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Introduction

CONTEXTE GENERAL

Au cours de ces derniéres décennies, le développement général des mathématiques
appliquées a entrepris de représenter systématiquement les phénomeénes expérimentaux a
I’aide de modéles. Nous nous placerons ici, plus particuliérement, dans le cadre de la sta-
tistique et de 'informatique, pour lequel un modéle désignera un code de calcul. Celui-ci
sera la version numérique d’un ensemble d’équations mathématiques, issues, par exemple,
d’applications dans des domaines tels que la physique ou la chimie. Un tel modéle dépend
naturellement d’un ensemble de paramétres. Dans le cadre de I'utilisation d’un code de
calcul, les réponses du modéle constituent des expériences simulées, qui pour étre plei-
nement exploitables doivent étre walidées. 11 faut au préalable vérifier que les réponses
du modele « représentent de fagon acceptable » des réponses observées. Cette étape est
généralement connue sous 'appellation de la calibration du code de calcul.

La calibration consiste a déterminer le ou les parameétres de facon a ce que le modéle
s’approche au mieuz de la réalité.

Cette opération se pratique dans un large éventail de disciplines scientifiques. Donnons
quelques exemples.

— la calibration, le « calage », des paramétres d’un code simulant les énergies regues
par une cible dans différentes conditions expérimentales (Sancandi (2006)),

— Destimation du taux d’émission de radionucléides (ou radioisotopes) pour des mo-
deles d’accidents nucléaires (Kennedy et O’Hagan (2001a)),

— en hydrologie, pour estimer des paramétres liés a la transmissivité hydraulique dans
des modeles de pluie (Romanowicz (2006)).

Dans beaucoup d’applications de la calibration, il apparait que la base de données
d’entrée (BDDE) du modéle a une grande influence sur la précision de l'estimation des
paramétres (dans un sens qui sera défini et illustré plus loin). Il est donc important de
disposer de critéres permettant d’apprécier la qualité de la BDDE. Lorsqu’on ne dispose
pas de connaissances précises sur le modéle (ou code de calcul), ces critéres doivent étre
les plus généraux possibles afin d’étre utilisés quel que soit le domaine d’application et
quelle que soit la méthode d’estimation. Leur objectif est de vérifier que les variables

15
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de la BDDE ont une répartition aussi « uniforme » que possible dans leur domaine de
variation. Pour ce faire, il existe deux grandes familles de critéres : les critéres dits « dé-
terministes », et les critéres dits « probabilistes ».

Ainsi cette thése traite, au sein de la problématique de la calibration, la qualité d’une
base de données au sens de sa répartition uniforme. Avant d’en présenter le plan, nous
allons préciser le probléme de la calibration et la méthodologie générale que nous avons
considérée pour la résoudre.

PROBLEMATIQUE DE LA CALIBRATION

Afin de formaliser la présentation du probléme de calibration, précisons les notations de
base ainsi que les différentes variables qui seront considérées par la suite.

v/ Nous notons x(n) = {x1,...,2,} une base de données d’entrée (BDDE) avec

v = @0,

...,z )t € X. En pratique, a cause de problémes liés & la précision
des observations, il est naturel d’observer de nombreux « collages » (« ties » en
anglais) dans les bases de données, faisant donc place a des observations multiples.
Le caractére distinct des observations sera, ici, admis, pour développer leur analyse

théorique. Les données x(n) = {x1,..., 2y} € X™ seront donc supposées distinctes.

Elles correspondent aux « points » d’un espace X dans lequel les observations
prennent leurs valeurs. En général X pourra étre choisi soit comme une partie
fermée d’un espace de Hilbert, soit, en dimension finie, comme une partie fermée
bornée de R?. Cependant la plupart des applications présentées seront obtenues
lorsque X est une partie compacte de R%, ce qui sera supposé étre le cas implicite-
ment par la suite. En physique ou en chimie, ces points peuvent correspondre a des
conditions expérimentales. Pour chaque réponse i, nous avons alors d conditions
expérimentales scalaires & valeurs dans un ensemble X.

v/ Nous notons y(n) = {y1 = y(z1),...,yn = y(x,)} Uensemble des valeurs de réponse
observées, elles-mémes fonctions des données de la BDDE.
En pratique, nous supposons que y; € Y,Vi € {1,...,n}, o Y est une partie (en
général un intervalle) spécifiée de R. En physique ou en chimie ce sont les résultats
expérimentaux obtenus pour chaque condition x;.

v/ Nous notons 6 € O, le vecteur des paramétres intervenant dans le modéle.

Il s’agit du parameétre (vectoriel) de calibration. C’est celui que nous cherchons a
estimer pour que le modeéle s’approche au mieux de la réalité (selon des critéres
énoncés plus loin). Le plus souvent nous supposerons que ’espace des paramétres
O est 'adhérence d’une partie ouverte de RP.

v/ Nous désignons par M(6), le modeéle. Celui-ci représente la régle de calcul permet-
tant d’obtenir les réponses a partir des entrées x;.

Plus concrétement, le modéle M () représente une valeur approchée du vecteur
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d’observations
y(n) = {yl = y(xl)v ey Yn = y(xn)}a

par une approximation de la forme

z(n) ={z1 = f(x1,0)...,2, = f(xn,0)}.

Le modéle est donc résumé par la fonction f(x,#). La fonction f est appelée code
ou fonction de code.

v/ Nous notons z(n) = {z1 = f(x1,0),...,2, = f(zn,0)}, Uensemble des réponses du
modéle, en fonction des x(n) = {x1,...,2z,} de la BDDE.

Ce sont les résultats du code en chaque point de la BDDE comme mentionné ci-
dessus. Selon les configurations possibles, le vecteur de paramétres 6 € © peut
étre éventuellement choisi librement parmi plusieurs valeurs possibles ; € ©, j =
1,..., k. Dans ce cas, nous disons qu’il y a un contréle du paramétre. Nous parlerons
de la base de données des paramétres pour désigner 6(k) = {01,...,0;}. Lorsque
nous avons un contrbéle du paramétre, nous disposons de plusieurs ensembles de
réponses
z(n,0;) = {z1(0;) = f(x1,05), .., 2n(0;) = f(2n, 05)},

ouf; €©,j=1,...,k, est connu. Dans certaines situations, les valeurs de § € ©
seront considérées comme fixées a ’avance. Cela signifie que les ensembles z(n, §;),
Jj = 1,...,k, de réponses du code ont déja été obtenues en différents 0; € O, et
qu’il n’est pas possible d’obtenir de nouvelles réponses du code en d’autres valeurs
du paramétre.

Lobjectif fondamental de la calibration est d’ajuster le parametre vectoriel 6 de

maniére a ce que z(n,0) = {f(z1,0),..., f(zn,0)} Sapproche au mieux (selon des cri-
teres d’ajustement précisés ultérieurement) de y(n) = {y(x1),...,y(zn)}
données d’entrée crvériences
(points expérimentauxr) — PHENOMENE — (n) :p {Z }
x(n) ={z1,...,2,} y Yis-osYn
) . expériences « simulées »
données d’entrée z(n,01) ={21(01),...,2:(61)}
(points expérimentauxr) — ‘ CODE DE CALCUL‘ — .
x(n) ={z1,...,2,} :
z(n,0k) = {21(0k), ..., 2n(0k)}
1
parameétres de
calibration
O(k) ={61,...,0k}
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METHODOLOGIE

Pour résoudre le probléme de calibration de fagon générique, c’est-a-dire quel que soit
le contexte d’application de l’étude considérée, nous proposons la méthodologie suivante :

Etape 1 Collecte d’informations ;
Ftape 2 Analyse de la base de données d’entrée;
Etape 3 Application de la démarche de calibration ;

Etape 4 Validation du (ou des) parameétres estimé(s).

e L’étape 1 consiste a prendre connaissance de ’ensemble des données a notre dispo-
sition. La méthode de résolution du probléme de calibration dépendra de ces informations.
Les données de la BDDE : (n) = {x1,...,z,}, x; € X, et des réponses expérimentales
y(n) = {y1,.-.,yn}, ¥i € Y, pour i = 1,...,n, seront toujours supposées disponibles.
Plusieurs cas sont possibles : la fonction de code est connue (cas 1), partiellement connue
ou inconnue (cas 2). Suivant les cas considérés, la calibration peut ou non nécessiter des
réponses de code : z(n,0;) = {z1 = f(21,60;)...,2n = f(zn,0;)} en un ensemble de
paramétres 6(k) = {61, ..., 60x}. Plus précisément, nous distinguerons les cas suivants :

Cas 1 « Connaissance de la fonction de code »

Nous dirons qu’il y a connaissance de la fonction de code f lorsqu’elle est connue
de facon analytique et que son expression est « simple ». Dans ce contexte, les

données de la BDDE : ®(n) = {x1,...,z,}, z; € X, et des réponses expérimentales
y(n) ={y1,...,Yn}, yi € Y, pour i = 1,...,n, seront suffisantes pour effectuer la
calibration.

Cas 2 « Absence de connaissance de la fonction de code »

Nous dirons qu’il y a absence de connaissance de la fonction de code f lorsque
nous considérons qu’elle n’est pas connue de fagon analytique (expression analy-
tique inconnue ou trop « complexe » pour 'application des méthodes classiques
de régression). Pour pouvoir estimer le paramétre de calibration €, nous aurons
alors besoin de réponses de code : z(n,0;) = {z1 = f(z1,6;) ..., 20 = f(xn,0;)}
en un ensemble de paramétres 0(k) = {61,...,0;}. Les techniques d’estimation
de 6 seront différentes lorsqu’il y a :

a) possibilité d’obtenir de nouvelles réponses du code en des 6, € © supplémen-
taires, on dit alors qu’il y a controle du paramétre 6 ;
b) impossibilité d’obtenir de nouvelles réponses du code.

Les méthodes de calibration associées & ces différents cas seront discutées lors de la pré-
sentation de I'étape 3.
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e L’étape 2 de la méthodologie, a savoir I’analyse de la base de données, consiste & vé-
rifier que les données vont permettre d’obtenir une estimation « correcte » du parameétre
de calibration (par exemple, avec une bonne précision, intervalle de confiance réduit,
et/ou robuste, peu sensible aux variations des entrées du code). Cette analyse concernera
donc la BDDE x(n) = {z1,...,z,}, avec z; € X, et éventuellement 0(k) = {61,..., 0k},
avec 0; € O, lorsque cet ensemble de parameétres existe. Selon la méthode d’estimation
du paramétre retenue, les critéres de qualité des données peuvent étre différents.

Dans le cas ot il y a connaissance de la fonction de code (cas 1 de I'étape 1), il nous
faudra analyser uniquement la BDDE x(n) = {z1,...,z,}. On a recours aux critéres
bien connus de la théorie des plans d’expériences. Les critéres alors considérés font inter-
venir l'expression analytique de la fonction f et permettent le plus souvent de réduire
I'intervalle de confiance (ou une région de confiance) du parameétre estimé. Ces critéres
ayant fait I'objet de nombreux travaux au cours des derniéres décennies, ils ne seront
pas discutés ici en détail. Nous renvoyons entre autres & Chernoff (1953), Kiefer (1959,
1961, 1974), Fedorov (1972, 1980), Wynn (1970), Pronzato (1986), ainsi qu’a l'ouvrage
de Droesbeke et al. (1997) pour des exposés généraux et des applications. Lorsque la
fonction de code f est non linéaire par rapport aux parameétres, les techniques correspon-
dantes sont parfois délicates & mettre en oeuvre, voir Gauchi et Pazman (2006). Aussi,
nous traiterons parfois ce cas de la méme facon que lorsqu’il y a absence d’informations
sur f.

Lorsque la fonction de code est inconnue ou considérée comme telle (dans le cas 2
de I’étape 1), I'utilisation des critéres de plan d’expériences est délicate. Cependant, cer-
taines méthodes de calibration impliquent une substitution de la fonction de code par
une approximation de celle-ci appelée métamodéle ou surface de réponse. Des techniques
de régression linéaire ou non linéaire peuvent étre employées. Le cadre théorique alors
posé permet 'utilisation des critéres de plan d’expériences. Toutefois il s’agit d’'un cas
particulier, car pour de nombreux métamodeéles, il n’existe pas de tels critéres (réseau
de neurones, krigeage, méthode des fonctions orthogonales, par exemple). De fagon a
ce que la méthodologie proposée puisse étre appliquée dans un contexte général, nous
chercherons a vérifier que les données ont une « répartition uniforme » au sens de critéres
« déterministes » ou « probabilistes » (cf. chapitres I, II, IT).

Les premiers sont liés & la notion de « remplissage de l'espace » ou« space filling »
(cf. chapitre I). L’objectif est d’évaluer la répartition « uniforme » des données, de vé-
rifier qu’elles « recouvrent » (« remplissent ») au mieux 'espace dans lequel elles sont
définies. Il s’agit d’'une approche heuristique puisqu’il n’est pas rigoureusement démontré
que des points de « répartition uniforme » (au sens précédemment explicité) permettent
une « meilleure » estimation de parameétres, et ceci quelle que soit la méthode d’estima-
tion. Certains des critéres étudiés, issus de la notion de discrépance, peuvent cependant
trouver une justification théorique. En effet, ils interviennent dans l’inégalité de Koksma-
Hlwaka qui permet de majorer 'erreur d’estimation de 'intégrale d’une fonction par sa
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moyenne. Or, certains types d’estimateurs font intervenir des moyennes, approximations
d’intégrale (par exemple, ceux de la méthode des moments, procédé qui bien que rendu
obsoléte par les techniques du maximum de vraisemblance demeure néanmoins utilisé
par nombre d’expérimentateurs). Ainsi, l'inégalité de Koksma-Hlwaka (cf. chapitre II)
montre que la diminution de critéres de discrépance d’un ensemble de points en entrée
du modeéle réduira, en conséquence, les erreurs d’estimations. Plus particuliérement, nous
détaillerons et développerons le lien qui existe entre ces critéres particuliers et une mé-
thode d’estimation d'un parameétre fonctionnel (& I’aide des travaux de Hickernell (1999)
et Rafajlowicz et Schwabe (2005)). Nous en déduirons qu’un critére de discrépance faible
permet d’obtenir une « meilleure » estimation du paramétre fonctionnel (au sens de la
mean square error, MISE et de I'integrated mean square error, IMSE, critéres définis dans
le chapitre IT).

Les critéres de répartition uniforme au sens « probabiliste » sont liés & la notion
de tests statistiques (cf. chapitre III). Par cette approche, les données sont considérées
comme des variables aléatoires. Il s’agit alors d’effectuer des tests de [’hypothése d’in-
dépendance et d’une distribution uniforme de ces variables. De nombreux tests existent
dans ce cadre. Leur objectif est de tester la qualité de générateurs de nombres aléatoires
(essentiellement en une dimension) utilisés pour les méthodes de Monte Carlo (cf. cha-
pitre III). Cela constitue aussi une approche heuristique dans le sens ou la considération
de variables aléatoires uniformes ne permet pas forcément une « meilleure » estimation
de paramétres (dans un sens qui serait a définir), ceci quelle que soit la méthode d’es-
timation utilisée. Remarquons cependant que si les données ne correspondent pas a des
variables aléatoires uniformes et qu’elles sont considérées comme telles, les estimateurs
des moments seront bien entendu biaisés.

o L’étape 3, appelée application de la démarche de calibration, est I'estimation du
paramétre recherché. Comme précisé a I’étape 1, nous distinguons les deux cas :

Cas 1 « Connaissance de la fonction de code » :

Les techniques bien connues de régressions linéaire et non linéaire permettront
d’obtenir une estimation du paramétre 6 (nous nous référerons entre autres a

Antoniadis et al. (1992) et Walter et Pronzato (1997)).

Cas 2 « Absence de connaissance de la fonction de code » :

a) Possibilité d’obtenir de nouvelles réponses du code en des 6;; € © supplémen-
taires,
on dit alors qu’il y a controle du paramétre 6, différents appels de la fonction de
code f sont possibles pour 'estimation du paramétre de calibration, les tech-
niques d’optimisation multiobjectif (voir Collette et Siarry (2002)), ou la mé-

thode GLUE (Global Likelihood Uncertainty Estimation, voir Beven et Binley
(1992)) peuvent alors étre appliquées ;
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b) Impossibilité d’obtenir de nouvelles réponses du code,
lorsqu’une étude des résultats pré-existants de la fonction de code f permet de
savoir que celle-ci est linéaire par rapport au paramétre de calibration 6 € ©,
nous utiliserons les techniques dites de calibration multivariée ;
lorsque f est « complexe » (essentiellement non linéaire par rapport a 6 € 0), il
faudra construire un métamodéle (ou surface de réponse) permettant d’obtenir
une estimation de la fonction de code (voir Santner et al. (2003), par exemple) ;
I’estimation du paramétre de calibration se fera alors en substituant la fonction
de code par le métamodéle (voir Kennedy et O’Hagan (2001a)).

e L’étape 4 est la validation du (ou des) paramétres estimé(s). La (ou les) méthode(s)
de calibration adaptée(s) au phénoméne étudié sera (seront) réalisée(s) a 'aide de don-
nées convenablement sélectionnées parmi la BDDE x(n) = {x1,...,2,} (en utilisant une
technique définie au chapitre I, par exemple). Les données non-sélectionnées serviront a
la validation. Ceci implique qu’il est possible d’effectuer une expérience simulée (appel &
la fonction de code) en de nouveaux paramétres (notamment le parameétre estimé).

ORGANISATION DE LA THESE

L’étape 2, dans le contexte ot il y a « Absence de connaissance de la fonction de
code », sera principalement développée et fera 'objet des chapitres I, II, III. L’étape 3
sera détaillée en annexe

De nombreux critéres d’uniformité, souvent utilisés dans le contexte de l'intégra-
tion numérique, seront présentés au chapitre I (inspirés, entre autres des travaux de
Gunzburger et Burkardt (2004) et Hickernell (1998)). L’objectif est de vérifier qu’un es-
pace est « bien recouvert », « bien rempli » par un ensemble de points (au sens défini
chapitre I). Ainsi, la notion d’uniformité est différente de celle de la théorie statistique.
Nous ne considérerons pas les données comme des variables aléatoires et nous parlerons
d’approche « déterministe ». Nous nous focaliserons sur la notion de discrépance (essen-
tiellement celle définie par Hickernell (1998)). Il s’agit de critéres permettant d’effectuer
des comparaisons entre le nombre de points compris dans un pavé (produit d’intervalles)
et le volume (ou mesure de Lebesgue) de ce pavé. Ils sont donc, par leur définition méme,
tout & fait adaptés a 'objectif fixé. Nous les utiliserons pour développer des techniques
d’« extraction » et de « spécification » de points de fagon a constituer un ensemble qui
recouvre uniformément ’espace dans lequel ils sont définis.

Le chapitre II est ’étude de liens entre la discrépance et une méthode de régression
non paramétrique. La discrépance intervient dans l'inégalité de Koksma-Hlwaka (voir
Hlwaka (1961) et Hickernell (1998)) qui fournit une borne de l'erreur de estimation
d’une intégrale. De fagon générale, pour une fonction f de carré intégrable, pour une
suite de points x(n) = {z1,...,2,} dans un espace X, l'inégalité de Koksma-Hlwaka
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généralisée peut s’écrire comme suit (cf. Niederreiter et Spanier (Eds) (1998)) :

11(f) = Ly (£)] < V()D(2(n)), (1)

I(f) = [y f(z)dz,

Lon)(f) = %Z%Em(n) f(z;) avec (n) = {x1,...,2,},
V(f) est une variation de f,

et D(x(n)) est un terme qui dépend des points x(n) = {x1,...,z,} et correspond
4 la notion de discrépance.

Nous renvoyons au chapitre II pour des définitions précises de ces différentes quanti-
tés. A 'aide de cette inégalité, et en considérant les travaux de Hickernell (1999) et de
Rafajlowicz et Schwabe (2005), nous proposerons une majoration de critéres de qualité
d’estimation d’'un paramétre fonctionnel obtenu par la méthode des fonctions orthogo-
nales (introduite par Cencov (1962), voir aussi Foldes et Révész (1974), Sansone (1977),
Devroye et Gyorfi (1985), Bosq et Lecoutre (1987), Hardle (1989), par exemple). Ce cha-
pitre souligne I'importance de la qualité d’une base de données (au sens de sa répartition
uniforme) pour 'estimation de parameétres et justifie de fagon théorique les techniques
de sélection et de spécification de points présentées au chapitre I. Bien qu’il s’agisse
d’une méthode d’estimation particuliére, nous pouvons raisonnablement penser qu’en
I’absence d’information sur la fonction f, un ensemble de points ayant une discrépance
faible permettra, en général, d’obtenir une estimation de parameétres « convenable ». Les
estimateurs de paramétres, mais aussi les estimateurs de leurs espérances et de leurs va-
riances, font parfois intervenir des moyennes, approximations d’intégrale (par exemple,
ceux obtenus par la méthode de Monte Carlo). Ainsi, 'inégalité montre que la di-
minution de la discrépance d’un ensemble de points réduira, en conséquence, les erreurs
d’estimation.

Dans le chapitre 111, les données seront considérées comme aléatoires. Nous effectue-
rons donc des tests statistiques d’uniformité multidimensionnelle. Plusieurs tests seront
proposés, issus de différentes théories, « sparse-serial tests », « scan statistics ». Nous
nous référerons respectivement a L'Ecuyer et al. (2002), Glaz et al. (2001), et ainsi qu’a
leurs propres références. Pour la plupart de ces tests, une partition en cellules disjointes
de I'espace sera effectuée, et nous définirons des statistiques & ’aide du nombre de points
compris dans ces cellules.
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Chapitre 1

Critéres déterministes

1.1 Contexte

Nous ferons ici référence au vocabulaire, aux notations et & la méthodologie définis
en introduction.

