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Abstract

Organic semiconductors with the unique combination of electronic and me-
chanical properties may offer cost-effective ways of realizing many electronic
applications, e. g. large-area flexible displays, printed integrated circuits and
plastic solar cells. In order to facilitate the rational compound design of
organic semiconductors, it is essential to understand relevant physical prop-
erties e. g. charge transport. This, however, is not straightforward, since
physical models operating on different time and length scales need to be
combined. First, the material morphology has to be known at an atom-
istic scale. For this atomistic molecular dynamics simulations can be em-
ployed, provided that an atomistic force field is available. Otherwise it has
to be developed based on the existing force fields and first principle calcula-
tions. However, atomistic simulations are typically limited to the nanometer
length- and nanosecond time-scales. To overcome these limitations, system-
atic coarse-graining techniques can be used.

In the first part of this thesis, it is demonstrated how a force field can be
parameterized for a typical organic molecule. Then different coarse-graining
approaches are introduced together with the analysis of their advantages and
problems. When atomistic morphology is available, charge transport can
be studied by combining the high-temperature Marcus theory with kinetic
Monte Carlo simulations.

The approach is applied to the hole transport in amorphous films of tris(8-
hydroxyquinoline)aluminium (Alq3). First the influence of the force field
parameters and the corresponding morphological changes on charge transport
is studied. It is shown that the energetic disorder plays an important role for
amorphous Alq3, defining charge carrier dynamics. Its spatial correlations
govern the Poole-Frenkel behavior of the charge carrier mobility. It is found
that hole transport is dispersive for system sizes accessible to simulations,
meaning that calculated mobilities depend strongly on the system size. A
method for extrapolating calculated mobilities to the infinite system size is
proposed, allowing direct comparison of simulation results and time-of-flight
experiments. The extracted value of the nondispersive hole mobility and its
electric field dependence for amorphous Alq3 agree well with the experimental
results.
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Zusammenfassung

Organische Halbleiter weisen eine Kombination von elektronischen und
mechanischen Eigenschaften auf, die eine kostengünstige Realisierung vieler
elektronischen Anwendungen, z. B. großflächige flexible Displays, gedruckte
integrierte Schaltungen oder Kunststoff-Solarzellen ermöglichen können. Im
Zuge des Entwurfs neuer organischer Halbleiter ist es wichtig, relevante physi–
kalische Eigenschaften zu verstehen, z. B. Ladungstransport. Dies ist jedoch
mit Schwierigkeiten verbunden, da mehrere Modelle, die Effekte auf unter-
schiedlichen Zeit- und Längenskalen beschreiben, kombiniert werden müssen.
Zunächst muss die Materialmorphologie mit atomistischer Auflösung bekannt
sein. Diese kann durch Molekulardynamik-Simulationen generiert werden,
unter der Voraussetzung, dass ein atomistisches Kraftfeld zur Verfügung
steht, welches auf der Basis bestehender Kraftfelder und ab-initio Rech-
nungen entwickelt werden kann. Allerdings sind atomistische Simulationen
auf Längen- und Zeitskalen beschränkt, die in der Größenordnung einiger
Nanometer bzw. Nanosekunden liegen. Um größere Skalen zu erschließen
können systematische Vergröberungstechniken (Coarse-Graining) verwendet
werden.

Im ersten Teil dieser Arbeit wird gezeigt, wie ein Kraftfeld für ein typ-
isches organisches Molekül parametrisiert werden kann. Dann werden ver-
schiedene Vergröberungsansätze eingeführt und deren Vorteile und Probleme
diskutiert. Sobald eine atomistische Morphologie zur Verfügung steht, kann
der Ladungstransport durch eine Kombination der Hochtemperatur-Marcus-
Theorie mit der kinetischen Monte-Carlo-Methode simuliert werden.

Dieser Ansatz wird verwendet, um den Löchertransport in amorphen
Schichten von Tris-(8-Hydroxychinolin)-Aluminium zu simulieren. Zunächst
wird der Einfluss der Kraftfeldparameter und der entsprechenden morpholo-
gischen Veränderungen auf den Ladungstransport untersucht. Es wird gezeigt,
dass die energetische Unordnung im System eine wichtige Rolle spielt. Diese
beeinflusst die Ladungsträgerdynamik erheblich, entsprechende räumliche
Korrelationen beeinflussen das Poole-Frenkel-Verhalten der Ladungsträger–
mobilität. Es ist zu beobachten, dass Löchertransport dispersiven Charak-
ter besitzt, d. h. berechnete Beweglichkeiten hängen stark von der Sys-
temgröße ab. Es wird ein Verfahren zur Extrapolation der berechneten
Beweglichkeiten zur unendlichen Systemgröße vorgeschlagen, das einen di-
rekten Vergleich der Simulationsergebnisse zu Time-Of-Flight-Experimenten
ermöglicht. Die extrahierten Werte der nichtdispersiven Löchermobilität und
ihre Abhängigkeit vom elektrischen Feld stimmen für amorphes Alq3 gut mit
den experimentellen Ergebnissen überein.
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Chapter 1

Organic electronics

When the first transistor was invented in the middle of 20th century [5],
inorganic semiconductors such as silicon and germanium began to play a
dominating role in electronics, where metals were prevailing before. To-
day science and industry are working on a new class of materials, known
as organic semiconductors, which promise to revolutionize electronics again.
Organic semiconductors have electronic properties approaching those of inor-
ganic counterparts combined with mechanical properties of plastic materials,
offering low-cost processing and a possibility to realize new applications, such
as large-area flexible displays, low-cost printed integrated circuits and plastic
solar cells [6]. Moreover, by varying the chemistry slightly, it is possible to
modify material properties of interest (e.g. band gap), to achieve the desired
device performance.

There are two major classes of organic semiconductors: low molecular
weight materials (usually processed in vacuum) and polymers (usually pro-
cessed by wet chemical techniques). Typical examples are shown in Fig. 1.1.
Both have in common a conjugated π-electron system, which is responsible
for their semiconducting properties. Thin films of organic semiconductors
are typically used in three types of devices: (1) Organic light emitting diodes
(OLED), (2) Organic field-effect transistors (OFET), (3) organic photovoltaic
cells (OPVC). Typical structures of these devices are depicted in Fig. 1.2 and
Fig. 1.3. An organic light emitting diode (OLED) emits light in response to
an electric current [7]. Solar cell does the opposite: it converts the energy
of sunlight directly into electricity [8]. Organic field-effect transistor controls
the conductivity of a channel, made of organic semiconductor, by applying
electric field [9].

In the following section we will discuss operation principles of the organic
electronics devices in detail.
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Figure 1.1: Typical compounds used in organic electronics applications.

1.1 Devices

1.1.1 Organic light emitting diodes

A typical OLED is composed of several layers of organic materials sand-
wiched between two electrodes. Charge carriers of both signs are injected
from the electrodes and recombine, forming a neutral exciton, a bound state
of an electron-hole pair. The decay of an exciton results in the emission
of radiation whose frequency is in the visible range. The frequency of this
radiation depends on the optical band gap of the material.1 For the opera-
tion of the device, charge carriers must be efficiently injected to the organic
film from the electrodes. This requires low energetic barriers at the metal-
organic interfaces for both contacts in order to inject equally high amounts
of electrons and holes and to provide a balanced charge carrier flow. In sin-
gle layer devices hole and electron concentrations might be imbalanced, for
example due to different electron and hole mobilities, which leads to low ef-
ficiency. Better efficiency is obtained if additional layers are added to the
device. The hole (electron) transporting layer is used to provide intermedi-
ate energy states to allow holes (electrons) to cascade through smaller gaps

1Optical band gap is related to the exciton binding energy and the energy difference
between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO).

4
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1.1. DEVICES

(a) (b)

Figure 1.2: Organic light emitting diode. (a) Typical device consists of the following
layers: electron transporting layer (ETL), hole blocking layer (HBL), emission layer (EL),
electron blocking layer (EBL), hole transporting layer (HTL). Adapted from [6]; (b) Energy
levels in OLED layers.

in case there is a barrier between the metal work function and the HOMO
(LUMO) of the emission layer. Hole (electron) blocking layers have very
deep HOMO (or high LUMO) levels which help to prevent holes (electrons)
from passing through the device to the opposite electrode without forming
an exciton. Typical OLED structure is shown in Fig. 1.2.

The first high-performance OLED was reported in 1987 [10]. These first
devices used tris(8-hydroxyquinoline)aluminium (Alq3) (see Fig. 1.1) as an
electron transporting layer. After more than two decades of intensive re-
search and development of OLEDs, Alq3 continues to be the workhorse in
low-molecular weight materials for these devices. It is used as an electron-
transporting layer, as well as an emission layer where green light emission is
generated by the electron-hole recombination in Alq3. It also serves as a host
material for various dyes, helping to tune the emission color from green to
red [11]. Many studies have been focused on the optimization of OLED effi-
ciency and long-term stability, by means of the understanding of charge trans-
port properties of amorphous thin films, see e.g. Refs. [12, 13, 14, 15, 16, 17].

Understanding microscopic mechanisms of charge transport in amorphous
Alq3 is one of the topics of this thesis. It is covered in detail in Chapter 8.

1.1.2 Organic field effect transistors

Organic field effect transistors (OFETs) are the basic building blocks for flex-
ible integrated circuits and displays. An OFET can be viewed as a resistor,
that can be adjusted by applying external voltage. A typical OFET struc-
ture is shown in Fig. 1.3a. The current between the source and the drain

Rev. 117(e1a68f80ce2b) from 2011-03-08
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(b)(a)

Figure 1.3: Organic electronics devices (a) field effect transistor; (b) organic solar
cell. Adapted from [6].

electrodes is modulated by applying voltage to the gate electrode, which is
separated from the transporting layer by a dielectric. Application of volt-
age to the gate electrode changes the charge carrier density in the organic
semiconductor, thus modifying the resistance. In an ideal device there is no
conductance without the application of the gate voltage (“off” state). When
the gate voltage is applied, current between source and drain appears (“on”
state). The on-off current ratio characterizes the ability of the device to
“switch off”. Currently values up to 108 can be achieved [18]. Device perfor-
mance also critically depends on charge carrier mobility, which must be high
enough in order to obtain source-drain currents, which can be modulated by
a reasonable gate voltage. Therefore, designing materials with high charge
carrier mobilities is a key to high-performance OFETs.

1.1.3 Organic solar cells

Organic solar cells convert sunlight into electric current. This process can be
schematically described by the following steps: (1) absorption of a photon
leading to the formation of a bound electron-hole pair (exciton); (2) exciton
diffusion to a region where exciton dissociation (charge separation) occurs;
and (3) charge transport within the organic semiconductor to the respective
electrodes [19].

The large optical band gap in organic materials (normally higher than
2 eV) limits light harvesting to 30 % [19], reducing the device efficiency. To
overcome this problem, low band gap polymers must be designed [20, 21].
Another problem is that primary photoexcitations do not lead directly to free
charge carriers, but to coulomb-bound electron-hole pairs (excitons). Since
exciton binding in organic semiconductors is of the order of 10 − 50 kBT ,
thermal energy can not drive charge separation, as it would happen in inor-

6
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1.2. MOBILITY MEASUREMENTS

ganic materials. Instead, an additional mechanism is required for the charge
separation to occur [22]. One way to achieve this is to use a mixture of
donor and acceptor compounds (e.g. conjugated polymers with fullerenes).
By tuning the difference between the lowest unoccupied molecular orbitals
(LUMO) of a donor and an acceptor it is possible to compensate for the exci-
ton binding energy. In this case, electron transfers to the acceptor, leaving a
hole in the donor. After the separation, free carriers diffuse to the electrodes
and generate electric current in the external circuit.

Since the typical exciton diffusion length in organic materials is of the
order of 10 − 20 nm, only excitons created within this distance from the
interface can reach it. This leads to the loss of absorbed photons further
away from the interface and results in low efficiencies [23]. One way to solve
this problem is to use bulk heterojunctions - blends of the donor and acceptor
components in a bulk volume, which exhibit phase separation in a 10−20 nm
length scale (see Fig. 1.3b). In such a nanoscale interpenetrating network,
each interface is within a distance less than the exciton diffusion length from
the absorbing site. By using the bulk heterojunction concept it is possible
to increase the interfacial area between the donor and acceptor phases by
orders of magnitude, significantly improving the solar cell efficiency [19].

1.2 Mobility measurements

The devices mentioned above share one common feature: their performance
critically depends on the efficiency with which charge carriers move within
the π-conjugated materials. The physical quantity which describes this ef-
ficiency is charge carrier mobility. Mobility is one of the key parameters of
interest - both towards realizing improved device performance, as well as
understanding the underlying semiconductor physics in these materials. It
is in particular important for the efficiency of transistors (how fast they can
switch) and solar cells (how fast the separated charges can “run away” from
each other). Mobility strongly depends on the processing, chemical struc-
ture and purity of a material. Organic semiconductors have lower mobilities
compared to their inorganic counterparts2: values of 0.1 − 1.0 cm2/Vs are
considered to be good for organic semiconductors. Most materials have mo-
bilities which are orders of magnitude smaller. For example, hole mobilities
in amorphous Alq3 are of the order 10−9 − 10−8 cm2/Vs [26].

A number of techniques was designed in order to measure charge carrier
mobility experimentally. An extensive review is given in Ref. [27]. Here we

2Typical electron mobility for crystalline silicon at room temperature (300 K) is
1400 cm2/Vs and the hole mobility is around 450 cm2/Vs [24, 25].

Rev. 117(e1a68f80ce2b) from 2011-03-08
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CHAPTER 1. ORGANIC ELECTRONICS

Figure 1.4: Typical transient photocurrents (a) non-dispersive; (b) dispersive. Inset:
double logarithmic plot. Taken from [27].

will briefly describe the time-of-flight, diode and transistor measurements.

1.2.1 Time-of-flight measurements

The time-of-flight (TOF) method is based on the measurement of the carrier
transit time τ , namely, the time required for a packet of carriers to drift
across the organic semiconducting layer. In the TOF setup the material of
interest is sandwiched between two electrodes, one of which is transparent.
Charges are generated by photo-excitation of the film through irradiation
with a short laser pulse. Subsequently, carriers propagate along the electric
field and generate a displacement current, which flows until charge carriers
arrive at the other electrode. Typical photocurrents are shown in Fig. 1.4.
From the cusp of the non-dispersive photocurrent (Fig. 1.4a) the transit time
τ can be determined. Then the charge carrier mobility is calculated as

µ =
v

E
=

d

Eτ
=

d2

V τ
(1.1)

where V is the applied voltage, E = V/d is the electric field, and d is the
sample thickness.

Polymers and amorphous glasses often exhibit dispersive photocurrents,
without any definite cusp, as shown in Fig. 1.4b. In this case, τ can still
be determined from the double logarithmic plot. Although mobilities deter-
mined from dispersive transients are thickness-dependent. This means that
the dispersive mobility is not a material constant, but depends on the system
size. First microscopic statistical model of dispersive transport was proposed
in Ref. [28]. As opposed to the Gaussian packet (nondispersive transport),
where the peak and the mean are located at the same position and move

8
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1.2. MOBILITY MEASUREMENTS

with the same velocity, the mean carrier of a “dispersive” packet propagates
with a velocity which decreases with time as it separates from the peak which
remains nearly fixed at the point of origin of the carriers.

Due to the requirement that the absorption depth of the laser excitation
must be much smaller than the sample thickness, TOF method requires thick
samples (usually in the range from 4 to 20 µm). Thus, the measured bulk
mobilities are sensitive to the positional and orientational disorder and de-
fects in the sample [29]. Note that a typical TOF setup has very low charge
carrier densities, meaning that single carrier mobilities are measured. An
advantage of the time-of-flight method is that hole and electron mobilities
can be studied separately.

1.2.2 Diode and transistor measurements

An alternative approach to measure the mobility of an organic material is
to embed it as a functional layer into a device and extract the mobility
from the device characteristics [30]. In an OLED, the material of interest
is sandwiched between two electrodes, which are chosen in such a way that
only holes or electrons are injected at low voltage. In the absence of traps
and at low electric fields, current-voltage characteristics may be expressed
as [27]:

I =
9

8
ǫ0ǫrµ

U2

L3
(1.2)

Here ǫ0 (ǫr) is dielectric permittivity of free space (of the semiconducting
layer) and L is the device thickness. µ is charge carrier mobility, which
is assumed to be constant throughout the sample. The prefactor 9/8 comes
from the assumption that the diode has a rectangular geometry. Dependence
(1.2) is characteristic of a space-charge limited current (SCLC). Space-charge
limitation of the current means that the number of charge carriers in the
material is not limited by the injection but by the amount of the carriers
already present in the sample. Their electrostatic potential prevents injection
of the additional charges [31]. In the SCLC scheme, the charge density is not
uniform across the material and is the largest close to the injecting electrode.
In the presence of traps and at high fields, Eq. 1.2 must be modified [27].

Similarly, carrier mobilities can be extracted from the electrical charac-
teristics measured in a field-effect transistor (FET) configuration. The I −V
(current-voltage) expression in a linear regime is given by

ISD =
W

L
µ (VG − VT ) VSD (1.3)

Rev. 117(e1a68f80ce2b) from 2011-03-08
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CHAPTER 1. ORGANIC ELECTRONICS

and in a saturated regime by

ISD =
W

2L
µC (VG − VT )2 (1.4)

Here, ISD and VSD are the current and the voltage bias between source and
drain, respectively, VG denotes the gate voltage, VT is the threshold voltage
at which the current starts to rise, C is the capacitance of the gate dielectric,
and W and L are the width and the length of the conducting channel.

In a FET setup mobilities are measured at high charge carrier densities.
Since charge transport occurs in a narrow channel, it is affected by structural
defects at the interface, surface topology, or polarity of the dielectric. This in-
fluence might be irrelevant for amorphous materials, but becomes important
for crystalline or liquid-crystalline materials.

1.2.3 Summary: mobility measurements

Different techniques discussed above operate at different conditions: single
carrier bulk mobilities are measured by the time-of-flight technique, whereas
interface mobilities at high charge carrier densities are extracted from OFET
characteristics. Other techniques exist, such as Pulse Radiolysis - Time Re-
solved Microwave Conductivity (PR-TRMC) [32], which measure local mo-
bilities of small well-ordered domains. As a result, mobility values obtained
by different methods for the same material can differ by orders of magni-
tude [27]. This should be kept in mind when comparing simulations with
experimental data. Single carrier kinetic Monte Carlo simulations described
in the next Chapter mimic time-of-flight experiments and thus must be com-
pared to them. Nevertheless care must be taken when the simulation box
contains only a few hopping sites as explained in detail in Chapter 8.

1.3 Importance of theory and simulation

Organic electronic devices presented in this chapter are promising candidates
to replace (at least for some applications) their silicon-based analogues. This
would simplify the production process, since cost-efficient techniques such as
spin coating and ink-jet printing can be employed. Combination of mechan-
ical and semiconducting properties of conjugated polymers allows design of
flexible electronics, such as bendable solar cells, rollable light sources and
displays.

In order to be competitive on the market, organic electronic devices must
possess high enough efficiency and stability. At the moment only OLEDs are

10
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1.3. IMPORTANCE OF THEORY AND SIMULATION

routinely used in commercial applications: Samsung, Sony and HTC fabri-
cate TV and smartphone devices with OLED displays [33]. However, solar
cells reported so far show very low power conversion efficiency (about 5% [20])
and are not stable long enough under ambient conditions. To systematically
improve the device performance and stability, fundamental understanding
of the underlying physical and chemical processes is required. It is impor-
tant to understand the relationships between the chemical structure of the
compound, its morphology and finally the properties of the resulting thin
film or device. In order to achieve this understanding, models and methods,
applicable on different length- and time scales should be combined. In the
past decades methods were developed to describe charge transport in organic
materials on microscopic, mesoscopic and macroscopic levels. On a micro-
scopic level Marcus theory is normally used (see Chapter 2), which provides
rates for the charge hopping between neighboring molecules based on first
principles calculations. On the mesoscopic level charge carrier mobilities can
be calculated by solving a master equation for a system of hopping sites,
given some assumptions about the charge hopping rates. This approach is
usually called the Gaussian disorder model and it is described in detail in
Chapter 2. On the macroscopic level device characteristics can be calculated
using drift-diffusion equations, given charge carrier mobility is known as a
function of temperature, electric field and charge carrier density [34].

In this thesis microscopic and mesoscopic levels of description are com-
bined to calculate charge carrier mobilities in amorphous films of tris(8-
hydroxyquinoline)aluminium (Alq3). To model amorphous films classical
molecular dynamics simulations are used. The approach works as follows:
first, an atomistic force-field for Alq3 is developed and validated, based on
existing force-fields, first principle calculations and experimental data. Sec-
ond, realistic material morphologies are obtained using molecular dynamics
simulations. Semi-classical Marcus theory is then used to calculate charge
hopping rates between all neighboring molecules in the amorphous morphol-
ogy. Finally, kinetic Monte Carlo simulations are used to calculate charge
carrier mobilities.

