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Abstract
Gas separation membranes are considered to be an efficient technology for the  
future generation of zero CO2-emission power plants. This work studies the oxygen 
permeation performances and stability in near-operation conditions of mixed ionic-
electronic conducting membranes for high purity oxygen separation in the framework  
of the Oxyfuel process.
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Abstract

The reduction of CO2 emissions, generally held to be one of the most significant contributors to global 

warming, is a major technological issue. CO2 Capture and Storage (CCS) techniques applied to large 

stationary sources such as coal-fired power plants could efficiently contribute to the global carbon 

mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich 

atmosphere to produce a flue gas highly concentrated in CO2, is a technology considered for zero CO2

emission coal-fired power plants. The production of this O2-rich combustion gas from air can be carried 

out using high purity oxygen separation membranes. Some of the most promising materials for this 

application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K2NiF4

perovskite-related structures. 

The present work examines the selection of La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF58), La2NiO4+δ, 

Pr0.58Sr0.4Co0.2Fe0.8O3-δ (PSCF58) and Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF50) as membrane materials for the 

separation of O2 and N2 in the framework of the oxyfuel process with flue gas recycling. Annealing 

experiments were carried out on pellets exposed to CO2, water vapour, O2 and Cr2O3 in order to 

determine the thermo-chemical resistance to the atmospheres and the high temperature conditions 

present during membrane operation in a coal-fired power plant. The degradation of their microstructure 

was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive 

spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of 

selected membranes were investigated as a function of temperature. The membrane materials selected 

were characterised using thermo-analytical techniques such as precision thermogravimetric analysis 

(TGA) and thermo mechanical analysis (TMA).  

An increase in thermal expansion and oxygen permeation associated with an increase in oxygen 

vacancy concentration, observed also in the TGA curves, occurs during heating. BSCF50 exhibits 

permeation fluxes well above those of LSCF58, PSCF58 and La2NiO4+δ, which are quite similar to 

each other. After exposure, no degradation of LSCF58, La2NiO4+δ and PSCF58 occurs. On the other 

hand BSCF50 is found to be unstable in CO2- and/or H2O-containing atmospheres and also to exhibit a 

chemical demixing. The thermo-chemical stability and the oxygen permeation performances are both 

crucial factors in the selection of high purity oxygen separation membranes for the oxyfuel process, 

thus making LSCF58, PSCF58 and La2NiO4+δ in this study the most suitable materials for this 

application. Serious issues arise, however, from the fact that secondary non-ion conducting oxide 

phases are formed in the bulk of every material, forming obstacles for oxygen ion migration, and also 

that a reaction with chromia occurs, preventing their use without protection.  





Zusammenfassung

Kohlendioxid wird für das am stärksten zur globalen Erderwärmung beitragende Gas gehalten. Die 

Reduktion der CO2 Emissionen durch technologische Maßnahmen ist daher ein sehr wichtiger Ansatz. 

Die Abtrennung und Speicherung von CO2 aus Abgasen großer stationärer Anlagen, wie zum Beispiel 

fossiler Kraftwerke, kann hierbei einen effektiven Beitrag leisten. Ein mögliches Verfahren zum 

Betrieb CO2- emissionsfreier Kraftweke ermöglicht der Oxyfuel Prozess. Hierbei wird der fossile 

Brennstoff in sauerstoffreicher und stickstoffarmer Atmosphäre umgesetzt, wobei ein Rauchgas mit 

hoher CO2 Konzentration erzeugt wird. Eine Möglichkeit zur Erzeugung dieses O2-reichen Gases kann 

der Einsatz von sauerstoff- trennenden Membranen sein. Mögliche Materialien für solche Membranen 

stellen Sauerstoff- Mischionenleiter aus Perowskiten und perowskitähnlichen Werkstoffen wie K2NiF4 

dar. In der hier vorliegenden Arbeit wird der Fokus auf die Materialien La0.58Sr0.4Co0.2Fe0.8O3-δ

(LSCF58), La2NiO4+δ, Pr0.58Sr0.4Co0.2Fe0.8O3-δ (PSCF58) und Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF50) als 

Membranmaterialien für die Trennung von O2 und N2 im Rahmen des Oxyfuel Prozesses mit 

Rauchgasrückführung gelegt.  

Zur Untersuchung der thermo-chemischen Stabilität der Materialien gegenüber Temperaturen und 

Atmosphären, wie sie in kohlegefeuerten Kraftwerken herrschen, wurden Auslagerungsversuche unter 

definierten Bedingungen durchgeführt, wobei die Proben in CO2-, wasserdampf- und sauerstoffhaltigen 

Atmosphären ausgelagert wurden. Weiterhin wurden Versuche durchgeführt, die die 

Chromabdampfung aus Rohrleitungen und Wärmetauschern simulieren. Veränderungen der 

Mikrostruktur der untersuchten Proben wurden mithilfe der Rasterelektronenmikroskopie und 

analytischen Verfahren der Energie-dispersiven Röngenanalytik und der Röntgendiffrakometrie 

untersucht. 

Die Sauerstoffpermeationsraten ausgewählter Membranen aus den oben genannten Materialien wurden 

in Abhängigkeit der Temperatur gemessen. Die Werkstoffe wurden mithilfe hochpräziser 

Thermogravimetrie und das Ausdehnungsverhalten mit Dilatometrie untersucht. 

Ein Anstieg der thermischen Expansion und auch der Sauerstoffpermeation kann mit einer Erhöhung 

der Sauerstoff-Leerstellenkonzentration korreliert werden, die ebenfalls mit Hilfe der 

Thermogravimetrie bestimmt werden kann.  

BSCF50 erreicht deutlich höherer Permeatflüsse als LSCF58, PSCF58 und La2NiO4+δ. Bei den 

Auslagerungsversuchen konnten keine Degradationseffekte bei LSCF58, La2NiO4+δ und PSCF58 

nachgewiesen werden. BSCF50 erweist sich as instabil gegenüber CO2- sowie wasserdampfhaltigen 

Atmosphären. Weiterhin wurden Entmischungen beobachtet.  



Sowohl die thermo-chemische Stabilität, als auch die Permeationseigenschaften der untersuchten 

Materialien sind kritische Faktoren für eine Bewertung sauerstoffleitender Membranen. Hierbei 

scheinen von den untersuchten Werkstoffen LSCF58, PSCF58 und La2NiO4+δ die am besten geeigneten 

Materialien. Allerdings ist zu beobachten, dass sich nicht leitende oxidische Sekundärphasen bilden 

können, welche den Sauerstofftransport blockieren. Die unter bestimmten Bedingungen beobachtete 

Bildung einer dichten Cr2O3 Schicht blockiert ebenfalls die Permeation des Sauerstoffs durch die 

Membran, so dass zusammenfassend gesagt werden kann, ein Einsatz der untersuchten Materialien als 

Membranwerkstoffe ist nur möglich mit zusätzlichen Maßnahmen zum Korrosionsschutz.  
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1 Introduction 

1.1 Kyoto protocol 

Global warming is a major issue for our modern industrial societies. The observable effects of 

increasing levels of greenhouse gases, such as carbon dioxide (CO2), released into the atmosphere have 

led to the signing of the Kyoto protocol by which countries commit to the reduction of greenhouse gas 

emissions worldwide. Since 1997 it has been ratified by more than 170 countries.  

1.2 Coal-fired power plants 

Carbon dioxide is generally held to be one of the most significant contributors to global warming. 

Fossil fuel-fired power plants are responsible for more than one third of the total global CO2 emissions 

[1]. A 1000 MW pulverized coal-fired power plant emits between 6 and 8 Mt of CO2 per year. 

Moreover the burning of fossil fuels provides more than 85% of the world’s commercial energy needs 

[2]. Coal-fired power plants represent more than 20% of the world’s total energy production [1] and 

over 40% of Germany’s total domestic energy production [3]. With the rise of the global demand for 

electricity and also the abundance of coal resources, coal-fired power plants are and will remain an 

important source of energy in the foreseeable future. The major challenge is to decrease CO2 emissions 

from large stationary sources. Therefore coal-fired power plants are prime candidates for the 

application of CO2 Capture and Storage (CCS) techniques. 

1.3 CO2 capture concepts 

CO2 capture technologies have been used for decades to produce a pure stream of CO2 from natural or 

industrial CO2 emissions for use in the food processing and chemical industries. The captured CO2 is 

used for various industrial and commercial processes such as foam blowing, the production of urea, dry 

ice production and carbonated beverages. This work will focus on CO2 capture in coal-fired power 

plants, for which three main processes are available at different stages: 

• Post-combustion 

• Pre-combustion  

• Oxyfuel  
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1.3.1 The post-combustion process  

The post-combustion process consists in the de-carbonisation of the flue gas. CO2 is captured from the 

exhaust gas produced during combustion. The state of the art process to separate CO2 from a flue gas is 

chemical absorption [4] which is a solvent process in which CO2 reacts with an absorption liquid e.g. 

amine-based solvents or alkaline salt solutions. Amine scrubbing is the most commonly applied 

technique for CO2 separation and the most widely used absorbent is monoethanolamine (MEA) [1,5,6]. 

This process is suitable for conventional power stations. Polymeric membranes are also used 

commercially for CO2 removal from natural gas. However the lower CO2 partial pressures of the 

exhaust gas from a coal-fired power plant results in having to compress the flue gas and thus in higher 

energy penalties.   

1.3.2 The pre-combustion process 

The pre-combustion process (Figure 1.1) consists in a de-carbonisation of the fuel gas. This process has 

been used for more than 50 years for hydrogen production in chemical and refining industries [7]. It is 

possible with Integrated Gasification Combined Cycle (IGCC) [8] and involves three steps [7]:  

• Hydrocarbon conversion by partial oxidation, which is a partial combustion of coal in air, oxygen 

or oxygen-enriched air to produce a syngas mixture containing H2 and CO. 

• The conversion of the mixture to CO2 and H2. The thermo-dynamically controlled reaction which 

takes place is the water gas-shift reaction: 

CO + H2O(g)→ CO2 + H2 

H2 removal will shift the overall reaction to the product side. 

• The separation of CO2 and H2 to produce a hydrogen-rich stream. Technologies to remove CO2

from the flue gas stream include chemical absorption described above, pressure swing adsorption 

(PSA) onto adsorbents such as zeolites which act as molecular sieves. Cryogenic separation in 

which CO2 is physically separated from the syngas by condensing it to produce liquid CO2 ready 

for storage, and physical absorption using solvents such as dimethylether of polyethylene glycol so-

called Selexol or Rectisol (cold methanol) are other developed techniques [7]. Membrane 

separation is also commercially applied for H2 separation but the selectivity of commercially 

available membranes for CO2/H2 separation is too low [1,8,7].  
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Figure 1.1. Schematic representation of the pre-combustion process 

1.3.3 The oxyfuel process 

The oxyfuel process (Figure 1.2) is a de-nitrogenation of the combustion gas (air). It consists in the 

burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO2. When 

coal is combusted in air the fraction of CO2 in the flue gas is between 10% and 14% for a Pulverised 

Fuel-fired (PF) station. [9,10,4,11] Capture is easier at higher CO2 concentrations, which can be 

achieved by using pure or enriched oxygen instead of air for coal combustion. The oxyfuel alternative 

will allow the flue gas to be composed of relatively clean exhaust gases, steam and CO2 (80% to 85%). 

Water vapour can be readily condensed and separated from CO2. Cryogenic fractionation with the use 

of an air separation unit (ASU) is the most commonly used method for the separation of oxygen from 

air. Pressure swing adsorption and gas separation membranes are more flexible options. This process 

will be discussed in further detail in Chapter 3.3.

Figure 1.2. Schematic representation of the oxyfuel process 
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1.3.4 Economic viability 

The reduction of CO2 emissions is a major technological issue. The economic viability of the different 

solutions also has to be considered. Conventional coal-fired power plants generate high volumes of flue 

gas with low CO2 concentrations. The very high capital costs of installing a post-combustion separation 

system needed to process massive volumes of flue gases is a major impediment to post-combustion 

capture. A key to achieving lower capture costs lies in the production of a more concentrated stream of 

CO2. This can be done through the pre-combustion or oxyfuel processes.  

However most processes considered to capture CO2 from flue gas are capital and energy intensive. The 

air separation unit alone may consume about 15% of a power plant’s electric output [12]. The 

absorption and adsorption routes also have high electricity costs. The release of CO2 from solvents or 

from solid adsorbents after separation requires a large amount of additional energy. On the other hand 

gas separation membranes have relatively low energy consumption and their integration into membrane 

reactors is very promising. They are therefore excellent candidates for gas separation in coal-fired 

power plants. 

1.3.5 Gas separation membranes for CCS  

Three types of membrane are currently available for gas separation applications and are being 

considered for use in the processes for CO2 capture:  

• Organic porous polymer membranes 

• Inorganic porous membranes, amorphous or crystalline 

• Inorganic dense membranes, metallic or ceramic 

Polymeric membranes show excellent CO2 separation potential from N2 for the post-combustion 

process. They can also be used for H2/CO2 separation for the pre-combustion process and O2/N2

separation for the oxyfuel process. However they exhibit a low thermal stability and will not be 

considered for these processes that involve high temperatures and pressures [13]. Therefore porous 

crystalline inorganic membranes such as zeolites which are chemically, thermally and mechanically 

stable are favoured for all three concepts [14]. Dense inorganic membranes are also excellent 

candidates for H2/CO2 and O2/N2 separation. This work will consider the viability of the application of 

dense inorganic membranes for the separation of O2 and N2 in the framework of the oxyfuel process. 
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1.4 MIEC membranes for O2/N2 separation 

Since the 1980s considerable interest has been shown in dense ceramic membranes for high purity 

oxygen separation. The use of mixed ionic-electronic conductor (MIEC) materials as oxygen separation 

membranes from air is regarded as a clean, cost-effective, stable and versatile technology. These 

membranes are dense materials with no detectable pores meaning that the molecular oxygen is not able 

to pass through them. Dense membranes derive their capability for oxygen separation from the 

presence of oxygen vacancies in the crystal lattice of the membrane material. These vacancies can be 

created in the lattice by doping of the material. They enable ionic oxygen to be selectively transported 

from one side of the membrane to the other, through the lattice, via a hopping mechanism.  

This mechanism is only possible provided that the oxygen anions have enough thermal energy to 

overcome the thermal energy barrier to hop from one crystal lattice site to the other. As a result high 

temperatures are required for this application. Above 600°C oxygen vacancies become available for 

transport. Temperatures ranging typically between 700°C and 1000°C are required for oxygen 

separation membranes with infinite perm-selectivity [15]. Moreover, since oxygen anions are 

transported, a counter-balancing transport of electrons (e-) is present in order to maintain electro-

neutrality in the membrane material. There is no need of applying a voltage to generate oxygen 

transfer. Indeed, the driving force for this ion transport mechanism is an oxygen chemical potential 

gradient through the membrane.  

This thesis will focus on mixed ionic and electronic conductors (MIEC), oxygen permeable ceramics, 

which exhibit both a high ionic and electronic conductivity thus allowing high oxygen fluxes [16]. 
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2 Scope of the work 

This work considers the viability of the application of selected dense inorganic Mixed Ionic-Electronic 

Conductor (MIEC) membranes for the separation of O2 and N2 in the framework of the oxyfuel process 

with flue gas recycling. The membrane, operating at temperatures ranging typically between 600°C and 

1000°C will be exposed on its feed-side to air and on its sweep-side to high concentrations of CO2 and 

water. Therefore, the membrane material will have to be stable at high temperatures and in the gaseous 

atmosphere of the flue gas.  

The present study deals with the development of a test set-up and a membrane recipient designed and 

built to measure the oxygen permeation performance of membranes as a function of temperature and 

using different feed and sweep gas compositions. The oxygen permeation fluxes of selected MIEC 

membranes with perovskite and K2NiF4 perovskite-related structures i.e. La0.58Sr0.4Co0.2Fe0.8O3-δ, 

Pr0.58Sr0.4Co0.2Fe0.8O3-δ, Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La2NiO4+δ will be investigated as a function of 

temperature and membrane thickness. 

In this work, the MIEC membrane materials selected are to be characterised using thermo-analytical 

techniques such as differential thermal analysis combined with thermogravimetry (DTA/TG), precision 

thermogravimetric analysis (TGA) and thermo mechanical analysis (TMA) in order to determine the 

thermal expansion properties as well as the change in oxygen stoichiometry. 

Thermo-chemical stability tests will be carried out in order to determine whether these MIEC 

membrane materials can withstand the atmosphere and temperature conditions present during operation 

in a coal-fired power plant. Pellets of selected materials will be exposed to CO2, water vapour, O2 and 

Cr2O3, after which the degradation of their microstructure will be investigated using Scanning Electron 

Microscopy (SEM) and Transmission Electron Microscopy (TEM) in combination with Electron 

Dispersive Spectroscopy (EDS) as well as X-Ray Diffraction (XRD). 
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3 Background 

3.1 MIEC materials for oxygen permeable membranes 

For their application as oxygen separation membranes, mixed ionic-electronic conducting (MIEC) 

materials must provide a high total conductivity i.e. a high oxygen flux. The total conductivity is the 

sum of the ionic and electronic conductivities. The ionic and electronic conductivity of MIECs are 

temperature dependant and can reach values of 1 S cm-1 [17] and 103 S cm-1 [18], respectively, at high 

temperatures. 

3.1.1 The perovskite structure 

The term perovskite is used to describe a mineral with the same crystal structure as calcium titanium 

oxide (CaTiO3). This mineral was first discovered in 1839 in the Ural Mountains of Russia by Gustav 

Rose, who named it after Russian mineralogist Lev Aleksevich von Perovski (1792–1856). The 

silicate-based perovskite Al-(Mg,Fe)SiO3 is the main component of the lower earth mantel (70% to 

80%) and is considered the most abundant phase on earth. Perovskites have a wide range of attractive 

properties such as ferroelectricity, superconductivity and also electronic and ionic conductivity. 

The general structure of the perovskite mineral is ABX3, where A and B are cations and X, most 

commonly, oxygen anions. However, perovskites are not necessarily oxides as fluoride, chloride, 

carbide, nitride, hydride and sulphide perovskites are also found. In the ABO3 structure, A is generally 

a large alkaline earth, alkali or rare earth cation and B is a transition metal or a rare earth metal. The 

ideal perovskite has a close-packed cubic structure. In the cubic unit cell, the larger A-site cation 

occupies the body centre of the cube. The smaller B-site cations occupy the corner positions of the cube 

and are octahedrally coordinated to the oxygen anions in the mid-edge positions of the cube  

(Figure 3.1). The A- and B-site cations have a 12-fold and 6-fold anion coordination respectively. The 

total charge of A and B equals +6. A is usually of valence +2 and B of valence +4. 
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Figure 3.1. Representation of the ideal ABO3 perovskite structure. 

Although the cubic symmetry is the ideal structure, most perovskites have distorted structures due to 

rotation or tilting of the BO6 octahedra caused by the relative radius difference between the A- and  

B-site cations. The most common distortion is the tilting of the BO6 octahedra to accommodate the 

radius difference.  

In order to study the stability of perovskites, Goldschmidt established, in the early 1920s, the tolerance 

factor, t, which describes the degree of distortion in perovskite structures and can be determined using 

the following equation [19]: 

( )

( )OB

OA

rr

rr
t

+

+
=

2
(Equation 3.1)

where rA, rB and rO are the ionic radii of the A-site cation, the B-site cation and the oxygen anion 

respectively.  

In general, for stable perovskites, t ranges from 0.75 to 1.00 [20]. When t equals unity, the perovskite is 

expected to adopt the ideal cubic structure while lower values of t correspond to lower symmetry. In 

the case of a tolerance factor higher than unity, the perovskite structure becomes hexagonal [21]. 

However, Goldschmidt found that most cubic perovskites have a tolerance factor ranging between 0.8 

and 0.9 [22]. If 0.9<t<1, the perovskite will present distortions to rhombohedral symmetry [20]. For 

values of t between 0.8 and 1.00, the perovskite structure can present several symmetries e.g. cubic, 

orthorhombic, rhombohedric and quadratic.   

Other stability criteria were found to be necessary to determine the possibility of formation of a 

perovskite structure such as the octahedral factor, which is the ratio of the ionic radii of the B-site 

cation and the oxygen anion (rB/rO). In the case of the ideal perovskite structure, rB/rO equals 0.425 

[22]. The bond length is another criterion for the formation of a perovskite. For an ideal perovskite 

A-cation

O2- ion

B-cation
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structure, the bond lengths ratio must concur with the following equation [22,23]: 

)(2)( OBDOAD −=− (Equation 3.2)

where D(A-O) and D(B-O) are the bond lengths of A-O bond and B-O bond respectively. 

Oxygen migration in oxygen-deficient perovskite oxides ABO3-δ

Among MIEC membranes, perovskite-type ceramic membranes exhibit the highest oxygen 

permeability due to their high ionic and electronic conductivities. Teraoka et al. [18] showed that the 

oxygen semipermeability of perovskite-type oxides is linked to the MIEC property of exhibiting very 

high electronic conductivity and lower ionic conductivity. In the La1-xSrxCo1-yFeyO3-δ series, the oxygen 

permeation fluxes were found to be roughly proportional to the ionic conductivity of the perovskite 

[18]. On the one hand, the ionic conductivity, which controls the oxygen permeation rate [18], is 

generated by the introduction of oxygen vacancies in the perovskite lattice. This allows the vacancy 

hopping mechanism of oxygen ions to occur. On the other hand, electronic conductivity is generated by 

the formation of electron holes which allows the electron hopping mechanism between metal cations of 

the lattice, counter-balancing the oxygen ion conduction. 

Oxygen anion mobility requires crystal defects in the direct vicinity of the lattice site occupied by the 

ion considered. When no intrinsic defects are present in the perovskite structure, the material does not 

exhibit ionic conductivity. In order to use this material as a MIEC membrane material, it is therefore 

necessary to introduce defects in the lattice, most commonly vacancies. They can also be impurities, 

ions displaced in interstitial sites or lattice ions in valence states such that the total charge of A and B is 

different from +6 [24]. These crystal defects are usually present in low concentrations at low 

temperatures. However, high temperatures induce an increase in defect concentration and ion activity, 

which in turn increase the ionic conductivity of the perovskites [25]. 

The creation of oxygen vacancies (Vö), which provide a path for oxygen anion transport in the lattice 

of the perovskite material, is represented by the oxygen non-stoichiometry (3-δ) where (Vö= δ). The 

degree of non-stoichiometry ranges usually between 0 and 1 [24]. A high vacancy concentration is 

necessary but the presence of a too large number of vacancies will affect the structural stability of the 

perovskite. 

The oxygen non-stoichiometry results either from the reduction of a mixed valence B-site cation or 

from the substitution of A- and B-site cations with other cations of lower oxidation state. The 

introduction of multivalent cations in the B-sites of perovskites leads to the formation of electron holes, 

while the decrease in total charge of A- and B-sites is compensated by the formation of oxygen 



Background 

10 

vacancies. Charge defects must be counter-balanced by one of equal magnitude and opposite sign in 

order for the lattice to remain electronically neutral. Two charge compensation mechanisms are 

possible: the first one is the formation of oxygen vacancies, the second is the increase in valence state 

of the transition metal at the B-site. Temperature and oxygen partial pressure conditions will influence 

the charge defect compensation mechanism.  

The valence of A-site cations is usually partially changed from 3+ to 2+ by doping of the perovskite 

material. If the A cation changes valence two compensation mechanisms are possible. In the first one, 

the surrounding oxygen anions counter-balance the valence charges by creating vacancies. If an oxygen 

vacancy is formed, the B-site cations will adjust their valence state and their coordination number [20]. 

The second one involves, on the one hand, part of the B-site cations modifying their valence state from 

3+ to 4+ to balance the local charge. The valence of the A-site cations will not be easily modified since 

they have a strong ionic bonding with adjacent oxygen anions [20]. As a consequence, the valence of 

the B-site cation generally depends on the oxidation state of A [26]. On the other hand, as a result of 

some B-site cations being reduced, thus decreasing their valence state from 3+ to 2+, oxygen vacancies 

are created to compensate the excess negative charge [20].  

The migration of oxygen ions was proven [27] to occur through a saddle point configuration, which is 

the triangle defined by two A-site cations and one B-site cation. The radius of a circle just touching the 

radii of these three cations is defined as the critical radius rc by the relation [28]: 

)(2)(2)(2

)())((2)(43)( 222

BoA

BBooA
c

rar

rraar
r

−+
+−+

= (Equation 3.3)

where rA and rB are the radii of A- and B-site cations, ao is the lattice parameter of the unit cell.  

Migration of anions having a radius smaller than rc will pass through this opening without disturbing 

the boundary cations. A lattice vibration must occur, enlarging rc, for mobile anions larger than rc to 

pass the saddle point configuration [28]. Moreover, the size proportion of A and B is of importance in 

oxygen transport in the perovskite-type ABO3 structure. The energy barrier for migration decreases 

with increasing size of B-site cations and decreasing size of A-site cations [27]. 

For fast oxide ion conductivity in perovskite materials, the following conditions are necessary [21,28]:  

• High concentration of mobile charge carriers: O2-

• Sufficient crystallographic sites for the charge carriers i.e. high oxygen vacancy concentration 

• Low mean value of metal-oxygen bonding energy of the perovskite lattice,  

• An open structure, i.e. a high lattice free volume, facilitating oxygen ion mobility,  
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• A critical cation saddle point for O2- migration as large as possible.  

Doping and tuning of perovskite properties

Perovskite properties are believed to derive from the non-stoichiometry of cations and anions, lattice 

distortion and cationic mixed valence, all of which can be tuned by appropriate cation doping. The 

perovskite structure has great chemical and geometrical flexibility. It can adapt easily to the relative 

sizes of the ions forming the compound. It can accommodate both high dopant concentrations, with a 

wide range of cation radii and also a high degree of oxygen non-stoichiometry.  

Perovskite-type oxides can be doped by substituting a fraction of the A-site and/or B-site cations by 

cations with different atomic radii. This property is very interesting as it enables a tuning of the 

properties of these materials for a wide range of applications. Moreover, the fact that both A- and  

B-sites are available for substitutions provides a wide range of new possible perovskite materials with 

new interesting properties.  

A typical example of cation substitution is the one of strontium for lanthanum in LaCoO3-δ. The best 

dopant among alkaline-earth cations for lanthanum A-site cations is considered to be Sr2+, as it 

increases considerably the ionic and electronic conductivity. La3+ and Sr2+ cations have similar ionic 

radii so no significant distortion is observed. Lattice substitution between La3+ and Sr2+ is possible 

since the site distribution of O2- anions around both cations is equivalent. The loss of local charge is 

balanced by creating oxygen vacancies as well as by the partial conversion of Co3+ to Co4+

[16,20,18,29]. 

La1-xSrxCoO3-δ strontium-doped lanthanum cobaltite exhibits some of the highest oxygen permeation 

fluxes. However this material shows low stability. Extensive research [16,30,31,32,33] has been 

conducted on acceptor-doped oxides with the generic formula Ln1-xAxCo1-yByO3-δ (with A=Sr, Ba, Ca 

and B=Fe, Cu, Ni; Ln with Ln=La, Pr, Nd, Sm or another lanthanide element). These materials, in 

which a precise composition can be tailored for a specific application, are considered to be among the 

most promising for oxygen separation membranes. The widely studied La1-xSrxCo1-yFeyO3-δ (LSCF) 

[30,34,31,35] series has been found to be more stable and to exhibit only slightly lower ionic 

conductivity than the strontium-doped lanthanum cobaltite. The doping of iron was found to be 

necessary to preserve the stability of the perovskite even at high strontium concentrations [16]. 

In the LSCF series, the oxygen flux increases with cobalt and strontium content and decreases with 

increasing iron content [16,18], the highest flux being for SrCo0.8Fe0.2O3- δ. The partial substitution of 

Sr2+ for La3+ creates oxygen vacancies. [16] The increase in oxygen permeation is linked to the increase 
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in oxygen vacancies in the lattice of perovskite-type membranes. The increase of oxygen flux with the 

increase in Co3+ content is linked to the fact that O2- diffusion is facilitated since Co3+ has a smaller 

ionic radius as well as smaller bonding energy to oxide ions than Fe3+. The substitution of La3+ by Sr2+

is compensated predominantly by the formation of p-type carriers Fe4+ at high oxygen partial pressure 

(PO2) (in oxidising atmosphere) and oxygen vacancies at decreasing PO2. Oxygen vacancies created by 

further lowering PO2 (in reducing atmosphere) are charge compensated by reduction of Fe3+ to Fe2+

leading to an n-type electronic conductivity [36]. 

The increasing substitution of A-site cation for lower valence metal ions usually causes, on the one 

hand, an increase in the oxygen permeation flux due to the increase in oxygen vacancy concentration 

and, on the other hand, a decrease in the phase stability. A compromise between high electronic and 

ionic conductivity, i.e. high oxygen permeation, and stability of the membrane material is therefore 

necessary. 

3.1.2 The Ruddlesden-Popper phase, K2NiF4-type structure (A2BO4+δ) 

In recent years much attention has been drawn to a different class of mixed ionic-electronic conductors 

(MIEC) with the K2NiF4 perovskite-related structure for application as ceramic membranes for high 

purity oxygen separation.  

The crystal lattice of the K2NiF4-type 

structure has the general composition 

A2BO4+δ, where A is a rare earth cation and B 

a transition element. It can be described as a 

succession of perovskite layers ABO3

alternating with rock salt AO layers in the c-

direction (Figure 3.2) [37,38]. Oxygen ionic 

conduction in K2NiF4-type materials is 

believed to occur via diffusion of oxygen 

interstitials in the rock-salt-type layers and 

also via a vacancy mechanism in the 

perovskite layers [39,40,41]. In the K2NiF4-

type structure, the interstitial oxygen atoms 

are in a tetrahedral environment of A-cations.
Figure 3.2. Representation of the perovskite-like 

A2BO4+δ structure. 

B-cation

A-cation

O2- ion
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One of the most promising K2NiF4-type compounds is lanthanum nickelate (La2NiO4+δ) considered to 

have good permeation properties and high stability [42,43]. La2NiO4+δ exhibits a wide range of oxygen 

hyperstoichiometry (0≤δ≤0.25), which determines the phase composition, structure and the transport 

and magnetic properties [40,37]. Oxygen excess in La2NiO4+δ is associated with the incorporation of 

oxygen anions in the rock salt layers LaO, which have sufficient flexibility to accommodate oxygen as 

interstitial species. The oxygen ion excess is incorporated into the lattice as interstitial O2- or O- ions 

which are charge compensated for by oxidation of Ni2+ to Ni3+ or by a combination of oxidised oxygen 

ion O- and oxidised nickel ion Ni3+ [40]. This high concentration of oxygen interstitials leaves a 

favourable pathway for oxygen mobility in the ab-plane, thus offering the possibility of rapid oxygen 

transport through the ceramic material [44]. Oxygen diffusion measurements showed that the 

diffusivity of this material is high and as a consequence that it has highly mobile oxygen interstitials 

[45]. Moreover, oxide ion diffusion was measured to be 10-7 cm2s-1 at 750°C [46]. 

This interstitial oxide ion conduction is an attractive alternative to the vacancy-based conduction 

mechanism present in the perovskite-type oxides, where the dopant-vacancy interactions can limit the 

observed conductivity. Skinner et al. have shown that the oxide ion diffusion at temperatures of 

between 500°C and 800°C of La2NiO4+δ is competitive with the usual perovskite materials [44]. It has 

been proposed that the mobility of the oxide ions occurs mainly through an interstitialcy mechanism in 

the ab-plane [40], although more recent work [47] has reported a lower activation energy for the 

diffusion in the c-direction. However, oxygen ion diffusion in the c direction is significantly slower. 

Even though it is considerably reduced by the limited mobility in the oxygen stoichiometric layers (c-

direction), the overall conductivity is high enough to produce competitive oxide ion diffusion 

compatible with high purity oxygen separation.  

La2NiO4+δ appears to be a likely substitute for the usual perovskite materials, e.g. LSCF [48]. It has 

relatively high values of both ionic and electronic conductivities which makes significant oxygen 

permeability likely [49]. Moreover its thermal expansion properties and its stability together with its 

mixed conductivity make it a material competitive with the usual perovskite materials. 

3.2 Theory of oxygen transport 

In the case of MIEC membranes, the driving force for oxygen transport is the differential oxygen 

partial pressure across the membrane. On the high oxygen partial pressure (PO2) side - the feed-side - 

molecular oxygen is reduced into oxygen anions O2- which are incorporated in the lattice and released 

at the low PO2 side - the permeate side - where they recombine to form oxygen molecules. 
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Higher fluxes are obtained when either or both electronic and ionic conductivity are increased. At a 

fixed total conductivity, the flux is maximum when ionic and electronic transference numbers are 

equal, i.e. 0.5. It is therefore important to maximise the product of mobility and concentration of ionic 

and electronic charge carriers in the appropriate ranges of temperature and oxygen partial pressures for 

the application considered [50].  

