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ABSTRACT

Wavelet analysis is the outcome of the synthesis of ideas that have emerged in different
branches of science and technology, mainly, in the last decade. The concept of wavelet
packets, which are superpositions of wavelets, has been introduced a couple of years ago.
They form bases which retain many properties of wavelets like orthogonality, smoothness
and localization. The Walsh orthonormal system is a special case of wavelet packet. The
wavelet packets provide at our disposal a library of orthonormal bases, each of which
can be used to analyse a given signal of finite energy. The optimal choice is decided by
the entropy criterion. In the present paper we discuss results concerning convergence,
coefficients, and approximation of wavelet packets series in general and wavelets series
in particular. Wavelet packet techniques for solutions of differential equations are also
mentioned.
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1 Introduction

Wavelet analysis is the outcome of the synthesis of ideas that have emerged in different

branches of Mathematics, Physics and Engineering. Since the days of Fourier, scientists

and engineers, besides mathematicians themselves, have made vigorous efforts to represent

square integrable functions (signals having finite energy) as linear combination of functions

having some nice properties. Radamacher, Haar, Walsh, Franklin and Vilenkin have

constructed noii-trigononictric orthonormal systems in their endeavour to accomplish

this goal. The Walsh function was extensively studied and applied by Electrical and

Electronic Engineers during the seventies and eighties prior to the invention of wavelets in

the mid eighties (see for example [89] and [92] and references therein). In 1981, Stromberg

[98] constructed an orthonormal spline system on the real line which is now termed as

the first example of wavelet constructed by a mathematician. However, without having

the knowledge of this work, physicists like Grossman and geophysicsts like Morlet were

developing a technique to study non-stationary signals which led to the development of

the wavelet theory in the last decade (see refs.[48]-[50]). Meyer, Daubechies, Mallat (see

references specially [30], [73], [74], [79], [80], [81]) have put this theory on firm foundation

through the multiresolution analysis and establishing relationship between function spaces

and wavelet coefficients. This scientific discipline of vital importance has been introduced

in an excellent way by Meyer [80], where he has also explained the relationship between

fractals (another exciting scientific discipline) and wavelets along with future avenues of

researches specially in understanding the hierarchial organization and formation of distant

galaxies. For further interaction of fractals and wavelets we refer to Arneodo et at in [81]

1. Wavelet transform of fractals: from transition to chaos to fully developed turbulence.

2. Optical wavelet transform of fractal growth phenomena, pp.286-352; Holschneider [56],

[60a], Hardin et ai [54], Wornell and Oppenheim in [36], pp.785-800, and Hazewinkel

in [68b], wavelet understand fractals, 217-219. Most of the important results on theory

and applications of wavelets can be found in either references [3], [8], [9], [10]-[18], [21].

[23], [25], [30], [31], [36], [37], [39], [40], [45], [46], [47], [56], [60a], [61], [64], [65], [67],

[68], [71], [72], [77], [78], [79], [80], [81], [82], [88], [91], [93], [94], [97], [108], [109], [110],

[111] and [115] or the references given therein. Since 1991 a generalization of wavelets,

known as the wavelet packet has been studied by Wickerhauser, Meyer, Coifman and

others (see Refs. [22], [23], [61], [72], [80], [85], [93], [94], [113], [114] and [116]. Wavelet

packets are also called arborescent wavelets and they are particular linear combinations

or superpositions of wavelets. Discrete wavelet packets have been thoroughly studied

by Wickerhauser [113] who has also developed computer programmes and implemented

them. The study of convergence, coefficients, and approximation of wavelet packet series

is the main objective of this paper.



The discovery of wavelets (small waves) was a result of an attempt to search a func-

tion which will generate the space of square integrable functions over the real line. The

ideal tool for studying stationary signals is Fourier transformation, that is, natural sta-

tionary signals decompose into the linear combination of waves (sines and cosines). In

the same manner non-stationary signals decompose into linear combinations of wavelets.

The study of non-stationary signals, where transient events appear that cannot be pre-

dicted necessitates techniques different from Foureir analysis. These techniques, which

are specific to the non-stationarity to the signal include wavelets of the time frequency

type and wavelets of the time scale time. Time frequency wavelets are suited specially to

the analysis of quasi-stationary signals, while time scale wavelets are adopted to signals

having a fractal structure. Time scale analysis in the case of image processing is called the

Multiresolution analysis. This involves a vast range of scales for signal analysis. In the

Fourier analysis there is no relation between Fourier coefficients and Fourier transforms

while there is a close relationship between wavelet coefficients and wavelet transforms.

The discrete wavelet transform is faster than the fast Fourier transform as it requires

only O(N) operations while the fast Fourier transform needs O(A'log2A
r). Well known

Daubechies orthogonal wavelets [p.43,S0] are a special case of wavelet packets. Wavelet

packets are organized naturally into collections, and each collection is an orthonormal ba-

sis for L2(R). It is a simple but very powerful extension of wavelets and multircsolution

analysis. The wavelet packets allow more flexibility in adopting the basis to tho frequency

contents of a signal and it is easy to develop a fast wavelet packet transform. The power

of the wavelet packet lies in the fact that we have much more freedom in deciding which

basis function we use to represent the given function. The best basis selection criteria

and applications to image processing can be found in [22], [112] and [113].