The above mentioned techniques are used to study how non-bonded force-
field parameters affect the morphology of amorphous Alq3 and how sensitive
charge transport properties are to the corresponding morphological changes.
It is shown that in the particular case of Alq3, the energetic disorder plays
an important role, defining charge carrier dynamics, and its spatial corre-
lations govern the Poole-Frenkel behavior of the charge carrier mobility. It
is found that hole transport in amorphous Alq3 is dispersive for the system
sizes accessible to simulations, meaning that calculated mobilities depend
strongly on the system size. A method for extrapolating calculated mobil-
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ities to the infinite system size is proposed, allowing direct comparison of
simulation results and time-of-flight experiments. The extracted value of the
non-dispersive hole mobility and its electric field dependence for amorphous
Alq3 agree well with the experimental results.
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Chapter 2

Theoretical description of

charge transport

Charge transport mechanisms and their descriptions in organic semiconduc-
tors can vary significantly depending on the degree of structural order. In
the extreme case of highly purified molecular crystals at low temperatures
band transport is observed [35]. This means that charge carriers are delo-
calized and their mobility is determined from their effective mass and the
mean relaxation time of the band states [30]. However, electronic delocaliza-
tion is weak compared to inorganic semiconductors (typically only a few kBT
at room temperature). Therefore room temperature mobilities in molecular
crystals only reach values in the range from 1 to 10 cm2/Vs [36]. A power
law temperature dependence of charge mobility is a characteristic feature of
band transport:

µ ∝ T−n with n = 1 . . . 3 (2.1)

and mobility decreases with increasing the temperature.
The other extreme case is an amorphous solid, where charge carriers are

strongly localized. In this case charge transport can be described by hopping
of charge carriers between localized states, which can be entire molecules
or conjugated segments in case of polymers. Charge localization results in
much lower mobility values (around 10−3 cm2/Vs, and lower). In the hopping
regime the temperature dependence shows an activated behavior and depends
on the applied electric field E:

µ(E, T ) ∝ exp
[

(−α/kBT )2
]

· exp(β
√

E) (2.2)

where α and β are numerical constants, kBT is a thermal energy. Typical
value of α is of the order of 0.1 eV. For β values of the order of 10−3 (cm/V)0.5

are observed [26]. Electric field and temperature dependence of the charge
carrier mobility in the hopping regime are discussed later in this chapter.
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An intermediate between the band and the hopping transport regimes cor-
responds to the situation when a charge carrier is spread over several neigh-
boring molecules. In this case semi-classical dynamics (for details see [37, 38])
is a suitable method of description.

In this thesis the focus is on amorphous highly disordered materials
(Alq3), where charge transport occurs by thermally activated hopping. In
order to better understand the microscopic picture of charge transport, the
derivation of the Marcus rate equation in the high-temperature limit is out-
lined in the next section.

2.1 High temperature semi-classical Marcus

theory

Let us consider a single electron hop from a molecule D (donor) to a molecule
A (acceptor), which can be viewed as an electron transfer reaction:

D−A → DA− (2.3)

where D and A denote donor and acceptor states respectively. D− denotes
the reactant state with an excess electron localized on the donor. After the
electron has moved to the acceptor the product state is formed.

Taking into account that in organic semiconductors the intermolecular
interactions are weak, the donor |D〉 and acceptor |A〉 states can be approx-
imated by the non-interacting molecular orbitals, or diabatic states, and the
electronic Hamiltonian takes its tight-binding form [39]:

Hel = ED |D〉 〈D| + EA |A〉 〈A| + J (|D〉 〈A| + |A〉 〈D|) (2.4)

where ED, EA are the energies of the individual states (sometimes referred
to as site energies), and J is the electronic coupling (transfer integral) for
the two states.

In order to describe charge transfer reactions which are coupled to the
nuclear motion, it is helpful to introduce a reaction coordinate q, related to
the actual positions of the nuclei, which connects the donor and acceptor
states (see Fig. 2.1).

To simplify the derivation, all nuclear motions are treated classically. We
also assume that the potential energy surfaces for the initial and final states
are harmonic with identical curvature.1 The Hamiltonian of Eq. 2.4 can then

1A more general treatment, where different curvatures of the initial and final states are
allowed is also possible [41]
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Figure 2.1: Potential energy surfaces for a DA complex in a harmonic approx-

imation. The driving force (free energy difference) ∆G and the reorganization energy λ
are indicated. Adapted from [40].

be rewritten as:

Hel = |D〉 〈D|
{

ED +
1

2
ω2

q (q − qD)2

}

+ |A〉 〈A|
{

EA +
1

2
ω2

q (q − qA)2

}

+ J (|D〉 〈A| + |A〉 〈D|) (2.5)

where ωq is the vibrational frequency of the mode promoting the charge
transfer. Taking into account that the coupling J is small, it is possible to
describe the electron transfer reaction within the framework of the pertur-
bation expansion with respect to J where diabatic states (non-interacting
donor and acceptor molecules) represent the zeroth-order Hamiltonian [42].
The first-order correction is then given by the Fermi’s Golden Rule [43]:

kDA =
2π

~

∫

dq p(q)|J2|δ (UD(q) − UA(q)) (2.6)

where

UD(q) = ED +
1

2
ω2

q (q − qD)2

UA(q) = EA +
1

2
ω2

q (q − qA)2 (2.7)

and the averaging is weighted by the canonical distribution of the nuclear
positions:

p(q) ∝ exp [−UD(q)/kBT ] (2.8)
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In the approximation of parabolic potential energy surfaces (PES), the in-
tegration can be carried out analytically, providing the expression for the
charge transfer rate [44, 45, 46]:

kDA =
2π

~
|J |2

√

1

4πkBTλ
exp[−(∆G + λ)2/4λkBT ] (2.9)

where λ is the so-called reorganization energy and it is related to the cur-
vature of the parabolic PES. ∆G is the reaction driving force and is given
by the difference of the PES minima (see Fig. 2.1). In a more general case,
when the number of vibrational degrees of freedom is macroscopic, ∆G has
to be understood as a free energy difference during the reaction. Eq. 2.9 is
often referred to as a Marcus rate in the high-temperature limit.

From Eq. 2.9 it is clear that in order to calculate the charge hopping
rate, one has to know several parameters: (1) electronic coupling element or
transfer integral J , (2) reorganization energy λ and (3) ∆G = ED − EA -
free energy difference between reactant and product states. ED and EA are
normally referred to as site energies. Below we discuss how to extract these
parameters from quantum chemical/classical calculations.

2.2 Reorganization energy

The reorganization energy is one of the key quantities that controls the rates
for charge transfer. From Eq. 2.9 one can see, that in the normal regime
(|∆G| < λ) the rate decreases exponentially with the increase of λ. Therefore,
if high mobility is required for a particular application, compounds with low
reorganization energies should be used.

Usually the reorganization energy is divided into two parts: inner and
outer contributions. The inner (intramolecular) contribution arises from the
change in the equilibrium geometry of the donor and acceptor molecules in
the charge transfer reaction. The outer reorganization energy is due to the
electronic and nuclear polarization/relaxation of the surrounding medium.
In many cases these contributions are of the same order of magnitude [47].
Methods to estimate the outer reorganization energy were mainly developed
to describe charge transfer in solutions [40], so it is desirable to extend these
standard models to be able to calculate outer reorganization energy for a
wide range of organic materials. In our calculations presented in Chapters 7
and 8 we neglected the outer reorganization energy.

Below, the intramolecular reorganization energy is defined in terms of
vibronic modes. In order to understand separate contributions to λ, it is
convenient to switch to a “monomer” picture. The PES of the donor and

16
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2.2. REORGANIZATION ENERGY

Figure 2.2: Potential energy surfaces of a donor and an acceptor molecules

related to charge transfer. See text for details. Taken from [47].

acceptor molecules, involved in a transfer reaction D + A+ → D+ + A (hole
transport) are shown separately in Fig. 2.2. Electronic states A1(D1) and
A2(D2) correspond to the neutral and cationic states of the acceptor (donor),
respectively. Charge transfer process can be formally divided into two steps:
(1) simultaneous reduction of A+ and oxidation of D at frozen reactant ge-
ometries, corresponding to the vertical transition from the minimum of D1
surface to D2 and a similar A2 to A1 transition; (2) relaxation of the product
nuclear geometries.

Thus, the intramolecular reorganization energy consists of two terms [47]
(see Fig. 2.2):

λi = λ
(A1)
i + λ

(D2)
i (2.10)

with λ
(A1)
i = E(A1)(A+)−E(A1)(A) and λ

(D2)
i = E(D2)(D)−E(D2)(D+). Here

E(A1)(A+) and E(A1)(A) are the energies of the neutral acceptor A at the
cation geometry and optimal ground-state geometry, respectively. E(D2)(D)
and E(D2)(D+) are the energies of the cation D+ at the neutral geometry
and optimal cation geometry.

Formula 2.10 allows to compute the reorganization energy of a cation (hole
transport) based on four quantum chemical calculations. Similar procedure
can be used to calculate the reorganization energy for an electron transport.
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2.3 Transfer integrals

A number of computational techniques has been developed for calculation of
electronic couplings, or transfer integrals, Jij [48]. A widely used approach
is to use Koopmans’ theorem and to estimate the transfer integrals for holes
(electrons) as half the splitting of the HOMO (LUMO) levels in a system
made of two molecules in the neutral state [47]. In this approach a quan-
tum chemical calculation has to be performed for each pair of neighboring
molecules, making it computationally demanding for big systems. Also care
must be taken, when splitting approach is used for asymmetric dimers. In
such a situation, a part of the electronic splitting can simply arise from the
different local environments experienced by the two interacting molecules, so
additional correction terms are required [49].

Another approach, often called a projective method, relies on the projec-
tion of molecular orbitals of monomers onto the manifold of the molecular
orbitals of the dimer within a Counterpoise basis set [50, 51]. Recently the
relation between calculation parameters, (e.g. basis set, model chemistry)
and associated computational costs for the projective method were system-
atically evaluated, finding that systems up to several thousand molecules can
be treated on a DFT level [52].

An alternative approach to evaluate transfer integrals was reported by
J. Kirkpatrick [53]. It is based on Zerner’s Independent Neglect of Differ-
ential Overlap (ZINDO) Hamiltonian [54], which requires only a single self-
consistent field calculation on an isolated molecule to be performed in order
to determine the transfer integral for all pairs of molecules. The advantage
of this method is that the density matrix for a pair of molecules is not cal-
culated explicitly, but constructed based on the relative geometry of the two
molecules and the transporting orbitals of the isolated molecules. Therefore,
only a single ZINDO calculation for each type of molecule is needed for all
pairs. Additionally, overlap integrals for atomic orbitals can be precalculated
and stored, which further improves performance of the method. In this work
the ZINDO method was used to calculate transfer integrals for systems con-
taining up to 14.000 molecules, which is beyond the capabilities of the other
methods.2

2It is practically impossible to estimate the accurracy of the ZINDO method a priori.
In practice one can compare the results obtained by different levels of theory for a specific
system to judge, whether the most efficient method still provides a reasonable accuracy.
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2.4 Free energy difference

Hopping from a molecule i to another molecule j is driven by the free en-
ergy difference ∆G. One can see from Eq. 2.9, that the charge transfer
rate depends exponentially on ∆Gij, which makes the free energy term very
important, especially in the case of materials with large energetic disorder,
where the width of the distribution of site energies Ei can be of the order of
0.1 eV.

In general ∆Gij can have several contributions. If charge transport is
studied under the externally applied electric field E, the corresponding con-
tribution reads ∆Gext

ij = eErij where e is elementary charge and rij is the
distance between molecules i and j.

If molecules have large dipole moments, the electrostatic contribution
to ∆G might be significant [55]. The corresponding ∆Gel

ij arises from the
interaction of the charge carrier with the surrounding dipoles. It can be
calculated classically using partial charges for charged and neutral molecules
in the ground state obtained from density functional theory calculations as
described in [56].

Finally, if molecules are highly polarizable, electronic polarization must
be taken into account in addition to the simple electrostatic picture. Elec-
trostatic interactions between molecules induce dipole moments on them,
which in turn produce an electric field, so the problem must be treated self-
consistently [57].

When polymers are studied, charge carriers are localized not on the whole
polymer chains, but on the so-called conjugated segments, which can have
different lengths [58]. If the hopping occurs between conjugated segments of
different lengths, the difference in HOMO (LUMO) levels must be also taken
into account. Another term accounts for the energetic difference when the
hopping occurs between chemically identical molecules with different confor-
mations at finite temperatures, if the conformational disorder is significant.
This contribution is ignored in this thesis.

2.5 Gaussian disorder model

Using Eq. 2.9 together with the techniques to calculate charge transport pa-
rameters (e.g. transfer integrals) mentioned in the previous sections, it is pos-
sible to study charge transport in realistic morphologies (based on molecular
dynamics simulations) without any fitting parameters [59]. Before describing
this type of simulations in detail it is useful to discuss the so-called Gaussian
disorder model (GDM), in which charge transport parameters are not calcu-
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lated, but obtained by fitting experimental data, or simply prescribed [60].
The Gaussian disorder model is a generic model for hopping transport. GDM
(or its minor modifications) can explain experimentally observed transport
characteristics, such as field and temperature dependence of charge carrier
mobility, dispersive/non-dispersive transport. It captures all the relevant
physics of hopping transport, that is why it is essential to understand GDM
before performing simulations based on realistic morphologies.

In GDM charge carriers are assumed to be localized on the sites of a cubic
lattice. Instead of Marcus rates (Eq. 2.9) the Gaussian disorder model uses
Miller-Abrahams rates, originally used for inorganic semiconductors [61]:

kij = ν0 exp(−2γRij)







exp

(

−ǫj − ǫi

kBT

)

for ǫj > ǫi

1 for ǫj < ǫi

(2.11)

Here ν0 is a material-specific prefactor, Rij is the separation between sites i
and j, γ is the overlap factor, and ǫi and ǫj are the site energies. The first
exponential term describes the decrease in electronic coupling with molecular
separation, thus modelling the decay of the overlap of the wave functions of
neighbors. The obvious simplification here is that it does not depend on
the relative orientations of the molecules. The last term is the Boltzmann
factor for an upward jump and is equal to 1 for a jump downward in energy.
Energetic disorder is simulated by assigning site energies taken from the
Gaussian distribution with variance σ:

p(ǫ) =
1√

2πσ2
exp

(

− ǫ2

2σ2

)

(2.12)

The “degree” of energetic disorder in the system is characterized by the
dimensionless parameter σ̂ = σ/kBT . Positional disorder is modelled by
allowing the wave function overlap parameter, Γij = 2γRij, to fluctuate
in a random manner. It is done by considering Γij = Γi + Γj, each varying
randomly according to the Gaussian probability density of standard deviation
δΓ. The variance of Γij is Σ =

√
2δΓ. It characterizes the “amount” of

positional disorder in the system.

GDM was extensively studied by Bässler and coworkers using time-of-
flight type (see Sec. 1.2.1) kinetic Monte Carlo simulations [60, 62, 63]. In
the following, their main findings are briefly summarized.
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2.5.1 Temperature dependence

At low electric fields, charge carrier mobilities were found to depend on tem-
perature in a non-Arrhenius fashion:3

µ(T ) = µ0 exp

[

−
(

2σ

3kBT

)2
]

= µ0 exp

[

−
(

T0

T

)2
]

(2.13)

with σ representing the standard deviation of the site energy distribution
from Eq. 2.12. This expression provides a way to extract the energetic disor-
der parameter σ from an experimentally measured temperature dependence.
Note that positional disorder Σ does not affect temperature dependence of
charge mobility. It is solely defined by the energetic disorder parameter σ.

2.5.2 Field dependence

When energetic disorder is not present or very small (σ̂ . 2), charge mobility
decreases with the increase of electric field. For (σ̂ & 2) the opposite behavior
is observed. In all cases, the field dependence of the mobility approaches a
log µ ∝ βE1/2 law at moderately high fields (& 7 × 105 V/cm), known as
Poole-Frenkel behavior [65]. Poole-Frenkel dependence is routinely observed
in time-of-flight measurements for amorphous organic compounds. However,
experimentally it is also observed at lower electric fields. To obtain Poole-
Frenkel behavior at low fields, site energy spatial correlations must be taken
into account [55, 66]. Fundamental question about the origin of Poole-Frenkel
behavior in general is still open [67, 34, 68].

2.5.3 The nondispersive to dispersive transition

As already discussed in Sec. 1.2.1, charge transport becomes dispersive when
the time required for a packet of carriers to reach the dynamic equilibrium
becomes comparable to the transient time. Under these conditions current
transients do not show a plateau region and extracted carrier mobilities de-
pend on the system size. A dispersive - nondispersive transition was observed
in GDM simulations, in agreement with the experimental data [69]. An em-
pirical relationship between the critical temperature Tc (equivalent to the
critical disorder parameter σ̂c) and the sample thickness was also established:

σ̂2
c = 44.8 + 6.7 log L (2.14)

3This formula was obtained by fitting the experimental data. Analytical results for one-
dimensional system show that the real dependence is slightly more complicated, although

the leading term exp
[

−
(

T0

T

)2
]

is correct [64].
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with L being the sample length (in dimensionless cm). For a given sample
thickness L, transport is dispersive for σ̂ > σ̂c and nondispersive otherwise.

2.5.4 Expression for the mobility

From the results of Monte Carlo simulations, the general behavior of the
mobility as a function of both temperature and electric field in the presence
of both positional and energetic disorder is given by:

µ(σ̂, Σ, E) = µ0 exp

[

−
(

2

3
σ̂

)2
]

×
{

exp[C(σ̂2 − Σ2)E1/2] Σ ≥ 1.5

exp[C(σ̂2 − 2.25)E1/2] Σ < 1.5

(2.15)

where C is an empirical constant. This formula is obtained by analyzing the
simulation data and is widely used to analyze experimental results.

2.6 Role of site energy spatial correlations

As already mentioned in Sec. 2.5.2, GDM fails to reproduce Poole-Frenkel
behavior of charge carrier mobility at low fields (. 7× 105 V/cm), routinely
observed in experiments [70]. The reason is that site energies in GDM are
fully random and uncorrelated, which appears to be too severe an approxima-
tion for many systems, especially in the case when molecules have permanent
dipole moments. The physical reason for spatial correlations is the long-range
nature of the dipole’s electrostatic potential. It was shown by S. Novikov and
V. Vannikov, that the electrostatic potential in a system of randomly oriented
dipoles is strongly correlated [71] , see Fig. 2.3(a). This holds true even when
the dipoles are orientationally uncorrelated. As a consequence, site energies
for this system are also correlated and the correlation function decays slowly
with the intersite separation r [55]:

C(r) = 〈ǫ(0)ǫ(r)〉 ∼ σ2
da/r (2.16)

where a is a minimal charge-dipole separation and σd is the rms width of
the dipolar energetic disorder. An empirical relation was obtained for the
field dependence of the non-dispersive mobility in correlated (e.g. dipolar)
media [66]:

µ = µ0 exp

[

−
(

3σ̂d

5

)2

+ C0

(

σ̂
3/2
d − Γ

)

√

eaE

σd

]

(2.17)
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(b)(a)

Figure 2.3: Role of site energy correlations. (a) Distribution of electrostatic potential
in a finite sample (31 × 31 × 31) of point dipoles. Black and white spheres represent sites
with positive and negative values of electrostatic potential φ respectively. Taken from [71];
(b) Results of the correlated disorder model (CDM) simulations for different σ̂d (from top
curve downward). The lowest curve is the mobility for the GDM for σ̂ = 5.10. Taken
from [66].

where σ̂d = σd/kBT , C0 = 0.78, and Γ = 2. Analogous to the Gaussian
disorder model, this model is usually referred to as correlated disorder model
(CDM). The difference in field dependence of charge mobility between GDM
and CDM is illustrated in Fig. 2.3(b).

One can understand without complicated calculations why spatial correla-
tions of site energies enhance Poole-Frenkel behavior at low fields. Physically,
a strong field dependence should occur when the potential drop δU = eEl
across a relevant length of the system is comparable to kBT . With uncor-
related energies the only length scale in the problem is the average distance
between the hopping sites. Correlations introduce a new length scale, namely,
the correlation length associated with energetic disorder, thereby decreasing
the critical field [55].

2.7 Charge transport in realistic morpholo-

gies

In spite of the success of the GDM (and similar models) in describing hop-
ping transport, this model does not have predictive power. In order to study
a specific material, parameters for the model (e.g. energetic disorder param-
eter σ) must be obtained by fitting experimental data. In that sense, they
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Figure 2.4: Outline of the multiscale methodology.

are merely adjustable parameters, without any microscopic meaning. Miller-
Abrahams rates used in the GDM only depend on the distance between two
molecules, but not on their mutual orientation, making it impossible to study
how the morphology of material affects charge transport. In order to under-
stand the effect of morphology and to relate charge transport properties to
the underlying chemical structure, a multiscale approach should be used,
where charge hopping rates are calculated based on the realistic morpholo-
gies. In this thesis the methodology is used, which was initially developed
to study charge transport in discotic liquid crystals and avoids using fitting
parameters and regular grids [59, 72, 56, 73, 74].

Realistic morphologies are obtained by means of atomistic molecular dy-
namics simulations [75]. Since for organic molecules force-fields are not read-
ily available, force-field parameterization should be done starting from the
force-field parameters for similar compounds and quantum chemical calcula-
tions [1, 76, 77]. The developed force-field must be validated, for example,
by comparing structural and thermodynamical properties extracted from the
simulations to experimental data [3]. This is illustrated in Chapter 3. In some
cases, length- and time-scales of atomistic simulations are not sufficient to
equilibrate the system. For example, this is the case for polymer melts, where
equilibration time scales with the third power of the chain length τ ∝ N3 [78].
Coarse-graining techniques help to overcome length- and time-scale limita-
tions of atomistic simulations by reducing the number of degrees of freedom
representing a system of interest [79]. Coarse-graining methods and their
limitations are covered in detail in Chapters 4 and 5, where we also com-
pare the performance of different coarse-graining techniques for the model
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systems.
When a realistic morphology is available, parameters required to obtain

Marcus hopping rates (transfer integrals, site energies) can be calculated as
described in Sec. 2.3 and Sec. 2.4. Together with reorganization energies from
DFT calculations (Sec. 2.2), these parameters are used to obtain charge hop-
ping rates for each pair of neighboring molecules, using semiclassical Marcus
theory (Eq. 2.9). Once the hopping rates are known, one can treat each
molecule as a structureless hopping site, located at the molecule’s center of
mass.