The permeation rate through dense oxygen permeable membranes is essentially controlled by two 

factors: one is the rate of solid state diffusion within the membrane material and the other is the rate of 

interfacial oxygen exchange on both sides of the membrane [50,15]. A membrane is divided into a 

central bulk diffusion controlled zone (Wagner) and adjacent interfacial zones, between the gas phase 

and the oxide, where surface kinetics are predominant, as shown in Figure 3.3. Diffusion is rate 

determining if the membrane is above a certain thickness. When this thickness is reduced, the transfer 

of oxygen across the interfaces becomes the limiting factor for the oxygen flux.  

Figure 3.3. Diagram representing the chemical potential drop across an MIEC membrane. 

The oxygen flux through a membrane can be increased by decreasing its thickness as long as the 

oxygen permeation is controlled by bulk transport (as shown in Wagner´s equation (Equation 3.14)). 

When the thickness of the membrane reaches a characteristic membrane thickness value, Lc, the 

permeation is controlled by both surface exchange and bulk diffusion kinetics. For thicknesses smaller 

than 2Lc, the oxygen flux is independent of the membrane thickness, L. The characteristic membrane 

thickness Lc is determined by the ratio of the oxygen self diffusivity and surface exchange coefficient 

for predominant electronic conductors such as perovskites like LSCF [50,15]. To observe a high 

increase of the oxygen flux it is possible to decrease the thickness of the membrane to values in the µm 

range i.e. thin film techniques [15]. 
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Oxygen transport is also influenced by effects related to microstructure such as grain boundary 

diffusion and order-disorder phenomena, roughness or porosity of the membrane surface. Teraoka et al. 

[16] were the first to report the high oxygen fluxes of SrCo0.8Fe0.2O3-δ in the range 800-900°C. 

However conflicting values for the flux through SrCo0.8Fe0.2O3-δ membranes have been measured by 

other groups, which reflects the influence of many parameters on the permeation flux, such as the 

characteristics of the sample measured (preparation method, grain size, etc.) and the experimental 

conditions (PO2 gradient across the membrane, temperature, etc.) 

3.2.1 Bulk transport 

In the bulk transport theory it is assumed that the overall oxygen permeation is rate limited by diffusion 

of oxygen anions or transport of electronic charge carriers (electrons and electron holes) through the 

bulk oxide. Oxygen diffusion through MIEC oxides is done via an oxygen vacancy transport 

mechanism as described previously (Chapter 3.1).  

The reaction of oxygen ion transport (reaction between the gaseous oxygen and the oxide lattice) is 

described by the following equation (Equation 3.4) using the Kröger-Vink notation [51]: 

x
OO OeVO 2´422 ↔++ ⋅⋅ (Equation 3.4) 

where oxygen vacancies ⋅⋅
OV  are assumed to be mobile ionic defects and to be fully ionised. 

The reaction between electrons and electron holes can be expressed by: 

⋅+↔ henil ´  (Equation 3.5) 

From Equation 3.4 and Equation 3.5 and assuming equilibrium, the chemical potential gradients of 

individual species can be expressed by the relations: 

0221 ´2
=∇+∇+∇ ⋅⋅ eVO

O
μμμ (Equation 3.6) 

02 ´ =∇+∇ ⋅ eh
μμ (Equation 3.7) 

where ⋅⋅
OV

μ is the chemical potential of an oxygen vacancy, ´eμ and ⋅h
μ  the chemical potential of 

electrons and electron holes respectively. 

The single particle flux of charged carriers under an electrochemical potential gradient, when cross 

terms between fluxes are neglected, is given by [52]: 

i
i

i
i Fz

j ησ
∇−=

22 (Equation 3.8) 
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In this equation, iσ  is the conductivity, iz  the charge number, F is the Faraday constant. The gradient in 

electrochemical potential η∇ of the charge carrier i is given by: 

φμη ∇+∇=∇ Fziii
(Equation 3.9) 

where iμ∇ and φ∇  represent, respectively, the gradients in chemical and electrical potential. 

Under steady-state conditions, no charge accumulation occurs. The flux of electronic charge carriers 

and ionic defects are related to each other by the charge balance: 

⋅⋅⋅ −=
heV

jjj
O

´2  (Equation 3.10) 

By combining Equation 3.6 to Equation 3.10 and using the relationship ⋅⋅=
OVO jj 2

1
2 , the oxygen flux 

across the membrane can be expressed: 
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where elhe σσσ =+ ⋅´  and ionVO
σσ =⋅⋅ . 

Equation 3.11 can be expressed in a more generalised form: 

22 216 O
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+

−= (Equation 3.12) 

elσ  and ionσ  are the partial conductivities provided by oxygen ionic and electronic defects, 

respectively. Integrating Equation 3.12 over the membrane thickness L using the relation: 

x
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μ (Equation 3.13) 

where R is the gas constant, T the temperature, 
2OP  the oxygen partial pressure, and x the distance 

coordinate yields the Wagner equation in its usual form: 
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where L is the membrane thickness, ´

2O
P  and ´´

2O
P represent the oxygen partial pressure at the high- and 

lean-
2OP  side of the membrane respectively. 

The Nernst-Einstein relation expresses the ionic conductivity as a function of the diffusion coefficient 

Dν and of the concentration Cν of mobile oxygen vacancies: 
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RT

DCF
ion

ννσ
24= (Equation 3.15) 

The temperature dependence of the diffusion coefficient of oxygen vacancies derived from Fick´s law 

is represented by the relation: 

⎟
⎠
⎞

⎜
⎝
⎛−=

RT

Ea
DD exp0νν (Equation 3.16) 

where Dν0 is the diffusion coefficient of the oxygen vacancies at infinite temperature and Ea is the 

activation energy of bulk diffusion. 

3.2.2 Surface processes 

The oxygen exchange reaction between oxide surfaces and the gas phase involves a number of reaction 

steps, each step of which can be rate determining. These steps include molecular oxygen adsorption on 

the oxide surface, dissociation, charge transfer, surface diffusion of intermediate species (e.g. Oads, O
-
ads

and O2-
ads) and incorporation into the lattice in the near-surface layer [15]. It is generally assumed that 

these reactions apply to the re-oxidation of oxygen anions in the reverse direction [53].  

Wagner's equation is only valid when bulk transport is the limiting factor for oxygen diffusion across 

the membrane. However, the surface processes might have a great influence over the rate of oxygen 

permeation. The gradient in oxygen chemical potential will be consumed partially by the surface 

exchange kinetics at the interfacial zones of the membrane and partially by the bulk diffusion in the 

middle-zone [54]. For sufficiently thick membranes, oxygen permeation will be controlled by diffusion 

in the bulk. A mixed control will occur when the membrane thickness is decreased. For very thin 

membranes, surface reactions will govern oxygen permeation through the membrane.  

Considering near-equilibrium conditions, the oxygen flux through the gas/ceramic interface is given by 

the Onsager equation: 
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where '

2OμΔ  and ''

2OμΔ  represent the driving force across the two interfacial zones of the membrane.  

Moreover, '''

22 OO μμ Δ≈Δ . 0
exj  is the balanced exchange rate in the absence of an oxygen chemical 

potential gradient, the value of which can be readily determined using the 18O-16O isotopic exchange 

technique. It is linked to the surface exchange coefficient ks, which is used to describe the rate of 

surface exchange, by the relation: 
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Os
o
ex ckj 4

1= (Equation 3.18) 

where Oc  is the concentration of oxygen anions at equilibrium. 

It was shown [55,56] that the high oxygen fluxes through cobaltite perovskites seem to be limited by 

surface exchange. The ratio h=k/D* was introduced, where k is the surface exchange coefficient and 

D* the tracer diffusion coefficient. This ratio has been considered a convenient parameter to determine 

the contribution of surface exchange in oxygen permeation kinetics. The small h values correspond to a 

high contribution to the total oxygen permeation resistance relative to bulk diffusion. 

Determination of the Characteristic Membrane Thickness Lc

Lc was introduced by Bouwmeester et al. in order to distinguish whether bulk diffusion or surface 

exchange govern the kinetics of oxygen permeation [50,15]. Lc is equal to the reciprocal of the ratio h. 

When both processes share the kinetics, Lc can be defined as: 
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where tel is the electronic transference number and ionelt σ  is the average value of the product of tel and 

ionσ .  

Lc can only be calculated at small PO2 gradients across the membrane [54]. By combining Equation 

3.17 and Equation 3.19, the total flux equation can be written as:  
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For membranes with high thickness values, Equation 3.20 equals Wagner´s equation (Equation 3.14). 

When the thickness of the membrane is much lower than 2Lc, the oxygen flux is independent of the 

thickness of the membrane. A value of 100µm is often quoted as the characteristic membrane thickness 

for perovskite structures although the Lc value can be much higher, up to 3000µm [50,54]. Calculations 

show that Lc can vary from the µm range to the mm range [15]. 

The characteristic thickness is represented by: 

k

D

k

D
Lc

∗

== (Equation 3.21) 

where D is the self-diffusion coefficient of oxygen anions. If correlation effects can be neglected, 

D=D* [15]. 
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3.3 Oxyfuel process 

The oxyfuel process consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas 

highly concentrated in CO2. This will allow the flue gas to be composed of relatively clean exhaust 

gases, steam and CO2 (80% to 85%). In this process, the flue gas will be used to sweep the permeate 

side of the membrane in order to collect the molecular oxygen released from its surface. 

Combustion in pure oxygen is a technology that has been used for years in the glass and metal 

manufacturing industries. Today, the cryogenic air separation technique is the only proven option for 

the oxyfuel process on an industrial scale [5]. From a technical point of view, the oxyfuel process can 

be applied to retrofits to existing coal-fired power plants as well as new ones [57]. Large scale 

applications of oxygen permeable membranes have not yet been developed. However, laboratory scale 

experiments have been performed [58,59,60,61,62], which enables an estimate of the flue gas 

composition and temperature. Moreover, several aspects of the oxyfuel process for use in coal-fired 

power plants, e.g. boiler design, combustion reactions and kinetics, gas cleaning technology etc., need 

to be further investigated in test pilot plants. The world's first pilot coal-fired power plant with CO2

capture was inaugurated in September 2008 at Schwarze Pumpe in Germany by Vattenfall AB. It has a 

thermal capacity of 30 MW [63]. This project will improve understanding of the processes involved in 

oxyfuel combustion capture. Several aspects of the oxyfuel combustion process need clarifying, such as 

the combustion (reactions, ignition and flame stability), heat transfer and emission levels. 

3.3.1 Oxycombustion 

The combustion gas used for the oxyfuel process should have a 95% to 99% oxygen purity, the rest 

being mainly argon and nitrogen [64,65]. A 5% to 15% [58,65,66,57] excess of oxygen supplied to the 

boiler is necessary in order to obtain a stoichiometric and homogenous combustion of the coal. The flue 

gas is composed mainly of CO2 but also water vapour, and small concentrations of impurities such as 

NOx, SOx, O2 (from the oxygen excess), noble gases, metals and particulates [31]. The flue gas from 

the boiler is sent through a gas clean up process to remove particulates and acid gases. A DeNOx 

treatment unit is unlikely to be necessary in the oxyfuel process since NOx should not be formed during 

the combustion in pure O2. However, the boiler air in-leakage (8%-16%) [64] could lead to the 

formation of small amounts of NOx. A reduction of up to between 60% and 70% of NOx emissions 

between combustion in air and oxy-combustion has been reported [10]. Other studies show much lower 

decreases of around 7.5% [43]. The concentration of SOx on the other hand has been proven to be 

higher than for combustion in air since it is not diluted by the N2 in air. Increases to over 200 ppmv 
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have been reported [11]. DeSOx might therefore be necessary to avoid building up sulphur inside the 

boiler. [10,11]. Another option would be the co-storage of SO2 together with CO2 (and possibly NOx) 

since they have similar physical properties [64]. After complete dehumidification of the flue gas, it is 

estimated to have a CO2 purity ranging between 80% and 95% [58,66,5]. The final step in this process 

is the compression and storage of the CO2-rich stream.  

3.3.2 Flue gas recycling 

Flue gas recycling is necessary in the oxyfuel process for several reasons. The percentage of flue gas to 

be recycled has been determined in order that the combustion temperature remains the same as for a 

conventional air-fired power plant. Since combustion in pure oxygen leads to very high temperatures, 

around two thirds of the flue gas needs to be recycled into the boiler in order to control the combustion 

temperature [57]. It also compensates for the volume of missing N2 so that the volume of gas to carry 

the heat through the boiler is sufficient [58,65-66,57]. Flue gas recycling also provides an increase in 

the concentration of CO2 in the flue gas, which will be beneficial for the separation process of CO2

from the rest of the flue gas [11]. This flue gas recycling will replace the effect of nitrogen as a heat 

sink that limits the temperature to about 2000°C under stoichiometric conditions. Moreover, the 

recycled flue gas stream is used to sweep the permeate side of the membrane thus lowering the oxygen 

partial pressure of that side of the membrane and allowing for the gradient in oxygen partial pressure to 

remain across the membrane. Additionally, sweeping the membrane with the recycled flue gas collects 

the oxygen ions released from its surface.  

3.3.3 Flue gas composition 

Simulations [65] have shown that the flue gas composition at the boiler exit is approximately 66w% 

CO2 and 19w% H2O; N2 and Ar accounting for 8w% and O2 for 1w%. The study of a pilot-scale 

1.5MWt boiler [10] resulted in the determination of a dry flue gas composition of around 80vol% CO2, 

3vol% O2 and 17vol% N2. Without air infiltration into the boiler, the CO2 content would reach 94vol% 

to 95vol%. Studies [58,66] found an estimated 89 vol% CO2 purity of the flue gas. A simulation study 

of the boiler of a western Canadian pulverised coal-fired power plant of 400 MWe calculated that the 

purity of the dry flue gas was 91% CO2. It was assumed that the combustion took place in pure oxygen 

with flue gas recycling, at a ratio of 30/70 respectively. Moreover, the composition of the flue gas on a 

wet basis was found to be around 4%N2, 3%O2, 19%H2O and 74%CO2 [5].  

The emission characteristics of CO2, SO2 and NOx in the flue gas of coal combustion were investigated 

by varying the compositions and concentrations of the feed gas (O2/CO2/N2) and the ratios of recycled 
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flue gas. These studies suggest that the ideal O2/CO2 ratio in the feed is 30/70 with 40% or 50% 

recycled flue gas since it leads to the highest possible CO2 purity in the flue gas of more than 95% 

[60,61,11].  

3.3.4 Combustion 

Coal combustion in the oxyfuel process is expected to be different from conventional air-combustion 

since CO2 has a larger specific heat than N2 [11]. The flue gas density is increased as CO2 has a higher 

molecular weight than N2, i.e. 44 and 28 respectively. The flue gas volume in the oxyfuel process is 

decreased 4- to 5-fold compared to burning in air [10], since there is no dilution with nitrogen. This 

leads to a higher boiler efficiency. Moreover, the high concentrations of CO2 and H2O result in higher 

radiative and convective heat transfer compared to air-fired power plants [65].  

3.3.5 Combustion gas composition 

Little information is available concerning the feed gas composition in the oxyfuel process. However, a 

literature study of the oxyfuel process [57] assessed its characteristics to be a high proportion of O2 in 

the feed gas, typically around 30% and a flue gas recycling of about 60% to 70%. Combustion studies 

of coal in different feed gas compositions [59,62] showed that a feed gas concentration of 28 vol% O2

with the rest being mainly CO2 produced slightly lower heat flux characteristics compared to air-fired 

combustion. The study of a 20 KW down-fired coal combustor [11] confirms that to reach the gas 

temperature in the combustion chamber of an air-fired plant, the oxygen concentration in the feed gas 

must be 30% or higher. A feed gas with a composition of 30% O2 and 70% CO2 enables a combustion 

with similar temperature profiles to those of conventional air-fired power plants. A 3 MW pilot scale 

study of coal oxyfuel combustion carried out by the Energy and Environmental Research Corporation 

(EERC) determined that with wet recycling, around 24% oxygen in the feed gas is necessary to reach 

the overall heat transfer obtained in an air-fired plant and that 27% is needed with dry recycling [67]. 

Research in the oxyfuel combustion process is currently considering two mechanisms for flue gas 

recycling as sweep gas over the permeate side of the membrane. In the first one, so-called "wet 

recycling", the flue gas is recycled directly after the clean up process that removes of particulates and 

acid gases. The gas swept over the membrane surface will be composed mainly of water and CO2. In 

the second mechanism, so-called "dry-recycling", water is eliminated from the flue gas by 

condensation. However, a complete removal of water by simple condensing is not possible. Indeed, the 

use of molecular sieves is the only technology available to completely eliminate water from the flue gas 



Background 

22 

[66]. The sweep gas will be highly concentrated in CO2. Schematic representations of the two possible 

oxyfuel paths together with the estimated flue gas composition are shown in Figure 3.4 and Figure 3.5.  

The operating conditions in the oxyfuel process are very aggressive. Therefore, the membrane materials 

that will be used in coal-fired power plants for the oxyfuel process have to be stable in the gaseous 

atmosphere of the flue gas.  

Figure 3.4. Schematic representation of the oxyfuel process with water condensation. 

Figure 3.5. Schematic representation of the oxyfuel process without water condensation.  
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4 Characterisation techniques 

In order to characterise the changes in microstructure of the materials, a series of analytical techniques 

were used, namely, X-Ray Diffraction (XRD), light microscopy, Scanning Electron Microscopy (SEM) 

and Transmission Electron Microscopy (TEM) in combination with Electron Dispersive Spectrometry 

(EDS). Thermal analysis techniques e.g. Differential Thermal Analysis (DTA), Thermo mechanical 

Analysis (TMA), Thermogravimetric Analysis (TGA) were also used to characterise the properties of 

the different materials.  

4.1 X-ray diffraction technique (XRD) 

X-ray diffraction is an analytical technique that uses x-rays to characterise the phases present in a 

sample. This technique is used to determine the crystalline structure and composition of materials by 

their interference pattern of scattered x-rays. In x-ray tubes, a beam of electrons generated by a heated 

tungsten filament is accelerated towards a metal target, commonly molybdenum and copper. The high 

energy electrons produced can eject core electrons from the metal. When an outer shell electron fills an 

inner shell vacancy, an x-ray photon with the characteristic energy of the target material will be 

emitted. When an incident beam of x-rays strikes the surface of a crystal, the angle of the scattered 

beam can be used to determine the distance between layers of atoms in a sample using Bragg's law: 

λϑ nd =)sin(2  (Equation 4.1)

where d is the lattice spacing (nm), θ is the angle of incidence of x-rays (rad), λ is the wavelength of x-

rays (m) and n is an integer. The peaks in an x-ray diffraction pattern are directly related to the atomic 

distances in a material. 

In this work, XRD measurements of the surface of pellets or of powdered samples were carried out. 

The crystalline structure of the specimens was determined using a Siemens D500 diffractometer 

(Siemens AG, Karlsruhe, Germany) equipped with a monochromated Cu-Kα radiation source. The 

diffraction patterns were recorded in the 2θ angle range of between 15° and 85° at room temperature, 

with steps of 0.02°, a counting time of 1s per step and a resolution of (1/100)°. The voltage and current 

of the X-ray generator were 40 kV and 40 mA respectively.  
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4.2 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) is a method for high-resolution imaging of surfaces that uses 

electrons for imaging when light microscopy uses visible light. The SEM has great magnification (up to 

1000000×) and great depth of field which allows a large area of the sample to be in focus at one time. 

An incident beam of monochromatic electrons is raster-scanned across the sample's surface, and the 

resulting electrons emitted from the sample are collected to form an image of the surface. The electron 

beam is generated by a tungsten filament on which a voltage is applied thus causing it to heat up to 

approximately 2500°C. The electrons are accelerated toward the anode, which is positively charged 

with respect to the filament, and therefore forms powerful attractive forces for electrons. An electron 

detector is used with the SEM to convert the radiation of interest into an electrical signal for 

manipulation. 

Energy dispersive x-ray spectroscopy (EDS) is a qualitative and quantitative chemical microanalysis 

technique performed in conjunction with a scanning electron microscope. It is an analytical technique 

that uses the x-rays that are emitted from the sample during bombardment by the electron beam to 

characterise the elemental composition of the volume analysed. Features or phases as small as about 

1µm can be analysed. The minimum detection limits vary from about 0.1 weight percent to a few 

percent depending on the element and matrix [68].  

Using SEM in combination with EDS makes it possible to observe the surface morphology and the 

cross-section of samples as well as to identify the composition of the different phases formed. Two 

SEM devices were used to carry out the investigations, namely the Stereoscan LEO440 (Cambridge, 

U.K.) with an acceleration voltage (EHT) of 20 kV and the Zeiss Supra50VP with an acceleration 

voltage of 15 kV. The EDS analyses were made with type ISIS 300 (Enysham, U.K.). The micrographs 

of the cross section were taken in the backscattered electron mode (BSE). The interpretation of the x-

ray pattern was performed using the Software INCAEnergy/Wave. Furthermore, SEM requires the 

sample to be conductive in order to avoid charging effects. This is achieved by coating the sample in 

vacuum with platinum using a sputter coater. 

4.3 Thermal Analysis 

Thermal analysis techniques explore various aspects of changes occurring in a sample. Phenomena 

evolving during the reactions on heating or cooling under a temperature programme in a controlled 

atmosphere are observed.  
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4.3.1 Differential Thermal Analysis combined with thermogravimetry (DTA/TG) 

DTA measurements provide information about transformations, either exothermic or endothermic, in 

the material that have occurred, relative to an inert reference, as a function of temperature and time. 

The main applications of DTA are to study phenomena occurring in materials such as transition, 

chemical reaction, adsorption, crystallisation, melting, and sublimation. It is possible to measure the 

heat of reaction and determine kinetic parameters.   

In differential thermal analysis, two cells are used, one containing the sample under investigation and 

the other a reference material of thermally inert behaviour. The sample and the reference placed in 

alumina crucibles are subjected to identical heating and cooling conditions, in a furnace in a controlled 

atmosphere. The difference in temperature that develops between the sample and the reference material 

is measured while both are subjected to the same programmed increase or decrease in temperature 

[69,70,71]. 

The DTA/TG device used was a STA 449C Jupiter, Netzsch, (Germany). The cells can be heated to a 

maximum temperature of 1650°C and the sample investigated can weigh up to 5g. The resolution of the 

device is 0.1µm and 0.1µW for TG and DTA respectively. The investigation of powdered samples was 

carried out over the temperature range of 20°C to 1500°C with a heating and cooling rate of 5K/min.  

4.3.2 Precision Thermogravimetric Analysis (TGA) 

The TGA technique provides information about the chemical and thermal stability of materials and is 

commonly used to investigate decomposition, dehydration, oxidation reactions, reaction pathways, 

kinetics of reaction and quantity of specific component. The TG device, also called a thermobalance, 

records changes in mass of a specimen as a function of temperature, time, as well as atmosphere. The 

sample is placed in the thermobalance and is subjected to programmed heating and cooling cycles by a 

furnace in which the gaseous atmosphere can be varied. The mass change is accompanied by various 

physical and chemical processes which are detected [69,70,71].  

In the current study, the thermobalance was used to monitor changes in oxygen non-stoichiometry. The 

TG device was a UMTS-5 from Mettler-Toledo (Giessen, Germany). Samples weighing up to 5g can 

be measured with an accuracy of 0.1µg [72]. This thermobalance was used in conjunction with a high 

temperature furnace that can achieve temperatures of up to 1600°C. Different gases are available, such 

as O2, N2, Ar, Ar/4%H2. The sintered pellets were analysed in an atmosphere containing 20 vol% O2
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and 80 vol% Ar, in the temperature range of between 20°C and 1100°C, with heating and cooling rates 

of 0.625K/min. 

4.3.3 Thermo Mechanical Analysis (TMA)  

Dilatometry is the measurement of dimensional changes of a sample while subjected to a programmed 

heating or cooling in a controlled atmosphere. The TMA technique is commonly used to determine 

softening, sintering and glass transition temperatures of materials, as well as sintering temperatures of 

ceramics [69,70]. The device used in the current study measured the linear expansion or contraction of 

a specimen as a function of temperature and time under negligible loads.  

The thermal expansion coefficient (TEC), α, can be determined from dilatometric data using the 

relation: 

T

L

L Δ
Δ⋅=

0

1α (Equation 4.2)

where ΔL and ΔT are the variations of sample length and time respectively and L0 is the original length 

of the sample before experimentation.  

The dilatometer used was a Setsys Evolution, Setaram (France), in which the maximum temperature is 

1600°C. The measurement range to be selected is either up to 200µm or up to 2000µm. The dimensions 

of the specimen can be up to 20mm in height and 10mm in diameter. However, this technique requires 

the samples being measured to have a minimum height of between 6mm and 10mm in order to detect 

significant changes in length. The resolution of the device is 0.2nm. The measurements were carried 

out in air under a load of 5g, The samples were heated from 20°C to 1100°C where they were kept for a 

dwelling time of 1 hour and then cooled down to 20°C with heating and cooling rates of 3K/min. The 

samples need to have plane-parallel surfaces, which is why they were sanded on SiC grinding paper.  

4.4 Mass spectrometry 

Mass spectrometry is a micro-analytical technique used for the quantitative determination of the 

elemental composition of a specimen, which is done through the experimental measurement of the 

mass of gas phase ions produced from the ionisation of the molecules and atoms of a specimen. These 

ions are separated according to their mass to charge ratio (m/z) and then detected. 

The three functional modules of a mass spectrometer, represented in Figure 4.1 are: 
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• The ioniser 

• The mass analyser 

• The detector 

Figure 4.1. Schematic representation of Mass spectrometer. 

Electron ionisation (EI) produces molecular ions from a gas phase specimen in the ionisation chamber. 

These molecular ions fragment in a reproducible and unique way enabling their identification. 

Ionisation and fragmentation of gas phase molecules occur from their interaction with ionising low 

energy electrons, which are generated from an electrically heated filament (the cathode) to a 

temperature at which it emits free electrons. The electrons emitted are accelerated through an electric 

field and attracted to a trap (the anode) located opposite the cathode in the ionisation chamber, which 

pressure is around 10-1 Pa in order to minimise the collisions between ions and molecules. 

The mass analyser used in this work was an ion trap quadrupole, which separates the ions produced by 

the ionisation process according to their mass to charge ratio (m/z). A high frequency electric field is 

created between two pairs of opposing hyperbolic rod electrodes. The voltage between the rod 

electrodes consists of a direct voltage, onto which is superimposed a high frequency alternating 

voltage. This electric field, corresponding to a certain value of voltage, frequency and field radius, traps 

ions of all m/z values and only the ions of interest with a specific m/z ration are accelerated towards the 

ion detector, where they are electrically detected. The trapped ions are neutralised and filtered out [73]. 

Quadrupole mass spectrometers require high vacuum, the total pressure used is less than 10-5 mbar 

A quadrupole mass spectrometer OmniStarTM from Pfeifer (Germany) was used in this work to analyse 

the composition and purity of the different gas streams of the permeation set-up. The detection 

threshold of this device is as low as 1ppm. Twelve gas lines are connected to the mass spectrometer 

through temperature controlled steel capillaries. The control and evaluation software QuadStarTM 32-bit 

enables switching of the gas stream analysed.  
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4.5 Density measurements  

The density of the samples was determined by the Buoyancy method based on the Archimedean 

Principle. The apparent weight of the sample, i.e. the weight reduced by the buoyancy force, in a 

reference liquid was measured by a precision balance. The value of the weight of the sample in air 

combined with the weight of the sample in the reference liquid was used to calculate the density of the 

sample. Ethanol was used as the reference liquid for the measurements. The density of ethanol was 

determined using a quartz glass reference cylinder. The density measurements were carried out at least 

five times to average out the variation in values measured.  

The volume that the sample occupies in air and the volume of liquid displaced by immersing the 

sample are the same, which gives: 
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=== (Equation 4.3)

with ml and ms the weight of the sample weighed in liquid and in air respectively and the density of the 

sample and the density of the liquid. The mass of the liquid ml is yielded by the difference between the 

weights of the sample in air ma and in liquid ml, the apparent immersed weight: 

lsliquid mmm −= (Equation 4.4)

This leads to:  
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The relative density (in %) is given by: 
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ρ
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(Equation 4.6)

where ρ and ρ0 are the actual and the theoretical densities respectively.  

The theoretical density (ρ0) is determined by: 

elaVN

Mz=0ρ (Equation 4.7)

where M is the molar mass of the material considered, Na is the Avogadro constant, z is the number of 

atoms per unit cell and Vel is the elementary cell volume. 
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4.6 ICP-OES 

Inductively Coupled Plasma-Optical Emission Spectroscopy is a qualitative and quantitative technique 

for chemical analysis which enables the determination of the composition of metals, minerals, ashes, 

glasses, ceramics, oils, mixed oxides and perovskites. The inductively coupled plasma is used to 

produce excited atoms and ions. This property is used to determine the composition of samples from 

the release of radiations at wavelengths characteristic of each element. The intensity of this emission 

indicates the concentration of the element within the sample. Standard calibration solutions of known 

concentration are used to determine the concentration of each element in the solution [74]. 

The stoichiometry of powders was controlled by optical emission spectroscopy, IRIS from Thermo 

(TJA). 10mg of sample was dissolved in a mixture of 3ml HCl/1ml H2O2, filled to 50ml with distilled 

water. In ICP-OES analysis, the liquid sample is atomised in a nebuliser system and introduced into the 

inductively generated argon plasma, where it is ionised. The spectrum emitted is transferred into a 

spectrometer where it is decomposed into the individual wavelengths and evaluated. The intensities of 

the spectral lines are measured by CID semiconductor detectors. The relative error for the measured 

elements is of +/-3%. 

4.7 Hot gas extraction 

The analysis of the oxygen content in a specimen was conducted by heating the specimen in a gaseous 

stream of helium, in a graphite crucible, by means of resistance heating. Oxygen is determined by 

infrared detection of the content of CO2, resulting from the reaction of oxygen and graphite. This 

method is suitable for the determination of the nitrogen, oxygen and hydrogen content in metals, 

minerals, rock, ceramic materials and perovskites, etc. High accuracy and reproducibility of the 

analysis results from using calibration standards (RSD: 1-3%) The analysis was carried out with the 

Leco TCH 600 nitrogen/oxygen/hydrogen determinator. The instrumental detection limit is  

0.5 µg g-1 [75]. 
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5 Materials selected for this study  

Gas separation membranes are considered to be an efficient technology for the future generation of zero 

CO2-emission power plants. To be a promising oxygen separation membrane material, it must satisfy 

important criteria. The material must exhibit high oxygen permeability as well as a stable lattice 

structure under oxygen partial pressure gradients. Moreover, the minimum electronic conductivity 

required for use as oxygen permeable membrane was defined as being 100 S cm-1 [31].  

For this work, four MIEC oxides were selected for their interesting properties: 

• La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF58) 

• Pr0.58Sr0.4Co0.2Fe0.8O3-δ (PSCF58) 

• Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF50)  

• La2NiO4+δ  

The LSCF58 and PSCF58 materials were synthesised at Forschungszentrum Jülich, at the partner 

institute (IEF-1), by the spray-drying process using aqueous nitrate solutions of the different cations. 

The lanthanum nickelate and BSCF50 powders used in this work were purchased from Treibacher 

Industrie AG, Austria.  

The mixed conducting acceptor-doped perovskite and perovskite-related oxides selected for this work, 

together with their main properties, are described below: 

5.1 Mixed conducting acceptor-doped perovskites 

MIEC oxides have attracted great attention since they exhibit high levels of electronic and ionic 

conductivity as well as a high degree of stability [34]. Teraoka et al. [16] measured permeation rates of 

perovskite-type oxides one or two orders of magnitude higher than those of stabilized zirconia.  

5.1.1 La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF58) 

LSCF58 has been developed as one of the standard reference materials for solid oxide fuel cell (SOFC) 

cathodes. The electronic conductivity of these materials is extremely high, typically in the range  

102 S cm-1 to 103 S cm-1, with the materials not containing iron (y=0) exhibiting the highest values 

[18,76]. Moreover, the electronic conduction in perovskite materials remains predominant in usual 

ranges of temperature and oxygen partial pressure [50]. Indeed, the ionic conductivity of LSCF ranges 
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between 1 S cm-1 and 10-2 S cm-1 at 800°C [18,76]. Membranes of the LSCF series were found to 

exhibit oxygen semipermeability at temperatures above 500°C and high oxygen permeation fluxes [16]. 

The study of a tubular La0.6Sr0.4Co0.2Fe0.8O3-δ membrane found permeation fluxes of about 0.21 

cm3/cm2 min at 900°C [77]. The electronic conductivity of the well-studied La0.6Sr0.4Co0.2Fe0.8O3-δ was 

found to be relatively high, i.e. 333 S cm-1 at 800°C [30] and approximately 250 S cm-1 at 800°C) [31]. 

The ionic conductivity was found to be several orders of magnitude lower than the electronic 

conductivity, i.e. 10-2 S cm-1 at 800°C [31].  

