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Abstract--This  paper  presents  GRASP (Greedy  Randomized 
Adaptive  Search  Procedure),  Simulated  Annealing  (SAA), 
Genetic  (GA),  and  Hybrid  Genetic  (HGA)  Algorithms  for  the 
economic dispatch problem (EDP), considering non-convex cost 
functions  and  dead  zones  the  only  restrictions,  showing  the 
results  obtained.  We  also  present  parameter  settings  that  are 
specifically  applicable  to  the EDP, and a comparative  table  of 
results  for  each  heuristic.  It  is  shown  that  these  methods 
outperform the  classical  methods  without  the  need  to  assume 
convexity of the target function.

.

Key  words:  Genetic  algorithms, search  methods,  simulated 
annealing.

I.  INTRODUCTION

he  EDP  seeks  to  determine  the  power  that  each 
generating unit in an electrical power system must supply 

to meet expected demand at the lowest possible cost, without 
considering power losses from the transmission network [1], 
[10], [12].  The exact solution of the EDP can be obtained by 
listing possible generating combinations for each unit, which 
could  be  a  very  large  number,  making  it  impossible  to 
complete the list in a reasonable computing time.

T

Heuristic methods have been used to solve many problems of 
optimization, and have proven highly efficient [3]-[5],[7],[11] 
and continuing to design new algorithms and combinations.

Genetic  algorithms (GA)  have  become increasingly  popular 
for solving variants of the EDP [4], [5], [7], [11] among other 
search methods [12]. However, heuristics such as tabu search 
[2], [8] and simulated annealing [2], among others, that have 
proven to be very efficient in finding good solutions have not 
been used in the EDP.

In  order  to  show  that  there  are  other  good  options  in 
heuristics, in addition to a Genetic Algorithm [3], this paper 
proposes the following: a) a hybrid genetic algorithm (HGA) 
that  combines  a  Genetic  Algorithm  with  a   constraint 
satisfaction algorithm (CSA) [6], a GRASP algorithm [9] and 
a  local  search  (LS)   algorithm  b)  a  simulated  annealing 
algorithm (SAA), and c) a  GRASP algorithm.
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Heuristic  methods  were  implemented  based  on  general 
algorithms with the parameters recommended in general terms 
in the literature.  A summary of the parameters used in each 
heuristic is included, with a brief description of the parameters 
inherent to its application to the EDP.

he paper is organized as follows: based on the definition 
of  the problem in section II  and the description of  the 

study cases in section III,  we describe the algorithms used, 
followed by the computational results obtained, and examine 
comparisons  with  one  another  and  with  other  methods  in 
section IV. Section V outlines the conclusions. 

T

II.  DEFINITION OF THE PROBLEM 

The formulation [1], [10] is as follows:

Minimize :  ∑
i=1

n

F
i (Pi)

subject to

 ∑
i=1

n

P
i
=demand

 Pmini ≤ Pi ≤ Pmax i

Where:
n:  number of generating units
Fi :  Cost function for generator i
Pi :  Power of generator i Pmini : Minimum power generator i  
can supply
Pmaxi :  Maximum power generator i can supply

The cost function used to optimize the problem is the input-
output curve for each thermal unit. This curve represents the 
quantity  or  cost  of  fuel  the unit  consumes per  hour for  the 
power at which the unit is generating. 

 The  cost  functions  of  thermal  units  are  discontinuous, 
because they present jumps at certain points due to the closing 
and opening of valves (valve point) to control generator power 
output [10]. 

In  addition,  combined  cycle  stations  present  discontinuities 
when changing the configuration in the number of turbo gas 
units. Combined cycle units are formed by several turbo gas 
units where steam at the turbine exhaust is reused by means of 
a heat exchanger that feeds the boiler of a steam unit. Input-
output  curves  are  obtained  for  each  combination  of  gas 
turbines with a steam unit. 