2 Basic definitions and notations

Haar function is defined as follows:

h(x) = 1, if 0 < x < ^

= - 1 , if 5 < * < 1

= 0, otherwise

For 7i > 1, n = 21 + k, j > 0, 0 < k < 2\ hn(x), where

K{x) = Vl2h{Vx-k), (2.1)

is called Haar orthonormal system. For a comprehensive account of this we refer to De-

Vore and Lucier [40] and Schipp, Wade and Simon [89].



Walsh orthonornial systems is defined as follows:

<A,(x) = 1 if 0 < x < ^

= - 1 if \ < x< 1 (2.2)

<pa{x) =

{( ,̂,(x)} is known as the Rndemacher system of functions. For n = 2'" + 2"2 + . . . +
2"\ ;i1+r < in, 4'n(*) is defined as ij'n(x) = ipn,(x)ipZ2(x). ..ip,tj(x).

ij!,,{x} is called the Walsh orthonormal system (see for example Srhipp, Wade and
Simon [89] mid Sicldiqui [92] for detailed information about the literature of this system).

Spline
Let / be an interval of R divided into a set of sinnller subintcrvals. A function / on /

is called a. spline function of rder in > 0 if it is polynomial of degree less than or equal
to in + 1 on each of the given subintervals of / and if all of its derivatives upto order m
are continuous on /.

The characteristic function of [0,1] is the piecewise constant spline. The piecewise
linear spline is given by

- W. ^ 0 < |a:| < 1
0, otherwise

The concept, of £-splines (basic splines) was introduced by Curry and Schoenber which
are splines with the smallest possible support. The B-spline of order 1 is the characteristic
function of [0,1] and the B-spline of degree n > 1 denoted by Dn(x) is defined recursively
by the convolution:

Bn(x) = B{* B"-'(x) = r Bn-\x - t)

= f B'^dt
Jo

It can be seen that

where [x]" = max{0, x}n is the one sided power function of degree n. For details of splines
we refer to Chui [10], Schoenberg [90], DeVore and Lorentz [38] and Unser and Aldroubi
in [11, 91-122].



Function spaces: The function spaces, which have been studied in areas like Fourier
analysis, partial differential equations, approximation theory, mathematical physi<\s and
more recently in the wavelet theory, are:
(i) Lp spaces (ii) Holder (or Lipschitz class of functions) spaces (iii) Zygmund spaces (iv)
Sobolev spaces (v) Lorentz spaces (vi) Calderon spaces (LPA spaces) (vii) Orlicz-Sobolev
spaces (ciii) I-M-S spaces (function:, of Lipj(t) class) (ix) Generalized Sobolcv spaces
(Sobolev spaces over metric spaces) (x) Besov spaces (vi) Hardy spaces (xii) Tent spares
(Coifman-Meyer-Stein spaces) (xiii) Fpq spaces (xiv) Spaces of functions of bounded
oscillation - BMO spaces (xv) Atomic Hardy space.

All functions considered are real valued defined on R". However all these; definitions
can be extended for complex valued functions. Let n C R".

C(fi) denotes the set of real valued functions which are bounded and uniformly con-
tinuous functions in fi, equipped with the norm:

ll/lln = sup | / ( i ) | .

C(Cl) is a Banach space (Q has appropriate properties. In many cases we prefer one
dimension setting to understand the notion in a more concise manner than is possible in
higher dimension.

Let k £ N (set of positive integers), then

Ck(n) = {/ 6 C(fl)\D°f e C(J7) if \a\<k]

is a Banach space equipped with the norm

ll/lkn = £ \)DaJ]\n

where a = (ai, ai,... an) with Oj 6 A7, |a| = £ a,- and

is also written as C°(n)).
For 0 < p < oo, Lp is the space of all those Lebesgue measurable functions such

that | / |p is Lebesgue integrable, that is, Lp = {/| Jn \f\
pdx < co} and L^ = space of

essentially bounded functions. Lp is a Banach space for 1 < p < co with the norm

- - (/.'

VP
, 1 <p<oo

||/|| ioo = ess sup



For 0 < p< 1, Lp is a quasi-Baiiadi space [101]. Let Ah/(x) = AJ,/(i) = J{x + h) -

f(x) and A£+l — A'h&%, k any natural number. Then

a*/(*) = £ (-i)""J fk) fte + hj), /ten, iefi

wliero ( j j arc binomial coefficients

LipX = 1 / g C*| sup l / ( l ) ~ ^ Z ) l < oo, 0 < A <

(pA is a Biiimch .s[)ace witli respect to norm

111.,.H
Let b e /?, then we write *• = [s] + {*•} = [s]~ + {s} + where [s] and [s]~ are integers,

whereas 0 < {s} < 1 and 0 < {.s}+ < 1. Holder space

H"= /eC|||/||,,. = ||/||g+ £

Zygniund class: Lot s > 0, then

Z» = i / G C\ ||/||z. = Il/Hif + £ sup |M-{s)+l|A2
hi3

o/llc- < oo

The case s = k or s = 1 A: G JV is generally known as the Zygniund class of functions.