5.1.2 Pr0.58Sr0.4Co0.2Fe0.8O3-δ (PSCF58) 

In the present study, praseodymium was chosen as a substitute for lanthanum in the LSCF58 perovskite 

material as an attempt to increase the oxygen permeability. It was found [16] that for A-site 

substitution, the oxygen permeation flux increased with a decrease in ionic radius, which seems to 

lower the potential energy barrier for oxide ion migration. In the series Ln0.6Sr0.4CoO3-δ (with 

Ln=lanthanide such as La, Pr, Nd, Sm and Gd), the oxygen flux was found to increase with decreasing 

radius of the lanthanide ion [78]. Praseodymium, which has a lower ionic radius than lanthanum, was 

therefore judged to be a good candidate as a replacement for lanthanum in LSCF. Moreover 

praseodymium oxide (PrOx) has a high electrocatalytic activity in electrochemical reactions involving 

oxygen [79]. It was found [80] that applying a layer of PrOx as activating agent on the surface of 

lanthanum nickelate based membranes enhanced the oxygen permeation fluxes at high PO2 gradients. 

The ionic conductivity in Pr1-xSrxCo1-yFeyO3-δ (PSCF) is expected to be higher than that of LSCF 

because of the possibility of a valence change from Pr3+ to Pr4+ which would result in the increase in 

oxygen vacancy formation. For the Pr1-xSrxCo0.8Fe0.2O3-δ series, the electrical conductivity was found to 

be at least higher than 279 S cm-1 between 600K and 900 K [90].  

Lanthanum and Praseodymium deficiencies were introduced into the membrane material in order to 

enhance the oxygen permeation fluxes. A cation non-stoichiometry will introduce additional oxygen 

vacancies into the lattice due to a shift in the charge balance between cations and anions. The creation 

of oxygen vacancies increases the concentration of charge carriers and could improve the electrical and 

ionic conductivity of the material. 

5.1.3 Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF50)  

Ba0.5Sr0.5Co0.8Fe0.2O3-δ was chosen in this study because this MIEC material exhibits some of the 

highest oxygen permeation fluxes and has a high structural stability. The barium cation (Ba2+) was 
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found [78] to be the most effective A-site dopant in LnCoO3-δ (Ln=lanthanide such as La, Pr, Nd, Sm 

and Gd). The use of barium cations instead of lanthanum cations (La3+) at the A-site in SrCo0.8Fe0.2O3-δ

was reported to increase the structural stability of the perovskite material by preventing oxidation of the 

B-site cation i.e. Co3+ to Co4+ and Fe3+ to Fe4+ [24,81,82]. Doping the A-sites of SrCo0.8Fe0.2O3-δ with 

barium cations, which have a larger ionic radius than strontium cations (Sr2+), was found [81] to 

increase the phase stability of the membrane material while keeping the oxygen flux levels constant. 

The substitution of Sr2+ by Ba2+ results in the reduction of the repulsive interaction generated from 

oxygen ion migration through the saddle point configuration as well as the increase in mobility of 

oxygen ions [82]. Furthermore, it was found [81] that the substitution of Ba2+ for La3+ at the A-site of 

SrCo0.8Fe0.2O3-δ also slightly improved the oxygen permeation flux. 

The oxygen permeation fluxes of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes were investigated in numerous 

studies [81,83,84,82,85,86,87,88], which measured very high flux values. Indeed, for disk shaped 

membranes, fluxes of up to 1.4 ml.cm-2.min-1 at 950°C [81,83], 3 ml.cm-2.min-1 at 850°C [85],  

1.9 ml.cm-2.min-1 at 875°C [86] and 10-6 mol.cm-2.s-1 at 900°C [87] were reported. Fluxes as high as  

3 ml.cm-2.min-1 at 900°C [82] were reported for a tubular BSCF50 membrane. A flux of 1.12 ml.cm-

2.min-1 at 875°C for 150 hours continuous operation was measured which demonstrates the good 

stability and excellent permeability of the BSCF50 membrane material [82]. Moreover, 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ was reported to exhibit a stable oxygen permeation flux under an air/He partial 

pressure gradient for 1000 hours operation as oxygen separation membrane at 850°C [81]. 

The cobalt-rich MIEC materials usually exhibit high thermal expansion coefficients (TECs) [89] which 

is partially caused by the large variations of the ionic radius of cobalt in the material deriving from the 

oxidation of Co3+ to Co4+. Thermal expansion mismatch would be a serious issue when combining 

membrane and construction materials in the heated areas of a coal-fired power plant. The membrane 

materials should have TECs close to that of the construction materials to avoid mechanical stresses and 

possible cracking of the membrane.  

La0.58Sr0.4Co0.2Fe0.8O3-δ was found to exhibit a high TEC value of 17.4 10-6 K-1 in the temperature range 

30°C-1000°C [90], which is very close to the TEC value of 17.5 10-6 K-1 measured for 

La0.6Sr0.4Co0.2Fe0.8O3-δ [30]. In the Ln1-xSrxMn1-yCoyO3-δ series, with Ln=lanthanide, the TECs of the 

perovskite material were measured to decrease with decreasing ionic radius of the lanthanide ion i.e. for 

Ln=Pr the TEC was lower than for Ln=La [91]. The TEC of Pr0.6Sr0.4Co0.8Fe0.2O3-δ was found to be as 

high as 19.7 10-6 K-1 in the range 30°C-850°C [92]. However, the cation non-stoichiometric material, 

Pr0.58Sr0.4Co0.2Fe0.8O3-δ (PSCF58), was found to exhibit lower TEC, as linear TECs of 13.4 10-6 K-1 at 

700°C and of 15 10-6 K-1 at 850°C were measured [93]. Ba0.5Sr0.5Co0.8Fe0.2O3-δ was found to have the 
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highest thermal expansion coefficient among the selected materials. Indeed, TEC values of up to  

19.8 10-6 K-1 [94], 18 10-6 K-1  in the temperature range of between 25°C and 1000°C [85] and  

16 10-6 K-1 and 31 10-6 K-1 in the range 20°C to 600°C and 600°C to 1100°C respectively [95] were 

found. TEC values for BSCF50 derived from high temperature XRD data were reported to be as high 

as 21 10-6 K-1 in the temperature range of between 20°C and 1000°C [96]. However, lower TEC values 

were also measured e.g. 11.5 10-6 K-1 in the range 30°C-1000°C [97].  

5.2 Perovskite-related oxides  

5.2.1 La2NiO4+δ

La2NiO4+δ has been reported to possess relatively high values of both ionic and electronic conductivity. 

The electronic conductivity was found to be as high as 100 S cm-1 at 700°C [9,13,98,99,47] 103 S cm-1

at 450°C , 76 S cm-1 at 800°C [72 100], 60 S cm-1 at 700°C [68 101], 48 at 700°C [73 102]). The ionic 

conductivity, which is several orders of magnitude lower than the electrical conductivity, was measured 

to be 1.5 10-2 S cm-1 [47]. La2NiO4+δ was found to exhibit high permeation fluxes, comparable to those 

measured for the materials of the La1-xSrxCo1-yFeyO3-δ series. Fluxes of up to around 4.10-7 mol.cm-2.s-1

at 950°C [43], 2.5 10-9 mol.cm-2.s-1 at 1000°C [103], 4 10-8 mol.cm-2.s-1 [104] and 3.4 10-7 mol.cm-2.s-1

[105] were reported. 

Moreover, the A2BO4 structure has higher thermo-chemical stability than the perovskite-type structure. 

Both structures undergo a partial reduction/oxidation reaction resulting in oxygen vacancy and electron 

hole defects. However, at high temperature and low oxygen partial pressures, the ABO3 phase becomes 

unstable and undergoes a reaction to A2BO4 [101]. The oxygen transport properties of La2NiO4+δ, e.g. 

tracer diffusion and surface exchange coefficients, were found to be close to current MIEC materials 

such as LSCF [44,39,40]. 

In contrast to perovskite-type membranes, the thermal expansion coefficient of La2NiO4+δ is relatively 

low (around 13.0 106 K-1 [9,1,98,39,106,119] and as low as 11.6 106 K-1 [101], and 13.8 106 K-1 [42]), 

which is an advantage when upgrading the membrane test set-up to an industrial scale. Moreover, its 

relatively low thermal expansion coefficient and high structural stability [42] together with its mixed 

conduction properties make La2NiO4+δ an excellent option for use as a gas separation membrane in the 

framework of the oxyfuel process in coal-fired power plants.  
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5.3 Sample preparation  

5.3.1 Pressing 

Samples for the annealing experiments: 

The powder was shaped into pellets by applying around 125 MPa in a uniaxial cylindrical press at room 

temperature. An aqueous solution of around 1% carboxymethyl cellulose (CMC) was used as binder to 

improve bonding of the powdered material. The green-bodies weighed around 0.5g and were 8mm in 

diameter.  

Samples for the permeation experiments: 

Disk membranes were uniaxially pressed at room temperature at a pressure of around 100 MPa from 

powdered material.  

5.3.2 Sintering  

Sintering is a thermally activated process which involves coarsening and densification of the powdered 

samples. In the first stage of sintering, a physical reaction takes place which results in the formation of 

necks between the grains which are in contact with each other. Small particles merge into larger ones, 

resulting in greater mean pore size. In the second stage of sintering, as the temperature increases, the 

necks broaden and shrinkage occurs which changes the microstructure of the packing. The driving 

force for sintering is a decrease of the surface energy of the system with solid state diffusion from areas 

with relatively large convex curvature (high Gibbs free energy) to areas with small concave curvature 

(low Gibbs free energy) [50]. 

Samples for the annealing experiments: 

The pressed green-bodies were sintered in alumina crucibles. A bed of powder was placed between the 

pellets and the alumina crucible to prevent chemical interactions. The crucibles were covered in order 

to avoid evaporation of elements from the surface of the material. 

The temperature programme used is described below: 

The samples were first heated to 400°C with a heating rate of 3K/min in order for the binder to 

evaporate slowly to prevent the formation of cracks in the bulk material. A fast heating rate of 8K/min 

was used to heat the samples up to 950°C. Between 950°C and the sintering temperature of each 
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specimen, a heating rate of 3K/min was used in order to limit the formation of pores. A holding step at 

the sintering temperature was performed. A slow cooling to room temperature with a cooling rate of  

5K/min was allowed. 

The sintering temperatures and holding times listed in Table 5.1 were different depending on the 

sample composition:  

Table 5.1. Temperatures and holding times for the sintering of materials selected for annealing 
experiments 

Material Sintering temperature (°C) Holding time (h) 

La2NiO4 1400 3 

LSCF58 1200 5 

PSCF58 1200 5 

BSCF50 1100 5 

Samples for the oxygen permeation experiments: 

The pressed green-bodies were sintered with a heating and cooling rate of 5K/min using different 

sintering temperatures and holding times, listed in Table 5.2, according to the material. The membranes 

were cut to the final sizes of 10mm and 15mm in diameter using a grinding technique developed in 

Forschungszentrum Jülich at the partner institute ZAT (Central Technology Division). The exact 

desired membrane thicknesses of 0.5mm, 1mm and 1.5mm were obtained by grinding the samples on 

silicon carbide (SiC) abrasive paper. The membranes to be measured were polished with successive 

grades of SiC grinding paper to ensure flat reproducible surfaces.  

Table 5.2. Temperatures and holding times for the sintering of materials selected for oxygen 
permeation experiments 

Material Sintering temperature (°C) Holding time (h) 

La2NiO4 1400 10 

LSCF58 1200 5 

PSCF58 1200 10 

BSCF50 1100 10 
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6 Development of the permeation test set-up 

The permeation set-up, shown in Figure 6.1, was designed and built to measure oxygen permeation 

fluxes and perm-selectivities of membranes as a function of temperature using different feed and sweep 

gas compositions. One important feature of the test facility is its modularity. This modular construction 

with several functional groups allows variations in the set-up to be performed easily.  

Figure 6.1. Membrane oxygen permeation test set-up.

The test set-up is composed of three independent modules: 

• The gas mixing unit 

• The membrane testing unit 

• The analytical unit 

6.1 Module 1: The gas mixing unit 

The available gases are: Synthetic air (79%N2 and 21%O2), He, Ar, N2, CO2 and a mixture of Ar and 

H2 of 95% and 5% respectively. It is possible to mix all gases in the appropriate ratio in order to obtain 

a desired composition. The gas flow rates were controlled by mass-flow meters (Brooks, Holland) in 
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the range of 0 Ln/h to 60 Ln/h, calibrated specifically for each gas line. A maximum gas flow rate of 1 

Ln/min can be achieved in the testing facility. The permeation set-up features a stainless steel gas 

mixing chamber (Swagelok, USA) containing stainless steel balls used to obtain a homogenous mixture 

of the gas stream. Steel was chosen for the tubing.  

A water reservoir is incorporated into the permeation test set-up, thus allowing measurements with 

water vapour to be carried out. A coil heating element for water gasification and gas preheating is 

integrated in the test facility behind the mixing chamber. The coil and the tubing past it can be heated 

to a maximum temperature of 270°C, which corresponds to the dew point of water at 30 bar, in order to 

vaporise the liquid water and prevent oxygen adsorption and condensation problems in the tubing. 

Barometers installed in the test facility, on the feed and the sweep-side of the membrane, regulate the 

pressure in the tubing before and after the membrane. Moreover, ultrasound-flow rate controllers 

(ADM-2000, Agilent Technologies, USA) operating in the measurement range of between 0 and 1 

Ln/min were used in order to check the volume flow in the different streams. This configuration has the 

main advantage that the volume flow can be determined independently of the gas specie. In order to 

prevent back diffusion of air from the gas outlets into the system, the exhaust gases exited through 

silicon oil glass bubblers, which were integrated into the retentate and permeate gas lines.  

6.2 Module 2: The membrane testing unit  

The testing unit comprises a heating device and a recipient for the incorporation of membranes to be 

investigated. The operation limits for the permeation test facility are:  

• Maximum temperature: 1000°C,  

• Maximum pressure: 30 bars 

• Maximum gas flow: 1 Ln/min  

6.2.1 The heating unit: 

It consists of a two-zone vertical furnace from Prüfer, Germany, which can be operated up to 1200°C 

with a steady-state control accuracy of +/-5 K. The heating coil inside the furnace increases the 

temperature of the feed and sweep gas streams flowing through the recipient tubing before they reach 

the membrane. The length of the membrane recipient is therefore of great importance, as it has to allow 

sufficient heating time. This is particularly necessary in the case of measurements with water vapour 

which has a higher heat capacity than the other gases in use.  



Development of the permeation test set-up 

38 

6.2.2 The recipient: 

The permeation test set-up was configured in order to allow permeation measurements of dense and 

also porous membranes for use in the pre-combustion, the post-combustion and the oxyfuel process. 

The measuring conditions of these two types of membrane are very different from each other. They 

vary from the point of view of sample geometry, gas composition and temperature range. Two different 

recipients for the incorporation of the membranes investigated were therefore designed. 

The temperature range for the measuring of porous membranes is between 200°C and 550°C. A 

stainless steel sample holder represented in Figure 6.2 was developed. The use of stainless steel allows 

for high pressures, up to 30 bars, to be used. The sample holder was designed for disk-shaped 

membranes with a diameter of 40mm and a thickness ranging between 0.3mm and 5mm. 

Figure 6.2. 3D representation of the stainless steel recipient for porous membrane. (Source: ZAT) 

Dense membranes, however, need to be measured in the temperature range 600°C to 1000°C. Stainless 

steel is not suitable for such high temperatures, which is why quartz glass was preferred. A recipient 

made of a quartz glass cell and tubing was designed for disk-shaped membranes with a diameter of 

10mm and 15mm and a thickness of between 0.3mm and 5mm. A maximum total pressure of around 2 

bars can be applied when using the quartz glass recipient configuration. However, a maximum pressure 

of 1 bar was used during measurements. Figure 6.3 below shows the gas streams on each side of the 

membrane. (See Figure 6.6 for the schematic representation of the dense membrane recipient.) 
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Figure 6.3. Principle of the dense membrane recipient. The membrane, sealed to the quartz glass 
tubing, is located between the feed/retentate and permeate/sweep gas chambers.  

6.3 Module 3: The analytical unit 

In the analytical unit, the composition of the different gas streams involved in a permeation 

measurement is monitored by mass spectrometry. However, a gas chromatograph could also be 

connected. A fraction of the stream to be analysed is directed to a quadrupole mass spectrometer 

(described in Chapter 4.4), which can analyse alternately the feed, the sweep, the permeate and the 

retentate stream. The composition of the gas stream after preheating in the coil can also be analysed in 

order to detect and identify possible contamination and impurities from corrosion of the tubing.  

The main purpose of the mass spectrometer is the determination of the oxygen concentration in the 

permeate stream, from which it is possible to calculate the oxygen permeation flux for every 

experimental condition.  

The gas streams to be analysed together with the main measuring and regulation facilities are shown in

Figure 6.4. 
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Figure 6.4. Schematic representation of the oxygen permeation test facility, with 1) the gas bottles, 2) 
the mass-flow meters, 3) the gas mixing chamber, 4) the water reservoir, 5) the heating coil, 6) the 

mass spectrometer, 7) the computer, 8) the furnace, 9) the dense membrane recipient. 

A process monitoring software (Figure 6.5) for the operation of the permeation test set-up was 

developed by ZAT. It allows the operator to select the operating conditions desired for each experiment 

carried out. The test facility features a computer supported gas mixing system in which the gas stream 

composition and flux can be varied for the feed- and for the sweep-side of the membrane. The pressure 

on each side of the membrane can be set to different values. Moreover, the furnace temperature and 

temperature programme as well as the temperature of the coil heating element are regulated by this 

software. 
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Figure 6.5. Screen shot of the process monitoring software. 

The permeation test set-up has great flexibility in respect to temperature, gas composition, sample 

geometry and membrane type. Indeed, it is possible to measure dense inorganic as well as porous 

membranes. The compositions of the feed and sweep gases are adapted according to the membrane 

type being measured. This chapter will focus mainly on the description of the permeation set-up 

designed for dense MIEC membranes for the separation of oxygen from air. 

The experimental conditions for the investigation of dense ceramic membranes in the permeation test 

facility are listed below:  

• Feed gas: synthetic air 

• Sweep gas available: Ar or He 

• Maximum temperature: 1000°C 

• Pressure: 1 bar 
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6.4 Development of the membrane recipient for dense ceramic membranes  

Several versions of the dense membrane recipient were designed, tested and improved for optimal 

experimental conditions and precision of results. All the recipients were produced by the glassblowing 

department of ZAT, in Forschungszentrum Jülich. 

The first version of the dense membrane recipient consisted of a quartz glass outer recipient, a quartz 

glass tube to be sealed to the membrane positioned in a membrane holder on which were hooked two 

quartz glass rods. These rods were connected to the top part of the recipient by springs intended to 

apply a load on the membrane holder sufficient to allow a sealing between the glass tube and the 

membrane to be performed. In this design, the springs were located inside the furnace and subjected to 

the high temperature conditions of a permeation measurement. The spring load was, therefore, greatly 

impaired and therefore insufficient to deform the selected gasket and seal it to the quartz glass tube. 

Another design needed to be adopted with springs further away from the heat source. At a lower 

temperature, the spring load would be less affected and the spring performance improved.  

The second version of the dense membrane recipient is represented in Figure 6.6. The membrane is 

positioned between an inner quartz glass tube and an outer quartz glass tube with a curved rim at its 

lower extremity on which the membrane is rested. Sealing between the membrane and each of the tubes 

is provided by the use of a screw cap that applies pressure on a spring positioned at the upper extremity 

of the inner tube. The design allows contact-pressure sealing with the application of a constant pressure 

even at high temperatures.  
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Figure 6.6. Schematic representation of the recipient for dense membranes. 

6.4.1 Sealing technology 

The operating temperature of these MIEC membranes ranges typically between 600°C and 1000°C. O-

ring seals are not suitable for this application since their upper operation temperature limit is only 

400°C. Sealants with high melting points are required for use as sealing material for dense ceramic 

membranes to be measured at high temperatures. Sealing materials such as glass (Duran), and precious 

metals (silver and gold) were considered. However, the melting temperature of silver at 961°C is too 

low for this application as permeation fluxes are measured at up to 1000°C.  

Glass sealing

The softening point of Duran glass is 815°C [107]. Wetting tests of the surface of LSCF58 membranes 

with Duran glass were conducted at 900°C, resulting in good wetting of the surface of the ceramic. 

However, sealing experiments, using the first version of the recipient and a Duran glass ring of 1cm 

diameter, 1mm width and flattened on its sides, were carried out. The assembly was heated to 900°C 

and kept for 60 min, and then heated to 950°C and kept for 60 min, without achieving the sealing of the 
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membrane to the glass tube. Moreover, a permeation study of La0.6Sr0.4Co0.2Fe0.8O3-δ [35] showed that 

glass sealants can react with the membrane material resulting in a change of composition in the 

membrane. A diffusion of the seal over the surface of the membrane was also observed causing a 

decrease in the membrane’s effective surface area. This caused a significant decrease in oxygen 

permeation through the membrane, reaching a 13.6% decrease after 160 hours. Because of the 

interfacial reaction between the glass sealant and the perovskite membrane, this sealing technique can 

not be considered as an option for long term operation in the permeation test set-up.  

Gold sealing

Gold has chemical inertness towards perovskite-type membrane materials. The melting temperature of 

gold is 1064°C, which is compatible for its use as sealing material in this application. However, melted 

metals have bad wetting properties on ceramics due to incompatibility of surface tension.  

Sealing tests using the first variant of the recipient and a flat gold ring were conducted by heating the 

assembly up to 980°C and holding the temperature for 60 min. Ineffective adherence of the gold to the 

membrane and the tube was observed. A gold ring of 1mm thickness was therefore preferred as it 

allows bigger deformation of the material with the load applied and therefore better bonding. A second 

sealing test was carried out by heating the assembly up to 980°C for 60 min. No melting or deformation

of the ring was observed as the spring load was not sufficient.  

Sealing tests using the second variant of the dense membrane recipient were more successful as the 

1mm-thick gold ring provided reliable gas-tight sealing of dense membranes at high temperatures. 

Furthermore, the bonding of the gold gaskets to the ceramic surface and the quartz glass tubes was so 

strong that it could not be removed without damage to the membrane or the sample recipient.  

6.5 Testing the set-up 

A series of measurements was carried out in order to optimise the operation of the test facility and the 

precision of measurements.  

Originally, Teflon tubing was used to carry the gas streams to and from the membrane recipient during 

permeation measurements. A series of measurements were performed in that configuration. However, 

oxygen was found to permeate through Teflon [108]. The amount of oxygen that permeated through the 

Teflon tubing was corrected for each test by a "zero measurement" of the gas composition in the system 

at a temperature where no apparent permeation through the membrane was observed, i.e. around 
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500°C. Despite the difficulty of connecting steel tubes to glass, the Teflon tubing was finally replaced 

by steel, which is impermeable to oxygen.  

At first, an unsteady permeation flux was observed after a change in temperature of the membrane or a 

change in sweep flux for each measurement. Several hours were needed for a steady state condition to 

be reached. However, this time was recorded to be shorter at high sweep gas stream fluxes and at high 

temperatures. In order to decrease this time, improvements in the permeation test set-up such as 

shortening of the tubing and decreasing the unnecessary dead volume of the membrane recipient were 

carried out. 

6.6 Oxygen permeation measurements 

The determination of the oxygen permeation flux through dense ceramic membranes was carried out by 

imposing an oxygen partial pressure gradient across the specimen. An oxygen-rich gas stream and 

oxygen-lean gas stream (an inert gas) are supplied to the feed- and the sweep-side of a sealed ceramic 

disk respectively. The number of moles of oxygen permeating per unit of time through a unit of 

membrane surface area is measured downstream using mass spectrometry from which the oxygen 

permeation flux is calculated. The mass spectrometer was calibrated frequently using a standard 

calibration gas composed of 5000 ppm O2, 500 ppm N2 and 99.45% Ar. 

Oxygen transport through a membrane is controlled by both surface kinetics and bulk diffusion to a 

degree that varies according to the membrane type and geometry. Moreover, the oxygen separation 

rates depend mainly on the temperature, the thickness of the sample, the properties (i.e. electronic and 

ionic conductivities) of the membrane material and the oxygen partial pressure gradient applied to the 

membrane.  

Membrane performance and operational life can be affected by different parameters, i.e. the chemical 

stability of the material at high temperatures, the effects induced by the presence of an oxygen potential 

gradient (e.g. the segregation of impurities to the surface of the membrane and to grain boundaries, 

kinetic demixing and kinetic decomposition of the membrane material [109]). 
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Figure 6.7. Quartz glass membrane recipient showing a successful sealing of a membrane 

In this work, the oxygen permeation fluxes through LSCF58, PSCF58, BSCF50 and La2Ni04+δ dense 

MIEC membranes were measured as a function of temperature and membrane thickness (0.5mm, 1mm 

and 1.5mm). The polished membrane disks were sealed between two quartz glass tubes using gold 

gaskets of 1mm in thickness and 15mm in diameter. Since the thicknesses of the membranes were 

small compared to their diameters, radial diffusion could be discounted. To ensure gas-tightness, the 

assembly (Figure 6.7) was compressed by a spring load system and heated to a temperature close to the 

melting point of gold in a vertical tube furnace. The heating and cooling rates were 7K/min and 1K/min 

respectively. The cooling rate used was lower than the heating rate in order to prevent crack formation 

due to thermal stresses. 

Synthetic air was supplied to the feed-side of the membrane and argon (99,5% purity) was flushed over 

the permeate side. The gas flow rates, controlled by mass-flow meters, were 100 ml/min and  

50 ml/min on the feed-side and on the sweep-side of the membrane respectively. Using a quadrupole 

mass spectrometer the oxygen permeation rate was measured from 1000°C to the temperature where 

the membrane cracked. The monitoring of the membrane temperature was done by an N-type 

thermocouple positioned near the membrane surface, on the feed-side. However, interactions between 

the membrane material and the chromium were observed. A difference of 3K was found between the 

temperature measured by this thermocouple and the one measured by the furnace thermocouple. The 

measurement error of the thermocouple being higher than 3K (standard tolerance of +/-0,75%), 

monitoring of the temperature by the thermocouple present in the furnace was considered to be 

sufficient. 

Dense membranes for oxygen separation must be free of cracks and connected-through porosity. Gas 

leakage through cracks or pores of the disk and through the gold sealing was monitored by mass 



Development of the permeation test set-up 

47 

spectrometry. The leakage was determined by the amount of N2 in the permeate stream and deducted 

from the O2 concentration measured.  

The correction for leakage of the permeating oxygen is calculated as follows: 

7811.0

2095.0
NO CCC −= (Equation 6.1) 

where CO and CN are the concentrations of oxygen and nitrogen in the sweep gas stream respectively. 

The resulting oxygen permeation flux, Jo2 (ml cm-2 min-1) was calculated according to Equation 6.2:  

S

FC
jO =

2
(Equation 6.2) 

where C is the permeating oxygen concentration in the argon stream (ppm) after correction for leakage; 

F, the argon stream flow rate (ml min-1); S, the membrane effective surface area (cm2). 
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7 Thermo-chemical stability investigation set-up 

7.1 CO2 and H2O vapour influence on stability 

One of the most important factors for the selection of materials for use in the oxyfuel process of coal-

fired power plants is the long-term stability of the ceramic material under the operating conditions of 

the process. Such an oxygen-separation unit will be operating at high temperature (above 600°C), under 

an aggressive atmosphere of CO2, water vapour and O2 at the sweep-side of the membrane and will be 

subject to a high partial pressure gradient from the high to the low oxygen partial pressure side [110]. 

Corrosion issues due to the presence of CO2 and H2O could also greatly affect the performance of the 

membrane. 

It is known that acceptor-doped perovskites can incorporate water [50] and that CO2 can adsorb on 

their surface [111], which can lead to a partial poisoning of the membrane as CO2 would decrease the 

number of free active sites available for oxygen adsorption and desorption. Moreover, a reaction zone 

on the surface of perovskite membranes could act as a protective layer, thus preventing oxygen 

permeation. Most perovskite-containing alkaline-earth elements can react with CO2 gas species as they 

tend to form carbonates [112,86]. Studies [112,110] showed that oxygen fluxes through Ba- and Sr-

doped perovskites (La0.2Ba0.8Co0.8Fe0.2O2.6 and La0.2Sr0.8Co0.8Fe0.2O2.6) deteriorated over time when the 

membranes were in contact with gaseous mixtures containing CO2 and H2O. However the fluxes were 

found to be restored to their initial values after raising the temperature above 700°C [110] and 810°C 

[112] in an oxygen-containing atmosphere, for La0.2Sr0.8Co0.8Fe0.2O2.6 and La0.2Ba0.8Co0.8Fe0.2O2.6

respectively. Although it was not mentioned, carbonates might have been formed.  

The study of SrCo0.8Fe0.2O3-δ tubular membranes for partial oxidation of methane to synthesis gas 

(syngas), i.e. CO and H2, demonstrated that after a prolonged exposure to such a reducing environment, 

a chemical decomposition of the perovskite material towards strontium carbonate (SrCO3) and 

elemental cobalt and iron occurred [113]. The study [114] of the ageing of La0.6Sr0.4Co0.2Fe0.8O3-δ in a 

gaseous atmosphere containing H2O, CO2 and O2, in the ratio 2:1:1, at a temperature of 750°C and total 

pressures of 1 and 5 atm for up to 1000 hours showed that a modification of the surface of the ceramic 

occurred. SrCrO4 and LaCrO4, originating from a chromia contamination, were found on the surface of 

the samples. Moreover, SrCO3 was found on the surface of the samples after annealing for only 1 week 

[114].  
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Furthermore, after long-term operation at 850°C, barium carbonate (BaCO3) was formed on the surface 

of La0.2Ba0.8Fe0.8Co0.2O3-δ membranes used for the partial oxidation of methane to syngas [32]. The 

study [115] of a La0.1Sr0.9Co0.5Fe0.5O3-δ membrane used for the production of an oxygen enriched 

carbon dioxide stream through air separation with CO2 as sweep gas showed that flushing the 

membrane with CO2 altered its surface. Indeed La0.1Sr0.9Co0.5Fe0.5O3-δ underwent a carbonation 

reaction leading to the formation of strontium carbonate and lanthanum, iron and cobalt oxides [115]. 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ is known to form carbonates and hydrates when in contact with CO2 and water 

vapour. Oxygen permeation experiments [86], in which a Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane was swept 

periodically with pure CO2 and pure helium, were performed. An immediate and total disappearance of 

the oxygen flux upon switching to CO2 on the sweep-side of the membrane was observed. However 

this phenomenon was reversible as the fluxes were restored when switching back to helium. A 

degradation of the structure of the perovskite material was reported. On the surface of the samples, a 

mixed strontium enriched carbonate (BaxSr1-x)CO3 was formed. Under this phase, a plate-like structure, 

which was thought to be a novel mixed oxide of the form (Ba,Sr)x(Co,Fe)yOz, was present. 

Furthermore, after sweeping the surface of the samples with pure He for 100 min, the plate-like 

structure disappeared.  

Moreover, even minor amounts of CO2 and water vapour can affect the chemical stability of the 

membrane material. It was reported [81] that the use of ambient air for oxygen permeation 

measurements through Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes caused a gradual decrease of the flux due to 

the small amounts, in the ppm range, of water vapour and CO2 present in the feed gas stream, which 

indicates that these minor impurities might contribute to surface segregation of the material. Another 

study [96] of the permeation of oxygen through Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes reported that the 

permeation fluxes were found to decrease by 37% when only 0.012 atm of CO2 were added to He on 

the sweep-side of the membrane.  

7.2 Experimental set-up 

In the oxyfuel process, the flue gas will be used to sweep the permeate side of the membrane in order to 

collect the molecular oxygen released from its surface. Consequently, the membrane material has to be 

stable in the gaseous atmosphere of the flue gas. Moreover, the oxygen permeation membrane will need 

to operate for several thousand hours at high temperatures. It is therefore important to ascertain to 

which degree the selected membrane material will be altered from exposure to the sweep gas at 

operating temperatures and for long periods of time. It was not possible to carry out long term 
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permeation experiments with CO2 and water vapour in the permeation test facility as these 

measurements are time consuming. This is why long term annealing experiments were conducted in a 

furnace (Figure 7.1) on pellet samples exposed to near-operating conditions. Although the membrane 

material is not subjected to an oxygen partial pressure gradient, which is known to influence the 

degradation of the material [109], it is essential to determine the possible reactions between the sweep 

gas and the MIEC materials selected. 

In this work, the determination of the thermo-chemical stability of selected MIEC oxygen separation 

membrane materials for CO2 capture in the oxyfuel process was carried out in a dual set-up (Figure 

7.2). The annealing test facility consists of a gas mixing apparatus and of two three-zone horizontal 

tube furnaces from Prüfer GmbH (Germany) that can operate at up to 1000°C, allowing two 

independent experiments to be run in parallel. A quartz glass tube of 120cm in length and 8cm in 

diameter is located in the annealing tube furnace. A quartz glass cap is sealed on each side of the quartz 

glass tube using O-rings. Two openings are located on each cap, which act as gas and liquid water inlet 

and outlet. The specimens to be investigated are placed in quartz glass sample holders of 10cm in 

length and 3cm in diameter. Quartz glass was chosen as it can withstand high temperatures and is not 

known to interact with the materials in the experimental temperature range.  

