed rate. The auger is driven by a 0.93 kW DC electromotor (10). The pressure
equalizing shunt (9) prevents a countercurrent fluid flow through the auger, when
particles are leaving the hopper.

The hopper is connected to the flow loop by flexible hoses and is suspended in load cells

(13). This arrangement permits continuous measurement of the particle mass in the
hopper and calculation of the change in the mass per unit time, i.e. the particle feed rate.

64



A simple control algoritm operating in conjunction with the data logging program adjusts
the rotational speed of the auger (11), until the specified particle feed rate is attained. In
order to prevent the escape of fluid, the hopper is equipped with a lid (14). Particles are
conveyed to the hopper through a hatch (15). After the hatch has been closed, the air
remaining in the hopper is expulsed by the fluid through a vent in the lid. A safety valve
(16) prevents the pressure inside the hopper to exceed some maximum limit.

The length of the annular section is 6 m. The outer pipe is made of Perspex and has an
inner diameter of 0.127 m (5"), while the inner pipe is made of stainless steel and has an
outer diameter of 0.0508 m (2"). The entire annular section may be rotated around a
pivot bearing (24), making it possible to obtain any inclination between 0 and 90 degrees.

The annular:section has been placed on a scaffold (25) resting on load cells (26) and
connected to the other parts of the flow loop with flexible hoses. Apart from an
instantaneous determination of annular particle content, the load cells make it possible
to follow transient variations in the mass of particles in the annulus. Also the
determination of when steady state conditions have been attained becomes simple.

In order to avoid that the fluid enters the annular section in the form of a long reaching
jet, delaying the attainment of fully developed flow, the mixture of fluid and particles are
led to the annular section through an entry chamber (17), where the mixture is forced to
make a 180° turn. This creates a random whirl at the bottom of the annulus. In order to
reduce the influence of this whirl on the attainment of fully developed flow, a couple of
parallel straightening vanes (18) have been installed at the base of the annular section.

The inner pipe may be rotated at speeds between 0 and 200 rpm. The rotation is driven
by a 0.55 kW DC electromotor (23) and the rotational speed is measured by means of a
tachometer (22). A control algoritm operating in conjunction with the data logging
program ensures that the inner pipe rotational speed is kept at a given setpoint value.

The outer— as well as the inner pipe is an assembly of three separate sections. At the
assembly points, the inner pipe is led through flush mounted ball bearings, allowing it to
rotate freely. Thin steel rods (19), inserted through the flanges of the outer pipe sections,
are attached to the bearings. The displacement of these rods makes it possible to vary
the annular eccentricity between 0 and 100%. A flexible joint (21) connects the inner
pipe to the electromotor (23) at all eccentricities.

Along the annular section a number of taps has been fitted into the outer pipe wall.
These taps may be connected to differential pressure sensors (20) in an arbitrary fashion,
making it possible to determine the pressure drop along any part of the annular section
covered. The location of the annular section above the fluid level in the conveyor belt
casing produces a slight vacuum in the annular section. The DP-sensors are fitted with
valves, making it possible to expell any air that may have been caught between the

measuring points and the sensor. However, where a vacuum prevails, the valves may be
used in an opposite fashion, i.e. to suck pure water into the tubes connecting the pressure
sensors with the annular section. Water acts as an unbroken and unpolluted presssure
transmitting media, which is quick responding to variations in the differential pressure.
A highly viscous fluid would create a slow response, and a fluid displaying a yield point
would form an immobile plug in the tubes. The amount of water being purged into the
system is very little and is not considered to affect water based solutions to any
significant extent.

After having left the annular section, the particles are separated from the fluid on a
perforated conveyor belt (29). The separation takes place below the fluid surface, in order
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6.4

6.4.1

to minimize the entrainment of air into the fluid. The entrainment of air may affect the
rheological characteristics of the fluid, and it is attempted to keep the fluid in an
unbroken "string" from the moment it leaves the reservoir (1) and until it returns back.
The fluid level in the conveyor belt casing is controlled by a float (28) which acts on a
pneumatic butterfly valve (30), that controls the flow from the casing to the fluid
reservoir. After the fluid has drained away from the particles on the conveyor belt, the
latter are transferred to a temporary reservoir (31).

The fluid flowrate, the weight af the annular section, the weight of the particle hopper,
the inner pipe rotational speed, the fluid temperature and the differential pressure sensor
indications are continuously logged into a computer and stored for later analysis.

A comment on the use of load cells in the flow loop.

A characteristic feature of the flow loop construction is the application of load cells in
connection with the annular section and the particle hopper. In order to minimize the
interaction with the surroundings, the annular section and the hopper are both connected
to the rest of the construction with flexible hoses. The proper function of this type of
arrangement has been tested.

In fig. 6.3.1/1 the indications of the load cells below the annular section are compared
with the actual mass of particles present in the annular section for various annular
inclinations and flowrates. The two quantities are generally in good agreement, and
consequently the load cell arrangement appears to provide a correct indication of the
particle content in the annular section.

In table 6.3.1/a the particle feed rate determined on the basis of the load cells, in which
the particle hopper has been suspended, is compared with the feed rate calculated from
the amount of particles leaving the annular section, under steady state conditions. It is
seen that it is possible to obtain a given feed rate within a few percent.

Limitations

A number of limitations exist in the flow loop design. Some are of a general character
and common for all laboratory scale flow loops, while other are specific for the design of
the present flow loop.

General limitations

In a laboratory scale flow loop, the determination of annular particle concentration,
calculated as the amount of particles present in the annular section divided by the total
volume of the annulus, is bound to be encumbered with some error. The generation of
fully developed flow cannot take place immidiately when the dimensions and geometry of
the conduit changes from the turbulence chamber to the annular section. Thus, steady
state conditions with fully developed flow only exist in part of the annular section. How
large this part is depends on the given operating conditions.
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Fig.6.3.1/1 Comparison of load cell indications with actual annular particle content for
various annular inclinations and volumetric flowrates. For three discrete
flowrates a deposit was allowed to form in the annular section of the flow loop.
The indication of the load cells was recorded and circulation was stopped. The
annular content of particles was emptied out through the entry chamber {(17) on
fig. 6.3/1), dried and weighed. Note that no attempt was made to establish
steady state conditions prior to the stop of circulation.

Setpoint Logged Measured Dev. between logged
value value value and measured value
1.00 1.00 1.00 0.0 %
1.50 1.55 1.51 2.6 %
2.00 2.03 1.98 2.5 %
2.50 2.45 2.51 - 25%
3.00 . 3.09 2.99 32%
3.50 3.49 3.46 0.9%
4.00 4.11 4.02 2.2 %
4.50 4.53 4.47 1.3%
5.00 5.07 5.03 0.8 %
5.50 5.38 5.30 1.5%
6.00 6.01 5.86 2.5 %

Table 6.3.1/a Comparison of the logged and the actually measured particle feed rate from the

hopper ((12) in fig. 6.3/1). The rotational speed of the auger ((11) in fig. 6.3/1)
was adjusted until the logged feedrate, based on the indication 02 the load cells
((13) in fig. 6.3/1), was in accordance with the setpoint value. Particles were
then collected at the end of the conveyor belt ((29) on fig. 6.3/1). The measured
feedrate was calculated by dividing the dry weight of the particles with the
collection time. The dimension for the figures in the table is kg/min.
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6.4.2

In general, the conditions prevailing an a laboratory flow loop may deviate considerably

from the conditions in a real wellbore. For example, the drill pipe rarely takes a fixed

position in a wellbore, but moves around (whipping). Another example is that deposit

sliding may occur under different conditions in a Perspex annulus and in a real wellbore.