Le;

u(f) —> w(0), for t —• 0, u is non-negative, non-decreasing, continuous on h+ and subad-

ditive (w(<!,+t2) < (»;(<!) +w(<2). w(f,t) is called the modulus of continuity of / .

r-th modulus of continuity of / 6 £P(fi), 0 < p < co is defined as

l/lliipo = sup(f"u;(/, t)) is a semi-norm of Lipoc. For details see [38] and [101].

0<p<oo Lip(a,Lp) =

l>0

6



is a semi-norm on Lip(a,p), 0 < a < l,p > 1.

Generalized Lipa = {/ e Lp\ Jn \A
r
t{f,x)\"dx}l/p < Mta,t > 0 . See for details [38] and

[101].

Sobolev spaces: Iv"* = {/ 6 Lp\D
af e Lp, [a\ < k} is called Sobolev space of order

k which is a Banach space with the norm

lk(n, = f £ \\D°f\\i)
i/p

It is a Hilbert space for p = 2 and IV* = Lp for k = 0. For details sec [1], [68] and [101]
and refprences therein.

For Lorentz and Calderon spaces we refer to [38, pp.23-24].
Let Ar(i) = /„" M(t)dt, where M(t) > 0 is increasing, with M(0) = 0. LN the space

of those functions / for which XN(flf) < 1 for some a > 0, where

is called Orlicz space

XN(f) = Lp for

Orlicz-Sobolev space denote by W£N is defined as IV£K = {/ G LN/Daf 6 LN}.

W£N is a Banach space. It is a Sobolev space for M(t) = pt,p > 1. See Adams [l]
and Triidinger [102] for details of Orlicz-Sobolev spaces. For weighted Sobolev spaces one
may see [68a].

I-M-S spaces: {Lipj(t) class of functions): Let j(t) be a positive and non-decreasing
function defined on (0,1) then

(Lipj(t),Lp,r) = {f e Lp\ur(f,t)p <

For details we refer to Izumi-Izumi [57J.

Generalized Sobolev spaces: Let (X,d,p) be a metric space (X,d) with finite diameter
TdimX = sup d[x,y) < oo) and a finite Borel measure /«. For 1 < p < co we define
v ise.v '



L'P(A',d,/.; uvA Wl*{X,d,ii) as follows: V*(X,d,n) = {/ : X -> R\f is mensurable
and 3 E C A\,i(J5) = 0 and 3 g e Lp(n) such that |/(x) - /(y)| < d(x,y)(g(x) + g(y))

tot al\ x,y e X\E]

Wl*(X,d,,i) = {/ e

is a gcnoi'ilizef! Sobolev space recently studied in [51, 52, 53].

Bcsov s'r,*ces: Besov spaces denoted by B^R) are defined as:
For 0 < a < r, 0 < ;> < oo

0r«= dt\1/{;

'o [t-"a.v(/,Op]'TJ , 0<g<oo
!>0

is a quasi-norm on B°q(R) and for 1 < p < oo, 1 < q < co it is a norm.
Lip(a,p) = BJĴ .O < a < 1 and Sobolev spaces W?2 is equal to Besov spaces B£2. For

more details and applications of Besov spaces we refer to [79, 101]. A good account of
Hardy, Tent and F^ spaces are presented in [101].

BMO spaces: Let g be a locally integrablc function on R. Then g is called to have
bounded mean oscillation, that is, g 6 BMO if

||<y||. = sup Tjr J \g(x) -gi\dx is finite

where / is p iy finite subinterval of R and g\ is the average of g over /. It may be observed
that \\g\\, is a scminorm on BMO which is a vector space.

Atomic Hardy space: The atomic Hardy space denoted by H'at comprises all real valued
functions f on R for which there omits atoms aj and coefficients cy(j = 1,2,2...) such
that j(x) = £ a,o,(x) at all those points whose measure is zero (a.e.) and £ \aA < oo.

i i
The norm is defined by

lk, = infE M

i

8



where infinimum is taken over all such atomic representations of / . An atom is a real
valued function on R for which there exists an interval / so that \a\ < \l\~x\i a-e.,
// a(x)dx = 0, xi ' s tl le characteristic function of / and | / | denote the length of /.

References about BMO spaces can be found in [79].

3 Wavelets and wavelet packets

A family of functions {cp,} in a Hilbert space H is called orthonormal if

(<Pi,Vj) = 0 if M i

= 1 if i = l

The family {(f,} in H is called a frame if there exist constants A > 0, D < oo sp that for

all / in H,

A\\Jtf<Y. K/.lft)|2<£||/||a
ieJ

A and B are called the frame bounds. If A = B then the frame is called the light frame.

If A = B = 1 then the frame becomes an orthonormal basis. A system of functions {<p,}
in H is called the Riesz basis or unconditional basis of H if

(a) for every / 6 H there are unqiue coefficients Cn such that

f{x) =

(b) there are positive constants A, B such that for each / 6 H

Every Riesz basis is a frame but the converse need not be true. Every orthonormal
basis is a Riesz basis and hence a frame [see 30, 68b].