The operating gases are: N2, O2 and CO2 and water vapour. The gas flow rates were controlled by 

mass-flow meters (Brooks, The Netherlands) in the range of 0 mln/h to 50 mln/h, calibrated specifically 

for each gas line. Humidification of the gas stream is conducted by direct introduction of liquid water, 

through a quartz glass capillary, in the hot zone of the furnace, where it is vaporised. This technique 

was chosen to minimise the cost of the set-up. The water flow rate was controlled by a water-flow 

meter FlΩmega (Brooks instruments B.V, The Netherlands) in the range of 0 g/h to 15 g/h. In order to 

prevent back diffusion of air from the gas outlets into the system, the exhaust gases exited through 

silicon oil glass bubblers. A glass bubbler was also used to collect the water exiting the system.  
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Figure 7.1. Stability test set-up 

An estimated composition for the sweep and permeate gas streams was determined from discussions 

with E. Riensche (Forschungszentum Jülich, IEF-3) and from the overview of the oxyfuel process 

provided in Chapter 3.3. The flue gas is assumed to be composed of about 89mol% CO2, on a dry basis, 

or 66mol% CO2 and 26mol% water vapour, on a humid basis. The permeate stream would consist of 

about 25% permeating O2 and 75% recycled flue gas. These compositions were used for the annealing 

experiments performed in near operation conditions.
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Figure 7.2. Schematic representation of the stability test set-up, with 1) the gas bottles, 2) the mass-
flow meters, 3) the water-flow meter, 4) the water container, 5) the flow controller unit, 6) the quartz 

glass sample holder, 7) the gas bubblers, 8) the tube furnace and 9) the quartz glass tubes.  

7.3 Annealing conditions 

The materials selected for the thermo-chemical stability investigation are listed below: 

• La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF58) 

• Pr0.58Sr0.4Co0.2Fe0.8O3-δ (PSCF58) 

• Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF50) 

• La2NiO4+δ

The pellets, placed in quartz glass sample holders in the test facility, were annealed in the temperature 

range of between 600°C and 900°C and exposed to a continuous stream of gases flowing at 50ml/min 

for 200 hours, 500 hours or 1000 hours, after which the samples were quenched to room temperature in 

air. The composition of the gas stream was varied to investigate the influence of different gases on the 
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stability of the selected MIEC membrane materials. The annealing experiments were carried out in the 

atmospheres and over the dwelling times listed in the table below (Table 7.1). 

Table 7.1. Atmospheres and annealing conditions for La0,58Sr0,4Co0,2Fe0,8O3-δ, La2NiO4+δ, 
Ba0,5Sr0,5Co0,8Fe0,2O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets 

Annealing conditions 

Atmosphere (in mol%) 
Temperatures (°C) Dwelling times 

(hours) 

Air 600, 700, 800 200, 500 

Air +10% CO2 600, 700, 800, 900 200 

(1% O2, 99%N2) +10%CO2 600, 700, 800 200 

43%O2, 14%N2, 43%CO2 600, 700, 800 200 

25% O2, 8% N2, 67% CO2 600, 700, 800 200, 500 

28% O2, 5% N2, 55% CO2, 12% H2O 600, 700, 800 200 

25% O2, 50% CO2, 5% N2, 20% H2O 600, 700, 800 200, 500 

25% O2, 45% N2, 20% H2O 600, 700, 800 200 

Air next to a Cr2O3 disk 800 1000 

7.4 Sample preparation 

Due to the small depth of field obtained from an optical microscope it is essential that the surface of the 

specimen to be examined is optically flat and level, acting as a perfect mirror. Metallographic 

preparation was conducted in order to study the cross-section of samples after the annealing 

experiments. 

The annealed samples were embedded in an epoxy resin to prepare a cross section of the pellets. The 

first step of sample preparation is grinding, which refers to abrasion of the sample surface by coarse 

abrasive particles. Grinding was performed by using rotating discs covered with different grades of 

silicon carbide paper. Grinding was continued until all the blemishes were removed, the sample surface 

was flat, and all the scratches were in a single orientation. The objective of each grinding step is to 

obtain a plane surface with minimal damage that can be removed easily during polishing in the shortest 

possible time. 

The second step is polishing of the specimen, which is the abrasion of the sample surface by fine 

abrasive particles which are usually suspended in water or another solvent. Diamond is used as an 
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abrasive to accomplish the fastest material removal and the best smoothness possible. Normally a final 

polishing step is performed with water-based lubricants with high viscosity and very fine abrasive 

particles. The final result of the grinding and polishing operations is a smooth mirror-like surface. 

A preparation method without water was chosen for the samples to be observed since the carbonates 

which are expected to be formed on the surface of the materials were found to be sensitive to water and 

to decompose. This dry grinding process was performed until a final step of P4000 grinding paper 

grade. The surface of the samples was observed to be relatively scratch-free after grinding on such fine 

particle grinding paper. The polishing step was performed with 1µm diamond powder in mineral oil 

(Bühler). The final polishing step could not be performed since water could not be used in this 

preparation process. 

This method produced relatively poor final results with many scratches as the different preparation 

steps usually require the use of water or water-based solutions. Moreover a lot of loose particles 

detached from the pellets during the polishing process and scratched the polished surface of the sample.  
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8 Characterisation of the membrane materials selected

8.1 Chemical analysis of the calcined powders 

The cation and the oxygen content of the calcined powders of La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF58) and 

Pr0.58Sr0.4Co0.2Fe0.8O3-δ (PSCF58) received from IEF-1, as well as Ba0.5Sr0.5Co0. 8Fe0.2O 3-δ (BSCF50) 

and La2NiO4+δ received from Treibacher, were determined by ICP-OES and hot gas extraction  

(Chapter 4) respectively. The precise weight percentage of the elements composing each material 

investigated is reported in the following table (Table 8.1).  

Table 8.1. Chemical composition (in weight%) of LSCF58, PSCF58, BSCF50 and La2NiO4+δ calcined 
powders. 

Material 
Element 

La2NiO4+δ BSCF50 LSCF58 PSCF58 

La 68.9 ±2.1  36.8 ±11.0  

Ni 14.9 ±0.45    

Ba  31.4 ±0.94   

Pr    36.9 ±11.1 

Sr  20.5 ±0.61 16.0 ±0.48 15.9 ±0.48 

Co  21.5 ±0.64 5.3 ±0.16 5.4 ±0.16 

Fe  5.5 ±0.16 20.5 ±0.61 20.6 ±0.62 

O 16.76 ±0.12 20.68 ±0.21 21.7 ±0.37 21.46 ±0.37 

This chemical analysis determined the precise chemical composition of each material studied, (shown 

in Table 8.2). Considering the experimental error, these results correlate well with the desired chemical 

compositions. The oxygen non-stoichiometry measured for each material is also consistent with values 

found in the literature (Chapter 3.1).  

Table 8.2. Chemical composition LSCF58, PSCF58, BSCF50 and La2NiO4+δ calcined powders. 

Desired chemical composition Actual chemical composition 

La2NiO4+δ La1.98Ni1.016O4.19

Ba0.5Sr0.5Co0. 8Fe0.2O 3-δ Ba0.50Sr0.511Co0.798Fe0.215O2.82

La0.58Sr0.4Co0.2Fe0.8O3-δ La0.583Sr0.402Co0.198Fe0.808O2.98

Pr0.58Sr0.4Co0.2Fe0.88O3-δ Pr0.579Sr0.401Co0.202Fe0.816O2.96

In this work, the oxygen non-stoichiometry of BSCF50 was measured to be 0.18. An oxygen content of 

2.79 for the Ba0.5Sr0.5Co0.8Fe0.2O3-δ material at room temperature was determined by thermogravimetric 

analysis (TGA) [82,116]. However, an oxygen non stoichiometry of 0.318 was measured by iodometric 
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titration for Ba0.5Sr0.5Co0.8Fe0.2O3-δ [96]. Moreover, an oxygen excess of 0.19 was measured for 

La2NiO4+δ in this work. The oxygen excess for La2NiO4+δ was determined at 0.14 +/- 0.01 [101] by 

TGA as well as iodometric and cerimetric titration. Oxygen excess values of 0.18 [117] as well as 0.14 

and 0.16, by iodometric titration and by TGA respectively [118], were determined. TGA and 

iodometric titration studies of the oxygen excess of La2NiO4+δ [119] determined a mean value of 0.13. 

No information about the oxygen non-stoichiometry of LSCF58 and PSCF58 could be found. However, 

the oxygen content of La0.6Sr0.4Co0.2Fe0.8O3-δ was measured to be 2.974 and 2.966 with iodometric 

titration and TGA respectively [31], which is coherent with the oxygen content of 2.98 measured for 

the LSCF58 material in this study.  

8.2 Phase composition of the calcined powders 

The phase purity of a MIEC powder to be used as oxygen permeation membranes is essential for 

maximal performance. Moreover, the higher the content of secondary phases, the higher the probability 

of shrinkage effects due to chemical reactions during sintering. The calcined powders received were 

therefore investigated with X-ray diffraction (XRD) in order to check their phase purity. The X-ray 

diffraction patterns of La0.58Sr0.4Co0.2Fe0.8O3-δ, Pr0.58Sr0.4Co0.2Fe0.8O3-δ, Ba0.5Sr0.5Co0.8Fe0.2O3-δ and 

La2NiO4+δ can be seen in Figure 8.1. 
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Figure 8.1. XRD diagrams of the calcined powders (A): La2NiO4+δ, (B): Pr0.58Sr0.4Co0.2Fe0.8O3-δ,  
(C): La0.58Sr0.4Co0.2Fe0.8O3-δ and (D): Ba0.5Sr0.5Co0.8Fe0.2O3-δ. 
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The XRD patterns of La0.58Sr0.4Co0.2Fe0.8O3-δ, Pr0.58Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ

present the characteristic peaks of the perovskite structure (Figure 8.1). However, the peaks of the 

diffraction patterns of La0.58Sr0.4Co0.2Fe0.8O3-δ and Pr0.58Sr0.4Co0.2Fe0.8O3-δ were found to be relatively 

wide. The XRD patterns of the LSCF58 and PSCF58 materials can be indexed in a trigonal and 

orthorhombic symmetry respectively. Moreover, the Pr0.58Sr0.4Co0.2Fe0.8O3-δ calcined powder received 

from IEF-1 was found to exhibit a considerable amount of secondary phases. The main phase, i.e. 

PSCF58, represented around 85% of the specimen, the rest being praseodymium oxide (PrO2). The 

La2NiO4+δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ calcined powders purchased from Treibacher were found to be 

single phased. The XRD patterns of the La2NiO4+δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ materials can be indexed 

in an orthorhombic and pseudo-cubic symmetry respectively. 
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Figure 8.2. XRD diagrams of the sintered pellets (A): La2NiO4+δ, (B): Pr0.58Sr0.4Co0.2Fe0.8O3-δ,  
(C): La0.58Sr0.4Co0.2Fe0.8O3-δ and (D): Ba0.5Sr0.5Co0.8Fe0.2O3-δ. 

After the sintering step, all powders were found to be single phased (Figure 8.2). The characteristic 

peaks of PrO2 were no longer present. Moreover, a narrowing of the diffraction peaks characteristic of 

the perovskite structure was observed for the La0.58Sr0.4Co0.2Fe0.8O3-δ and Pr0.58Sr0.4Co0.2Fe0.8O3-δ

materials. The sintering conditions to which the LSCF58 and PSCF58 samples were subjected enabled 

the formation of the final desired product. The calcination process of the La0.58Sr0.4Co0.2Fe0.8O3-δ and 

Pr0.58Sr0.4Co0.2Fe0.8O3-δ powders should, therefore, have been carried out for a longer time in order to 

obtain the single phased final product which was nevertheless produced after the sintering step. 
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Secondary phases were found in each sintered sample as will be discussed in Chapter 10.7 . However, 

no secondary phases were detected by XRD. This indicates that the amount of secondary phases is very 

low, below the detection limit of impurities for the XRD device, which is of about 5 weight%. An 

optical analysis needs therefore to be carried out with the software “analysis pro” from Olympus Soft 

Imaging Solutions GmbH (Germany) in order to determine the amount of secondary phases present in 

each sintered pellet studied. 

8.3 Sintering of the pellets for the annealing experiments 

The sintering step is a crucial part of the specimen preparation as it determines the density of the 

samples. It is therefore important to select the sintering conditions with great care. In order to 

determine the optimal sintering temperature and dwelling time for each material, a literature study as 

well as DTA/TG and dilatometric studies were conducted. DTA in combination with TG investigations 

were carried out on the calcined powdered samples in order to determine whether any melting or phase 

transformation of the materials to be sintered occurred in the temperature range considered for 

sintering. Furthermore, a dilatometric investigation was conducted to study the shrinkage of unsintered 

specimens as a function of temperature.  

8.3.1 Ba0.5Sr0.5Co0.8Fe0.2O3-δ  

Studies of the sintering conditions of Ba0.5Sr0.5Co0.8Fe0.2O3-δ disk shaped membranes determined that 

the ideal sintering temperature and dwelling time were around 1100°C for between 7 and 8 hours [83] 

and 1150°C for 5 hours [83,86,120]. Other sintering conditions were also used for 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane disks, e.g. 1150°C for 8 hours [121] and 1100°C for 10 hours [122]. 

A temperature range of between 1100°C and 1150°C and a dwelling time of between 5 and 10 hours 

can therefore be considered for the sintering of Ba0.5Sr0.5Co0.8Fe0.2O3-δ pellets. 
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Figure 8.3. DTA/TG of Ba0.5Sr0.5Co0.8Fe0.2O3-δ

The DTA/TG investigation of the Ba0.5Sr0.5Co0.8Fe0.2O3-δ calcined powder was carried out in the 

temperature range of between room temperature and 1200°C. The DTA/TG curve (Figure 8.3), exhibits 

an endothermic and an exothermic peak upon heating and upon cooling, respectively, at the 

temperatures of approximately 1050°C and 1035°C respectively. The temperature related to these 

peaks corresponds to the melting temperature of the material. The release of oxygen started at around 

500°C. The weight decreased continuously over the temperature range 500°C to 1200°C to reach a 

weight change of about 1.35 mass%.  

Having assessed the sintering conditions used in other studies and the DTA investigation carried out, a 

sintering temperature of 1100°C was chosen for the Ba0.5Sr0.5Co0.8Fe0.2O3-δ pellets to ensure that no 

melting of the material would occur.  

8.3.2 La2NiO4+δ  

Different studies of the properties of La2NiO4+δ material showed that different sintering temperatures 

and dwelling times were used for the preparation of La2NiO4+δ samples. Indeed, La2NiO4+δ membranes 

were sintered at 1400°C for 20 hours [118], 1300°C for 4 hours, obtaining a density of 93.3% of the 

theoretical density [123] and 1350°C for 3 hours, obtaining less than 5% porosity [103]. Moreover, 

rectangular bars of La2NiO4+δ were found to be sintered at 1370°C for 5 hours [124]. A temperature 
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range of between 1300°C and 1400°C and a dwelling time of between 3 hours and 20 hours can, 

therefore, be considered for the sintering of La2NiO4+δ pellets. 
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Figure 8.4. DTA/TG of La2NiO4+δ powder. 

The DTA/TG investigation of the La2NiO4+δ was carried out in the temperature range of between room 

temperature and 1500°C. The DTA curve of La2NiO4+δ calcined powder (Figure 8.4) showed that no 

melting of the material occurred up to 1500°C. The release of oxygen started at around 400°C. The 

weight decreased continuously over the temperature range 400°C to 1500°C to reach a weight change 

of about 0.35 mass%. 
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Figure 8.5. Shrinkage curve of an unsintered pellet of La2NiO4+δ. 

The TMA investigation of an unsintered La2NiO4+δ pellet was carried out in the temperature range of 

between room temperature and 1500°C (Figure 8.5). In the first stage of the measurement, a slight 

expansion of the sample occurred up to 1000°C. The shrinkage of the La2NiO4+δ pellet started at around 

1000°C to reach 0.56mm at 1500°C. The slope of the shrinkage curve is the steepest between 1250°C 

and 1400°C. 

Having reviewed the sintering conditions used in other studies as well as these DTA/TG and TMA 

investigations carried out, a dwelling time of 3 hours and the two sintering temperatures of 1350°C and 

1400°C were chosen for the preparation of La2NiO4+δ pellets.  

In order to determine the best sintering conditions to be used, density measurements were carried out 

on the samples sintered at these two different temperatures. The density of three samples sintered at 

each temperature was measured in order to have valid statistics. The density of the pellets sintered at 

the temperature of 1400°C was higher than that of the pellets sintered at 1350°C, as shown in Table 

8.3. The sintering conditions finally chosen for the preparation of La2NiO4+δ pellets are therefore a 

sintering temperature of 1400°C and a dwelling time of 3 hours. 

Table 8.3. Density of the La2NiO4+δ pellets as a function of sintering temperature. 

Material 
Sintering 

temperature Measured density 

La2NiO4+δ 1400°C 6.55 

La2NiO4+δ 1350°C 6.384 



Characterisation of the membrane materials selected

62 

8.3.3 La0.58Sr0.4Co0.2Fe0.8O3-δ and Pr0.58Sr0.4Co0.2Fe0.8O3-δ

No information about the sintering conditions of either PSCF58 or LSCF58 samples was found in the 

literature. However, much information is provided about the preparation of La0.6Sr0.4Co0.2Fe0.8O3-δ

(LSCF60) samples. The sintering temperature and dwelling time for the preparation of rectangular bars 

of LSCF60 were found to be 1200°C for 4 hours [125] and 1250°C for 5 hours [126]. Moreover, 

La0.6Sr0.4Co0.2Fe0.8O3-δ pellets were sintered at 1200°C for 8 hours, obtaining a density of 95% of 

theoretical density [114]. Tubular LSCF60 membranes were sintered at 1250°C for 5 hours, obtaining a 

density of at least 90% of the theoretical density [77]. Therefore a temperature range of between 

1200°C and 1250°C and a dwelling time of between 4 and 8 hours can be considered for the sintering 

of LSCF58 pellets. 
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Figure 8.6. DTA/TG of LSCF58 powder 

The DTA/TG investigation of La0.58Sr0.4Co0.2Fe0.8O3-δ was carried out in the temperature range of 

between room temperature and 1200°C. The DTA/TG curve of LSCF58 calcined powder (Figure 8.6) 

showed that no melting of the material occurred up to 1200°C. The release of oxygen started at around 

450°C. The weight decreased continuously over the temperature range 450°C to 1200°C to reach a 

weight change of about 1.1 mass%. 
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Figure 8.7. Shrinkage curve of an unsintered pellet of La0.58Sr0.4Co0.2Fe0.8O3-δ. 

The shrinkage curve of an unsintered La0.58Sr0.4Co0.2Fe0.8O3-δ pellet in the temperature range of 

between 100°C and 1200°C is shown in Figure 8.7. In the first stage of the measurement up to 780°C, a 

slight expansion occurred. The shrinkage of the sample started at around 780°C to reach 0.8mm at 

1200°C. The slope of the shrinkage curve is the steepest in the temperature range of between 1000°C 

and 1200°C. 

Having checked the sintering conditions used in other studies and these DTA/TG and TMA 

investigations carried out, a sintering temperature of 1200°C and a dwelling time of 5 hours were 

chosen for the preparation of LSCF58 pellets. As La0.58Sr0.4Co0.2Fe0.8O3-δ and Pr0.58Sr0.4Co0.2Fe0.8O3-δ

have similar properties (Chapter 5.1), the same temperature programme was applied for the sintering of 

PSCF58 pellets.  

The following table (Table 8.4) summarises the sintering conditions used for each material selected for 

annealing experiments. 

Table 8.4. Temperatures and dwelling times for the sintering of LSCF58, PSCF58, BSCF50 and 
La2NiO4+δ pellets. 

Material 
Sintering 

temperature (°C) Dwelling time (h) 

La2NiO4+δ 1400 3 

Ba0.5Sr0.5Co0. 8Fe0.2O 3-δ 1100 5 

La0.58Sr0.4Co0.2Fe0.8O3-δ 1200 5 

Pr0.58Sr0.4Co0.2Fe0.88O3-δ 1200 5 
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8.4 Density of the sintered samples 

For annealing experiments, as opposed to the oxygen permeation measurements, a perfectly dense 

pellet is not required. However, the sample should be free of cracks and open porosity to avoid the 

infiltration of gases throughout the material, which could affect the results of the stability investigation 

as much greater reaction areas would result. Samples with a density of above 90% of the theoretical 

density are sufficient for this study. The crystallographic densities of the sintered pellets were 

calculated from the lattice parameters determined by X-ray diffraction of the powdered materials 

selected for this study. 

The lattice parameters together with the cell symmetry of the powdered materials selected for this study 

are given in Table 8.5. 

Table 8.5. Lattice parameters and cell symmetry of LSCF58, PSCF58, BSCF50 and La2NiO4+δ. 

Lattice parameters 
Material Symmetry 

a (A) b (A) c (A) 

La2NiO4+δ orthorhombic 5.4567 5,467 12.6738 

Ba0.5Sr0.5Co0. 8Fe0.2O 3-δ cubic 3.9839 - - 

La0.58Sr0.4Co0.2Fe0.8O3-δ trigonal 5,493 - 13,409 

Pr0.58Sr0.4Co0.2Fe0.88O3-δ orthorhombic 5.499 7.715 5.458 

The average density of the sintered pellets, measured by the buoyancy method, as well as their 

theoretical density and also the percentage of theoretical density is listed in Table 8.6. A measured 

density of above 90% of the theoretical crystallographic density, which is the minimum density 

required, was found for each material. 

Table 8.6. Theoretical and measured densities of LSCF58, PSCF58, BSCF50 and La2NiO4+δ pellets. 

Material Theoretical 
density 

Measured 
density 

Percentage of 
theoretical density 

La2NiO4+δ 7,037 6,55 93,1 

Ba0.5Sr0.5Co0. 8Fe0.2O 3-δ 5,746 5,42 94,3 

La0.58Sr0.4Co0.2Fe0.8O3-δ 6,258 5,66 90,4 

Pr0.58Sr0.4Co0.2Fe0.88O3-δ 6,346 5,72 90,1 

8.5 Precision thermogravimetric analysis 

TGA was used to determine the mass change of La0.58Sr0.4Co0.2Fe0.8O3-δ, Pr0.58Sr0.4Co0.2Fe0.8O3-δ

Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La2NiO4+δ. In these measurements, the temperature is the only variable. The 



Characterisation of the membrane materials selected

65 

partial pressure of oxygen, which is the only factor that can influence the oxygen stoichiometry of the 

material, is kept constant. The oxygen stoichiometry change of the material can be determined from the 

TG measurement knowing the molar mass of the compound investigated. 

Dense sintered pellets of La0.58Sr0.4Co0.2Fe0.8O3-δ, Pr0.58Sr0.4Co0.2Fe0.8O3-δ, Ba0.5Sr0.5Co0.8Fe0.2O3-δ and 

La2NiO4+δ were submitted to a thermally programmed cycle in an atmosphere composed of 20% O2

and 80% Ar since it is not probable that argon will react with the ceramic materials. The measurements 

were conducted in the temperature range of between 200°C and 1100°C. The heating and cooling rates 

used were 0.625K/min. This provides for the measurement to take place under quasi-equilibrium 

conditions.  

First, the samples were heated to 1100°C with a relatively fast heating rate of 8.75K/min and kept at 

that temperature for 6 hours. This was to ensure a state of equilibrium in respect to the oxygen 

stoichiometry. Secondly, the changes in oxygen stoichiometry were measured during the cooling from 

1100°C to 200°C, at which latter temperature there was a dwelling of 6 hours, and also during a 

subsequent re-heating to 1100°C with a further dwelling of 6 hours. These isotherm dwelling segments 

were carried out to ensure that the measured samples and the TGA test set-up were in thermal 

equilibrium in order to obtain stable values. The incorporation and loss of oxygen into and out of the 

lattice of MIEC materials are reversible processes. The mass of the samples should therefore remain 

constant after the thermal cycling as no phase change should occur in the material. 

The temperature programme used for the TGA measurements is shown in Figure 8.8 below: 
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Figure 8.8. Temperature programme for the TGA measurements. 

The TGA curves of La0.58Sr0.4Co0.2Fe0.8O3-δ, Pr0.58Sr0.4Co0.2Fe0.8O3-δ, Ba0.5Sr0.5Co0.8Fe0.2O3-δ and 

La2NiO4+δ as a function of temperature exhibit a weight loss during heating as well as a hysteresis 
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between the heating and cooling curves. The observed weight loss of the samples investigated during 

heating is due to the loss of oxygen from the lattice. With increasing temperature the oxidation state of 

the B-site metal cations decreases, which results in the formation of oxygen vacancies to compensate 

for this phenomenon. The existence of a hysteresis between the heating and cooling curves suggests a 

low surface exchange coefficient of oxygen or a low diffusion of oxygen in the material.  

For Ba0.5Sr0.5Co0.8Fe0.2O3-δ, La0.58Sr0.4Co0.2Fe0.8O3-δ and Pr0.58Sr0.4Co0.2Fe0.8O3-δ the mass change is 

totally reversible which confirms that it is only linked to the gain and loss of oxygen in the lattice of the 

material. Moreover, the evaporation of elements from the samples was negligible. 

8.5.1 TGA of Ba0.5Sr0.5Co0.8Fe0.2O3-δ
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Figure 8.9. Temperature dependence of the oxygen stoichiometry change in Ba0.5Sr0.5Co0.8Fe0.2O3-δ. 

In Figure 8.9 above, upon heating, no change in oxygen stoichiometry is observed under the 

temperature of 300°C for the BSCF50 sample. A slight increase in oxygen stoichiometry of |Δδ|=0.003 

is found between 300°C and 400°C after which a continuous non-linear decrease in oxygen 

stoichiometry is seen with the temperature increasing up to 1100°C. The maximum oxygen 

stoichiometry change is of |Δδ|=0.176 at 1100°C.  

The increase in oxygen stoichiometry in the Ba0.5Sr0.5Co0.8Fe0.2O3-δ sample in the temperature range of 

between 200°C and 300°C can be explained by the fact that the cooling rate was too high and that the 

sample was not in equilibrium at 200°C. This oxygen gain could also result from the oxidation of the 

cobalt and iron cations, which adopt the initial valence state of 3+ at low temperature (Fe3+ and Co3+), 
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to Fe4+ and Co4+ cations during heating. The resulting charge loss was compensated for by the 

incorporation of oxygen ions into the Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite lattice. 

With the increase in temperature, the oxidation state +4 became thermodynamically unstable and a 

reduction of Fe4+ and Co4+ cations to Fe3+ and Co3+ occurred, accompanied by the loss of lattice oxygen 

to compensate for the charge gain. Higher temperatures led to the partial reduction of Fe3+ and Co3+ to 

Fe2+ and Co2+, which was followed by a further loss of oxygen. The reverse process should occur on 

cooling of the material. However, only the oxidation of Fe2+ and Co2+ to Fe3+ and Co3+ is observed on 

the TGA curve (Figure 8.9).  

A hysteresis between the heating and cooling curves of the TG measurement of BSCF50 can be 

observed in the temperature range of between 230°C and 980°C. The maximum oxygen stoichiometry 

difference between the heating and cooling curves is of |Δδ|=0.014.  

8.5.2 TGA of La2NiO4+δ
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Figure 8.10. Temperature dependence of the oxygen stoichiometry change in La2NiO4+δ

In the TGA curve of the La2NiO4+δ sample (Figure 8.10), there is no change in oxygen stoichiometry 

when heated up to the temperature of 300°C. A continuous non-linear decrease in oxygen 

stoichiometry is observed with the temperature increasing up to 760°C, after which a linear decrease up 

to 1100°C is found. The maximum oxygen stoichiometry change is of |Δδ|=0.078 at 1100°C.  

In this material, nickel adopts the initial valence state of 2+ at 200°C. At higher temperatures nickel is 

partially reduced to Ni+. The decrease in oxygen stoichiometry originated from the formation of oxygen 



Characterisation of the membrane materials selected

68 

vacancies which compensates for this charge gain. The reverse process occurred on cooling with the 

oxidation of Ni+ to Ni2+. 

There is a hysteresis between the heating and cooling curves of the TG measurement of La2NiO4+δ

observed over the whole temperature range of the measurement, i.e. between 200°C and 1100°C. The 

maximum oxygen stoichiometry difference between the heating and cooling curves is of |Δδ|=0.0024. 

This hysteresis between the heating and cooling curves could however be an artefact of the 

measurement. Moreover, the original oxygen stoichiometry was not recovered. The heating and cooling 

rates might have been too high to reach equilibrium conditions in the temperature range 200°C to 

350°C. 

8.5.3 TGA of La0.58Sr0.4Co0.2Fe0.8O3-δ

200 400 600 800 1000

-0.100

-0.075

-0.050

-0.025

0.000

Δδ
/1

Temperature (°C)
Figure 8.11. Temperature dependence of the oxygen stoichiometry change in LSCF58 

The temperature dependence of the oxygen stoichiometry change in LSCF58 is shown in Figure 8.11. 

Upon heating, no change in oxygen stoichiometry appears for this La0.58Sr0.4Co0.2Fe0.8O3-δ sample 

under the temperature of 600°C. There is a continuous non-linear decrease in oxygen stoichiometry 

with the temperature increasing up to 950°C, after which a linear decrease up to 1100°C can be found. 

The maximum oxygen stoichiometry change is of |Δδ|=0.111 at 1100°C.  

A hysteresis between the heating and cooling curves of the TG measurement of LSCF58 is seen in the 

temperature range of between 500°C and 975°C. The maximum oxygen stoichiometry difference 

between the heating and cooling curves is of |Δδ|=0.0057. 
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8.5.4 TGA of Pr0.58Sr0.4Co0.2Fe0.8O3-δ
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Figure 8.12. Temperature dependence of the oxygen stoichiometry change in Pr0.58Sr0.4Co0.2Fe0.8O3-δ

The temperature dependence of the oxygen stoichiometry change in Pr0.58Sr0.4Co0.2Fe0.8O3-δ is shown in 

Figure 8.12. Here the oxygen stoichiometry of the PSCF58 sample begins to change from a temperature 

of 550°C. A continuous non-linear decrease in oxygen stoichiometry is observed as the temperature 

rises to 780°C, after which there is a linear decrease up to 920°C. In the temperature range of between 

920°C and 1100°C, a non-linear decrease of the oxygen stoichiometry is observed. The maximum 

oxygen stoichiometry change is of |Δδ|=0.135 at 1100°C.  

For this sample the hysteresis between the heating and cooling curves of the TGA measurement is 

found between 500°C and 970°C. The maximum oxygen stoichiometry difference between the heating 

and cooling curves is of |Δδ|=0.0044.  

8.5.5 Discussion 

The TGA curves of La0.58Sr0.4Co0.2Fe0.8O3-δ and Pr0.58Sr0.4Co0.2Fe0.8O3-δ are very similar. The 

explanation for the oxygen stoichiometry change Δδ in both these materials is that Co and Fe adopt the 

initial valence state of 3+ at low temperatures. Higher temperatures led to the partial reduction of Fe3+

to Fe2+ and Co3+ to Co2+, which was followed by a loss of oxygen and the formation of oxygen 

vacancies to compensate for the charge gain. The reverse process occurred on cooling of the LSCF58 

and PSCF58 samples with the oxidation of Fe2+ to Fe3+ and Co2+ to Co3+. 
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Table 8.7. Characteristics of the hysteresis between the heating and cooling TGA curves of 
La0.58Sr0.4Co0.2Fe0.8O3-δ, Pr0.58Sr0.4Co0.2Fe0.8O3-δ, Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La2NiO4+δ. 

Hysteresis 
Material 

Temperature range (°C) Maximum Δδ (10-2)

La2NiO4+δ 200 to 1100 0.24 

Ba0.5Sr0.5Co0. 8Fe0.2O 3-δ 230 to 980 1.4 

La0.58Sr0.4Co0.2Fe0.8O3-δ 500 to 975 0.57 

Pr0.58Sr0.4Co0.2Fe0.88O3-δ 500 to 970 0.44 

On the one hand, as seen in Table 8.7 and Table 8.8, the sample with the narrowest hysteresis as well as 

the lowest change in oxygen stoichiometry at 1100°C, which is an indication of the stability of a 

material, is La2NiO4+δ. On the other hand Ba0.5Sr0.5Co0.8Fe0.2O3-δ presents the largest hysteresis as well 

as the maximum oxygen stoichiometry change at 1100°C. A relatively small hysteresis is observed for 

the LSCF58 and PSCF58 samples. Furthermore, the substitution of praseodymium for lanthanum in 

Ln0.58Sr0.4Co0.2Fe0.8O3-δ, with Ln=La or Pr, increased the loss of lattice oxygen in the perovskite 

structure.  

Table 8.8. Oxygen stoichiometry change Δδ at 1100°C for LSCF58, PSCF58, BSCF50 and La2NiO4+δ. 