Finally, a kinetic Monte Carlo algorithm is used to simulate charge dy-
namics and calculate charge carrier mobilities. An outline of the methodology
is given in Fig. 2.4.
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Chapter 3

Morphology simulations

3.1 Molecular dynamics simulations

Molecular dynamics (MD) simulations describe evolution of molecular sys-
tems in a classical limit, meaning that atomic nuclei are treated as point
particles, while electronic degrees of freedom are not taken into account ex-
plicitly. Instead interactions between nuclei are described by a potential en-
ergy function (usually referred to as a force field), which implicitly represents
forces arising from electronic degrees of freedom.

The basic functional form of a force field encapsulates both bonded terms
relating to atoms that are linked by covalent bonds, and nonbonded (also
called “noncovalent”) terms describing the long-range electrostatic and van
der Waals forces. All atomistic simulations in this work are based on all-atom
OPLS force field [80], which has the following form:

U ({~ri}) =
∑

bonds

1

2
kb (r − r0)

2 +
1

2

∑

angles

kθ (θ − θ0)
2

+
∑

torsions

{

V1

2
[1 + cos(ϕ)] +

V2

2
[1 − cos(2ϕ)]

+
V3

2
[1 + cos(3ϕ)]

}

+
∑

impropers

kγ (γ − γ0)
2

+
N

∑

i=1

N
∑

j=i+1

{

4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

+
qiqj

rij

}

, (3.1)

First two sums in this expression account for the bond stretching (2-particle
interactions) and angle bending (3-particles). The third sum represents tor-
sion angles (4-particles), which are modeled by the first four terms of Fourier
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series. Torsions are periodic functions of the angle and are used to describe
rotation around the chemical bonds. The fourth sum represents improper
dihedral angles (4-particles), which are introduced to keep atoms in a plane
(e. g. aromatic rings), or to prevent molecules from flipping over to their
mirror images. The last sum over all pairs represents non-bonded interac-
tions, which are modeled by Lennard-Jones (steric repulsion and London
dispersion) and Coulomb (electrostatics) terms.

To propagate the system in the phase-space, Newton’s equations of mo-
tions are integrated numerically. From the point of view of statistical me-
chanics, this corresponds to the microcanonical ensemble, since total energy
of the system is conserved. It is possible, however, to simulate other ensem-
bles of statistical mechanics, for example, NV T or NPT [81, 82, 83, 84, 85].

For more information about molecular dynamics simulations the reader
is referred to the textbooks [86, 75, 87].

In this thesis molecular dynamics simulations are used to obtain realistic
morphologies of organic materials. In the following section we will discuss
how such force field can be obtained for a typical organic molecule.

3.2 Force field development

Since force fields for novel organic compounds are generally not available,
they must be developed for every compound of interest. Force field develop-
ment is an area of research in itself, and many efforts have been undertaken to
automate the parameterization procedure [80, 88, 89]. In this section a sim-
plified procedure is described, which was used in the course of this thesis to
parameterize force fields for conjugated polymers poly(2,3-diphenylphenylene
vinylene)(DP-PPV) [3], poly[2,6-(4,4-bis-(2-ethylhexyl)-4H -cyclopenta[2,1-
b;3,4-b ]-dithiophene)-alt -4,7-(2,1,3-benzothiadiazole)]
(PCPDTBT) as well as for tris(8-hydroxyquinoline)aluminium(Alq3) [1].

3.2.1 DP-PPV force field as an example

In this section a typical parameterization procedure is described using DP-
PPV as an example. DP-PPVs have been considered as a family of green-
emitting materials for polymer LED applications due to their good mechan-
ical and optical properties [90, 91, 92]. Chemical structure of DP-PPV is
shown in Fig. 3.1a.

As a starting point, we use the OPLS all-atom force-field [80]. Parameters
for bonds, angles as well as van der Waals parameters for non-bonded inter-
actions are taken from this force-field. Partial charges and missing bonded
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Figure 3.1: (a) Chemical structure of DP-PPV derivatives. R = C6H13 corresponds
to DP6-PPV and R = C10H21 to DP10-PPV. (b) Trans-stilbene - a monomer of poly-
(phenylene vinylene) used to validate the re-parametrized atomistic force-field.

Level of theory atom No. 6 atom No. 12
B3LYP 6-31G(d,p) 0.227 -0.187
B3LYP 6-311G 0.278 -0.241
B3LYP 6-311G(d) 0.295 -0.248
B3LYP 6-311G(d,p) 0.283 -0.237
B3LYP 6-311+G(d,p) 0.294 -0.243
B3LYP 6-311++G(d,p) 0.301 -0.241
B3LYP 6-311++G(2d,2p) 0.264 -0.216
B3LYP 6-311G(2df,2pd) 0.254 -0.210
MP2 6-31G(d,p) 0.259 -0.222

Table 3.1: Partial charges of atoms 6 and 12 as a function of the basis set size. Atom
labeling is shown in Fig. 3.1b.

interactions are determined using first principles calculations [1, 77, 72].
The force-field parametrization is then verified by simulating several ther-
modynamic properties of trans-stilbene, whose chemical structure is shown
in Fig. 3.1b.

Partial atomic charges were calculated using the CHELPG procedure [93].
For geometry optimization we used hybrid DFT functional B3LYP [94] as
well as Møller-Plesset second order perturbation theory (MP2). To illustrate
the basis set convergence, the charges of the atoms 6 and 12 (see Fig. 3.1b)
are listed in Table 3.1 as a function of the basis set. One can see that for
small basis sets, the variation is about 20%. Saturation is achieved for a
rather large basis set, 6-311G++(2d,2p). The DFT values agree well with
MP2 calculations, especially for large basis sets. To assess the values of
partial charges in a polymer, we have also performed calculations for tetra-
and octamers. No significant variations were found.
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dihedral φ0, deg kφ, kJ/mol
1-6-12-14 0 7
6-12-14-16 0 30
6-1-5-12 0 270

Table 3.2: Dihedral parameters. See Fig. 3.1b and Fig. 3.2 for notations.

3.2.1.1 Parametrization of backbone dihedrals

To refine the force-field parameters for dihedral angles, we first considered
the backbone without the side chains as shown in Fig. 3.1b. Three dihe-
dral potentials, which are not present in the OPLS force-field, determine the
rigidity and conformation of the backbone. To obtain parameters for these
potentials, the angle of interest was scanned by optimizing the molecular ge-
ometry for a fixed value of the dihedral. The scan provides a set of optimized
molecular structures and total energies for each angle value. Subsequently,
the energy of each optimized conformation was evaluated with the help of the
force-field, where the dihedral of interest was switched off. To do this, the
molecular geometry was again optimized for each value of the constrained di-
hedral angle and the difference between the two energies was fitted, providing
the desired dihedral parameters [95].

For the dihedrals (1-6-12-14) and (6-12-14-16), which describe rotation
around the bonds (see Fig. 3.1b), the functional form given by Eq. (3.2) was
used, while for the improper dihedral (6-1-5-12), which keeps the atoms in
plane, the functional form given by Eq. (3.3) was used

V = kφ [1 + cos(2φ − φ0)] , (3.2)

V =
1

2
kφ (φ − φ0)

2 , (3.3)

where φ0 is the equilibrium angle and kφ is the fitted force constant.

The results of fitting are shown in Fig. 3.2. For the first dihedral, (1-6-
12-14), different levels of theory provide different equilibrium values of the
dihedral angle. MP2 calculations suggest that the ground state of trans-
stilbene is nonplanar contrary to the DFT calculations. In fact, the discrep-
ancy between these methods is a known issue. A more detailed study of
trans-stilbene shows that it is planar and the value of the torsional barrier
is 14.3 kJ/mol [96]. This value was used for fitting. The results for all three
dihedrals are summarized in Table 3.2.
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Figure 3.2: Energies calculated using first principle methods as well as fitted force-field po-
tentials for the dihedrals: (a) 1-6-12-14 (b) 6-12-14-16 (c) 6-1-5-12. The scanned dihedrals
are depicted in the insets. Different methods and basis sets are shown.
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Experiment [97] MD simulations
a 12.287 ± 0.003 12.09 ± 0.06
b 5.660 ± 0.003 5.38 ± 0.06
c 15.478 ± 0.005 16.9 ± 0.2

β, deg 112.03 ± 0.1 110.0 ± 0.2

Table 3.3: Monoclinic unit cell parameters of trans-stilbene. All distances are given in Å.

C0 C1 C2 C3 C4 C5

(i) 8.60 0.0 -30.81 0.0 21.66 0.0
(ii) -4.22 -0.027 9.44 0.48 -5.15 -0.47

Table 3.4: Ryckaert-Belleman parameters for (i) the dihedral linking two phenyl rings
and (ii) the dihedral connecting the backbone phenyl ring with the alkyl side chain. All
constants are in kJ/mol.

3.2.1.2 Force-field validation

To validate the force-field, we compared the dimensions of the simulated and
experimentally measured unit cell of trans-stilbene crystal and its melting
temperature.

The monoclinic unit cell of trans-stilbene [97] was multiplied as 2a×4b×2c
to be able to use 0.9Å cutoff distance for van der Waals interactions. Af-
ter energy minimization with the conjugate gradient method [98], a 200 ps
molecular dynamics run in the NPT ensemble (anisotropic Berendsen ther-
mostat [81], P = 1 bar, T = −160◦C) was performed. After equilibration,
an NPT production run of 600 ps was performed. The simulated density of
trans-stilbene was 1161 kg/m3, which is in a good agreement with the exper-
imental value of 1200 kg/m3 as well as the crystallographic parameters given
in Table 3.3.

To simulate the crystal melting, we performed a simulated annealing run,
increasing the temperature from −160◦C to 180◦C during 1200 ps (heating
rate 0.283◦C/ps). While monitoring the mean squared displacement and
density of the compound, as shown in Fig. 3.3. We concluded the melting
point to be 127±25◦C. To reduce the error bars, a set of 200 ps NPT simula-
tions at 102◦C, 112◦C, 122◦C, and 132◦C were performed. Up to 122◦C, the
system remains in the crystalline state, melting completely at 132◦C. Our
predicted melting point of 127± 5◦C agrees well with the experimental value
of 124 ± 1◦C. To ensure that the system size and the heating rate do not
affect the results, we also annealed a 4a× 6b× 4c cell. The results are shown
in Fig. 3.3, indicating that there are no significant finite size effects. Within
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Figure 3.3: (a) Density as a function of temperature during a 1200 ps simulated annealing
run. Two system sizes are shown: 2a × 4b × 2c and 4a × 6b × 4c. The results suggest
that the melting point of trans-stilbene is 127 ± 25◦C. (b) Root mean square deviation
from the equilibrium crystalline structure as a function of temperature. 1200 ps simulated
annealing. Melting occurs at 1020 ± 80 ps, which corresponds to 127 ± 25◦C.
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the range of 0.07 − 0.3 deg/ps, we did not observe any dependence on the
heating rate.

In summary, we can conclude that the performance of our force-field for
trans-stilbene is adequate.

3.2.1.3 DP-PPV force-field

To derive the force-field for DP6-PPV and DP10-PPV, we followed the same
strategy. We first calculated the partial charges of a DP-PPV monomer
unit and then parametrized two additional dihedral potentials. The first
one, linking phenyl rings to the backbone and the second one, connecting
the backbone phenyl ring and the alkyl side chain. The Ryckaert-Belleman
functional form [99] was used to parametrize these two dihedrals

Vrb(φ) =
5

∑

n=0

Cn cosn φ, (3.4)

where φ = 0 corresponds to the trans-conformation. The obtained constants,
Cn, are given in Table 3.4. For the alkyl side chains, we used the OPLS united
atom force-field [80].1

Derived force field was used to study conformational properties and ag-
gregation behavior of DP-PPV in organic solutions [3].

3.3 Limitations of MD simulations

All-atom molecular dynamics simulations provide key insight into the struc-
ture and dynamics of soft matter systems by providing a model of molecular
motion with angstrom level detail and femtosecond resolution. However,
all-atom simulations are limited to the nanometer length- and nanosecond
time-scales, even for the most powerful modern hard- and software [100].
This limitation may be crucial, for example if one wants to simulate an equi-
librium morphology of a polymer melt. Equilibration time for a melt scales
with τ ∝ N3, where N is the backbone length [78]. To access larger simu-
lated time scales and system sizes, a further simplification of the molecular
model is needed. Systematic coarse-graining methods, which are discussed
in the next chapter, help to overcome these limitations. Combined with ef-
ficient backmapping procedures [101, 102], which allow to reintroduce back

1Since the side chains are practically neutral, this approximation should not affect the
conformational structure of the backbone significantly. If charge transport is studied,
side chains can also be neglected, because the charge is normally delocalized over the
conjugated backbone [59].
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the atomistic details, coarse-graining methods can be used to simulate large
scale morphologies [101, 103, 104].
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Chapter 4

Coarse-graining techniques

4.1 Introduction

Computational materials science deals with phenomena covering a wide range
of length- and time-scales, from Ångstrøms (typical bond lengths) and femto-
seconds (bond vibrations) to micrometers (crack propagation) and millisec-
onds (a single polymer chain relaxation). Depending on the characteristic
time- and length-scales involved, the system description can vary from first
principles and atomistic force-fields to coarse-grained models and continuum
mechanics. The role of bottom-up coarse-graining, in a broad sense, is to
provide a systematic link between these levels of description.

This chapter is focused on coarse-graining techniques that link two particle-
based descriptions with a different number of degrees of freedom. The system
with the larger number of degrees of freedom is denoted as the reference sys-
tem. The system with the reduced number of the degrees of freedom is
referred to as the coarse-grained system. An example is an all-atom (refer-
ence) and a united atom (coarse-grained) molecular representations, where
the number of the degrees of freedom is reduced by embedding hydrogens
into heavier atoms. Another example, which is treated in detail here, is an
all-atom (three sites) and a single site model of water. Other examples can
be readily found in the literature [103, 105, 106, 107, 108, 109, 110, 111, 112,
113, 114, 115].

It is assumed that the following prerequisites are satisfied:

• Both the reference and the coarse-grained descriptions are represented
by a set of point sites, r = {ri}, i = 1, 2, . . . , n in case of the reference
system, and R = {Rj}, j = 1, 2, . . . , N in case of the coarse-grained
system.
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• A mapping scheme, i.e. a relation between r and R, can be expressed
as R = M̂r, where M̂ is an n × N matrix.

• For the reference system, trajectory that samples a canonical ensemble
is available.

Then the prime task of systematic coarse-graining is to derive a potential
energy function of the coarse-grained system, U(R).

To do this, one can use several coarse-graining approaches. From the
point of view of implementation, these approaches can be divided in iterative
and non-iterative methods. Boltzmann inversion is a typical example of a
non-iterative method [103]. In this method, which is exact for independent
degrees of freedom, coarse-grained interaction potentials are calculated by
inverting the distribution functions of the coarse-grained system. Another
example of a non-iterative method is force matching, where the coarse-grained
potential is chosen in such a way that it reproduces the forces on the coarse-
grained beads [116, 108]. Configurational sampling [117], which matches the
potential of mean force, also belongs to this category. Boltzmann inversion
and force matching only require a trajectory for a reference system. Once
that is known, coarse-grained potentials can be calculated for any mapping
matrix M̂ . Note that this is often a “special” trajectory which is designed
to decouple the degrees of freedom of interest, e. g. a single polymer chain
in vacuum with appropriate exclusions [103].

Iterative methods refine the coarse-grained potential U(R) by re-iterating
coarse-grained simulations and calculating corrections to the potential on the
basis of the reference and coarse-grained observables (e. g. radial distribu-
tion function or pressure). The simplest example is the iterative Boltzmann
inversion method [118], which is an iterative analogue of the Boltzmann in-
version method. More sophisticated (in terms of the update function) is the
inverse Monte Carlo approach [119].

One can also classify systematic coarse-graining approaches by micro- and
macroscopic observables used to derive the coarse-grained potential, such as
structure-based [119, 120, 103], force-based [116, 121, 108], and potential-
based approaches [122], where the name identifies the quantities used for
coarse-graining. Note that hybrids of these methods are also possible [106,
115].

With a rich zoo of methods plus their combinations available at hand,
it is natural to ask about an optimal method for a specific class of systems.
On a more fundamental level one might question whether the different meth-
ods provide the same coarse-grained potential and whether it is possible to
formulate a set of (even empirical) rules favoring one method with respect
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to another. It is obvious this is a difficult task to be treated analytically,
especially for realistic systems. To assess the quality of a particular coarse-
graining technique one needs to apply all available methods to a certain
number of systems and to compare and quantify the degree of discrepancy
between the coarse-grained and reference descriptions.

This is, however, cumbersome due to the absence of a single package
where all these methods are implemented with the same accuracy and same
level of technical detail. That is why we started to implement such a pack-
age, the Versatile Object-oriented Toolkit for Coarse-graining Applications
(VOTCA) [2] in collaboration with V. Rühle and C. Junghans. The author
of this thesis was focused on implementation of the force matching method.

In the following sections the basic ideas behind each method are described,
paying special attention to the technical issues one has to overcome when im-
plementing them. Then the methods are illustrated by coarse-graining sys-
tems of different complexity: a three-site SPC/E water, methanol, propane,
and hexane.

For more information the reader is referred to a (far from complete) list
of reviews which cover various aspects of generating coarse-grained poten-
tials [123, 124, 125, 126, 79, 127, 102].

4.2 Boltzmann inversion

Boltzmann inversion is the simplest method one can use to obtain coarse-
grained potentials [103]. It can only be used for bonded potentials, such as
bonds, angles, and torsions. Boltzmann inversion is structure-based and only
requires positions of atoms.

The idea of Boltzmann inversion stems from the fact that in a canonical
ensemble independent degrees of freedom q obey the Boltzmann distribution,
i. e.

P (q) = Z−1 exp [−βU(q)] , (4.1)

where Z =
∫

exp [−βU(q)] dq is a partition function, β = 1/kBT . Once P (q)
is known one can invert eq. 4.1 and obtain the coarse-grained potential, which
in this case is a potential of mean force:

U(q) = −kBT ln P (q) (4.2)

Note that the normalization factor Z is not important since it would only
enter the coarse-grained potential U(q) as an irrelevant additive constant.

In practice, P (q) is computed from the trajectory of the reference system
which is sampled either by Monte Carlo, molecular dynamics, stochastic
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dynamics, or any other integrator that ensures a canonical distribution of
states.

Boltzmann inversion is simple to implement, however one has to be careful
with the rescaling of the probability P due to orientational entropy as well
as computational issues. The probability rescaling can be explained on a
particular example of coarse-graining of a single polymer chain by beads with
bond, angle and torsion potentials. In this case the coarse-grained potential
U depends on three variables, bond length r, angle θ and torsion angle ϕ.

Assuming, as before, a canonical distribution and independence of the
coarse-grained degrees of freedom, one can write

P (r, θ, ϕ) = exp [−βU (r, θ, ϕ)] , (4.3)

P (r, θ, ϕ) = Pr(r)Pθ(θ)Pϕ(ϕ) . (4.4)

If now the histograms for the bonds Hr(r), angle Hθ(θ), and torsion angle
Hϕ(ϕ) are computed, they must be rescaled in order to obtain the volume
normalized distribution functions:

Pr(r) =
Hr(r)

4πr2
, Pθ(θ) =

Hθ(θ)

sin θ
, Pϕ(ϕ) = Hϕ(ϕ) . (4.5)

The coarse-grained potential can then be calculated by Boltzmann inversion
of the distribution functions:

U(r, θ, ϕ) = Ur(r) + Uθ(θ) + Uϕ(ϕ) , (4.6)

Uq(q) = −kBT ln Pq(q), q = r, θ, ϕ .

On the technical side, the implementation of the Boltzmann inversion
method requires smoothing of U(q) to provide a continuous force. Splines
can be used for this purpose. Poorly and unsampled regions, that is regions
with high U(q), shall be extrapolated. Since the contribution of these regions
to the canonical density of states is small the exact shape of the extrapolation
is less important.

Another crucial issue is the cross-correlation of the coarse-grained de-
grees of freedom. Independence of the coarse-grained degrees of freedom is
the main assumption that allows factorization of the probability distribu-
tion, eq. 4.4, and the potential, eq. 4.6, hence, one has to carefully check
whether this assumption holds in practice. This can be done by perform-
ing coarse-grained simulations and comparing cross-correlations for all pairs
of degrees of freedom in atomistic and coarse-grained resolution, e. g. us-
ing a two-dimensional histogram, analogous to a Ramachandran plot. Note,
that checking the linear correlation coefficient does not guarantee statisti-
cal independence of variables, for example c(x, x2) = 0 if x has a symmetric
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probability density P (x) = P (−x). This case is often encountered in systems
used for coarse-graining [128, 129]. The concept is illustrated in sections 5.3
and 5.4 for liquid propane and a single molecule of hexane.

4.3 Iterative Boltzmann inversion

Iterative Boltzmann inversion (IBI) is a natural extension of the Boltzmann
inversion method. Since the goal of the coarse-grained model is to reproduce
the distribution functions of the reference system as accurately as possible,
one can also iteratively refine the coarse-grained potentials using some nu-
merical scheme. Depending on the update function, this can be done either
by using iterative Boltzmann inversion [118] or inverse Monte Carlo [119, 120]
method.