I})Iow&ew;ir, iéx order to perform systematic investigations, the experimental setup must be
e idealized.

Specific limitations
The flow loop has a number of specific limitations.

The hopper design has given rise to several problems. The hopper is a pressurized vessel
with a large flat lid bolted on top (1 m2, 5 mm thick). At a flowrate of approximately 40
m3/hr, the pressure on the inside of the lid is 1 bar above the outside pressure. This
corresponds to a total load of approximately 10 tons, and a visible bulging of the lid
makes the top packing leaky. A flowrate of 40 m3/hr is attained with just one of the two
centrifugal pumps running, and consequently it is not possible to use them both at the
same time. Among other things, this limits the ability to perform investigations based on
the minimum transport velocity concept.

Another problem is the control of the particle feed rate from the hopper. The rotational
speed of the auger is adjusted by a control algoritm that operates in conjunction with the
data logging program. However, the analogue to digital conversion of the signal from the
load cells, in which the hopper is suspended, puts a restriction on the resolution of the
signal. Thus, even if the control algoritm works properly, a relatively long time interval
has to pass, before the change in the weight of the hopper content is large enough to be
used in the calculation of a correct feed rate. This makes the control of the feed rate a
slow process.

Finally, there appears to be a lower limit for the dimension of the particles, if they are to
be contained in the hopper. When the dimension is reduced, the particles tend to slip
through the auger even if this is not in rotation.
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Chapter 7

Conclusions.



A new model for the formation and behaviour of particle deposits in inclined annuli is
proposed. The annular space is divided into two layers, separated by a plane boundary.
The lower layer corresponds to the particle deposit, while the upper layer corresponds to
the mixture of particles and fluid flowing above the deposit. The fluid shear stress at the
deposit surface determines if particle deposition takes place or not. A force balance for
the lower layer decides if it is stationary or it is sliding upwards or downwards. The
model is denoted the SCSB-model.

The SCSB-model predictions are in good qualitative agreement with experimental results
obtained by the author, and results published by others in the field. The quantitative
agreement is varying with the conditions, presumably because the model is a somewhat
simplified description of deposit behaviour in inclined annuli. The major simplifications
are that the deposit surface always is plane, and that the flow in the upper layer is
analogous to the flow in a pipe, with a diameter corresponding to the hydraulical
diameter of the upper layer. The model is therefore not suited to situations, where a well
defined deposit does not occur, i.e. at low inclinations with respect to vertical, and
situations where the position of the inner pipe creates a very irregular shape of the upper
layer cross section. However, even if further refinements of the model appear to be
necebea.iy (iin these situations, a sound physical description of deposit formation has been
established.

In order to perform experimental investigations of cuttings transport and behaviour, a
large scale flow loop has been constructed. The application of load cells allows the
determination of the particle mass present in the annular section under steady state as
well as transient conditions. Also the establishment and maintenance of a well defined
particle feed rate to the annular section have been achieved by the use of load cells.
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Appendix 1

Geometrical relations
in the SCSB-model.



1)

2)

This appendix contains the geometrical relations used in the SCSB-model. The
%eometrical quantities are all given in terms of the angle 8, which is used as a measure

or the position of the deposit surface.

Inner pipe without contact to the deposit:

Ac = R?(f-sin(B) cos(f))
Am = A - RAg¢
Sml = 2 (W-ﬂ) R
Sma = 27r
Set = g BR y
&' = 2Rsin(g) 717\
e A
|
Inner pipe partly submerged in the deposit:
I\"
@ = arccos [e_—_w] A
An = R2((np) + sin(pB) cos(B)) - r2(a - sin(a) cos(a)) |,
Ac = A-A; .2
Smi = 2 (T-ﬁ) R \\
Smp = 2ar el
St = 2 ﬂR =Kp R
Sc2 = 2 §7r—q) r . r
si = 2(Rsin(f) -rsin(e)) o A
Ac
2
|
Inner pipe totally submerged in the deposit:
—,,
s
Ap = R2((mp) + sin(B) cos 8
Ae = B ((r-f) + sin(F) cos() / | .
o= 2(rHR a
Sm = O —
s = 26R 7%
S¢p = 27rr
si = 2Rsin(f) r
Ac
8y
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Appendix 2

Friction between the

deposit and the

annular walls.



This appendix contains relations that quantifies the friction between the deposit and the
annular walls. It is presumed that the grains are cohesionless and that there is no
adhesion between the granular material and the annular walls.

The frictional stress, 7c, between a stationary deposit and the annular walls is described
by Coulombs law of friction:

Te =1 Tnav (A2-1)
i.e. a linear relationship is presumed to exist between the frictional stress and the average
normal stress, 7, av, exerted by the deposit on the annular walls.
At the point of deposit sliding, relation (A2-1) defines the coeffecient of static friction,
7. If 7¢ exceeds 75 T4 av, the deposit slides, and the frictional stress is given by

Tc=17d Tn av (A2-2)

defining the coeffecient of kinetic friction, ng. The coeffecient of static friction is larger
than the coeffecient of kinetic friction. It should be noted that Coulombs law indicates
that the friction between a sliding deposit and the annular walls is independent of the
sliding velocity.
The expressions quantifying the frictional forces between the deposit and the annular
boundaries in the SCSB-model, are composed by two separate contributions:

- the friction between the deposit and the outer pipe wall, 7¢.

- the friction between the deposit and the inner pipe wall, 7¢o.

The derivation of the expressions are performed in the rest of Appendix 2. Note that the
expressions do not say anything about the direction of the frictional stresses.

74



I)

The friction between a deposit and the outer pipe wall.

If the normal stress exerted by a deposit on a surface is presumed to be distributed in the
same fashion as below a fluid continuum ( Wilson 46), the normal stress on the outer pipe
wall may be expressed as a function of the angle f (see fig. A2/1):

R(6) = (pc-pn) (1-€) g sin(yp) R (cos(6) ~ cos(B)) (A2-3)
An average normal stress for the whole deposit is defined as:
B
78 av = (pc—pn) (1-¢€) g sin(yp) % fR (cos(8) - cos(f)) R db (A2-4)
0

and the frictional stress between the deposit and the outer pipe wall becomes:

Tt = N 7T8av = 7(pcpn) (1-¢) g sin(yp) 5_31 R? (sin() - B cos(B)) (A2-5)

R(cos(6)-cos(5))

Fig. A2/1
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I)

The friction between a deposit and the inner pipe wall.