Material Δδ at 1100°C (10-2)

La2NiO4+δ 7.8 

Ba0.5Sr0.5Co0. 8Fe0.2O 3-δ 17.6 

La0.58Sr0.4Co0.2Fe0.8O3-δ 11.1 

Pr0.58Sr0.4Co0.2Fe0.88O3-δ 13.5 

8.6 Dilatometric measurements 

The thermal expansion, described by the thermal expansion coefficient (TEC), represents a serious 

obstacle to the integration of membranes into the construction materials in the heated parts of a coal-

fired power plant. It is important to determine the TEC of each material to be used as an oxygen 

permeation membrane in order to check their compatibility with the materials they will be combined 

with. A thermal expansion mismatch could severely damage the membrane assembly causing stresses 

and even cracks. 

The thermal expansion behaviour of dense sintered pellets of La0.58Sr0.4Co0.2Fe0.8O3-δ, 

Pr0.58Sr0.4Co0.2Fe0.8O3-δ, Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La2NiO4+δ of 5.4mm, 5.755mm, 5.58mm and 

5.275mm high respectively was measured in air between 20°C and 1100°C. The TMA curves in the 

temperature range of 200°C to 1000°C are shown in the following graphs, Figure 8.13 to Figure 8.20. 
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8.6.1 Thermal expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δ
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Figure 8.13. Temperature dependence of the thermal expansion coefficient of Ba0.5Sr0.5Co0.8Fe0.2O3-δ

Here (Figure 8.13) the measurement is unstable up to 300°C, but the increase in TEC is quasi linear 

between 300°C and 530°C. An inflexion point is observed at a temperature of between 530°C and 

600°C. Then a linear increase with a steep slope is present up to 650°C. The increase of TEC up to 

900°C is linear and has a more gradual slope. Finally, a decrease of the slope of the TEC curve is 

observed in the temperature range of between 900°C and 1000°C. The thermal expansion coefficient of 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ between 20°C and 1000°C was measured to be 20.5 10-6 K-1. 
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Figure 8.14. Temperature dependence of the relative expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δ

A linear increase of the relative expansion of the BSCF50 pellet is observed in the temperature range of 

between 200°C and 550°C (Figure 8.14). An inflexion point is apparent between 550°C and 650°C. At 

higher temperatures, between 650°C and 1000°C, the increase is linear with a steeper slope and reaches 

2.02% at 1000°C. 

8.6.2 Thermal expansion of La0.58Sr0.4Co0.2Fe0.8O3-δ
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Figure 8.15. Temperature dependence of the thermal expansion coefficient of La0.58Sr0.4Co0.2Fe0.8O3-δ

In Figure 8.15, a non-linear increase of the TEC of La0.58Sr0.4Co0.2Fe0.8O3-δ with increasing temperature 

is observed up to 700°C, after which an inflexion point is found at a temperature of between 700°C and 

770°C. At higher temperatures, a linear increase with a steep slope is present up to 1000°C. A dent is 
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observed at around 920°C which could be explained by the reorganisation of the perovskite structure of 

LSCF58. The thermal expansion coefficient of La0.58Sr0.4Co0.2Fe0.8O3-δ between 20°C and 1000°C was 

measured as 17.9 10-6 K-1. 
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Figure 8.16. Temperature dependence of the relative expansion of La0.58Sr0.4Co0.2Fe0.8O3-δ. 

Figure 8.16 shows a linear increase of the relative expansion of the La0.58Sr0.4Co0.2Fe0.8O3-δ in the 

temperature range of between 200°C and 700°C. An inflexion point is apparent between 700°C and 

800°C. At higher temperatures, between 800°C and 1000°C, the increase is linear with a steeper slope 

reaching 1.74% at 1000°C. 
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8.6.3 Thermal expansion of Pr0.58Sr0.4Co0.2Fe0.8O3-δ
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Figure 8.17. Temperature dependence of the thermal expansion coefficient of Pr0.58Sr0.4Co0.2Fe0.8O3-δ

Here (Figure 8.17) there is a non-linear increase of the TEC of Pr0.58Sr0.4Co0.2Fe0.8O3-δ with 

temperatures increasing up to 700°C, after which an inflexion point is found at a temperature of 

between 700°C and 770°C. At higher temperatures, a linear increase with a steep slope is present up to 

1000°C. The thermal expansion coefficient of PSCF58 between 20°C and 1000°C was measured as 

18.2 10-6 K-1. 
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Figure 8.18. Temperature dependence of the relative expansion of Pr0.58Sr0.4Co0.2Fe0.8O3-δ. 

The relative expansion of the Pr0.58Sr0.4Co0.2Fe0.8O3-δ pellet (Figure 8.18) shows a linear increase in the 

temperature range of between 200°C and 660°C. An inflexion point is apparent between 660°C and 
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760°C. At higher temperatures, between 760°C and 1000°C, the increase is linear with a steeper slope 

and reaches 1.78% at 1000°C. 

8.6.4 Thermal expansion of La2NiO4+δ
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Figure 8.19. Temperature dependence of the thermal expansion coefficient of La2NiO4+δ

This measurement was found to be unstable between 100°C and 500°C, in which temperature range a 

non-linear increase of the TEC of La2NiO4+δ is observed as the temperature rises (Figure 8.19). At 

higher temperatures, i.e. between 600°C and 1000°C, the increase is linear and gradual. The thermal 

expansion coefficient of La2NiO4+δ between  20°C and 1000°C was measured as 14.9 10-6 K-1. 
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Figure 8.20. Temperature dependence of the relative expansion of La2NiO4+δ. 
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A linear increase of the relative expansion of the La2NiO4+δ pellet is observed over the whole 

temperature range of the measurement, reaching 1.45% at 1000°C, as seen in Figure 8.20. 

Table 8.9. Thermal expansion coefficient (TEC) and relative expansion in the temperature range of 
between 20°C and 1000°C 

Material TEC (10-6 K-1) Relative expansion (%) 

La2NiO4+δ 14.9 1.45 

La0.58Sr0.4Co0.2Fe0.8O3-δ 17.9 1.74 

Pr0.58Sr0.4Co0.2Fe0.88O3-δ 18.2 1.78 

Ba0.5Sr0.5Co0. 8Fe0.2O 3-δ 20.5 2.02 

As seen in the above table (Table 8.9), the TECs measured in this work are coherent with the values 

reported in the literature study in Chapter 5. On the one hand, La2NiO4+δ is the sample with the lowest 

thermal expansion up to 1000°C. On the other hand Ba0.5Sr0.5Co0.8Fe0.2O3-δ presents the highest 

expansion coefficient up to 1000°C. Furthermore, the substitution of praseodymium for lanthanum in 

Ln0.58Sr0.4Co0.2Fe0.8O3-δ, with Ln=La or Pr, increased very slightly the thermal expansion.  

8.6.5 Discussion 

For all samples, an increase in thermal expansion, which is associated with a loss of lattice oxygen 

leading to an increase in oxygen vacancy concentration [127,128], is observed during heating. The 

formation of these oxygen vacancies is related to the reduction of the B-site cations during heating, 

which can cause a decrease in the B–O electrostatic bond strength according to Pauling’s second rule. 

Therefore, the size of the BO6 octahedra increases, which leads to an increased lattice expansion. The 

increase in thermal expansion could also be caused by a disordering of the crystal lattice during heating 

[129]. 

Three types of expansion can be distinguished i.e. the total, the chemical and the thermal expansions 

[122]. The change in slope observed for all materials is caused by the cumulative effect of the chemical 

expansion (described by the chemical expansion coefficient: CEC) with the thermal expansion. The 

chemical expansion is associated with the release of oxygen from the lattice of the materials studied.

There also appears to be a correlation between the oxygen non-stoichiometry and the thermal 

expansion of the materials studied. For all samples, the change in slope of the TMA curves took place 

in the same temperature range where the oxygen stoichiometry change is observed in the TGA curves. 

The thermal expansion and decrease in oxygen stoichiometry of each material follow the same trend. In 

fact, the Ba0.5Sr0.5Co0.8Fe0.2O3-δ material exhibits the greatest change in oxygen stoichiometry as well as 
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the greatest thermal expansion. And the La2NiO4+δ material exhibits the least change in oxygen 

stoichiometry as well as the lowest thermal expansion. 



Oxygen permeation through MIEC membranes 

78 

9 Oxygen permeation through MIEC membranes 

One of the main criteria for the selection of materials as oxygen separation membranes in the 

framework of the oxyfuel process of coal-fired power plants is the magnitude of the oxygen permeation 

flux. Bredesen and Sogge [130] reported that membranes need to exhibit oxygen permeation fluxes of 

at least 10 ml min-1 cm-2 in order to be competitive with the traditional high purity oxygen separation 

processes. 

In this work, the oxygen transport kinetics through selected dense MIEC membrane materials, i.e. 

La2NiO4+δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ were 

investigated in the temperature range of between 700°C and 950°C. Membrane disks of 15mm in 

diameter were prepared free of cracks and connected through porosity. Although it is impossible to 

achieve theoretical density, membranes must be prepared with the highest attainable relative density. 

All sintered samples exhibited densities higher than 90% of their theoretical density which is 

considered the lower limit for oxygen separation membranes.

The membrane disks were polished on both sides with successive grades of silicon carbide grinding 

paper (up to P1200) to ensure flat reproducible surfaces. The membrane disks were then sealed 

between two quartz glass tubes using two gold gaskets of 1mm in diameter. To ensure gas-tightness, 

the assembly was compressed by a spring load system and heated in a vertical tube furnace to a 

temperature close to the melting point of gold. Synthetic air was fed to the feed-side of the membrane 

and argon (99.5% purity) to the permeate side. The gas flow rates were 100 ml min-1 and 50 ml min-1

on the feed-side and on the sweep-side of the membrane respectively. 

At first the membranes were heated to 1000°C, at which temperature an unsteady permeation flux was 

observed. This was caused by the time needed for the atmosphere to change within the whole 

permeation test set-up and also for the gradient of oxygen partial pressure to establish across the 

membrane until a steady state was reached. Then the oxygen permeation of each membrane was 

measured on cooling with steps of 50°C, down to 700°C. At each temperature step, an unsteady 

permeation flux was observed at first before reaching a steady state. This can be attributed to the 

decrease in oxygen vacancy concentration when cooling the membrane material as was discussed in 

Chapter 8.5. Improvements in the permeation test set-up such as shortening of the tubing and 

decreasing the unnecessary dead volume of the membrane recipient allowed for a decrease of the time 

needed to reach a steady state condition. This time was dependent on the membrane material and 

ranged between two and three hours. Cracking of the membrane was observed on cooling due to 
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stresses induced by a thermal expansion mismatch between the membrane material, the gold gasket and 

the quartz glass recipient. 

The oxygen permeation rate was measured by mass spectrometry. The leakage was determined by the 

amount of N2 in the permeate stream and deducted from the measured O2 concentration. The resulting 

oxygen permeation flux density, Jo2 (ml cm-2 min-1) was calculated according to Equation 9.1: 

S

FC
jO =

2
(Equation 9.1) 

where C is the permeating oxygen concentration in the argon stream (ppm) after correction for leakage; 

F the argon stream flow rate (ml min-1); and S the membrane effective surface area (cm2).  

9.1 Thickness dependence of oxygen permeation fluxes 

In order to determine whether the kinetics of oxygen permeation are rate limited by bulk diffusion or by 

surface exchange, oxygen permeation fluxes were measured through La2NiO4+δ,  

La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ membranes of three different thicknesses, i.e. 

0.5mm, 1mm and 1.5mm, as a function of temperature (700°C to 950°C). When bulk diffusion is the 

rate limiting factor, the flux is proportional to the inverse of the thickness of the membrane measured, 

which corresponds to Wagner’s equation (Equation 9.2) that describes the oxygen flux (jo2) when bulk 

diffusion controls oxygen permeation.  
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where σi and σe are the ionic and electronic conductivities respectively; F the Faraday constant; R the 

gas constant; T the temperature; L the membrane thickness; pO2
´ and pO2

´´ the partial pressure on the 

oxygen-rich and oxygen-lean side respectively. 

9.1.1 La2NiO4+δ

The temperature dependence of the permeation fluxes of La2NiO4+δ in the temperature range of 

between 700°C and 950°C, as a function of membrane thickness, is shown in Figure 9.1. The 

permeation fluxes were seen to increase with increasing temperature and with decreasing membrane 

thickness. However, in the temperature range of between 700°C and 800°C, the permeation flux for the 

0.5mm membrane is lower than for the 1mm membrane. 



Oxygen permeation through MIEC membranes 

80 

Moreover, the increase in permeation flux with membrane thickness was not measured to be 

proportional to the inverse of the membrane thickness. The surface exchange influence on the oxygen 

permeation through La2NiO4+δ membranes under 1.5mm can, therefore, not be neglected. This confirms 

the findings of V.V. Kharton et al. and D.M. Bochkov et al. [131,132] who determined that surface 

exchange limitations to the oxygen permeation fluxes through La2NiO4+δ -based ceramics must be 

taken into account. Moreover, the oxygen permeation of La2NiO4+δ membranes was found to be limited 

by both bulk transport and surface exchange rates when the membrane thickness is less than 1.5mm 

[131,80,132]. 
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Figure 9.1: Temperature dependence of oxygen permeation fluxes through La2NiO4+δ membranes 

In order to check the stability of the La2NiO4+δ membrane material under an oxygen partial pressure 

gradient, a long-term permeation measurement was conducted on a 1.5mm membrane kept at 800°C for 

400 hours. The oxygen permeation flux of this membrane was measured initially, after a 150-hour 

dwelling time at 800°C as well as after a 400-hour dwelling time. 

Table 9.1. Evolution of the oxygen concentration in the permeate stream (C). 

C (mol%) 
Time (h) 

at 800°C at 900°C 

0 0.6 1 

150 0.28 0.53 

400 0.24 0.48 
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Figure 9.1 shows the decrease of the oxygen permeation flux between the initial measurement and after 

150 hours. Table 9.1 gives the evolution of the decrease in oxygen concentration in the permeate 

stream of the La2NiO4+δ membrane measured at 800°C and 900°C. A decrease in oxygen concentration 

of more than 50% occurred between the first 800°C measurement and the one after 150 hours. The 

oxygen concentration was found to be more stable between 150 hours and 400 hours as the oxygen 

concentration drop was of less than 15%. A similar decrease was observed for the oxygen 

concentration in the permeate stream of the membrane measured at 900°C as the decrease was less than 

50% between the first measurement and the one after 150 hours and less than 10% between the 

measurement after 150 hours and the one after 400 hours.  

Figure 9.2. SEM micrographs of the surface of the feed-side of a 
La2NiO4+δ membrane after a 400-hour operation. 

In order to determine what caused the permeation rate to suffer such a fast and drastic decrease, an 

investigation of the microstructure of the membrane was carried out. No degradation of the surface of 

the sweep-side of the membrane was observed. EDS analysis of the surface of the feed-side of the 

membrane showed the presence of a chromium layer (Figure 9.2). This layer appeared to be a 

lanthanum, nickel and chromium-based oxide. XRD analysis of the surface of La2NiO4+δ pellets 

annealed for 1000 hours next to a chromia pellet showed that LaCrO3 and NiCr2O4 were formed, as 

further described in Chapter 10.5.  
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Figure 9.3 . SEM micrograph and elemental mapping of the cross fracture of the feed-side of a 
La2NiO4+δ membrane after 400-hour operation. 

An elemental mapping of the cross fracture of the feed-side surface of a La2NiO4+δ membrane 

subjected to a gradient in oxygen partial pressure for 400 hours was carried out with SEM in 

combination with EDS, as seen in Figure 9.3. The distribution of lanthanum and nickel seems to be 

homogenous over the chromium-containing layer covering the entire surface of the feed-side of the 

membrane. The chromium layer of homogenously distributed LaCrO3 and NiCr2O4 was found up to a 

depth of 1,5μm in the sample. Moreover, a nickel oxide inclusion, corresponding to a bright area in the 
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elemental mapping of nickel and a dark area in that of lanthanum, is also observed less than 4µm below 

the surface of the membrane.  

The source of chromium contamination was found to be the thermocouple used in the set-up to monitor 

the temperature next to the membrane. At high temperature, the volatile chromium species from the 

thermocouple were transported through the test set-up to the feed-side of the membrane where a 

reaction occurred. This result is of importance considering that the high temperature components in 

coal-fired power plants are made of chromium steel. The fact that the oxygen permeation flux 

decreases so fast, after only 150 hours, when La2NiO4+δ reacts with chromium makes it a material 

incompatible for use in power plants, at least not without appropriate protection. 

9.1.2 Pr0,58Sr0,4Co0,2Fe0,8O3-δ  

The temperature dependence of the oxygen permeation fluxes of Pr0,58Sr0,4Co0,2Fe0,8O3-δ in the 

temperature range of between 700°C and 950°C, for the three different membrane thicknesses (0.5, 1 

and 1.5mm) is shown in Figure 9.4. The oxygen permeation fluxes were observed to increase with 

increasing temperature and with decreasing membrane thickness. There seems to be a proportional 

increase of the fluxes of the three membranes with different thicknesses in the temperature range of the 

measurement. A deviation from this trend occurred for the 1mm membrane measured in the 

temperature range of between 700°C and 800°C. However, the increase is not proportional to the 

inverse of the thickness. Therefore the kinetics of oxygen permeation through Pr0,58Sr0,4Co0,2Fe0,8O3-δ

perovskite-type membranes are not governed by bulk diffusion. Surface exchange has also to be taken 

into account. 
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Figure 9.4. Temperature dependence of the oxygen permeation fluxes through Pr0,58Sr0,4Co0,2Fe0,8O3-δ
membranes 

Figure 9.5. SEM micrographs of the surface of the sweep-side of a Pr0,58Sr0,4Co0,2Fe0,8O3-δ
membrane after an oxygen permeation experiment of approximately 100 hours.  

After a permeation measurement of approximately 100 hours, an EDS analysis of the surface of the 

feed- and sweep-sides of the Pr0,58Sr0,4Co0,2Fe0,8O3-δ membrane was carried out. Figure 9.5 shows the 

presence of a chromium layer on the surface of the sweep-side of this sample. This layer appeared to be 

a strontium- and chromium-containing oxide. Chromium oxide particles are observed to nucleate and 

grow out of the surface of these pellets. XRD analysis of the surface of a Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellet 

annealed for 1000 hours next to a chromia pellet showed that strontium chromate (SrCrO4) and cobalt 

chromite (CoCr2O4) spinel were formed, as further described in Chapter 10.5. As for the La2NiO4+δ

membrane, the source of chromium contamination was the thermocouple used in the set-up to monitor 
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the temperature next to the membrane. However, the position of the thermocouple in the membrane 

recipient was different. And although it was placed on the low oxygen partial pressure side of the 

membrane, namely the sweep-side, volatile species were formed and reacted on the surface of the 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ membrane.  

Figure 9.6. SEM micrographs of the surface of the feed-side of a Pr0,58Sr0,4Co0,2Fe0,8O3-δ membrane 
after an oxygen permeation experiment of approximately 100 hours.  

Figure 9.6 shows the presence of secondary phase inclusions on the surface of the feed-side of the 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ membrane after an oxygen permeation experiment of approximately 100 hours. 

EDS point analysis measurements were carried out in order to determine the chemical composition of 

the secondary phases present. These phases seemed to be cobalt oxide in which iron was dissolved. 

They were identified as being Co3-xFexO4 inclusions. The formation of these cobalt and iron oxide 

phases on the surface of the membrane suggests that a kinetic demixing of the membrane material 

occurred during the permeation measurement. These phases were formed by the reaction of migrating 

cations with gaseous oxygen on the surface of the oxygen-rich side of the membrane. This is a serious 

concern since a demixing of the material will lead to the development of secondary non-ion-conducting 

phases which can considerably decrease the oxygen permeation flux of oxygen separation membranes.  

9.1.3 La0,58Sr0,4Co0,2Fe0,8O3-δ

The temperature dependence of the oxygen permeation fluxes of La0,58Sr0,4Co0,2Fe0,8O3-δ in the 

temperature range of between 700°C and 950°C, for the three different membrane thicknesses (0.5, 1 

and 1.5mm) is shown in Figure 9.7. The oxygen permeation value of the 0.5mm thick sample at 700°C 

does not figure in the graph since the membrane cracked during the measurement, after the temperature 

of 750°C. The values of the oxygen permeation fluxes of the three membranes were very similar to 

each other over the whole temperature range of the measurement. The fluxes increased with increasing 

temperature and with decreasing membrane thickness. There seems to be a proportional increase of the 
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fluxes of the three membranes with different thicknesses in the temperature range of the measurement. 

A significant deviation from this trend occurred for the 1.5mm membrane measured in the temperature 

range of between 850°C and 950°C. However, the increase is not proportional to the inverse of the 

thickness. Consequently, the influence of surface exchange and of bulk diffusion on the kinetics of 

oxygen permeation through Pr0,58Sr0,4Co0,2Fe0,8O3-δ perovskite-type membranes has to be considered.  
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Figure 9.7. Temperature dependence of oxygen permeation fluxes through La0,58Sr0,4Co0,2Fe0,8O3-δ
membranes 

Bouwmeester et al. [50,15] calculated the characteristic thicknesses of several La1-xSrxCo1-yFeyO3-δ

perovskite oxides to be in the range of between 20µm and 500µm at 900°C. The membranes measured 

in this work were above 0,5mm, which is at the limit of that range. Moreover, oxygen permeation 

fluxes measured through a La0,6Sr0,4Co0,2Fe0,8O3-δ ceramic disk 0.96mm thick [133] showed that both 

bulk diffusion and surface exchange seem to control the overall oxygen permeation. Oxygen 

permeation in La1-xSrxCo1-yFeyO3-δ membranes seems to be governed by bulk diffusion. However, 

surface exchange kinetics might contribute to the control of oxygen transport. 
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(A):  (B): 

Figure 9.8. SEM micrographs of the surface of (A) the sweep-side and (B) the feed-side of a 
La0,58Sr0,4Co0,2Fe0,8O3-δ membrane after a permeation experiment of approximately 100 hours. 

After a permeation measurement of approximately 100 hours, an EDS analysis of the surface of the 

feed- and sweep-sides of the La0,58Sr0,4Co0,2Fe0,8O3-δ membrane was carried out. Figure 9.8 (A) shows 

the presence of a chromium layer on the surface of the sweep-side of this sample. This layer appeared 

to be a strontium- and chromium-containing oxide. Chromium oxide particles are found to nucleate and 

grow out of the surface of the sweep-side of the membrane. XRD analysis of the surface of a 

La0,58Sr0,4Co0,2Fe0,8O3-δ pellet annealed for 1000 hours next to a chromia pellet showed that strontium 

chromate (SrCrO4) and the iron cobalt chromite (FeCoCrO4) spinel were formed, as further described 

in Chapter 10.5. As for the Pr0,58Sr0,4Co0,2Fe0,8O3-δ membrane, the source of chromium contamination 

was the thermocouple used in the set-up to monitor the temperature next to the membrane, on the 

sweep-side.  

Here also, Co3-xFexO4 inclusions were found on the surface of the feed-side of the same 

La0,58Sr0,4Co0,2Fe0,8O3-δ membrane after a permeation experiment of approximately 100 hours, as seen 

in Figure 9.8 (B). The formation of these cobalt and iron oxide phases on the surface of the membrane 

suggests that a kinetic demixing of the membrane material occurred during the permeation 

measurement, which is of as great a concern as for the Pr0,58Sr0,4Co0,2Fe0,8O3-δ membranes.  

9.2 Comparison of the oxygen permeation fluxes through selected 1 mm membranes 

In order to compare the oxygen permeation fluxes of the membrane materials selected for this study, 

i.e. La2NiO4+δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ, permeation 

experiments were carried out on 1mm-thick membranes measured in the temperature range of between 

700°C and 950°C. The temperature dependences of the oxygen permeation fluxes of these membranes 

are given in graphs Figure 9.9 to Figure 9.12.  
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In the temperature range measured, the oxygen permeation fluxes increased with increasing 

temperature. This phenomenon can be explained by an increase in the mobility and the concentration of 

the lattice oxygen vacancies with increasing temperature [33]. The temperature dependency of the loss 

of lattice oxygen related to the concentration in oxygen vacancies was reported previously, in  

Chapter 8.5. 

9.2.1 Ba0,5Sr0,5Co0,8Fe0,2O3-δ

The Arrhenius plots of the oxygen permeation flux density of a 1mm Ba0,5Sr0,5Co0,8Fe0,2O3-δ membrane 

in the temperature range of between 950°C and 700°C is shown in Figure 9.9. An increase of the 

permeation flux density was observed with increasing temperature. The maximum permeation flux for 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ was measured as 1.5 10-6 mol cm-2 s-1 at 950°C. The decrease was almost linear 

down to 800°C, after which temperature, the slope of the curve steepened gradually down to 700°C. At 

this temperature, the permeation flux was measured to be 0.4 10-6 mol cm-2 s-1.

0.8 0.9 0.9 1.0 1.0 1.1

-6.38

-6.25

-6.13

-6.00

-5.88

950 900 850 800 750 700

lo
g(

j O
2 

/ m
ol

⋅c
m

-2
⋅s

-1
)

T-1 / 10-3K-1

T / °C

Figure 9.9. Temperature dependence of the oxygen permeation flux of Ba0,5Sr0,5Co0,8Fe0,2O3-δ

9.2.2 Pr0,58Sr0,4Co0,2Fe0,8O3-δ  

Figure 9.10 gives the Arrhenius plots of the oxygen permeation flux density of a 1mm 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ membrane in the temperature range of between 950°C and 700°C. The oxygen 

permeation fluxes were found to increase with increasing temperature. The maximum flux density was 

recorded at 950°C as 0.4 10-6 mol cm-2 s-1. A linear decrease in flux was observed in the temperature 
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range of between 950°C and 850°C, after which the decrease was almost linear down to 700°C, where 

a 0.2 10-7 mol cm-2 s-1 permeation flux was measured. The slope of the curve representing the oxygen 

permeation flux density steepened in the temperature range of between 850°C and 700°C compared to 

the curve in the temperature range of between 950°C and 850°C.   
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Figure 9.10. Temperature dependence of the oxygen permeation flux of Pr0,58Sr0,4Co0,2Fe0,8O3-δ

9.2.3 La0,58Sr0,4Co0,2Fe0,8O3-δ

The Arrhenius plots of the oxygen permeation flux density of a 1mm La0,58Sr0,4Co0,2Fe0,8O3-δ

membrane in the temperature range of between 950°C and 700°C is given in Figure 9.11. At 950°C, the 

permeation flux reached a maximum value of 0.3 10-6 mol cm-2 s-1. A linear decrease in flux was 

observed between 950°C and 850°C and also between 850° and 700°C, the slope of the curve being 

steeper in the temperature range of between 850°C and 700°C than in the temperature range of between 

950°C and 850°C. At 700°C, the permeation flux density was measured to be 0.2 10-7 mol cm-2 s-1. A 

behaviour similar to the one of the 1mm Pr0,58Sr0,4Co0,2Fe0,8O3-δ sample was observed for the oxygen 

permeation flux density of this La0,58Sr0,4Co0,2Fe0,8O3-δ membrane. However the slope of the 

permeation curve in the temperature range of between 950°C and 850°C is steeper for the 

La0,58Sr0,4Co0,2Fe0,8O3-δ sample than for the Pr0,58Sr0,4Co0,2Fe0,8O3-δ sample and in the temperature range 

of between 850°C and 700°C, it is steeper for the Pr0,58Sr0,4Co0,2Fe0,8O3-δ sample.  
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Figure 9.11. Temperature dependence of the oxygen permeation flux of La0,58Sr0,4Co0,2Fe0,8O3-δ

9.2.4 La2NiO4+δ

The Arrhenius plots of the oxygen permeation flux density of a 1mm La2NiO4+δ membrane in the 

temperature range of between 950°C and 700°C is shown in Figure 9.12. A maximum permeation flux 

of 0.3 10-6 mol cm-2 s-1 was measured at 950°C. A continuous decrease in the oxygen permeation flux 

was recorded over the temperature range of between 950°C and 700°C, at which temperature the flux 

was of 0.3 10-7 mol cm-2 s-1. The slope of the curve increased gradually as the temperature decreased 

over the whole temperature range of the measurement. 
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Figure 9.12. Temperature dependence of the oxygen permeation flux of La2NiO4+δ
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Figure 9.13. Temperature dependence of the oxygen permeation flux density of 1mm-thick 
Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La0,58Sr0,4Co0,2Fe0,8O3-δ, Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La2NiO4+δ membranes 

The oxygen permeation flux density through the 1mm thick Ba0,5Sr0,5Co0,8Fe0,2O3-δ membrane is 

clearly well above the fluxes of all three other materials, as can be seen in Figure 9.13. In the 

temperature range of between 700°C and 800°C, the permeation curves of La0,58Sr0,4Co0,2Fe0,8O3-δ and 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ almost coincide. An increase of the permeation flux of Pr0,58Sr0,4Co0,2Fe0,8O3-δ
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after 800°C compared to the La0,58Sr0,4Co0,2Fe0,8O3-δ curve was observed. The fact that the 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ flux is higher than the La0,58Sr0,4Co0,2Fe0,8O3-δ flux can be explained by the 

substitution of Pr for La, which has a lower ionic radius than La. The decrease in ionic radius seems to 

lower the potential energy barrier for oxygen ion migration through the material lattice. Similar results 

were found in the series Ln0.6Sr0.4CoO3-δ (with Ln=lanthanide such as La, Pr, Nd, Sm and Gd), in which 

the oxygen flux was found to increase with decreasing radius of the lanthanide ion [78]. This result also 

corroborates the finding that the substitution of Pr for La increased the loss of lattice oxygen  

(Chapter 8.5) and thus the concentration of oxygen vacancies, responsible for the permeation of oxygen 

through the lattice of MIEC perovskite materials. The oxygen permeation flux density through 

La2NiO4+δ is higher than that of Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La0,58Sr0,4Co0,2Fe0,8O3-δ below 900°C. 

Above 950°C, the oxygen permeation flux through Pr0,58Sr0,4Co0,2Fe0,8O3-δ is higher than that of 

La0,58Sr0,4Co0,2Fe0,8O3-δ and La2NiO4+δ membranes. 

At high temperatures, oxygen vacancies become available for oxygen transport through the perovskite-

based membranes. In the La2NiO4+δ membrane material, related to the K2NiF4-type structure, oxygen 

transport is based on the oxygen vacancy hopping mechanism as well as on an interstitial diffusion. In 

the perovskite-type membrane materials, such as La0,58Sr0,4Co0,2Fe0,8O3-δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ and 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ, oxygen transport is solely based on the oxygen vacancy hopping mechanism. 

The increase in concentration of oxygen vacancies might therefore have a greater influence on the 

oxygen permeation fluxes of La0,58Sr0,4Co0,2Fe0,8O3-δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ and  

Pr0,58Sr0,4Co0,2Fe0,8O3-δ membranes than those of La2NiO4+δ membranes. This could be the reason why 

the slope of the oxygen permeation flux density curves of La0,58Sr0,4Co0,2Fe0,8O3-δ and 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ 1mm membranes increased after 800°C whereas it decreased for La2NiO4+δ

membranes. The slope of the oxygen permeation flux through the 1mm Ba0,5Sr0,5Co0,8Fe0,2O3-δ

membrane decreased after 800°C. However, the slopes of the TGA curves (Chapter 8.5) representing 

the oxygen loss of the lattice were steeper for the La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ

materials after 800°C than for the Ba0,5Sr0,5Co0,8Fe0,2O3-δ material. A rapid increase of the 

concentration of oxygen vacancies in the La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ materials 

might have induced this increase of the oxygen permeation flux observed after 800°C. 

9.2.5 Activation energies for oxygen permeation 

Table 9.2 lists the activation energies (Ea) for oxygen permeation of Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La2NiO4+δ, 

La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ membranes calculated from the oxygen permeation 

data as a function of temperature. As expected, Ba0,5Sr0,5Co0,8Fe0,2O3-δ exhibits the lowest activation 
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energy of 48 kJ/mol as its oxygen permeation fluxes are the highest. The activation energies are found 

to follow the same trend as oxygen permeation flux densities.  

Table 9.2. Activation energies (in KJ/mol) for oxygen permeation through 1mm  
Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La2NiO4+δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ membranes. 

Material Ea (kJ/mol) 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ 48 

La2NiO4+δ 88 

La0,58Sr0,4Co0,2Fe0,8O3-δ 101 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ 124 

9.2.6 Discusion 

The oxygen permeation fluxes measured in this work coincide with the range of values found in the 

literature. Conflicting values for the flux through MIEC membranes have been measured by different 

groups, which reflects the influence of many parameters on the oxygen permeation results. Indeed, the 

performance of membranes can be affected by many factors such as the preparation technique of the 

membrane material (powder synthesis [134], shaping and sintering techniques [135], the microstructure 

of the sample (e.g. grain size, porosity) [136], the configuration the permeation test set-up as well as the 

experimental conditions (e.g. feed and sweep gas fluxes). Different oxygen permeation fluxes were 

found for Ba0,5Sr0,5Co0,8Fe0,2O3-δ, membranes prepared with the solid state reaction and with the 

EDTA-citric acid complexing synthesis method [84]: 

Another study [134] measured different oxygen permeation fluxes for Ba0,5Sr0,5Co0,8Fe0,2O3-δ, 

membranes prepared with different powder preparation techniques, namely solid state reaction, 

modified citrate and citrate-EDTA complexing methods. The highest permeation values were found for 

the samples where powder was prepared with the solid state reaction. These samples exhibited the 

biggest grain size and the densest microstructure, which would suggest that grain boundaries hinder 

oxygen ion transport and that oxygen transport is faster through grain bulk than along the grain 

boundaries [134]. Moreover, the oxygen permeation fluxes of Ba0,5Sr0,5Co0,8Fe0,2O3-δ membranes 

sintered at different temperatures and for different dwelling times were found to increase considerably 

with increasing grain size [83]. These observations could be the result of a time and temperature 

dependent cobalt enrichment at the grain boundaries, which was studied in Chapter 10.6 of this work.  
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9.3 Conclusion 

Oxygen permeation through MIEC membranes is a thermally activated process directly related to the 

concentration and the mobility of oxygen vacancies in the lattice of the material. Oxygen permeation 

through La2NiO4+δ, Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La0,58Sr0,4Co0,2Fe0,8O3-δ membranes, whose thicknesses 

range between 0.5mm and 1.5mm, seems to be governed by surface exchange as well as bulk diffusion. 