Le présent chapitre étudie principalement I'étape 2 de la méthodologie dans un
contexte oul la structure de la fonction du code (propriété de continuité, de linéarité,
etc.), est inconnue. Nous allons donc nous intéresser a I’étude de la BDDE x(n). En
particulier, cette étude sera menée dans le cas ot il existe différents ensembles z(n, 0;) de
réponses du code en différentes valeurs 6; € ©, j = 1,...,k , de la base de données des
paramétres : @(k) = {01,...,0;}. Par la suite, nous parlerons de I'analyse de la BDDE
x(n), mais toutes les méthodes que nous allons définir doivent aussi s’appliquer & (k)
lorsque cette base existe.

Ne connaissant pas la structure de modéle que nous prenons en compte pour la ca-
libration, notre analyse consiste a vérifier que les points de x(n) ont une répartition
uniforme dans leur domaine de variation. Pour ce faire, nous allons définir, d’un point
de vue formel, différents critéres. Comme le titre de ce chapitre 'indique, ceux-ci sont
essentiellement dictés par des considérations déterministes. Il s’agit d’'une approche dif-
férente de celle des tests statistiques d’uniformité faisant I’hypothése d’une répartition
aléatoire des points dans I'espace. Par exemple, lorsque nous vérifions que 1'espacement
entre les points d'une BDDE est régulier, ce qui est par exemple le cas pour un réseau,
cette propriété reléve a priori d’une autre modélisation que celle qui consiste & étudier des
répartitions aléatoires basées sur des observations indépendantes. La répartition « uni-
forme » des points n’est donc pas a comprendre ici au sens probabiliste (i.e., des points
dont la distribution correspond & une loi uniforme, ou autre, sur le domaine X). !

Ce chapitre est composé de trois parties. Tout d’abord, nous définirons des critéres

1Les tests statistiques d’uniformité feront I’objet du chapitre III.
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permettant de vérifier que les points sont réguliérement espacés, et des critéres permet-
tant de vérifier qu’il n’existe pas de « trous » dans la BDDE. Les premiers critéres feront
intervenir les distances entre les points de la BDDE (afin de vérifier qu’il y a un espace-
ment convenable entre ceux-ci), les seconds prendront en compte les distances entre les
points de la BDDE et les points de 'espace X, il s’agira donc de considérations basées sur
des distances convenablement choisies. Nous présenterons ensuite des critéres permettant
d’apprécier le recouvrement, le « remplissage », de I’espace, en particulier 4 ’aide d’objets
géométriques spécifiques de X (hypercubes, cellules de Voronoi).

Dans une seconde partie nous étudierons la notion de discrépance. 1l s’agit de cri-
téres permettant d’effectuer des comparaisons entre le nombre de points compris dans
un pavé (produit d’intervalles) et le volume (ou mesure de Lebesgue) de ce pavé. Nous
détaillerons précisément ces notions qui se trouvent, par leur définition méme, constituer
des critéres tout a fait adaptés pour ’évaluation du recouvrement uniforme d’une BDDE
x(n) = {z1,...,2,} de n points dans un espace X = [0, 1]¢.

Dans la troisiéme partie de ce chapitre nous expliquerons comment utiliser et in-
terpréter ces différents critéres. Nous proposerons enfin une méthodologie d’étude de la
qualité d’'une base de données, que nous illustrerons & I’aide d’exemples.

1.2 Les critéres

1.2.1 Notations

Commencons par introduire quelques notations générales que nous utiliserons pour
I’analyse de la BDDE :

(1) X = O, ot O est un ouvert borné de R, désigne I'espace des valeurs possibles des
éléments de la BDDE, z; € X, pour i = 1,...,n. L’espace de la BDDE X est donc
une partie compacte de R

(2) @(n) la suite de points de la BDDE : ®(n) = {z1,...,z,} € X" avec z; € X,
(3) pp(.,.) la distance £F sur X définie par :

d 1/p
pp(w,v) = Z lwj —v;|P avec p > 1 et w,v € X, (1.1)
j=1
poo(w,v) 1= max |wj—v;| w,velX. (1.2)

j=1,....d

Pour p = 2, py est la distance euclidienne classique dans RY.

(4) ~i:= ming; pp(xi, r¢) désigne la distance minimale entre points x;, z¢, i # /.
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(5) 4 désigne la moyenne des ~; :

=2l

1 n
L= n;’}%

1.2.2 Critéres associés aux distances
1.2.2.1 Distances entre points de la BDDE

Les critéres que nous allons définir ici permettent de vérifier que les points ne sont pas
trop « proches » les uns des autres et réguliérement espacés. Ils sont essentiellement ins-
pirés par Gunzburger et Burkardt (2004). Notons que la notion de proximité dépend bien
entendu des caractéristiques du probléme étudié. Par exemple, une distance entre deux
points pourra étre considérée comme « faible » lors de ’étude d’'un phénoméne linéaire,
et « importante » si le phénomeéne est fortement non linéaire. Pour les applications il est
donc nécessaire d’avoir recours a 'avis d’un expert du domaine étudié afin de pouvoir
apprécier les distances les plus appropriées au phénomeéne et a I’étude.

e Distances minimales

Pour apprécier la proximité mutuelle des points de la BDDE, nous pouvons, dans
un premier temps, faire usage de la distance minimale entre deux points de la base de
données d’entrée. Celle-ci est définie par :

dmin,(z(n)) : = min  py(x;, x;). (1.3)
riFx;€2(N

S’il existe des points trop « proches » les uns des autres, vis-a-vis du probléme étudié, la
quantité dmin, sera faible. Lorsque nous souhaitons que tous les points soient au moins
séparés les uns des autres d’une distance d,,, nous pouvons définir le critére :

i iy Ti) > dy. 1.4
p i pp(@is ) > dy (1.4)
Dans le cas ou la répartition des points x(n) = {z1,...,2,} composant la BDDE

peut étre planifiée (conformément & un procédé de planification), nous définissons le plan
de répartition suivant :

Définition 1.2.1
Le plan x*(n) = {z7,..., x5}, permettant d’assurer une distance minimale satisfaisante
entre chaque point, au sens de l’égalité :

min T, Ti) = max min i, L), 15
ﬂﬂi?éwjém*(n)pp( %) m(n)ex”:ci#:cjem(n)pp( %) (1.5)

est dit maximin.
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Partant du constat que, pour un maillage ot les points sont réguliérement espacés les
uns des autres, nous avons y; = ... = 7, ou ; désigne la distance entre x; et son plus
proche voisin dans la BDDE, nous pouvons aussi définir le critére de qualité suivant :

maXi=1,..,n Vi
z(n)): = ——. 1.6
V(@ (n)) —— (1.6)

Comme dans un cas de parfaite régularité, ce critére vaut 1, une valeur voisine de 1
exprimera un critére de qualité de la régularité de la répartition des points. Remarquons
que le critére basé sur y(x(n)) est plus global que dmin, (voir (1.3)).

¢ Distances moyennes

Une autre approche pour apprécier la régularité des espacements entre les points de
la BDDE est de considérer des distances « moyennes ».

Aprés avoir éventuellement normalisé 'espace X C R? associé a notre BDDE de
fagon & avoir X = [0, 1], nous considérons un critére de distance moyenne correspondant
a l'inverse de la moyenne harmonique des distances (nous avons n(n — 1)/2 distances)
entre les points de la BDDE, rapportées au coefficient d*/?. Cette expression est définie

par
2
mp(x(n)) - = n<n _ 1) Z [

zi#xjex(n)

pp(@i, ) .7

di/p ]

Plus généralement, voir Santner et al. (2003), nous utilisons le critére suivant, portant
sur la moyenne des distances :

y R
2 d-r
mpa(@(n) = ———= > [ A ] . (1.8)
n(n 1 ziF#xjcx(n) pp(x“x])
ol A > 1 désigne un paramétre réel convenablement choisi.
Notons que nous avons les inégalités :
0 < pp(x1,22) < dP, (1.9)

Ici dM/? nest rien d’autre que la valeur de la norme de la « diagonale » de 'hypercube
unité. En effet, pour cette diagonale, z; = (0,...,0)!, et z; = (1,...,1)*, de sorte que
pp(ffz', J"j) = dl/p'

L’inégalité implique encore my x(x(n)) > 1. Plus cette quantité sera faible,
moins il y aura de redondance, i.e., de « groupement(s) » de points trop proches les uns
des autres dans x(n).
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Lorsque nous imposons a la BDDE «(n) de conserver une distance minimale d, entre
deux points, nous devons aussi vérifier I'inégalité :

mp(@(n)) > d'77/d,. (1.10)

Ce critére n’assure pas cependant une absence « totale » de redondance, certains points
pouvant étre « proches » les uns des autres, mais assure que la distance minimale entre
points distincts de la BDDE est « en moyenne » supérieure a d,, et que nous n’avons
donc pas de groupes trop importants de points proches les uns des autres.

Dans le cas ou la représentation des points (n) peut étre planifiée en x*(n), nous
adoptons la nomenclature suivante faisant référence a 1’égalité (1.8).

Définition 1.2.2
Les plans x*(n) sont dits de critére my x optimauz si :

mp (@ (n)) = w(%ienxn(mp,x(m*(n)))- (1.11)

Notons que lorsque A — oo dans nous avons :

Mpeel(n) =l (2(n)
di/p

e max N
T #T;€x(N) pp(xi’ xj)

Par conséquent, un plan optimal pour le critére my, o ((n)) est aussi un plan mazimin

(voir 1.2.1).

Avec les notations (4) et (5) du paragraphe (1.2.1), nous définissons un autre critére
utilisant une moyenne de distances donné par :

Lo 1/2
(n Z(%’ — 7)2> : (1.12)

Notons que ce critére demeure défini pour un espace X non restreint a [0, 1]d. Il s’agit,
pour ce critére, de vérifier que la variabilité (I’écart-type) des distances des points les plus
proches (les 7;) n’est pas trop importante. Lorsque nous considérons un maillage régulier
de l'espace X, ce critére est nul, puisque v; = ... = ,. Ainsi, plus ce critére sera faible,
plus la répartition des points pourra étre considérée comme réguliére.



30 Chapitre 1. Critéres déterministes

1.2.2.2 Distances entre points de la BDDE et points de ’espace

Nous allons introduire ici des critéres qui permettent de vérifier qu’il n’existe pas de
« trous » dans la BDDE, et, par conséquent, de vérifier que ’ensemble du domaine X
est recouvert de fagon « acceptable » (voir Feuillard et al. (2005)). Nous ne considérons
donc plus uniquement des distances entre points de la BDDE, mais des distances entre
points de la BDDE et des points convenables de ’espace X.

e Dispersion

Un premier critére permettant de quantifier les « trous » de la BDDE est celui de la
dispersion au sens de la définition suivante :

Définition 1.2.3
Nous définissons la dispersion de la BDDE x(n) € X" par :

dyfe() = sup { min gy }. (113)

weX (Ti€x(n)

Dans le cas particulier p = 2 et p = 0o, nous obtenons :

d((n) = sup{ mm)uw—xiu},

weX (zi€x(n

doo(@(n)) : = sup (fé”éln {quﬁ?idle - éﬂj\}) :

Intuitivement, la dispersion au sens de la définition (1.2.3) s’interpréte comme le rayon
de la plus grande boule ne contenant aucun point de la BDDE dans I'espace X. Cette
quantité peut aussi étre vue comme 'infimum de tous les rayons r tels que les boules
B(xy,7),...,B(xp,r) recouvrent X (rappelons que lorsque X est compact, il existe un
nombre fini de boules de rayon r recouvrant X). Par conséquent, lorsque la dispersion
(au sens de la définition (1.2.3)) est élevée, la suite de points comporte des « trous » dans
le domaine X, et une dispersion faible assure une bonne répartition des points dans X,
un recouvrement de ’espace sans « trou ».

Précisons quelques propriétés intéressantes. Nous avons les inégalités

1 < dg(x(n)) < do(x(n)) < dY%dy(z(n)), (1.14)
2 Lnl / dJ
ot |n'/4] désigne la partie entiére de n'/%. Cette derniére inégalité est notamment atteinte
pour les grilles de Sukharev (voir I'illustration graphique (1.1)). Pour davantage de détails
sur cette notion, nous nous référerons a Sukharev (1971), Niederreiter (1988), Niederreiter
(1992), Niederreiter et Wills (1975).

Une fagon de calculer la dispersion est de considérer une dispersion « relative » & une
suite dont nous savons qu’elle recouvre bien tout I’espace (nous pourrons considérer des
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F1G. 1.1 — Grille de Sukharev (25 points)

suites & discrépances faibles dans [0, 1]%, définies au paragraphe (1.3)). Nous supposons
disposer d'une suite auziliaire BDDREF x¢(N) = {xf1,...,25n} de points de X dont
nous considérons les propriétés d’uniformité « acceptables ». Ici, N correspond & un
nombre important (en pratique, largement supérieur & n) de points (de fagon a bien
recouvrir tout 1’espace). Nous calculons :

Disp(x(n),x (N 1= max min Tf,T5) ¢ - 1.15
plalm.ar (V) = max { win g0g.2)} (115

Ceci est illustré par le graphique (1.2).

Nous faisons donc, en utilisant (1.15)), une approximation de la dispersion au sens de
I'égalité (1.13). Ne pouvant calculer le supremum relativement a w € X dans la définition
(1.2.3) sur tout le domaine X, nous prenons, dans (1.15), le maximum relativement aux
xy, € Ty(n), parmi un ensemble x¢(n) de points qui recouvre X de fagon jugée satisfai-
sante. Nous pouvons aussi interpréter le critére (1.15) comme une comparaison entre les
points de la BDDE et des points d’'une BDDREF ayant une bonne répartition uniforme,
c’est pourquoi nous avons choisi 'appellation dispersion « relative » pour (1.15). Préci-
sons que cette notion que nous introduisons ici n’a pas été rencontrée dans la littérature,
et est & notre connaissance, nouvelle.

Signalons dés & présent que certaines des suites y que nous choisirons comme BD-
DREF seront les suites a discrépance faible ( au sens de la définition (1.3.7) du paragraphe
(1.3)). Celles-ci ont aussi 'avantage d’étre & dispersion faible (au sens de I'égalité (1.30)
du paragraphe (1.3)). Ainsi, si la suite de points de la BDDE est « proche » (dispersion
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F1G. 1.2 — Approximation de la dispersion

relative faible) d’une suite a discrépance faible, nous pouvons penser que la discrépance,
et par conséquent la dispersion, sera faible. Nous calculerons donc pour la BDDE x(n)
différentes dispersions « relatives » a l’aide de différentes BDDREF, suites a discrépance
faible.

Au lieu de prendre comme BDDREF une suite « déterministe » (comme le sont les
suites a discrépance faible), nous pouvons aussi considérer des suites de variables aléa-
toires indépendantes et de loi uniforme dans X = [0, 1]¢. Nous calculerons le critére (1.15)
pour ces différentes suites, et garderons la plus grande valeur comme approximation de
la dispersion. En pratique, le nombre de points de ces suites peut ne pas étre trop élevé
(de l'ordre du nombre de points de la BDDE étudiée n, par exemple) de fagon a effectuer
de nombreux calculs de la dispersion « relative ».

Lorsque les différentes approximations ont le méme ordre de grandeur, nous pourrons
considérer une approximation correcte de la dispersion théorique.

Pour apprécier la valeur de ’approximation obtenue, nous pouvons la comparer avec
les différents critéres de distance que nous aurons précédemment calculés, comparant
ainsi les distances entre points de la BDDE et le rayon de la plus grande boule vide
dans I'espace X. Il est, ici aussi, utile d’avoir recours & I'avis d’un expert du domaine
étudié qui soit capable d’apprécier la pertinence des différentes distances utilisées dans
les critéres d’uniformité. Plus la dispersion (définition (1.2.3) et approximation par la
formule (1.15)) sera faible et plus la BDDE recouvrira (« remplira ») l'espace, i.e. avec
des « petits » domaines (boules de rayon faible) de I’espace sans point de la BDDE.
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Nous pourrons aussi comparer la dispersion (obtenue par I'approximation de la for-
mule (1.15)) de la BDDE x(n) avec celles de suites (x*(n)) planifiées ayant le méme
nombre de points n que celui de la BDDE et dont nous savons que leur dispersion est
faible, i.e., considérer des ratios du type :

Rdisp(z(n)) 1= —F————. (1.16)

Plus Rdisp(x(n)) sera proche de 1, et plus la BDDE recouvrira 'espace, au sens des
critéres précédents.

Remarquons aussi, que lorsque nous remplagons x¢(N) par x(n) dans le critére de
dispersion « relative » (1.15), nous obtenons le critére mazimin de la suite x(n) défini
par le terme de droite de I'égalité et rappelé ci-dessous :

max min Ti, Xs
w(n)exnmiiija:(n)pp( v ])’

e Utilisation des cellules de Voronoi

Il s’agit d’une approche comparable a la précédente. Dans ce qui suit la valeur de
1 < p < oo sera fixée et p, définie comme au paragraphe (1.2.1). Nous ne calculons plus
ici le rayon de la plus grande boule vide dans X, mais la distance caractérisant la plus
grande cellule de Voronoi associée a la BDDE. Commencons par préciser la notion de
région de Voronoi :

Définition 1.2.4

Soit x € x(n). La cellule de Voronoi V(z) = V(x,X) associée au point x dans X est
Uensemble des points w de 'espace X tels que la distance py(x,w) soit inférieure a la
distance pp(z', w) pour nimporte quel autre point z' de x(n) :

Vizg):={weX :pp(z,w) < pp(z,w) Vo' € x(n)}.

(Pour illustrer cette définition, l’ensemble des régions de Voronoi d’un réseau plan est
représenté dans la figure (1.3) ci-dessous).

La construction des cellules de Voronoi et le calcul les différents critéres définis & par-
tir de celles-ci présentent une forte complexité algorithmique. Nous utilisons & cet effet
les programmes de Gunzburger et Burkardt (2004)2.

2voir http://www.csit.fsu.edu/ burkardt/pdf/ptmeas.pdf
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FiG. 1.3 — Régions de Voronoi d’un réseau
3

Un critére que nous pouvons définir a l'aide de cette notion est, en notant V(z) la
cellule de Voronoi associée a x dans X,

h(xz(n)) := max h; ot h;:= max py(x;,w). (1.17)
i=1,...,n weV (x;)

Par définition, le critére (1.17) permet d’apprécier le maximum des distances entre
un point x; de la BDDE et un point w de la cellule de Voronoi qui lui est associée. Ce
critére permet donc de vérifier qu’il n’existe pas de cellule de Voronoi trop importante. En
d’autres termes, un domaine important de ’espace X de la BDDE peut contenir un seul
point x de la BDDE. Plus la valeur de ce critére sera faible, meilleur sera le recouvrement
de I'espace. Il est ici aussi nécessaire d’avoir recours & ’avis d’un expert pour apprécier la
pertinence de ce critére (puisqu’il fait intervenir le choix d’une distance appropriée dans
I'espace X).

Nous pouvons aussi définir, & partir des h; = max,cy (s, Pp(Ti, w), i = 1,...,n, le
critére :

max;—1,..n i

plx(n)) : = —h (1.18)

ming=1,..n N

Pour un maillage parfaitement régulier de I'espace, p = 1. Ainsi, plus la valeur du cri-
tére (1.18) sera proche de 1, plus le recouvrement de I'espace de la BDDE sera satisfaisant.
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Nous pouvons également définir le critére x suivant :

x(x(n)):= max y; ou x;:= QTh_i, (1.19)

1:17--.,71 k3
ott 7; = mingy; pp(wi, z¢) et hi = max,ey (s, pp(xi,w), pour i = 1...,n. Ce critére
permet non seulement d’apprécier la qualité de recouvrement des points de la BDDE
x(n) = {z1,...,2,} de 'espace X, mais aussi d’apprécier les propriétés liées aux espa-

cements entre points de la base de données d’entrée x(n). Dans le cas d'une BDDE de
répartition « uniforme » (i.e. réguliérement répartie et qui recouvre l'espace X de fagon
« acceptable »), x;(x(n)) est idéalement constant lorsque i varie de 1 & n. Lorsque nous
nous éloignerons d’une répartition uniforme, le rapport y(a(n)) aura tendance a aug-
menter. Ainsi plus cette quantité sera faible, meilleur sera le recouvrement de X par les
points de x(n) et meilleure sera la régularité de leur disposition dans l’espace.

RECOMMANDATIONS :

Nous rappelons que, pour pouvoir interpréter 1'utilité et la pertinence des distances entre
les points de la BDDE, il est nécessaire d’avoir recours a un avis d’expert. Par conséquent,
I'utilisation des différents critéres définis précédemment doit se faire en collaboration avec
les spécialistes du domaine étudié.

1.2.3 Critéres associés aux volumes des cellules de Voronoi

Dans ce paragraphe, nous allons définir des critéres faisant intervenir les volumes (au
sens de la mesure de Lebesgue dans R%) des cellules de Voronoi. Comme les précédents
critéres, ceux que nous développons ici sont inspirés de Gunzburger et Burkardt (2004).

Soit V; = V(x;), i = 1,...,n, les cellules de Voronoi associées aux points z;, i =
1,...,n dans X. Nous notons |V;| leur volume. Le critére suivant peut alors étre défini.
Nous posons

max;—1,_.n |Vi|

v(z(n)):= (1.20)

min;—y__,|Vi|’

Pour un maillage régulier de ’espace X, nous avons une valeur idéale : v(x(n)) = 1.
Ainsi, une valeur proche de 'unité donnera une information exprimant que les volumes
des cellules de Voronoi seront presque identiques, et par conséquent que la BDDE consi-
dérée sera réguliérement répartie dans I'espace X au sens de ce critére.

Nous pouvons encore définir d’autres critéres faisant intervenir des moments conve-
nablement choisis associés aux cellules de Voronoi. Notons

1
Vil Jv,

€Ty .

xdr,
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le premier moment (ou barycentre, ou centre de gravité) de V; (£; un vecteur de R?), et

posons
1

1
M, := / (x — &) (x — ;) dx = / o' de — ;3
Vil Jy, Vil Jv,

le moment d’ordre 2 associé au centre de gravité z; de V;, appelé aussi matrice de cova-
riance ou moment d’inertie. Dans cette définition, M; est une matrice d x d symétrique
positive. Nous notons T} = tr(M;), la trace de la matrice M;, nous posons M; = T;/d, et
nous désignons par A; : = det(M;—M;.I), le déterminant de la matrice de déviation de M;
relativement a une matrice diagonale (« deviatoric matrix », voir Gunzburger et Burkardt

(2004)).