Again, the normal stress exerted by the deposit on the inner pipe is presumed to be
distributed in the same way as below a fluid continuum. Three different situations are
treated: 1) the drill string is without contact to the deposit, 2) the drill string is partly
submerged in the deposit and 3) the drill string is totally submerged in the deposit.

ad. 1) There is no friction between the deposit and the inner pipe, i.e. 7c2 = 0.

ad. 2) The normal stress on the inner pipe wall may be expressed as a function of the
angle o (see fig. A2/2):

74(0) = (pc—pu) (1-€) g sin(y) 1 (cos(0) - cos(7-a)) (A2-6)
An average normal stress for the deposit is defined as:
-

Td av = (pc=pn) (1-¢€) g sin(yp) %f r (cos(o) - cos(ma)) r do (A2-7)
0
and the frictional stress between the deposit and the inner pipe wall becomes:

Te2 = 1 Th av = 1 (pcpu) (1-€) g sin(¢) gz—z' 12 (sin(7-a) - (m-) cos(r-a)) (A2-8)

r (cos(o) - cos(x-a))

Fig. A2/2
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2d.3)

The normal stress on the inner pipe wall may be expressed as a function of the
angle o (see fig. A2/3):

7(0) = (pcpn) (1-€) g sin(y) (e - R cos(B) + 1 cos(0)) (A2-9)
An average normal stress for the deposit is defined as:

T

7a av = (pc—pn) (1-€) g sin(y) S—zi f(e -R cos(f) + r cos(o)) rdo (A2-10)
0
and the frictional stress between the deposit and the inner pipe wall becomes:

Te2 = 1 T4 av = 1 (pc=pn) (1-€) g sin(yp) (e ~ R cos(f)) (A2-11)

r cos(o)

Fig. A2/3
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Appendix 3

The Shields concept

for inclined deposits.






This appendix concerns a criterion for the incipient motion of a particle resting on an
inclined deposit surface. The resulting expression is an adaptation of a criterion, derived
by Shields 37, for the incipient motion of a particle resting on a plane horizontal deposit
surface. In order to make the deposit inclination equivalent to the annular inclination in
the SCSB-model, the former is measured relative to vertical. However, due to
convention, the angle of repose, ¥, is still given relative to horizontal.

The inclined surface on which the particle is resting is taken to be plane and the particle
is presumed to be influenced by gravity, buoyancy, fluid drag and friction. Fluid dynamic

forces in other directions than the one parallel to the deposit surface are ignored. At the
point of incipient motion, the axial components of the forces acting on the particle are:

Net gravity:
Feax = (sp=p) & 7 15 3 cos(y) (A3-1)

Fluid drag:
Fra = Ca (§ 7dB) 2 pud (A3-2)

Friction between the particle and the deposit surface:

Fs = np (pp-p) g 7 16 d3 sin(p) (A3-3)
pp is the particle density, p the fluid density, g the gravitational acceleration, dp the
particle diameter and ¢ the deposit inclination. In eq. (A3-2) u, is some unknown fluid
velocity characteristic for the interaction between the fluid and the particle. Cq is the
drag coeffecient at the particle Reynolds number corresponding to the velocity uo. £ is a
factor determining a characteristic surface area in the interaction between the particle
and the fluid. In eq. (A3-3) 7, is the coeffecient of friction for the interaction between
the particle and the deposit surface.

At the point of incipient particle motion, the following force balance is posed:

Fgax : Fr = Fiq

The sign in front of the second term may either be positive or negative, depending on
whether the particle is on the verge of being pulled along by the fluid or it is barely kept
from sliding downwards the sloping surface.

If the expressions (A3-1), (A3-2) and (A3-3) are inserted it follows that:

(o) & 716 08 cos(i)] = [0 (r-p) & 716 i sin)] = [Ca (€ 7B 12 v

or:

(pr-9) & do [con(i) 2 o ()] = Ca €12 pu3 (A3-4)
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The characteristic fluid velocity, u,, and the drag coeffecient, Cq4, may be given as
functions of a Reynolds number Ref based on the friction velocity uj:

ur d . T
e

where g is the fluid viscosity and 7, the fluid shear stress at the deposit surface at the
point of incipient motion.

Now, it may be shown (see for example Garde & Ranga Raju 14 p.55) that
Cq ud = (u2)? F(Re?) (A3-5)
where F(Re?) is some unspecified function.

If eq. (A3-5) is inserted in eq. (A3—4), it follows that:

1 . 2
W?ET = [;," cos(p) * sin(yp)| | —=—LB— (A3-6)
p
P F ¢ F(Reg)
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Fig. A3/1 A Shields plot (from Garde & Ranga Raju 14 p. 56).

While the last quantity in brackets on the R.H.S of eq. (A3-6) is identical to the R.H.S.
of eq. (3.18) in Garde & Ranga Raju 14 and similar to the function f, in eq. 5 in Shields
37, the first quantity in brackets is new and represents a modification of the original
Shields criterion derived for a horizontal deposit.
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-From experiments with horizontal deposits Shields 37 found that the quantity between

the last brackets of eq. (A3-6) depended on Re*, as shown in fig. A3/1 (taken from
Garde & Ranga Raju 14). The shape of the curve reflects a transition from hydraulically
smooth to completely rough flow, similar to the transition observed in rough pipe flow
(see fig. 4.2.4/1). It is seen that the value of the quantity varies between 0.03 and 0.06.
However, due to the relative modest variation, the largely constant value attained for
completely rough flow is used throughout this work. The Shields criterion for the
incipient motion of a particle resting on an inclined surface then becomes:

m = [%;cos(go) tsin(cp)] 0.06 (A3-T)

Fig. A3/2 Forces acting on a particle at the angle of repose.

Fe=(prp) g ( 43)

A 4

When the inclination of a rough deposit surface with respect to horizontal becomes larger
than the angle of repose, 7, a particle is unable to remain at rest. The angle of repose for
granular materials typically lies between 30 and 40 degrees (see for example Brown &
Richards 8 p.29). The angle of repose may be used to calculate the frictional coeffecient
for the interaction between a particle and the deposit surface (see fig.A3/2). A force
balance for a particle at the angle of repose is given by:

(0p-p) & 5 3 sin(¥) = 7p (0p—p) & § dB cos(¥r)
ie.
7p = tan(%x) (A3-8)

If this expression for 7, is inserted in equation (A3-7) the criterion for incipient motion
of a particle on an inclined deposit surface becomes:

To = [cos(e) .
(pp=p) 8 dp — [tan(i,) - Sln((p)] 0-06. (A3-9)
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Recall that 9 is given relative to horizontal, while ¢ is measured relative to vertical. The
term in brackets on the right hand side of equation (A3-9) describes how much the
surface shear stress at the point of incipient particle motion changes with the inclination
of the deposit.

In fig. A3/3 the value of the right hand side of equation (A3-9) is plotted as function of
inclination ¢. Values located on the upper curve (I) correspond to a situation where the
particle is on the verge of being pulled along by the fluid. Points located on the lower
curve (II) correspond to a situation where the fluid drag is just able to keep the particle
from sliding down the sloping surface under the influence of the net axial gravity. In the
region between the two curves particles may remain at rest on the deposit surface, i.e
deposition takes place.

It is noted that the right hand side of eq. (A3-9) may take positive as well as negative
values. At surface inclinations larger than (900 - ), the particle cannot slide down the
sloping surface, even if there should be no fluid drag in the upwards direction. At these
inclinations a negative shear stress (i.e. fluid flow in the downhill direction) is required,
in order to make the particle move in the downhill direction.
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Fig. A3/3 . The value of the non-dimensional Shields ratio plotted against surface
inclination.
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Appendix 4

The Artyushkov et al.
theory for the flow of

non-Newtonian fluids in
smooth and rough pipes.



This appendix contains a semiempirical model for the turbulent flow of Power Law fluids
through smooth and rough pipes, originally presented by Artyushkov et al. 1 2.

The pipe flow is considered axisymmetrical, and a coordinate system with origin at the
pipe wall is introduced (see fig. A4/1).