However, a decrease in membrane thickness caused an increase in oxygen permeation flux for all 

membranes. A kinetic demixion of the Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La0,58Sr0,4Co0,2Fe0,8O3-δ membrane 

materials was observed after an approximately 100-hour operation. It would be interesting to 

investigate the microstructure of La2NiO4+δ and Ba0,5Sr0,5Co0,8Fe0,2O3-δ membranes after operation in 

order to determine whether a kinetic demixion also occurs.  

The maximum oxygen permeation fluxes were measured for 1mm Ba0,5Sr0,5Co0,8Fe0,2O3-δ membranes 

over the whole temperature range investigated. The fluxes for 1mm La2NiO4+δ, Pr0,58Sr0,4Co0,2Fe0,8O3-δ

and La0,58Sr0,4Co0,2Fe0,8O3-δ membranes are well below the values of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ one 

and are also of the same order of magnitude, La2NiO4+δ being slightly higher in the temperature range 

of between 700°C and 850°C and Pr0,58Sr0,4Co0,2Fe0,8O3-δ higher after 850°C.  

The maximal temperature considered for the application is 800°C for energy and cost efficiency 

reasons. At this temperature the highest oxygen permeation flux obtained was of about  

1.4 ml min-1 cm-2 for the 1mm Ba0,5Sr0,5Co0,8Fe0,2O3-δ membrane. The fluxes of La2NiO4+δ, 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La0,58Sr0,4Co0,2Fe0,8O3-δ 1mm membranes are between 0.1 ml min-1 cm-2

and 0.2 ml min-1 cm-2. Considering that the minimum oxygen permeation flux for the selection of a 

material as a high purity oxygen separation membrane is 10 ml min-1 cm-2, a lot of work still needs to 

be done in order to improve the oxygen permeation of these materials. Membrane surface modification 

and the development of thin film membrane technology are options currently being considered. 
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10 Thermo-chemical stability investigation 

The thermo-chemical stability of MIEC materials is an important concern for their selection as high 

purity oxygen separation membranes in the oxyfuel process of coal-fired power plants. The oxyfuel 

process consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly 

concentrated in CO2. This will allow the flue gas to be composed of relatively clean exhaust gases, 

steam and CO2. The production of this combustion gas highly concentrated in oxygen from air can be 

carried out using oxygen permeable MIEC membranes. A concept for the oxyfuel process with 

membrane technology is to recycle the flue gas to sweep the permeate side of the membrane, exposing 

it to high concentrations of CO2 and water. Therefore, the La2NiO4+δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, 

La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ membrane materials have to be stable in the 

gaseous atmosphere of the flue gas. The literature study in Chapter 3.3 and discussions with E. 

Riensche (Forschungszentum Jülich, IEF-3) determined that the atmosphere that is believed to be the 

closest to the flue gas composition is about 89 mol% CO2 on a dry basis, or 66 mol% CO2 and  

26 mol% water vapour, on a humid basis. Moreover, it was estimated in Chapter 3.3 that the permeate 

gas stream would consist of about 25% permeating O2 and 75% flue gas. 

As described in Chapter 7.2, the experimental set-up is composed of a quartz glass tube placed in a 

three-zone horizontal tube furnace. The sintered pellets of La2NiO4+δ, La0,58Sr0,4Co0,2Fe0,8O3-δ, 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ were placed in a quartz glass sample holder and 

annealed at 600°C, 700°C and 800°C for 200 hours and 500 hours. This temperature range was chosen 

for the annealing experiments because 600°C is the minimum operating temperature for perovskite-

type membranes and 800°C is the maximum temperature considered for this application. Operating 

membranes above 800°C would not be cost and energy efficient. Two dwelling times of 200 hours and 

500 hours were selected in order to have a detectable reaction in the bulk material or on the surface if a 

reaction were to occur. The 500-hour dwelling time was only applied to the samples annealed in the 

atmospheres believed to be the closest to operating conditions on the feed and the permeate sides of a 

high purity oxygen separation membrane for the oxyfuel process. The atmospheres used for the 

annealing experiments are listed in the table (Table 10.1) below: 
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Table 10.1. Atmospheres and annealing conditions for La0,58Sr0,4Co0,2Fe0,8O3-δ, La2NiO4+δ, 
Ba0,5Sr0,5Co0,8Fe0,2O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets 

Annealing conditions 
Atmosphere (in mol%) 

Temperatures (°C) 
Dwelling times 

(hours) 

Air 600, 700, 800 200, 500 

Air +10% CO2 600, 700, 800, 900 200 

(1% O2, 99%N2) +10%CO2 600, 700, 800 200 

43%O2, 14%N2, 43%CO2 600, 700, 800 200 

25% O2, 8% N2, 67% CO2 600, 700, 800 200, 500 

28% O2, 5% N2, 55% CO2, 12% H2O 600, 700, 800 200 

25% O2, 50% CO2, 5% N2, 20% H2O 600, 700, 800 200, 500 

25% O2, 45% N2, 20% H2O 600, 700, 800 200 

Furthermore, given that the high temperature components in coal-fired power plants are made of 

chromium-containing ferritic and austenitic steels, it is of considerable importance to determine 

whether an interaction will occur between the construction materials and the membrane materials 

selected. Thus, a long term annealing experiment was carried out in which La0,58Sr0,4Co0,2Fe0,8O3-δ, 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La2NiO4+δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets were placed next to a Cr2O3 disk 

at a distance of 1cm in order to observe any reaction that might occur on the surface of the samples 

exposed. 

10.1 Annealing in air  

Air will be supplied to the feed-side of the MIEC membranes considered for the separation of oxygen 

from air in the framework of the oxyfuel process in coal-fired power plants. Thus it is essential to 

assess the stability of the materials selected in this study i.e. La0,58Sr0,4Co0,2Fe0,8O3-δ, 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La2NiO4+δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ in air at high temperatures. These 

annealing experiments were carried out at 600°C, 700°C and 800°C for 200 hours and 500 hours.  

After annealing in air, no phase change was observed on the surface of all samples studied after 

annealing at every temperature and exposure time. However, secondary phases were observed 

throughout the material of all samples at all temperatures. EDS analysis determined that cobalt oxide 

inclusions were formed in the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets (Figure 10.1), nickel oxide inclusions in 

the La2NiO4+δ pellets (Figure 10.2) and a mixture of cobalt and iron oxide inclusions in the 
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La0,58Sr0,4Co0,2Fe0,8O3-δ as well as the Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets (Figure 10.2). These secondary 

phases present in all samples will be discussed in greater detail later in this chapter. 

(A):  (B):  

Figure 10.1. (A) SEM micrograph of the cross section of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 
air at 700°C for 200 hours and (B) light microscopy picture of the cross section of a 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in air at 800°C for 500 hours.

(A):  (B):  

(C):  (D): 
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(E):  (F):  

Figure 10.2 . SEM micrograph of the cross section of pellets annealed in air: (A) 
La0,58Sr0,4Co0,2Fe0,8O3-δ (C) Pr0,58Sr0,4Co0,2Fe0,8O3-δ and (E) La2NiO4+δ at 800°C for 200 hours and 

light microscopy picture of the cross section of: (B) La0,58Sr0,4Co0,2Fe0,8O3-δ (D) 
Pr0,58Sr0,4Co0,2Fe0,8O3-δ and (F) La2NiO4+δ at 600°C for 500 hours.

10.2 Annealing in CO2-containing atmospheres 

In the “dry recycling” option of the oxyfuel process, the permeate side of MIEC membranes will be in 

contact with CO2 from the recycled flue gas. In order to assess the stability of the materials selected in 

this study i.e. La0,58Sr0,4Co0,2Fe0,8O3-δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La2NiO4+δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ in 

CO2-containing atmospheres, a series of annealing experiments was conducted at high temperatures.  

• The first annealing atmosphere, air (79%N2 and 21%O2) plus 10%CO2 added, was chosen in 

order to test the stability of these materials in an atmosphere with a relatively low CO2 concentration. 

These annealing experiments were carried out at 600°C, 700°C, 800°C and 900°C for 200 hours.  

• A second atmosphere of 1% O2, 99%N2 plus 10%CO2 added was selected to determine the 

influence of oxygen on the reaction with CO2. These annealing experiments were carried out at 600°C, 

700°C and 800°C for 200 hours.  

• The third annealing condition selected had higher contents of CO2 and O2, i.e. 43%O2, 43%CO2

and 14%N2. These annealing experiments were carried out at 600°C, 700°C and 800°C for 200 hours.  

• For the last annealing experiment in CO2-containing atmospheres, the atmosphere believed to 

be the closest to operating conditions, on a dry basis, i.e. 67 mol% CO2, 25 mol% O2 and 8 mol% N2

was chosen. This series of annealing experiments was carried out at 600°C, 700°C and 800°C for  

200 hours and 500 hours.  



Thermo-chemical stability investigation 

99 

For each annealing condition in CO2-containing atmospheres, cobalt oxide inclusions were formed in 

the Ba0,5Sr0,5Co0,8Fe0,2O3-δ, pellets, nickel oxide (NiO) inclusions in the La2NiO4+δ pellets  and a 

mixture of cobalt and iron oxide inclusions in both the La0,58Sr0,4Co0,2Fe0,8O3-δ as well as the 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets.  

Figure 10.3. SEM micrograph of the (BaxSr1-x)CO3 layer on the surface of a
Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed at 800°C for 200 hours in air +10 mol% CO2. 

After annealing in CO2-containing atmospheres, no phase change was observed on the surface of the 

La2NiO4+δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ samples studied. However, a reaction 

zone was observed on the surface of all Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples at all annealing temperatures 

and dwelling times. A top layer, which was determined to be composed of barium and strontium by 

EDS analysis, was found on the surface of all samples, as seen in Figure 10.3 above. Under this layer, a 

needle-like structure layer was formed in all Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples, as seen in Figure 10.4 and 

Figure 10.7. 

Carbon can not be measured precisely with SEM analysis as it is present in the vacuum chamber. 

Carbon deposition occurs on the surface of the samples measured with this technique. The longer the 

measuring time, the longer the electron beam remains on the point measured, the more carbon will be 

deposited. Therefore, in order to check whether the top layer contained carbon, a line scan of the cross 

fracture of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ sample annealed in air +10%CO2 at 800°C for 200 hours was 

carried out starting from the surface over the needle-like structure and down to the matrix 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ material (Figure 10.4). The cross fracture of the sample was analysed in order to 

rule out any degradation of the surface that might have been caused by the metallographic technique 

used to prepare it for microscopic observation. The intensity of the carbon spectrum is much higher in 

the top layer than in the rest of the pellet, as seen in Figure 10.4. Likewise, the barium and strontium 

contents are clearly higher in the top layer. The intensities of the iron and cobalt spectra are very low in 
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the top layer and increase greatly in the needle-like structure. This layer was, therefore, determined to 

be a mixed barium and strontium carbonate of the form (BaxSr1-x)CO3.  

Figure 10.4. SEM micrograph and EDS line scan of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in air 
+10%CO2 for 200 hours at 800°C. 
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A carbonate layer, which can prevent O2-adsorption on the surface of oxygen permeation membranes, 

had built up over the entire surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed at 700°C and 800°C 

for all dwelling times. But, after annealing at 600°C, only part of the surface of the 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets is covered as the kinetics of the carbonisation seem to be much slower at 

this temperature.  

EDS and XRD analyses (Figure 10.5) show that this layer is a mixed barium and strontium carbonate 

with the chemical composition (BaxSr1-x)CO3. In order to determine the composition of this mixed 

carbonate layer EDS point analysis measurements of three areas in a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet 

annealed in 50% CO2, 25% O2, 20% H2O, 5%N2 at 800°C for 500 hours (Figure 10.6) were conducted 

in order to have valid statistics. The elemental composition in mass% of the mixed carbonate layer is 

shown in Table 10.2. By averaging the values obtained from these three measurements, the 

composition Ba0,43Sr0,57CO3 was determined for the mixed carbonate. A substantial experimental error 

is always present for the quantification of carbon and oxygen with the EDS analysis since this 

technique does not allow for the precise detection of light elements, and carbon is deposited on the 

surface of the samples during the measurements. Therefore, the fact that these measurements are not 

normalised should be taken into account when considering the precision of the results. Although the 

experimental error is considerable, the estimation of the ratio between barium and strontium contents is 

workable. 
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Figure 10.5. Powder XRD spectra of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 67% CO2, 25% O2, 

8%N2 at 800°C for 200 hours. 
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Figure 10.6. SEM micrograph showing the 3 areas measured in the 
(BaxSr1-x)CO3 layer of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 
50% CO2, 25% O2, 20% H2O, 5%N2 at 800°C for 500 hours. 

Table 10.2. Chemical composition (in atomic%) of the mixed barium and strontium carbonate 
measured in three different areas of the layer. 

Element Area 1 Area 2 Area 3 

Ba 8.8 9 9.1 
Sr 11.3 12.1 11.9 
C 24 24 22.7 
O 55 55 56.4 

In addition to the carbonate layer, a needle-like structure was formed under it in all 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples, as seen in Figure 10.10. EDS and XRD analyses could not determine 

the composition of this layer precisely. However, it seemed to be a (Ba, Sr, Co, Fe)-containing 

perovskite. As each individual needle in the needle-like structure layer has a maximum width of around 

1µm after annealing at 800°C, a transmission electron microscopy (TEM) investigation of the 

microstructure was conducted in order to determine its composition more precisely (Figure 10.7). The 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ sample annealed in 67% CO2, 25% O2 and 8% N2 at 800°C for 500 hours was 

selected for this investigation as it presented a needle-like structure layer thick enough to enable the 

FIB lamellae to be cut. It is important to mention that, in TEM analysis, the composition of the 

specimen is measured over the complete thickness of the FIB lamellae. This means that the area 

measured has to be single phased over the entire thickness of the FIB lamellae in order to measure the 

desired phase.  
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Figure 10.7. TEM micrograph of the needle-like structure of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ
pellet annealed in 67% CO2, 25% O2 and 8% N2 at 800°C for 500 hours. 

Table 10.3. Chemical composition (in atomic%) of a needle and of the matrix material. 

Element Needle Matrix material 

Ba 21.09 25.18 
Sr 4.64 26.86 
Co 65.36 32.13 
Fe 8.91 15.83 

The chemical compositions of the needles as well as the matrix (Table 10.3) were determined by EDS 

with a 5% error. The phases present are Ba, Sr, Co and Fe oxides with two different chemical 

compositions. The needles appear to be oxides with the composition Ba0,38Sr0,05Co0,5Fe0,07Oz and the 

matrix a perovskite with the composition Ba0,494Sr0,506Co0,68Fe0,32Oz. The composition of the matrix is 

very similar to the original Ba0,5Sr0,5Co0,8Fe0,2O3-δmaterial. Taking into account the experimental error, 

the barium and strontium contents are unchanged. The cobalt content is lower and the iron content is 

higher than the cobalt and iron contents of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ material respectively.  

An elemental mapping of an area in the needle-like structure of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet 

annealed in 67% CO2, 25% O2 and 8% N2 at 800°C for 500 hours was carried out with TEM (Figure 

10.8). Three distinct areas are apparent in the sample. The first area corresponds to the needles, which 

present high contents of barium and cobalt and low contents of strontium and iron. The second area 

corresponds to the matrix material which has lower contents of barium and cobalt than the needles as 

well as much higher contents of strontium and iron. The third area seems to be an area, where both the 
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matrix and needles were present over the thickness of the FIB lamellae, and which has approximately 

the same amounts of barium and cobalt as the BSCF50 matrix but lower strontium and iron contents. A 

depletion of the concentration of barium and strontium in the Ba0,5Sr0,5Co0,8Fe0,2O3-δ material may 

possibly have caused these needles to build up at its interface with the mixed barium and strontium 

carbonate layer.  

Figure 10.8. TEM micrograph and elemental mapping of the needle-like structure of a 
Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 67% CO2, 25% O2 and 8% N2 at 800°C for 500 hours. 

10.2.1 Air plus 10%CO2

After annealing in air +10%CO2 for 200 hours, the cross sections of La0,58Sr0,4Co0,2Fe0,8O3-δ, La2NiO4+δ

and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets, shown in Figure 10.9. below, do not present any degradation of 

their surface. However, secondary oxide phases are found in the bulk of all samples investigated after 

every annealing time. 
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(A):  (B):  

(C):  (D): 

(E):  (F): 

Figure 10.9. SEM micrographs of the cross section of pellets annealed in air +10%CO2 for 200 
hours: La0,58Sr0,4Co0,2Fe0,8O3-δ (A) at 800°C and (B) at 600°C, Pr0,58Sr0,4Co0,2Fe0,8O3-δ (C) at 800°C 

and (D) at 600°C, La2NiO4+δ (E) at 800°C and (F) at 600°C. 

After annealing the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets in air +10%CO2 for 200 hours, a mixed barium and 

strontium carbonate layer and a needle-like structure layer were formed on their surface (Figure 10.10). 

As seen in Table 10.4, the thicknesses of both the mixed carbonate layer and the needle-like structure 

layer were found to increase with increasing temperature. The thicknesses of the (BaxSr1-x)CO3 and 
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needle-like structure layers could not be determined for the sample annealed for 600 hours because too 

many scratches were present near the surface of the pellet after the metallographic preparation. Both 

layers were four times thicker after annealing at 800°C than at 700°C. Between 800°C and 900°C, a 

further increase in thickness of 50% and 10% was measured for the mixed carbonate and the needle-

like structure layer respectively. 

Table 10.4. Maximum thickness of the (BaxSr1-x)CO3 and needle-like structure layers as a function of 
annealing temperature of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in air +10%CO2 for 200 hours. 

Thickness Annealing 
temperature (°C) (BaxSr1-x)CO3 layer 

(µm) 
Needle-like structure 

layer (µm) 
700 0,7 3,5 
800 3 15 
900 4,5 16,5 

Moreover, cobalt oxide inclusions can be observed in the needle-like structure in the samples annealed 

at 700°C, 800°C and 900°C. In the sample annealed at 900°C, these inclusions seem to be building a 

layer at the interface between the mixed carbonate and the needle-like structure layers. This sample 

also exhibits a much thicker needle-like formation than the samples annealed at temperatures of under 

800°C. An increase in annealing temperature also induced an increase in needle thickness. 

(A):  (B):  
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(C):  (D) 

Figure 10.10. SEM micrographs of the cross section of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in air 
+10%CO2 for 200 hours: (A) at 600°C, (B) 700°C, (C) 800°C and (D) 900°C.

10.2.2 1% O2, 99%N2 plus 10%CO2

No change in the microstructure of the surface of the La0,58Sr0,4Co0,2Fe0,8O3-δ, La2NiO4+δ and 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets annealed in 1% O2, 99%N2 +10%CO2 for 200 hours, is observed in the 

SEM micrographs of their cross section (Figure 10.11). However, secondary oxide phases were present 

in the bulk of all samples after annealing at every temperature. 

(A):  (B): 
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(C): 

Figure 10.11. SEM micrographs of the cross section of pellets annealed in 1%O2, 99%N2 +10%CO2

for 200 hours at 800°C: (A) La0,58Sr0,4Co0,2Fe0,8O3-δ, (B) Pr0,58Sr0,4Co0,2Fe0,8O3-δ and (C) La2NiO4+δ.

A barium strontium carbonate layer, under which the needle-like structure layer was present, was 

formed on the surface of all the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 1% O2, 99%N2 +10%CO2

for 200 hours at every temperature (Figure 10.12). At 600°C, this layer did not cover the entire surface 

of the pellets. A continuous mixed carbonate layer was observed on the surface of the samples annealed 

at 700°C and 800°C. The thickness of both the carbonate and the needle-like structure layer after 

annealing in this atmosphere are given in the table (Table 10.5) below. 

Table 10.5. Maximum thickness of the (BaxSr1-x)CO3 and needle-like structure layers as a function of 
annealing temperature of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 1%O2, 99%N2 +10%CO2 for  

200 hours. 

Thickness Annealing 
temperature (°C) (BaxSr1-x)CO3 layer 

(µm) 
Needle-like structure 

layer (µm) 
700 0,7 4,5 

800 4,5 16,5 

The thicknesses of both layers were found to increase with increasing temperature, as seen in Table 

10.5. The mixed carbonate layer was measured to be six times thicker in the sample annealed at 800°C 

than the one annealed at 700°C. And the needle-like structure was more than 3 times thicker. Cobalt 

oxide inclusions can also be observed in the needle-like structure layer. An increase in annealing 

temperature also caused an increase in needle thickness.  
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(A):  (B): 

Figure 10.12. SEM micrographs of the cross section of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 
1%O2, 99%N2 +10%CO2 for 200 hours: (A) at 700°C and (B) at 800°C. 

Moreover, a decrease in oxygen partial pressure caused only a slight increase of both the mixed 

carbonate and needle-like structure layers. A 30% and a 10% increase in thickness of the needle-like 

structure layer occurred between the samples annealed in air +10%CO2 and in 1%O2, 99%N2

+10%CO2 for 200 hours at 700°C and 800°C respectively. As for the mixed carbonate layer, a 50% 

increase in thickness was measured between these same samples. The samples annealed at 700°C, 

however, had the same thickness. 

10.2.3 43%O2, 43%CO2 and 14%N2 

An increase in CO2 and oxygen content in the annealing atmosphere did not cause a change in the 

microstructure of the surface of the La0,58Sr0,4Co0,2Fe0,8O3-δ, Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La2NiO4+δ

pellets annealed in 43%O2, 43%CO2 and 14%N2 for 200 hours, as seen in Figure 10.13. But the 

previously mentioned mixed barium and strontium carbonate as well as the needle-like structure layers 

were formed on the surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets at all temperatures (Figure 10.14 and 

Figure 10.15). 
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(A):  (B): 

(C): 

Figure 10.13. SEM micrographs of the cross section of pellets annealed in 43%O2, 43%CO2 and 
14%N2 for 200 hours at 800°C: (A) La0,58Sr0,4Co0,2Fe0,8O3-δ,(B) Pr0,58Sr0,4Co0,2Fe0,8O3-δ and  

(C) La2NiO4+δ.

An increase in the thicknesses of both the mixed barium and strontium carbonate layer and the needle-

like structure layer was found with increasing temperature, as seen in Table 10.6, Figure 10.14 and 

Figure 10.15. The thickness of the mixed carbonate layer doubled between the samples annealed at 

600°C and the ones annealed at 700°C. The thickness of this layer was a further five times thicker after 

annealing at 800°C than at 700°C. As for the thickness of the needle-like structure layer, it tripled 

between the sample annealed at 700°C and the one annealed at 800°C. The preparation of the sample 

annealed at 600°C did not allow for its thickness to be measured. Moreover, cobalt oxide inclusions are 

seen in the needle-like structure layer as well as at the interface between this layer and the mixed 

carbonate layer Figure 10.14 (B). An increase in annealing temperature also led to an increase in needle 

thickness. 
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Table 10.6. Maximum thickness of the (BaxSr1-x)CO3 and needle-like structure layers as a function of 
annealing temperature of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 43%O2, 43%CO2, 14%N2 for  

200 hours. 

Thickness Annealing 
temperature (°C) (BaxSr1-x)CO3 layer 

(μm) 
Needle-like structure 

layer (μm) 
700 0,9 5,7

800 5 18

 (A):  (B): 

Figure 10.14. SEM micrographs of the cross section of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 
43%O2, 43%CO2 and 14%N2 for 200 hours: (A) at 700°C and (B) at 800°C. 

Figure 10.15. SEM micrograph of the cross-fractions of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed for 
200 hours in 43%O2, 43%CO2 and 14%N2 at 600°C, 700°C and 800°C, from left to right. 
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10.2.4 67 mol% CO2, 25 mol% O2 and 8 mol% N2 

In the “dry recycling” option of the oxyfuel process, the flue gas will be recycled onto the permeate 

side of the MIEC membrane after separating the water vapour present from the rest of the gas stream. 

The atmosphere with the composition of 67 mol% CO2, 25 mol% O2 and 8 mol% N2 is supposed to be 

close to the composition of this recycled flue gas stream. After annealing in this CO2–rich atmosphere, 

EDS and XRD analysis did not detect carbonates on the surface of the La0,58Sr0,4Co0,2Fe0,8O3-δ, 

La2NiO4+δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets annealed at 600°C, 700°C or 800°C for 200 hours and 

500 hours. Although no degradation of the microstructure of the surface of these samples was observed, 

secondary oxide phases were found in all samples annealed at all temperatures and annealing times. 

An SEM investigation of the La0,58Sr0,4Co0,2Fe0,8O3-δ, La2NiO4+δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ samples 

annealed in 67 mol% CO2, 25 mol% O2 and 8 mol% N2 for 500 hours was carried out in order to 

determine with absolute certainty whether a change in the surface of the pellets had occurred. The cross 

fracture of the samples was analysed without metallographic preparation to rule out any degradation of 

the reaction zone the preparation technique might have caused. No reaction was detected even after 

annealing in such a CO2–rich atmosphere for the long annealing time of 500 hours as can be seen in 

Figure 10.16. 

(A):  
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(B):  

(C):  

Figure 10.16. SEM micrographs and light microscopy pictures of pellets annealed in 67% CO2, 25% 
O2, 8% N2 at 800°C for 500 hours: (A) La0,58Sr0,4Co0,2Fe0,8O3-δ, (B) Pr0,58Sr0,4Co0,2Fe0,8O3-δ and  

(C) La2NiO4+δ. 

Table 10.7 as well as Figure 10.18 and Figure 10.17 show that the thicknesses of both the mixed 

barium and strontium carbonate layer as well as the needle-like structure layer increase with increasing 

temperature. A 50% increase of the mixed carbonate layer was measured between the sample annealed 

at 600°C and the one annealed at 700°C. The carbonate layer was five times thicker on the surface of 

the sample annealed at 800°C than the one annealed at 700°C. The thickness of the needle-like 

structure layer more than tripled between the sample annealed at 600°C and the one annealed at 700°C. 

A further doubling of the thickness of that layer occurred between the sample annealed at 700°C and 

the ones annealed at 800°C.  
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Table 10.7. Maximum thickness of the (BaxSr1-x)CO3 and needle-like structure layers as a function of 
annealing temperature of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 67 mol% CO2, 25 mol% O2 and  

8 mol% N2 for 200 hours. 

Thickness Annealing 
temperature (°C) (BaxSr1-x)CO3 layer 

(μm) 
Needle-like structure 

layer (μm) 
600 0,7 2,5

700 1 9

800 5,5 22

Here also, cobalt oxide inclusions are observed in the needle-like structure in all samples. In the sample 

annealed at 600°C Figure 10.17 (A), these inclusions are very large and are found near the surface of 

the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet. The two different cobalt oxide phases present in this inclusion, i.e. 

CoO in the centre of Co3O4 (as discussed in Chapter 10.7), are distinctly visible. Mixed barium and 

strontium carbonate phases are also found in the needle-like structure layer for the sample annealed at 

800°C, as seen in Figure 10.18 (B). This might be due to the fact that, during annealing, the reaction 

zone did not stop at the interface between the needle-like structure and the mixed carbonate layer and 

that carbonates formed within the perovskite matrix material of the needle-like structure. 

(A):  (B): 

Figure 10.17. SEM micrographs of the cross section of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 
67% CO2, 25% O2 and 8% N2 for 200 hours: (A) at 600°C and (B) at 700°C.
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Figure 10.18. SEM micrographs of the cross section of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 
67% CO2, 25% O2 and 8% N2 at 800°C for 200 hours.  

The thicknesses of both the mixed barium and strontium carbonate layer and the needle-like structure 

layer of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 67 mol% CO2, 25 mol% O2 and 8 mol% N2 for 

500 hours were found to increase with increasing temperature, as seen in Table 10.8 and Figure 10.17. 

The thickness of the mixed carbonate layer of the sample annealed at 800°C was measured to be six 

times thicker than that of the sample annealed at 700°C, and the needle-like structure layer more than 

twice as thick. Furthermore, cobalt oxide inclusions can be observed in the needle-like structure in all 

samples and also at the interface between the needle-like structure and the mixed carbonate layer in the 

sample annealed at 800°C (Figure 10.19 (B)).  

Table 10.8. Maximum thickness of the (BaxSr1-x)CO3 and needle-like structure layers as a function of 
annealing temperature of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 67 mol% CO2, 25 mol% O2 and  

8 mol% N2 for 500 hours. 

Thickness Annealing 
temperature (°C) (BaxSr1-x)CO3 layer 

(μm) 
Needle-like structure 

layer (μm) 
700 1,5 13

800 9 33
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(A):  (B): 

Figure 10.19. SEM micrographs of the cross section of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 
67% CO2, 25% O2 and 8% N2 for 500 hours: (A) at 700°C and (B) at 800°C.

The thicknesses of the mixed barium and strontium carbonate layer as well as the needle-like structure 

layer were found to increase also with increasing annealing time. An increase in thickness of around 

50% for the needle-like structure layer and around 60% for the mixed carbonate layer were measured 

between the sample annealed in 67 mol% CO2, 25 mol% O2 and 8 mol% N2 at 800°C for 200 hours and 

the one annealed for 500 hours. A 50% increase of both layers was observed between the samples 

annealed at 700°C for 200 hours and the ones annealed for 500 hours. Likewise, an increase in needle 

thickness was induced by an increase in annealing temperature and time.  

10.3 FactSageTM thermo-chemical calculations 

The FactSageTM thermo-chemical software and databases [137], by Thermfact/CRCT (Montreal, 

Canada) and GTT-Technologies (Aachen, Germany), was used to predict phase formations on the 

surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La0,58Sr0,4Co0,2Fe0,8O3-δ, La2NiO4+δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ

pellets exposed to one of the annealing atmospheres selected for this work, i.e. 67 mol% CO2, 25 mol% 

O2 and 8 mol%. No data concerning these materials was available in the FactSageTM thermodynamic 

databases, therefore the individual components of these materials were used to predict the 

thermodynamic equilibriums in the systems investigated. 

In a first step, the partial pressure of oxygen in the system was determined at each annealing 

temperature, i.e. 600°C, 700°C and 800°C. This PO2 value, corresponding to the atmosphere present at 

the surface of the pellets, was determined to be log(PO2)=-0.65 in the atmosphere 67% CO2, 25% O2

and 8% N2 respectively in the temperature range of between 600°C and 800°C. The surface of each 

material is demarcated on the graphs showing the activities of the different phases formed as a function 

of the oxygen partial pressure in the system (Figure 10.20 to Figure 10.25).  
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Figure 10.20 shows the activities of the phases formed in the La2NiO4+δ material, in an atmosphere 

composed of 67% CO2, 25% O2 and 8% N2 at 800°C, calculated by FactSage as a function of the 

oxygen partial pressure in the system. The lanthanum and nickel carbonates were not found to be stable 

in the conditions selected, which is in agreement with the experimental results. FactSage predicted the 

formation of nickel oxide (NiO) and lanthanum oxide (La2O3). However, only the NiO was found in 

the pellets after annealing in all conditions, which shows the limits of theoretical calculations.  

Figure 10.20. Oxygen partial pressure dependence of the activities of the phases formed in La2NiO4+δ
in the atmosphere 67% CO2, 25% O2, 8% N2 at 800°C. 

The activities of the phases formed in the La0,58Sr0,4Co0,2Fe0,8O3-δ pellets, in the atmosphere 67% CO2, 

25% O2 and 8% N2 at 800°C, calculated by FactSage as a function of oxygen partial pressure are 

shown in Figure 10.21. The lanthanum, cobalt and iron carbonates were found to be unstable in the 

conditions selected, which corroborates the experimental results. However, FactSage predicted the 

formation of strontium carbonate, which was not observed on the surface of the La0,58Sr0,4Co0,2Fe0,8O3-δ

samples after the annealing experiments. Likewise, lanthanum oxide (La2O3) was expected to be 

formed from the FactSage calculation but was not present in the annealed pellets.  
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Figure 10.21. Oxygen partial pressure dependence of the activities of the phases formed in 
La0,58Sr0,4Co0,2Fe0,8O3-δ in the atmosphere 67% CO2, 25% O2, 8% N2 at 800°C. 