For some generating units,  the first two points give rise to a 
non-convex input-output curve in its operating range of 122 to 
245 MW. Also, this unit has a dead zone of 260 to 320 MW, 
which  is  an  operating  range  in  which  it  is  undesirable  to 
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operate  due  to  the  technical  difficulties  and  high  costs  that 
working in that operating range entails, given that the turbogas 
unit must be started or shut down.

III. HEURISTICS

Three study cases were used to evaluate the performance of 
the heuristic methods applied to the EDP:

1. The first  two cases  are  formed by 7 and  36 units. 
Second degree convex cost functions are considered 
to set the parameters of each algorithm because the 
solution under this condition can be obtained easily 
with the classic methodology. The optimum solution 
was  found  using  the  solver  function  in  Microsoft 
Excel 2003.

2. The third case is made up by 3 units where the valve 
points  are  modeled.  This  case  was  taken  from 
Walters  [11]  and  consists  of  3  units  with  cost 
functions that model the valve points. 

           The best solution found by Walters is presented below, and, as 
reported, coincides with the optimum solution obtained by the 
dynamic programming method.

P1 [MW] P2 
[MW]

P3 
[MW]

Demand 
[MW]

Cost [$]

300.0 400.0 150.0 850.0 8,237.6

The objective function used is: F = aP2 + bP + c + | e sen(f * 
(Pmin-P)) |; this is the general function that models the valve 
points [10]. If the coefficients  e and  f  are zero, then the cost 
function is that commonly used to simplify the problem.

A.  Genetic Algorithm

The  pseudo  code  for  the  GA,  followed  by  the  general 
parameters used [2], [3], [5] and a description of how the dead 
zone was handled.

TABLE I
 SIMPLE GENTIC ALGORITHM

start
       Accurately represent the solutions to the Problem
       Generate initial population with individuals or solutions 
        to the Problem
       Define an fitness function for individuals in the 
        population
      do while (the shutdown criterion has NOT been  
             satisfied)
               Choose pairs of individuals as parents
               Crossover the parents chosen with probability pc to 
               obtain two children
              Replace the parents chosen with their children
              Mutate some characteristics of each individual with 
              probability pm

              The fitness function of individuals in the population
           Choose individuals that survive to the next generation
enddo
end

Parameters: pc= 0.8; pm = 0.01; breeding points: 2 (random); 
population size: 40; method of selection: competition; elitism 
= yes; aptitude: objective function.
Penalty factor: The penalty factor PF_IBP penalizes solutions 
that fail to comply with the balance of power BP. This factor 
should be set properly for each instance of the problem. Small 
values  cause  the  solution  to  converge  on  a  lower-than-
optimum cost, at the expense of a negative BP (the sum of the 
powers assigned is less than demand). On the contrary, large 
PF_IBP values lead to solutions that comply with the BP but 
result in above-optimum costs.

A PF_IBP value of 1000 produces good results, both in cost 
and in BP. The best values were obtained under the following 
reasoning: an error of 1 MW in the BP should be comparable 
with the highest cost a unit has on increasing or reducing the 
same unit power, so that the error is suitably penalized. 

The cost of a 1 MW increase or reduction in each unit from an 
operating point is called incremental cost IC and is obtained 
by deriving the cost function  F. For example, assuming that 
there are 50 inexpensive units operating with IC= 1 $/MW, 
and one costly unit operating with IC = 50 $/MW, the result is 
the same cost for the 50 units increasing 1 MW, with a total 
increase of 50 MW,  as if the costly unit operates at 1 MW. 
The penalty for a 1 MW difference in the BP should be similar 
to the cost of increasing 1 MW in the unit with the highest IC. 
PF_IBP = max{ICi}, i = 1,…, U’s.