(a) can be replaced by the condition that {tp,} are linearly independent in H.
Definition 3.1 A function tp 6 L2 C R) is called a wavelet (or orthononnal wavelet) if
the sytem il>j;k(x) = 2J '2 ^(2 J i — fc), j , k 6 Z (set of integers) is an orthonormal basis of
Li(R), that is, the following conditions are satisfied:

<^,fc(x), 0,,m(z)> = SJt • 6km, j , k, £, m € Z, (3.1)

where 8}t is the Kronecker delta, and

/(*)= £ E <***}* (3-2)



where

This definition can be generalized by replacing the orthonormal basis by a Riesz basis or

furthermore ">y a frame.

Definition 3.2 The series given in the relation (3.2) is called the wavelet series and
Cj,h given in the relation (3.3) are called the wavelet coefficients.

Definition 3.3 Let u =£ 0, b are arbitrary real numbers, then

tl>aj,(x) = (|a|)"1/2 i> (^—) , where ip 6 L2(R) and f ° x i)>{u)dx = 0, (3.4)

is called continuous wavelet.
The wavelet transform of / denoted by M (̂o 5) is defined as follows:

* W / ) = </, t/'-,6) = A= £ f{x) iP ^~j dx (3.5)

It tan be easily checked applying Parseval identity that

2 T " V , (/) = (/. &,») (3-6)

where
0^(w) = - | = e-"* ^(ow) (3.7)

It must be observed carefully that there is no relationship between Fourier coefficients
and Fourier transformation but the following relation holds in the wavelet case

Ww-&->U)=cjjc (3.8)

Definition 3.4 A multiresolution analysis of L2(R) is a sequence of its closed subspaces
Vj, j 6 Z having the following properties:

1. V} C Vj+U

2. v(x) 6 Vj if and only if u(2i) S Vi+U

3. v(x) 6 Ko if and only if v(x + 1) e Ko,

4. U Vj is dense in L2(R) and n V} = {0},
J=—OO ji=—OO

5. There exists a function <£ 6 Vb such that { (̂a: — k), k e Z] is an orthonormal basis

10



ip(x) is called the scaling function.

Since <p 6 Vo C Vi there exists a sequence {/i/t} € £2 such that the scaling function tp

satisfies the equation

V(x) = 2'£hkV(2x-k) (3.9)

*

Eq.(3.9) is known by several names, for example the dilation equation, refinement equation

or two scale difference equation. It is easy to check that fv.j}, where tpij(x) = 2t/2 ip(2'x—

j) is an orthononnal basis of Vj.

We have the ortliogonal complement of each in the next higher one on the ladder, that

is

V0®W0 = K,, \V0±.V0

K, = V,,

In general, V, © IK,- = K.+i,

Let Wo be spanned by the integer translates o.r a function t)i, that is, translates of V' are

an orthonormal basis of Wg. The IVj is generated by {i>i,}} where iptJ[x) = 2l/-i]i(2'x—j).

Since ip 6 Wo C Vlt we have

il>(x) = 2Y. gkVV'x-k) (3-l»)
kez

It can be verified that

fli = (-l)fc/»i-t,A:6Z (3.11)

{0, j } is an orthonormal basis of L^^R).

The Fourier transform of tp is given by

\

where

\ £ c* e 0K/2) = "'(f/2) #(f/2) (3.12)

This leads to the orthogonality on the cjt

£ cfc Efcljj = 26oj (3.14)

or on the function m(§)

K O I 4 + |™(c + | ) | 2 = . i (3.15)

There are two main methods to solve the dilation equation (3.9). One is by Fourier

transform and the other is by matrix products. Both give <p as a limit not as an explicit

function (see [25, 34, 35, 41, 61, 97(a),(b)] for a comprehensive account of the dilation

11



equation).

Definition 3.5 (Wavelet packets). Lot {/u-} and {<«..} be two sequences of f2 such that

E /i,,-at/in-sf = «M (a-ic)

£ An = >/§ (3-17)

"£ gk = ( - O S . - * (3.18)

Furthermore, let <p(r) be a continuous and compactly supported real valued function
71 that solves the equation

¥>(*) = 2"2 £ hkrttx-k) (3.19)

with 0(0) = 1.
Let t]>{x) be an associated function defined by

# r ) = 2"- £ ,,* p(2z - fc) (3.20)

A family of functions iun 6 Ln{R),n = 0,1,2,..., defined recursively from ip and xj> as
follows, is called the wavelet packet

(i) u»{h) = <p(x),ui{x) = il>(x) 3.21 (a) "I
(ii) iu2,,(a:) = I1'2 E 'it wt(2i - 1 ) 3.21(6) I (3.21)

(,»7 ^2n+1(r) =2i'2Ls^n(2T-k) 3.21 (c) J

0(ar) and p(x) arc often called mother and father wavelet.
It has been proved that [u>n(x - k)} is an orthonormal basis of L2(fi) for all n > 0

where

a,n(i - *) - ^ E **-» -*» ( I - ' ) + 7 i E »»-»«•*»•• (1 - '

For / 6 L2(R),
oo oo

E cr,,ta/n(r-A) (3.23)
11=-OO fc=-OO

where

C,.* = (/,^(^-fc)> (3-24)

is called the wavelet packet series and Cn.it are called wavelet packet coefficients of / .
For proof one may see Wickerhauscr [113].