ﬁ
| UWL

AR

- —_ - /= _.e_

Fig. A4/1 The geometry in the Artyushkov et al. theory.

In turbulent flow, the fluid shear stress at a given position in the fluid is considered to
consist of a laminar and a turbulent contribution, i.e.:

T=7T 47T (A4-1)

lam turb

For an incompressible fluid flowing in the z—direction, the laminar contribution is given
by the well known Power Law expression:

n

=l wsa

Due to the axisymmetry, it is necessary to consider only half the cross section outlined in
fig. A4/1. With the chosen coordinate system, the velocity gradient will always be
positive and it is not necessary to operate with the numerical value sign.

The turbulent contribution is described by an expression suggested by Prandtl ©:

=P [g%]z (A4-3)

where p is the fluid density and 1 the so called mixing length. The mixing length depends

T
turb
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on the distance from the pipe wall, the roughness of the wall and the rheology of the
fluid. The relationship between the mixing length and radial position, y, is given by:

1 = pako Q(Ua’n’h*) y (A4"4)
where
n+1 :
- [

Ko is the von Karman constant (equal to 0.4) and Q a non—dimensional "damping" factor.
Q depends on the non—dimensional radial coordinate 7, = y u*/v, the Power Law flow
behaviour index, n, and a non-dimensional roughness parameter, h*=h u*/v, where v is
the kinematic viscosity and u* the friction velocity of the fluid.

In hydraulically smooth turbulent pipe flow, a cross section of the pipe may be divided
into three regions, described in terms of the non-dimensional distance from the pipe wall:

1) A thin layer close to the wall, 0 < 7. < 7v, denoted the viscous sublayer, where
the laminar contribution, 7jam, to the overall shear stress, 7, dominates over the
turbulent contribution, T¢yrb.

2) A transition layer, 7v < 7a < 7, where the laminar- and turbulent contributions
are both of significance.

3) A (large) central core area, 7a > 7, with fully developed turbulence, where the
turbulent contribution, 7¢yrb, to the overall shear stress, 7, dominates over the
laminar contribution, Map.

When the height of the roughness protrusions is less than the thickness of the viscous
sublayer i.e. 0 < h* < 7y, the flow remains hydraulically smooth. However, when the
roughness protrusions enter the transition layer, i.e. 7y < h* < n, the viscous sublayer is
disturbed by vortex formation. Rotta 33 pointed out that the thickness of the viscous
sublayer gradually decreases when the size of the protrusions are increased, and that it
disappears completely when the protrusions enter the fully turbulent core area, i.e when
h* > n,. The flow is then said to be completely rough.

For hydraulically smooth flow, van Driest 4! suggested the following expression for the
damping factor Q in equation (A4—4):

0<h*< 7y Q= [1 —exp[—z—?;—l)»]] (A4-5)

A(n) is an empirical function of the Power Law flow behavior index, determined on the
basis of experimental data. For Newtonian fluids, i.e. n = 1.0, A(n) = 27. As would be
expected in hydraulically smooth flow, the expression is independent of wall roughness.

In the transitional regime, Artyushkov et al. suggested the expression:

A logm [gej“ (A9

w<h*<n Q={1—exp
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The logarithmic term in the denominator reflects the gradual breakdown of the vicous
sublayer with the increasing size of the roughness protrusions. For h* = 7, the term is set
- equal to 1.0, i.e. the flow is still hydraulically smooth. For h* » 5, the term goes towards
zero, and Q approaches 1.0, i.e. the damping gradually disappears when the roughness
protrusions passes through the transition layer.

In completely rough flow Rotta 33 suggested the form:

. o1 00 gy ;
m<h Q= [1+222 (o)) (Ad-T)

It should be noted that eq. (A4-7) leads to a non-zero value of the mixing length at the
pipe wall.

The size of 7y and 7y depends on the rheology of the fluid. For a Power Law fluid
Artyushkov et al. made the assumptions:

mv =210 5. (0=1.0) (A4-5)

ne= 20 5 n=1.0) (A4-9)

Where 7y(n=1.0) = 5.4 and n(n=1.0) = 54 (The former value is in accordance with
Schlichting 35 (p.579), while the latter presumably is taken from the work by Rotta 33).

Insertion of egs. (A4-2) and (A4-3) into eq. (A4-1) gives:

sl =

The fluid shear stress, 7, is now presumed to be independent of position and equal to the
wall shear stress, . (This is obviously an incorrect assumption (see Bird et al. p.158).
Among other things, it leads to a non-zero velocity gradient at the pipe centre.
Nevertheless it is often used in the theory of turbulent pipe flow (e.g. Bird et al. 6 p.162

or Schlichting 35 p.555)).

Introduction of the friction velocity u* = J?: and rearrangement yields:

e = 5[0 0 =
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The introduction of non-dimensional variables and a number of rearrangements
transform eq. (A4-11) into the non-dimensional differential equation:

A R 72 Q2R [1'2]2 + [1’?] - R =0 (Ad-12)
dy dy
where:

y=y/R

2-n

R u* n
R*=——(-—)-l—
(k/p) "

¥=9y) =%

For hydraulically smooth flow and for flow in the transitional regime, the boundary
conditions to eq. (A4-12) are:

1)  $0)=0
? [%] y=0 -

While the boundary condition B is valid also for completely rough flow, boundary
condition 2) is not. Instead the value of the velocity gradient at the wall is determined by
considering eq. (A4-12) as an algebraic equation, i.e.:

2
o [@] + o [@] —as=0 (A4-13)
where o=@ K3 (y Q);";_o R®® ; =1 ; a=(RH)"

and this non-linear equation is solved iteratively.

The non-linear ordinary differential equation (A4-12) requires a numerical solution
technique. The interval:

yE€ [0;1]

is divided into a suitable number of subintervals N. On each subinterval:

8= [Fi13 7] 1=23 oy N4
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the solution 7 to eq. (A4-12) is approximated with a second order polynomial:

p=Aiy?+Biy +C; (Ad-14)

whereafter the overall velocity profile ¢ is pieced together by the N second order
polynomials. Consequently, the solution of eq. (A4-12) has become a problem of
determining the coeffecients A;, Bj and Cj, i=2,3,...,N+1.

From eq. (A4-14) it follows that:

Y1 = A; ¥ + By ¥y + G5 (Ad-15)
ibi'l = 2 Al ;,i'l + Bi (A4“16)

If the values of yia, ¥i, ¥i-1, ¥i1 and ¥; are known, the egqs. (A4-15), (A4-16) and
(A4-17) form a simle set of linear equations, which may be solved with respect to Aj, Bi
and C;. The solution is:

A; = it (Ad-18)
2(yi~yiq)

Bi = i1~ 2 Ai ¥ia (Ad4-19)

Ci = ¥i4 - Ai (¥i4)? - Bi ¥ia (A4-20)

i=2,3,4...N+1.

The determination of the approximated velocity profile is performed stepwise, starting at
the wall and moving towards the pipe centre, sequentially determining the polynominal
coeffecients for each subinterval.