Pour un maillage parfaitement régulier, nous aurions idéalement :

n
Ty=---=T,=T, oi T::ZTi,
i=1

Nous définissons donc les critéres :

r(@(n) = max |1, ~ 1], (1.21)
Afe(n) = max [A] (1.22)

Ainsi, plus les critéres (1.21) et (1.22) seront proches de 0, plus la répartition des
points sera uniforme, i.e., plus les points recouvriront bien tout 'espace X au sens de ce
critéres.

1.2.4 Reécapitulatif

Dans cette partie, nous avons défini différents critéres permettant de vérifier la ré-
gularité de la répartition des points de la BDDE x(n) (« l'équirépartition »), et le bon
recouvrement de I'espace X par x(n). Avant de définir une derniére notion dans la partie
suivante, nous récapitulons I’ensemble des critéres vus jusqu’a présent dans le Tableau
(I.1). Les séparations horizontales du tableau indiquent les 3 types de critéres que nous
avons définis :

— les critéres associés aux distances entre les points de la BDDE qui permettent

d’apprécier la régularité des espacements des points.
— les critéres associés aux distances entre les points de la BDDE et les points de 1’es-
pace X, qui permettent d’apprécier le recouvrement (« le remplissage ») de 1'espace
X.

— les critéres associés & des volumes qui permettent, eux aussi, d’apprécier le recou-
vrement de I'espace X.
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Les waleurs de référence indiquées dans la colonne de droite représentent les valeurs
des critéres que nous aurions si la BDDE était réguliérement répartie. Lorsque celles-ci
n’existent pas, les fleches | signifient que nous souhaitons une valeur la plus faible pos-

sible (] signifie « & minimiser »).

] CRITERE \ VALEUR DE REFERENCE \
dmine (x(n)) Disp,, (z(n))/2
v(x(n)) 1
ma1(x(n)) !
Az(n)) 0

Dispo (2(n), THa(N)

2.dming (x(n))

)
Disp. (2(n), Ham(N))

2.dming(x(n))

Disp.. (2(n), Zra(N))

2.dming(x(n))

Disp,, (w(n), wRes(N))

2.dmin,

!

S| O | —| =

TAB. 1.1 — Différents critéres et valeurs de référence
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1.3 Discrépance

Nous allons a présent évoquer la notion de discrépance. Celle-ci est le plus souvent ren-
contrée dans le domaine de I'intégration numérique multi-dimensionnelle, car elle permet
de définir des bornes pour 'erreur d’intégration. D’un point de vue général, la discrépance
est une différence entre le nombre de points d’une suite ¢(n) = {x1,...,z,} contenus
dans certains pavés P (produit d’intervalles) d’un espace X = [0,1]%, et les volumes (me-
sures de Lebesgue) de ces pavés notés A(P), pour P C X. Comme il est possible de choisir
différentes catégories de pavés (hypercubes, hyperrectangles, etc.), ainsi que d’autres fa-
milles d’ensembles, et différentes distances (normes), pour définir ces quantités, il existe
plusieurs définitions possibles de la discrépance. Pour mieux comprendre les origines et
les différentes propriétés des discrépances que nous allons définir, nous renvoyons au para-
graphe(2.2 du chapitre 11, ainsi qu’a Thiémard (2000), Hickernell (1998), et aux références
bibliographiques contenues dans ces articles.

1.3.1 Notations

Précisons les notations que nous utilisons pour les définitions qui suivent. Nous no-
tons :

(I1) Z:=10,1)¢;
(IL2) X:=1Z =10,1]%;

(I3) z un élément de X = [0,1]¢, z: = (2, ... D) e X;

(1) (d)

(L4) x(n) : = {1,..., 2y} une suite de points dans X; z; = (z;’,...,z;’) € X pour
i=1,...,net x(n) e X";
I.5) P:=J(a,3) un pavé (produit d’intervalles) dans Z = [0,1)%; pour
(1.5) (a, pavé (p )% p
a= (WY .. aD)Yex=1[0,17 et
B=pW, . . g9y ex, avec  0<al) <pV) <1.vje{l,...,d}

d
P:=J(,8) = [[la?,89));

J=1

(1.6) P I’ensemble des pavés P contenus dans Z = [0,1)%,

d
P = p::H[a(j)’lg(j)):oga(j)<B(j)§1 :

J=1
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(I.7) P*(2) un pavé ancré a l'origine (produit d’intervalles ayant tous pour extrémité
inférieure 0) dans Z = [0,1)%; pour z = (21, ..., 2®) ¢ X = [0,1]¢ avec 0 <

d .
P*(2): = []10.20);

Jj=1

(1.8) P* I'ensemble des pavés ancrés a l’origine contenus dans Z = [0, 1)%,

d
Pri=S P =]Jl0,29):0< 20 <155

Jj=1

(I1.9) A(P) le volume (mesure de Lebesgue) d'un pavé P dans X;

pour o = (04(1), .. .,a(d))’ e X =10, 1]d,

et ﬂ:(ﬁ(l),...,ﬂ(d))'ex, avec 0 < o) < g0 <1,vjedl,...

d
7j=1

d
AP) = [](8Y = al?);

J=1

7d}7

(I.10) #{E Nx(n)} le nombre d’éléments d'une suite x(n) = {x1,...,z,} appartenant a

'ensemble E C X = [0,1]%;

(I.11) A l'ensemble des 2¢ sommets du cube unité dans RY,

A::{aex;a(j):OOul,Vje{lwuad}};
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(1.12)

(L13)

(L.14)

(L15)

(1.16)

(L17)

(L18)

J(a,z) le pavé dont les extrémités inférieures et supérieures sont définies par les
points z € X et a € A; J(a,x) est défini de la fagon suivante, pour un sommet
a € A et pour z € X,

J(a,z) =

{z’ eZ =1[0,1)¢: min(a?, 20 < 20 < max(a), z0), vj e {1,... ,d}} ;

a(z) 'unique sommet de A (défini en (I/11)) qui est le plus proche du point z € X,
c’est-a-dire, I'unique sommet de [0, 1]% tel que z € J(a(z), (1/2,...,1/2)), ot J est
définie comme en (115);

F), la fonction de répartition empirique d’une suite de points &(n) = {z1,...,2,}
dans X ; pour z = (z(V, ... 2(d) e X,

n
Fo(2) =) Vo @ <@y
=1

U la fonction de répartition uniforme dans X = [0, 1]¢; pour z = (2!, ... ,z("))’ e X,
ot X = [0,1]¢,

U(z) : = Hz(j);

J=1

lze(z) la norme LP dans LP(Z) (o, cf. (L) Z = [0,1)%); pour f € LF(Z) avec

1 <p<oo,
1/p
1w : = ( / !f(Z)\pd2> ;

|-l Lo (z) la norme L dans L*°(Z); pour f € L>(Z),

[ fll oo (zy : = sup | f(2)];
z€T

u un ensemble non vide d’indices distincts de 1 & d, soit w = {1 < uq,...,up < d};
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(L19) T

(1.20)

(1.21)

(1.22)

(1.23)

(L.24)

() e pavé unité dont les axes sont déterminés par 'ensemble non vide d’indices

w={1<uy,...,up <d};pour (11, . . 1)
l ¢
7w . — 1_[[()7 1)y et ZTW . = 1_1[07 1(w)];
j=1 j=1
2(® € [0,1]¢ le point (vecteur) extrait de z = (2(V), ..., 2} € X dont les compo-
santes sont indexées par les indices de ’ensemble non vide u = {1 < uq,...,uy < d},
AW = (z(“l), . Z(W))/;

z(W(n) = {z;™, ... 2,(W} la suite des points issus de @(n) = {z1,...,2,} € X"
dont les composantes de chaque point 2;(® € Z(#) sont restreintes a celles indexées
par u C {1,...,d}, ensemble d’indices non vide; z;(* = (z;(*) ... z;(%)) pour
1=1,...,n;

J(a®, (W) un pavé (produit d’intervalles) dans 7  pour
a® = (o) o)) € TW ot g = (3)  plw)y ¢ T(W ayec
0<aw) <p) <1,vje{l,...,4},

¢
J(a®, 50) ; = T[a, gt

j=1

P*(z(“)) un pavé ancré a l'origine ayant pour extrémités supérieures les compo-
santes de z(u), ot 2(® est un vecteur extrait de z = (z(l),...,z(d))’ € X dont
les composantes sont indexées par les indices de ’ensemble non vide u = {1 <
up, ..., up < d}; pour (W = (z(w) ()

[0, 2(“;‘))
1

14

J

A(“)( (alw ,B )) le volume (mesure de Lebesgue dans Z(*) voir (119)) d'un
pavé J(a ) (v01r (15)); pour o = (o) . o)) € T(W ot g =

/811,
(B plu ) avec
0<alv 5 <1,Vj€{1,...,€},
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(1.25)

(1.26)

(1.27)

(1.28)

L
A ( J(a®), 5(u>)) .= [J(at) — gy,

j=1

A Jes 2¢ sommets du cube Z(* (voir (I1/19)) dont les composantes sont indexées
par
u={1l<wu,...,up < d} (¢ est le nombre d’éléments de ’ensemble (non vide) wu,

0= #(u)),

AW = {a(u) eI . q(w) = 0 ou 1,Vj e {1,...,€}};

J (a(“), z(“)) le pavé dont les extrémités inférieures et supérieures sont définies par
les points (%) € T(W et o(® € A voir (1119) et (I1125); pour z(*) € T(¥) et
a® e AW J(a™®, (W) est défini comme suit,

J(@W, W) =

{z’(u) SAS min(a(“f),z(“j)) < 2 < max(a(“f),z(“j)), Vie{l,... ,E}} :

a™(z) Punique sommet de A (voir (I125)) qui est le plus proche du point
2 e T (voir (1119)) ot 2 = {z() . 20} est un point (vecteur) ex-
trait de z = (21, ..., 2(D) € X, pour un ensemble non vide d’indices
w={1<up....  u<d:

o une somme définie pour les sommets a(* € A®™ (voir (I125)) dont les compo-
santes sont celles correspondant aux indices d'un ensemble non vide u = {1 <
U, up < d,

o(@™): = Z a™) (" mod 2),

jeu={1<uy,...,up<d}

cette somme est égale & 0 quand la somme des composantes du sommet a® est
paire et est égale & 1 sinon ; lorsque la somme o (a(®) est égale a 0, nous dirons
que le sommet a(® est pair, et que le pavé J (a(“), z(“)) est pair;
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(1.29)

(1.30)

(1.31)

(1.32)

Je(a(”),z(“)) I'union de pavés pairs ; pour les sommets pairs (i.e. tels que a® e
AW et g(a®) = 0) et 2(® un point extrait de z = (z(V, ..., 2(D) € X dont les

composantes sont indexées par ’ensemble non vide w = {1 < uy,...,u; < d},
Jo(aW, z(W) : = U J(a™ z(W),
o(a(®))=0

F,ﬁ“) une fonction de répartition d’une suite de points & (n) = {x1, ..., z,} restreinte
aux composantes indexées par l'ensemble non vide u = {1 < uy,...,uy < d} des
éléments de z(n); pour u = {1 <wup <--- <wyet z= (20, ... 2¥)eX,

n

= Z 1 {wgul)gz(“l) ..... zl(-ul)ﬁz(“f)};
i=1

sur I ) (voir (1/19)), il s’agit de la fonction de répartition de la suite (®) (n) =

{$1 geoey L (u}’

U™ la fonction de répartition uniforme dans Z(® (voir (1/19));
pour z(® = (z(w)  Hlw)) e T(w)

= ﬁz(ug‘);

j=1

H'HLP(I(")) la norme LP dans LP(Z(); pour f € LP(T(®) avec 1 < p < oo,

1/p
1l oy < = ( /. |f(z)|pdz> |

1.3.2 Définitions

Nous exposons ci-dessous différentes définitions, correspondant & différentes versions
de la discrépance (voir aussi chapitre II).

— La discrépance extréme

Définition 1.3.1
Soit x(n) = {z1,...,x,} € X" une suite de n points dans X, la discrépance extréme de
x(n) est définie par :

D(a(n)) : = sup |0 EM}

—A(P)]|. (1.23)
PeP n
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Rappelons, par (16), que P est 'ensemble des pavés contenus dans Z = [0,1)¢. Cette
définition correspond bien & une comparaison entre le nombre de points contenus dans
un pavé et le volume de ce pavé. Son calcul revient a chercher le pavé qui contient la
densité de points la plus anormalement élevée comparativement & son volume.

— La discrépance a l’origine

Définition 1.3.2
Soit ¢(n) = {x1,...,xn} € X™ une suite de n points dans X, nous définissons la discré-
pance & l’origine par :

D(e(m) : = sup #{Pr;"”(”)} _aAP). (1.24)

Nous désignons ici des pavés ancrés a l'origine, par P*, voir (I'8). Remarquons que
nous pouvons plus simplement écrire :

D*(x(n)) : = [[Fn = Ullee(z) »

ou F,, désigne la fonction de répartition empirique de la suite x(n) = {z1,...,z,} et
U désigne la fonction de répartition uniforme sur X = [0, 1]%. La discrépance & I'origine
correspond donc a une distance entre F,, et U. C’est la norme L™ de la différence de ces
deux fonctions.

Comme il existe différentes normes LP correspondant a des choix différents de 1 <
p < 00, nous pouvons aussi définir différentes discrépances LP.

— La discrépance L?

Définition 1.3.3

Soit x(n) = {x1,...,xz,} € X" une suite de n points dans X. Désignons par F, et U,
respectivement, la fonction de répartition empirique de x(n), et la fonction de répartition
uniforme dans X = [0,1]%. Nous définissons la discrépance LP par :

D (2(n)) : = |Fn = Ull o)
La plus étudiée parmi les discrépances LP est, bien entendu, la discrépance L?, soit :
, 1/2
DI (z(n)) : = {/ |Fn(2) — U(Z)2d2’} . (1.25)
X
— La discrépance généralisée

Nous allons définir d’autres variantes de la discrépance issues de la notion de dis-
crépance généralisée introduite par Hickernell (1998). Cette derniére sera briévement
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rappelée et expliquée au chapitre II. Les discrépances modifiée, centrée, et symétrique,
définies ci-dessous, en sont des cas particuliers. Les définitions qui sont ici données cor-
respondent en fait plus a leur interprétation géométrique, qu’a leur définition théorique
(cf chapitre II).

Pour les définir nous utilisons les notations (I/1) a (I:32) des notations introduites en
début de cette partie.

- La discrépance modifiée

Nous utilisons ici les notations du paragraphe (1.3.1), en particulier : (I/10), (1.18),
(1120), (Ii21), (1.23), (1.24) et (1/32).
Définition 1.3.4

Pour 1 < p < o0, (n) = {x1,...,z,} € X, nous définissons la discrépance modifiée
par :
1/p
P*(z(W) O g P
n
uC{l,...,d} Lr(Z(w)
que nous notons encore :
Pr(z(wWY) N p(w
DMLp(a:(n)) - <#{ (z'") N (n)} — A\ (P*(z(u))>
n
u#l P

Nous pouvons encore écrire cette discrépance sous la forme :

1/p
Z | F{w — U(“)H’ipau)] .

Conformément aux notations (1.30), (I31) et (I/32) introduites au paragraphe (1.3.1),
FT(LU) désigne ici la fonction de répartition empirique de z(® (n), et U™ la fonction
de répartition uniforme dans le cube Z(* | dont les composantes sont indexées par un
ensemble non vide w C {1,...,d}. Nous notons encore :

DM (x(n)) : =

DM™ (@(n)) = || F = Ully-

Remarquons que la généralisation de DM™" pour le cas p = oo coincide avec la
discrépance a lorigine (voir définition (1.3.2)).
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- La discrépance LP centrée

Les définitions des discrépances LP, et LP modifiée, dépendent fortement du choix de
l'origine, puisque nous considérons dans leur calcul, des pavés ancrés a [’origine. L’'idée
est de considérer 'ensemble A de tous les sommets du cube unité de fagon a ce que la
valeur de la discrépance soit la méme lorsque nous effectuons une réflexion de la suite
par rapport a n’importe quel plan 2@ = 1 /2. Pour cela, nous utilisons les notations
introduites au paragraphe (1.3.1).

Définition 1.3.5

Pour 1 <p < oo, x(n) ={z1,...,x,} € X", nous définissons la discrépance centrée par
DCH (x(n)) : =
1/p
u u u p
5 ‘#{x( J(n) 0T (a®)(z), 2@} L <J(a(“>(z),z(“>)
uC{l,...,d} " Lp(Z(w)

Cette discrépance ne dépend plus uniquement des pavés ancrés a [’origine puisque
elle fait intervenir les pavés J (a(u)(z), z(“)) qui, pour un point z € X, sont définis par
le point z(®) e T(® et son plus proche sommet a(”)(z) e I voir les notations (1119),
(I20), (I27) du paragraphe (1.3.1). Ceci est illustré par la Figure (1.5) ou le point
z = (0.6,0.7) € [0,1)2, le pavé alors considéré est celui en rouge. Elle est invariante si
nous remplagons la suite &(n) par 1 — x(n). Cette définition est valable pour p < oo et
ne se généralise pas convenablement pour p = oo (voir Hickernell (1998)).

Signalons enfin une derniére définition de la discrépance : la discrépance LP symé-
trique, que nous décrivons ci-dessous.

- La discrépance LP symétrique

Nous utilisons les notations du paragraphe (1.3.1), en particulier les notations (1.28)

et (1129).

Définition 1.3.6

Pour1 <p< oo, z(n) ={zx1,...,zn} € X", la discrépance LP symétrique est définie par
DSV (z(n)) : =
1/p
u u u p
Z #{z®(n) N Je (aW,z2W)} W (Je (a(“> L
n b
uC{l,...,d} Lr(T(w)
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Cette définition de la discrépance ne fait pas intervenir uniquement les pavés ancrés
a l’origine, puisque nous considérons les pavés pairs Je (a(“),z(“)), voir en particulier
la notation (I129) du paragraphe 1.3.1l Une union de pavés « pairs » associée au point
z = (0.5,0.7) est représentée Figure (1.6). Cette discrépance est invariante si nous rem-
plagons la suite x(n) par 1 — x(n).

Fic. 1.4 — Pavé « ancré &  Fic. 1.5 — Pavé « centré »  FI1G. 1.6 — Union de pavé
I’origine » associée a associé a « pairs » associée a

2= (0.6,0.7) z=(0.6,0.7) 2= (0.5,0.7)

Les Figures (1.4), (1.5), (1.6), représentent en rouge les pavés considérés pour les
définitions des différentes discrépances définies ci-dessus dans I'espace X = [0, 1]2. Pour
chaque discrépance, il s’agit de considérer ’ensemble de ces pavés et de comparer le
nombre de points qu’il contiennent avec leur volume a l’aide d’une norme (c.f. définitions

(1.34), (1.35), (1.3.6) ).

1.3.3 Propriétés

Décrivons a présent différentes propriétés des discrépances préalablement définies.

1.3.3.1 Inégalité

Nous commengons par préciser les différentes inégalités entre les discrépances (voir
Hickernell 41998‘) et Thiémard 42000)). Pour toute suite (n) = {z1,...,2,} € X" de n
points dans X, en notant (conformément aux définitions du paragraphe précédent) DI*,
la discrépance LP, DM la discrépance LP modifiée, D*, la discrépance a l’origine, D,
la discrépance extréme, nous avons :

0 < DX (x(n)) < DML (z(n)) < D*(z(n)) < D(z(n)) < 1. (1.26)

Définissons a présent quelques bornes inférieures.



48 Chapitre 1. Critéres déterministes

Théoréme 1.3.1 (Roth 1954)
Pour toute suite x(n) contenant n points dans X = [0,1]%, il existe une constante ch2
ne dépendant que de la dimension d, telle que :

(d—1)/2
DY (x(n)) > & (logn)t 7=
n

Démonstration :

Pour la démonstration de ce théoréme, nous nous référons a Roth (1954).
O

Notons qu’il est théoriquement possible de construire des suites de points x =
{1,...,2n} dont l'ordre de la discrépance L? est en O (n~!(log n)(d_l)/z). Cet ordre
est optimal, puisqu’il est le méme pour les bornes inférieures et supérieures. La construc-
tion de telles suites (d’ordre optimal pour la discrépance L?) n’est cependant pas connue
sous forme explicite (& notre connaissance).

A Taide des inégalités (1.26) et du théoréme précédent, le lemme suivant est immédiat,

Lemme 1.5.1
Pour toute suite x(n) contenant n points dans X = [0,1]%, il existe une constante
cqg > 0 ne dépendant que de la dimension d, telle que :

1 (d—1)/2
D(a(n)) > D*((n)) > DMF ((n)) > g 82 (17)
n
ou D, D* et DML désignent respectivement la discrépance modifiée L?, la discrépance
a lorigine et la discrépance extréme.