In the iterative Boltzmann inversion, the coarse-grained potential is re-
fined according to the following scheme:

U (n+1) = U (n) + ∆U (n) , (4.7)

∆U (n) = kBT ln
P (n)

Pref

= U ref
PMF − U

(n)
PMF .

One can easily see that convergence is reached as soon as the distribution
function P (n) matches the reference distribution function Pref , or, in other
words, the potential of mean force, U

(n)
PMF converges to the reference potential

of mean force.

Note that eq. 4.7 is nothing else but a numerical scheme that allows
one to match the coarse-grained and the reference distribution functions.
It can be seen as a first-order correction to the interaction potential with
respect to a gas of non-interacting particles. Indeed, in an ideal gas, the
probability of finding two particles at a distance r is P (0) ∝ 4πr2, which
is equivalent to the statement that the radial distribution function of an
ideal gas is 1. Substituting P (0) into eq. 4.7 one obtains the first iteration
U (1) = −kBT ln(Pref/4πr2), which is the potential of mean force, eq. 4.2.

IBI can be used to refine both bonded and non-bonded potentials. It
is primarily used for simple fluids with the aim of reproducing the radial
distribution function of the reference system in order to obtain non-bonded
interactions [118]. It can have convergence problems for multicomponent sys-
tems, since it does not account for cross-correlation correction terms, that is
the updates for PAA, PAB, and PBB are not coupled (the subscript enumer-
ates a single component in a multicomponent system). For such systems, the
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inverse Monte Carlo method works better. The scheme can be stabilized by
multiplying the update function, ∆U (n), by a factor η ∈ [0..1].

On the implementation side, IBI has the same issues as the inverse Boltz-
mann method, i. e. smoothing and extrapolation of the potential must be
implemented.

One should also mention that, according to the Henderson theorem [130,
127], which is a classical analogue of the Hohenberg-Kohn theorem, the pair-
wise coarse-grained potential U(r) is unique up to an additive constant and
exists [131, 132], which, in principle, states that all structure-based iterative
methods must converge to the same coarse-grained potential, provided that
their aim is to exactly reproduce pair correlation functions of the reference
system. However, this is often not the case in practice (see Sec. 5.2), since
small changes in the radial distribution function often lead to big changes in
the pair potential, i. e. it is difficult to control systematic errors during the
calculation of the potential update.

Another issue of coarse-graining is that coarse-grained models cannot
reproduce all the statistical or thermodynamic properties of the reference
system. Pressure, compressibility, or viscosity [133] are often very different
from those of the reference system. In some cases, however, one can correct
for some of these. For example, the viscosity can be adjusted by tuning
the parameters of the thermostat [85] and the pressure can be corrected
iteratively by adding a linear term to the non-bonded potential:

∆Upressure = A

(

1 − r

rcut

)

, (4.8)

where A is either a constant, e. g. −0.1 kBT [118], or can be estimated from
the virial expansion [134]. Compressibility and pressure, however, cannot be
corrected simultaneously.

4.4 Inverse Monte Carlo

Inverse Monte Carlo (IMC) is another iterative procedure that refines the
coarse-grained potentials until the coarse-grained model reproduces a set of
reference distribution functions. It is very similar to IBI except that the
update of the potential, ∆U , is calculated using rigorous thermodynamic
arguments.

The name “inverse Monte Carlo” is somehow confusing and is due to the
fact that the original algorithm was combined with Monte Carlo sampling
of the phase space [119]. However, practically any sampling method can be

42
Rev. 117(e1a68f80ce2b) from 2011-03-08



4.4. INVERSE MONTE CARLO

used (e.g. molecular dynamics or stochastic dynamics) as long as it provides
a canonical sampling of the phase space.

A detailed derivation of the IMC method can be found in Ref. [119].
Here a brief recapitulation of the more compact version for non-bonded in-
teractions is given (Ref. [127]), with the emphasis on technical problems
encountered during implementation and application of the method.

The idea of IMC is to express the potential update ∆U in a thermody-
namically consistent way in terms of measurable statistical properties, e. g.
radial distribution function g(r). Considering a single-component system as
an example one can write the Hamiltonian of the system as:

H =
∑

i,j

U(rij) , (4.9)

where U(rij) is the pair potential and we assume that all interactions depend
only on the distance, rij, between particles i and j. It is further assumed
that this potential is short-ranged, i.e. U(rij) = 0 if rij ≥ rcut.

The next step is to tabulate the potential U(r) on a grid of M points,
rα = α∆r, where α = 0, 1, . . . ,M , and ∆r = rcut/M is the grid spacing.
Then the Hamiltonian, eq. 4.9, can be rewritten as:

H =
∑

α

UαSα , (4.10)

where Sα is the number of particle pairs with interparticle distances rij = rα

which correspond to the tabulated value of the potential Uα.

On one hand, the average value of Sα is related to the radial distribution
function g(r):

〈Sα〉 =
N(N − 1)

2

4πr2
α∆r

V
g(rα) , (4.11)

where N is the number of atoms in the system (1
2
N(N−1) is then the number

of all pairs) and ∆r is the grid spacing, rcut/M , V is the total volume of the
system.

On the other hand, 〈Sα〉 is a function of the potential Uα and hence can
be expanded in a Taylor series with respect to small perturbations of Uα,
∆Uα:

∆ 〈Sα〉 =
∑

γ

∂ 〈Sα〉
∂Uγ

∆Uγ + O(∆U2) . (4.12)
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The derivatives ∂ 〈Sα〉/∂Uγ can be obtained by using the chain rule:

Aαγ =
∂ 〈Sα〉
∂Uγ

(4.13)

=
∂

∂Uγ

∫

dqSα(q) exp [−β
∑

λ UλSλ(q)]
∫

dq exp [−β
∑

λ UλSλ(q)]

= β (〈Sα〉 〈Sγ〉 − 〈SαSγ〉) .

Using equations 4.11, 4.12, and 4.13 one can calculate the correction for
the potential by solving a set of linear equations:

〈Sα〉 − Sref
α = Aαγ∆Uγ , (4.14)

where Sref
α is given by the target radial distribution function. The procedure

is then repeated until convergence is reached.
A clear advantage of the IMC compared to the IBI method is that the

update of the potential is rigorously derived using statistical mechanics and
hence the iterative procedure shall converge faster with the IMC update than
with the empirical IBI update. Another advantage is that, in the case of mul-
ticomponent mixtures, IMC takes into account correlations of observables,
that is updates for UAA, UAB, and UBB are interdependent (A and B denote
different particle types). In the IBI method these updates are independent
which may lead to convergence problems for multicomponent systems.

The advantages come, of course, at a computational cost. As it is clear
from eq. 4.13, one has to calculate cross-correlations of Sα. This requires
much longer runs to get statistics that is good enough to calculate the po-
tential update to a similar accuracy as IBI. The accuracies of the update
functions of IMC and IBI methods are compared in section 5.1 for the case
of a coarse-grained model of water.

Another issue of the IMC method is the stability of the scheme. Several
factors can influence it: the first, and rather technical, point is that gref(rα)
has to be calculated using exactly the same convention for the grid as Sα (e.g.
the function value should be assigned to the middle of the interval), otherwise
the scheme becomes unstable. Second, inversion of Aαγ requires that it shall
be well defined. This means that one has to remove the regions which are not
sampled, such as those at the beginning of the radial distribution function.
The convergence can be significantly improved if a smoothing of the potential
update ∆U is used. Note that it is better to do smoothing of the update
function, not the potential itself, since the latter has more features which
can be lost due to too aggressive smoothing. The convergence can also be
improved by introducing a multiplicative prefactor for the update function or
using a regularization procedure by adding thermodynamic constraints [135].
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Finally, it was also noticed that the systematic error in 〈SαSγ〉 is always
higher in the vicinity of the cutoff, which leads to a shift in the tail of the
interaction potential and, as a result, to a large offset of pressure. The cross-
correlation term 〈SαSγ〉 is also very sensitive to the box size, and special care
must be taken in order to converge the results with respect to system size.
Finite size effects are discussed in detail in section 5.2, where liquid methanol
is coarse-grained.

4.5 Force matching

Force matching (FM) is another approach to evaluate corse-grained poten-
tials [116, 108, 136]. In contrast to the structure-based approaches, its aim
is not to reproduce various distribution functions, but instead try to match
forces on coarse-grained beads as closely as possible. FM is a non-iterative
method and hence is less computationally demanding.

The method works as follows. The first assumption is that the coarse-
grained force-field (and hence the forces) depends on M parameters g1, ..., gM .
These parameters can be prefactors of analytical functions, tabulated values
of the interaction potentials, or coefficients of splines used to describe these
potentials.

In order to determine these parameters, the reference forces on coarse-
grained beads are calculated by properly re-weighting the forces on the atoms:

~f ref
i = Mi

∑

α

wα
~fα

mα

, (4.15)

where Mi = (
∑

α w2
α/mα)

−1
is the mass of the bead i, index α numbers all

atoms belonging to this bead, ~fα is the force on the atom α, mα is its mass,
wα are mapping coefficients used to obtain the position of the coarse-grained
bead, ~Ri =

∑

α wαrα. If the center of mass is used in the mapping, eq. 4.15
simplifies to the sum of the forces.

By calculating the reference forces for L snapshots one can write down
N × L equations:

~f cg
il (g1, ..., gM) = ~f ref

il , i = 1, . . . , N, l = 1, . . . , L . (4.16)

Here ~f ref
il is the force on the bead i, ~f cg

il is the coarse-grained representation
of this force. Index l enumerates snapshots picked for coarse-graining. By
running the simulations long enough one can always ensure that M < N ×L.
In this case the set of equations 4.16 is overdetermined and can be solved in
a least-squares sense.
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Though the underlying idea of FM is very simple, implementation wise
it is the most complicated method. Here we briefly outline the problems,
which are then discussed in more detail in Appendix A.

Going back to the set of equations 4.16 one can see that f
cg
il is, in prin-

ciple, a non-linear function of its parameters {gi}. It is, therefore, useful to
represent the coarse-grained force-field in such a way that equations (4.16)
become linear functions of {gi}. This can be done using splines to describe
the functional form of the forces [108].

An adequate sampling of the system requires a large number of snapshots
L. Hence, the applicability of the method is often constrained by the amount
of available memory. To remedy the situation, one can split the trajectory
into blocks, find the coarse-grained potential for each block and then perform
averaging over the blocks. More details on the technical implementation of
force matching using cubic splines is given in Appendix A.

4.5.1 FM method: formal statistical mechanical deriva-

tion

In the classification of CG methods given in Sec. 4.1, FM method was defined
as force-based as opposed to structure-based methods, such as iterative Boltz-
mann inversion and inverse Monte Carlo. In this section it is shown that FM
equations follow from the requirement that the ensemble of low resolution
structures observed with a CG model is a low resolution representation of
the ensemble that would be observed using an atomistically detailed system.
This fact shows, that the classification given above is purely nomenclatural
and that the force matching may be attributed to the structure-based meth-
ods as well. In order to show this mathematically, one has to introduce some
notations. Description in this section follows the derivation given in [137].

It is assumed that the instantaneous state of the atomistic system is
described by specifying the values of the Cartesian coordinates and momenta:

rn = {r1, . . . , rn}, (4.17)

pn = {p1, . . . ,pn}. (4.18)

of the n atoms in the system. The atomistic hamiltonian is:

h(rn,pn) =
n

∑

i=1

1

2mi

p2
i + u(rn) (4.19)

In the canonical ensemble, positions and momenta are distributed according
to:

prp(r
n,pn) = pr(r

n)pp(p
n) (4.20)
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where

pr(r
n) ∝ exp(−u(rn)/kBT ) (4.21)

pp(p
n) ∝ exp(−

n
∑

i=1

p2
i /2mikBT ) (4.22)

Similarly, on a coarse-grained level, the coordinates and momenta are
specified by the positions and momenta of CG sites:

RN = {R1, . . . ,RN}, (4.23)

P N = {P1, . . . ,PN}. (4.24)

Hamiltonian and canonical distributions of CG system can be obtained by
formally substituting lower case letters with the capital ones in Eq. 4.19-4.22.

The physical meaning of the positions of the CG sites is specified by a
linear mapping operator MN

R
(rn) = {MN

R1(r
n), ...,MN

RN (rn)} of the form

MN
RI(r

n) =
n

∑

i=1

cIiri for I = 1,. . . ,N (4.25)

Thus MN
RI(r

n) is the physical meaning of RI in terms of an atomistic model.
Similarly, physical meaning of the CG momentum PI is

MN
PI(p

n) = MI

n
∑

i=1

cIiṙi = MI

n
∑

i=1

cIi

mi

pi for I = 1,. . . ,N (4.26)

Coefficients cIi are usually called a mapping scheme. For any reasonable
mapping scheme translational invariance should be satisfied. That is, if an
atomistic system is translated by a constant vector, the corresponding coarse-
grained system is also translated by the same vector. This implies that, for
all I:

n
∑

i=1

cIi = 1. (4.27)

Atomistic equilibrium probability distributions in Eq. 4.20 together with
the mapping operators in eqns. 4.25 and 4.26 imply the following equilibrium
distribution for the CG positions and momenta:

pR(RN) =

∫

drnpr(r
n)δ(MN

R
(rn) − RN) (4.28)

pP (P N) =

∫

dpnpp(p
n)δ(MN

P
(pn) − P N) (4.29)
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The requirement pR(RN) = PR(RN), pP (P N) = PP (P N) is equivalent to
the following equations:

exp(−U(RN)/kBT ) ∝
∫

drn exp(−u(rn)/kBT )

×δ(MN
R

(rn) − RN) (4.30)

exp

(

−
N

∑

I=1

P 2
I /2MIkBT

)

∝
∫

dpn exp

(

−
n

∑

i=1

p2
i /2mikBT

)

×δ(MN
P

(pn) − P N) (4.31)

Equations 4.30 and 4.31 are the consistency conditions for the CG model. If
they are satisfied, the CG model will generate the same statistical ensemble
as the low resolution representation of the underlying atomistic model. Below
such CG models are referred to as consistent CG models.

Equation 4.30 implies, that the coarse-grained force-field for a consistent
CG model U(RN) is completely determined by the atomistic force-field u(rn)
and the mapping scheme MN

R
(rn). Consistent CG force-field is a many-body

potential of mean force (PMF), which is a conditional free energy surface
in the coordinate space of the CG variables. In general U(RN) does not
factorize, and contains 2-body, 3-body, . . . , interactions.

It can be shown, that equation 4.30 is equivalent to the force-matching
equations 4.16 for the broad range of mapping operators [137]. Thus, FM
equations can be obtained by requiring that structural properties of the atom-
istic model are reproduced. In practice, however, FM method rarely repro-
duces structural properties, such as radial distribution functions (see chapter
5), because the basis set used to represent the CG force-field is not complete.
Due to efficiency reasons, most modern MD codes use only pairwise spherical-
symmetric nonbonded potentials. Thus, CG force field is an effective pair
potential, that represents an approximate decomposition of the many-body
interaction obtained from a formal integration over uninteresting degrees of
freedom. For many cases this is not enough to represent many-body potential
of mean force U(RN) (see Sec. 5.1).

4.5.2 FM method: connections to the liquid state the-

ory

Structure-based coarse-grained modeling is similar to the “inverse problem”
of liquid-state theory [138]. Both attempt to determine an interaction poten-
tial reproducing an observed structure. The theory of the Yvon-Born-Green
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(YBG) equations provides a direct solution to this inverse problem [138],
given that such an interaction potential exists. The YBG equation pro-
vides an exact relation between a given two-body interaction potential and
the n- and (n + 1)-particle distribution functions obtained from equilibrium
simulations employing this potential.1 Therefore, a CG pair potential may
be determined by inverting the YBG equation for the observed two- and
three-particle CG distribution functions. This relationship shows a role of
high-order correlations in deducing a pair potential that will reproduce the
observed CG structure.

It was recently shown by W. Noid et al [136] that for homogeneous
isotropic systems force matching equations 4.16 are equivalent to the gen-
eralized Yvon-Born-Green equations [138]. For such systems, FM procedure
explicitly considers the two- and three-particle correlations between CG sites
within an atomistic MD simulation, assumes, that these distributions were
generated by a pairwise decomposable force field, and then inverts the re-
sulting YBG equation to determine this force field.

4.6 Relationship between CG methods

In this section a comparison of force matching and RDF-based methods (IBI,
IMC) is given for one-component homogeneous isotropic systems.

Iterative Boltzmann inversion and Inverse Monte Carlo methods deter-
mine CG potentials, which reproduce a given radial distribution functions
(RDF). However, these potentials are not guaranteed to reproduce higher-
order correlation functions. For example, it is known that IBI and IMC
potentials for water do not reproduce three-particle correlations, although
the RDF is quantitatively accurate [134, 139]. In contrast, force matching
method is able to reproduce both RDF and 3-body correlations, if 3-body
interactions are included in the coarse-grained force field [140].

As discussed in Sec. 4.5.2, force matching method implicitly measures
two- and three-body correlation functions describing CG beads within an
atomistic MD simulation and then directly inverts the YBG equation to de-
termine a 2-body central CG potential that would generate these distribution
functions, if such a potential exists. In general such a potential may not exist,
and consequently, simulations with the resulting FM potential will not repro-
duce either the two- or the three-particle distributions exactly. Nevertheless,
FM method clearly takes three-particle correlations into account. Since FM
does not necessarily reproduce the pair correlation functions, comparison of

1YBG equations for a homogeneous liquid are presented in Appendix B.
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atomistic and CG RDFs is a useful measure of the validity of the CG model
(see Chapter 5).

In contrast, IBI and IMC methods only consider the two-particle cor-
relations and attempt to solve the YBG equation for the pair interaction
that reproduces the target RDF while allowing the three-particle correlation
functions to vary as necessary [136]. Succesive Molecular Dynamics or Monte
Carlo simulations used for iteratively updating the pair potential may be con-
sidered as a nonlinear regression algorithm that solves the YBG equation for
a pair potential reproducing a fixed RDF. If three-body correlations were not
significant in the YBG equation, then the pair potential would be simply the
two-body PMF, which is often implemented as an initial guess in IBI and
IMC. During successive iterations the simulated RDF converges to the target
RDF, measured from atomistic simulations. IBI and IMC implicitly incor-
porate information regarding three-body correlations by updating the force
field to improve agreement between the measured and the target RDF, but in
the iterative simulations the three-body correlations may change. The YBG
equation that is implicitly solved through the IBI or IMC method incorpo-
rates the target RDF and is guaranteed to reproduce this RDF. However, the
three-particle correlations in the final YBG equation may be different than
those in the original atomistic representation of the system.
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Chapter 5

Comparison of coarse-graining

techniques

After the discussion of coarse-graining techniques in detail in Chapter 4 it
is useful to consider practical examples. In this chapter iterative Boltzmann
inversion, inverse Monte Carlo and force matching are applied to model sys-
tems of different complexity: a three-site SPC/E water, methanol, propane,
and a single chain of hexane. Strengths and drawbacks of different methods
are discussed for every example. This study was done together with V. Rühle
and C. Junghans within the VOTCA project [2].

5.1 Coarse-graining of water

Water is one of the most studied liquids, both from the point of view of all-
atom representations and coarse-grained models [141, 142]. In this section
coarse-graining of the all-atom SPC/E water model [143, 144] is presented.
The corresponding parameters of this 3-site model are given in the caption
to Fig. 5.1. Note that this is a rigid model, i. e. the distances between
two hydrogens as well as oxygen and hydrogens are constrained during the
molecular dynamics runs. For coarse-graining one-site representation with a
pair potential U(Rij) is used, where Rij connects the centers of mass of water
molecules i and j.

The all-atom system consisting of 2180 water molecules was first equili-
brated in the NPT ensemble at 300 K and 1 bar for 100 ns using the Berendsen
thermostat and barostat [81]. The last 80 ns were used to determine the equi-
librium box size of 4.031 nm, which was then fixed during the 45 ns production
run in the NVT ensemble using a stochastic dynamics algorithm [145]. For
all further analysis, only the last 40 ns were used. The radial distribution
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Figure 5.1: Water (a) Coarse-grained potentials for SPC/E water obtained using different
coarse-graining techniques. (b) Corresponding radial distribution functions. (c) Average
error of the potential update function versus number of snapshots used for calculating
the update function. (d) Root mean square deviation of reference and current radial
distribution function versus iteration step. One can see that IMC converges faster than
IBI. Inset of (a) shows Van der Waals excluded volume and coarse-grained representations
of a single water molecule, as well as parameters used: σ = 3.166 Å, ǫ = 0.650 kJ mol−1,
lOH = 1.0000 Å, qH = +0.4238 e, qO = −0.8476 e, θHH = 109.47◦.
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function was calculated using a 0.01 nm grid spacing. The snapshots were
output every 0.4 ps.

Force matching potentials were calculated using blocks of 6 snapshots
each. Spline grid spacing of 0.02 nm was used in the interval from 0.24 to
1 nm. For the iterative procedures, the potential of mean force was taken
as an initial guess for the interaction potential. The coarse-grained box had
the same system size as in the atomistic simulations. Simulations of the
coarse-grained liquid were done using a stochastic dynamics algorithm. [145]
300 iterations of 100 ps each were performed when using IBI. For IMC we
used 10 iterations of 500 ps each. Additionally, two iterations of triangular
smoothing were applied to the IMC potential update, ∆U . The cut-off was
chosen at 0.9 nm with a grid spacing of 0.01 nm.