Dead zone. The dead zone is an operating range where a unit 
cannot be operated for technical or economic reasons. These 
zones  can  be  restricted  from  encoding  or  by  penalizing 
solutions  that  include  operation  in  a  dead  zone.  When 
encoding  the dead zone an additional bit  bit_zm is added to 
the subchain to indicate operation above (1) or below (0) the 
dead zone. When the unit operates above the dead zone, the 
whole value encoded increases by 2L units. L is the number of 
bits in the subchain used to represent the power of each unit. 
When the integer value is decoded, the unit should be checked 
for dead zone operation.

The expression to decode the integer value is 

Pi=P min i+
Pcod  P max i−P min i 

2Li−1

Another option to treat the dead zone is by permitting power 
values in the dead zone but penalizing the target function. A 
value of 1% of the total cost of generation gave good results. 
Mutation and crossover  operators  may modify  bit_zm from 
one generation to another.

Neighborhood generation algorithm

The neighborhood generation algorithm below, was used for 
the  LS,  the  HGA,  SAA  and  GRASP  algorithms.  This 
algorithm generates k0 solutions from among which the lowest 
cost is kept.

TABLE 2
NEIGHBORHOOD GENERATION ALGORITHM

Start
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       Sol_ini = {PU1, PU2, …,PUn}
       randomly select u, u∈U={1,2,.., n}; n = number of units
       movement = up (+) , if r>=0.5; down (-), if r <0.5,  r= 
       random (0,1)
       number of MW= random(P,Pmax), if movement=(+); 
       random (Pmin,P), if movement = (-)
       Pu = Pu +  movement * number of MW
       U = U - {u}
       difUs = [U] -1; [U] = cardinality of 1
       pot_resto=number of MW
       for i= 1 to difUs
             pot = random(0,pot_dif)
             pot_dif = pot_dif - pot
             PUi = PUi - movement * pot
      endfor
      PUn = pot_dif
    end

The  neighborhood  to  a  given  solution  are  defined  by 
increasing  or  reducing  the  power  of  a  randomly  selected 
generating unit;  the movement  upward or downward is also 
random,  a  random  number  x  is  generated  with  a  uniform 
distribution, so that the power: rises if x ≥ 0.5 and falls if x < 
0.5.  The number of MW that changes the power is random 
and is limited by the maximum and minimum powers of the 
units.  The  change  in  power  of  the  unit  selected  should  be 
covered  by  the  other  units  so  that  the  value  of  demand 
supplied  is  not  changed.  The  last  unit  should  absorb  the 
difference in demand that needs to be covered. 

Dead  zone.  When  there  is  a  dead  zone  in  a  unit,  the 
neighboring solution respects the unit’s operating zone in the 
current solution, above or below the dead zone.

B.  Hybrid Genetic Algorithm

The HGA is made up by the GA and some heuristics that are 
added to the input and output of the GA with the intention of 
improving the rate of convergence and the quality of the final 
solution [4], [7]. These heuristics are: 

1. Constraint Satisfaction Algorithm (CSA) to create 
the initial population

2. GRASP  construction  phase  algorithm  to  create 
the initial population

3. BL  algorithm  to  improve  the  quality  of  the 
solution and the rate of convergence.

Constraint  Satisfaction  Algorithm  (CSA)  to  create  initial 
population

As possible power values for  a unit,  at the outset its power 
constraints (initial  domain)  are considered,  but  applying the 
CSA this  initial  domain  is  modified  on confirming  that  the 
randomly assigned power value allows subsequent values to 
be chosen for the other units. In the EDP, participating units 
have been previously selected and should be dispatched with a 
power value, at least at their minimum power limit. To better 
understand  why  power  limits  should  be  restricted  in  the 
process  of  random  assignment  of  power,  the  following 
example is provided:

TABLE 3

CSA TO CREATE A FEASIBLE SOLUTION

Start
  dr ← dem
  i=1
  Do 
     NDi = new_domain (i, dr)
     Pi ← rand(NDi)
     dr ← dr - Pi

      i  ← i + 1
      to i=n
      Pn ← dr
    end
     New_domain(i, dr)
     start
     NPmaxi ← dr - Sum (Pmink),  k>i 
     NPmini ← dr - Sum(Pmaxk),  k>i
  end