Pour le cas de la discrépance a Iorigine D*, il n’existe, & notre connaissance, aucune
(logn)<d*1)/2

construction générale de suite permettant d’atteindre la borne inférieure m

A titre d’indication, signalons une minoration plus précise de la discrépance a ’origine.
Celle-ci est obtenue a 'aide du théoréme suivant,
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Théoréme 1.3.2 (Baker 1999)
Pour toute suite x(n) contenant n points dans X = [0,1]¢, il existe une constante
By > 0 ne dépendant que de la dimension d, telle que :

log 1) (d—1)/2 log logn \ 1/(2d4-3)
D (2(n)) > By 28" & 108 . (1.28)
n log log logn
Démonstration :
Pour la démonstration de ce théoréme, nous nous référons a Baker (1999).
O
Plus généralement, nous conjecturons que pour une suite contenant une infinité de
points @ = {x1,...,2p,...} dans X, Pordre optimal de convergence vers 0 que nous pou-
vons obtenir pour la discrépance a l'origine D* des n premiers points & (n) = {x1,...,z,}

de la suite x est, lorsque n — oo

W@@»:OCMMW> (1.29)

n

Aucune suite présentant un taux de décroissance vers 0 plus rapide n’a été construite &
notre connaissance, et nous supposons donc qu’il n’en existe pas. C’est a I'aide de cette
conjecture que sont définies les suites a discrépance faible, comme suit

Définition 1.3.7

Une suite contenant une infinité de points {x1,...,Zn, ...} dans X, et dont les n premiers
termes x(n) = {x1,...,xn} sont construits de fagon a vérifier
logn)?
D (a(n) =0 (HE7).
n

est appelée suite a discrépance faible.

Parmi ces suites, nous pouvons citer les suites de Halton, de Hammersley, de Faure,
de Sobol, et aussi plus généralement les réseaux (voir Halton (1960), Hammersley (1960),
Faure (1982)).

Lorsque nous souhaitons évaluer la qualité de répartition uniforme d’'une BDDE x(n)
constituée de n points dans X, les suites a discrépance faible peuvent servir comme élé-
ment de comparaison. Nous pouvons par exemple comparer la valeur de la discrépance
obtenue avec la BDDE x(n) avec celle d’une suite a discrépance faible x ¢(n) comportant
le méme nombre de points n. La suite x ¢(n) peut alors étre considérée comme une suite
« étalon ». Nous détaillerons cette approche dans le paragraphe (1.3.3.3).
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Une autre inégalité extrémement importante, faisant intervenir la dispersion,

doo(z(n)) := sup ( min { maxd|wj—xj\}>, (1.30)

wex \I<i<n | j=1,..,

et la discrépance a l'origine D* (voir définition (1.3.2)) est donnée par le théoréme ci-
dessous.

Théoréme 1.3.3 (Niederreiter 1988)
Pour toute suite x(n) = {x1,...,7,} d’au moinsn points dans X = [0,1]%, nous avons :

doo(x(n)) < 2. (D*(2(n))) /. (1.31)

Démonstration :

Pour la démonstration de ce théoréme, nous renvoyons a Niederreiter (1988).
O

Ainsi, toute suite a discrépance faible au sens de la définition (1.3.7) est aussi une
suite & dispersion faible au sens ou elle vérifie :

logn
n
Nous faisons donc ici le lien avec le paragraphe (Dispersion) du paragraphe (1.2.2.2).

Précisons enfin une propriété concernant le nombre de points nécessaires pour que la
discrépance a ’origine soit inférieure & un seuil ¢, et la dimension d de X.

Remarque

Pour tout choix d’'un ¢ € (0,1/2), le nombre d’éléments minimum n(d, €) de la plus courte
suite = (n(d,€)) = {z1,...,Tp(e)} telle que D* (z(n(d,¢))) < ¢, croit de facon linéaire
avec d, voir Henrich et al. (2001).

Autrement dit, si nous nous fixons un seuil € de la discrépance & 'origine D*, plus
la dimension d est importante, plus le nombre minimal de points n(d) pour que la dis-
crépance a l'origine de x(n(d)) = {z1,..., 2,4} dans X = [0,1]% soit inférieure a e
sera important. Ce nombre de points croit de fagon linéaire avec la dimension. Cepen-
dant, la croissance du nombre de points nécessaires, n(d), en fonction de la dimension
d, des suites a discrépance faible * = {x1,...,Zpn,...,} construites a ce jour, pour que
D*(z(n(d))) < e n’est jamais linéaire, mais le plus souvent exponentielle.
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1.3.3.2 Propriétés des suites aléatoires de loi uniforme sur [0, 1]¢

Dans ce paragraphe, nous supposons que la suite x(n) = {z1,...,z,} correspond a
la réalisation de n variables aléatoires indépendantes et identiquement distribuées (v.a.
i.i.d.) de loi uniforme dans X = [0, 1]¢. Ceci n’était pas le cas dans les paragraphes pré-
cédents. L’approche est donc différente, et nous parlons d’approche probabiliste. Cette
approche fera I'objet d’un autre chapitre. Nous la considérons ici car, sous [’hypothése
d’une distribution uniforme des points de la BDDE, les discrépances que nous avons dé-
finies correspondent & des statistiques dont la loi est parfois connue.

O Etude des discrépances a ’aide du processus empirique uniforme

Définition 1.3.8
Pour x(n) = {x1,...,x,} une suite de variables aléatoires indépendantes et de loi uni-
forme dans X = [0,1]%, nous définissons le processus empirique uniforme par :

an(z) = n*(E(x)—Ux)), pourzeX (1.33)

ou F,, désigne la fonction de répartition empirique de la suite x(n) = {x1,...,x,} dans
X, U la fonction de répartition uniforme dans X.

Une fagon de construire des statistiques & partir de ce processus est d’évaluer une
fonctionnelle de celui-ci, par exemple une norme.

e Si nous utilisons la norme L*°(Z) (voir notation (I/32) du paragraphe (1.3.1)), par
deéfinition de la discrépance a 'origine D*, (définition (1.3.2)), nous avons :

2D (@) = ol (1.34)

La statistique [|ay| (7)) définie ci-dessus est connue sous le nom de statistique de
Kolmogorov-Smirnov. Une majoration de sa loi est donnée par le théoréme suivant,

Théoréme 1.3.4 (Dvoretzky, Kiefer, Wolfowitz 1956)
Soit ¢(n) = {x1,...,x,} une suite de variables aléatoires indépendantes et de loi uni-
forme dans X = [0,1]%, pour tout € > 0, il eviste une constante C:.q telle que

P(n'?D*(x(n)) >t) < C.gexp (—(2—-2e)?) . (1.35)

Démonstration :

Pour la démonstration de ce théoréme, nous renvoyons & Dvoretzky et al. (1956).
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Précisons que dans le cas de la dimension d = 1, nous pouvons obtenir, (voir Massart
(1990)) :
P(n'?D*(x(n)) > t) < 2exp(—2t%).

Ainsi, il est possible d’effectuer des tests statistiques. Nous ferons alors le test d’hypo-
theése : les z;, ¢ = 1,...,n sont des réalisations de variables aléatoires indépendantes et
identiquement distribuées de loi uniforme dans X = [0, 1].

Dans le cas ot la dimension d > 2, le choix de C, 4 = 2, optimal en dimension d = 1,
ne s’applique plus. Le calcul de la loi de la statistique de Kolmogorov-Smirnov est alors
délicat et une expression exacte de la loi limite n’est pas connue a ce jour. Le théoréme
de Dvoretzky-Kiefer-Wolfowicz est par conséquent difficilement exploitable dans notre
contexte. Dans ce contexte, une stratégie de tests par projection des données sur divers
sous-espaces est proposée par Franco et al. (2006).

e Si nous utilisons la norme L?(Z), avec les notations (Il30), (1:31), (1/32) introduites
au paragraphe (1.3.1), et par définition des discrépances L? et L? modifiée (définitions

(1.3.3), (1.3.4)), nous avons :

2
DY () = llonll ). (1.36)
2 u
n'PDMY (@(n)) = D [l (1.37)
uCl,...,d

ot () = nl/z(FT(Lu) (z) — U™ (x)) est le processus empirique associée a la projection des
points x(n) = {x1,...,2,} dans les sous espaces définis par les axes de [0,1]? indexés

par u (voir notations (I1.19), (1.30), (I131), paragraphe (1.3.1)).

La statistique définie par I’égalité (1.36) est appelée statistique de Cramer-Von-Mises.
Celle-ci converge vers un pont brownien standard multivarié (voir Araujo et Giné (1980),
par exemple). A I'aide d’un développement de Karhunen-Loéve de ce pont brownien (voir
Deheuvels et al. (2006)), il est possible d’obtenir :

c
/ (o () dzV) .. dad = Z )‘k1...dek21...kd
[0,1]24 K1,...,ka>0

ol : Ag,..k, sont des constantes positives croissantes, et qul...kd des v.a. 1.i.d. de loi
N(0,1). La statistique de Cramer-Von-Mises converge donc vers une somme pondérée de
variables aléatoires de loi du 2.

La statistique définie par I'égalité (1.37), faisant intervenir la discrépance modifiée,
est en fait la somme des statistiques de Cramer-Von-Mises associées a toutes les projec-
tions possibles des points de x(n) = {x1,...,,} selon les axes de [0,1]?. Elle converge
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donc aussi vers une somme pondérée de variables aléatoires de loi du x2. Les cas des sta-
tistiques que I'on peut définir & 'aide des discrépances centrée et symétrique (définitions

(1.3.5) et (1.3.6)) sont similaires.

25
I

2.0
I

Densité

1.0

0.5

0.0
I

T T T T T
0.0 0.5 1.0 15 20

Nombre de simulations = 1000

F1G. 1.7 — Densité de n x DCLQ(ar:(n))2

Cependant, les coefficients A, 1, ne sont pas connus de fagon explicite. Pour pal-
lier ce probléme, des processus définis sur les marges du pavé unité sont le plus souvent
utilisés. On se référera a Deheuvels (1981) et Deheuvels et al. (2006). I1 semble cepen-
dant délicat d’y avoir recours pour connaitre la loi exacte des statistiques que ’on peut
définir & ’aide des discrépances modifiée, centrée et symétrique. A notre connaissance,
ces lois ne sont pas toutes connues de fagon explicite pour le moment. Toutefois, il est
possible de les tabuler par simulation. La densité obtenue par simulation de la statistique
n X DCLZ(:B(n))2 ott z(n) = {r1,...,2,} est une suite de v.a. i.i.d. dans X = [0,1]? est
représentée Figure 1.7 (la multiplication par n permet de ne pas faire dépendre la loi de
la statistique du nombre de points).

O Esperances des discrépances au carré

Concernant les moyennes des discrépances carrées nous avons la proposition suivante,
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Proposition 1.3.1
Six(n) = {x1,...,zn} est une suite de variables aléatoires indépendantes et de loi
uniforme dans X alors,

E(D" (x(n))?) = (1/2)d;(1/3)d, (1.38)
BOM @) = (3) UYL (139
E(DC (@(n)?) = _G}é)d— @)d] , (1.40)
E(DSY (z(n))?) = % <§ + §>d — (;L)d] : (1.41)

Démonstration :

Les égalités (1.38), (1.39)), (1.40), (1.41) sont directement obtenues en appliquant les for-
mules dans Hickernell (1996a) et Hickernell (1998).

O

Insistons sur le fait que ces égalités sont valables lorsque la BDDE x(n) = {z1,...,2,}
est la réalisation d’une suite de v.a. i.i.d. de loi uniforme dans X. Théoriquement, nous
ne devrions donc pas les utiliser lorsque les n points x; € X ne sont pas définis comme
des réalisations de v.a. i.i.d. de loi uniforme.

Cependant, elles sont parfois utilisées dans la littérature (essentiellement la discré-
pance L?) pour apprécier la qualité de répartition uniforme de suites & discrépance
faible qui ne sont pas par définition des suites de wv.a. i.i.d. de loi uniforme. N’ayant
aucune valeur de référence des discrépances de type L? pour affirmer que la BDDE
x(n) = {x1,...,x,} recouvre uniformément 'espace X de fagon « acceptable », les va-
leurs de ces moyennes seront données & titre d’indication.

Remarquons que, pour un nombre de points n donné d’une suite (n) = {z1,...,zn},
contrairement aux moyennes des carrés de discrépance L? modifiée, centrée, et symé-
trique, celle de la discrépance L? exprimée par I'égalité (1.38) diminue lorsque la di-
mension d augmente (ceci peut étre vérifié par une simple étude analytique en considé-
rant E(DL (@(n))?) comme une fonction de la dimension d). Par conséquent, supposons
que nous nous fixons une valeur seuil ¢ pour la discrépance L?. Construisons une suite
x(dy,n), de n v.a. i.i.d. de loi uniforme dans Xy, = [0, 1]%, et une suite x(dz,n), de n v.a.
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i.i.d. de loi uniforme dans X4, = [0, 1], avec dy > dy. En moyenne la discrépance carrée
L? de la suite x(da,n) dans X% est plus faible que celle de de la suite x(dy,n). Autre-
ment dit, pour un nombre de points n donné d’une suite de v.a. i.i.d., plus la dimension
d de l'espace considéré est grande, plus la discrépance L? de la suite serait inférieure a
e. Cette propriété « étrange » de la discrépance L? va a I’encontre de la remarque faite
en fin du paragraphe précédent et qui concernait la discrépance & l'origine D*.

Nous pourrions donc penser que la discrépance L? n’est pas un critére adapté pour
apprécier la qualité de recouvrement uniforme d’'une BDDE x(n) = {z1,...,2,}. En
fait, cela signifie d’une part, qu’il est n’est pas souhaitable de comparer les valeurs des
discrépances L? pour des suites qui sont définies dans des espaces ayant des dimensions
différentes, et d’autre part, que la définition de la propriété de suite a discrépance faible
(qui rappelons-le est définie a l'aide de la discrépance a 'origine) devrait étre définie,
dans le cadre de la discrépance L2, a I'aide d’un critére qui diminue lorsque la dimension
de I'espace de la suite considérée augmente. Ainsi, plus la dimension de I'espace serait
importante, plus la discrépance L? de la suite devrait étre faible (selon un critére a
définir), et par conséquent, plus le nombre de points devrait étre important. En fait cette
propriété illustre le fait que la discrépance L? est trés délicate & interpréter.

1.3.3.3 Expressions, Discussion

Nous allons donner & présent certaines formules analytiques concernant les discré-
pances. Nous nous intéressons au cas de la discrépance & 1'origine et au cas des discré-
pances de type L?.

— Discrépance a l'origine

Le calcul de la discrépance a l'origine est « abordable » dans le cas d = 1 et d = 2.
Nous indiquons ci-dessous sous forme de proposition une fagon de la calculer lorsque la
BDDE x(n) = {z1,...,2,} est constituée de n points dans X = [0,1]¢, avec d = 1 ou
d=2.

En dimension d =1 :

Proposition 1.3.2
Pour une suite x(n) de n points dans X = [0,1] avec 0 < x1 < a9 <--- <z, <1,

D*(@(n) = ~+ max (l —x,) ~ min (Z —a;>

1<i<n \ n
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Démonstration :

Nous nous référons a Niederreiter (1992).

En dimension d = 2 :

— Soit (n) = {z1,...,x,}, une suite de n points dans X = [0, 1
croissant de leur premiére composante, i.e., telle que 0 < ZL'gl) <0< xg) <1.

— Nous posons zg = (0,0) et zp41 = (1,1), et nous notons a présent x(n) =
{zo,21,...,2n, Tyt1} la BDDE a laquelle nous avons ajouté les points xg et 1.

— Pour i € {0,...,n} nous notons {&0,&1,...,&i+1} la suite des ¢ + 1 valeurs
dans [0, 1] obtenue en réordonnant les 7 deuxiémes composantes de la suite x(n) =
{xo,x1,...,Tn,Tns1} & laquelle nous ajoutons §f+1 = 1. C’est la suite obtenue en
réordonnant les deuxiémes composantes de {zg, 1, ..., T;, Tn4+1} c'est-a-dire, selon

. . 2 2 2
nos notations, en réordonnant : {x(() ),xg ), e ,mg )

]2 triée dans I'ordre

2
,xfw)rl}. Nous avons donc :

0=2¢,0<&1<-<&;i<G&it1-

Proposition 1.3.3
L’expression de la discrépance (ou discrépance a lorigine) est alors, a laide des
notations précédentes,

(1)
— = i, k+1
n Z+1€Z7 +

. _ ko
D*(x(n)) = Orélia;(n Or%?é(n max{‘n —x; &k

Démonstration :

Nous pouvons trouver cette proposition dans Thiémard (2000), et une démonstration de
celle-ci dans Zhu (1993) (voir également Thiémard (2000)).

0

Pour d > 2 le calcul est possible (voir Niederreiter (1972), Thiémard (2000)) mais
devient beaucoup plus complexe. Le colit des algorithmes connus permettant de réaliser
cette opération semble augmenter de maniére exponentielle avec la dimension. Nous nous
contentons le plus souvent de bornes inférieures et supérieures, voir Thiémard (2000).

— Discrépance de type L?

Pour les discrépance de type L2, il est possible d’obtenir des formules simples per-
mettant leur calcul. Nous donnons ici leurs expressions sous forme de proposition.
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Proposition 1.3.4
Pour une suite de n points x(n) = {x1,...,x,} dans X = [0,1]%, les expressions des
discrépances de type L? sont données par

e Discrépance L?

n n d

1-4a n_d
1
D (@(m)]? =371 - 2 3 [[0 = @) + 5 3 S [ - max®, 20))
" =1 k=1 n i=1 [=1 j=1
(1.42)
e Discrépance L?> modifiée
) 4 d 21_5 n d N 1 n n d . .
DME (@) = () -2 LTI+ 30 Y T maxtel. o)
i=1 k=1 i=1 j=1 k=1
(1.43)

e Discrépance L? centrée

: 13\¢ 2 1 K 1 k
DCL(z(n)) = <m)7l IIG+21+A)um2u+@>Umﬁ
=1 k=1

=1
1 n n d 1 1
> > I (1 + 511 +a 12+ 5 +a2 —1/2|
i=1 j=1 k=1

I k
_2M§>_z§>>;

(1.44)

e Discrépance L? symétrique

n

d
DSﬁQ (z(n)) = <;l>d 2 [1-— 2x§k) — Q(xl(k))2]

n“
=1 k=1

n n d

+ZZZZH[1 — 2" — 2. (1.45)

i=1 j=1 k=1

Démonstration :

L’expression (1.42) a été obtenue par Warnock (1972), les expressions (1.43), (1.44) et
(1.45) ont été obtenues par Hickernell (1998).
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Essentiellement par pragmatisme, nous avons choisi les discrépances de type L? pour
apprécier la qualité de recouvrement uniforme d’'une BDDE x(n) = {z1,...,z,} dans X,
puisque celles-ci sont facilement calculables. De plus les discrépances L? centrée et L2
symétrique ne souffrent pas d’'une dépendance a l'origine trop forte, inconvénient sou-
vent formulé & I’encontre de la discrépance L? (voir Hickernell (1998), Thiémard (2000),
Morokoff et Caflisch (1994)).

Une des questions que nous nous posons alors est de savoir quand ces différentes
quantités nous indiquent que la BDDE est de « qualité acceptable », au sens o elle re-
couvre « uniformément » ’espace X d’une fagon satisfaisante.

Définir une valeur « acceptable » de la discrépance pour une suite de points initiaux
x(n) quelconque dans X semble irréaliste, puisque celle-ci dépend de la dimension de
I'espace X et du nombre de points de la suite.

Pour répondre a cette question, nous allons comparer les différentes valeurs des dis-
crépances de type L? de la BDDE que nous trouvons avec celles de suites a discrépance
faible. Pour effectuer une telle comparaison, nous utiliserons des ratios de la forme :

Discrépance de type L?(z(n))

RD(xz(n)) (1.46)

T Discrépance de type L(z¢(n))’

ol xf(n) désigne une suite a discrépance faible (ayant méme nombre de points n que
la BDDE x(n)), et « Discrépance de type L? » désigne les différentes discrépances de
type L?, DL27 DMLQ, DCL? et DSL”. Pour une base de donnée x(n), nous aurons donc
4 ratios : RDLQ, RDML2, RDCLZ, RDSY. Une valeur proche de 1 signifiera donc que la
discrépance de type L? considérée de la BDDE est comparable & celle d’une suite dont
le recouvrement uniforme de ’espace est « acceptable ». Par conséquent, plus ces ratios
seront proches de 1, plus la BDDE pourra étre considérée comme uniformément répartie
dans ’espace X.

Nous comparerons aussi les valeurs calculées avec les discrépances carrées moyennes
définies par les égalités (1.38), (1.39), (1.40) et (1.41). Bien que ces moyennes soient
obtenues lorsque nous considérons une suite de v.a. i.i.d. de loi uniforme elles permettent
d’avoir une idée sur la qualité du recouvrement uniforme de la BDDE dans ’espace X.

1.3.4 Reécapitulatif

Nous rappelons ici ’ensemble des critéres que nous avons étudiés jusqu’a présent a
I’aide du Tableau (1.2)). Nous avons simplement ajouté ici aux critéres du Tableau
de la partie[1.2 les critéres associés a la notion de discrépance. N’ayant pas de valeurs de
références pour les discrépances de types L2, nous avons inscrit dans la colonne consa-
crée, une fleche vers le bas | qui signifie que nous souhaitons que ces valeurs soient les
plus faibles possibles, ainsi que les expressions des différentes moyennes des discrépances
carrées (égalités (1.38), (1.39), (1.40) et (1.41)) dans le cas ou la BDDE est considérée
comme une suite de v.a. i.i.d. de loi uniforme.
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CRITERE \ VALEUR DE REFERENCE ‘
dmine (x(n)) Disp.(x(n))/2
v(x(n)) 1
ma,1(z(n)) !
A(x(n)) 0
Disp(x(n), xg(N)) 2.dming(x(n))
Dispo(x(n), Ham(N)) 2.dming(x(n))
Disp..(x(n), xpq(N)) 2.dming(x(n))
Dispo (x(n), res(N)) 2.dmins,
h(z(n)) l
p(x(n))
x(x(n)) l
v(z(n)) 1
T(x(n)) 0
A(z(n)) 0
(D" (w(n))’ | ot QAORE
RDiscL?(z(n)) 1
(DM¥ (w(n))? Lot (3)" 5
RDiscL?M(x(n)) 1
(DC”@(@)® | Let 1 [(3+5)" - (1)
RDiscL2C(z(n)) 1
(DS™ ((n)))? et 3 |G+ - ()"
RDiscL?S(z(n)) 1

TAB. 1.2 — Différents critéres et valeurs de référence
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Précisons que les critéres que nous utilisons n’ont pas pour objectif la validation
d’uniformité de suites mais 'appréciation de la répartition uniforme d’une BDDE ; celle-
ci est en général quelconque. Si I'objectif est de valider 'uniformité de suites ayant de trés
bonnes propriétés, ces critéres peuvent étre insuffisants; il en existe alors d’autres faisant

parfois directement intervenir leurs propriétés de construction, voir Lemieux et L’Ecuyer
(2001).