The reference radial distribution function, gref(r), coarse-grained poten-
tials and corresponding radial distribution functions are shown in fig. 5.1a,b.
IBI and IMC give practically the same interaction potential. Although the
force-matched potential has a very similar structure with two minima, the
corresponding radial distribution function is very different from the target
one. Reasons for these discrepancies are discussed in Refs. [136, 126, 127]
and in Chapter 4 and stem from the fact that FM aims to reproduce the
many-body potential of mean force, which does not necessarily guarantee
perfect pairwise distribution functions, considering the fact that the basis
sets in the coarse-grained force field may be limited. It is worth mentioning,
that inclusion of 3-body interactions into the coarse-grained force field rem-
edy the situation for the FM method: in this case both radial distribution
function and 3-particle correlations are reproduced [140].

Note that all three methods lead to a different pressure of the coarse-
grained system: 8000 bar (IBI), 9300 bar (IMC), and 6500 bar (FM). Differ-
ent pressures for the iterative methods is due to different accuracy of the
potential update. Indeed, small changes of pressure can significantly affect
the potential, especially its long tail [118, 146, 134]. However, they hardly
change the radial distribution function due to small compressibility of water.
One can improve the agreement between the iterative methods on the cost of
the compressibility by using pressure correction terms for the update [134].

The performance of the iterative methods depends on two factors: (i) the
average (over all bins) error of the potential update ǫ∆U and (ii) the number
of iterations required for convergence. We define the average error as:

ǫ∆U =
1

N

N
∑

i=0

ǫ(∆U(ri)) , (5.1)

where N is the number of bins and ǫ(∆U(ri)) is the error of the update
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function at a separation ri. ǫ(∆U(ri)) was calculated using a Jackknife anal-
ysis [147].

The average error of the potential update is shown in Fig. 5.1c as a
function of the run length. One can see that, for both methods, the error
decreases as 1/

√
L, where L is the number of snapshots used for averaging.

However the prefactor for the IBI update error, which is based on the radial
distribution function, is at least ten times smaller than for the IMC update
error, which makes use of cross-correlations of Sα. This observation implies
that, in order to have the same accuracy of the update function, IMC needs
significantly longer sampling.

This disadvantage is of course compensated by the efficiency of the update
function, which is assessed by computing the root mean square deviation,
∆gn, of the current and target radial distribution functions:

∆g2
n =

∫

[

gref(r) − g(n)(r)
]2

dr . (5.2)

∆gn is plotted as a function of the number of iterations, n, in Fig. 5.1d. It is
clear that IMC converges much faster than IBI, though the root mean square
deviation saturates after some number of iterations.

5.2 Coarse-graining of methanol

Liquid methanol (see the inset in Fig. 5.2) is the second example of coarse-
graining of non-bonded interactions that is presented here. In fact, FM has
already been used to coarse-grain this system [146] and, contrary to water,
the liquid structure (radial distribution function) is well reproduced by the
FM coarse-grained potential. In addition, the excluded volume of methanol
is larger than that of water and the undulations of the radial distribution
function extend up to 1.5 nm. As will be shown, this leads to pronounced
finite size effects for IMC, since it has a non-local potential update. FM and
IBI do not have this problem, since the IBI potential energy update is local
and FM is based on pair forces. The range of the latter is much shorter than
the correlation length of structural properties (such as undulations of the
radial distribution function), which may propagate over the boundaries for
small boxes.

Simulation parameters were taken from ref. [146] and OPLS [148, 149] all-
atom force field was used. Atomistic simulations were performed with 1000
methanol molecules in a cubic box (4.09 nm box size) at 300 K using the Nose-
Hoover thermostat [82, 83]. The system was equilibrated for 2 ns followed
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Figure 5.2: Methanol (a) Coarse-grained potentials. (b) Corresponding radial distri-
bution functions. (c) coarse-grained potentials using 10 IMC iterations for simulation
boxes with 1000, 2000 and 8000 methanol molecules (box size 4.09 nm, 5.15308 nm, and
8.18 nm) equilibrated at the same density. (d) Root mean square deviation of reference
and the current radial distribution function versus number of iterations. Similar to liquid
water, IMC converges faster than IBI. The convergence saturates and the saturation error
strongly depends on the system size. The inset of (a) shows the Van der Waals excluded
volume and coarse-grained representations of a methanol molecule.
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by a production run of 18 ns. The reference radial distribution function was
calculated using snapshots every 0.5 ps and is shown in Fig. 5.2b.

The FM potential was calculated using blocks of 6 frames each and a
spline grid of 0.02 nm. With this potential, coarse-grained simulations were
performed using a stochastic dynamics integrator, 1000 beads and with the
same box size and the same temperature as in the atomistic simulations.
The system was equilibrated for 40 ps followed by a production run of 160 ps.
Snapshots were stored every 5 ps and used to calculate the radial distribution
function.

For the iterative procedures, the potential of mean force was taken as an
initial guess. The cutoff was chosen at 1.54 nm with a grid spacing of 0.01 nm.
For IBI, 300 iterations were performed using stochastic dynamics with the
same parameters used in the FM-based procedure. The IMC iterations were
performed with 8000 molecules and a box size of 8.18 nm. The total length
of the run was 1 ns and snapshots were stored every 0.2 ps. Two smoothing
steps were used at each iteration for the potential update, ∆U .

The coarse-grained potentials for all methods are shown in Fig. 5.2a. In
spite of small differences between the coarse-grained potentials, the agree-
ment between the reference and coarse-grained radial distribution functions
is excellent, as can be seen from Fig. 5.2b.

It is important to mention that the IMC method, which has a non-local
update, is prone to systematic errors due to finite size effects and hence
requires much larger simulation boxes in order to calculate the potential up-
date. This is due to artificial cross-correlations of Sα at large distances, which
lead to a small difference of tails between the coarse-grained and the reference
radial distribution functions, and, as a consequence, to a much higher pres-
sure of the coarse-grained system and a significantly different coarse-grained
potential. In contrast, IBI and FM work well with system sizes of the order
of two radial distribution function cutoff lengths.

To illustrate this point, simulation boxes of three different sizes were
prepared, with 1000, 2000 and 8000 methanol molecules (box size of 4.09 nm,
5.15308 nm and 8.18 nm, simulation times of 3 ns, 2 ns and 1 ns respectively).
The IMC iterative procedure was repeated until the potentials converged, and
these are shown in Fig. 5.2c. One can see that the potentials significantly
differ from each other. These differences lead to small deviations in the tail
of the radial distribution function, which, however, vanish, in a systematic
way, for bigger boxes, as illustrated in Fig. 5.2d, where the integral of the
difference of the reference and current distribution functions is plotted. More
detailed analysis have shown that, for small boxes, an additional linear term
in the potential update at large separations appear. To determine the origin
of this term, ∆U was calculated using the full matrix Aαβ as well as only
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its diagonal elements. The potential after 50 IBI iterations was taken as
an initial guess. Without the off-diagonal elements ∆U was small once the
reference and coarse-grained radial distribution functions were matching each
other. Inclusion of the off-diagonals elements always resulted in an additional,
practically linear, term in the potential update which became smaller for
large boxes. Based on this observation is was concluded that the off-diagonal
elements of the matrix Aαβ systematically change with the box size.

To summarize, IMC should be used with care for small systems. The
potential update (or the coarse-grained potential) must be converged with
respect to the simulation box size. In the case of methanol coarse-graining, a
box of size three times the radial distribution function cut-off was not enough
to achieve the converged potential for IMC, even though this is sufficient for
IBI and FM methods.

5.3 Liquid propane: from an all- to an united-

atom description

So far coarse-graining of non-bonded degrees of freedom was illustrated using
liquid water and methanol as examples. In this section it is shown how
bonded interactions can be coarse-grained by deriving a united atom model
(i.e. hydrogens embedded into heavier atoms) from an all-atom model of
liquid propane.1 The mapping scheme, as well as the bonded coarse-grained
variables (two bonds, b, and one angle, θ) are shown in the inset of Fig. 5.3.
Note that this coarse-graining scheme has two different bead types: an inner
bead, of type B, with two hydrogens, and two outer beads, of type A, with
three hydrogens. As a result, three types of non-bonded interactions, UAA,
UBB, and UAB must be determined.

As before, atomistic simulations were performed using the OPLS all atom
force field [148, 149]. A box of liquid propane was first equilibrated at 200 K
and 1 bar in the NPT ensemble for 10 ns using the Berendsen thermostat and
barostat [81]. The equilibrated box of the size 4.96337×5.13917×4.52386 nm3

was then simulated for 10 ns in the NVT ensemble at 200 K using velocity
rescaling with a stochastic term [84]. No bond constraints were used during

1The united atom model we use here shall not be confused with the united atom
models commonly used in the atomistic force-field community, for example OPLS-UA
force-field [148, 149]. The latter models map the potentials, which are analytical functions
of bonds, angles, and dihedral angles, onto thermodynamic properties of the corresponding
substances. In our case coarse-grained potentials are tabulated functions of coarse-grained
variables and only the mapping (hydrogens embedded into heavier atoms) is similar to that
of the united atom force-fields.
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Figure 5.3: Propane (a) Non-bonded interaction potentials UAA, UBB, and UAB ob-
tained with IBI and FM methods. For clarity, FM potentials are offset along the y axis.
(b) Corresponding radial distribution functions, plotted together with the atomistic ra-
dial distribution function. (c) Bond potential obtained for a single molecule in vacuum
by Boltzmann-inverting the corresponding distribution function, using FM for a single
propane molecule in vacuum and force matching for liquid propane. (d) Angular coarse-
grained potentials. FM-based distributions for a single molecule and the liquid are on
top of each other. The inset of (c) shows the correlations of b and θ. The inset of (d)
shows all-atom and coarse-grained representations of a propane molecule, bead types, and
coarse-grained bonded degrees of freedom (bond b and angle θ).
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the simulations and hence the integration timestep was 1 fs. Snapshots were
written every 1 ps.

In the case of iterative methods, the bonded potentials (bond and an-
gle) were calculated by Boltzmann-inverting the corresponding distribution
functions of a single molecule in vacuum, according to eq. 4.5. The propane
molecule in vacuum was simulated in an stochastic dynamics run [145] for
100 ns with snapshots stored every 2 ps. Non-bonded potentials were iter-
atively refined by using IBI with a grid spacing of 0.01 nm and a cutoff of
1.36 nm (1.38 nm) for A-A, A-B (B-B) interaction types, respectively. The
run length for each iteration was 50 ps with snapshots written every 0.5 ps.
At every iteration step only one interaction type was corrected. When using
the FM method, both bonded and non-bonded potentials were obtained at
the same time, since FM does not require the explicit separation of bonded
and non-bonded interactions.

The obtained potentials are shown in Fig. 5.3a,c,d. FM and Boltzmann
inversion-derived bond and angle potentials (Fig. 5.3c,d) perfectly agree with
each other. The non-bonded potentials, shown in Fig. 5.3a, are not com-
pletely identical, but have similar shapes and barrier heights. This of course
results in a good reproducibility of the propane liquid structure by the FM-
based coarse-grained potentials, as can bee seen from the radial distribution
functions shown in figure Fig. 5.3b. Again, as expected, IBI reproduces the
reference radial distribution functions exactly.

To summarize, the united atom model of liquid propane is an ideal exam-
ple of coarse-graining where the structure- and force-based methods result
in similar bonded and non-bonded interaction potentials. As will be shown
later, this is due to (i) the completeness of the basis set used to construct
the coarse-grained force-field; and (ii) independence of bond and angular de-
grees of freedom. The latter can be understood with the help of a histogram
showing the correlation of b and θ, depicted in the inset of Fig. 5.3c.

In the next section coarse-graining of a single molecule of hexane is con-
sidered, for which this is not the case.

5.4 Angular potential of a hexane molecule

The last example discussed here is the angular potential of a hexane coarse-
grained into a three-bead chain, with two carbon atoms per bead (see the
inset in Fig. 5.4a). Atomistic simulations of a single hexane molecule in
vacuum were performed using the all-atom OPLS force field and a stochastic
dynamics integrator [145]. The run length was 1000 ns and snapshots were
stored every 2 ps.
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Figure 5.4: Hexane (a) Coarse-grained angular potentials obtained using Boltzmann
inversion (no iterations) and FM for a single hexane molecule in vacuum. The inset of
(a) shows hexane molecule and its coarse-grained representation. Arrows indicate the
directions of the forces on three beads for a specific snapshot. (b) Probability density
(probability distribution normalized by the interval) obtained from the atomistic run as
well as from the runs using coarse-grained angular potentials. The inset of (b) shows the
correlation of b and θ).

The coarse-grained angular potential was again obtained by Boltzmann-
inverting the angular distribution function or by using the FM method (blocks
of 50000 frames each, a spline grid of 0.05 nm, sampling in the θ ∈ [1.6, 3.14]
interval). Both coarse-grained potentials are shown in Fig. 5.4a. The cor-
responding distribution functions, together with the reference function ob-
tained from the atomistic simulations, are shown in Fig. 5.4b.

It is obvious that the distribution which corresponds to simple Boltzmann
inversion is practically identical to the reference distribution, while the FM-
based distribution samples small angles much more often, which is a direct
consequence of a very deep local minimum in the angular potential at these
angles. It is easy to understand why FM fails to predict the relative height
of this minimum. On a coarse-grained level the change of the angle from
large to small values corresponds to the reorientation of the dihedral angles
at the atomistic level. This reorientation results in instantaneous forces, f1,
f2, f3, on the beads which have an out of plane component, where the plane
is defined by the centers of the beads (see also the inset of Fig. 5.4a). The
coarse-grained potential, however, has only an angular term, Uθ, and hence
can only capture forces which lie in the plane in which the angle θ is defined.
Hence, only the projections of the forces on this plane are used in FM, and
this clearly leads to underestimation of the position of the second minimum,
since the work conducted by the out-of-plane forces is completely ignored.

Additionally, this mapping scheme does not have independent variables,
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e. g. bond and angle degrees of freedom are coupled, as can be seen from the
Ramachandran plot shown in the inset of Fig. 5.4(b). This means that, even
though Boltzmann inversion reproduces correct distributions, sampling of
the configurational space is incorrect because of the lack of cross-correlation
terms in the coarse-grained potential.

This example clearly shows that coarse-graining shall be used with un-
derstanding and caution, the methods should be cross-checked with respect
to each other, as well as with respect to the reference system. In the
next Chapter a more complicated example is considered, namely a solvent-
free coarse-grained model of poly(2,3-diphenylphenylene vinylene) with hexyl
(DP6-PPV) and decyl side chains (DP10-PPV) in chloroform.
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Chapter 6

Conformational structure of

PPV derivatives

After introducing different coarse-graining techniques in Chapter 4 and dis-
cussing their strengths and weaknesses in Chapter 5 we will consider a more
complicated example, namely a coarse-grained model for the dilute solutions
of conjugated polymer poly(2,3-diphenyl phenylene vinylene).

Conjugated polymers have attracted much interest due to their unique
optical and semiconducting properties, making them the materials of choice
for opto-electronic applications, e.g. polymer light emitting diodes and plas-
tic conductive layers [150, 151, 152].

Even in the early stages of the design of polymeric optoelectronic de-
vices, it already became clear that the electronic properties of thin films of
conjugated polymers are extremely sensitive to the global as well as the lo-
cal arrangement of chains. By choosing different processing techniques, e.g.
spin-coating or drop-casting, and processing conditions, such as solvent and
temperature, it is possible to obtain different morphologies and hence control
the electronic properties of the film.

The generic molecular architecture of conjugated polymers is comprised of
a semi-rigid conjugated backbone, responsible for charge conductance, and
flexible side chains that insure solubility and facilitate processing. When
drop-casted or spin-coated from solution, the resulting film morphology de-
pends on the chain conformation in dilute solution. Hence, understanding of
the conformational structure of conjugated polymers in solutions is necessary
in order to control the morphology of a thin organic semiconducting layer.

Experimentally, techniques such as light or neutron scattering are used
to study structural properties of polymer solutions. These properties are
extracted by fitting scattering profiles to predefined analytical models [153].
However, even an excellent fit alone can not guarantee that the underlying
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analytical model is valid. In this situation, computer simulations may be
employed to validate the conclusions of experimental studies and help to
link morphology and electronic structure to charge or exciton mobility (see
Chapter 2). In order to do this, one first has to be able to generate large-
scale material morphologies at an atomistic scale resolution. This involves (a)
parametrization of atomistic force-fields, since these are not readily available
for most organic compounds (Chapter 3) and (b) development of solvent-free
coarse-grained models, capable of back-mapping (Chapters 4 and 5). The
latter is essential for extending time- and length-scales accessible to those of
classical molecular dynamics simulations.

In this chapter, we illustrate how the latter task may be tackled for dilute
solutions of conjugated polymers.1 Specifically, we study two derivatives
of poly(2,3-diphenylphenylene vinylene) (DP-PPV) with hexyl (DP6-PPV)
and decyl (DP10-PPV) side chains, which were presented in Chapter 3 (see
Fig. 3.1).

DP-PPVs have been considered as a family of green-emitting materials
for LED applications due to their high glass transition temperature, high flu-
orescence efficiency, and ease of monomer and polymer synthesis [90, 91, 92].
Conformational structure and aggregation behavior of DP6-PPV have been
studied by means of small angle neutron scattering (SANS) and dynamic
light scattering (DLS) [154]. It could be shown that DP6-PPV tends to
aggregate in chloroform and toluene, yielding network aggregates whose in-
ternal structure can be characterized by a certain fractal dimension. Two
types of segmental association with distinct stability were identified for the
toluene solution. The highly stable segmental association was attributed to
the π − π complex already present in the DP6-PPV powder, while the labile
segmental association was ascribed to the poor affinity of the aliphatic side
chains of DP6-PPV to toluene. An analogous study for DP10-PPV showed
that only a minor fraction of the polymer undergoes segmental association in
chloroform, whereas in toluene disk-like clusters are formed [155]. The differ-
ence in aggregation behavior between DP6- and DP10-PPV was attributed
to the more pronounced steric repulsion of the longer side-chains in the latter
polymer.

This chapter is organized as follows. First the results of the atomistic sim-
ulations of dilute DP-PPV solutions are presented. Special attention is paid
to side-chain stretching, backbone orientational correlations, chain tacticity,
and the influence of side groups on the backbone planarity. Subsequently,
atomistic trajectories of a single chain in a solvent in combination with the
potential of mean force calculations are used to parametrize a coarse-grained

1The former task is considered in Chapter 3.
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model with two repeat units per bead and coarse-grained simulations are
performed. These then serve to study large-scale systems and to determine
how static structure factors and persistence length change as a function of
polymer concentration. The work is summarized by comparing simulation
results to experimental data and by commenting on the limitations of our
multiscale approach.

6.1 Atomistic molecular dynamics

In this section, we present results of our atomistic molecular dynamics sim-
ulations such as side chain stretching, planarity of the backbone, and chain
persistence length in two solvents. Throughout the text, we use the follow-
ing abbreviations for different polymer derivatives, solvents, and backbone
lengths: each system name begins either with D6 or D10, corresponding to
DP6-PPV or DP10-PPV respectively. An additional letter denotes the sol-
vent: “c” is for chloroform and “t” for toluene. Finally, a number for the
backbone chain length, in repeat units, is added. For example, D6c20 is a
20 monomer units long DP6-PPV derivative in chloroform. Unless otherwise
stated, all simulations were performed at 300 K.

6.1.1 Alkyl side chain stretching in solvated DP-PPV

Experimentally, chloroform is considered to be a relatively good solvent for
both DP6- and DP10-PPV derivatives, whereas toluene is a relatively poor
one. Additional segmental aggregation in toluene relative to chloroform is
often ascribed to the poor affinity of the aliphatic side chains of DP-PPV for
toluene [154, 155]. To check this, we analyzed alkyl side chain stretching in
both solvents.

A 10-mer of DP6- or DP10-PPV was simulated in chloroform and toluene
for 40 ns and the corresponding distributions of the side chain end-to-end
distances are shown in Fig. 6.1. As one can see, the distributions are identical
for both solvents, i.e. the difference in solvent quality does not affect the side
chain conformations, at least in our atomistic model. The same conclusion
could be made when simulating an all-atom hexane chain (which corresponds
to a side chain of DP6-PPV) in chloroform and toluene, where again, no effect
of solvent quality on chain conformations was detected.

Experimentally, solvent quality can be characterized via the second virial
coefficient A2, which can be determined from static light scattering exper-
iments [155]. A2 = 6.7 × 10−6mol dm3 g−2 was reported for chloroform
and 3.7 × 10−6 mol dm3 g−2 for toluene. This difference is rather small and
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Figure 6.1: Alkyl side chain end-to-end distance distributions for DP6- and DP10-PPV
chains of 10 repeat units. Chain stretching does not depend on the solvent. Name abbre-
viations are explained in the beginning of Sec. 6.1

poses the question of whether toluene is a poorer solvent than chloroform
only because of the additional chain aggregation observed in toluene solu-
tions [154, 155]. It is also interesting that toluene is often reported to be
a good solvent for another PPV derivative, MEH-PPV (Ref. [156]) as well
as for polyfluorenes with longer alkyl side chains [157, 158]. This further
suggests that both toluene and chloroform might be relatively good solvents
for DP-PPVs and that aggregation is an artifact of an initial non-equilibrium
state of polymer chains in a powder.

6.1.2 Orientational correlations in solvated DP-PPV

Orientational correlations of the polymer backbone can be used to calcu-
late the persistence length of a chain, which can be directly compared to
experimental values.

A single chain of 20 monomer units was solvated in previously equili-
brated solvent boxes, containing 23550 and 17728 molecules of chloroform
and toluene respectively. After 10 ns of equilibration, a production run of
40 ns was performed. During the production run, the orientational correla-
tions of repeat units were calculated as

cos θn = 〈ei · ei+n〉 , (6.1)

where ei is a unit vector giving the orientation of the i-th repeat unit along
the backbone. This orientation is defined by a pair of carbon atoms for a
backbone benzene ring, such as atoms 3 and 6 or 16 and 21 in Fig. 3.1b.
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Figure 6.2: (a) Orientational correlations for 20 repeat unit chains of DP6- and DP10-
PPV in chloroform and toluene. 40 ns run, average of 20000 configurations. (b) Typical
conformation of a DP10-PPV chain in chloroform.