The FactSage software was used to determine the activities of the phases formed in the 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets in the atmosphere 67% CO2, 25% O2 and 8% N2 at 800°C as a function 

of oxygen partial pressure, as shown in Figure 10.22. The lanthanum, cobalt and iron carbonates were 

found to be unstable in the conditions selected, again in agreement with the experimental results. 

However, FactSage predicted the formation of strontium carbonate, which was not present on the 

surface of the Pr0,58Sr0,4Co0,2Fe0,8O3-δ specimens after the annealing experiments. Likewise, 

praseodymium oxide (PrO2), which was expected to be formed from the FactSage calculations, was not 

observed.  
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Figure 10.22. Oxygen partial pressure dependence of the activities of the phases formed in 
Pr0,58Sr0,4Co0,2Fe0,8O3-δ in the atmosphere 67% CO2, 25% O2, 8% N2 at 800°C. 

FactSage predicted the formation of both barium and strontium carbonates on the surface of the 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets at all temperatures (Figure 10.23, Figure 10.24 and Figure 10.25). With 

decreasing PO2, which corresponds to a gradual progression into the material from the surface of the 

samples, the activity of these carbonates decreased, leading to the formation of barium and strontium 

oxides. Although no data about the (Ba1-xSrx)CO3 formed on the surface of the samples during the 

annealing experiments was available in the FactSage thermodynamic databases, it can be assumed that 

the activity of this compound is found between the activities of the individual carbonates (BaCO3 and 

SrCO3), the data of which is available.  
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Figure 10.23. Oxygen partial pressure dependence of the activities of the phases formed in 
Ba0,5Sr0,5Co0,8Fe0,2O3-δ in the atmosphere 67% CO2, 25% O2, 8% N2 at 600°C. 

Figure 10.24. Oxygen partial pressure dependence of the activities of the phases formed in 
Ba0,5Sr0,5Co0,8Fe0,2O3-δ in the atmosphere 67% CO2, 25% O2, 8% N2 at 700°C. 
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Figure 10.25. Oxygen partial pressure dependence of the activities of the phases formed in 
Ba0,5Sr0,5Co0,8Fe0,2O3-δ in the atmosphere 67% CO2, 25% O2, 8% N2 at 800°C. 

10.4 Annealing in water vapour-containing atmospheres 

In the “wet recycling” option of the oxyfuel process, the permeate side of the MIEC membrane will be 

in contact with CO2 as well as water vapour from the recycled flue gas. In order to assess the stability 

of the materials selected in this work i.e. La0,58Sr0,4Co0,2Fe0,8O3-δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La2NiO4+δ

and Pr0,58Sr0,4Co0,2Fe0,8O3-δ in CO2- and H2O-containing atmospheres, a series of annealing 

experiments was conducted at high temperatures. At first, the atmosphere 55 mol% CO2, 28 mol% O2, 

12 mol% H2O and 5 mol% N2 was chosen in order to test the stability of the material selected in an 

atmosphere with a relatively low water vapour concentration. These annealing experiments were 

carried out at 600°C, 700°C and 800°C for 200 hours. For the second annealing experiment in CO2- 

and H2O-containing atmospheres, the atmosphere believed to be the closest to operating conditions, on 

a humid basis, i.e. 50 mol% CO2, 25 mol% O2, 20 mol% H2O and 5 mol% N2 was selected. These 

annealing experiments were carried out at 600°C, 700°C and 800°C for 200 hours and 500 hours.  

After annealing La0,58Sr0,4Co0,2Fe0,8O3-δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La2NiO4+δ

pellets in CO2- and H2O-containing atmospheres, a silicate layer was formed on the surface of all the 

samples. A reaction with silica (SiO2) occurred on the surface of the pellets to form silicates. The 

contamination source was found to be the quartz glass tube and sample holder from which silica 
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evaporated due to the high partial pressure of water vapour and high temperature conditions. Moreover, 

silica volatile species are known to react with metal oxides. After oxygen permeation experiments on 

La0,60Sr0,4Co0,2Fe0,8O3-δ [138], the surface of the membrane was contaminated with silica. The origin of 

this contamination was identified as being siloxane-containing grease used in the manual valves of the 

set-up. As siloxanes evaporate very easily, they were transported towards the surface of the membrane 

with the gas flow. 

Volatile silicon based species are formed from the quartz glass components of the annealing test set-up 

when exposed to high water vapour-containing atmospheres at high temperatures. This process is 

directly related to the partial pressure of water vapour as seen in Equation 10.1 and Equation 10.2 

below giving the volatilisation reaction [139,140].

( )ggs OHSiOHSiO 4)(2)(2 )(2 ↔+ (Equation 10.1) 

( )ggs OHSiOOHSiO 2)(2)(2 )(↔+ (Equation 10.2) 

Si(OH)4 is the predominant specie formed below the temperature of 1100°C, above which SiO(OH)2 is 

predominantly formed [140]. Si(OH)4, formed when water vapour was present, reacted with the 

perovskite-type membrane material to form a silicate layer, which constitutes a diffusion barrier 

preventing oxygen adsorption on the surface of the high purity oxygen separation membrane and 

hampers further permeation through the membrane. The poisoning of perovskite-type membrane 

materials by silica rules out the use of silicon based gaskets for their sealing in the gas separation 

device. Moreover, some coal types (e.g. brown and black coal) contain significant amounts of silica. 

The concentration of silica in brown coal and in black coal ranges between 6.10-3 weight% and  

1,5 weight% and between approximately 1 weight% and 6 weight% respectively [141]. In the option 

for the oxyfuel process with flue gas recycling, the silica present in the fly ash after combustion of 

these silica-containing coal grades could be deposited on the sweep-side of the oxygen permeation 

membranes. This could represent an important issue for the stability of these MIEC membrane 

materials.  

No reaction other than that with silica occurred on the surface of the La2NiO4+δ, La0,58Sr0,4Co0,2Fe0,8O3-δ

and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets. However, after annealing the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples in 

CO2- and H2O-containing atmospheres, the mixed barium and strontium carbonate as well as the 

needle-like structure layers were again present as after annealing in CO2-containing atmospheres 

(Figure 10.28). 
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10.4.1 55 mol% CO2, 28 mol% O2, 12 mol% H2O and 5 mol% N2 

Figure 10.26. shows the cross section of the Pr0,58Sr0,4Co0,2Fe0,8O3-δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and 

La2NiO4+δ pellets annealed in 55 mol% CO2, 28 mol% O2, 12 mol% H2O and 5 mol% N2 at 800°C for 

200 hours. Although no degradation of the microstructure of their surface was observed, secondary 

oxide phases were present throughout all samples annealed at every temperature. 

(A):  (B): 

(C): 

Figure 10.26. SEM micrographs of the cross section of pellets annealed in 55%CO2, 28%O2, 
12%H2O, 5%N2 at 800°C for 200 hours: (A) La0,58Sr0,4Co0,2Fe0,8O3-δ,(B) Pr0,58Sr0,4Co0,2Fe0,8O3-δ and 

(C) La2NiO4+δ.

Table 5.19 and Figure 10.27 show that the thicknesses of the barium and strontium carbonate layer, the 

needle-like structure layer as well as the silicate layer of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in  

55 mol% CO2, 28 mol% O2, 12 mol% H2O and 5 mol% N2 for 200 hours all increase with increasing 

temperature. After annealing at 800°C, the mixed carbonate layer was three times thicker and the 

needle-like structure layer five times thicker than after annealing at 700°C. A 50% increase of the 

silicate layer was measured between the sample annealed at 700°C and the one annealed at 800°C. 
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Table 10.9. Maximum thickness of the (BaxSr1-x)CO3, the needle-like structure as well as the barium 
and strontium silicate layers as a function of annealing temperature of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets 

annealed in 55 mol% CO2, 28 mol% O2, 12 mol% H2O and 5 mol% N2 at 800°C for 200 hours. 

Thickness Annealing 
temperature (°C) (BaxSr1-x)CO3

layer (μm) 
Needle-like structure 

layer (μm) 
Silicate layer 

(μm) 
700 23 2,5 1

800 67 12 1,5

An increase in annealing temperature also induced an increase in needle thickness. Moreover, barium 

and strontium carbonate phases are present in the needle-like structure of the samples annealed at 

800°C, as seen in Figure 10.27. Cobalt oxide inclusions can also be observed in the needle-like 

structure of all samples. An increase in the concentration of these inclusions seems to occur near the 

mixed carbonate layer of the sample annealed at 800°C as seen in Figure 10.28. A 0.5μm thick cobalt 

oxide layer was formed at the interface between the needle-like structure and the mixed carbonate layer 

in the sample annealed at 800°C.  

(A):  (B): 

Figure 10.27. SEM micrographs of the cross section of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 
55%CO2, 28%O2, 12%H2O, 5%N2 for 200 hours: (A) at 700°C and (B) at 800°C.
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Figure 10.28. SEM micrograph of the cross section of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ
pellet annealed in 55%CO2, 28%O2, 12%H2O, 5%N2 at 800°C for 200 hours.

It should be noted that the interfaces between the silicate and carbonate layers and between the 

carbonate and needle-like structure layers are no longer clearly demarcated, as seen in  

Figure 10.27 (B). Silicate phases as well as needles are present in the mixed carbonate layer. It seems 

that the silicate layer originates from the reaction of silica with the mixed barium and strontium 

carbonate located on the surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets. The perovskite matrix material 

between the needles also seems to react with CO2, thus increasing the thickness of the (BaxSr1-x)CO3

layer within the needle-like structure layer. Moreover, it appears that a decomposition of the needles, 

which offer a high surface area, occurs leading to the formation of cobalt oxide and mixed barium and 

strontium carbonate. This would explain the high concentration of cobalt oxide inclusions and the low 

concentration of needles under the cobalt oxide layer. 
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Figure 10.29. SEM micrograph and elemental mapping of the cross section of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ
pellet annealed in 55%CO2, 28%O2, 12%H2O, 5%N2 at 800°C for 200 hours. 
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An elemental mapping of the cross section of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 55 mol% 

CO2, 28 mol% O2, 12 mol% H2O and 5 mol% N2 at 800°C for 200 hours was carried out with SEM in 

order to determine the distribution of the elements present, i.e. Ba, Sr, Co, Fe, C and O. The three 

distinct areas of the surface of the sample, i.e. the silicate, the carbonate and the needle-like structure 

layers, can be distinguished in the elemental mapping (Figure 10.29). The top layer of the specimen, 

corresponding to the silicate layer, exhibits high strontium, barium and oxygen contents. Under this 

layer, high contents of barium, strontium as well as carbon are found in the mixed carbonate layer. The 

intensity of barium is stronger in the mixed carbonate layer than in the silicate layer, whereas the 

intensity of strontium is stronger in the silicate layer. In the needle-like structure, two separate phases 

seem to be present i.e. the bright areas corresponding to cobalt oxide inclusions, the darker area the 

matrix material. The cobalt oxide layer formed under the mixed carbonate layer can also be seen 

clearly.  

10.4.2 50 mol% CO2, 25 mol% O2, 20 mol% H2O, 5 mol% N2

In the “wet recycling” option of the oxyfuel process, the flue gas will be re-circulated onto the 

permeate side of the MIEC membrane without separating the water vapour present from the rest of the 

gas stream. The composition of this flue gas is believed to be close to the composition selected for this 

annealing experiment, i.e. 50 mol% CO2, 25 mol% O2, 20 mol% water vapour, 5 mol% N2. 

After annealing La0,58Sr0,4Co0,2Fe0,8O3-δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La2NiO4+δ

pellets in this atmosphere for 200 hours and 500 hours at 600°C, 700°C and 800°C, a silicate layer was 

present on the surface of each sample. Besides, the mixed barium and strontium carbonate as well as 

the needle-like structure layer were also observed in the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples.  

A homogenous silicate layer, the composition of which could not be determined precisely, was built on 

the surface of the La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets, as can be seen in Figure 

10.30 and Figure 10.31. However, the EDS spectrum of each sample exhibits the peaks corresponding 

to the elements constituting these materials as well as silicon. It is difficult to identify the composition 

of the silicate layer as its thickness is very low i.e. below 1µm after annealing for 500 hours at 800°C, 

and the measurement might include peaks corresponding to the La0,58Sr0,4Co0,2Fe0,8O3-δ and 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ base material present under this layer. Moreover, cobalt and iron oxide 

inclusions were found in every La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ specimen after 

annealing at every temperature and dwelling time. 
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(A):  (B): 

 (C):  (D): 

Figure 10.30. SEM micrographs and light microscopy pictures of La0,58Sr0,4Co0,2Fe0,8O3-δ pellets 
annealed in 50% CO2, 25% O2, 20% H2O, 5% N2 at 800°C: (A), (B) and (C) for 500 hours and  

(D) for 200 hours. 

(A):  (B): 
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(C):  (D): 

Figure 10.31. SEM micrographs and light microscopy pictures of Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets 
annealed in 50% CO2, 25% O2, 20% H2O, 5% N2: at 700°C (A) for 200 hours and (B) for  

500 hours; (C) and (D) at 800°C for 500 hours. 

The silicate layer covering the surface of the La2NiO4+δ pellets was determined to be lanthanum silicate 

by XRD analysis (Figure 10.32) and identified as La10(SiO4)6O3. Figure 10.33 (B) shows a lanthanum 

silicate crystal growing out of the surface of the La2NiO4+δ material. The EDS spectra of the rest of the 

silicate layer present on the surface exhibits peaks corresponding to lanthanum and nickel silicate. The 

presence of the nickel peak, which has a relatively low intensity, could originate from the La2NiO4+δ

material under this layer. Nickel oxide inclusions are found throughout the material as seen in Figure 

10.33 (D). 
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Figure 10.32. Powder XRD spectra of the La2NiO4+δ pellet annealed in 50% CO2, 25% O2, 20% H2O, 
5% N2 at 800°C for 200 hours. 
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(A):  (B): 

(C):  (D): 

Figure 10.33. (A), (B) and (C) SEM micrographs and (D) light microscopy picture of a La2NiO4+δ
pellet annealed in 50% CO2, 25% O2, 20% H2O, 5% N2 at 800°C for 500 hours.

The thickness of the silicate layers formed on the surface of the La0,58Sr0,4Co0,2Fe0,8O3-δ, 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La2NiO4+δ pellets annealed in 50 mol% CO2, 25 mol% O2, 20 mol% water 

vapour, 5 mol% N2 for 200 hours and 500 hours at 600°C, 700°C and 800°C could not be measured 

precisely by light microscopy observation. However it was estimated to be approximately 1µm. The 

thickness of the silicate layer formed on the surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets was found to 

be considerably higher, as can be seen in Table 10.10 and Table 10.11. 

Table 10.10. Maximum thickness of the (BaxSr1-x)CO3, the needle-like structure as well as the barium 
and strontium silicate layers as a function of annealing temperature of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets 

annealed in 50% CO2, 25% O2, 20% H2O, 5% N2 for 200 hours. 
Thickness 

Annealing 
temperature (°C) (BaxSr1-x)CO3

layer (µm) 
Needle-like structure 

layer (µm) 
Silicate layer 

(µm) 
700 4 15 2 

800 18 61 2,4 
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(A): (B):  

(C): 

Figure 10.34. Light microscopy picture and SEM micrograph of the cross section of 
Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 50% CO2, 25% O2, 20% H2O, 5% N2 for 200 hours at: 

(A) 600°C, (B) 700°C and (C) 800°C. 

An EDS analysis of the layer covering the surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets detected 

barium, strontium and silicon peaks. The composition of this layer could not be determined by XRD as 

the peaks corresponding to the silicate formed could not be identified. The mixed barium and strontium 

carbonate as well as the needle-like structure layers were found under this silicate layer. The thickness 

of these layers was found to increase with increasing temperature as can be seen in Table 10.10 and 

Figure 10.34. An increase in annealing temperature also induced an increase in needle thickness. The 

carbonate and needle-like structure layers of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ specimen annealed in 50 mol% 

CO2, 25 mol% O2, 20 mol% water vapour, 5 mol% N2 for 200 hours were four times thicker after 

annealing at 800°C than at 700°C. A 25% increase was measured between the thickness of the silicate 

layer of the sample annealed at 700°C and the one annealed at 800°C.  
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Furthermore, the interfaces between the silicate and carbonate layers and between the carbonate and 

needle-like structure layers are not clearly defined, as seen in Figure 10.34 (C). Silicate phases as well 

as needles are present in the mixed carbonate layer. A reaction between CO2 and the perovskite matrix 

material of the needle-like structure also occurs, thus increasing the thickness of the (BaxSr1-x)CO3

layer within the needle-like structure layer. Besides, cobalt oxide inclusions can be observed in the 

needle-like structure in all samples. A cobalt oxide layer was formed at the interface between the 

needle-like structure and the mixed carbonate layer in the sample annealed at 800°C (Figure 10.34 (C)).  

(A): 

(B):  
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(C): 

Figure 10.35. SEM micrograph and light microscopy picture of the cross section of a 
Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 50% CO2, 25% O2, 20% H2O, 5% N2 for 500 hours at: 

(A) 600°C, (B) 700°C and (C) 800°C. 

As seen in Table 10.11 and Figure 10.35, the thicknesses of the mixed barium and strontium carbonate 

layer, the needle-like structure layer as well as the silicate layer of Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples 

annealed in 50 mol% CO2, 25 mol% O2, 20 mol% water vapour, 5 mol% N2 for 500 hours were found 

to increase with increasing temperature. A 55% increase of the mixed carbonate layer was measured 

between the sample annealed at 700°C and the one annealed at 800°C. The needle-like structure layer 

of the sample annealed at 800°C was more than five times thicker than the one annealed at 700°C. 

Likewise, the silicate layer was four times thicker. Although cobalt oxide inclusions were observed 

throughout all the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples, the cobalt oxide layer present in the previous 

samples was no longer observed after annealing at 800°C for 500 hours. 

Table 10.11. Maximum thickness of the (BaxSr1-x)CO3, the needle-like structure as well as the barium 
and strontium silicate layers as a function of annealing temperature of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets 

annealed in 50% CO2, 25% O2, 20% H2O, 5% N2at 800°C for 500 hours. 

Thickness Annealing 
temperature (°C) (BaxSr1-x)CO3

layer (μm) 
Needle-like structure 

layer (μm) 
Silicate layer 

(μm) 
700 14 16 2,5

800 21 90 10

Additionally, an increase in annealing time caused an increase in the thicknesses of the mixed barium 

and strontium carbonate layer, the needle-like structure layer as well as the silicate layer. In the case of 

the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 50 mol% CO2, 25 mol% O2, 20 mol% water vapour,  

5 mol% N2 at 700°C for 500 hours, the carbonate layer was more than four times thicker than that of 

the sample annealed for 200 hours (Table 10.10 and Table 10.11). The thickness of the needle-like 

structure layer was almost constant as the increase was of less than 1%. The silicate layer showed a 
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25% increase. As for the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed at 800°C, a 15% and a 50% increase of 

the mixed carbonate layer and needle-like structure layer respectively were measured between the 

samples annealed for 200 hours and those annealed for 500 hours. Likewise, the silicate layer was four 

times thicker after annealing for 500 hours than after annealing for 200 hours. 

Figure 10.36. SEM micrograph of the cross section of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ
pellet annealed in 50% CO2, 25% O2, 20% H2O, 5% N2 at 800°C for 500 hours. 

The top layer found on the surface of all Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples was determined to be 

composed of barium and strontium silicate by EDS analysis. As seen in Figure 10.36, the silicate layer 

is composed of two different phases. In order to determine the composition of these two phases 

precisely, EDS point analysis measurements of the barium and strontium silicate layer were carried out. 

The chemical composition of the mixed silicate layer was determined to be Ba0,63Sr0,37SiO4 and 

Ba0,46Sr0,54SiO4 for the bright white phase (phase 1) and the light grey phase (phase 2) respectively. The 

silicate layer was formed on top of the (BaxSr1-x)CO3 layer.  

Table 10.12. Chemical composition (in atomic%) of the two barium and strontium silicate phases. 

Element Phase 1 Phase 2 

Ba 18,20 13,70 

Sr 10,80 16,20 

Si 13,70 14,30 

O 56,90 55,70 

After the formation of the carbonate layer started on the surface of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets, a 

reaction with silica (SiO2) occurred, and a light grey silicate phase with the composition 
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Ba0,46Sr0,54SiO4 which is very close to the barium and strontium ratios of Ba0,43Sr0,57CO3 as well as a 

bright white phase which has a higher barium content and a lower strontium content, were formed.  

The SEM micrographs of the surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 50 mol% CO2, 

25 mol% O2, 20 mol% water vapour, 5 mol% N2 at 700°C and 800°C for 500 hours (Figure 10.37) 

show that the formation of the silicate layer occurs by the growth of nodules out of the surface of the 

specimen. The individual silicate crystals agglomerated into these nodules, the diameters and heights of 

which are seen to increase with increasing temperature. 

(A):  

(B): 

Figure 10.37. SEM micrographs of the surface of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 50% 
CO2, 25% O2, 20% H2O, 5% N2 for 500 hours: (A) at 700°C and (B) at 800°C. 

After annealing in 50 mol% CO2, 25 mol% O2, 20 mol% water vapour, 5 mol% N2 at 700°C and 800°C 

for 200 hours as well as 500 hours, the barium and strontium silicate layer was observed to spall off the 

surface of the pellets, as observed in Figure 10.37 and Figure 10.38. Figure 10.38 shows two areas: 

Area 1 and Area 2 present on the surface of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed at 800°C for  

500 hours, correspond to the mixed carbonate and silicate layer respectively. The silicate layer presents 

large cracks and spalled off a large area of the surface of the sample which reveals the carbonate layer 
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formed beneath the external silicate layer. In Figure 10.37 (B) of the surface of a  

Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed at 800°C for 500 hours, the silicate layer is detached from the 

mixed carbonate layer. 

Figure 10.38. SEM micrograph of the surface of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ
pellet showing the spallation of the external silicate layer after annealing 

in 50% CO2, 25% O2, 20% H2O, 5% N2 at 800°C for 500 hours. 

10.4.3 25 mol% O2, 20 mol% H2O, 55 mol% N2

In order to check whether water alone has an effect on the degradation of the materials selected, a series 

of 200-hour annealing experiments was carried out at 600°C, 700°C and 800°C in an atmosphere 

composed of 25 mol% O2, 20 mol% H2O, 55 mol% N2. Although all the samples developed a silicate 

layer on their surface (Figure 10.39), no other degradation was observed. XRD analysis could not 

determine the composition of the barium and strontium silicate present on the surface of the BSCF50 

samples or that of the silicate layer formed on the surface of the LSCF58 and PSCF58 samples. 
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(A):  (B): 

(C):  (D): 

Figure 10.39. SEM micrographs of the cross fracture of: (A) La2NiO4+δ, (B) Ba0,5Sr0,5Co0,8Fe0,2O3-δ, 
(C) La0,58Sr0,4Co0,2Fe0,8O3-δ and (D) Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets annealed in 25% O2, 20% H2O, 

55% N2 at 800°C for 200 hours. 

10.5 Volatilisation of chromium species 

10.5.1 Theory 

Chromium is one of the main elements in steels and alloys used in high temperature applications such 

as construction materials in coal-fired power plants. When exposed to high temperatures in oxygen-

containing atmospheres, a stable protective chromia (Cr2O3) scale, which increases the corrosion 

resistance of these chromium steel alloys, is built on the surface of the material. The volatilisation of 

chromium species becomes a significant issue when this chromia layer is exposed to high temperatures 

as well as atmospheres with a high oxygen partial pressure. This effect is even more pronounced in 

water vapour-containing atmospheres.  
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At high Po2, the main volatile chromium specie formed from Cr2O3 at high oxygen partial pressure is 

CrO3(g). This process is linked to the oxygen partial pressure present, as seen in Equation 10.3 below 

[139]. 

)(3)(2)(32 4321 ggs CrOOOCr ↔+ (Equation 10.3) 

The partial pressure of CrO3 is directly related to the partial pressure of oxygen. The evaporation 

process of chromium species will be increased in oxygen-rich atmospheres. Thus, the evaporation rate 

of chromia will be higher on the feed-side of the membrane, which is the side with a high vapour 

pressure of oxygen. 

Moreover, the presence of water vapour accelerates the degradation of chromia forming alloys. The 

evaporation rate of these volatile chromium species was proven to increase in water vapour-containing 

atmospheres [142]. This is due to the formation of oxy-hydroxydes e.g. CrO2(OH)2 in the presence of 

water vapour, as described by Equation 10.4 [143]. 

)(22)(2)(2)(32 )(4321 gggs OHCrOOHOOCr ↔++ (Equation 10.4) 

A long term annealing experiment was carried out in which the pellets of La0,58Sr0,4Co0,2Fe0,8O3-δ, 

La2NiO4+δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ were placed next to a Cr2O3 disk and 

annealed in air for 1000 hours in order to check whether an interaction would occur between the 

construction materials of a coal-fired power plant and the oxygen permeation membrane materials 

selected.  

10.5.2 Results 

During annealing, a chromium-containing layer was formed on the surface of the 

La0,58Sr0,4Co0,2Fe0,8O3-δ (Figure 10.42), La2NiO4+δ (Figure 10.46), Ba0,5Sr0,5Co0,8Fe0,2O3-δ (Figure 

10.44) and Pr0,58Sr0,4Co0,2Fe0,8O3-δ (Figure 10.40) pellets. EDS and XRD analysis enabled the chemical 

composition of this layer to be determined for each sample annealed. EDS point analysis measurements 

of the surface of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ sample detected barium chromium oxide phases, and which 

were found to be barium chromate (BaCrO4) by XRD analysis (Figure 10.45). For the 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ specimen, mainly strontium chromium oxide was detected by EDS. The 

reflexions of strontium chromate (SrCrO4) and of the cobalt chromite (CoCr2O4) spinel were found in 

the XRD spectrum of the surface of the Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellet (Figure 10.41). In the 
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La0,58Sr0,4Co0,2Fe0,8O3-δ specimen, EDS analysis also detected primarily strontium chromium oxide. 

The XRD spectrum of the surface of the La0,58Sr0,4Co0,2Fe0,8O3-δ pellet exhibited the reflexions of 

strontium chromate (SrCrO4) and iron cobalt chromite (FeCoCrO4) spinel (Figure 10.43). EDS point 

analysis measurements of the surface La2NiO4+δ sample detected lanthanum as well as nickel 

chromium oxide, which was determined to be lanthanum chromium oxide (LaCrO3) and the nickel 

chromite (NiCr2O4) spinel by XRD analysis (Figure 10.47).  

(A):  (B): 

(C):  (D): 

Figure 10.40. SEM micrographs of a Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellet annealed in air at 800°C for 
1000h next to a Cr2O3 pressed pellet: (A) and (B) surface, (C) cross fracture and (D) light 

microscopy picture of the cross section.
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Figure 10.41. Powder XRD spectra of the Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellet annealed in air at 800°C next 
to a Cr2O3 disk in air for 1000 hours. 

(A):  (B): 

(C): 

Figure 10.42. SEM micrographs of a La0,58Sr0,4Co0,2Fe0,8O3-δ pellet annealed in air at 800°C for 
1000h next to a Cr2O3 pressed pellet: (A) surface, (B) cross fracture and (C) light microscopy 

picture of the cross section. 
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Figure 10.43. Powder XRD spectra of the La0,58Sr0,4Co0,2Fe0,8O3-δ pellet annealed in air at 800°C next 
to a Cr2O3 disk in air for 1000 hours. 

After annealing in air at 800°C for 1000 hours next to a Cr2O3 pressed pellet, the entire surface of the 

La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets was contaminated with chromium-

containing oxides (Figure 10.420 and Figure 10.42). However, after 1000 hours, a continuous layer was 

not formed. Chromium oxide particles, which nucleate and grow out of the surface of these pellets, 

were observed.  

A continuous barium chromate layer was formed over the entire surface of the BSCF50 pellet, after 

annealing in air at 800°C for 1000 hours next to a Cr2O3 pressed pellet (Figure 10.44). The chromium 

oxide particles are observed to nucleate and grow out of the surface of the specimen. There seems to be 

an increase in the thickness of the barium chromate layer on the grain boundaries, as can be seen in 

Figure 10.44 (C). Moreover, a needle-like structure is formed in the bulk of the BSCF50 pellet as seen 

in Figure 10.44 (D). An EDS investigation of the needles found them to be composed of a (Ba, Sr, Co 

and Fe)-containing oxide with no chromium incorporated and with a barium content lower than that of 

the original Ba0,5Sr0,5Co0,8Fe0,2O3-δ material. A depletion of the concentration of barium in the 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ material seems to have caused these needles to build up at its interface with the 

barium chromate layer.  
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(A):  (B): 

(C):  (D): 

Figure 10.44. SEM micrographs of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in air at 800°C for 
1000h next to a Cr2O3 pressed pellet: (A) and (B) surface, (C) cross fracture and (D) cross section.
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Figure 10.45. Powder XRD spectra of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in air at 800°C next 

to a Cr2O3 disk in air for 1000 hours. 
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(A):  (B): 

(C):  (D): 

Figure 10.46. SEM micrographs of a La2NiO4+δ pellet annealed in air at 800°C for 1000h next to a 
Cr2O3 pressed pellet: (A) and (B) surface, (C) cross fracture and (D) cross section.

After annealing in air at 800°C for 1000 hours next to a Cr2O3 pressed pellet, a continuous layer of 

chromium-containing oxides was formed over the entire surface of the La2NiO4+δ pellet (Figure 10.46). 

The analysed lanthanum chromium oxide and nickel chromite appear to grow into the specimen as seen 

in Figure 10.46 (C) and (D).  

The maximum thickness of the chromium oxide layer on the surface of the La0,58Sr0,4Co0,2Fe0,8O3-δ, 

La2NiO4+δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets can be found in Table 10.13 

below. The BSCF50 specimen exhibits the thickest chromium oxide layer at 3µm. The thicknesses of 

the other layers were too thin to be measured precisely. They were, however, less than 1µm thick.  
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Figure 10.47. Powder XRD spectra of the La2NiO4+δ pellet annealed in air at 800°C next to a Cr2O3

disk in air for 1000 hours. 

Table 10.13. Thickness of the chromium oxide layer on the surface of the La0,58Sr0,4Co0,2Fe0,8O3-δ, 
La2NiO4+δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets after annealing next to a Cr2O3

disk in air at 800°C for 1000 hours. 

Sample Thickness (µm) 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ 3 

La0,58Sr0,4Co0,2Fe0,8O3-δ <1 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ <1 

La2NiO4+δ <1 

10.5.3 Discussion 

The fact that all the materials investigated reacted with chromia demonstrates the potential problems of 

vaporisation and transport of chromium species from the chromia scale of the components of a coal-

fired power plant to the membrane. The reduction of gaseous chromium oxide and oxy-hydroxide 

species to solid Cr2O3 phase would be in competition with the reduction of O2 on the surface of the 

MIEC membranes. Thus, the chromium-containing oxide layer formed on the surface of the membrane 

material during operation would constitute a diffusion barrier preventing oxygen permeation through 

the high purity oxygen separation membrane.  

The degradation of the permeation performances of a membrane by chromium oxide deposition and 

poisoning is a serious issue for its use in coal-fired power plants. In this work the stability of materials 

selected in relation to chromium was investigated in a “dry” atmosphere. However, it would be 

interesting, in a further study, to investigate the stability of these materials when in contact with volatile 

oxy-hydroxides, in water vapour-containing atmospheres. 
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10.6 Co enrichment at the grain boundaries 

After the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets were subjected to the thermo-chemical stability tests, a bright 

coloured secondary phase seemed to build on the grain boundaries of all samples annealed in every 

atmosphere, at every temperature and for every dwelling time. This phase, which was barely visible 

after annealing in air for 200 hours (Figure 10.48 (A)), was found to coarsen with increasing annealing 

time and temperature. Besides, this secondary phase seems to grow from the grain boundary inside the 

grain, as can be seen in Figure 10.48 (B) and Figure 10.49. Cobalt oxide inclusions are also observed 

mainly along the ground boundaries although they can also be found in the grains. Moreover, 

secondary phases are found around these cobalt oxide inclusions, as can been seen in Figure 10.49 and 

Figure 10.50. 

(A):  (B):  

Figure 10.48. SEM micrographs of the cross section of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed: (A) 
in air at 600°C for 200 hours and (B) in 43%O2, 43%CO2 and 14%N2 at 800°C for 200 hours. 

Table 10.14 gives the chemical compositions, determined by EDS point analysis measurements, of the 

phases present on the grain boundary and of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ material of a sample annealed 

in 43%O2, 43%CO2 and 14%N2 at 800°C for 200 hours. An increase in cobalt concentration of more 

than 12% and a decrease in iron content of more than 80% between the Ba0,5Sr0,5Co0,8Fe0,2O3-δ matrix 

material and the phase on the grain boundary was measured. Similar barium and strontium contents 

were found. As for the phase growing from the grain boundary into the grain, iron and cobalt contents 

similar to the phase on the grain boundary were found. A slight increase in barium and a decrease in 

strontium concentrations were, however, observed. 
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Table 10.14. Chemical composition (in atomic%) determined by EDS analysis of the phases present in 
the bulk of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 43%O2, 43%CO2 and 14%N2 at 800°C for 200 

hours. 