NP max
i
={NP max

i
if NP max

i
<P max

i

P max i otherwise }
NP min

i
={NP min

i
if NP min

i
>P min

i

P min i otherwise }
dem - demand
n - number of units
Pi - power assigned to unit i, 1 ≤ i < n
Di - domain of unit i, defined by the power limits of each 
unit, Di = [Pmini, Pmaxi], 1 ≤ i < n
dr – remaining demand
NDi – New domain for unit i by CS, NDi = [NPmini,  
NPmaxi],  1 ≤ i < n

Example. Find an initial solution from:

          
         Pmin    Pmax 

demand

 U1      35           210 400
 U2     130          325
 U3     125          315

Based on the data, it is not possible to choose a power value of 
150 for the first unit, as the minimum power that the other 2 
units could supply would be 255, giving a total of 405 and the 
demand would not be fulfilled.

Thus, the maximum value NPmax that can be assigned to unit 
U1 is defined by:
    NPmax1 = demand–Pmin2 - Pmin3 = 400 – 130 – 125 = 145
and the minimum value NPmin1 is defined as follows:
    NPmin1 = demand–Pmax2-Pmax3 = 400 – 325 – 315 = - 240
Because the value is less than its power limit Pmin1, then that 
limit is not changed, and the new limits for U1 are:

Pmin1 ≤ P1 ≤ NPmax1 in other words,  35 ≤ P1 ≤ 145
Similarly, the limits of the other units are modified, except for 
the last unit, which simply absorbs the remaining demand to 
be fulfilled.
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LS algorithm to improve the quality of the solution and the 
rate of convergence.

The GA directs the search to promising zones where the BL 
algorithm  expedites  convergence  toward  a  better  quality 
solution.  The  LS  algorithm  is  based  on  the  generation  of 
vicinities  described  above.  After  a  number  of  initial 
generations  (NGAini),  the  GA has  substantially  reduced  the 
aptitude of the individuals;  then a solution is sought with a 
small error in BP, depending on the precision required. If no 
individual is found in the population that meets this criterion, 
the GA is activated to produce another generation, until the 
BP criterion is met. The error in BP is assigned to one of the 
units Usel with sufficient capacity.

TABLE 4
HYBRID GENETIC ALGORITHM

BEGIN HGA
  Generate initial population
  n = NGAini

  DO 
         FOR i = 1 TO n DO
                  Evaluate population
                  Select parents for new population
                  Crossover parents to generate children
                  Mutate children (there is a new population)
         END FOR
         Find individual with lowest DP
         n = 1
   WHILE (DP > 0.1)
   PUsel  PUsel + DP
   BL algorithm
END HGA

It has been observed that the LS algorithm makes the HGA 
solutions independent of the quality of the individuals in the 
initial  population  and  that  the  performance  of  the  GA  is 
inferior when using good quality solutions at the start, because 
the  percentage  of  improvement  is  much  less  than  when 
unfeasible solutions are used.

The  solutions  provided  by  cp_GRASP  are  of  such  good 
quality  that  the GA is unlikely  to  improve  them, after  150 
generations the improvement of the best individual was only 
0.1%. However, the work of the GA can be observed if the 
average aptitudes of each generation are reviewed, in this case 
there is a 5.5% improvement. We can say that the sequence 
cp_GRASP + GA + BL is practically the same as cp_GRASP 
+ BL = GRASP.

The  GA performs  best  when it  works  in  its  simplest  form, 
without  adding  operations  that  help  to  purge  the  random 
solutions  ensuring  feasibility.  The  percentages  of 
improvement are 8.5% for the best individual and 38.6% for 
the entire generation.