The distribution of y;, i=1,2,3, ..... , N+1 should .ensure a suitable resolution of the
velocity profile ¢ everywhere within the interval O;Ij. However, because the velocity
gradient is expected to be large at the pipe wall, while it approaches zero close to the
pipe centre, an equidistant division of the interval is not calculatory efficient. Instead,
the division should be small at the pipe wall and large at the pipe centre. Artyushkov et
al. suggested the following method of division:

¥i = ¥Yi-1 + 4¥i

where §, = 0 and 3; = min [-,L  0.002] , i=2,34..N+1
Pi-1
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The values of ¢, i=2,3,4..N+1 in eqs. (A4-18)-(A4-20) are determined by again
considering eq. (A4-12) as an algebraic equation, i.e.:

o () + () -a3=0 (A4-21)
where o=@k Fi)?QRR® ;  m=1 ; a3=(R¥"

This non-linear equation is solved iteratively. The value of 7 is available from the
boundary conditions to eq. (A4-12).

From the boundary conditions to eq. (A4-12) it is known that #4=0. Using this fact, the
values of #;, i=2,3,4....N+1 are easily found in the stepwise solution procedure. The
polynomial coeffecients A;, B and C; are calculated on the basis of 1;., whereupon #;, is
calculated by insertion in the polynomial (A4-14) for interval (i-1), i.e.:

%; = Aiy +Biy; + G

The connection between the velocity profile ¥(y) and the friction factor, f, in pipe flow is
the relationship:

2
f=9 [g_*] (A4-22)
where it can be deduced that:
y=1
= =2 f (1-y) $dy (A4-23)
y=0

Using the approximation for ¥ based on eq. (A4~14), eq. (A4-23) may be reformulated
as:

N+1 y;
S
T =2 4t f (Aiy® + Biy + Ci)(1-y) dy (Ad-24)
1=2
Yi-1

Whereafter the determination of f is straightforward according to equation (A4-22).

The Artyushkov et al. theory has been implemented in the program FRICFAC, described
in Appendix 5. For a given fluid rheology and wall roughness, the program provides the
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user with corresponding values of the friction factor and Reynolds number:

p D® y2-o

[311'!*1'1] nk 8n-1

Re' =

In fig. A4/2, experimental results for water in rough pipes, obtained by Nikuradse 26, are
plotted together with the predictions from the Artyushkov et al. ! 2 theory, for discrete
values of the relative wall roughness. The agreement is good, excépt for the smallest
roughness values and for the Reynolds numbers in the transition from laminar to
turbulent flow, i.e. Re'=2-4000. (Note that Nikuradse 26 does not list results for the
region below Re'=4000, but these are shown in Schlichting 35 (see fig. 4.2.4/1))

In fig. A4/3 the predictions from the Artyushkov et al. model is compared with the
predictions from a theoretical relation derived by Dodge & Metzner 10. The latter is
based on experimental measurements of Power Law fluids in hydraulically smooth pipes
and reads:

f= [4.0 0075 logyg [Re' (f)1-g] ~0.40 n'1°2] 2 (A4-26)

Also here there is a reasonable agreement, except for a range of Reynolds numbers where
the shift from laminar to hydraulically smooth flow takes place (Re'=2-10000).

It should be noted that the experimental verification of the Artyushkov et al. model is

missing for the completely rough flow of Power Law fluids, where n#1. No experimental
data appear to exist for this situation yet.
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Fig. A4/2 Comparison of the predictions from the Artyushkov et al. 1 2 theory (fully drawn
curves) with the experimental measurements of Nikuradse 26 (single data points)
for water ﬂowing through pipes of different roughness. The discrete variable is
the relative roughness h/R.
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Fig. A4/3 Comparison of the predictions from the Artyushkov et al. 1 2 theory (single data
ints) with the predictions from relations developed by Dodge & Metzner 10
f?ully drawn curves) for Power Law fluids in hydrauiically smooth pipe flow. The

discrete variable is the Power Law flow behaviour index n.
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Appendix 5

Computer programs.



I)

This Appendix contains documentation of the Fortran programs applied in the
theoretical work. Four programs form the basis for the theoretical results outlined in
chapters 4 and 5 and Appendix 4:

SCSB-CT
SCSB-CV
SCSB-VT
FRICFAC

SCSB-CT, SCSB-CV & SCSB-VT.

The programs SCSB-CT, SCSB-CV and SCSB-VT, which are used to obtain the
theoretical predictions in chapter 5, are very similar in structure. In SCSB-CT the
dependent variable is annular cuttings Concentration and the upper layer flow is
Turbulent. In SCSB-CV the dependent variable is annular cuttings Concentration and
the upper layer flow is taking place in the Viscous flow regime. In SCSB-VT the
dependent variable is the nominal annular fluid Velocity producing a specific annular
cuttings concentration and the flow is presumed to be Turbulent.

The diagrams in figs. A5/1, A5/2 and A5/3 describe the structure of SCSB-CT,
SCSB-CV and SCSB-VT respectively. The names of the subroutines should be noted. If
a given name occurs in more than one program, it indicates that the subroutine is
completely identical in the programs considered. The names of two subroutines occurring
in two different programs may also differ only by the addition of a number or one or two
letters. This indicates that the difference between the two subroutines is only marginal
(e.g. SECALC-F, SECALC-V and SECALC-T).

SCSB-CT

AN

SETINIT BRACK-CT

SECALC-T OUTPUT-T

Frest fe— stioe POWROUGH = FRFUNC-T o~ ITFRIC-T ERGFAC GHETRY-1

FSYTAP

Fig. A5/1 The structure of program SCSB-CT

93



SCs8-Cv

SETINIT BRACX-CV

SECALC-V

QUTPUT-V

FTEST ¢~ SULIDE ITFRIC-V

ERGFAC

GMETRY-1

\ 4

FRFUNC-V

Fig. A5/2 The structure of program SCSB-CV

SCSB-VT

SETINIT BRACK-VT

CUTPUT-F SECALC-F

BETFIND

—

FBCALC

FTEST pé— SLIOE POWROUGH [——t FRFUNC-T &1

ITFRIC-T

ERGFAC

GMETRY-2

FSYTAP

Fig. A5/3 The structure of program SCSB-VT
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The input to programs SCSB-CT, -CV and -VT is entered interactively. Each computer
code contains a default list of the variables required to perform the calculations. These
are:

Outer pipe radius

Inner pipe radius

Fluid density

Cuttings density

Coeffecient of kinetic friction Edeposit/outer pipe wa.ll;
Coeffecient of kinetic friction (deposit/inner pipe wall
Cuttings diameter

Annular eccentricity

Annular inclination

10) Cuttings concentration in the deposit

11) Coeffecient of static friction (deposit/outer pipe wallg

12) Coeffecient of static friction (deposit/inner pipe wall

13) Angle of repose

14) Number of steps in independent variable

15) Volumetric flowrate (-CT & -CV)/ Annular cuttings concentration (-VT)
16) Power Law consistency index

17) Power Law flow behaviour index

18) Number of steps in iterative solution procedure (-VT only)

O 00 =3 O UL QO DN =

When the codes are executed, the user is allowed to change the values in the default list.
When the list is accepted, the programs will request which of the listed variables that is

to be the independent, how large an interval of the independent variable that is to be
considered and how many discrete values the interval is to contain.