Example 3.1 Haar function is a wavelet as /in(x) (Eq.(2.1)) is an orthonormal basis of

12



L2(R). The scaling function for this wavelet ip{x) is f{x), the characteristic function of
[0,1). /in = 1/-/2 for n = 0 ,1 , . . . and 0 otherwise

gn = ( - l

The space VJ> consists of piecewise constant functions with possible jumps at. integers.

Bxatnp\e 3.1 \l <${x) = Shannon sampling function ^^^ then UYC concspondlng wavelet
is Shannon wavelet given

sin(27ri) — sin(7ri)
~

X(-i,i|(f) = characteristic function of |—Xi«l

{
( 0, otherwise

Example 3.3 Let (p(x) be piecewise linear spline (Eq.(2.3)) then -0(i) = — ^ {yu+\ -
- n

2gn + <7n-i) v(2i — n) where gn are Fourier coefficients of
[(1 -sin2f/4)(l +cos2?/2)- l(l + cos2?/4)-'] ' /2

See Daubechies [28, 30] for more examples of higher order spline functions as scaling func-

tions and the corresponding wavelets.

Morlet wavelet 3.4(a):

^ 4

where y0 = 5.

Example 3.4 (The Meyer wavelet). The Meyer wavelet is the inverse of Fourier trans-

form of ij)(y) where

/2 p iy /2 r m U / J.1,,1 _ lYl l l < |7,| < *E

where
r0, if x <

13



Example 3.5 (Daubcchies wavelet). These wavelets depend on an integer N > 1 thai,
defines the support of ip[x) and 0(i), namely [0,2JV - 1] and their regularity in the sense
of Holder. Let tp(x) belong to C", where a = a(N) and

ft'-cx, N

Lut

. = A > 0 (A =i 1/5)

= l-cN ft(anu)w-ldu=

with constant, cjv chosen in such a way that PN{K) = 0. There exists at least one finite
2N-1

trigonometric sum rnn(l) = -^ Y. /'a c~ikt such that \mo(t)\
2 = P/v(t) and mu{ti) = 1.

ip is the solution of the dilation equation
2 / V - l

«. V( ) , / p ( ) = 1
n J°°

2 / V - l

vs(x) = V2 5 1 ''«.- V(2i - k), where /
n J-

FVom here we see that

where i^K) = 0, ([^l""1) at infinity whore m = m(N) —» oo as N —» oo supp ^ ( r ) C

[0,2Ar - 1]. tp(x - k) is an orthonormal sequence. Let m,[t) = ei('-'iA'"/mo<'+'r> then

*(f) - »< i K) #K/2) m, fc/2) motf/2
2) m o^/2 3 ) . . . mo(f/2»)...

Inverse of </>(£). that is, i[)(x) is the desired wavelet. It may be observed that for N — 1,
tp[x) is the characteristic function of [0,1) while ip(x) = 1 on [0,1/2) and —1 on [1/2,1)
and o elsewhere.

The orthonoimai V>as\s 2J'2ij>('2Ix — fc), j , fc £ 2, is then the Haar system.

Example 3.6 (Malvnr wavelet) [See 80, pp.75-87]. Let [a,,a,+i] be a sequence of closed
inforva/s on t]w real line It wJi<;rc ... n_2 < n_i < ao < aj < «2 < . . . , )im a,- = oo
and linij—^ a, — —oo. Put (, = ai+i — at and let <*( > 0 be positive numbers such
that Ci > a; + Qj+i for all i e Z. Let Wi(t) be the characteristic functions of the irterval
Ja,, a,+j] which must overlap if they are to be regular. More precisely it must satisfy thu
following conditions:

0 < u,{t) < 1 for all t e R
u),(t) = 1 if a, + f»i < t < a l + ) — Qj+i

u,(t) = 0 if t. < a, or t > HI+I + a,-+i

u'/(aj + T) + w (̂af - r) = 1 if \T\ > a,-
Ui-i(a. + T) - u),(Qi - T) if \T\ < Qj

14



It can be checked that £ (wiM)2 = 1
-oo

The Malvar wavelet is defined as follows:
(a)

fc = 0,1,2,3... and j € Z

or(b)

T-(.t~ail for j

= Jf-"j(t), for j

s i n - r — (t — a j ) , f o r j S 2 Z + \ a n d A: = 1 , 2 , 3 . . .

h
As seen above the Malvar wavelet has two distinct forms. Both forms are orthonormal

basis of Lj(.R).

Example 3.7 (Wavelet packets), (i) The Walsh system u;n(i) (see Section 2) is a wavelet
packet where hi; = ^-,g^ =• -j^,k = 0,l,wn(x),n e N and w n (x- k),n 6 N,k G Z are
orthonormal basis of Li(R). The Walsh system is an example of wavelet packet which is
not a wavelet. Every wavelet can be treated as a wavelet packet where <p — il>a 0 and
it> = ̂ f;0i...o (for details see [61, 93, 94, 112]]).