The intensity of the local search is controlled with parameter 
k0.  Tests  were  performed  with  different  values  for  this 
parameter to obtain a minimum acceptable value for cases 1, 
2, and 3. For the  three cases the best results were obtained 
with k0 = 500.

C.  Simulated Annealing Algorithm

The pseudo code for the SAA is:

TABLE 5
SIMULATED ANNEALING ALGORITHM

start
      initialize (sini, T, K0)
      k 0
      s  sini
      do while (T> minimum temperature (shutdown criterion)
           for k=1 to K0 do
                     generate s’ ∈ N(s))
                     if f(s’) < f(s) then s s’
                       else
                           generate_random n in [0,1] 
                           if (exp((f(s) – f(s’))/ c T) > n) then s s’ 
                      end if
            end for
            T  αT ,  α ∈ (0,1)
      end do
 end 

Temperature Parameter t.
The  Metropolis  criterion  of  the  SAA  uses  Boltzman’s 
distribution function to accept a new solution.  

The value of t should be such that the exponential term can be 
comparable  with  r,  whose  range  is  [0,  1].   The  value  that 
approaches  1  is  obtained  when  the  cost  functions  of  the 
solutions compared are nearly equal. The value 0 is obtained 
when t   ∞. A good option is to set the value of t based on 
the maximum difference in cost (mdc for short) in the space 
for  solutions.  This  value  is  obtained  from the  difference  in 
cost of the units operating at maximum and minimum power. 

Boltzman’s function was evaluated for values of t referred to 
mdc.  t  =  mdc/4  covers  most  of  the  range  [0,1]  and  the 
possibility of accepting solutions with large differences in cost 
is  less  than  the  other  assignments  of  t.  A  solution  with  a 
difference of 300 thousand pesos compared with the cost of 
the current solution would be accepted with a probability of 
0.1  with  t=  mdc/4,  and  with  a  probability  of  0.74  with 
T=mdc*2.  The  total  number  of  neighborhood  generated 
depends only on the initial temperature T, if the temperature 
drop factor α, the number k0 of acceptances, and the shutdown 
criterion  are  fixed.  On  reducing  T,  a  smaller  number  of 
solutions  are  reviewed,  in  addition  to  having  less  variety 
among them. Therefore, a suitable balance with the value of T 
should  be  found  that  allows  variety  in  the  solutions  and 
generates a sufficient number of solutions.

4

P t {accept j }={
1 if C  j <C i 

exp C i −C j 
t  if C  j >C i  }
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Ten tests were performed using different values of t, referred 
to mdc. The minimum cost, the best average, and the smallest 
standard deviation do not coincide for the same value of T. 
However, it is desirable to choose the value of T that has the 
best  combination  of  average  cost  and  variability.  Thus,  t= 
mdc/4 will be used for the case of 36 units, and t =mdc/4 for 
the case of 3 U´s

Ten  tests  were  also  performed  for  each  study  case  and  to 
determine the best value of the parameter k0 of BL. The values 
chosen were;  for case 1: T= 500 000 and k0 = 50, for case 2: 
T= 500 000 and k0 = 800, and for case 3: T= 2 500, k0 = 200.

D.  GRASP

The GRASP method consists of  a constructive phase and a 
local  search  phase  [9].   The  constructive  phase  creates  a 
feasible  solution,  which  is  improved  by  the  local  search 
algorithm  and  the  best  solution  is  saved  in  the  iterative 
process.

TABLE 6
GENERAL GRASP

f* ← ∞
for i ≤ imax do
     constructive phase(g(.), α, x)  
     x ← local search(x) 
     if f(x) < f* then

    f* ← f(x)
    x* ← x

         end if
     end for
 return x*

    where
imax is the maximum number of iterations.
g(.)  is the myopic function that evaluates the 

incorporation of each element
x is the solution set, which contains the powers 

assigned to the N units
f(x) is the cost of solution x
f* is the cost of the best solution found
x* is the best solution found
α ∈[0,1]  establishes  the  degree  of  randomness  or 

myopia of the algorithm

The  LS  algorithm  is  the  same  used  for  the  SAA,  and  the 
constructive phase algorithm for EDP is shown below:

TABLE 7
CONSTRUCTIVE PHASE GRASP

start
 x = {};
dem_dif ← Demand
Initialize list of candidates C

           while |C| ≠ 1 do        
                    calculate New limits NPmini, NPmaxi  | i∈ C

            pi  ← random(NPmini, NPmaxi)  | i ∈ C      
           calculate pmyopic(pi) | i ∈ C
           f ← min{ pmyopic(pi) | i ∈ C }

f+ ← max{ pmyopic (pi) | i ∈ C }
RCL ← { p ∈ C | pmyopic (pi) ≤ f + α( f+ – f) }
random selection of p for RCL
x ← x ∪ {p}
C ← C – {p}
dem_dif ← dem_dif – p

 end while
 p {C} ← dem_dif

 end

Where
   Demand: what all units should generate

C: list of candidates
RCL: restrictive list of candidates
x: solution set
pi: element i  in the  feasible solution 

    p {c} : last element in the list of candidates
_________________________________________________

The algorithm creates  a feasible solution x = {p1,  p2,  … pi, 
…,pn}. At first, the solution set for x is empty (1),  the variable 
rem_dem starts with a value for the demand the N units must 
meet  and  lowers  its  value  as  powers  are  assigned  to  each 
element in the solution. The initial list of candidates C is made 
up by all the units C = { U1, U2, …, Ui, …, Un}.   then, each 
unit is assigned a random power (6) in the restricted domains, 
calculated (5) by means of a constraint satisfaction algorithm. 
The application of this algorithm allows values to be assigned 
to a unit so that in subsequent stages it is possible to assign 
powers to the remaining units. The myopic function (7) is the 
generating cost function that evaluates each generator  based 
on its randomly assigned power. The restrictive list RCL will 
contain the lowest cost units that are in the range defined in en 
10.  The  element  that  is  added  to  the  solution  is  chosen 
randomly from the RCL (11).  Then the solution set (12), the 
list of candidates (13),  and the demand to meet are updated 
(14). In each cycle an element is added to the solution until 
the  list  of  candidates  contains  only  one  element.  The 
remaining demand rem_dem is assigned to this last unit.

IV. COMPARATIVE RESULTS OF HEURISTICS

SUMMARY, CASE 1
In the results of the GA, the solutions have high variability 
(3,915) and the average error compared with the cost of the 
optimum solution (487,018) is 1.95%. 

TABLE 8 shows that the quality of the solutions is good for 
the  GA  and  excellent  for  the  algorithms  HGA,  SAA,  and 
GRASP. The most stable algorithm is GRASP with a standard 
deviation of $1, although it uses more than 10 times the time 
reported for the HGA and the SAA. As we have mentioned, 
the GA rapidly improves the initial solutions, but the quality 
of the final solution is poor and highly variable. The statistics 
for the GA shown are very similar from generation number 
100, but the result of 300 generations is shown to show that 
the quality of the solution no longer  improves significantly. 
The algorithm that performed best was the SAA, due to the 
quality of its solutions in a shorter execution time.
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TABLE 8
SUMMARY OF THE APPLICATION OF HEURISTIC METHODS TO 

CASE 1 WITH CONVEX COST FUNCTIONS

1minimum cost compared with cost of the optimum solution
2 average cost compared with cost of the optimum solution

The results for case 1 when considering the dead zone and the 
non-convex function in U7 are shown in Table 9.

TABLE 9
SUMMARY OF THE APPLICATION OF HEURISTIC METHODS TO 

CASE 1,  WITH DEAD ZONE AND NON-CONVEX COST FUNCTION 
FOR UNIT 7

1minimum cost compared with cost of the optimum solution
2 average cost compared with cost of the optimum solution

In this case, the optimum solution is not known, due to the 
restrictions imposed on unit 7.  Again,  GRASP provided the 
best solutions and the solutions in all tests were practically the 
same. The HGA performed better here than the SAA.