The output from SCSB-CT, -CV and -VT may in principle be designed according to the
wishes of the user. However it may require a modification of the output subroutine and in
some cases its calling arguments. In the documented versions of SCSB-CT, SCSB-CV
and SCSB-VT given in the present appendix, the default output is:

The value of the independent variable

Annular cuttings concentration (-CT & —-CV)/ nominal annular fluid velocity (~VT)
The upper layer fluid velocity, up

The nominal lower layer fluid velocity, uc

The deposit sliding velocity, up

The upper layer Reynolds number relative to the annular walls

The upper layer Reynolds number relative to the deposit surface

=IO Ut N~

The c(y)- and ¢(v)-plots in chapter 5 were generated with the programs SCSB-CT and
SCSB-CV. Note that the nominal annular fluid velocity does not appear anywhere in the
SCSB-model, and if this quantity is desired in the output, the volumetric flowrate must
be divided by the cross sectional area of the annular space. For the ¢(v) plots in chapter
5 this slight change in the codes SCSB-CT and SCSB-CV is performed directly in the
output routine, and no separate documentation of this modification has been performed.
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I) FRICFAC.

FRICFAC is written on the basis of the Artyushkov et al. ! 2 model (see App. 4) and
generates the friction factor vs. Reynolds number plots of the type outlined in figs.
4.3.3/1 - 4.3.3/4. The diagram in fig. A5/4 shows the structure of the program.

FRICFAC

REGINE PROFILE IRTGTH SETPAR * out

VBN

COMROUGH VELGRAD Ase ACALC

WALLGRAD M.F'UNC

Fig. A5/4 The structure of program FRICFAC

The input to FRICFAC is entered interactively. The computer code contains a default
list of the parameters required to perform the calculations. These are:

The Power Law flow behaviour index

The Power Law consistency index

The smallest size of the roughness protrusions
The pipe radius

The fluid density

Initial wall shear stress value.

S U W QBN

When the code is executed, the user is allowed to change the default list. The program
generates friction factor vs. Reynolds number plots for multipla of the smallest roughness
size given in the input. The wall shear stress specified in the input corresponds to a
Reynolds number in the output. The program secures that the friction factors
corresponding to Reynolds numbers between 102 and 107 are calculated. (Consequently
the value of the initial shear stress may be given an arbitrary value. However, the given
value may affect the time before useful output is produced).

Default output from the program is:

The Reynolds number

The friction factor

The relative roughness of the pipe

The Power Law flow behaviour index

A flag describing if the data has been obtained in completely rough flow,
hydraulically smooth flow or in the transition between.

6) The wall shear stress

QU O N =
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Im)

Sm_uce codes.

On the following pages the source codes of the four programs SCSB-CT, -CV, -VT and
FRICFAC are given. Only little documentation has been written directly in the code.
Descriptions of the various subroutines are listed in alphabetical order in Appendix 6.
The reader is advised to study the details of the SCSB-model Sfee chapter 4) and/or the
theory of Artyushkov et al. 1 2 (see Appendix 4) prior to the study of the program
documentation.

The data files below contain Forsythe polynomial coeffecients which are needed in the
execution of SCSB-CT and -VT. Note that the use of the data files requires a path to be
specified in subroutine POWROUGH.
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Program SCSB-CV
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The data file ACALC.DAT is needed in the execution of FRICFAC. The file contains the
coeffecients in a polynomial approximation to the empirical function A(n) given in the

Artyushkov et al. model.
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Subroutine ABC

ABC determines the coeffeceients Ay, Bx and Cy in the second order polynomial
approximation to the fluid velocity profile in the radial subinterval (Fx4 ; yx). The
poiiyl(lznﬁal )coeffecients are calculated as outlined in Appendix 4, egs. (A4-18), (A4-19)
an 4-20).
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Subroutine ACALC

ACALC generates a Forsythe polynomial approximation to the the empirical function
A(n) given by Artyushkov et al. The polynomial coeffecients are imported from an
external data file. The value of the polynomial corresponding to the given Power Law

flow behavior index, n, is determined.
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Subroutine BETFIND

BETFIND determines the angle B that corresponds to a given annular cuttings
concentration. The given concentration corresponds to a deposit which occupies a wel|
defined part of the annular cross section. BETFIND performs an iterative search for the

B~value which makes the difference between the specified and the calculated area equal to
Zero.
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Subroutine BRACK-CT

BRACK-CT performs a systematic search for the annular cuttings concentration, in
terms of the angle f, which satisfies the system equation (4.2.2-3) under given physical
conditions. The angle 8 may take a value between 0 radians (no bed) and x radians (the
bed occupies the whole of the annular space). The interval between 0 and 7 radians is
divided into a suitable number of subintervals, and an iterative search for solutions to
the system equation is performed in each interval, using an enclosure technique. If a

solution is found, relevant data is directed to the output file specified in SETINIT.
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Subroutine BRACK-Cvy

BRACK-CV performs a systematic search for the annular cuttings concentration, i
terms of the angle 8, which satisfies the system equation (4.2.2-3) under given phys1ca1
conditions. The angle § may take a value between 0 radians (no bed) and r radians (the
bed occupies the whole of the annular space). The interval between 0 and = radians i
divided into a suitable number of subintervals, and an iterative search for solutions tg
the system equation is performed in each interval, using an enclosure technique. If 5
solution is found, relevant data is directed to the output file specified in SETINIT,
BRACK—CV is identical to BRACK-CT except for the calls to SECALC-V and
OUTPUT-V instead of SECALC-T and OUTPUT-T.

|
_ [T
) L @ua;xus sf §EJ'§ !nn

1

Tes }mz»ov]

pCEalr A ﬁ%‘é&ﬁi it
i

Bhih
4

SET0 = (FIvBET2-F2*BET1)/(F1-F2)

SECALC-V

R

e .

K ome B

L_WsT‘———l

i w

YES

i
R AT

!
AU DATR RN TE R v

FOFLD > 0 7

) ves

SCL = FOLD/(FOLDFO)

}

FO*F1 > 0 ?

YES

1 3]

= SCLF1

F2 = SCL°F2

ﬁo = !llﬂ

1

KBR > OUX ?

| ves

116



Subroutine BRACK-VT

BRACK-VT performs a systematic search for the volumetric flowrate that satisfies the
system equation (4.2.2-3) for a given annular cuttings concentration. BRACK-VT is
very similar to BRACK-CT and BRACK-CV, but where the deposit surface position is
restricted to a limited interval (4 between 0 and ), there is not a well defined upper
bound for the volumetric flowrate, and the value must depend on experience from
previous program executions. The interval between the upper- and lower bound for the
volumetric flowrate is divided into a suitable number of subintervals, and an iterative
search for solutions to the system equation is performed in each interval, using an
enclosure technique. If a solution is found, relevant data is directed to the output file
%FIC'Ii‘%e[(}TiIIl? SETINIT. BRACK-VT calls its own version of OUTPUT, denoted
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Subroutine COMROUGH

COMROUGH determines the fluid velocity gradient at the wall when the flow is
completely rough. The non—dimensional differential equation (A4-12) is considered to be
an algebraic equation, where the velocity gradient is the independent variable and where
y = 0. An iterative enclosure method is used in the search for a solution.
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Subroutine ERGFAC

ERGFAC calculates a number of quantities appearing in the generali i
ed E
proposed by Kemblowski & Mertl. PP s ¢ ’ rgun Equation
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Subroutine FBCALC

FBCALC calculates the difference between the part of the annular cross sectional area
occupied by deposit of specific size and the cross sectional area corresponding to some

predicted deposit surface position.
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Subroutine FRFUNC-T

FRFUNC-T calculates the difference between a predicted and a calculated value of the
interfacial friction factor. The calculated value is obtained by inserting the predicted
value of the friction factor in eq. (4.2.8-2), whereupon the resulting value for the upper
layer fluid velocity is used in the Artyushkov et al. model (see App. 4).
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Subroutine FRFUNC-V