〈· · · 〉 denotes the time average and the average over all pairs, i, i + n, along
the chain. The persistence length, lp, can be estimated as log(cos θn) ∝
−nl/lp, where l is the length of the repeat unit. Note, that this is only
possible if correlations decay exponentially, which might not necessarily be
the case [159, 160, 161].

Orientational correlations for different solvents and different side-chain
lengths are shown in Fig. 6.2a. It is clear that the backbone is quite rigid
(see also Fig. 6.2b, where a typical conformation of a DP10-PPV chain in
chloroform is shown). Moreover, within available accuracy, the decay of the
correlation function does not depend on the side-chain length or solvent. A
fit yields a rough estimate of the persistence length, lp ∼ 17−25 Å. Improved
statistical averages are needed for more accurate estimates of lp, which can be
obtained by using solvent-free coarse-grained models, as described in Sec. 6.2.

6.1.3 Planarity and tacticity of solvated DP-PPV

To facilitate charge transport along a conjugated chain, planarity of the
backbone is required [162]. In principle, conjugation already enforces a planar
backbone conformation. However, non-bonded (Coulomb and van der Waals)
contributions can favor twists in the backbone. Here, we study how the
chemical structure of a repeat unit, in particular the side chain groups, affects
the planarity and tacticity of the backbone.

A PPV repeat unit has two dihedral angles which control its planarity,
as depicted in the inset of Fig. 6.3a. In Fig. 3.2a the dihedral potential of
trans-stilbene, corresponding to these angles is shown. It has two minima
separated by a barrier significantly higher than kBT . Since both minima are
rather shallow, thermal fluctuations can easily lead to a 45 degree twist in
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Figure 6.3: Distributions of dihedral angles controlling planarity of the PPV unit. (a)
Bare PPV, without the side chains and phenyl rings. (b) Phenyl rings only. (c) Side
chains only. (d) DP6-PPV. All results stem from a single chain in vacuum. Insets depict
the chemical structure of the corresponding compounds.

the backbone, breaking the conjugation.

To study the effect of varying side chains on the dihedral distributions,
we simulated three model systems, all based on a DP6-PPV trimer. The first
one, referred to as a “bare backbone” system, had both alkyl side chains and
phenyl rings (not belonging to the backbone) substituted with hydrogens.
The second system did not have aliphatic side chains, while the last system
had the non-bonded interactions of the phenyl rings not belonging to the
backbone switched off.

The distributions of the dihedral angles for these three cases are shown
in Fig. 6.3. The distributions for a backbone without any side groups,
Fig. 6.3a, are rather broad with the maxima located at 0 and ±180 deg.
Due to the symmetry of the “bare backbone” PPV, both distributions are
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Figure 6.4: Orientational correlations of neighboring monomer units. Correlation functions
show that DP-PPV polymers are syndiotactic.

identical and probabilities of finding the system with angles of 0 deg and
±180 deg are the same. The distributions became asymmetric for the sys-
tems with the alkyl side chains, as shown in Fig. 6.3c. Here, one of the
dihedral angles samples conformations around 0 deg and the other those of
around 180 deg. This reflects the fact that the alkyl side chains repel each
other and are attached in an asymmetric way with respect to the two dihe-
drals. Hence, the symmetry of the distributions with respect to the angles is
broken. If instead, only the phenyl rings are attached, the cis conformation
becomes improbable, as can be seen in Fig. 6.3b. In this case, the φ = 0 deg
conformation is more preferable than the φ = ±180 deg one. Both effects add
up in the distributions of DP6-PPV, which are shown in Fig. 6.3d. Here, the
heights of the distributions of the dihedral angles φ1 and φ2 are different at
φ = 0 deg, which is due to alkyl side chains. Additionally, conformations
with φ = ±180 deg are strongly suppressed due to the presence of the phenyl
rings. For the DP10-PPV derivative, the situation is qualitatively similar.
Namely, longer alkyl side chains lead to an even broader distribution of the
dihedral angle φ2.

The final issue we would like to address here is the tacticity of a DP-PPV
polymer chain. It is important for choosing an appropriate mapping for a
coarse-grained model, as discussed in Sec. 6.2. By analyzing the distributions
of the backbone dihedral angles, we have concluded that the presence of the
phenyl side groups leads to chain conformations with opposite orientations
of alkyl side chains of neighboring repeat units, i.e. DP-PPV is a syndio-
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Figure 6.5: Intermolecular radial distribution function for phenyl rings in the melt of
DP-PPV oligomers.

tactic polymer. In order to see the effect of solvent and side chain length
on correlations of monomer orientations, we calculated the correlation func-
tion of a cross product of vectors connecting the atoms 2-4 and 18-19 (see
Fig. 3.1b for atom designations). This cross-product, which is a measure of a
chain deviation from planarity, is shown in Fig. 6.4. Again, within available
accuracy, our model cannot differentiate between toluene and chloroform or
hexyl and decyl side chains.

6.1.4 DP-PPV melt

An interesting observation made on the basis of WAXS experiments is that,
in a powder, DP6-PPV forms a π−π complex but DP10-PPV does not [154].
This conclusion was made by analyzing WAXS profiles, which have a sharp
maximum at 3 Å in the case of DP6-PPV, and ascribed to the distance be-
tween the π-stacked phenyl rings. This maximum was absent in the DP10-
PPV powder. The difference in ring packing was explained in terms of the
bulkier side chains of DP10-PPV as compared to those of DP6-PPV.

The radial distribution function of the centers of mass of the phenyl rings
is shown in Fig. 6.5. As one can see, it is practically identical for the melts
of DP6- and DP10 oligomers. Hence, in a melt of oligomers, the average
distance between phenyl rings is not sensitive to the length of side chains.
Of course, the melt morphology might differ from the non-equilibrium semi-
crystalline morphology of a polymer powder. Nevertheless, some π − π com-
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plexes should also appear in the melt and their amount and the π−π distance
should depend on the length of the side chains. Since this is not the case,
atomistic models hint that the absence of π − π complexes in DP10-PPV
powder is due to the non-equilibrium state of the polymer.

Another interesting experimental observation is the crystallization of poly-
mer backbones upon annealing of a spin-coated film. Crystallization leads to
a significantly more pronounced X-ray diffraction peak at a π − π stacking
distance, which is reported to be 3 Å [154]. Fig. 6.5 indeed shows that after
annealing, the first maximum of the radial distribution function is located at
a separation of about 6 Å. In fact, this separation corresponds to the mini-
mum of the potential of mean force of two coarse-grained beads in vacuum
as shown in Fig. 6.6c. It obviously overestimates the π − π staking distance
since the system is in a non-equilibrium state. However, the reported in
experiments separation of 3 Å is too small and already in the range of the
repulsion of two cofacially aligned repeat units, even without any side chains
attached to them [163].

6.1.5 Atomistic molecular dynamics: summary

In summary, the all-atom molecular dynamics simulations give similar and
often identical results for DP6-PPV and DP10-PPV in both solvents, i.e.
we could not capture the difference in solvent quality. Longer side chains of
DP10-PPV as compared to DP6-PPV do neither affect phenyl ring packing
in a melt nor dimer-dimer interactions in vacuum and solution, as will be
shown in Sec. 6.2.2. Hence, experimentally observed fractal aggregates of
DP6-PPV in chloroform or disk-like aggregates of DP10-PPV in toluene, can
not be rationalized by atomistic models. However, reasonable agreement with
experiments can be expected for a dilute solution of DP10-PPV in chloroform,
since in this case no aggregation occurs. In the following section, we will
develop a solvent-free coarse-grained model of DP10-PPV in chloroform.

6.2 A coarse-grained model for DP10-PPV

As has already been pointed out in Sec. 6.1, atomistic simulations do not
allow an accurate estimation of polymer persistence lengths. Moreover, for
studying dilute solutions of DP-PPV in chloroform or toluene, systems with
many chains have to be simulated at different concentrations, which is prac-
tically impossible at the atomistic level of detail.

In this section, we develop a solvent-free coarse-grained model for DP10-
PPV in chloroform and use it to calculate persistence length and static struc-
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ture factor as a function of polymer concentration. Both are then compared
to the experiment.

To represent a DP-PPV chain on a coarse-grained level, we mapped two
monomer units onto one spherical bead, as illustrated in Fig. 6.6d. Two (in-
stead of one) monomer units per bead were used because PPV is syndiotactic
(see Sec. 6.1.3). Hence, a coarse-grained representation with one bead per
repeat unit is problematic, since repeat units are asymmetric and cannot be
properly described by spherically-symmetric pair potentials.

6.2.1 Bonded interaction potentials

The next step of systematic coarse-graining is to determine bonded and non-
bonded potentials. Here, only two types of bonded interactions, are included,
namely a bond stretching potential between two successive beads and an
angle potential between three successive beads. Dihedral potentials are not
included as DP-PPVs have a rigid backbone which can be accounted for by
the angular potential only. To parametrize the bonded potential, an approach
was used in which bonded interactions are obtained from canonical sampling
of a single chain in a solvent. The potentials are then obtain by simple
Boltzmann inversion. Specifically, a single chain of 20 repeat units of DP10-
PPV in chloroform was used. Resulting distributions for both atomistic and
coarse-grained sampling are in perfect agreement with each other as shown
in Fig. 6.6a,b.

6.2.2 Non-bonded interaction potentials

For non-bonded coarse-grained interaction potentials we used the potential
of mean force (PMF) between dimers. In this case, PMF is a free energy
of a dimer pair at a specific separation, averaged over all possible mutual
orientations of the dimers, as well as positions and orientations of solvent
molecules, if present.

Note that non-bonded potentials can not be obtained by IBI or IMC in
this case, because it is practically impossible to obtain accurate RDFs for
a dilute solution. Hence, to simulate dilute solutions, we used PMF in a
solvent as a non-bonded potential.

PMFs for both DP6- and DP10-PPV were calculated in vacuum and
solvents, using configurational sampling [117]. Results are shown in Fig. 6.6c.
In vacuum, PMF predicts strong dimer-dimer attraction, which might lead
to polymer aggregation. On the other hand, fully solvated dimers have a
purely repulsive interaction. Calculated PMFs, and hence the coarse-grained
non-bonded potentials, correspond to infinitely dilute systems. In practice,
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Figure 6.6: Coarse-grained bond (a) and angle (b) distribution functions as obtained from
atomistic and coarse-grained MD simulations. A chain of 20 monomers of DP10-PPV in
chloroform was used for sampling. Potentials are obtained by Boltzmann-inverting the
distributions. (c) Dimer-dimer potential of mean force (PMF), calculated using configu-
rational sampling. PMFs in toluene are identical to those in chloroform. (d) Mapping
scheme for the coarse-grained model. When determining centers of coarse-grained beads,
no alkyl side chains were included.
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Figure 6.7: Backbone orientational correlations for DP10-PPV/chloroform solutions for
different concentrations. Results from atomistic simulations are shown for comparison.

potentials might depend on polymer concentration. However, for systems of
up to 1 wt% this dependence may be neglected. In addition, PMFs in both
solvents are purely repulsive and only ensure that coarse-grained beads have
a certain excluded volume. Hence, simulation results should not be sensitive
to the actual functional form of the potential.

6.2.3 Coarse-grained simulations of DP10-PPV in chlo-

roform

Experimentally, three different concentrations of DP10-PPV/chloroform so-
lutions were studied: 0.1, 0.5, and 1.0 wt% [155]. We used the same con-
centrations as in experiment and compared simulated and measured polymer
persistence lengths and static structure factors.

The systems consisted of 512 polymer chains, 50 beads each, which corre-
sponds to 100 monomer units. NVT simulations were performed for 16 ns and
800 frames were used to compute static structure factors. All coarse-grained
simulations were performed at 300 K.

The calculated structure factors, S(q), for different polymer concentra-
tions are shown in Fig. 6.7a. One can see that S(q) scales as q−1 in the high-q
region, irrespective of concentration. This is due to the rod-like nature of
the segments constituting the DP10-PPV chains [164]. In the low-q region,
intensity decreases with an increase of concentration. This dependence is de-
termined by the dynamic network structure formed by the interchain overlap
in the semidilute solution [165].
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concentration, wt% lp, nm
0.1 6.4
0.5 13.3
1.0 23.0
MD 25.0 ± 0.5

Table 6.1: Estimations of persistence length from SANS experiments [155] and coarse-
grained MD simulations. MD predicts the same value for all three concentrations.

Backbone orientational correlations are shown in Fig. 6.7b. These cor-
relations decay exponentially on the accessible length scale, which allows
estimations of polymer persistence lengths as discussed in Sec. 6.1.2. The
calculated persistence length of 25± 0.5 nm is independent of concentration,
contrary to experimental findings summarized in Table. 6.1. In experiments,
persistence length was extracted by fitting SANS profiles to the wormlike
chain model with excluded-volume interactions [155].

The increase with concentration can be attributed to chain aggregation.
At low concentrations, chains do not interact and there is no aggregation.
Upon increasing the concentration, aggregates start to form and inside those
aggregates, chains become locally more extended which increases their per-
sistence length. Our model can not capture this effect since we have repulsive
effective potentials. Hence, no driving force is present, which might lead to
polymer aggregation at higher concentrations.

6.3 Discussion

Our simulations confirm experimental evidence that both chloroform and
toluene are good solvents for DP-PPVs. This is based on alkyl side chain
stretching, backbone orientational correlations, and the potential of mean
force (PMF) of DP-PPV dimers in the solvent. However, the experimentally
reported quantitative results on solvent quality could not be reproduced.

Atomistic simulations show that the difference in side chain lengths of
DP6- and DP10-PPV does not affect chain packing in a melt of oligomers,
which is practically identical for both DP6- and DP10-PPV. Interdimer in-
teractions in solutions are also not strongly affected by the difference in side
chain lengths, namely the interdimer PMF is repulsive for both DP6- and
DP10-PPV. This seems to contradict experimental observations which find
that DP6-PPV forms aggregates in solution, whereas DP10-PPV does not.
A possible reason for this inconsistency might be that in experiments, the
system is in its non-equilibrium state, since powder, in which polymer chains
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are semicrystalline, was used to prepare the solution. Furthermore, as can be
found in Ref. [155], DP10-PPV does aggregate in toluene solutions. However,
if the system is heated up to 85◦C and then cooled down, these aggregates
tend to disappear. Recently, an alternative explanation of anomalous aggre-
gation in good polymer solutions has been proposed [166]. This mechanism is
applicable to stereoregular polymers, such as DP-PPV, which indeed shown
to be syndiotactic in our simulations.

Coarse-grained simulations show that, for very low polymer concentra-
tions (0.1 – 1.0 wt%), polymer persistence length does not depend on polymer
concentration. This again contradicts the experimental picture, where the
increase of persistence length at 1.0 wt% is rationalized as chain aggregation.
The overestimation of the polymer persistence length in simulations might
be due to the presence of tetrahedral chemical defects in real samples [167].
In these defects conjugated carbon-carbon bonds are replaced by tetrahedral
ones. They divide polymer chains into structurally identifiable quasi-straight
segments and reduce orientational correlations, which leads to a decrease in
persistence length.

Finally, we should mention that various approximations in our simulation
models might also lead to a disagreement between experiments and simula-
tions. For example, as experimental data for conjugated compounds is rather
sparse, force-field validation becomes problematic. To this end, although we
have reproduced density, melting temperature, and crystal structure of stil-
bene, this is no guaranty that thermodynamic properties such as solvation
free energy are correctly reproduced. Other issue can be limited accessible
length- and time-scales. Explicit solvents and rather stiff polymer backbones
prohibit the study of global chain conformations and chain self-interactions
via atomistic molecular dynamics. Solvent-free coarse-grained models are ca-
pable of simulating bigger boxes on longer timescales. These, however, lead
to additional approximations, which cannot be easily controlled.
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Chapter 7

Morphology and charge

transport in amorphous Alq3

7.1 Introduction

Tris(8-hydroxyquinoline)aluminium (Alq3, Fig. 7.1a) is a commonly used or-
ganic semiconductor with a higher electron than hole mobility [168]. The
first organic light emitting diodes were made with Alq3 and since then it has
played the role of a “guinea pig” compound in organic electronics [6]. The
distinctive properties of Alq3 are its green light emission and good electron
mobility. It is also used as a host material for emissive dopants of lower
emission energy.

In organic semiconductors both emission and charge transport proper-
ties are extremely sensitive to the material morphology. The latter can be
controlled by an appropriate processing or compound derivatization. Un-
derstanding the link between the structure, morphology, and macroscopic
properties of organic compounds is the first step towards their rational de-
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Ca1
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Ca3

Figure 7.1: (a) Chemical structure of tris-8(hydroxyquinoline aluminium) (Alq3). (b)
Meridional isomer of Alq3. (c) Atom labeling used to show the distributions of angles and
dihedrals. Largest linear dimension of the molecule is ≈ 1 nm.
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sign [74].

In spite of numerous experimental studies, there were only two theoreti-
cal/computational attempts to relate the morphology of amorphous Alq3 to
its charge carrier mobility [169, 68]. In Ref. [169] the rigid-body approxima-
tion for the intramolecular structure was used together with the non-bonded
parameters taken from the Dreiding force field. Approximate force constants
for bonded parameters and non-bonded parameters of the Williams 99 force
field were used in Ref. [68]. In both cases neither the force field nor the gen-
erated amorphous morphology was checked against the experimental data,
and its characterization was reduced to pair correlation functions and density
at ambient conditions.

In this chapter, we first derive bonded parameters for the Alq3 molecule
using first-principles potential energy scans. Second, we compare OPLS and
Williams 99 force fields to each other as well as to the available experimen-
tal data. We further assess how the morphological difference, resulting from
using different force field parameters, affects charge transport. Finally, we
demonstrate that the dipolar energetic disorder (see Sec. 2.4) must be taken
into account in order to describe charge dynamics correctly. We analyze the
influence of energetic disorder in terms of pathways and occupation proba-
bilities and show that the spatial correlations of site energies must be taken
into account in order to reproduce Poole-Frenkel behavior (see Sec. 2.6) of
the charge carrier mobility.

7.2 Force-field parameters

As already explained in Chapter 3, force field refinement can be split into
several steps: (i) determination of partial charges; (ii) calculation of the
force field parameters for the bonded interactions; (iii) parameterization of
the non-bonded interactions.

Partial charges were obtained from electrostatic potentials using a grid
based method (CHELPG) [93] after the geometry optimization of a merid-
ional Alq3 isomer1 in vacuum (see Fig. 7.1b) using the B3LYP functional
and 6-311g(d) basis set. The corresponding molecular dipole moment was
d = 4.4 D. The DFT results were checked against MP2 calculations with
6-311g(d) basis set, for which the dipole moment is 5.4 D. No substantial
differences were noticed with either B3LYP or MP2 charges used. All results

1Another isomer which is commonly observed in the octahedral complexes of the type
MN3O3, where M is a trivalent metal, namely the facial isomer, has not been experimen-
tally identified for amorphous Alq3 [170].
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Figure 7.2: B3LYP/6-311+g(d,p) energy scans (full lines) together with fits using OPLS
force field (dashed lines) for several representative degrees of freedom.

reported here were, therefore, performed with charges based on calculations
using B3LYP functional.

Bonded interactions were parameterized by matching the first-principle
potential energy scans with the corresponding force field based scans [77, 76,
72]. Note that the meridional isomer of Alq3 is not symmetric, for example
oxygen-aluminium-oxygen angle for Oa-Al-Ob is different from Ob-Al-Oc, as
shown in Fig. 7.1c. The same holds for the dihedrals O-Al-O-C. In total 16
scans (see table 7.1) were performed in order to capture the potential energy
surface of the molecule correctly. The potential energy scans were performed
with GAUSSIAN 03 program [171] using B3LYP functional and 6-311g+(d,p)
basis set. The results, together with the fits based on the atomistic force field
for some of them are shown in Fig. 7.2. The resulting force field constants
are summarized in table 7.1. These constants are used to calculate angle and
dihedral potentials using the following expression: V (r) = 1

2
kθ(θ− θ0)

2. The
harmonic spring potential between Al and N was added to model the ionic
bond of the Alq3 molecule. For simplicity, the scan was performed only for
the Al-Na bond (see Fig. 7.2), but the resulting potential was applied also
to Al-Nb and Al-Nc pairs.

From Fig. 7.2 one can see that the parameterized dihedral potentials
(Al-Oa-Ca1-Ca2, Oa-Ca1-Ca2-Ca3, Oa-Al-Ob-Cb1 and the corresponding
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Degree of freedom Constant kθ, kJmol−1rad−2

Ca1-Oa-Al 600
Cb1-Ob-Al 500
Cc1-Oc-Al 400
Oa-Al-Ob 320
Ob-Al-Oc 200
Oc-Al-Oa 420

Al-Oa-Ca1-Ca2 55
Al-Ob-Cb1-Cb2 50
Al-Oc-Cc1-Cc2 50

Oa-Ca1-Ca2-Ca3 200
Ob-Cb1-Cb2-Cb3 200
Oc-Cc1-Cc2-Cc3 200
Oa-Al-Ob-Cb1 50
Oa-Al-Oc-Cc1 30
Oc-Al-Oa-Ca1 20

bond Al-Na 62459, kJmol−1nm−2

Table 7.1: Bonded interactions parameters, obtained using the fitting described in the
text.
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Figure 7.3: Non-bonded O-O, N-N, C-C and H-H interactions for the OPLS and Williams
99 force fields. OPLS force field has bigger binding energies for N and O. Note that
interactions between different atom types, e. g. N and O are calculated using the OPLS
mixing rules [80].