Let
, AT—i

\/2 j^rj

and
1 2N-1

Vz k=O

satisfying the conditions

9k = (-1)*+1 RMT-I-* or m1(?) = el

mo(O) = =1,7710(0 5*0 or [-7r/3,3r/3]

and

one possible choice may be

= 1 = cN f\s\n tfN-ldt, where
Jo
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cN f"(smt)af'-1dt=l
Jo

Formo = | (e" '^+l) and mite) = | ( e " ' ? - l ) {hk} and {<?*} can be calculated and we have

a corresponding wavelet packet. We have n wavelet for /to,/ii,/t2,/i3 defined as follows:

4 4

v/2/,;, = i(3-V3), v/2 h3 = i(l - V3)

It may be observed that ip(i) = wo(a:) appears as a fixed point of the operator T : L\(R)

Li(R) defined by
2 W - 1

a

which becomes

by taking Fourier transform.

If / is normalized, that is, /fjj,, j{x)dx = 1, the fixed point is unique and is given by

0(0 = »»o($/2) mofc/2*).... mote/2*)...

We may remark that periodized wavelet packets and wavelet packets on interval can be

obtained from the wavelet packets on Tt proceeding on the lines discussed in [30, 11, 79].

4 Wavelet packets in solution of differential equa-
tions

Let H and G be operators H and G on ti{Z) defined by the relation

Hf[i) = £ * « **_*•/(*)
(4-1)

Gf(i] = j

Tlic adjoint operators H' and G" of H and G respectively can be defined as follows:

~ a"~Q" ' 1 (4.2)

and

r (4-3)

Let Qn denote the linear span of integer translates of uin's:

f
f~i J f\ p V MJ /i n

I kez
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where {</£} 6 4(Z) and wn denote a wavelet packet. It can be verified that

"*. (5 - i) + E Gf{i) (4.5)

or \/2 /(t) = p + g for p € n2,, and g e n2n+1.
If we define <5/(t) = \/2 /(2t), then

or more generally

un = n2n © n2n+i

<5*nn = fij-'n © . . . © nk(n + 1) - 1, k > 0 (4.G)

Wickenhauser [112] has proved that for every partition P of the non-negative integers
into the sets of the form /*„ = {2kn,...,2k(n + 1) — 1}, the collection of functions
{2k/2 u>n[2kt - j) : hn G P, j e Z) is an orthonormal basis of L-2{R). Furthermore, the
wavelet packet basis of L2(.ft) is an orthonormal basis selected from among the functions

Wavelet packets form a library of functions {2k/2un{2kt — j)}. Applying the filters 'a'
and '6', we get a binary tree with root A jn0 and leaves n0, fii,.. -, fi2 — 1. As an example,
we consider a function defined at points xo,Xi,.. .Z7. The wavelet packet, coefficients of
this function are shown in the following figure

In

So

ss0

a/
sss

z,

«1
a/
ssx

\ 6
dss

x2

s2

\
as0

a/
sds

ay
s3

rfs.

dds

14

\ 6
do

sd0

ay
ssd

ay
sd)

\ b
dsd

xc

d2

\ b
dd0

ay
sdd

x7

d3

ddx

\ b
ddd

Wavelet packet coefficients

Each row is computed from the row above it by applying the Haar filters,

b =

which we indicate as "summing" (s) by the filter a and "differencing" (d) by the filter b,

respectively. In particular

V2
= -7= (so-si) etc.

V2
(4.8)
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The row number indicates the scale of wavelet packets whereas the column indices both
the frequency and the position parameters. The bases of coefficients in the rectangle
correspond to the decomposition of <53fl0 into the subspaces 5kQn, for 0 < n < 2'~fc. The
top box corresponds to b3Uu, the bottom box corresponds to fini for 0 < n < 2J

ssn0
^n (1<5n0

n,, »i

fin,

n-2
ih

<52n,
sn2

n< n5

5n : )
no|f2r

We have many choices of representing fi3tto as direct sum of orthonormal basis subsets.
From the multircsolution analysis any function in L2(R) ran be approximated by the
piecowise constant functions from fy provided j is large enough. Let us consider the
boundary value problem:

-u"{x) + cu{x) = f(x),
u(0) = «( l )=

(4.9)

where c > 0, a constant, / 6 L',(V) and solve it for u = u(x). In variational form, the
solution u 6 IKJ(r) of (4.9) satisfies

I (4.10)j(u'v' + uv)dx = I fv du

for all v 6 ll^(r).
To approximate « by the Galerkin's method, we choose a finite dimensional subspace

of W!x( V) which is a space spanned by the best basis of wavelet packet bases of 6kSlo(k > 0)
defined on the interval [0,1]. For getting numerical solution of (4.9) we choose a positive
value in and approximate u by an clement um 6 <5fcQm that satisfies

Jr(u'mv' + umv)dx = Jrf(x)v dx, v6 6knm (4.11)

where vm can be written as
iim = :£ diun[t-k) (4.12)

(c6Z

We need now to determine d%. By (4.9) and (4.12) we get

E dk" J {w'n(t - k)Jn,{t - fc') + "n{t - k)ujn,(t - k')} dx = Jr fvn,{t - k')dx (4.13)