1.4 Utilisation, méthodologie

Les différents critéres définis dans les parties précédentes vont étre utilisés pour défi-
nir une méthodologie d’étude d’une base de données d’entrée (voir aussi Feuillard et al.
(2005)). Celle-ci comporte 3 étapes :

1. Tout d’abord, évaluer la qualité de la base de données d’entrées. Notre objectif est
de vérifier que la base de données d’entrées recouvre tout ’espace de facon « accep-
table » (espacements réguliers entre les points, absence de trous). Il s’agit donc ici
d’interpréter les valeurs des différents critéres que nous avons définis.

2. Sélectionner certains points de la BDDE de fagon & conserver un maximum d’infor-
mation. L’information que nous considérons ici est la qualité de répartition uniforme
de la BDDE. Il s’agit donc d’extraire de la BDDE, constituée initialement de la
suite de points x(n) = {z1,...,7,} dans X = [0,1]%, un sous-ensemble de points,
x1(n1) ={zi,,...,xn, } C x(n), qui permette de recouvrir au mieux 'espace X. Le
critére d’uniformité que nous utiliserons pour cette sélection est la discrépance. Par
sa définition méme, celle-ci permet aussi d’apprécier la qualité des autres critéres
que nous avons définis.

3. Spécifier de nouveaux points de la BDDE. Aprés avoir sélectionné au mieux cer-
tains points de la BDDE, nous en spécifierons des nouveaux & ’aide de suites a
discrépance faible, de fagcon & obtenir une BDDE de « qualité de répartition uni-
forme acceptable », si nécessaire.

Pour illustrer nos propos, nous considérons une base de données d’entrée comportant
400 points dans X = [0,1]3 et appliquons la méthodologie ci-dessus.
1.4.1 Etude d’une base de données d’entrée

La base de données d’entrée (400 points) considérée est représentée dans le graphique

(1.8).

La premiére étape consiste a calculer les critéres du Tableau (1.2). Malheureusement,
certains d’entre eux n’ont pas de valeurs de référence permettant une appréciation relative
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x3

F1G. 1.8 — Base de données d’entrée étudiée (400 points)

des critéres obtenus. Pour interpréter les résultats, nous allons aussi calculer ces critéres
pour des suites dont la « qualité de répartition uniforme » (au sens déterministe) est
considérée comme « acceptable ». Ces suites x(n) « étalon » sont les suites a discrépance
faible de Halton, xp4(n), de Hammersley, ®gqm(n), de Faure, p,(n), et un réseau
(lattice) de rang 1 de type na, Tpres(n) (un réseau de rang 1 est aussi un hypercube-
latin), (voir Halton M), Hammersleﬁ 41960‘), Faure 41982‘), respectivement). Elles
comportent le méme nombre de points, n = 400. Les résultats sont présentés dans le
Tableau (1.3).




’ CRITERE \ THo(n) ‘:cHam(n)‘ T rq(n) \ T Res(1) \ VALEUR DE REFERENCE ‘
dming(z(n)) | 0.0476 | 0.0415 | 0.0342 | 0.0931
dmina (x(n)) | 0.0384 0.03 0.0304 | 0.0718 Dispoo (x(n))/2
v(x(n)) 3.72 3.72 1.36 1.88 1
ma1(x(n)) 3.200 3.192 3.212 3.195
A(z(n)) 0.261 0.166 0.236 0.0620 0
Disp,(z(n)) = | 0.21 0.17 0.19 0.18
Disp,(x(n)) ~ 0.15 0.15 0.15 0.15 2.dming,
h(z(n)) 0.203 0.169 0.204 0.183 )
(x(n)) 2.164 1.737 2.248 1.883 1
x(x(n)) 6.117 6.186 8.422 3.939 !
v(z(n)) 9.367 2.853 5.990 6.564 1
m(x(n)) 0.00236 | 0.00210 | 0.003301 | 0.00222 0
Az (n)) 1.042E-8 | 1.340E-9 | 5.144E-9 | 2.992 E-9 0
DY (z(n))? | 1.76E-5 | 819E-6 | 1.44E-5 | 1.24E5 | | E(DX (x(n))?) = 0.00022
DMZ (x(n))? | 1.19E-4 | 5.76E-5 | 5.80E-5 | 4.56E-5 | | E(DMY (x(n))?) = 0.0025
DCY(z(n))> | 6.85E-5 | 4.25E-4 | 4.39E-5 | 3.62E-5 | | E(DCE (x(n))?) = 0.0017
DSY’(x(n))> | 7T49E-4 | 45E-4 | 865E-4 | T7.1E4 || E(DSY(x(n))?) =0.014

TAB. 1.3 — Etude de suites a discrépance faible en dimension 3 (400 points, n = 400)

¢9
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Les critéres du réseau faisant intervenir les distances entre les points de la suite consi-
dérée (dmine, (T pres(n)), Y(@res(n)), ma1(Tres(n)), A(Xres(n))) sont les meilleurs. En
effet ces critéres sont les plus proches des valeurs de référence : dmine (€ res(n)) est su-
périeure a celle des autres suites, ce qui signifie que les points les plus proches du réseau
sont plus éloignés que ceux des autres suites (donc moins de « redondance de points »),
Y(®Res(n)) est plus proche de 1, les espacements entre points sont donc plus réguliers,
A(xges(n)) est plus proche de 0, la variabilité des espacements est beaucoup plus faible.
La régularité de la répartition des points du réseau est donc meilleure que celle des autres
suites (c’est une propriété qui est bien entendu liée a sa définition). Si nous établissons
un classement par ordre de préférence en considérant ces critéres, nous avons : 1 Réseau,
2 Hammersley, 3 Faure, 4 Halton.

Considérons les critéres faisant intervenir les points de la suite et les points de I'es-
pace. Pour chaque suite, nous avons plusieurs approximations de la dispersion. Dans le
cas d’une grille de répartition parfaitement uniforme (au sens déterministe) la dispersion
est le double de la distance minimale entre deux points, voir Niederreiter (1992) et gra-
phique (1.1). L’approximation de la dispersion du réseau semble vérifier cette propriété.
Le rayon de la plus grande boule vide est donc comparable & la distance minimale entre
deux points du réseau. Le critére x(xges(n)), plus proche de 1, montre que le maximum
des rayons des cellules de Voronoi est aussi comparable a la distance minimale entre deux
points. Ces critéres montrent que les points du réseau occupent ’espace de la meilleure
fagon.

Les critéres faisant intervenir les volumes des régions de Voronoi donnent de meilleurs
résultats avec la suite de Hammersley. Le critére (@ mqm(n)) de la suite de Hammersley
montrait déja que les rayons de ces régions étaient comparables (max h;/ min h; proche de
1). Les différentes discrépances indiquent quant a elles que le réseau semble de meilleure
qualité. En général, dans un pavé de [0, 1]3, le nombre de points comparativement & son
volume, semble meilleur pour le réseau. Remarquons que l'interprétation de ce critére
correspond & la réalisation d’un compromis entre les critéres des distances entre points et
les critéres des distances entre points et espace. En effet, une distance (moyenne ou mini-
male) faible entre deux points et une région vide de I’espace trop importante (dispersion)
impliquent une mauvaise relation entre le nombre de points et les volumes d’intervalles
du cube unité et par conséquent une dispersion élevée.

Les différents critéres montrent que le réseau a une meilleure répartition uniforme
dans l’espace.

Ayant quelques valeurs de références, nous allons maintenant nous intéresser a la base
de données d’entrée expérimentale fournie & I'appui de notre étude. Les résultats sont
présentés Tableau (1.4).

Par comparaison aux suites & discrépance faible et aux valeurs de référence, cette
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CRITERE [ VALEUR | VALEUR DE REFERENCE |
dming (z(n)) 0.00338
dmine (x(n)) 0.00241 Dispec(x(n))/2
v(x(n)) 21.236 1
ma,1(x(n)) 6.112
A(z(n)) 0.553 0
Disp,(x(n),  1,(1000)) 0.576 2.dming (z(n))
Disp.(x(n), € am(1000)) | 0.0.564 2.dming (z(n))
Disp,(z(n), £ r,(1000)) 0.587 2.dming (z(n))
Disp,(x(n),  res(1000)) 0.546 2.dming, (z(n))
h(z(n)) 0.574308 ]
p(x(n)) 17.58 1
x(x(n)) 36.08 !
v(z(n)) 1670.67 1
T(x(n)) 0.0447 0
A(x(n)) 6.95E-7 0
DL (z(n))? 0018 || E(DY(x(n))?) = 0.00022
RDY ((n)) 40—46 1
DM’ (z(n))2 018 | | EDMY (z(n))?) = 0.0025
RDM"™ (z(n)) 39—62 1
DCL (z(n))? 0094 || E(DCE(x(n))?)=0.0017
RDCY (z(n)) 3751 1
DS (x(n))? 091 || E(DS(x(n))?) =0.014
RDS™ (z(n)) 3147 1

TAB. 1.4 — Etude d’une base de données d’entrée a 3 dimensions (400 points, n = 400)
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base de données d’entrée n’a pas une « bonne répartition uniforme ». Aucun critére n’a
de valeur pouvant étre qualifiée « d’acceptable ».

Nous allons & présent sélectionner certains points de fagon & construire une base ayant
de meilleures propriétés d’uniformité (selon nos critéres).

1.4.2 Sélection de points

L’objectif est d’extraire parmi les points de la BDDE initiale, x(n) = {z1,...,2,}
avec z; € X = [0,1]%, un sous-ensemble x1(n1) = {z4,...,Tn, } C z(n) dont la réparti-
tion est uniforme. Nous allons donc sélectionner des points de fagon a réduire la valeur
d’un critére d’uniformité. Ce critére est la discrépance L? centrée, DL (voir définition
(1.3.5)). Par sa définition méme, il est adapté a l'objectif fixé puisqu’il correspond a
une comparaison entre le nombre de points compris dans certains pavés de l'espace et
le volume de ces pavés. Nous prenons donc en compte le nombre de points de la suite.
La qualité de répartition uniforme est évaluée comparativement aux nombres de points
de la suite. De plus, c’est un critére simple a calculer (voir la formule (1.44)) et donc
d’utilisation trés aisée.

Pour qualifier un sous-ensemble x1(n1) de points de la BDDE de qualité « accep-
table », nous comparerons la discrépance carrée centrée, DCLz(azl(nl))z, de cet ensemble

2
a son espérance, E [(DCLQ(ml(nl)D } , donnée par la formule (1.40). Bien que nous ne

considérons pas notre BDDE comme une suite de v.a i.i.d. de loi uniforme, cette valeur
constituera une valeur seuil de référence. Lorsqu’un sous-ensemble de points de la BDDE,
@1(n1), aura une discrépance carrée inférieure a cette valeur seuil :

(DCLQ(ml(nl))>2 <E [(DCL2 (agl(nl)))z] , (1.47)

il sera jugé de qualité « acceptable ».

1.4.2.1 Meéthode 1

La premiére méthode consiste tout simplement & trouver un sous-ensemble @1(nq) de
x(n) dont DCLQ(a:(nl)) est minimale. L’algorithme A; utilisé est le suivant :
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Algorithme A;

Etape 1 : calcul de Djjer, = DCr (x(n));
Etape 2: Pouri=1,...,n,
2
e Calcul de Diger, ; = DCL™ (z_i(n — 1))
oux_j(n—1)={x1,...,%i—1,Tit1,.--,Tn},
e Calcul de dlffl = Diterl,i — Ditero )
Etape 3 : Si diffic = {min;—;__, diffi} <0,
e sélection de l'ensemble x_;«(n — 1) |
e itération (retour a 'Etape 1) en posant :
w(n) — Lg% (77, - 1))7 Ditero — Diterl,i;

Etape 4 :  Arrét lorsque Diter, i+ = mini—1,.. 5 Diter, i > 0.

Cet algorithme ne permet pas forcément de trouver le sous-ensemble optimal, puis-
qu’on itére en considérant uniquement la différence diff; = Dier; i — Diter,- Cependant,
ce sous-ensemble peut étre qualifié « pcL? (x(n)) - irréductible », puisqu’il y a arrét de
I’algorithme lorsqu’aucune suppression de points ne permet de réduire cette quantité.

Remarquons que, lors de l'itération I’ensemble de points @, (n,) = {z; : diffi < 0} C
x(n) constitue un ensemble de points qui ne contribue pas & une répartition uniforme de
I'ensemble x(n). En effet la suppression d’un de ces points permet de diminuer le critére
DCZ’, et donc la discrépance, critére de répartition uniforme. L’ensemble ;. (ny) ={z;:
diff; < 0} C @(n) peut donc étre qualifié d’ensemble de points redondants. Un exemple de
points redondants d’une suite de 100 points dans un espace X = [0, 1]? est illustré Figure
(1.9). L’ensemble @, (n,) = {z; : diffi < 0} C x(n) n’est pas pour autant un ensemble
redondant, car seule la suppression d’un unique point de ’ensemble permet de réduire
la discrépance (les points de 1’ensemble peuvent étre considérés comme redondants, mais
pas l'ensemble). Il n’y a aucune garantie pour que la suppression de ’ensemble x,(n,)
permette de réduire DCL. Pour ce faire, il faudrait vérifier que :

diffy, ;. = DCY (x(n)) — DCY (@(n)\z,(n,)) < 0.

Lse-osln

L’algorithme A; est réalisable car le nombre de points (n = 400) et la dimension de
Pespace (d = 3) considérés pour application sont relativement faibles. Le temps de calcul
pour obtenir ces résultats est ici de quelques minutes (sur un PC*). Lorsque le nombre
de points et la dimension sont plus élevés, ’exécution de cet algorithme est plus cotiteuse
en temps de calcul. Il est donc nécessaire de le modifier quelque peu. Par exemple, a
I'étape 2, une méthode consiste a remplacer Diter, i par Diter; 4, = DCL? (x_s,(n—k)) ot
x_; (n—k)={x1,...,zn}\{2i,, ..., 2}, pour un ensemble d’indices 5, = {i1,..., 95} C
{1,...,n}, puis & arréter la boucle dés que diff;, = Diterl,ik — Diter, < 0.

4Précisons que ce programme a été réalisé avec le langage interprété R. L’exécution serait encore plus
rapide avec un langage bas niveau.
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F1G. 1.9 — Exemple d’un ensemble de points redondants (points encerclés) pour une suite
de 100 points dans [0, 1]?

1.4.2.2 Méthode 2

La seconde méthode consiste simplement & sélectionner des points proches de ceux
d’une suite & discrépance faible. Ces suites « déterministes » sont essentiellement utilisées
pour les méthodes de quasi-Monte Carlo et sont construites dans ’objectif de réduire au
mieux la discrépance a l'origine (voir définition (1.3.7) ). L’algorithme Ag est le suivant :

Algorithme Ao

Etape 1 : Construction d’une suite a discrépance faible dans X comportant ng
points, x¢(ng) = {xp,... ,xfnf}.

Etape 2 : Pour i = 1,...,ny,
e sélection de x;, € x(n) le plus proche du point xy, € x¢(ny),
o x(n—1)=z(n)\ z;,
o xy(ng—1) =zs(nyg)\ zf,
Soit &(nf) C x(n) la suite obtenue.
Calcul de DCY (x(ny)).

Etape 3 : Construction d’une suite & discrépance faible comportant n # points,
:I:f/(nf/) = {l‘f{, ce ’xféf/} avec nygr < ny.
Application de I'Etape 2.
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L’avantage de cette méthode simple est qu’elle permet d’obtenir immédiatement un
ensemble ayant un nombre de points souhaité (a aide des étapes 1 et 2 de 1’algorithme)
sans réaliser de calculs répétés de la discrépance.

1.4.2.3 Meéthode 3

L’objectif de la troisiéme méthode est d’extraire un sous-ensemble de points régulié-
rement répartis dans X = [0, 1]3. L’algorithme Aj est le suivant :

Algorithme Aj

Etape 1 : Soit dist = {e1,...,enq} un ensemble de valeurs croissantes dans (0, 1).
Sélection du point z} € x(n) le plus proche (au sens de la norme eucli-
dienne) du « centre » du domaine (i.e. du point (0.5,0.5)).
® Tiep, (1) = {ZE:},
® Titery(n — 1) = x(n) \ {27}.

Etape 2 : Soient @, (n;) = {;,,...,2i, } C Titer,(n — 1) les points inclus dans la
boule de centre x} et de rayon €1 : @, (n,) = Titer,(n — 1) N B(x}, e1).
® Titery (n — Ny — 1) = Liters (n - 1) \wr(nr)-

Etape 3 : Soit 2; € Tjter, (n —ny — 1) le point le plus proche de @jer, (1) (réalisant
le minimum des distances entre les points de ®2(n — 1 — n,) et Tjer(1)).
® Titer, (2> = xite'r(l) ) {':U’L/}
® Tijtery (n — Ny — 2) = Titery (n — Ny — 1) \ {xz’}

Etape 4 : Soient @, (1) € Titer,(n — n, — 2) les points inclus dans la boule de
centre z; et de rayon €1 : @y, (Ny,) = Titer, (N — 1y — 2) N B(zyr, €1).

® Titero (TL — Ny — 2) = TLitery (n — Ny — Npy — 2) \ Lry (nrg)}

Etape 5 : Itération des Etapes 3 et 4 tant que Xy, # 0.
On note @, (ne, ) 'ensemble @jzer, (n1) obtenu.

Etape 6 : Calcul de DCE* (22, (ns,)). Retour & 'Etape 1 avec e € dist .

Etape 7 : Sélection de @1(n1) = -(n.) = arg, ¢ gis {min DCF (., (nel))}

Comme la discrépance est une comparaison entre le nombre de points de &(n) com-
pris dans certains pavés de X = [0,1]3 et le volume de ces pavés, nous pouvons raison-
nablement penser qu'un ensemble de points réguliérement espacés permettra d’avoir une
discrépance faible. C’est par exemple le cas des réseaux. L’objectif de 'algorithme Ag est
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donc de sélectionner des points régulierement espacés, tous distants d’au moins € > 0,

et qui permettent de recouvrir au mieux l'espace X = [0, 1]* puisque nous cherchons &
.. . 2

diminuer le critére DC”.

Notons que cet algorithme peut aussi étre modifié en remplacant a ’étape 3 : x; €
Titer, (N —ny—1) le point le plus proche de Tjier, (1), par x4 € Titer, (n—n,—1) le point le
plus éloigné de x;ter, (1) (réalisant le mazimum des distances euclidiennes entre les points
de xa(n—1—n,) et ey (1)). L’ensemble de points alors retenu a l'aide de 1’algorithme As
modifié comporte des caractéristiques similaires & celui retenu par ’algorithme Ag initial.

En général cet algorithme permet bien de trouver un sous-ensemble de points de qua-
lité acceptable. Le critére DCE” diminue cependant moins rapidement et moins fortement
que lors de I'application de l'algorithme A; .

1.4.3 Application des méthodes de sélection

Lors de I'application des algorithmes Ay, Ag, A3z, I'évolution de la discrépance L?
centrée carrée en fonction du nombre de points est représentée Figure (1.10), (1.11), et
(1.12). La courbe verte représente 1’évolution de I'espérance de la discrépance L? centrée
carrée d’une suite de points ayant une loi de probabilité uniforme dans X = [0, 1]3. Comme
attendu (de par la construction des algorithmes), la méthode 1 est la plus efficace pour
la sélection d’un ensemble de points de discrépance faible. L’algorithme A3 converge plus
difficilement. Rappelons que ce dernier n’a pas pour objectif la sélection d’un ensemble
de points de discrépance minimale, mais la sélection de points réguliérement espacés. Les
points sélectionnés doivent tous étre distants d’au moins une distance . L’évolution de
la discrépance en fonction de cette distance est représentée Figure (1.13). La distance &
retenue est € = 0.285.

Les suites de points sélectionnées, x4, (n4,), a,(na,), 45(n4a,), comportent respec-
tivement n4, = 20, na, = 25, et n4, = 18 points. Le fait que le nombre de points de ces
suites est faible par rapport au nombre de points de la suite initiale (n = 400) indique
que beaucoup de points de la suite initiale étaient « redondants » dans le sens ou il ne
permettaient pas de contribuer a une meilleure répartition uniforme.

L’ensemble des valeurs des critéres du Tableau (1.2). appliqués a x4, (n4, ), 4, (na,),
ZAs(nA,), sont présentées Tableau (1.5).

Les critéres de distance entre les points de la suite considérée (v, ma 1, A) montrent
que les points de x 4,(n4,) sont répartis de fagon plus réguliére que ceux de x4,(n4,) et
TAs(nay) (c’est objectif poursuivi par As).

Les critéres de distance entre les points de la suite considérée et les points de 1'espace
X = [0,1]3, montrent que les différentes suites x4, (n4,), Ta,(na,), Ta;5(na,) recouvrent
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I'espace X de fagon comparable. Le critére y, plus important pour x4, (n 4, ), nous indique

tout simplement qu’il existe dans cette suite des points relativement proches (en compa-

raison avec le rayon de la cellule de Voronoi associé & I'un de ces points, voir équation
1.19)).

Les critéres faisant intervenir des volumes sont aussi semblables. Le critére v (rapport
du maximum par le minimum des cellules de Voroni, voir équation (1.20)) indique que les
espacements des points de x4, (14, ) sont moins réguliers que ceux x4,(n4,) et x4, (na,).
les valeurs des discrépances semblent montrer que la répartition uniforme de x4, (n4,)
est la meilleure.