80
Rev. 117(e1a68f80ce2b) from 2011-03-08



7.2. FORCE-FIELD PARAMETERS

atom OPLS W99 fitted
σ, nm ǫ, kJ/mol σ, nm ǫ, kJ/mol

Carbon 0.355 0.29288 0.348873 0.263802
Hydrogen 0.242 0.12552 0.277899 0.107032
Oxygen 0.296 0.87864 0.305762 0.428992
Nitrogen 0.325 0.71128 0.327197 0.282361

Table 7.2: Non-bonded parameters of OPLS and Williams 99 force fields used in our
simulations. For Williams 99, effective Lennard-Jones parameters obtained by fitting
Buckingham potential are given (W99 fitted).

potentials for the other ligands) are quite soft. This is consistent with the
fact that the Al-N bonds can be characterized as ionic rather than covalent.
Consequently the angle values we used for parametrization do not cover the
whole region of the dihedral angles, which can be sampled at 300K during the
MD simulation. However, the extension of the scans beyond those values is
problematic, because at large deviations from an equilibrium geometry van-
der-Waals non-bonded interactions between ligands start to play a significant
role, which can not be correctly described by the density functional theory.
Instead of extending the region of the scans we verified that the potential
of mean force (PMF) of the dihedral distributions for amorphous morphol-
ogy (see below) reproduces the scans obtained from the DFT. Additionally
we compared the distributions of the representative degrees of freedom ob-
tained from the force field simulations with the results of ab-initio molecular
dynamics (see Appendix C).

The Lennard-Jones parameters for all atoms were taken either from the
OPLS [80] or Williams 99 [172] force field. Note that the OPLS force field
uses the Lennard-Jones (12-6) potential while Williams 99 is based on the
Buckingham potential, V (r) = A exp(−Br)− C

r6 . The only difference between
the two functional forms is the repulsive part, and one can refit the Buck-
ingham potential with the Lennard-Jones one, which also results in a speed
up of about 2.5. The non-bonded force field parameters are summarized in
table 7.2.

The two force fields are compared in Fig. 7.3. One can see that the
binding energy for nitrogen and oxygen is much bigger for the OPLS than
Williams 99 force field and should result in a more dense molecular packing.
Aromatic carbons have similar parameters.

To verify the derived force field, we studied amorphous morphologies of
Alq3. The systems were prepared by first arranging the molecules on a cubic
lattice with the density adjusted in order to avoid molecular overlaps and
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Figure 7.4: (a) Log-log plot of the mean squared displacement of the center of mass of
Alq3 molecules for a set of temperatures. (b) Correlation function of a Alq3 molecular
orientation, defined as a normal vector to the plane containing the three oxygens. Solid
line: OPLS force field. Dashed line: Williams 99 force field.

then equilibrating at 700 K in an NPT ensemble, with a stochastic velocity
rescaling thermostat [84] and the Berendsen barostat [81], and finally cooling
down to room temperature. All simulations were performed using the GRO-
MACS package [173]. Note that two alternative ways of system preparation
were reported previously. The first one, based on the Monte Carlo algorithm
mimicking the film deposition process [169], is limited to rigid molecules. The
second, based on a compression of a simulation box of a randomly positioned
molecules at low density [68] is sensitive to the compression rate and often
results in voids.

To monitor the equilibration dynamics we calculated relaxation times
from the correlation functions for the rotational molecular motion as well as
mean squared displacement (MSD) of their translational motion. Both are
shown in figs. 7.4a,b for a set of temperatures. Figs. 7.4a,b indicate that
systems can be equilibrated at 700 K after about 1 ns run, which is the time
needed for the center of mass of a molecule to travel a distance comparable to
its size. In addition, after this period of time molecular orientations are fully
uncorrelated. At lower temperatures significantly longer runs are required.
Therefore, to prepare large-scale morphologies, we annealed our systems at
700 K and then cooled them down to the desired temperature with the cooling
rate 0.2 ps/K.

To compare molecular packing in amorphous morphologies generated with
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the OPLS and Williams 99 force fields, we calculated two radial distribution
functions, which are shown in figs. 7.5a,b. One can see that different bonded
parameters used in this work and Ref. [68] do not significantly change the
radial distribution function. Note, however, that these two curves are com-
pared for a fixed density of Ref. [68]. On the other hand, if the systems
are equilibrated in the NPT ensemble (which results in higher density), ra-
dial distribution functions have a more pronounced structure (better resolved
peaks) for both OPLS- and Williams 99 based force fields. The difference
between the two force fields is small, however. One can conclude that the
radial distribution function is not an optimal measure of molecular packing,
due to its limited sensitivity.

Other two macroscopic quantities are known from experiments: the den-
sity of amorphous Alq3 at ambient conditions and its glass transition temper-
ature [174, 176]. The density versus temperature plot is shown in Fig. 7.6a.
One can see that the system density strongly depends on the Lennard-Jones
parameters (and does not change if we substitute ESP charges derived from
the B3LYP- with MP2-based electron density). One can see that OPLS
predicts a higher density than Williams 99 and it is also closer to the experi-
mental values.2 Densities used in previous simulation studies by Y. Nagata et

2Note, that we intentionally did not try to reproduce the experimental density of the
amorphous Alq3 from Ref. [174] exactly. In Sec. 7.3 it is demonstrated, that the difference
in density does not influence charge transport properties significantly.
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and J. Kwiatkowski et. al [169] are also shown. (b) Volume of the simulation box versus
temperature for amorphous Alq3. Intersection of two fitting lines is used to predict glass
transition temperature, which is estimated to be 455 K for OPLS and 425 K for Williams
99 force field. Experimental value is 448 K [176].

al. [68] (density is mentioned in the paper) and J. Kwiatkowski et. al. [169]
(density is calculated using number of molecules and the box size specified
in the paper) are also shown for comparison.

To estimate the glass transition temperature we calculated the volume
of the simulation box as a function of temperature. These dependencies are
shown in Fig. 7.6b. By performing a linear fit of the low and high temperature
parts of the curves one can find the intersection point which provides an
estimate of the glass transition temperature [177]. The latter is estimated
to be 455 K for OPLS and 425 K for Williams 99 force field. Experimental
value is 448 K [176], which is again closer to the OPLS-predicted value.

Summarizing, we can conclude that the OPLS-based force field performs
better for the amorphous Alq3 films than the Williams 99 force field by
predicting closer to the experimental values of density and glass transition
temperature.

84
Rev. 117(e1a68f80ce2b) from 2011-03-08



7.3. RELATIONSHIP BETWEEN MORPHOLOGY AND CHARGE
TRANSPORT

7.3 Relationship between morphology and charge

transport

In this section we use the multiscale approach presented in Sec. 2.7 to sim-
ulate charge dynamics in two different morphologies described above and to
understand how the change in morphology influences charge carrier mobil-
ity. For simplicity we ignore the energetic disorder in these considerations,
but the more detailed analysis shows, that the conclusions drawn from the
simplified picture stay valid also if electrostatic contribution to the energetic
disorder is taken into account.

Within the Marcus theory under the assumption that energetic disorder is
negligible, charge transport is governed only by two parameters: the reorga-
nization energy and the transfer integral (see Chapter 2). The reorganization
energy λ was computed as discussed in Sec. 2.2 using B3LYP functional with
a triple zeta split basis set, 6-311g+(d,p), using the GAUSSIAN 03 [171] pro-
gram. The computed values for the reorganization energies are λh = 0.23 eV
and λe = 0.28 eV. The transfer integrals J were computed using the inter-
mediate neglect of differential overlap level of theory (ZINDO) as described
in Sec. 2.3. Molecular orbitals are calculated using the GAUSSIAN 98 pack-
age [178]. Since the transfer integral is related to the molecular overlap, it
is very sensitive to relative orientations and positions of the neighbors. The
corresponding HOMO and LUMO orbitals are shown in Fig. 7.7a. Note that
ZINDO predicts that the LUMO is localized on one of the arms, while DFT
calculations of Ref. [169], as well as our MP2 calculations (see Fig. 7.7a) show
that the LUMO is delocalized over two of them. Different localization may
affect charge dynamics, especially the ratio between the hole and electron
mobilities, since the delocalization leads to the less pronounced dependence
of transfer integrals on the mutual orientation of neighbors.

However, here we do not aim at a quantitative description of charge dy-
namics, since we anyway ignore several essential ingredients required for its
correct description, such as energetic disorder as well as electrostatic and po-
larization contributions to it. Our main goal is to understand how the change
of morphology influences charge carrier mobility.3 Hence, here we analyze
only the hole transport, since all three first-principles methods predict similar
localization pattern for HOMO.

For charge dynamics simulations amorphous morphologies containing 4096
molecules in a cubic box were prepared using both OPLS and Williams 99
force fields and the aforementioned equilibration procedure. The size of the

3Of course one has to keep in mind that the energetic disorder might also be sensitive
to the underlying morphology.
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Figure 7.7: (a) HOMO and LUMO orbitals of a meridional isomer of Alq3 calculated with
ZINDO and Hartree-Fock (using MP2-optimized geometry) methods. (b) Probability dis-
tribution of the total hopping rate away from the molecule for OPLS and Williams 99 force
fields. Only hole transport was considered. ZINDO orbitals were used for calculations.

cubic box was 13.4263 nm, the length of the KMC run was 10−5 sec, and the
mobilities were averaged over 10 starting points. A cutoff of 15 Å was used
to calculate the hopping rates between neighboring molecules.

We first have a look at the probability distributions of the total hopping
rate away from a molecule:

ωtotal
i =

∑

j

ωij (7.1)

where the sum is taken over all neighbors of the molecule i.

The result is shown in Fig. 7.7b. One can notice that the distribution that
corresponds to the OPLS force field is shifted to higher values of outgoing
hopping rates compared to the Williams 99 force field. This is expected,
since the OPLS force field predicts more dense molecular packing.

Charge carrier mobilities were calculated by monitoring the projection
of the charge velocity on the field direction. The simulations were done for
a single charge diffusing in an external field through the configuration of
one molecular dynamics snapshot with periodic boundary conditions applied
in all directions. The mobility was calculated as µ = v/E, where v is the
averaged over a hundred different starting positions for every frame velocity
of the charge carrier along the field E.

The calculated hole mobilities are µh
OPLS = (3.7 ± 0.1) × 10−3 cm2V−1s−1

and µh
W99 = (1.7 ± 0.1) × 10−3 cm2V−1s−1. Both values are several orders of
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magnitude higher than the experimentally measured ones: electron mobili-
ties of amorphous Alq3 are of the order of 10−5 − 10−6 cm2V−1s−1 [168, 179]
while hole mobilities are of the order of 10−8 cm2V−1s−1 [168]. The discrep-
ancy between the experimental and calculated values is due to the fact that
we ignore the energetic disorder, which can significantly influence resulting
mobilities [169, 68]. The effect of energetic disorder is discussed in the next
section.

To conclude, the difference in density and packing induced by different
force field parameters does not significantly affect the charge dynamics, lead-
ing to slightly higher mobilities in case of a more dense system (OPLS-based
morphology).

7.4 Role of energetic disorder

Considerations of the Sec. 7.3 ignore energetic disorder. However, the dipole
moment of an Alq3 molecule is rather large (d = 4.4 D, see Sec. 7.2). Hence,
dipolar disorder cannot be neglected (see Chapter 2). In this section we study
the influence of energetic disorder on charge dynamics in amorphous Alq3

by comparing carrier mobilities calculated with and without the disorder.
Visualization of hopping site occupation probabilities and current filaments
further suggests the important role of energetic disorder.

7.4.1 Computational details

We assume that there are two contributions to the free energy difference
∆Gij (see Eq. 2.9): one due to an externally applied electric field and the
other one due to different electrostatic interactions of the excess charge with
the surrounding neutral molecules: ∆Gij = eEr + ∆Gel. The electrostatic
contribution, ∆Gel = Ei − Ej, is calculated classically as it is described
in Ref. [56] using CHELPG-fitted partial charges for a charged and neutral
Alq3 molecule in the ground state obtained from DFT calculations using the
B3LYP hybrid functional and the 6-311g(d) basis set. We denote the partial
charge of the atom a in the molecule i as qa

i if the molecule is neutral and as
qa
i
∗ if the molecule is charged. ∆Gel

ij is then given by [56]:

∆Gel
ij =

∑

c

∑

k 6=i

∑

n

qc
i
∗qn

k

4πǫ0ǫrcn

−
∑

c

∑

k 6=j

∑

n

qc
j
∗qn

k

4πǫ0ǫrcn

, (7.2)

with the permittivity of free space ǫ0 and a relative macroscopic dielectric
constant ǫ. The distance between two atoms is given by rcn. The first

Rev. 117(e1a68f80ce2b) from 2011-03-08
87



CHAPTER 7. MORPHOLOGY AND CHARGE TRANSPORT IN
AMORPHOUS ALQ3

sum runs over all partial charges qc
i
∗ of the initially charged molecule i that

interact with all partial charges qn
k in all other k 6= i neutral molecules. It

represents the energy of the system if the molecule i is charged. Second term
is the energy of the system when the molecule j is charged. This procedure is
exact in the limit of an infinite system. We use no spherical cutoff but apply
the nearest image convention, and have checked that this converges already
for a few hundered molecules in the simulation box.

Polarization effects are treated phenomenologically by using a distance-
dependent dielectric constant [180]:

ǫ = ǫ(rcn) = ǫ∞ − (ǫ∞ − 1)e−srcn(1 + srcn + 1/2s2r2
cn). (7.3)

where ǫ∞ = 3.0 (experimental value) [181] and s = 0.3 Å−1 [68]. Effectively,
atoms that are close in space feel the unscreened Coulomb interaction with
ǫ = 1 which is then screened to the bulk value ǫ∞ at larger distances.

Charge dynamics is simulated using the kinetic Monte Carlo technique
using the (extended) VOTCA package [2]. We use periodic boundary condi-
tions and calculate charge carrier mobility as

µ =
〈vE〉
E

(7.4)

where 〈vE〉 is the averaged projection of carrier velocity on the direction of
the applied electric field E.

7.4.2 Poole-Frenkel behavior

Mobilities with and without disorder, for different values of an applied electric
field are shown in Fig. 7.8. One can see that taking energetic disorder into
account leads to significantly lower mobilities. More important, it results
in the correct electric field dependence of the mobility: µ ∝ exp(βE1/2)
which is known as a Poole-Frenkel behavior (see Chapter 2) and was observed
experimentally for amorphous Alq3 [168, 26, 179]. The distribution of site
energies resulting from electrostatic interactions is shown on the inset of
Fig. 7.8. It has a Gaussian shape with a standard deviation of σ = 0.14 eV.

Another important observation is that, when energetic disorder is taken
into account, charge carrier mobilities are system-size dependent. This in-
dicates that charge transport becomes dispersive, as was discussed in Chap-
ter 2. As a consequence, calculated dispersive mobilities disagree with the
experimental reference data that is obtained in the nondispersive regime (see
Fig. 7.8). A way of extracting the absolute value of nondispersive mobility
from simulations of small systems is addressed in Chapter 8.
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Figure 7.8: Hole mobility as a function of applied electric field of a system with 13824 Alq3

molecules with and without energetic disorder. Results of the time-of-flight experiment
are taken from Ref. [26]. Inset shows the site energy distribution. It is Gaussian with
σ = 0.14 eV.

7.4.3 Charge dynamics visualization

In the previous section it was shown that energetic disorder significantly
affects charge dynamics. Taking energetic disorder into account lowers cal-
culated mobilities and changes its electric field dependence. Here we visualize
the difference between the systems with and without disorder using charge
carrier pathways and site occupations.

Occupation probability of a hopping site is defined as a fraction of time
a charge carrier spends on it. It is normalized in a sense that the sum of all
the occupation probabilities over all hopping sites is 1. Here we present the
results for an amorphous morphology of 512 Alq3 molecules.

Fig. 7.9 compares the distributions of occupation probabilities calculated
with and without energetic disorder. When energetic disorder is ignored, the
distribution of occupation probabilities is narrow, since all probabilities are
of the same order of magnitude. When energetic disorder is taken into ac-
count, the distribution broadens, spanning several orders of magnitude. This
is illustrated in the inset of Fig. 7.9, where hopping sites are shown with col-
ored spheres. Each color corresponds to a particular order of magnitude of
the occupation probability. The radius of a sphere is proportional to the
log10 of the occupation probability. When energetic disorder is ignored, all
spheres have the same color, meaning that each site has the same order of
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Figure 7.9: Distribution of occupation probabilities with and without energetic disorder.
Insets show the occupation probabilities of the same order of magnitude with the same
color. Occupation probabilities were calculated for one trajectory snapshot in a 10−3 sec
KMC simulation
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Figure 7.10: (a) Probability current graph. Without (a) and with (b) energetic disorder;
(c) The same graph as in (b), but with occupation probabilities as in Fig. 7.9
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magnitude for the occupation probability. When energetic disorder is taken
into account, a colorful picture is obtained instead, which allows to identify
hopping sites with the highest occupation probabilities. These sites, which
also have the largest radius, are shown in cyan and pink. One can see that the
sites with the largest occupation probability are not randomly distributed in
space. They form percolating pathways, which span the simulation box from
bottom to top, see Fig. 7.9. The use of percolation theory seems appealing
for analyzing the finite-size effects in such a system [182]. If energetic disor-
der is small cluster analysis approach of Ref. [58] can be used to relate the
“effective” transfer integral in the system with the charge carrier mobility. In
our case energetic disorder is significant and transfer integral Jij alone does
not determine the charge carrier mobility. The use of the charge transfer
rate ωij instead is also problematic, because of its asymmetry: ωij 6= ωji.
Influence of the finite system size on the charge carrier dynamics is analyzed
in Chapter 8.

To quantify the spatial distribution of occupation probabilities, we also
calculated the probability current. It is defined by each pair of neighboring
hopping sites i and j as follows:

Jv
ij =

∣

∣

∣

∣

∣

∑

hops i→j

dij

τi

−
∑

hops j→i

dij

τj

∣

∣

∣

∣

∣

. (7.5)

Here the first sum goes over all hops from i to j observed in a kinetic Monte
Carlo run. The second sum is over all backward hops. τi and τj are the
corresponding waiting times, dij is the distance between the sites i and j. A
large value of the probability current for a particular pair of sites means that
this pair considerably contributes to the probability current. A collection of
such pairs thus represents most favorable pathways.

In order to visualize the probability current we show the bonds between
200 pairs with the highest value of the current in Fig. 7.10. Without the
energetic disorder, the most favorable pathways are uniformly distributed
in space and a charge carrier is equally likely to take any of the pathways.
When the energetic disorder is taken into account, a charge carrier moves
on a very rough energy landscape, and some pathways are sampled more
frequently than the others. The distribution of the most favorable pathways,
Fig. 7.10(b), clearly correlates with the occupation probabilities, Fig. 7.9(c).
To emphasize the correlation they are shown together in Fig. 7.10(c).
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Figure 7.11: Reduced site energy correlation function calculated for the system containing
13824 Alq3 molecules. Inset illustrates the linear fit.

7.4.4 Spatial correlations of energetic disorder

It is interesting to note that there is a direct relationship between the en-
ergy and occupation probability of a hopping site. Indeed, in the canonical
ensemble occupation probabilities are Boltzmann-distributed:

pi ∝ exp [−Ei/kBT ] (7.6)

Thus, the sites with high occupation probabilities are those with the lowest
energies. We have already mentioned that the sites with the highest occupa-
tion probabilities are not randomly distributed in space (Sec. 7.4.3) but form
pathways. Keeping in mind that these sites have the lowest energies, one
may conclude that site energies are correlated in space. In fact, this result
might be anticipated, since the Alq3 molecule has a large dipole moment (see
Sec. 7.2), which is known to lead to the spatial correlations in the site ener-
gies and to often affect the field dependence of the mobility (see Sec. 2.6).

Site energy correlations can be characterized by the following function:

C(r) =
〈(Ei − 〈E〉)(Ej − 〈E〉)〉

〈(Ei − 〈E〉)2〉 , (7.7)

which shows the “degree” of energetic correlation of two sites, separated
by the distance r. For the system of randomly oriented point dipoles, the
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Figure 7.12: Poole-Frenkel plot for a system with 4096 molecules: (a) site energies are
spatially correlated; (b) site energy correlation is removed by a random shuffling of the
site energies.

correlation function decays as 1/r at large distances (see Sec. 2.6). Since Alq3

molecules have a finite size (linear dimensions around 1 nm), the correlation
function should be at least corrected for this:4

C(r) =
c0

r − r0

, (7.8)

where r0 represents the characteristic length-scale, which corresponds to the
molecule size. The calculated correlation function for amorphous Alq3 is pre-
sented in Fig. 7.11 together with the fitting to the functional form of Eq. 7.8.
Fitting yields satisfactory results in the range of 1.0− 2.5 nm. Apparent de-
viation in the range from 0 to 1.0 nm can be explained by the fact that there
are no molecule pairs in this region due to the excluded volume interactions.
Parameters extracted by fitting are: c0 = 0.15±0.01 and r0 = 0.67±0.07 nm.
The value of r0 gives a reasonable estimation of the linear size of an Alq3

molecule.5

4Of course, Alq3 molecules are not point dipoles, so higher multipole moments also
exist, which poses a question, whether the 1/r form is applicable at all.