FRFUNC-V calculates the difference between a predicted and a calculated value for the
upper layer fluid velocity. The calculated upper layer fluid velocity is determined from
eq. (4.2.8-2), using f;=16/Re in the denominator.
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Subroutine FTEST

FTEST defines a function, which is a sum of the forces acting on the lower annular layer.
Under equilibrium conditions the function should be equal to zero.
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Subroutine FSYTAP

FSYTAP reads the coeffecients in the input file specified in the call from subroutine
POWROUGH. The coeffecients are characteristic for a Forsythe polynomial, which is an
approximation to either a friction factor vs. roughness plot or a logarithmic friction
factor vs. Reynolds number plot. FSYTAP returns either the friction factor
corresponding to a given roughness or the logaritm to the friction factor corresponding to
a given Reynolds number.
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Subroutine GMETRY-]

GMETRY-1 calculates the various geometrical quantities characterizing the annular
cross section corresponding to a given value of 5. According to the relations outlined in
Appendix 1, it is necessary to distinguish between three types of annular configuration:
The situation where the inner pipe is totally submerged in the deposit, the situation
where it is partly submerged, and the situation where the inner pipe not is in contact
with the deposit. Each type of configuration leads a given set of geometrical relations. If
a geometrical quantity is zero, it may create problems in subsequent calculations and it
is given a small non-zero value instead.
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Subroutine GMETRY—2

GMETRY-2 calculates the various geometrical quantities characterizing the annular
cross section corresponding to a given value of . According to the relations outlined in
Appendix 1, it is necessary to distinguish between three types of annular configuration:
The situation where the inner pipe is totally submerged in the deposit, the situation
where it is partly submerged, and the situation where the inner pipe not is in contact
with the deposit. Each type of configuration leads a given set of geometrical relations. If
a geometrical quantity is zero, it may create problems in subsequent calculations and it
is given a small non—zero value instead.

GMETRY-2 is used in connection with SCSB-VT and is identical to GMETRY-1 except
for that the quantities AR, E, Al, A2 and A4 has been omitted because they already
have been calculated in subroutine FBCALC.
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Function GRADFUNC

GRADFUNC calculates the value of the L.H.S. of the algebraic equation that forms if
the velocity gradient is considered to be the independent variable in equation (A4-12).

1

CRADFUME = ALPHAS(VART®23}+(VART*POMM )~ (RSTAR**POWM )

Subroutine INTGTN
INTGTN calculates the value of the integral:
N, ;’ k
‘s‘ _ _ o
24 [ A7+ B+ 000 4

Yk-1

given in Appendix 4, equation (A4-24). The integral forms the basis for the calculation
of the friction factor { in equation (A4-22).
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Subroutine ITFRIC-T

The friction factor at the deposit surface and the average fluid velocity above the surface
are coupled, and consequently the expression (4.2.8-2) is not an explicit expression for
the upper layer fluid velocity. ITFRIC-T determines corresponding values of the upper
layer fluid velocity and the interfacial friction factor, applying an enclosure method. The
difference between a predicted and a calculated value for the interfacial friction factor is
determined. The predicted value is inserted in eq. (4.2.8-2), and the resulting upper layer
fluid velocity is used in the calculation of a new interfacial friction factor, using the
Artyushkov et al. theory (App. 4). When the diffference between the predicted and
calculated value becomes (close to) zero, a correct set of upper layer fluid velocity and
interfacial friction factor has been obtained.
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Subroutine ITFRIC-v

The friction factor at the deposit surface and the average fluid velocity above the surface
are coupled, and consequently the expression (4.2.8-2) is not an explicit expression for
the upper layer fluid velocity. ITFRIC-V determines corresponding values of the upper
layer fluid velocity and the interfacial friction factor, applying an enclosure method. The
difference between a predicted and a calculated value for the upper layer fluid velocity is
determined. The calculated value is obtained by inserting f;=16/Re in eq. (4.2.8-2),
When the difference between the predicted and calculated value becomes (close to) zero,
a corret(:it set of the upper layer fluid velocity and interfacial friction factor has been
obtained.
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Subroutine OUT

OUT directs selected data to the screen and to the output file specified in subroutine

SETPAR.
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Subroutine OUTPUT-F

When a solution to the expression (4.2.2-3) has been determined, relevant data is
directed to the output file specified in subroutine SETINIT and to the computer screen.
The output from the listed version of SCSB-VT is:

=3 O U QO BN +—

the value of the independent variable

the nominal annular fluid velocity

the upper layer fluid velocity relative to the annular walls

the nominal lower layer fluid velocity

the deposit sliding velocity

the upper layer Reynolds number relative to the annular walls
the upper layer Reynolds number relative to the deposit surface
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Subroutine OUTPUT-T

When a solution to the expression (4.2.2-3) has been determined, relevant data is
directed to the output file specified in subroutine SETINIT and to the computer screen.
The output from the listed version of SCSB-CT is:

=3 O OV O DN =

the value of the independent variable

the annular cuttings concentration

the upper layer fluid velocity relative to the annular walls

the nominal lower layer fluid velocity

the deposit sliding velocity

the upper layer Reynolds number relative to the annular walls
the upper layer Reynolds number relative to the deposit surface
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Subroutine OUTPUT-y

When a solution to the expression (4.2.2-3) has been determined, relevant data jg
directed to the output file specified in subroutine SETINIT and to the computer scree,
The output from the listed version of SCSB-CV is:

=IO O QI N

the value of the independent variable
the annular cuttings concentration
the upper layer fluid velocity relative to the annular walls

the nominal lower layer fluid velocity

the deposit sliding velocity
the upper layer Reynolds number relative to the annular walls
the upper layer Reynolds number relative to the deposit surface
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Subroutine POWROQOUGH

POWROUGH considers the value of the Power Law flow behavior index and selects the
data files which contains the polynomial coefficients used in the polynomial
approximation to the friction factor vs. roughness plot and the logarithmic friction factor
vs. Reynolds number plot respectively (see section 4.3.3). The subroutine then decides
which of the curves that is to be applied under the given conditions, i.e. whether the
smooth flow curve or the rough/transitional approximation curve is to be used.
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Subroutine PROFILE

PROFILE divides the pipe radius into a suitable number of subintervals, according to
_ the guidelines given by Artyushkov et al. On each subinterval the fluid velocity profile is

approximated with a second order polynomial, according to the procedure outlined in
Appendix 4, eq.(A4-14)—-A4-20).
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Subroutine REGIME

REGIME compares the height of the rouﬁ ness protrusions with the thickness of the
sublayer structure in hydraulically smooth tlow and determines whether the flow is to be
considered hydraulically smooth, in the transitional regime or completely rough. The
regime affects the velocity gra.dlent at the pipe wall and (through the variable ALFR) the
damping factor Q described in the Artyushkov et al. model.
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Subroutine SECALC-F

SECALC-F calculates and combines the various terms in equation (4.2.2-3). A value of g
that satisfies this equation specifies a deposit size which makes the pressure gradient in
the upper annular layer equal to the one in the lower layer. SECALC-F differs only
slightly from SECALC-T: The call to GMETRY-2 replaces the call to GMETRY-1.
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Subroutine SECALC-T

SECALC-T calculates and combines the various terms in equation (4.2.2-3). A value of j

that satisfies this equation specifies a deposit size which makes the pressure gradient in
the upper annular layer equal to the one in the lower layer.
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Subroutine SECALC-V

SECALC-V calculates and combines the various terms in equation (4.2.2-3). A value of g
that satisfies this equation specifies a deposit size which makes the pressure gradient in
the upper annular layer equal to the one in the lower layer.