On vérifie bien que les discrépances carrées des suites sélectionnées sont inférieures
a leurs espérances (lorsqu’il s’agit de suite ayant une loi de probabilité uniforme dans
X = [0,1]3). Ainsi, les suites de points sélectionnées ont toute une répartition uniforme
« acceptable » selon ce critére.
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| Tini(Tini) | xa,(na,) | xA,(na,) | T Ay(nAy) | zp, (nB,) | zp,(nB,) | xp,(np;) \

n | 400 | 20 | 25 | 18 | 43 | 40 | 43 \
dminy(z(n)) | 0.00338 0.072 0.141 0.285 0.072 0.12 0.285
dming (z(n)) 0.002 0.006 0.11 0.17 0.06 0.09 0.17

v(z(n)) 21.23 6.04 2.08 1.22 4.40 2.88 1.15
ma1(z(n)) 12.22 6.71 6.88 7.15 6.03 6.44 5.52
Az (n)) 0.553 0.472 0.226 0.061 0.3113 0.289 0.029
Dispy(x(n)) 0.59 0.59 0.60 0.61 0.39 0.50 0.36
Disp,, (z(n)) 0.45 0.47 0.45 0.46 0.32 0.43 0.29
h(z(n)) 0.574 0.578 0.574 0.603 0.361 0.487 0.318
w(z(n)) 17.58 1.74 1.89 2.18 1.55 2.09 1.43
x(x(n)) 36.1 15.1 7.0 4.14 8.30 6.27 2.22
v(z(n)) 1670 5.7 3.36 3.95 3.83 4.48 3.58
7(z(n)) 0.047 0.024 0.016 0.022 0.0092 0.015 0.0091
A(z(n)) TE-7 8.5E-07 | 9.7¢-07 | 9.42e-07 | 1.88¢-07 | 8.32e-07 | 1.40e-07
DL (x(n))? 0.018 0.0018 0.0037 0.0059 0.00052 | 0.00089 | 0.00063
DMZ* (z(n))? 0.18 0.015 0.032 0.060 0.002 0.010 0.0075
DCE (z(n))? 0.094 0.012 0.020 0.035 0.0016 0.0079 0.0063
DS (x(n))> 0.91 0.14 0.14 0.28 0.025 0.058 0.053

TaB. 1.5 — Etude des suites obtenues & 1’aide des algorithmes A1, Ay, As, By, Bs, Bs
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1.4.4 Spécification de points

Selon la méthodologie que nous avons définie au paragraphe (1.4), lorsque la base de
données d’entrée, x(n) = {z1,...,2,} dans X = [0,1]%, n’est pas jugée de « qualité ac-
ceptable » et lorsqu’il est possible d’obtenir des résultats (expériences et/ou simulations)
supplémentaires, nous spécifierons de nouveaux points. Nous supposerons alors disposer
d’une suite a discrépance faible x;(Ny) = {xf,,..., 25y f} dont la répartition uniforme
dans I'espace X est jugée de bonne qualité. Les points spécifiés seront convenablement
choisis a l'aide de cette suite. Sur le modéle des algorithmes Al, A2, et A3, définis au
paragraphe précédent, nous proposons différentes méthodes. L’objectif de ces méthodes
sera, cette fois-ci, d’augmenter le nombre de points en cherchant & réduire la discrépance
(critére de répartition uniforme, définition (1.3.5)).

Précisons que le nombre de points nécessaire pour qu’une suite a discrépance faible
puisse étre considérée comme telle croit de fagon exponentielle avec la dimension (voir
paragraphe (1.3.3)). Pour cette raison, ces méthodes deviennent délicates a appliquer
(stockage des données, temps de calcul) lorsque la dimension d de X = [0,1]? est supé-
rieure a 9.

1.4.4.1 Meéthode 1

Selon les notations introduites au paragraphe et la définition (1.3.5), nous no-
tons x(n) = {z1,...,7,} la BDDE dans X = [0, 1]¢, et DCE | la discrépance L2 centrée.
La nomenclature : #(x(n)) désigne le nombre d’éléments de la suite x(n), et < ¢(Nf) une
suite & discrépance faible comportant Ny points dans X = [0, 1]¢.

Nous proposons ’algorithme suivant :

Algorithme B;

Etape 1 : Soit Nsup Un nombre fixé, on pose : Tini(Nini) = x(n)
Etape 2: Pouri=1,..., Ny,

e x(n+1)={x1,...,z} Uxy,;

e calcul de Dif; = DCY (z(n + 1)) — DC* (z(n)) ;

Etape 3 : sélection de i* tel que Dif;» = min;—y . N, Dif;,

® on pose Titer (Niter) = {T1, -+, Tn} UTf
o xy(Ny—1)= {va""fof}\xfi*
Etape 4 : itération (retour a I'Etape 2) avec x(n) = x(njer) et arrét lorsque :

#(x(n)) = Nini + Nsupp

Cet algorithme consiste simplement & ajouter a la suite de points initiale, &(n), les
points d’une suite & discrépance faible, x(Ny), de maniére a ce que la différence entre la
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discrépance L? centrée de la suite de points initiale, ¢(n), et la discrépance de la suite a
laquelle on a ajouté ces points soit la plus faible possible. Ceci se fait ici point par point :
on ajoute un unique point a chaque itération. Il est bien entendu possible de modifier
I’algorithme B1 de fagon & ajouter plusieurs points a chaque itération.

Le nombre N de points de la suite & discrépance faible « ¢(/Nf) dépend de la dimen-
sion et aussi du nombre de points 14y, que 'on veut spécifier. Plus la dimension d de
I'espace X = [0,1]? est grande, plus le nombre de points Ny de xf(Ny) sera important.
De méme plus le nombre de points ngyp, que 'on souhaite spécifier est important, plus
Ny devra étre grand.

1.4.4.2 Méthode 2

Nous reprenons ici les mémes notations que précédemment (paragraphe (1.4.4.1)).
Nous présentons une méthode analogue a celle présentée au paragraphe (1.4.2.2) (algo-
rithme Ag). L’objectif de cette méthode est de « fusionner » directement la suite de points
initiale avec une suite a discrépance faible ayant un nombre de points plus important.

L’algorithme est le suivant :

Algorithme By

Etape 1 : Soit Nsyp Un nombre fixé, on pose : Tipi(Nini) = x(n);
Etape 2 : On désigne par « #(N) une suite a discrépance faible, avec Ny =n+1;
Etape 3: pouri=1,...,n,
o oy, =argmingy_yy ey, — il
Etape 4 : on pose :
. a:f(Nf —ny) = {a:fl, .. .,a;fo}\{qu, .. ’xfiir} :
® Titer(Niter) = x(n) Uz s (Ny —n,) et calcul de DL’ (Titer (Miter))
Etape 5 : itération (retour a I'Etape 2) avec x(n) = Zjer(Niter), ou x(n) =
Tini(Nini), et arrét lorsque : #(x(n)) > Nini + Nsupp-

Il s’agit donc dans un premier temps de considérer une suite & discrépance faible,
x(Ny), de méme cardinalité que la suite x(n) augmentée de 1, #(xf(Ny)) = n + 1,
et de remplacer les points de la suite x(Ny) les plus proches de la suite x(n) par ceux
de x(n). Le nombre de points de la suite obtenue ;e (niter) n'est pas nécessairement
égal a n + 1, puisqu'un point de la suite x¢(/Ny) peut étre a la fois le plus proche de
plusieurs points de x(n). On itére ensuite en considérant une suite a discrépance faible
ayant encore plus de points. Lors de cette itération, on peut, soit considérer la nouvelle
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suite construite T;ter (Niter ), soit la suite de points initiale.

Le nombre initial, Ny, de la suite a discrépance faible peut bien entendu étre supérieur
an+ 1. Plus ce nombre sera important, plus le nombre de points de la suite obtenue par
application de 'algorithme Bj sera proche du nombre souhaité 7 + ngypp-

1.4.4.3 Meéthode 3

Les notations utilisées sont celles précisées au paragraphe (1.4.4.1). L’objectif de cette
méthode (analogue & celle du paragraphe ) est de spécifier des points réguliére-
ment espacés. Elle s’appliquera donc particuliérement dans le cas ou la suite x(n) est
réguliérement espacée. Elle peut, par exemple, étre utilisée aprés application de 1’algo-

rithme A3 (paragraphe (1.4.2.3)).

Algorithme B3

Etape 1 : Soit Nsyp N nombre fixé, x;(Ny), une suite a discrépance faible, et ¢,
une distance fixée; on pose : Tipi(nini) = x(n);

Etape 2: pouri=1,...,n,
e dmin; = minj—; __ n, Ha:fj — x| ;

Etape 3 : soit xy,. tel que dming = argmini—1 . ,{dmin; > €}, on pose :
® Titer(Niter) = x(n) Uzy,. et calcul de DCL2(nZ~te7«) :

Etape 4 : itération (retour a I'Etape 2) avec T(n) = Tjter(Niter), et arrét lorsque
#(x(n)) = Nini + Nsupp-

Le nombre de points 1y, a spécifier dépend bien entendu de la dimension de I'espace
X =10, l]d, mais aussi de la distance € que l'on s’est fixée. Plus celle-ci sera faible, plus
le nombre de points & spécifier devra étre important, et plus elle sera importante, plus ce
nombre sera faible. En effet, I’'objectif poursuivi ici est de spécifier des points relativement
proches de I'ensemble considéré (distants d’au moins ¢). Ainsi, si le nombre de points
spécifiés est faible, les points auront tendance & former des groupes, et ne seront donc pas
répartis de facon uniforme. Lors de 'application de I'agorithme Agz il est donc important
de vérifier ’évolution de la discrépance.

1.4.5 Application des méthodes de spécification

Nous avons appliqué les algorithmes Bj, By, Bs, aux suites de points que nous avions
sélectionnées a 'aides des algorithmes Ay, Ay, et Az (& partir de la suite initiale x(n)
représentée Figure (1.8)). Précisons que les suites a discrépance faible que nous avons
utilisées sont des suites de Hammersley.
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Nous avons commencé par appliquer I'algorithme Bj & la suite @ 4,(n4,). Pour cette
application, la valeur ¢ est celle que nous avions retenue lors de ’application de I’algo-
rithme As : ¢ = 0.285. Comme, par construction de l’algorithme Bs (et As), les points
doivent tous étre distants d’au moins ¢, il n’est pas possible d’augmenter indéfiniment
le nombre de points & spécifier. Pour cet exemple, le nombre total de la suite de points

obtenue est de 43 points. Nous avons donc appliqué les algorithmes B; et By aux suites
A, (na,) et £a,(n4a,) en vue d’obtenir le méme nombre de points.

Les évolutions de la discrépance centrée carrée en fonction du nombre de points lors de
lapplication des algorithmes By, Bs, et B (ayant respectivement comme suite de points
initiale, 4, (n4, ), Ta,(n4,), et £ 4,(n4,)) sont représentées Figure (1.14), (1.15), (1.16).
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FIG. 1.16 — Evolution de la discrépance carrée centrée par application de I’algorithme Bs

Les suites initiales étaient toutes de qualité « acceptables », dans le sens ou leur
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discrépance carrée centrée était inférieure a leur espérance (voir équation (1.47)). Nous
avons donc choisi de représenter une nouvelle valeur seuil. Elle correspond au quantile
a 90% de la statistique définie par la discrépance carrée centrée d’une suite de variables
aléatoires indépendantes uniformes dans [0, 1]? (voir paragraphe (1.3.3.2)). Elle est re-
présentée en rouge sur les différentes Figures (1.14), (1.15), (1.16). Il ne s’agit pas ici
d’un critére d’arrét puisque nous avons appliqué les algorithmes dans I'objectif d’avoir le
méme nombre de points.

Les suites obtenues suites sont notées g, (np, ), ,(np,), et *p,(np,) et comportent
np, = 43, np, = 40, np, = 43 points. L’ensemble des critéres du Tableau (1.2) appli-
quées & xp, (np,), Tp,(nB,), et xp,(np,) est présenté Tableau (1.5).

La Figure (1.16), représentant I’évolution de la discrépance carrée en fonction du
nombre de points lors de ’application de ’algorithme Bjs, montre bien que les points
spécifiés n’ont pas pour objectif direct la réduction de la discrépance. En effet des points
relativement proches de la suite initiale (ici @ 4,(n4,)) sont tout d’abord spécifiés formant
ainsi des groupes de points. Puis, aprés quelques itérations, les points spécifiés permettent
de recouvrir I'espace X = [0, 1]? de facon uniforme et donc de réduire la discrépance. La
Figure (1.16) montre que l'algorithme B; semble le plus efficace pour la spécification de
points ayant une discrépance faible.

Les critéres du Tableau (1.5) montrent que les suites xp, (np,) et ®p,(np,) « oc-
cupent » (« recouvrent », « remplissent ») I'espace X de fagon comparable et de meilleure
fagon que xpg,(np,). Comme attendu, par construction de l'algorithme Bs, la suite
xp,(np,) est celle dont la répartition des points est la plus réguliére.

Remarquons que certains critéres des suites spécifiées sont plus sévéres que ceux
des suites sélectionnées. Par exemple, nous avons dming(xp,(npg,)) > dming(x4,(n4,)),
Y(xB,(nBy)) > V(za,(na,)), A, (nB,)) > Ala,(na,)). Ces critéres sont fonction des
distances entre les points de la suite considérée. Par leur construction, les suites spéci-
fiées sont de cardinalité plus élevée que les suites sélectionnées. Par conséquent, pour une
suite spécifiée, il existera une distance entre deux points, inférieure ou égale a toutes les
distances entre les points de la suite sélectionnée qui lui est associée (critére dmingy). De
plus, les algorithmes By et By n’ont pas pour objectif de spécifier des points réguliére-
ment espacés. Ainsi, les critéres exprimant la régularité des espacements de x g, (np,) et
xp,(np,) ne sont pas nécessairement meilleurs que ceux de &g, (np,) et a,(n4a,) (cri-
tére v, A, par exemple). Cependant, les critéres de discrépance assurent que ces suites
« recouvrent », « occupent » mieux ’espace (puisqu’ils sont plus faibles).

Toutes les suites de points ici spécifiées sont de qualité acceptable selon notre critére :
elles ont une discrépance centrée carrée inférieure a leur espérance.
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1.4.6 Discussion

Les critéres que nous avons utilisés sont appropriés pour I’évaluation de I'uniformité
de la base de données d’entrée au sens déterministe. Rappelons que nous nous plagons
dans le contexte d’une base de données d’entrée pré-existante et que nous ignorons la
facon dont elle a été obtenue. Le caractére aléatoire, et 'indépendance ne sont pas pris
en compte par cette méthode. Pour I'algorithme A2, la sélection des points n’a pas été
réalisée dans ’objectif de conserver 'aléatoire de la base de données d’entrée mais de
conserver la structure uniforme au sens déterministe, i.e. avec espacement régulier et
recouvrement de 'espace. Les tests d’uniformité au sens probabiliste feront 'objet du
chapitre III.

Rappelons aussi qu’il ne s’agit pas de valider I'uniformité de la base mais d’apprécier
sa qualité. Pour la validation de I'uniformité, il existe d’autres critéres faisant parfois
directement intervenir les propriétés de construction des suites, voir Morokoff et Caflisch
(1994), Lemieux et L’Ecuyer (2001), Hickernell (1996b). Or nous nous plagons dans le
contexte ou la méthode utilisée pour I'obtention des données (base de données d’entrée,
réponse du code) est inconnue.

Le choix des suites a discrépance faible comme suites de référence ou suites permet-
tant la spécification de points peut étre délicat. En effet, la propriété de « discrépance
faible » est asymptotique, et selon le nombre de points et la dimension certaines suites
peuvent ne pas étre adaptées, voir graphique (1.17) représentant 1’évolution de la discré-
pance L? en fonction du nombre de points de suites & 2 dimensions. D’autre part, pour
certaines dimensions, elles peuvent avoir certaines pathologies comme, par exemple, une
suite de Halton en base (17,19) (qui correspond & la projection de la suite de Halton
a 8 dimensions sur les axes w7,rg) représentée dans le graphique (1.18). Il est cepen-
dant possible de les modifier de fagon & supprimer ces problémes (voir Chi et al. (2005),
Vandewoestyne et Cools (2004)).

Pour planifier des expériences & dimension élevée et lorsque le modéle de calibration
est inconnu, nous pouvons, par exemple, utiliser des réseaux (lattice), voir L’Ecuyer
(2004), Lemieux et L’Ecuyer (2001), Niederreiter et Wills (2005).
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Chapitre 2

Liens entre discrépance et
estimation non-paramétrique,
méthodologie de sélection de points
selon les données disponibles

2.1 Introduction

Ce chapitre reproduit, en I’adaptant au format du présent mémoire I’article de Feuillard
(2006) soumis pour publication.

Nous nous intéressons ici aux liens qui existent entre une méthode d’estimation d’un
paramétre fonctionnel et un critére d’uniformité d’un ensemble de points appelé discré-
pance. Nous complétons et développons ici 'article de Feuillard et al. (2006). Une mé-
thodologie ayant pour objectif la construction ou I’amélioration d’une base de données
en vue d’une meilleure estimation (au sens des critéres d’IMSE, Integrated Mean Square
Error et de MSE, Mean Square Error, définis plus loin) d’un paramétre fonctionnel en
sera déduite.

Le modéle considéré est le suivant. On observe les y;, it =1...,n, ou :

yi = flx;)+e, ou, (2.1)

e z;€X=10,1),

e f(-) € L?(X) est le paramétre fonctionnel & estimer,

e g;,i=1,...,n, est une suite de variables aléatoires, mutuellement indépendantes
de moyenne nulle de variance 2, et indépendantes des z;, i = 1,...,n.

La méthode d’estimation fonctionnelle utilisée, introduite par Cencov (1962), consiste
tout d’abord a projeter f(-) sur un sous-espace de dimension finie de I’espace de Hilbert

81
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des fonctions de carré intégrable (L?(X), ||.||z2). Ce sous-espace est défini par les pre-
miéres composantes d'un systéme spécifié de fonctions orthonormales de (L?(X),||.l2)-
Une estimation de la projection de f(-) sur ce sous-espace est alors obtenue par une
méthode de moments empiriques. Cette méthode, aujourd’hui classique, et dite des fonc-
tions orthogonales, a fait I’objet de nombreuses études, notamment dans le cas de I'es-
timation d’une densité de probabilité. Nous renvoyons, par exemple, a Schwartz (1967),
Kronmal et Tarter (1968), Bosq (1969), Watson (1969), Foldes et Révész (1974), Szegd
(1975), Sansone (1977), Sterbuchner (1980), Greblicki et Pawlak (1981), Prakasa Rao
(1983), Eubank et Speckman (1990). Les ouvrages de Devroye et Gyorfi (1985), Bosq et Lecoutre
(1987), Hardle (1989), Nadaraya (1989), Bosq (2005) peuvent aussi étre consultés a ce
sujet ainsi que leurs références bibliographiques.

La fonction f(-) étant supposée de carré intégrable sur X, celle-ci peut s’écrire a partir
d’un systéme de fonctions orthonormales {v1(-),...,vx(:),...} C L?(X), soit

f(a:):Zakvk(w) ou ak::/xf(x)vk(x)dac. (2.2)

k>1

L’estimation de f(+), par projection sur le sous-espace défini par les N premiéres fonctions
du systéme orthonormal {vy(-),...,vg(+), ...}, s’écrit alors sous la forme :

N n
folz) = Z&kvk(:ﬂ) oul  ag:= %Zy(mz)vk(xl) (2.3)
k=1 i=1

Les coeflicients aj sont des estimateurs empiriques sans biais des a;. Pour le choix de la
dimension du sous-espace N en fonction de la taille n de I’échantillon, nous renvoyons,
par exemple, a Bosq et Bluez (1978), et Aubin (2005), ainsi qu’a leurs références biblio-
graphiques. Il est classique de supposer que, lorsque n — 0o, on a N/n — 0 et N — oo
(cf. Bosq et Bluez (1978)).

Pour ce type d’estimation, Hickernell (1999) et Rafajlowicz et Schwabe (2005) ont
montré qu’il existe un lien entre un critére d’uniformité d’un ensemble de points x(n) =
{x1,...,x,} dans 'espace X = [0,1)¢, appelé discrépance, et des critéres de qualité d’es-
timation de f(-). Nous retiendrons ici les critéres de la MISE (Mean Square Error), et de
I'IMSE, Integrated Mean Square Error (voir I’équation du paragraphe 2.2 et les
équations 2.21 du §2.3| pour des définitions précises de ces quantités). Leur approche est
ici développée.

Dans la suite de ce chapitre, nous rappellerons tout d’abord l'inégalité de Koksma-
Hlwaka généralisée, faisant intervenir la discrépance généralisée. Cette inégalité sera en-
suite utilisée pour fournir des majorations des critéres d’'IMSE et de MSE. A partir
de ces résultats, une méthodologie d’analyse, de sélection et de spécification de points
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expérimentaux sera proposée. Enfin, une application & un exemple illustrera cette mé-
thodologie.

2.2 Inégalité de Koksma-Hlwaka généralisée

2.2.1 Notations et hypothése

Avant de définir I'inégalité de Koksma-Hlwaka généralisée, commengons par préciser
quelques notations.

i) On pose X = [0,1)%;
1) w = {uq,...,us} désigne un sous-ensemble non vide d’indices de {1,...,d};
ii1) |u| désigne la cardinalité d’un ensemble non vide w C {1,...,d}, par exemple, pour
w={u,...,u} C{1l,...,d}, |lu|=1;
iv) Pour 2 € X et w C {1,...,d}, nous désignons par z(* le point (vecteur) extrait de

T = (:U(l), ... ,x(d))’ € X dont les composantes sont indexées par les indices de u,
x(u) = (x(u1)7 .. 7:1;(“'2))/.

Dans la notation (iv), 2’ désigne la transposée du vecteur x.