LA =

where

L = Jr{un(t- kWn<(t ~ k') +un(t- k)un.{t - k')} dx ,

/ is a vector with components Jrfun'[t - k')dx and A = (djj) k g Z is the coefficient

vector of the unknown function.
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5 Convergence of wavelet and wavelet packet series

The problem of convergence of the wavelet series has been studied by Meyer [79], Wal-
ter [109, HO] and Kelly, Kon and Raphael [67]. Meyer has proved that under certain

' regularity conditions on wavelets, the wavelet series of continuous functions converge ev-
erywhere. Kelly ct al. have extended these results and have obtained results analogous to
those obtained by Carleson in 1966 and Hunt in 1968 for the Fourier series. We present
here three theorems concerning convergence of the wavelet packet series one generalizing
Lemma 1 in [110] and others extending the results in Kelly "t al. [67].

Let Wjnk be a wavelet packet of scale j , frequency index n, and position index k.
The wavelet packets [w.,nk : k € Z) are basis for 6Jfin. Since H and G satisfy (4.3)
{v>jnk)k£Z ilre orthonormal wavelet packets. There is a natural correspondence between
dyadic subintervals and subspaces of Ln namely /,„ «-»c f̂i,, where /,<.. = [A;2~J, (A:-i-1 )2~J].
We consider L2 = £ ftn> and /, a collection of disjoint dyadic intervals of the type /«.

n

satisfying 7?+ (positive half line) = f//,A. such that {II^.} is an orthonoruml basis for
L2(R) and has support [A-2"J, (k + l)2-->] of width 2"J. If / is cover of R then {\VJnk} is
an orthonormal basis of L^iR)-

A sequence Qm (-,y) of functions in Li{R) with parameter y belonging to R having
the following properties:

(i) there is a c > 0 such that

f°° \Qm{x,y)\dx < c, y&R, m 6 A" (5.1)

uch that

Qm[x,y)du—*\ uniformly on compact subsets of /?, as m —> oo (5.2)

./-oo

(ii) there is a c > 0 such that
ry+c

Jy-c

(iii) for each r > Om

sup \Qm[x, y)\ —» 0 as TO
l>

is called a quasi-positive sequence.
Every positive quasi sequence Qm(x, y) converges to 8(x — y) as in —> co [109]. Fcyer
kernel for trigonometrric system [110] and Norlund kernel for Walsh orthonormal system
[84] are quasi-positive sequences.

Lemma 5.1 The reproducing kernel of d'tln — Vj for the wavelet packet

<j,(r,t) = Vq{Vx,2H) (5.3)

where
q(x, t) = T wn{x - k)wn(t - k) (5.4)

it
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is a quasi-positive sequence provided q has the properties:

q(x + l,y + l) = q{x,y) 5.5(?)

|«77^ Q(x,y)\ < r,,,(l + \x-y\)~m, 0 < a,f3 < r,m 6 N 5.5(«) (5.5)

f?oo'l(xiy)o"dy = x"< 0<Q<r 5.5(tii)

In (5.5(ii)) the derivative is considered either in the distributional sense or in the sense

of dyadic derivative (see for example [89]).

Theorem 5.1 Every wavelet packet series of a function / € Ly converges at a point of

continuity if the reproducing kernel of the wavelet packet satisfies (5.5).

Theorem 5.1 follows from Lemma 5.1 if we proceed on the lines Lemma 1 [110].

Proof of Lemma 5.1 (i) We have

rco yoo

J~oo J—oo

< c f°° (1 + \x - 2h\)-1dx = c

qj(z,t)=-. / q(x,t)dx — 0 1 on /

and this implies the desired result.

Following Kelly, Kon and Raphael [67] we can define the concepts of multiresolution ex-

pansion, scaling expansion for wavelet packets and we can prove partial wavelet packets

analogue of Theorem 2.1 and Theorem 2.4 in [67]. These results can be stated as follows:

Theorem 5.2 The nmltiresolution expansion of wavelet packets and the wavelet packet

series of functions / 6 Li converge to / almost everywhere wavelet packets are in RB

class (see [G7, Definition 1.4]).

Theorem 5.3 Let

Pm(l, V) = £ Wn{Vx - k) Wn&V ~ k), 71 > 0, fc 6 Z

then

\PAx,y)\<c2'H{2'\x-y\)

where H(| • |) 6 RB, provided wn[x) log(2 + \x\) e RB.
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6 Wavelet packet coefficients

Interesting accounts of characterization of functions spaces in terms of wavelet coefficients
are presented in Daubechies [30, 289-312, 5S, 60a, 60, 79]. A few typical results are:

Theorem 6.1 [30]. / 6 LP(R), 1 < p < oo if and only if

6 LP{R)

T h e o r e m 6.2 [60]. / € Lipa, 0 < a < 1 if and only if

M < c 2-<i+«J

T h r o e m 6.3 [58]. For all e < 0 and all / e (f, the condition:

|c j f c |<c2-- ' ( n + l / : ; ) ( l + | 2 J i » - / t r ) , jeR and k € Z

implies that, for \x — xu\ < 1,

\x-xa\
This estimate is best possible.