SECALC-V differs only slightly from SECALC-T. The call to ITFRIC-V replaces the
call to ITFRIC-T and the use of the laminar pipe flow relation (fn = 16/Rep) in the
calculation of the friction factor at the upper layer annular walls replaces the use of
subroutine POWROUGH.
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Subroutine SETINIT

SETINIT present a default list of the physical variables which are required in the
SCSB-model. A simple loop allows the user to change the value of any variable in the
list. When the appearance of the list is accepted, the independent variable and the range
inside which it is to be varied is requested. Finally a name must be given the file to

which the programme directs the resuits.

It should be noted that while the annular inclination is listed in degrees, the computer
code operates with radians, and consequently the dimension of this variable is
transformed into radians before the return to the main programme.
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Subroutine SETPAR

SETPAR present a default list of the physical parameters occurring in the model
outlined by Artyushkov et al. A simple loop allows the user to change the value of any
parameter in the list. When the appearance of the list is accepted, a name of the file to
which output data is to be directed, must be specified. Finally the value of the empirical
function A(n) given by Artyushkov et al. is determined.
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When the deposit is stationary, the deposit sliding velocity is zero, and the upper- and
lower layer fluid velocity are determined from relation (4.2.8-2) and the volumetric
balance (4.2.5-1). If deposit sliding occurs, the nominal lower layer fluid velocity is
determined by using the functions f; and f; defined in egs. (4.2.7-1) and (4.2.7-2).
Subroutine SLIDE performs an iterative solution of the equation fj=0 (upwards sliding)

or f5=0 (downwards sliding).

Subroutine SLIDE
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Subroutine VELGRAD

VELGRAD determines the fluid velocity gradient at a given radial position. The
non-dimensional differential equation (A4-12) is considered to be an algebraic equation,
where the velocity gradient is the independent variable. An iterative enclosure method is
used in the search for a solution.
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Function WALLGRAD

WALLGRAD calculates the value of the L.H.S. of the algebraic equation that forms if
the velocity gradient is considered to be the independent variable in equation (A4-12)
and y = 0.
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Symbols



A(n) empirical function defined by Artyushkov et al. ! 2 (Appendix 4)

Ac © cross sectional area of the lower (deposit) layer
- Aj polynomial coeffecient in Appendix 4
Ap cross sectional area of the upper (fluid) layer
Ap characteristic surface area for a particle
Bj polynomial coeffecient in Appendix 4
Ca annular cuttings concentration
Cb particle concentration in deposit
Cd drag coeffecient _
Cf annular feed concentration .
Ci polynomial coeffecients in Appendix 4
D diameter of (outer) pipe
d diameter of inner pipe
de characteristic particle dimension
Dy the hydraulic diameter of the upper layer
dp particle diameter
e displacement between the centres of the inner- and outer pipe
f friction factor defined for pipe flow
F function defined in Appendix 3
F¢ frictional force between particle and deposit surface
Fiq fluid drag force on a particle
Fgax axial component of net gravity
f; interfacial friction factor
fm friction factor for the interaction between the fluid and the annular walls
Fr Froude number
fy function defined in chapter 4.2.7
fa function defined in chapter 4.2.7
g gravitational acceleration
h height of roughness protrusions
h* non—dimensional height of the roughness protrusions (Appendix 4)
k Power Law consistency index
K non-dimensional quantity defined by Martin et al. 25
1 mixing length
n Power Law flow behavior index
N number of subintervals (Appendix 4)

Mfeed particle feed rate to annular section

pressure
modified pressure (P = p + pn g 2)

awit =)

non-dimensional damping factor defined in Appendix 4
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= ggee

™

pipe radius

transport ratio (defined in chapter 1.3.1)

non dimensional quantity defined in Appendix 4

Reynolds number for a Newtonian fluid

Reynolds number for a Power Law fluid

Reynolds number for interstitial flow of a Power Law fluid, defined by
Kemblowski & Mertl 24

Reynolds number based on the fluid velocity relative to the annular walls
particle Reynolds number in Newtonian fluids

particle Reynolds number for a Power Law fluid defined by Peden & Luo 29

Re' at the point of transition between laminar and turbulent flow
Reynolds number based on the friction velocity at the point of incipient

particle motion (Appendix 3)

permeability of a granular deposit defined by Kemblowski & Mert] 24
length of the outer pipe perimeter in contact with the deposit

length of the inner pipe perimeter in contact with the deposit

length of the interface between the upper and lower layer

length of the outer pipe in contact with the upper layer

length of the inner pipe in contact with the upper layer

average linear fluid velocity

friction velocity

deposit sliding velocity relative to the annular walls

nominal lower layer fluid velocity

nominal intergranular fluid velocity

average linear upper layer fluid velocity relative to the annular walls
characteristic fluid velocity at the point of incipient motion

friction velocity at the point of incipient particle motion defined in Appendix 3

volumetric flowrate

average linear fluid velocity

average linear part@cle transport velocity
average linear particle slip velocity

axial fluid velocity in pipe flow

radial coordinate

non dimensional radial coordinate

axial coordinate

contact angle between the deposit surface and the inner pipe wall
polynomial coeffecient in Appendix 4

polynomial coeffecient in Appendix 4

polynomial coeffecient in Appendix 4

the angle describing the position of the deposit surface in the SCSB-model

porosity of the deposit
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¥a

empirical parameter defined by Peden & Luo 29

coeffecient of friction

non dimensional position parameter in Appendix 4

coeffecient of dynamic friction

coeffecient of friction for particle resting on the deposit surface
coeffecient of static friction

non-dimensional thickness of the viscous and transitional sublayers
non-dimensional thickness of the viscous sublayer

integration variable in Appendix 2

empirical function defined by Kemblowski & Mertl 24
von Karman constant

empirical parameter defined by Peden & Luo 29

fluid viscosity
empirical function defined by Kemblowski & Mertl 24
Newtonian fluid viscosity

kinematic fluid viscosity
factor determining the characteristic surface area of a particle (Appendix 3)

fluid density

lower layer particle density
upper layer fluid density
particle density

integration variable in Appendix 2

fluid shear stress

frictional stress between the deposit and the annular walls
frictional stress between the deposit and the outer pipe wall
frictional stress between the deposit and the inner pipe wall
fluid shear stress exerted on the deposit surface

laminar contribution to fluid shear stress (Appendix 4)

the fluid shear stress exerted on the annular walls

normal stress exerted by the deposit on the inner pipe wall

normal stress exerted by the deposit on the outer pipe wall
average normal shear stress exerted by the deposit on the annular walls

average normal stress exerted by the deposit on the inner pipe wall
average normal stress exerted by the deposit on the outer pipe wall
turbulent contribution to fluid shear stress (Appendix 4)

fluid shear stress on the deposit surface at the point of incipient particle
motion

annular inclination/deposit surface inclination with respect to vertical
function defined by Artyushkov et al. 12
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Tee

non—-dimensional fluid velocity defined in Appendix 4

non-dimensional fluid velocity gradient in Appendix 4
parameter defined by Kemblowski & Mertl 24
Angle of repose (measured relative to horizontal).
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