Pour définir 'inégalité de Koksma-Hlwaka généralisée, 'hypothése suivante doit étre
vérifiée (voir Hickernell (1998)), pour une fonction f(-) donnée, définie sur X = [0, 1),

Hypothése 1

La fonction f(-) est continue et indéfiniment dérivable sur X = [0,1)¢, et toute dérivée
partielle croisée d’ordre inférieur ou égal a d de f(-) est intégrable d’ordre p :

Ax(w) T gp(ur)  9rlue)
Vu = {ug,...,us} C{1,...,d}

avec p entier et 1 < p < oo.
(2.4)

F0) €0@), e f<->ewp<x>z{f:= 5 = o emqo,u'u'),},

2.2.2 Inégalité généralisée de Koksma-Hlwaka

De fagon générale, sous ’hypothése (1), pour une suite de points z(n) = {z1,...,2,}
dans X, l'inégalité de Koksma-Hlawaka généralisée peut s’écrire comme suit (voir, par
exemple, Niederreiter et Spanier (Eds) (1998)) :

1(f) = La(m) ()] =

[ @@ - v@)| < VDem).  25)
i) I(f) = [y f(z)dz, ot dz = dU(z) est la mesure de Lebesgue sur X = [0,1)¢,
”) A:c(n)(f) = % Z%Em(n) f(xz) avec w(n) = {.%1, v 7xn}a
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ii1) F), désigne la fonction de répartition empirique de ’échantillon x(n) = {z1,...,2,}
dans [0,1)%,

iv) U désigne la fonction de répartition de la loi uniforme sur [0, 1)4,
v) V(f) est une variation de f(-) (voir plus loin),

vi) et D(x(n)) est un terme qui dépend des points (n) = {z1,...,2z,}, et correspond
a la notion de discrépance (voir plus loin).

e Dauns le cas de l'inégalité classique de Koksma-Hlwaka (voir Hlwaka (1961) et Niederreiter
(1992)), V(f) désigne la variation totale au sens de Hardy et Krause de f(-), et D(x(n))
la discrépance a lorigine de x(n), usuellement notée D*, et définie par :

D*(2(n)) : = [ Fn = Ullzee (- (2.6)

Dans le cas ou la suite x(n) = {x1,...,x,} est la réalisation d’une suite de variables
aléatoires indépendantes identiquement distribuées, D*(x(n)) correspond a la statistique

de Kolmogorov-Smirnov (voir les inégalités de Dvoretzky et al. (1956), et de Massart
(1990) lorsque d = 1, pour I’étude a distance finie de cette statistique).

e Dans le cas de I'inégalité de Koksma-Hlwaka généralisée, la déﬁnition de la discrépance
D(z(n)) fait usage d’'une norme convenable de I'application (I — I,)) définie par :

f = Err(f,2(n) = (I = Lym)(f)- (2.7)

La définition de la variation V' (f) utilise une norme de la fonction f(-) dans un espace de
Hilbert & noyau auto-reproduisant (en abrégé, RKHS pour Reproducing Kernel Hilbert
Space, voir Hickernell (1998), on pourra aussi consulter Carraro (2007) pour une présen-
tation de différents RKHS). Comme il est possible de définir différents noyaux et, par
conséquent, différentes normes sur de tels espaces, on obtient de nombreuses variantes
de ce résultat.

Soit un espace de Hilbert H = W5 (X) de fonctions sur X (selon la notation (2.4) de
I'Hypothése 1] prise pour p = 2) muni d’un noyau auto-reproduisant K, symétrique, de
type positif, et de carré intégrable.

K(z,y) = K(y,»), Va,y € [0,1)¢ (2.8)
Z a; Qg K(xi, .’L‘k) >0, Va; e R, x; € [0, l)d (2.9)
ik
K(z,z)dr < . (2.10)
[0,1)4

Soit f € H une fonction sur X. Lorsque f(-) est constante, nous avons Err(f, x(n)) =0
dans (2.7). Nous désignons par f, la projection de f(-) sur le sous-espace de X’ orthogonal
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a la fonction 1 (le fait que 1 € H est conséquence de (2.10)). On notera < .,. > le produit
scalaire induit par le noyau K, et

Il = (<. >5)"2, (2.11)

la norme correspondante. Nous avons Err(f,x(n)) : = Err(f,,x(n)), Vf(-) € H. Par le

théoréme de représentation de Riesz (voir Riesz et Nagy (1955)), il existe £ € H tel que :
Err(f,xz(n)) =<§, f >k, Vf € H. Ainsi :

Err(f,z(n)) = Err(f1,z(n)) =< &, fL >k .

Par application de l'inégalité de Cauchy-Schwarz, on obtient :

Err(f,2z(n)) < IFLC)l g 1€ - (2.12)

L’inégalité (2.12) est appelée inégalité de Koksma-Hlwaka généralisée (Niederreiter et Spanier (Eds)
(1998)). La discrépance généralisée de x(n) est alors définie par D(x(n)) = DX (z(n), K) =

l€llx (voir Hickernell (1998)). En utilisant la forme explicite de &, la discrépance géné-

ralisée ci-dessus s’exprime comme suit :

D™ (@(n), K) : = { K (o, y)d(F() — U(2))d(Fa(y) U<y>>} 2B
2d

Une forme du noyau K fréquemment utilisée (voir Hickernell (1998)) est la suivante. Pour
=W, . 2@y eXety= D, . . yD)eX, ona

d
K(zy) = []Ki=D,y),
j=1
avec
1
KW, y) = M+ [F‘(w(l)) + () + 5 Ba({e) =y + BiaW)Bi(yV) |

(2.14)

Ici {z(M) — 1:’(1)} désigne la partie fractionnelle de (z(1) — x’(l)), soit {u} :=u— |u], ou
|u] est la partie entiére de u, |u| < u < [u] + 1. Les fonctions Bj(-) et Ba(-) utilisées
dans (2.14) sont :

1 1
B = — — B = 2_ —.
(@) =2~ 3, o) =2’ —w ¢
Des choix possibles de 3, M et p dans (2.14) sont :
4 1 22
1 M: == = - — 2.1
5i=1, :, pla) == 2 (215)
13 1
1 4 1
== M:.=- = ——B . 2.1
b= o pla) = =3 Balo) (217
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Les cas définis par les équations (2.15), (2.16), et (2.17) correspondent, respecti-
vement, & la discrépance L2 modifiee DMY (xz(n)), L? symétrique, DS’ (x(n)), et L?
centrée DCL’ (x(n)).

L’intérét pratique des trois discrépances définies ci-dessus est qu’elles sont facilement
calculables quelle que soit la dimension d de I'espace X = [0,1)%. De simples formules
analytiques existent & cet effet (voir Hickernell (1998)). Ceci n’est pas le cas de la dis-
crépance a l'origine, définie en (2.6), D*(x(n)), dont le calcul est délicat en dimension
d > 2 (voir Thiémard (2000)). De plus, les discrépances définies par (2.15)), (2.16), (2.17),
ont une interprétation géométrique simple. Ce sont des comparaisons entre la proportion
de points de x(n) compris dans des pavés de [0,1)? (la mesure empirique) et le volume
de ces pavés. Elles définissent donc bien des caractérisations de la disposition des points
x(n) = {r1,...,2,} dans 'espace X = [0,1)%.

Il est aussi possible de définir des inégalités de Koksma-Hlwaka analogues & (2.12)
pour des espaces de Banach W,,(X) (voir équation (2.4) dans ’'Hypotheése 1) Il suffit alors
de remplacer I'inégalité (2.12]) de Cauchy-Schwarz par une inégalité de Holder :

Brr(f, 2(n)) < || £7(C)]| 47 €22 (2.18)

Ici, p et ¢ sont tels que 1/p+1/qg=1,et 1 < p, ¢ < o0, dans le cas des espaces de Hilbert
& noyau défini par ou (2.16). On supposera par contre que 1 < p, ¢ < 0o, pour le
cas de l'espace de Hilbert muni d’un noyau défini par (2.17). L’inégalité de Holder appli-
quée dans 'espace de Hilbert & noyau pour p = 1, ¢ = oo correspond & l'inégalité
de Koksma-Hlwaka classique.

2.2.3 Considération du processus empirique uniforme

Lorsque x(n) = {x1,...,z,} correspond a la réalisation d’une suite de variables
aléatoires indépendantes et identiquement distribuées sur X = [0, l)d, la discrépance
généralisée peut encore s’écrire sous la forme :

1

DX (z(n), K) = 7 llen ()| ¢

(2.19)

ol ay, est le processus empirique défini par oy, : = n'/2(F,(z) — U(z)) cf i) du §2.2.1.
Dans le cas particulier de la discrépance de type L? modifiée, on a

2
DMP )]’ = 3 IENO) - U0 e, (220)
uC{l,...,d}
ol u parcourt tous les ensembles d’indices non vides de {1, ...,d}. Ici Féu)(-), et UM™(.),

désignent respectivement la fonction de répartition empirique et la fonction de répar-
tition uniforme, de la projection des points x(n) = {z1,...,24} dans les sous espaces
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définis par les axes de [0,1)? indexés par I’ensemble w. Il s’agit donc de la somme des
statistiques de Cramer-Von-Mises associées a toutes les projections possibles des points
de x(n) = {z1,...,7,} selon les axes de [0,1)¢. Or, pour un ensemble d’indices non

(u)

vide w = {uy,...,ug} C {1,...,d}, le processus empirique an”’ converge vers un pont
brownien standard multivarié (voir Araujo et Giné (1980), par exemple). A 1'aide d’un
développement de Karhunen-Loéve de ce pont brownien (voir Deheuvels et al. (2006)),
il est alors possible d’établir la convergence en loi

2
/[ » [a%u)(x)} dz®) . dg) 5 Z)\kuY,fu,
0,1

ky >0

ol : A, = Ak
Yy

a

. désigne un tableau ordonné de constantes positives convenables, et
= Yj,, ..k, un tableau de v.a. i.i.d. de loi N(0,1). Ainsi, compte tenu de (2.20), on

L

u

o[ Ol £ S 3

uC{1,...,d} kx>0

2
et la statistique n [DMLZ (w(n))} converge vers une somme pondérée de variables aléa-

toires de loi du X%- Les cas des statistiques définies par les discrépances centrée, DCLQ,
et symétrique, DSL2, sont similaires. Cependant, les coeflicients Ag, ne sont pas tou-
jours connus de fagon explicite. Pour pallier ce probléme, des processus définis sur les
marges du pavé unité sont utilisés (voir Deheuvels (1981) et Deheuvels et al. (2006)). 11
semble toutefois délicat d’y avoir recours pour connaitre la loi exacte des statistiques :
DMLZ(a:(n)), DS’ (x(n)), DCLQ(a:(n)). A notre connaissance, les lois de ces statistiques
ne sont en général pas toutes connues de facon explicite. Mais, les espérances de ces
statistiques peuvent étre évaluées (voir Hickernell (1996b) et Hickernell (1998)) et une
tabulation des lois demeure possible par simulation.

2.3 Majoration de critéres

2.3.1 Introduction

Rappelons que nous nous plagons dans le contexte de I'estimation fn() d’un para-
métre fonctionnel f(-) par la méthode des fonctions orthogonales décrite par (4.1), (2.2)
et (2.3). Dans ce qui suit, nous nous intéresserons a la majoration de critéres exprimant
la qualité de l'estimation f,,(-) de f(-), 'IMSE, et la MSE, définis comme suit :

IMSE(f, fn) : = /xIE(fn(x) — f())%dz, et MSE(a1,a1) :=E(a1 —a1)?.(2.21)
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Notons que lorsque la premiére fonction du systéme orthogonal {vg(-) : k > 1} est égale a
1, v1 = 1, MSE(ay, a1) correspond a un critére de robustesse d’estimation de la moyenne

a1 = [y f(x)dz (voir (2.2) et (2.3)).

Par la suite, le nombre N des fonctions orthogonales {vy(-),...,vn(-)} € L?(X) utili-
sées pour 'estimation de f(-) (cf. (2) et (3)) sera alors supposé spécifié (voir par exemple

Bosq et Bluez (1978), Aubin (2005) ou Devroye et Gyorfi (1985)).

Les majorations de 'IMSE et de la MSE que nous proposerons seront obtenues a
l’aide de l'inégalité, de Koksma-Hlwaka généralisée, appliquée aux fonctions f(-)
et vg(+), 1 <k < N. Aussi, nous supposerons que f(-) vérifie 'Hypothése 1 présentée au
§2.2.1l avec p = 2 dans (2.4), f € C(X) N Wa(X). Pour la majoration de I'IMSE, nous
ferons usage de I’hypothése supplémentaire suivante portant sur le choix de fonctions
orthogonales {vi(-) : 1 <k < N} de L*(X).

Hypothése 2
Les fonctions vi(-), k > 1, vérifient I’Hypothése 1 avec p = 2 dans (2.4) et ont pour
norme dans L*(X) la fonction constante 1.

vE(+) € C(X) N Wa(X), et /01 vp(z)?de = 1. (2.22)

L’application de l'inégalité (2.12) de Koksma-Hlwaka permettra de faire apparaitre
les discrépances généralisées de type L? (cf. (2.13), (2.14), (2.15), (2.16), (2.17)) dans les
termes de majoration de 'IMSE et de la MSE.

2.3.2 Majoration de I'IMSE

A TVaide de I'inégalité classique de Koksma-Hlwaka (cf. (2.5) et (2.6)), il est possible
de majorer 'IMSE par un terme dépendant de la discrépance a l'origine (on se référera
aux arguments de Rafajlowicz et Schwabe (2005)). En reprenant cette approche, et en
la généralisant au cas des discrépances généralisées de type L2, nous avons obtenu la
majoration suivante :

No?

IMSE(/, fo) < = [142M,Cy D (@(n), K)]

+ N [C\/(f)MfU + MfC’V(v)]Q DL2 (:L*(n), K)2
+ R(N, f). (2.23)

Iei, Cy(y), et Cy(y), sont des constantes qui dépendent, respectivement, des fonctions
vg(+), k=1,...,N, et f(-). My, et M(f), sont des constantes qui majorent, respective-
ment, les normes uniformes, des vi(-), pour k = 1,..., N, et de la fonction f(-). Le terme
R(N, f) est un terme d’erreur. Enfin, DX (x(n), K) désigne une discrépance généralisée
de type L? (voir équation (2.13)).
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Démonstration (de I'inégalité (2.23)) :
(inspirée de Rafajlowicz et Schwabe (2005))

A) Rappel des Hypotheses et notations supplémentaires

Nous renvoyons a (4.1) et (2.2) pour les définitions de f(-) et vg(-), &k > 1. Comme
précisé au §2.3.1, nous supposons que f(-) vérifie 'Hypothése 1, et vg(-), £ > 1, 'Hypo-
thése 2.

Par la suite, nous ne traiterons que le cas ou 'on considére le RKHS H = Wy (X)
muni du noyau défini par et (2.15). Dans ce cadre théorique, 'application de I'in-
égalité (2.12)) de Koksma-Hlwaka & une fonction g € H en un ensemble de points x(n) =
{xl, ..., Tn} € X" fera intervenir la discrépance modifiée de x(n) notée DMLQ( (n) (cf.
. Les cas des RKHS H de noyau défini par (2.14) et (2.16), et, (2.14) et (2.17)
etant similaires, le détail des calculs ne sera pas précisé. Nous noterons :

i) 0l*lg/02(W | la dérivée partielle croisée d’ordre |u| par rapport a z(®) = (z(#1) | g(w))

(voir (2.4) et les notations (i), (ii), du paragraphe[2.2) ;

i) () = (1,...,1), Pensemble des points = = (z(1),...,z@) € X = [0,1)? tels que
™ =1, pour tout m ¢ w = {uy,...,us} C {1,...,d}. De maniére explicite,

)

{St?(uc):( b
[0,1) tel que : 2U) =1, Vj € {1,...,d}, etjgéu};

{z:2eX
i11) g]{x(uC):(L._.’l)}, la restriction d’une fonction g sur {x(uc) =(1,....1)};

iv) pour une fonction g(-) € Wh(X) et pour un ensemble non vide d’indices u C

{1,....d,

|l
VM®(g) = / 9 (g(x)) da®) (2.24)
[0,1]!! Ox(w SO (1, 1)
Nous désignerons la norme (cf. (2.11))
Vm(g) - = llg()Llx, (2.25)

sous le nom de variation modifiée, par analogie avec la discrépance modifiée obtenue dans

le contexte ou le noyau K du RKHS H est défini par (2.14) et (2.15) (cf §2.2.2). Pour
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g € H, il ressort de Hickernell (1998) que Vaq(g) peut s’écrire sous la forme

Ymlg) =

9 1/2
|l
Y "9 : (2.26)
Ox(w) .
| uc {10} {z@9=(1, )} 2 0 )
- 1/2
2

Z (VM(“)(g)) selon nos notations. (2.27)

| uC{l,...,d}

B) Décomposition de I'IMSE

En utilisant le théoréme de Fubini pour f € L%(X), et vi(-) € L*(X), nous écrivons,

IMSE(f, f»)

Par l'orthogonalité des {vg(:) :

déduit que

IMSE(f, fn) =

E[f, (z z)]2dz

E akvk dx

k>1

N
E | apo(x
k=1

2

)+ Z arvg(z)| do

E>N+1

N
5 ak - ak Uk
k=1

}, et une nouvelle application de Fubini, on en

{Z/ n — ax) ve(2)] dw}JrE > /akvk &
z/ (65 — ax) v

k>N+1

d:c+ Z / [agvg(x)]*dz .

k>N+1

Compte tenu du fait que les {vi(-),k > 1} sont orthonormés dans L?(X) (Hypothése 2),

on conclut que

IMSE(f, /»)

dx+ Z

k=1 k>N+1

N N
> Var(ay) + > _[E > ap.
k=1 k=1

E>N+1

/ w(z)2dx

(ar — ar)]* +

Finalement 'IMSE se décompose en

[ Elfu@) = f@)Pde = W+ B2+ RN ),
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ol

N

N
= Var{ap}, BZ:=> (E{ax—a})’, RO.f):= > ai. (2.28)
k=1

k=1 E>N+1

Nous allons, & présent, majorer le terme de variance, W,, et le terme de biais, B2, a
laide de 'inégalité de Koksma-Hlwaka généralisée (voir §2.2).

C) Magoration du terme de Variance W,

Considérons la composante Var{a,} de W,, dans (2.28). Par hypothése d’indépendance
des y; (voir (4.1)), nous avons :

Var{ay} = Var {712 Z Uk(l‘z)yz}

=1

= = Z Uk(xi)QVar(yi)

D] -
i=1

e Par I’'Hypothése 2, nous pouvons appliquer au membre de droite de (2.29) I'inégalité
(2.12) de Koksma-Hlwaka généralisée, en considérant une fonction du systéme orthonor-
mal élevée au carré v7(-). Nous obtenons

n

%ka(:pif - /ka(x)de

=1

[v2() L]l x DX (=(n), K), (2.30)

ot DX (x(n), K) désigne la discrépance généralisée (de type L?) associée au noyau K
(cf. (2.14)), et ||vE(: HK, la norme de la fonction vg(-)? induite par ce noyau (cf. (2.11)).
L’inégalité précédente implique que

+][02() 1] DY (z(n), K). (2.31)

1 n
ka(xi)Q‘ < ‘/ vk(a:)Qda:
nia X

Selon les considérations et les notations introduites en A) ci-dessus, le noyau K a la forme
définie par (2.14) et (2.15), et 'inégalité (2.31) se réécrit

lnviﬂ'z UiL’2£L’
2 wp| < | [ wierd

+ Vu(vf) DM (z(n)). (2.32)
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Nous posons maintenant

o) o (12(2))
(Varp))” c= /Mlul i

2

e dz™). (2.33)

() =(1,...,1)

Par différentiation du terme Uk( ) dans 'intégrale (2.33), nous obtenons :

ul (v, (2
) - [ | (P )
_ ol (v ()
- 4/[0,1}|u| ( dx(w vk(x))

Par la définition (2.2) des vg(.) et 'Hypothése 2, nous avons

() =(1,...,1)

z(w)=(1,...,1)

alul( k)

S eL2([0, 1)1, et vp() €C(X).

Nous pouvons donc appliquer I'inégalité de Holder a (2.34) pour obtenir les inégalités

2
o1 (vg)

2
(VM) < 4 fl0R] oo | |

z()=(1,...,1) L1(]0,1]1u1)

2
Jual
< 4 Sup‘vk 2’ / o (u) dx®
[0,1]1%] Ox () =(1,...,1)
< 4 sup‘vk(a:)Q‘ (VM(U)(vk)>2'

zeX

La variation modifiée d’une fonction étant définie, comme en (2.26) et (2.27), en sommant
les termes de gauche et droite de cette inégalité sur tous les sous-ensembles d’indices
u = {uy,...,us} non vides possibles de {1,...,d}, on a, par continuité des v(-) sous
I'Hypothése 2,

1/2
> VM™ () = Vu(vp)
uC{l,....d}
12 1/2
< 2<sup\vk(1‘)2\) Z VM ™ (vy)
z€X uc{l,....d}
< 2511p|”k( ) V(). (2.35)

xeX
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Dans le cadre de I’estimation par projection induite par les équations (4.1), (2.2) et (2.3),
nous considérons les N premiéres fonctions v1(+),...,vn(-) dans L?(X), ot N > 1 est un
entier spécifié. Ainsi, pour N fixé, posons

Cy (o), N P =max {Vap(v1), ..., Vm(on)}, M, :=max {Sug)c|vl(x)|, .. ,su]jpc|vN(x)|} )
e e

Avec ces notations, et en utilisant ’'Hypothése 2 impliquant orthonormalité des vg(-),
pour k=1,..., N, les inégalités (2.32) et (2.35) impliquent que

n

1
=D u@)| < 142M, Cypgon) NDME (2(n)) . (2.36)
i=1
Les relations (2.29) et impliquent que
2
Var(ay) < % [1+2M,, CVM(%),NDMB(:I;(n))}. (2.37)

Par sommation sur k£ de 1 & N, le terme de variance W,, dans (2.28) est majoré par

N 2
W, =) Var(ay) <
k=1

e De la méme facon, en considérant un RKHS muni d’un noyau défini par (2.14) et (2.16),
ou par et (2.17), il est possible d’obtenir les inégalités

- [1+2MUC’VM(%)7NDML2(:B(n))}. (2.38)

N o2

W, £ — [1 +2 M, Cy, () DC (vk)} , (2.39)
N 2
W, < n” [1 +2 M, Cyg )y DS (vk)} : (2.40)

ot DCY* (x(n)) désigne la discrépance L? centrée, DSLQ(m(n)), la discrépance L? symé-
trique, voir le §2.2.1, et Cy(y,), N €t Cyg(y,), N, des constantes convenables.