Theorem 6.3 means that the Holder exponent (Lipschitz exponent) of / at a given
point Xo can be explicitly computed, upto a logarithmic factor, by size conditions 011 the
wavelet coefficients of / .

More recently, Jaffard [60a] has proved the following result:

Theorem 6.4 If sup £ \Ajik\" < c2("1-f"-""p/2)J, s > 0 then </ e B'^R"1), where

AJtk wavelet coefficients, wavelets <I>(x) = <f>{xi)4>{x2)...(p{xm), x = (xi,x->,...xm),<p(x)

scaling function.
The following theorem can be proved proceeding on the lines of Theorem 1 [57].

Theorem 6.4 Let j(t) be a positive and non-decreasing function defined on the in-

terval (0,1), satisfying the following conditions:

f j(u)u~2du < Aj{t)t~l as t -> 0

and

/ j(u)u~ldu < Aj(t) as t -> 0
Jo

Then / S Lipj(t) if and only if
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A beautiful description of numerical calculation of wavelet packet coefficient is given in

Wickerha user [113]. The problem of characterization of function spaces in terms of wavelet

packet coefficients is open. To examine the regularity characterization of 15 function

spaces given in Section 2 in terms of the orders of the wavelet packet coefficients will be

a formidable task. For Walsh wavelet packet at least one result of this type is known

(Siddiqi [91(b), Lemma 4.1]).

7 Approximation by wavelet packet polynomials

The projection of / 6 L2{R) on the subspace Vj is defined by the relation

P n U ) = £ <h* %<••- k e Z (7.1)

where cjk are wavelet, coefficients of the wavelet

The rate of convergence of the sequence P,,(/) is of great interest as it provides the

computational cost of representing f to a prescribed accuracy using some fj. It follows

immediately from a result of Strang and Fix [11] that

where / S c^p), 1], JV > 0. If the scaling function ip is regular in the sense that \dtp(x)\ <

cm(l + |z|-"') for all integer m > 0 then

lim ||Pn(/) - / | | L , = 0

For / e M£[0,1] we have

Let S,, denote the set of elements of the form

PN(I) = £ Cj,k ipj,k for n < N (7.4)

and

En(f) = inf \\f - P/H\\LP, 0 < p < OO (7.5)

The important problems for investigation are

(i) How can we construct good or near best approximation from En?

(ii) For what class of functions we have a given error of approximation of order O(n~a)7

22



(iii) Characterize those functions of / 6 Lp sucli that

IK(/)-/ll, = O(»-') (7-6)

where an{f) denote the Cesaro mean of order 1 of the wavelet series.

For problems (i) and (ii) we refer to DeVore and Lucier [40]. Problem (iii) has not been
investigated.

These three problems in the setting of wavelet packet series in general are basically
open. Only very recently it has been seen that [93] (7.2) and (7.'S) holds for wavelet
packets.

Let Ec,,* wn(x — k) be a wavelet packet series of / 6 L-i{Q, I),

= j PsU)\PnU) = £ <h* w»(* ~ k) \
[ k<N )

£N(/,L^_pmU|/-P||p (7.8)

Walter [109] has proved the following results for wavelet series. Wo have for each / €

/(*)= E C^J'^VX-Q + JT E 4>{2>x-k) (7.9)
k=—oa t=j k—-oo

where tp and t/t are Father and mother wavelets respectively

= / i W + / x j (x) (7.10)

where fj{x) € Vj and f*~j{x) 6 Vf- (orthogonal complement of Vo in VJ+i). We can write

fj(x) = I" qj(x,y) f(y)dy (7.11)
J~OO

where

?,(*.»)= E 2V(2J'. -Qv&V-k)
x~~oo

9j(x,y) —» 6(i — y) as j —> oo, where 6(-) is the Dirac delta function.

Theorem 7.1 For / e tff, s>\, \\f - fj\\m = 0(2-->(s-'/2').
Theorem 7.1 can be studied for relevant function spaces discussed in Section 2. These

two results due to Walter may be examined for wavelet packets.
For Walsh wavelet packet elegant approximation results have been obtained (sec for

example Moricz and Siddiqi [84]). How far these results can be extended to other wavelet
packets or to a class of wavelet packets is a challenging task. The author along with his
coworkers is engaged in obtaining appropriate results in this direction.
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8 Conclusion

Essentially, problems of convergence of wavelet packet series, characterization of function
spaces in terms of wavelet packet coefficients and approximation of functions by wavelet
packet polynomials are yet to be studied. Since such results exist in a special wavelet
packet, namely, Walsh orthonornml system, one may expect either natural extension or
modified version. However new techniques like counter part of the dyadic group and addi-
tion modulo 2 operations may be required. Wickerhauser [113] has developed an excellent
text book for understanding intricacies of wavelets and wavelet packets through computer
analysis. It will be a boon for users of these concepts. Solutions of boundary value prob-
lems through wavelet packets are being investigated currently by different groups in the
world and these techniques may prove superior in many respects to other existing tech-
niques. There exists close connection between wavelet and fractal theory. The existence
of a frame of the generalized Sobolev space (Sobolev spaces over a metric space say over
the Cantor set) may be an interesting question to be explored.
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