Phase 
Element On the grain 

boundary 
Growing into 

the grain 
BSCF50 
matrix 

Ba 12.9 13.7 12.0 

Sr 11.7 10.6 11.5 

Co  19.0 19.3 16.9 

Fe 0.8 0.7 4.4 

O 55.7 55.7 55.2 

(A):  (B):  

Figure 10.49. SEM micrographs of the cross section of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed: (A) 
in 50 mol% CO2, 25 mol% O2, 20 mol% H2O, 5 mol% N2 at 800°C for 500 hours and (B) in air at 

800°C for 1000 hours next to a Cr2O3 disk.. 

Large cobalt oxide inclusions as well as a considerable amount of secondary phases growing from the 

grain boundaries are observed in the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed in 50 mol% CO2, 25 mol% 

O2, 20 mol% H2O, 5 mol% N2 at 800°C for 500 hours (Figure 10.49 (A)) and in air at 800°C for 1000 

hours next to a Cr2O3 disk (Figure 10.49 (B)). The EDS point analysis spectrum of the phase present on 

the grain boundaries of the sample annealed in 50 mol% CO2, 25 mol% O2, 20 mol% H2O, 5 mol% N2

at 800°C for 500 hours shows that this phase has a lower concentration of strontium and iron as well as 

a higher concentration of cobalt than the Ba0,5Sr0,5Co0,8Fe0,2O3-δ material. 

As seen in Table 10.14 and Table 10.15, the phase growing on the grain boundary of the 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in air at 800°C for 1000 hours next to a Cr2O3 disk presents the 

same cobalt concentration as the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 43%O2, 43%CO2 and 

14%N2 at 800°C for 200 hours as well as a very similar iron content. It seems that the growth of this 
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phase is not influenced by the annealing atmosphere and that its development seems to be temperature 

and time dependant.  

Table 10.15. Chemical compositions (in atomic%) determined by EDS analysis of the phases present in 
the bulk of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in air at 800°C for 1000 hours next to a 

 Cr2O3 disk. 

Phase 
Element Growing from 

the boundary 
BSCF50 
matrix 

Ba 11.6 11.5 

Sr 12.6 11.7 

Co 19.0 16.9 

Fe 0.6 4.4 

O 56.2 55.5 

Figure 10.50. SEM micrograph of the surface of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet 
annealed in 50% CO2, 25% O2, 20% H2O, 5% N2 at 800°C for 200 hours. 

After annealing in 50 mol% CO2, 25 mol% O2, 20 mol% water vapour, 5 mol% N2 at 800°C for 200 

hours, the Ba0,5Sr0,5Co0,8Fe0,2O3-δ sample exhibited bright coloured secondary phases on the grain 

boundaries (Table 10.16 phase 1), around the cobalt oxide inclusions (Table 10.16 phase 5) as well as 

inclusions inside the grain (Table 10.16 phase 2). A secondary phase (Table 10.16 phase 4) slightly 

darker than the Ba0,5Sr0,5Co0,8Fe0,2O3-δ material was also found near some of the bright coloured phases. 

The bright coloured phases seem to be a perovskite with a higher cobalt content and a lower iron content 

than the Ba0,5Sr0,5Co0,8Fe0,2O3-δ material (Table 10.16 phase 3). The barium and strontium 

concentrations vary within the range of the measurement error. The darker phase has a cobalt content 

similar to the Ba0,5Sr0,5Co0,8Fe0,2O3-δ material. However a 30% and a 23% increase of iron and strontium 

concentrations, respectively, were observed. A 20% decrease of barium content was also measured. 
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Table 10.16. Chemical compositions (in atomic%) determined by EDS analysis of the phases present in 
the bulk of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 50% CO2, 25% O2, 20% water vapour, 5% N2 at 

800°C for 200 hours. 

Phase 
Element 

1 2 3 4 5 

Ba 11.9 12.1 11.9 9.3 12.1 

Sr 11.9 12.3 11.9 14.7 12.5 

Co 18.9 19.0 16.1 16.0 19.6 

Fe 1.3 1.5 4.4 5.7 1.0 

O 56.1 55.2 55.7 54.3 54.8 

The fact that the Ba0,5Sr0,5Co0,8Fe0,2O3-δ material exhibits a chemical demixing, which seems to be 

temperature and time dependent, is of great concern for its selection as a high purity oxygen separation 

membrane. Indeed, if this demixing occurs at such a fast rate during the annealing experiments, it will 

be even faster when applying a gradient of oxygen partial pressure across a Ba0,5Sr0,5Co0,8Fe0,2O3-δ

membrane during operation.  

When oxygen-ion-conducting perovskite-type oxides are subjected to oxygen chemical potential 

gradients, oxygen anions can migrate through the lattice. A simultaneous flow of electrons as well as 

mobile cations is established in the opposite direction to counterbalance the oxygen ion flow. However, 

cation diffusion in perovskite materials is many orders of magnitude lower than oxygen diffusion. A 

demixing of the material will occur if the cations have different diffusion coefficients [144].  

After about 700 hours at 1150 C in an O2/N2 gradient [109], La0.5Sr0.5Fe1−xCoxO3−δ (x=0, 0.5 and 1) 

membranes were found to exhibit a kinetic demixing near the surfaces in all samples. Moreover, the 

mobility of Co/Fe and La/Sr were found to be different, with Fe and Co being the most mobile cations. 

10.7 Phase analysis 

Secondary non-ion-conducting phases present in the bulk material can considerably decrease the 

oxygen permeation flux of high purity oxygen separation membranes since they form obstacles for 

oxygen ions migrating through the membrane. The formation of these secondary phases is, therefore, a 

serious concern for the selection of membrane materials. EDS and XRD analysis determined that 

secondary nickel oxide (NiO) phases were found in the La2NiO4+δ samples (Figure 10.57) after the 

sintering step as well as after each annealing experiment. Cobalt oxide inclusions were formed in the 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets (Figure 10.52), and a mixture of cobalt and iron oxide inclusions in the 

La0,58Sr0,4Co0,2Fe0,8O3-δ as well as the Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets (Figure 10.54 and Figure 10.55).  
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These oxide inclusions were formed during the sintering step of the preparation of the pellets because 

of the high temperatures applied. The observation of light microscopy pictures of the cross section of 

the annealed pellets seems to indicate an increase of the amount and the size of these inclusions with 

increasing annealing time. A phase analysis of an area of about 5.104 µm2 in each of the samples 

selected was carried out in order to determine the percentage of secondary phases and to corroborate 

this apparent increase. Eight light microscopy pictures of the cross section of these specimens were 

taken next to each other randomly and studied with the software “analySIS pro” [145] from Olympus 

Soft Imaging Solutions GmbH (Germany). In order to observe a significant change in the concentration 

of the secondary oxide phases when comparing the sintered and the annealed pellets, the samples 

annealed for the longest times were selected for this phase analysis. The selected annealing conditions 

for the La2NiO4+δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ samples 

are listed in Table 10.17 below. 

Table 10.17. Annealing conditions for the samples selected for the phase analysis 

Annealing conditions 
Atmosphere (in mol%) 

Temperatures (°C) 
Dwelling times 

(hours) 

Air 800 500 

25% O2, 8% N2, 67% CO2 800 500 

25% O2, 50% CO2, 5% N2, 20% H2O 800 500 

Air next to a Cr2O3 pellet 800 1000 

The annealing atmosphere as well as the temperature might also have an influence on the growth of 

these secondary oxide phases, however, due to a lack of time only a selection of samples was chosen 

for the analysis of the secondary phases present in the samples after sintering and annealing. 

10.7.1 Results 

For the Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ samples, the oxide 

inclusions were composed of two different phases, one in the centre of the other. When observed with 

light microscopy, the centre phase is seen as a dark grey phase around which a light grey phase is 

found. With SEM the phases appear to have two shades of grey, one being a dark grey phase at the 

centre of which a lighter grey phase is present. 
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BSCF50

For the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples, EDS analysis allowed for the determination of the chemical 

composition of both secondary oxide phases, as seen in Table 10.18. Phase 1, in the centre, had the 

chemical composition Co0,98O1,02 and phase 2 the composition Co3,1O3,9. The cobalt oxide phases 

formed in the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples were therefore identified as being CoO and Co3O4. 

Co3O4 is the phase at the centre of which CoO is found. In the SEM micrographs, the phase with the 

highest oxidation state is the darkest. In the cobalt oxide Co3O4, cobalt has the oxidation state +2 and 

+3. And in CoO, cobalt adopts the lower oxidation state of +2. Thus the Co3O4 phase appears darker 

than the CoO phase.  

Table 10.18. Chemical composition (in atomic%) determined by EDS analysis of the two cobalt oxide 
phases present in the bulk of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 55% CO2, 28% O2, 12% H2O, 

5% N2 at 600°C for 200 hours. 

Element Phase 1 Phase 2 

Co 49,00 44,00 

O 50,80 55,30 

The XRD analysis of the ground pellets did not show CoO reflexions for any of the 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ annealed samples. However, Co3O4 was detected in all the samples except for 

the sintered one. Figure 10.51 shows the powder XRD spectra of a Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet 

annealed in 67 mol% CO2, 25 mol% O2 and 8 mol% N2 at 800°C for 200 hours presenting the 

reflexions of Co3O4. The phase analysis of selected Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples showed that cobalt 

oxide amounts for less than 1% of the sample (Table 10.19). 
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Figure 10.51, Powder XRD diagram of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellet annealed in 67% CO2, 25% 
O2 and 8% N2 at 800°C for 200 hours. 

 (A): 

(B): (C): 
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(D): (E): 

Figure 10.52. Light microscopy picture of Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples: (A) as sintered; (B) to (E) 
annealed: (B) in 25% O2, 50% CO2, 5% N2, 20% H2O, (C) in 25% O2, 8% N2, 67% CO2, (D) in air at 

800°C for 500 hours and (E) in air for 1000 hours. 

After annealing for 200 hours and 500 hours at 600°C as well as for 200 hours at 700°C in every 

atmosphere, both phases were present in the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets. However, after annealing 

the pellets for 500 hours at 700°C and 800°C as well as at 800°C for 200 hours, only the Co3O4 phase 

was observed. The interface between the CoO centre phase and the Co3O4 phase is very irregular. It 

seems that the less stable CoO transforms gradually into Co3O4, more stable in this temperature range 

and partial pressure of oxygen [146]. 

An obvious increase in size of the cobalt oxide phases is observed between the sintered sample and the 

samples annealed in 50%CO2 and for 1000 hours (Figure 10.52). An increase in the number of these 

phases seems to occur between the sintered sample and the annealed samples. Moreover, the 

determination of the concentration of the cobalt oxide inclusions by phase analysis showed an 

increased concentration in the annealed samples compared to the sintered sample. 

Table 10.19. Amount of secondary phases measured in a specific area of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ
samples after annealing in different atmospheres. 

Atmosphere 
Amount of secondary 

phases (%) 

Sintered 0,15 

Air 0,55 

67% CO2, 25% O2, 8% N2 0,4 

50% CO2, 25% O2, 5% N2, 20% H2O 0,3 

Air next to a Cr2O3 pellet 0,5 
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LSCF58 and PSCF58

EDS point analysis of the cross section of the La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ

sintered pellets determined the chemical composition of the secondary oxide phases present. Both 

phases have a similar cobalt and iron content, as seen in Table 10.20. The cobalt oxide phases formed 

in these samples were identified as CoO and Co3O4, with iron dissolved in each of these phases.  

Co1-xFexO is found in the centre of the Co3-xFexO4 phase.  

Table 10.20. Chemical composition (in atomic%) determined by EDS analysis of the cobalt and iron 
oxide phase present in the bulk of La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ pellets sintered 

at 1200°C for 5 hours. 

Element LSCF58 PSCF58 

Co  35,40 39,7 

Fe 7,2 5,2 

O  55,7 54,5 

Here also, the XRD analysis of the ground pellets revealed the same results as for the 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples above. No CoO reflexions for any of the annealed samples were 

present and Co3O4 was only detected in some of the annealed samples. When the Co3O4 reflexions 

were present they were within the experimental error range of the measurement of 5%. Cobalt and iron 

oxide phases therefore amount for less than 1% of the sample, as seen in Figure 10.53. This is 

confirmed by the phase analysis of selected La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ

samples (Table 10.21 and Table 10.22). 
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Figure 10.53. Powder XRD diagram of the La0,58Sr0,4Co0,2Fe0,8O3-δ pellet annealed in 67 mol% CO2, 25 
mol% O2 and 8 mol% N2 at 700°C for 500 hours. 

After annealing for 200 hours at 600°C in every atmosphere, both phases were present. However, after 

annealing in air for 500 hours at all temperatures as well as at 800°C and 700°C for 200 hours, only the 

light grey phase Co1-xFexO was observed in light microscopy pictures. In the same way, as described 
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for the Ba0,5Sr0,5Co0,8Fe0,2O3-δ specimens, the Co1-xFexO phase gradually transformed into the more 

stable Co3-xFexO4 phase at high temperatures. 

La0,58Sr0,4Co0,2Fe0,8O3-δ

By observing the light microscopy pictures of the La0,58Sr0,4Co0,2Fe0,8O3-δ samples (Figure 10.54), it 

seems that the size of the secondary oxide phases found in the annealed samples is greater than the size 

of the ones in the sintered sample. As seen in Table 10.21, an increase in the concentration of 

secondary phases between the sintered sample and the samples annealed was measured with the 

software “analySIS pro”.  

(A): 

(B): (C): 
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(D): (E): 

Figure 10.54. Light microscopy picture of La0,58Sr0,4Co0,2Fe0,8O3-δ samples: (A) as sintered;(B) to (E) 
annealed: (B) in 25% O2, 50% CO2, 5% N2, 20% H2O, (C) in 25% O2, 8% N2, 67% CO2, (D) in air at 

800°C for 500 hours and (E) in air for 1000 hours. 

Table 10.21. Amount of secondary phases measured in a specific area of the La0,58Sr0,4Co0,2Fe0,8O3-δ
samples after annealing in different atmospheres. 

Atmosphere 
Amount of secondary 

phases (%) 

Sintered 0,3 

Air  0,55 

67% CO2, 25% O2, 8% N2 0,6 

50% CO2, 25% O2, 5% N2, 20% H2O 0,65 

Air next to a Cr2O3 pellet 0,45 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ

Here also it seems that the secondary phases found in the samples annealed are greater in size than the 

ones found in the sintered sample (Figure 10.55). Moreover, Table 10.22 shows an increase in 

secondary phase concentration between the sintered sample and the annealed samples. 

(A): 
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(B): (C): 

(D): (E): 

Figure 10.55. Light microscopy picture of Pr0,58Sr0,4Co0,2Fe0,8O3-δ samples: (A) as sintered; (B) to (E) 
annealed: (B) in 25% O2, 50% CO2, 5% N2, 20% H2O, (C) in 25% O2, 8% N2, 67% CO2, (D) in air at 

800°C for 500 hours and (E) in air for 1000 hours. 
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Table 10.22. Amount of secondary phases measured in a specific area of the Pr0,58Sr0,4Co0,2Fe0,8O3-δ
samples after annealing in different atmospheres. 

Atmosphere 
Amount of secondary 

phases (%) 

Sintered 0,35 

Air  0,4 

67% CO2, 25% O2, 8% N2 0,8 

50% CO2, 25% O2, 5% N2, 20% H2O 0,45 

Air next to a Cr2O3 pellet 0,95 

La2NiO4+δ  

When the nickel oxide reflexions were present they were within the experimental error range of the 

measurement of 5%. They amount, therefore, for less than 1% of the sample, as seen in Figure 10.57. 

This is confirmed by the phase analysis study of selected La2NiO4+δ samples (Table 10.23). 
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Figure 10.56. Powder XRD diagram of the La2NiO4+δ pellet annealed in air at 600°C for 200 hours. 

(A): 
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(B): (C): 

(D): (E): 

Figure 10.57. Light microscopy picture of La2NiO4+δ samples: (A) as sintered; (B) to (E) annealed: 
(B) in 25% O2, 50% CO2, 5% N2, 20% H2O, (C) in 25% O2, 8% N2, 67% CO2, (D) in air at 800°C for 

500 hours and (E) in air for 1000 hours. 

Observing the cross sections of the different samples (Figure 10.57), it seems that the sintered sample 

exhibits a greater amount of smaller secondary phases than the annealed samples. The determination of 

the concentration of secondary phases showed that an increase of nickel oxide phases between the 

sintered sample and the samples annealed occurred, as seen in Table 10.23.  

Table 10.23. Amount of secondary phases measured in a specific area of the La2NiO4+δ, samples after 
annealing in different atmospheres. 

Atmosphere 
Amount of secondary 

phases (%) 

Sintered 0,2 

Air  0,4 

67% CO2, 25% O2, 8% N2 0,25 

50% CO2, 25% O2, 5% N2, 20% H2O 0,4 

Air next to a Cr2O3 pellet 0,3 
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10.7.2 FactSageTM thermo-chemical calculations 

The FactSageTM thermo-chemical software was used to predict the formation of oxide phases in the 

materials selected in this work. As no data concerning the La2NiO4+δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, 

La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ materials was available in the FactSageTM

thermodynamic databases, the individual components of these materials were used to predict the 

thermodynamic equilibrium in the system investigated. 

The activity of the individual chemical components of Ba0,5Sr0,5Co0,8Fe0,2O3-δ in air was calculated 

between 600°C and 1200°C. Figure 10.58 shows the activities of CoO, Co3O4, Co and O2 calculated as 

a function of temperature. In the temperature range considered, the cobalt oxides were found to be the 

most stable compounds. Moreover, CoO appeared to be more stable than Co3O4 in air between 890°C 

and 1200°C. Whereas the spinel Co3O4 was found to be more stable in air under 890°C.  

The temperature used to sinter the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets was 1100°C, at which temperature 

CoO is the most stable. It can be assumed that the CoO phase was formed during sintering and mostly 

during the 3-hour dwelling step at the temperature of 1100°C. Due to the slow cooling rate of 3K/min 

used in the sintering temperature programme, a phase transformation, which started at approximately 

880°C, occurred during cooling, thus leading to the formation of Co3O4 around the CoO phases. This 

explains the presence of both cobalt oxide phases in the sintered Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets (Figure 

10.52). 
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Figure 10.58. Temperature dependence of the activities of cobalt and cobalt oxide in air 

Both phases were found in the pellets annealed for 200 hours and 500 hours at 600°C as well as for 200 

hours at 700°C in every atmosphere. And after annealing for 500 hours at 700°C and 800°C as well as 

at 800°C for 200 hours, the CoO is no longer observed and only the spinel, which is the most stable 

compound, remained. However, the plots of the activities of CoO and Co3O4 in the different annealing 

atmospheres showed that only the spinel was found to be stable in every condition. Figure 10.59 is one 

example of these plots showing the activity of the CoO and the Co3O4 spinel for the annealing 

condition 67% CO2, 25% O2, 8% N2 at 600°C. Therefore, the phase transformation kinetics can be 

assumed to be relatively slow, leading to the complete disappearance of CoO only after several hundred 

hours for the samples annealed at 600°C and 700°C. 
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Figure 10.59. Temperature dependence of the activities of cobalt and cobalt oxide in 67% CO2, 25% 
O2, 8% N2 at 600°C. 

No data about the oxide phases formed in the La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ

pellets was available in the FactSageTM thermodynamic databases. However, the phase formation 

process of Co1-xFexO and of Co3-xFexO4 is considered to be similar to that of the cobalt oxide phases 

formed in the Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets. The kinetics of the phase transformation seem, however, 

to be slightly faster as both phases were only present in the sintered samples and in the samples 

annealed at 600°C for 200 hours in all atmospheres, all other samples containing only the more stable 

Co3-xFexO4 phase. 

The activities of the individual chemical components of La2NiO4+δ in air were calculated between 

600°C and 1500°C using FactSageTM. The plots of the activities of NiO, Ni and O2 calculated as a 

function of temperature are shown in Figure 10.60. In the temperature range considered, nickel oxide 

was found to be the most stable compound. The predicted thermodynamic results support the 

experimental results in that NiO inclusions were observed in all La2NiO4+δ samples after sintering and 

annealing in all conditions. 
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Figure 10.60. Temperature dependence of the activities of nickel and nickel oxide in air 

10.7.3 Discussion 

Although no trend indicated that the annealing atmosphere could influence the growth of these 

secondary oxide phases, the concentration of these phases was found to increase during annealing. The 

amount of oxide inclusions was always lower in the sample sintered than in the samples annealed, 

which indicates that a progressive chemical demixing of the membrane material occurred during the 

annealing experiments. The development of these secondary non-ion-conducting phases in the bulk 

material can considerably decrease the oxygen permeation flux of high purity oxygen separation 

membranes. Moreover, during operation, the high oxygen partial pressure gradient present across the 

membrane could aggravate this secondary phase formation phenomenon, which would be a serious 

issue. It would, therefore, be interesting to study the phase formation process in membrane disks after 

long term permeation experiments. 

10.8 Conclusion  

On the one hand, after annealing La0,58Sr0,4Co0,2Fe0,8O3-δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La2NiO4+δ and 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ in air, no reaction was observed on the surface of any of the samples, which 

demonstrates their stability in this atmosphere. Moreover, La2NiO4+δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ were found to be very stable in CO2-containing atmospheres. No reaction 

occurred on the surface of these samples even at high CO2-concentrations, high temperatures and long 
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annealing times. Although no degradation of the La2NiO4+δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ material was observed after annealing these pellets in CO2- and H2O-containing 

as well as H2O-containing atmospheres, a silicon contamination of their surface from the quartz glass 

components of the annealing test set-up occurred. This contamination was also present on the surface 

of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples annealed in CO2- and H2O-containing atmospheres. The fact that 

these MIEC materials react with silicon definitely rules out the possibility of using glass gaskets to seal 

the membranes in the oxygen separation device. The presence of silica in the coal grades is also a 

significant issue when considering the oxyfuel process option with flue gas recycling.  

On the other hand, a reaction zone composed of a mixed carbonate layer and a needle-like structure 

layer was observed on the surface of all Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples at all annealing temperatures 

and dwelling times. When comparing the results of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples annealed in all 

CO2-containing atmospheres, an increase in the thicknesses of both the mixed barium and strontium 

carbonate layer and the needle-like structure layer were found with increasing CO2-concentration. As 

stated previously, the thicknesses of both these layers increased also with increasing annealing time and 

temperature. These results demonstrate the low stability of Ba0,5Sr0,5Co0,8Fe0,2O3-δ to CO2 since 

carbonates were formed on the surface of all specimens even after short exposure times of only 200 

hours to atmospheres with a relatively low CO2 concentration.  
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Figure 10.61. Thicknesses of: (A) the needle-like structure layer and (B) the mixed carbonate layer 
of Ba0,5Sr0,5Co0,8Fe0,2O3-δ pellets annealed at 800°C in 50% CO2, 25% O2, 20% H2O, 5 % N2

(CO2/H2O) and in 67% CO2, 25% O2 and 8% N2 (CO2) for 200 hours and 500 hours. 

Additionally, although water vapour alone did not affect the samples, when combined with CO2, it 

seems to exacerbate the formation of the carbonate and needle-like structure layers as their thicknesses 

are higher when annealing at 800°C in an atmosphere composed of 50 mol% CO2, 25 mol% O2,  

20 mol% water vapour and 5 mol% N2 for 200 hours than in an atmosphere composed of  

67 mol% CO2, 25 mol% O2 and 8 mol% N2 for 500 hours, as seen in Figure 10.61. Even though the 

concentration of CO2 decreased by about 25 percent, the thickness of the carbonate layer doubled 
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(Table 10.7, Table 10.8, Table 10.10 and Table 10.11). Likewise, the thickness of the needle-like 

structure layer increased by around 90%.  

The Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples also presented a cobalt enrichment at the grain boundaries as well 

as different inclusions in the grains, one enriched in cobalt and another enriched in iron and strontium. 

The fact that a demixing of this material occurred after such short annealing times and without applying 

a gradient of oxygen partial pressure, which would be present during membrane operation, is a serious 

drawback of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ membrane material for the oxyfuel process of coal-fired power 

plants. 

Such a significant degradation of the surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples when annealed in 

CO2- as well as CO2- and H2O-containing atmospheres makes it a membrane material that would need 

to be used either with a protective layer or in a concept for the oxyfuel process without flue gas 

recycling over the permeate side of the membrane. Such a process is currently being developed at 

Forschungszentrum Jülich. The “OXYVAC-JÜL” [147] pressure driven process consists in creating a 

partial pressure gradient of oxygen between the permeate- and the sweep-side of the oxygen 

permeation membrane by applying a vacuum on the permeate side. However, La2NiO4+δ, 

La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ are oxygen permeation membrane materials 

perfectly compatible with the flue gas recycling concept of the oxyfuel process. The “dry recycling” 

and the “wet recycling” options could be applied to these materials which are stable in CO2- as well as 

CO2- and H2O-containing atmospheres. 

An important issue arises from the fact that all these potential high purity oxygen separation membrane 

materials could react with volatile chromium species from chromia forming alloys used as construction 

materials in coal-fired power plants. Therefore, La0,58Sr0,4Co0,2Fe0,8O3-δ, Ba0,5Sr0,5Co0,8Fe0,2O3-δ, 

La2NiO4+δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ would be incompatible for use in coal-fired power plants in the 

framework of the oxyfuel process, at least not without a protective layer. The development of 

secondary non-ion conducting oxide phases in the bulk of La0,58Sr0,4Co0,2Fe0,8O3-δ, 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ, La2NiO4+δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ could also be a problem as they form 

obstacles for oxygen ions migrating through the membrane. However, the amount of these phases was 

always measured to be below 1% after annealing. It is important to study the development of these 

phases after long-term permeation experiments since the gradient of oxygen partial pressure, which is 

the driving force for oxygen migration through the membrane, could enhance the chemical demixing of 

the MIEC material.  
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11 Conclusion 

In this work, selected MIEC materials with perovskite and perovskite-related structures, i.e. La2NiO4+δ, 

La0,58Sr0,4Co0,2Fe0,8O3-δ, Pr0,58Sr0,4Co0,2Fe0,8O3-δ and Ba0,5Sr0,5Co0,8Fe0,2O3-δ considered for use as high 

purity oxygen separation membranes in the framework of the oxyfuel process with flue gas recycling 

were investigated in respect to their thermo-chemical stability and oxygen permeation performances, 

which are both crucial selection factors.  

Chapter 8 characterised these membrane materials using thermo-analytical techniques such as precision 

thermogravimetric analysis (TGA) and thermo mechanical analysis (TMA). The La2NiO4+δ material 

was found to exhibit the lowest change in oxygen stoichiometry with the narrowest hysteresis as well 

as the lowest thermal expansion, which is an indication of the stability of this material. On the other 

hand, Ba0.5Sr0.5Co0.8Fe0.2O3-δ showed the highest change in oxygen stoichiometry as well as the highest 

thermal expansion. The TGA curves of La0.58Sr0.4Co0.2Fe0.8O3-δ and Pr0.58Sr0.4Co0.2Fe0.8O3-δ are very 

similar. However, the substitution of praseodymium for lanthanum induced a slight increase in loss of 

lattice oxygen from the perovskite structure. 

In Chapter 9, an investigation of the permeation performances of La2NiO4+δ, La0,58Sr0,4Co0,2Fe0,8O3-δ, 

Pr0,58Sr0,4Co0,2Fe0,8O3-δ and Ba0,5Sr0,5Co0,8Fe0,2O3-δ membranes was carried out. The highest oxygen 

permeation fluxes measured were for 1mm BSCF50 membranes over the whole temperature range. The 

fluxes for 1mm La2NiO4+δ, PSCF58 and LSCF58 membranes were well below the values of the 

Ba0,5Sr0,5Co0,8Fe0,2O3-δ membrane and were also of the same order of magnitude, La2NiO4+δ being 

slightly higher in the temperature range of between 700°C and 850°C and Pr0,58Sr0,4Co0,2Fe0,8O3-δ

higher after 850°C. Oxygen permeation through La2NiO4+δ, Pr0,58Sr0,4Co0,2Fe0,8O3-δ and 

La0,58Sr0,4Co0,2Fe0,8O3-δ membranes, with thicknesses ranging between 0.5mm and 1.5mm, seemed to 

be governed by surface exchange as well as bulk diffusion. However, a decrease in membrane 

thickness caused an increase in oxygen permeation flux for all membranes.  

There appears to be a correlation between the loss of oxygen from the lattice, associated to the increase 

in oxygen vacancy concentration in the MIEC materials studied in this work and measured with TGA, 

and the increase in thermal expansion as well as the increase in oxygen permeation observed with 

increasing temperature. 

Chapter 10 dealt with the investigation of the thermo-chemical stability of the membrane materials 

selected for this study after exposure to CO2, water vapour, O2 and Cr2O3. After exposure to air no 
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reaction was observed on the surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ, samples. However, a carbonate 

layer and a needle-like structure layer were formed on the surface of all BSCF50 pellets when exposed 

to CO2- as well as in CO2- and H2O-containing atmospheres at all annealing temperatures and dwelling 

times. Water vapour, when combined with CO2, seemed to exacerbate the formation of the carbonate 

and needle-like structure layers. All Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples also developed cobalt enrichment 

at the grain boundaries as well as secondary phase inclusions in the grains and on the grain boundaries. 

These effects were related to a chemical demixing of the material. The temperature and time-related 

cobalt enrichment at the grain boundaries could result in a considerable decrease in oxygen permeation 

fluxes as the grain boundaries would hinder the transport of oxygen ions through the material.  

After exposure to air, CO2- and water vapour-containing atmospheres, no degradation of the surface of 

the La0,58Sr0,4Co0,2Fe0,8O3-δ, Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La2NiO4+δ samples was observed. After 

exposure to water vapour-containing atmospheres, however, a silicon contamination of their surface 

from the quartz glass components of the annealing test set-up occurred. This contamination was also 

present on the surface of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples. The fact that these MIEC materials react 

with silicon is a significant issue when considering the oxyfuel process option with flue gas recycling 

as silica is a component of coal grades. Additionally, all the materials investigated were found to react 

with chromia, which demonstrates the potential problems of vaporisation and transport of chromium 

species from the chromia scale of the steel components of a coal-fired power plant to the membrane.  

Secondary non-ion conducting phases were formed in the bulk of all materials during sintering and 

their concentration was found to increase during annealing. The development of these phases, related to 

a progressive demixing of the membrane material, could considerably decrease the oxygen permeation 

fluxes of high purity oxygen separation membranes as they form obstacles for oxygen ion transport. 

However, the amount of these phases was always measured to be below 1%. During operation, the high 

oxygen partial pressure gradient present across the membrane, which is the driving force for oxygen 

migration through the membrane, could aggravate the demixing of these MIEC materials. Indeed, a 

kinetic demixion of the Pr0,58Sr0,4Co0,2Fe0,8O3-δ and La0,58Sr0,4Co0,2Fe0,8O3-δ membrane materials was 

observed after an approximately 100-hour operation. It would, therefore, be interesting to study the 

secondary phase formation process in membrane disks after long term permeation experiments.  

In conclusion, the significant degradation of the Ba0,5Sr0,5Co0,8Fe0,2O3-δ samples when exposed to 

atmospheres reproducing close to operation conditions together with its temperature and time-related 

chemical demixing demonstrates the poor thermo-chemical stability of this material. This rules out its 

use as a high purity oxygen separation membrane in the framework of the oxyfuel process.  
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La2NiO4+δ, La0,58Sr0,4Co0,2Fe0,8O3-δ and Pr0,58Sr0,4Co0,2Fe0,8O3-δ, stable in close to operation conditions, 

are oxygen permeation membrane materials perfectly compatible with the flue gas recycling concept of 

the oxyfuel process. The “dry recycling” and the “wet recycling” options could be applied to these 

materials stable in CO2- as well as CO2- and H2O-containing atmospheres. However, an important issue 

arises from the fact that these potential high purity oxygen separation membrane materials could react 

with volatile chromium and silicon species. The silicon- and chromium-containing oxide layers formed 

on the surface of the membrane material during operation would constitute a diffusion barrier 

preventing oxygen permeation through the membrane. The degradation of the permeation performances 

of a membrane by chromium and silicon oxide deposition is a serious issue for its use in coal-fired 

power plants. The use of a protective layer on the surface of these membranes might therefore be 

required in order for them to be used in coal-fired power plants in the framework of the oxyfuel 

process.  

Moreover, much work still needs to be done in order to improve the oxygen permeation properties of 

these materials, which do not reach the minimum oxygen permeation flux of 10 ml min-1 cm-2 required 

for the selection of a material as a high purity oxygen separation membrane. Membrane surface 

modification and the development of thin film membrane technology are options currently being 

considered. 
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Oxygen Permeation and Thermo-Chemical Stability of Oxygen 
Separation Membrane Materials for the Oxyfuel Process

Anna Judith Ellett 

Abstract
Gas separation membranes are considered to be an efficient technology for the  
future generation of zero CO2-emission power plants. This work studies the oxygen 
permeation performances and stability in near-operation conditions of mixed ionic-
electronic conducting membranes for high purity oxygen separation in the framework  
of the Oxyfuel process.
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