5 The radius of gyration of a single Alq3 molecule at 300K is Rg = 0.378 ± 0.001 nm.
Another estimation of the molecular linear size can be obtained by dividing the volume of
the equilibrated simulation box by the number of molecules, thus obtaining the effective
volume of one molecule, which can be used to obtain molecular radius, assuming that the
molecule is spherical. This “effective” radius is Reff = 0.53 ± 0.01 nm.
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To study how site energy spatial correlations affect the Poole-Frenkel
behavior of the charge mobility (see Sec. 2.5.2) we performed simulations,
in which site energies are not correlated. Correlations were removed by
random shuffling of the site energies, which does not change the site en-
ergy distribution. Results are shown in Fig. 7.12. One can see that in the
range of fields which is typically used in time-of-flight experiments (300 −
1300 (V/cm)1/2) [168, 26, 179] only the model with proper correlations repro-
duces the correct Poole-Frenkel behavior. If site energies are uncorrelated,
the mobility has a plateau at low fields. At higher fields, however, both
models give PF behavior log µ ∝ βE1/2 with the same slope β. This is
consistent with the more general study of the effects of spatially correlated
disorder on charge carrier mobility (Sec. 2.6). At even higher fields, charge
carrier mobility reaches its maximum and then decreases. This is known as
an inverted region [40]. Our results also explain the fact that in the pre-
vious study field-independent mobilities were observed [169]. In this study
the dipolar energetic disorder was ignored and therefore site energies were
spatially uncorrelated.

To conclude, Poole-Frenkel behavior of the charge carrier mobility in
amorphous Alq3 is governed by the site energy spatial correlations in the
range of fields which is relevant for the time-of-flight experiments.
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Chapter 8

Extracting nondispersive

mobilities

Bottom-up multiscale approach discussed in Sec. 2.7 allows, in principle,
to study transport without fitting parameters. However, its bottleneck is
the computationally demanding evaluation of hopping rates for each pair of
neighboring molecules, in particular intermolecular transfer integrals [52].1

If density functional theory is employed, systems of up to several thousand
molecules can be treated. As discussed in Chapter 2, semi-empirical meth-
ods, such as ZINDO, are more efficient since they require only precomputed
monomer orbitals [53]. These methods are, however, not applicable for a
large class of, e. g. metal-coordinated, compounds. As a result, simulated
systems are normally only several nanometers thick, and charge transport
is dispersive at room temperature for many amorphous materials, where en-
ergetic disorder is significant [28, 62]. Hence, simulated mobility will be
system-size dependent.

In simulations, the box is often duplicated in the direction of the field
before charge dynamics is studied. This seemingly straightforward increase
of the system size will indeed result in non-dispersive transients, but is still
incorrect since all periodically duplicated boxes have exactly the same (small)
number of site energies, defining the equilibrium energy of a charge. Hence,
charge carriers would traverse the sample at a different (higher) temperature
than in an infinitely large system. On the other hand, in time-of-flight (TOF)
experiments, a typical sample thickness is in the µm range and transport
is often non-dispersive. To link simulation and experiment, one needs to
extract the non-dispersive mobility from the simulations of small systems,

1The number of molecule pairs for which transfer integrals have to be evaluated can be
of the order of 105(−106) for a single trajectory snapshot, making these calculations very
time-consuming, even if parallelization is used.
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where charge transport is dispersive.

8.1 Mean carrier energy in a finite system

To address this problem, we first consider the Gaussian density of states
(GDOS), where the site energies ǫi are distributed according to p(ǫ) =
1/
√

2πσ2 exp(−ǫ2/2σ2). For a finite number of hopping sites, the carrier
mean energy in canonical ensemble reads:

EN =

〈

1

ZN

N
∑

n=1

ǫne−βǫn

〉

, (8.1)

where ZN =
∑N

n=1 e−βǫn , 〈· · · 〉 denotes the average over all realizations of
N site energies, β = 1/kBT . In a system with an infinite number of sites,
N = ∞, the mean energy is proportional to inverse temperature [183, 184]:

E∞ =
1

Z

∫ ∞

−∞

ǫp(ǫ)e−βǫ dǫ = −σ2/kBT, (8.2)

where Z =
∫ ∞

−∞
p(ǫ)e−βǫ dǫ.

The dependencies of EN/σ versus the number of sites, N , and the inverse
temperature, σ/kBT , are shown in Fig. 8.1. One can see that the carrier
mean energies in finite size systems are systematically higher than E∞. This
implies that mobility simulations in a small box would be effectively per-
formed at a higher temperature. Hence, one might expect that the mobility
will decrease with the increase of system size.2 A similar trend is observed for
the temperature dependence of EN/σ, where mean energies are higher than
E∞ for small temperatures and large values of energetic disorder. Analysis of
these dependencies yields an empirical expression for the transition between
the dispersive and non-dispersive transport for large N , similar to [62]:

(σ/kBT )2 = −5.7 + 1.05 log N (8.3)

For σ/kBT = 2.7, the asymptotic value E∞ is achieved for N > 105. For
σ/kBT = 5.4, EN is well above E∞, even for N > 105, i.e. significantly

2In experiments, temporal relaxation is normally discussed [183, 184], where mean
energy is a function of time and E(t → ∞) = E∞. While this approach is suitable for the
interpretation of experimental data and time-of-flight type simulations, where charges are
injected on one and collected on the other side of the sample, in simulations with periodic
boundary conditions it is more appropriate to consider mean carrier energy as a function
of the total number of hopping sites N .
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Figure 8.1: EN (symbols) and E∞ (solid lines) as a function of number of sites N (left)
and inverse temperature (right). EN is calculated by choosing N random numbers from
the Gaussian distribution and evaluating the sum in Eq. (8.1). σ/kBT = 5.4 corresponds
to 300K for Alq3, which has an energetic disorder of σ = 0.14 eV. The grey area on the
left plot (small N , large σ) defines the parameter space of the dispersive transport. GDOS
is shown on the right plot.

bigger systems are required to equilibrate a charge carrier in the GDOS with
σ = 0.14 eV at 300 K, which is a typical value of the energetic disorder
of Alq3. Note that much smaller systems are often used, N = 294 [68],
N = 1137 [169], N = 320 [185] but the results are still compared directly to
experiments.

There is a very simple mathematical argument, behind the fact that EN

is always larger than E∞. Site energies ǫn contribute to the average EN

with the weight e−βǫn . Roughly speaking, low-lying energies ǫn give the
biggest contribution to the average EN , whereas the highest energies can
be neglected. However, for small N there is only a very small probability,
that those low-lying ǫn are encountered. When increasing N , more and more
low-lying energies are sampled, thus decreasing the EN .
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Figure 8.2: Chemical structure of Alq3, simulated (sim) and extrapolated (ext) Alq3 hole
mobilities as a function of electric field for a set of box sizes (number of hopping sites,
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transport. Simulated values collapse on a single curve (in a zero field limit) after extrap-
olation. Experimental mobilities are taken from Ref. [26]. Poole-Frenkel behavior of the
mobility [26, 16, 168], µ = µ0 exp (γ

√
F ), is also reproduced.

8.2 Temperature extrapolation

Eq. (8.3) predicts that a brute-force increase of the number of sites N cannot
resolve the problem for compounds with large energetic disorder, since N
increases exponentially with σ2. Eq. (8.3) also hints at a possible solution.
Indeed, the relevant dimensionless parameter is the half width of GDOS
divided by temperature, σ/kBT . Hence, the transition between dispersive
and non-dispersive transport can be shifted to lower values of N by simply
increasing the temperature. At some elevated temperature, transport will
eventually become non-dispersive even for small box sizes. Provided the
temperature dependence of the non-dispersive mobility is known, its value
can then be extrapolated to experimentally relevant temperatures.

Two prerequisites are needed to perform such an extrapolation. First,
the simulation temperatures should be high enough for transport to be non-
dispersive for a given size of the simulation box. To do this, the transition
temperature TND, can be estimated via Eq. (8.3) from the value of energetic
disorder σ (which can be obtained from the site energy distribution even in
small systems) and the number of hopping sites, N . Non-dispersive mobili-
ties can then be calculated for a set of temperatures above TND. Second, an
explicit temperature dependence of charge carrier mobility is needed. In one
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Figure 8.3: Temperature dependence of non-dispersive hole mobility. F = 105 V/cm.
Points correspond to the simulation results, lines to fittings to Eq. (8.4). Inset shows that
widely used GDM temperature dependence [60, 62], µ(T ) = µ0 exp[−(T0/T )2], can only
be used in a limited temperature range, failing at high temperatures [64].

dimension, the exact analytical expression for mobility is known for an arbi-
trary set of rates [186, 64, 187]. In the case of Marcus rates, the temperature
dependence of the non-dispersive mobility at zero field reads [187]:

µ(T ) =
µ0

T 3/2
exp

[

−
( a

T

)2

−
(

b

T

)]

, (8.4)

where a, b, and µ0 are material constants. Strictly speaking, this tempera-
ture dependence is valid in one dimension only. As we will see, it can still be
used in a three-dimensional case in a very broad temperature range. A fit
to Eq. (8.4) allows for the parameters µ0, a, and b to be extracted. Finally,
the same expression is used to obtain the mobility at a desired tempera-
ture. Since the actual temperature dependence of mobility is not of interest,
the morphology equilibrated at room temperature is kept fixed. To study
temperature dependence, e.g. an effect of a glass transition [62], the proce-
dure should be repeated for several, equilibrated at different temperatures,
morphologies.

To illustrate and test the extraction of non-dispersive mobilities, we con-
sider hole transport in amorphous films of tris(8-hydroxyquinoline) aluminum
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Figure 8.4: Alq3 hole mobility as a function of temperature. F = 105 V/cm. In the
dispersive regime, mobility deviates from Eq. (8.4) as well as from a GDM-based low field
limit temperature dependence of charge carrier mobility. As long as high temperatures are
not required (for fitting), the difference between the GDM-based and Eq. (8.4) functional
forms is small.

(Alq3). Hole mobilities in amorphous Alq3 are known to be non-dispersive
for a µm range thickness [26, 168, 16].

The Poole-Frenkel plot, namely, room temperature mobility as a function
of the square-root of an applied electric field, is shown in Fig. 8.2 for simula-
tion boxes of 512, 2000, 4096, and 13824 molecules. Details of the simulations
are described in Sec. 7.4.1. The mobility is clearly system size dependent and
is several orders of magnitude larger than the experimentally reported value.
After estimating TND for each N (for example, TND(N = 4096) ≈ 600 K), the
mobility was calculated for a broad temperature range from 700 K to 50000 K
for T > TND(N). Simulation results together with the fit to Eq. (8.4) are
shown in Fig. 8.3. The agreement is excellent and validates the ansatz used
for the temperature dependence. A small deviation exists only for N = 512,
which is due to the limited accuracy of the fit since there are only a few points
available above TND. One should note that this is an additional limitation in
the case of too small system sizes.

The results of the extrapolation are illustrated in Fig. 8.4, where both sim-
ulated and extrapolated mobilities are shown. At low temperatures, when
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transport is dispersive, mobility is systematically higher than the value pre-
scribed by Eq. (8.4). In this region, carrier mobility is system-size dependent.
Above TND, mobility does not depend on the system size and its temperature
dependence agrees well with Eq. (8.4).

Finally, we calculated the non-dispersive mobility at 290 K for two low
values of the electric field, F = 105 V/cm and 2 × 105 V/cm. The results
are shown in Fig. 8.2 together with the TOF results obtained at 290 K [26].
One can see that both absolute values as well as the Poole-Frenkel behavior
are very well reproduced. Given systematic errors of transfer integrals and
site energies and the fact that TOF experiments provide slightly different
mobilities depending on the coating rate for the amorphous film prepara-
tion [26, 16, 168], the agreement between simulated and experimental values
is excellent.

To summarize, an approach was proposed which can be used to obtain
non-dispersive charge carrier mobilities from simulations in small systems,
which provides a way to bridge length-scales with different carrier dynamics.
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Conclusion and Outlook

In this thesis a multiscale approach which combines molecular dynamics
simulations for generating material morphologies, electronic-structure cal-
culations for determining charge hopping rates and kinetic Monte Carlo for
simulating charge dynamics was applied to study charge transport in amor-
phous films of tris(8-hydroxyquinoline) aluminium (Alq3). First, an atomistic
force field was parameterized by matching the first-principles potential en-
ergy scans with the corresponding force field based scans. The resulting force
field was then validated against available experimental data, reproducing the
density and glass transition temperature. It was also shown that the mor-
phological changes caused by the slight variation of the nonbonded force field
parameters do not significantly affect charge dynamics.

Amorphous morphologies of Alq3 were then used to simulate the charge
carrier dynamics. It was demonstrated that the large molecular dipole mo-
ment is responsible for the energetic disorder, which significantly affects the
charge transport. Spatial correlations of the site energies are shown to gov-
ern the Poole-Frenkel behavior of the charge mobility. It was also found that
the hole transport is dispersive for system sizes accessible to simulations,
implying that simulated mobilities are system size dependent. A method for
extrapolating simulated mobilities to the infinite system size was proposed,
which allows to compare calculated mobilities directly to the time-of-flight
experiments. The extracted value of the nondispersive hole mobility and its
electric field dependence were found to be in agreement with the experimental
results.

As a natural extension of this work, the techniques must be developed to
calculate different contributions to the energetic disorder in organic materi-
als, since those can significantly affect the carrier dynamics. For example,
the explicit treatment of the atomic polarization might lead to a significant
source of disorder, which was only phenomenologically taken into account in
this work. Another possible contribution is related to the fact, that every
molecule in the amorphous morphology has a different conformation, which
is different from its ground state. Thus, apart from the corresponding ener-
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getic difference, reorganization energies must be explicitly calculated for each
molecule instead of using the value obtained for the ground state geometry.

Taking these additional sources of disorder into account will provide a
deeper microscopic understanding of the charge transport in amorphous ma-
terials. Specifically, it might help to understand why electron mobilities in
amorophous Alq3 are two orders of magnitude higher than the hole mobilities
and why electron transport is reported to be dispersive in most time-of-flight
studies, while showing higher mobilities than the nondispersive hole trans-
port. In the long run microscopic understanding of the structure-property
relationships in organic semiconductors will help to design more efficient de-
vices with improved stability.

For amorphous Alq3 large scale morphologies can be generated solely us-
ing atomistic molecular dynamics. However, atomistic simulations can only
cover nanometer length- and nanosecond time-scales, which might be not
enough to equilibrate a system with long relaxation times (e. g. polymeric
systems). In order to overcome this limitation, systematic coarse-graining
methods can be used. Iterative Boltzmann inversion (IBI), inverse Monte
Carlo (IMC) and force matching (FM) were applied to parameterize coarse-
grained models for the SPC/E water, methanol, propane and the single
molecule of hexane. It was demonstrated that, while IMC has a more ef-
ficient update than IBI, it sometimes suffers from finite-size effects. It was
shown that force matching is a very efficient method, but in many cases it
fails to reproduce the reference distributions, because the basis set used to
represent the coarse-grained force field is not complete. However, if 3-body
interaction terms are included in the coarse-grained force field, FM would re-
produce both 2-body and 3-body correlation functions, which is not possible
to achieve with IBI or IMC. As an extension of this work, the development of
the “hybrid” coarse-graining techniques is needed. One can think of a scheme
which combines the strength of both IBI and IMC. This scheme must have
an efficient update, comparable to that of IMC, combined with the stability
of IBI. Another possibility is a combination of IBI for bonded interactions
(since in this case the iterative procedure is rarely required) and FM for the
nonbonded interactions (since FM reproduces nonbonded reference distribu-
tions in many cases). Computational cost of this “hybrid” scheme will be
negligible compared to the pure IBI, since iterative CG simulations are not
required.
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Appendix A

Force matching using cubic

splines

Implementations of force matching using different basis functions (linear
splines, cubic splines, step functions) and different methods for solving the
least-squares problem (QR decomposition, singular value decomposition, it-
erative techniques, normal matrix approach) are discussed in detail in Ref. [146].

Here the outline is given for the implementation which uses cubic splines
as basis functions, QR-decomposition for solving the least-squares problem,
and block averaging to sample large trajectories.

In this case the force ~fγi
({rk}) acting on bead i due to an interaction γi

with the potential Uγi
can be written as

~fγi
({rk}) = −~∇iU (κ ({~rk})) (A.1)

= −∂U

∂κ
~∇iκ ({~rk})

= −fγi
~∇iκ ({~rk}) ,

where κ = r, b, θ, ϕ denotes the type of interaction, and ~∇i the gradient with
respect to the coordinates ~ri of bead i. The variable κ can label non-bonded
interactions, bonds, angles or dihedral angles, which are given by the distance
between two beads, the bond length, the angle which depends on 3 beads
or the dihedral angle defined using 4 beads, respectively. Now, the total
force ~f cg

i acting on coarse-grained bead i can be expressed in terms of the
coarse-grained interactions and equation 4.16 can be rewritten as

∑

γi

fγi
(κ) ~∇iκ ({~rkl}) = ~f ref

il , (A.2)

where γi enumerates all interactions acting on bead i.
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f(κ) is interpolated using cubic splines connecting a set of points {κk}

Sn(κ, {κk}, {fk}, {f
′′

k }) = An (κ) fn (A.3)

+ Bn (κ) fn+1

+ Cn (κ) f
′′

n

+ Dn (κ) f
′′

n+1 .

where {fk}, {f ′′

k } are tabulations of f(κ) and its second derivative on the grid
{κk}, the parameters {fk}, {f ′′

k } are obtained from the fit, κ ∈ [κn, κn+1], and
the coefficients An, Bn, Cn, and Dn have the following form

An(κ) = 1 − κ − κn

hn+1

, (A.4)

Bn(κ) =
κ − κn

hn+1

,

Cn(κ) =
1

2
(κ − κn)2 − 1

6

(κ − κn)3

hn+1

− 1

3
hn+1(κ − κn) ,

Dn(κ) =
1

6

(κ − κn)3

hn+1

− 1

6
hn+1(κ − κn) ,

where hn = κn+1 − κn.
An additional requirement on the spline coefficients is the continuity of

the first derivatives

An(κn+1)
′fn + Bn(κn+1)

′fn+1+ (A.5)

Cn(κn+1)
′f ′′

n + Dn(κn+1)
′f ′′

n+1 =

An+1(κn+1)
′fn+1 + Bn+1(κn+1)

′fn+2+

Cn+1(κn+1)
′f ′′

n+1 + Dn+1(κn+1)
′f ′′

n+2 .

If the total number of grid points is N + 1 (n = 0, 1, . . . , N) then these
conditions are specified for the points n = 0, 1, . . . , N − 1. For non-periodic
potentials the end points are treated using normal boundary conditions, i. e.
f ′′

0 = 0, f ′′
N = 0.

Due to the spline interpolation, equation A.2 simplifies to a set of linear
equations with respect to the fitting parameters fn, f

′′

n . The complete set of
equations to solve therefore consists of equations A.2 and constraints A.5.
Strictly speaking, this set of equations cannot be solved in a least-squares
sense using simple QR decomposition. The reason is that the constraints
shall be satisfied exactly to ensure the continuity of the first derivative of the
potential, which is not the case if they are treated in a least-squares sense.
To solve the problem, one, in principle, has to use a constrained least-squares
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solver [188]. From a practical point of view, however, it is simpler to treat
the constraints in a least-squares sense for each block. This will only lead
to a piecewise-smooth potential, but the smoothness can be “recovered” by
averaging over the blocks.
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Appendix B

Yvon-Born-Green equations for

a homogeneous liquid

Consider a system, consisting of N identical beads. The hamiltonian is de-
fined as:

H(RN ,PN) =
N

∑

i

1

2M
P 2

i + V N(RN) (B.1)

Assuming that the potential function V N is pairwise decomposable, the total
force on each bead Fi = −∂V N/∂Ri arises from a sum of pair interactions:

Fi =
∑

j

Fij(Ri,Rj) (B.2)

For a homogeneous system with ρ(Ri) = ρ = const, the following Yvon-
Born-Green (YBG) equation holds, which relates the equilibrium two- and
three-particle distribution functions to the pairwise decomposable force field
Fij [138]:

(

kBT
∂

∂Ri

− Fij(Ri,Rj)

)

g(2)(Ri,Rj) = ρ

∫

dRk Fik g(3)(Ri,Rj,Rk)

(B.3)
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Appendix C

Validation of the Alq3 force field

To assess the quality of the developed Alq3 force field we compare the distri-
bution of the selected degrees of freedom obtained in different simulations:
(1) Car-Parrinello molecular dynamics simulations [189] with the dispersion-
corrected BLYP functional [190]; (2) Classical MD for a single molecule;
(3) Classical MD of the amorphous morphology consisting of 512 molecules.
Force field parameterization described in Chapter 7 was done on a single
molecule using B3LYP scans. That implies that nonbonded dispersion forces
were not properly taken into account. To check whether this introduces a se-
rious mistake we performed CPMD simulations with the dispersion-corrected
functional. To quantify how the molecular packing in the amorphous mor-
phology affects the molecule shape we also added MD simulations of the
amorphous morphology for comparison. Resulting distributions are shown
in Fig. C.1.

The results of both classical simulations are practically identical, showing
that packing does not play an important role. On the other hand, CPMD
results1 show deviations for some of the degrees of freedom (angle Ca1-Oa-
Al, dihedral Oa-Al-Ob-Cb1). These deviations might be due to the use of
different functionals (BLYP for the CPMD run, B3LYP for the force field
parameterization) or due to the fact that dispersion forces were not taken
into account properly during the parameterization. Nevertheless, the quality
of the resulting force field is sufficient for the type of calculations performed
in this thesis.

1Since CPMD simulations are limited to the picosecond time scales even for a single
molecule, only very poor statistics was obtained.
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