Case summary Unit 36
Table 10 shows the best performance of the HGA when it has 
the lowest cost and the best average cost with an acceptable 
variability  compared  with the other  heuristics.  The  GRASP 
presented  similar  results  to  the  HGA but  with  a  time  four 
times greater.

TABLE 10  
SUMMARY OF THE APPLICATION OF HEURISTIC METHODS TO 

CASE 2 WITH CONVEX COST FUNCTIONS

1 compared with cost of the optimum solution

In Table 11 the variability of the solutions is increased for the 
heuristics GA, HGA, and SAA because when considering the 
dead  zone  for  unit  36,  the  solutions  present  jumps  in  the 
power of unit 36, around the limits of the dead zone.  

TABLE 11
 SUMMARY OF THE APPLICATION OF HEURISTIC METHODS TO 
CASE 2,  WITH DEAD ZONE AND NON-CONVEX FUNCTION FOR 

UNIT 36

1 compared with best cost obtained (HGA)

Results for Case 3 
The  parameter  settings  for  each  heuristic  for  case  3  are 
summarized in Table 12. 

TABLE 12
PARAMETER SETTING OF HEURISTICS, CASE 3

6
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Table 13 shows the performance of the heuristics for case 3. 
In  this  case  all  the  heuristics  provided  fairly  acceptable 
solutions,  in  particular  the  SAA  due  to  the  quality  of  the 
solutions as regards variability  and execution time. 

TABLE 13
 SUMMARY OF THE APPLICATION OF HEURISTIC METHODS TO 

CASE 3

Fig. 1, shows the cost functions analyzed in this case.  As a 
reminder,  the  functions  in  thicker  colored  lines  represent  a 
behavior  closer  to  the  cost  of  fuel  due  to  the  opening  and 
closing of  and valves in the unit’s power control. Heuristic 
methods can evaluate this kind of functions in the EDP and 
the comparative results with solutions offered by the classical 
method which uses the second-degree functions 
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Fig. 1.  Cost functions for case 3

 V. CONCLUSIONS

We have presented the application of four heuristic methods 
to  the  EDP  without  losses.  The  study  cases  include  an 
evaluation of non-convex cost curves and the consideration of 
dead zones in some thermal units. These are conditions that 
cannot be evaluated with classical optimization methods.

The  results  obtained  for  the  EDP  solution  were  fairly 
satisfactory   and  the  four  heuristics  presented  have  shown 
consistency  in  obtaining  good  solutions,  allowing  for  non-
convex cost functions and the discontinuities that dead zones 
represent. 

It has been made clear that the being able to evaluate the real 
cost curves of combined cycle units in PIEs and the closest 
cost functions for thermal units that account for valve points, 
with heuristic methods, has allowed us to obtain a lower cost 
of  generation  for  generation  dispatch  in  the  study  cases 
presented.  For  the  first  case,  the  differences  in  cost  are 
minimal and we conclude that the second degree cost function 
used at present is acceptable,  given that the improvement in 
cost was only 0.03 % under extreme conditions, when the real 
and adjusted curves are farthest apart. When considering valve 
points in cost functions, in the case of 3 units,  the GRASP 
considerably improved generation dispatch, by 3 %.

There is no comprehensive approach to solving the economic 
dispatch problem capable of accounting for all the restrictions 
that  may  appear;  however,  it  is  necessary  to  combine  and 
iterate  with  different  problem  solving  techniques  that  treat 
some restrictions in isolation to achieve better solutions. First, 
we need to show that  these techniques  work  and can  solve 
such  isolated  problems.  In  this  case  of  application  of 
heuristics,  they  can  be  used  to  evaluate  non-convex  cost 
functions and discontinuities that arise, to combine them with 
other problem solving techniques.
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