D) Majoration du terme de biais

Rappelons I'expression du terme de biais, B2, définie en (2.28) :

N

BY:=> (E{ar — ax})’.

k=1

Par définition (voir les équations (4.1), (2.2) et (2.3))), nous avons, pour tout k € {1... N},

a = l Y x;)vp(x;) — x)vg(z)dx
B@) —oe = 33 fute) - [ s (2.41)

i=
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Par 'Hypothése 1 et 'Hypothése 2, I'inégalité de Koksma-Hlwaka s’applique.
Conformément aux notations (2.13) et (2.11) du §2.2.2] nous déduisons de celle-ci et
de (2.41) que, pour k € {1,..., N},

[E@r) —arl < N(FCun()) Nl DY (@(n), K). (2.42)

Nous effectuons un raisonnement analogue a celui utilisé plus haut lors de la majora-
tion du terme de variance W,, (inégalités (2.38), (2.39)), (2.40)). La modification consiste
a remplacer les fonctions vZ(-) de (2.30) par les fonctions f(-) x vi(-) de (2.42). Par
application de sous les Hypothéses et (2), nous obtenons

2 2
Bl < N [Cy, )Mo+ MiCy,,).n] DM (z(n))?, (2.43)
B% S N[Cyc(f)Mv+Mfcvc(vk)jN]2DCLQ(w(n))2, (2.44)
Bi S N[Cys(f)Mv+MfCVS(UkLN]QDSL2(QE(TL))2. (2.45)

E) Majoration de 'IMSE

D’aprés (2.28), par sommation des expressions obtenues ci-dessus en (2.38), (2.39), (2.40),
et, en (2.43), (2.44), (2.45), respectivement, comme majorations du terme de variance
W,, et de biais, B2, nous aboutissons a l'inégalité (2.23), soit

mSE(r. f) < 2 (1420, Gy D (a(n). K)]
+ N [Cy(pyMy + MsCy ()] D¥ (x(n), K)?
+ R(N, f). (2.46)

2.3.3 Majoration de la MISE

Dans ce qui suit, nous considérerons que la premiére fonction du systéme de fonction
{v1(-), ..., on(-)} € L*(X) utilisé dans (2.2) et (2.3) est la fonction constante 1, v; = 1
(ce qui est rendu possible par (2.10)). Nous supposerons aussi que la fonction f(-) vérifie
I'Hypothése 1 avec p = 2 dans (2.4).

En faisant usage, soit d’une approche bayésienne, soit de 1'utilisation de I'inégalité de
Koksma-Hlwaka généralisée (voir Hickernell (1999)), il est possible de majorer le critére,
dit de robustesse, MISE(a1,aq) en (2.21), par

o? 2 2
MSE(a1,a1) < Z+[DL (a,-(n),K)V(f)} , (2.47)
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ou V(f) désigne une variation de f(-) et DE*(x(n), K) une discrépance généralisée de
type L? (voir §2.2.2] équation (2.13)). Nous détaillons ci-dessous les arguments corres-
pondants, en suivant Hickernell (1999).

Ici, 'Hypothése 2 portant sur le choix des vi(-) € L?(X), k = 1,..., N, n’est pas
nécessaire.

Démonstration (de I'inégalité (2.47)) :
A) Rappel des Hypotheses

Pour les définitions de f(-) et vy (), k > 1, nous renvoyons a (4.1), (2.2) et (2.3). Nous
supposerons que la fonction f(-) vérifie 'Hypothése 1 avec p = 2 dans (2.4). Ainsi f(-)
appartient & un RKHS H muni d’un noyau auto-reproduisant K. Nous nous limiterons
aux noyaux K définis par (2.14) et (2.15), (2.14) et (2.16), (2.14) et (2.17). L’Hypothése
1 permettra d’appliquer I'inégalité (2.12) de Koksma-Hlwaka généralisée a f(-).

La premiére fonction du systéme orthogonal {v1(-),...,vn(-)} de L?(X) sera suppo-
sée égale a la fonction constante 1, v1 = 1. Ceci est rendu possible par .

B) Décomposition de la MSE

L’erreur quadratique moyenne de U'estimateur a; (voir (2.2) et (2.3)) se décompose
classiquement en la somme d’un terme faisant intervenir son biais (au carré) et sa va-
riance, sous la forme,

Ela; —a1]®> = Ela; —E(a1)]* 4 [E(a1) — a1]* = Var(a) + [E(ay) — a1)?. (2.48)
C) Etude du terme de variance

En utilisant ’hypothése d’indépendance des y; (voir (4.1)), et le fait que v; = 1,
d’aprés (2.3) nous avons,

E[a; — E(a1)]* = Var(ay) = Var (711 Z%)

0_2

= % ZVar(yi) =—. (2.49)
i=1

n

D) Majoration du terme de biais

Par hypothése de modélisation (équations (4.1), (2.2) et (2.3)), nous avons E(y;) =
f(z;), pour i =1,...,n. On a donc
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i) =1 ; T e a] = x)dz
@) =, 3 10w t = [ .

Ainsi, le terme faisant intervenir le biais au carré de I'estimateur a; dans (2.48) s’écrit :

n 2
[E(d1) — a1]® = [;Zf(%') - /xf(»f)dxi : (2.50)
i=1

D’apres I’'Hypotheése 1, il est possible d’appliquer a (2.50) I'inégalité (2.12) de Koksma-
Hlwaka généralisée, pour obtenir,

n 2
@)~ = |3 s - /xf<m>d$] < [P @), 5) 1)) 250
=1

E) Majoration de la MISE

D’aprés (2.48), par sommation des termes majorant, le biais élevé au carré (cf. (2.51)),
et la variance de a; (cf. (2.49)), nous aboutissons a (2.47).

2.3.4 Interprétation

Les inégalités (2.23) et (2.47) montrent que les termes dominant les critéres d’'IMSE
et de robustesse, MISE, peuvent étre majorés par un terme dépendant de la discrépance
généralisée. Ces majorations montrent que la caractérisation de la disposition des points
dans lespace X = [0, 1)d, exprimée par les discrépances généralisées, influe sur la qualité
(au sens de 'IMSE et de la MSE) de I'estimation de f(-).

Pour pouvoir utiliser au mieux cette propriété selon les données disponibles, il est
nécessaire de définir un cadre méthodologique, ce qui est fait dans le §2.4/ ci-dessous.

2.4 Cadre méthodologique

Rappelons que nous nous plagons dans le contexte de 'estimation d’un paramétre
fonctionnel f(-) par la méthode des fonctions orthogonales décrite en (4.1), (2.2) et (2.3).
L’objectif de ce paragraphe sera la construction, la sélection, ou la spécification d’un
ensemble de points x(n) € X" apte a fournir une estimation f,(-) satisfaisante de f(-).

~

Les critéres considérés pour apprécier la qualité de I'estimation f,(-) seront 'IMSE et la
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MSE présentés en du §2.3.

Les inégalités (2.23) et (2.47) montrent que, sous les Hypothéses 1 et 2, 'IMSE
et la MSE sont majorés par un terme faisant intervenir la discrépance de x(n) noté
DL (x(n), K) (voir la définition §2.2.2). Plus précisément, leur étude permet de

formuler les remarques suivantes.

Remarque 1

Lorsque naugmente et DE* (z(n), K) diminue, 'IMSE et la MSE diminuent. Signalons
de plus que lorsque n — o0, sous certaines hypothéses supplémentaires, sur la fonction
f(+), les fonctions vg(-) et 'ordre de troncature N en fonction de n, I'utilisation de suites
a discrépance faible assure une vitesse de convergence optimale des estimations fn() vers
f() au sens de 'IMSE (Stone (1982) et Rafajlowicz et Schwabe (2005)).

Remarque 2
Lorsque n est constant et que DY° (z(n), K) diminue, VIMSE et la MSE diminuent.

Remarque 3

Lorsque n diminue et DY° (z(n), K) diminue, Vétude des inégalités (2.23) et (2.47) ne
permet pas de connaitre I’évolution de la MISE et de 'IMSE. En effet, elles font toutes
deux intervenir un terme en 1/n qui augmente dans ce contexte.

Le cadre méthodologique défini ci-dessous permet de prendre en compte ces re-
marques de fagon pratique. Nous distinguerons différents cas de figure en fonction des
données (« points d’observation », « observations ») disponibles, c’est-a-dire des (z;,v;),
i =1,...,n selon nos notations, cf. (4.1)).

Cas 1 Absence initiale de la base de données x(n) = {x1,...,x,} dans [0,1)¢

Compte tenu de la Remarque 1, lorsqu’on peut maitriser le choix des points x(n)
dans X = [0, 1)d, il est préférable de choisir une suite a discrépance faible.

Cas 2 Choiz d’un nombre « imposé » de points dans une base de données x(n) = {x1,...,zy}

Lorsqu’on doit choisir un ensemble @ (n1) de ny points dans un ensemble de points
candidats x(n) = {z1,...,z,}, on pourra commencer par étudier la qualité de
la base x(n) a l'aide de critéres faisant intervenir la discrépance (voir le §2.5.2).
Compte tenu de la Remarque 2, on sélectionnera l’ensemble de points dont la
quantité DL (1(ny)) est la plus faible. La encore, une é¢tude de I'ensemble des
points sélectionnés sera menée (cf. §2.5.2).

Cas 3 Choix « libre » de points dans une base de données x(n) = {z1,..., oy}

Nous devons ici choisir un ensemble de points @;(n1) dans un ensemble x(n) =
{z1,...,2,} € X™ (n1 n’est pas imposé). Compte tenu de la Remarque 3, ce
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Cas 4

choix est délicat. Nous proposons la sélection de points @j(n;) parmi x(n) qui
permettent de réduire la quantité Q(z(n)) := DL’ (x(n), K)/n. Le nombre nq de
points sélectionnés sera plus important que si I’on cherche simplement & diminuer
la quantité DX (z(n), K). Ainsi, on limitera 'augmentation du terme en 1/n dans
les majorations de 'IMSE et de la MISE décrites par les inégalités (2.23) et (2.47).
De plus, la diminution de Q(z(n)) implique la diminution de DX*(x(n), K). En
effet, si

D (z(n—1),K) - DLQ(m(n),K)’

n—1 n

alors,

ce qui implique,
DY (x(n—1),K) < DF(x(n),K)>. (2.52)

Bien entendu, une étude préalable de la qualité de x(n), puis de x1(n;) a l'aide

8

de critéres faisant intervenir la discrépance sera menée (voir .

Données (zi,y;), i = 1,...,n disponibles
I1 est d’usage d’appeler les couples (z;,y;), i = 1,...,n des données (point d’ob-
servation, observation). Tout d’abord une estimation f,(-) de f(-) a l'aide des

données initiales (z;,y;), i = 1,...,n, sera réalisée conformément a (2.3). Parmi
les données (x;,vi), ¢ = 1,...,n, nous chercherons un sous-ensemble de nature

a fournir une estimation satisfaisante fy,(-) de f(:) (au sens de la MSE et de
I'IMSE). Dans ce contexte, nous sélectionnerons un sous-ensemble xi(n;) C
x(n) = {z1,...,zy} de la méme facon que celle décrite au cas 3. L’estimation
fn, () sera réalisée a Paide des points de @1(n) et des observations correspon-
dantes (selon ). On comparera les estimations f,,(-) et f,, () de f(-). Ceci se
fera & ’aide de critéres comme par exemple celui de 'erreur quadratique entre
les observations et les estimations aux points x;, i = 1,...,n, (voir le §2.5.4).
L’estimation de f(-) qui est la meilleure, au sens de ces critéres, sera retenue.

Lorsqu’une spécification de points dans X est possible (au sens de l'ajout controlé
de nouvelles données (point d’observation, obervation)), compte tenu de la re-
marque 2, nous choisirons des points additionnels permettant de réduire la dis-
crépance. Ces points spécifiés pourront, par exemple, étre choisis parmi ceux d’une
suite a discrépance faible.
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2.5 Application

2.5.1 Présentation de ’exemple

Pour 'application, le cas 4 de la méthodologie est abordé ci-dessous. Des observations
yi € R associées a des points z; € X = [0,1)2,7 = 1,..., 100 sont disponibles. L’ensemble
x(100) = {x1,..., 2100} est représenté dans la Figure 2.1l

1.0

0.8

0.6

@i%
S o ¥
< 0‘2 0‘4 0‘.6 0‘8 1‘0
21

F1G. 2.1 — Ensemble 2(100) initial

Les observations ¥, ..., y100 corespondent & la modélisation :
y(x;)) = fl(xz;)+ei, avec, (2.53)

— ;€ X =10,1)2
— f € L*(X), le paramétre fonctionnel & estimer,
— &4, 1 =1,...,100, une suite de variables aléatoires indépendantes de moyenne nulle

de variance o2.

La fonction f(-) considérée pour cette application est une somme de produits tenso-
riels de polynémes de Legendre et s’écrit comme suit,

pour z\9) € [0,1) : ¢0($(j)) =1, ¢1($(j)) =12 (w(j) —-1/2),

pour z = (z1,2®) ¢ X =[0,1)?
F@®,2®) = ao,0 do(zM) o (2P)) + ao 1 do(zM)py (@)
+ a1 P1 (M) o (@) + a1 ¢ (2 (2?).
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Les coefficients a0, ao,1, a1,0, et a11, sont estimés par la méthode des moments in-
troduite par la formule (2.3)).

Les variables aléatoires ¢;, ¢ = 1, ..., 100, utilisées pour la simulation sont indépen-
dantes et de loi normale centrée AN'(0,0?), d’écart type o = 0.4.

2.5.2 Analyse initiale des points disponibles

Selon la méthodologie définie au paragraphe (2.4} il est nécessaire de commencer par
étudier la « qualité » de 'ensemble x(n) = {z1,...,z,}. Pour ce faire la discrépance de

type L? centrée (voir les équations (2.13), (2.14), (2.16)), notée DCLQ, sera utilisée comme
critére de qualité. Pour le calcul de cette quantité, la formule introduite par [Hickernell
(1998) est utilisée,

pewon]” = () - FE I (1 gie ! - v et )

=1 k=1

n n d

! 1 k 1 )
22 1l <1+2|1+$§ D 1/2+ S+ e - 1/2]

i=1 j=1 k=1

avec ici, d = 2, n = 100, et z; = (:zgl),xz(?)) €[0,1)%

Par définition, la discrépance s’interpréte comme une comparaison entre le nombre
de points compris dans certains pavés de X = [0,1)? et le volume de ces pavés. Il s’agit
donc d’un critére de répartition uniforme de l'ensemble des points x(n) = {z1,...,z,}
dans X = [0,1)2. On parle encore de critére de « remplissage de I'espace » ou « space

filling ».

Pour que 'ensemble x(n) soit jugé de qualité « acceptable », une premiére approche
consisterait a effectuer des tests statistiques. L’hypothése HO & tester serait : «les x;
sont des réalisations de variables aléatoires indépendantes et de méme loi uniforme sur
X = [0,1)% », et la statistique utilisée serait : DCLZ(:c(n))2. A notre connaissance, la
loi de cette statistique n’est pas connue de fagon exacte & ce jour. Il n’est donc pas
aisé¢ d’effectuer de tels tests en pratique. Cependant son espérance (Hickernell (1996a) et
Hickernell (1998)) se calcule et vaut

d d

1 13 1 13

E [DOL? 2} N i T (e

¢ (@) 2 [\127 6 12
Puisque, par définition, plus la discrépance d’un ensemble de points &(n) = {z1,...,z,}
dans un espace X = [0, 1)d est faible, meilleure est la qualité du recouvrement des points

. (2.54)
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x(n) dans X, 'espérance (2.54) constituera notre valeur seuil supérieur de référence. Nous
jugerons de « qualité acceptable » un ensemble de points @(n) dont DCE (x(n))? <

E |DCY’ (m(n))Q] Notons que, selon nos simulations, lorsque x(n) correspond a un
ensemble de v.a. ii.d uniformes, E [DCLQ(a:(n))Q} correspond au quantile a 61% de
DCE (x(n))? :

P (DCL2 (z(n))? <E [DCL2 (m(n))2]> ~ 0.61.
La densité de la statistique n x DCE* (z(n))? obtenue par simulation est représentée dans

la Figure 2.2 (la multiplication par n permet de ne pas faire dépendre la loi de la statis-
tique du nombre de points).

Densité
15 2.0 25

1.0

0.5
1

0.0

T T T T T
0.0 0.5 1.0 15 2.0

Nsimu = 1000

FIG. 2.2 — Densité de n x DCF* (2(n))2, la moyenne est représentée par le trait vertical

Pour I’ensemble initial (100) = {z1, ..., 100}, nous avons
[DCH (z(n))]? = 0.0100 > E [DCL2(m(n))2 — 0.0038.

L’ensemble x(100) = {z1,...,2100} n’est donc pas jugé de qualité acceptable. La Figure
montre aussi que l'ajustement de 'estimation de f(-) par la méthode de projec-
tion sur une base de fonctions orthonormales n’est pas satisfaisant lorsque les points de
x(100) = {x1,...,x100} sont pris en compte.

2.5.3 Sélection d’un sous-ensemble de points

Selon le cas 4 de la méthodologie introduite au paragraphe nous proposons de
sélectionner un sous-ensemble x1(n1) C x(n) = {z1,...,z,} € X de facon a réduire la
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quantité

L2 r\n
Qa(m) = 2@ (2.55)

n

Ici, DCLQ(w(n)) désigne la discrépance de type L? centrée (voir les équations (2.13),
2.14), (2.16)). Pour effectuer cette sélection, plusieurs méthodes sont possibles et vont
étre illustrées.

Nous utiliserons les méthodes présentées au paragraphe 1.4.2.1, 1.4.2.2] [1.4.2.3 du
chapitre I, en considérant ici la réduction du critére Q(a(ny)) (cf. (2.55)).
e Application de I’Algorithme A;

La premiére méthode (cf. l'algorithme A; de §1.4.2.1) consiste & trouver un sous-
ensemble x1(n1) de x(100) dont Q(x(n1)) est minimale (voir (2.55)).

1.0
I

0.8
I

0.6
I

0.4

0.2

e
Q(z(n))
0.000 0.001 0.002 0.003 0.004 0.005 0.006
L

0.0

T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0 20 40 60 80

M Nombre de points supprimés
Fi1G. 2.3 — Points sélectionnés par 1'algo- Fic. 2.4 — Evolution de Q@ en fonction
rithme A; du nombre de points supprimés par 1’al-

gorithme Ay

L’évolution de la quantité @@ en fonction du nombre de points supprimés est repré-

sentée Figure 2.4. La courbe en vert représente \/ E {DCL2 (m(n))Q] /m qui constitue une

valeur seuil de référence (voir §2.5.2). L’ensemble de points retenu sera celui dont la
quantité @ est la plus faible. Il comporte 54 points. On remarque toutefois, qu’a partir
de 80 points il est possible de sélectionner un ensemble de points de qualité « acceptable ».
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e Application de I’Algorithme A,

La deuxiéme méthode (utilisation de 'algorithme As du consiste simplement
a sélectionner des points proches de ceux d’une suite a discrépance faible. Ces suites « dé-
terministes » sont essentiellement utilisées pour les méthodes de quasi-Monte Carlo dont
Pobjectif est de réduire au mieux la discrépance a l'origine (voir le §2.2). Pour I'étude de
ces suites, nous renvoyons, par exemple, & Niederreiter (1992).

L’évolution de la discrépance en fonction du nombre de points supprimés est présen-
tée dans la Figure 2.6l A partir de 80 points, il est possible d’obtenir un ensemble de
qualité acceptable selon nos critéres (voir le §2.5.2). L’ensemble de points retenu par cet
algorithme comporte 67 points. Il est illustré dans la Figure [2.5. Entre 67 points et 45
points, la valeur de Q obtenue évolue relativement peu.

1.0
I

0.8
I

)

B Ok
8 @ g | ;
3 S - ’
° 0.‘2 0.‘4 0‘.6 O‘.8 1‘.0 (‘) 2‘0 4‘0 6‘0 B‘O
=D Nombre de points supprimés
Fi1Gc. 2.5 — Points sélectionnés par l'algo- F1G. 2.6 — Evolution de @ en fonction
rithme A du nombre de points supprimés par 1’al-

gorithme Ao

e Application de I’Algorithme Ag

L’objectif de la troisiéme méthode est d’extraire un sous-ensemble de points régulie-
rement répartis dans X = [0, 1)? (voir I'algorithme A3 de §1.4.2.3 avec ici la réduction du
critere Q(x(nq)), cf (2.55). ).

Les Figures2.8/et[2.9/représentent, I’évolution de la discrépance en fonction du nombre
de points supprimés, et de la distance ¢ fixée. L’ensemble de points retenu comporte 48
points et est illustré Figure 2.7. Nous remarquons qu’a partir de 75 points il est possible
d’obtenir un ensemble de points de qualité acceptable selon nos critéres (voir §2.5.2).

En général, cet algorithme permet de trouver un sous-ensemble de points de qualité
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acceptable. Le critére ) diminue, cependant, moins rapidement et moins fortement que
lors de lapplication de l'algorithme A; (voir les Figures 2.4 et [2.8).

2.5.4 Estimation et Validation

Comparons a présent les différentes estimations de f(-), désignées par fzm(), f 4,(+),
fas (), fa,(-), obtenues, respectivement, avec ensemble a(n) de points initiaux, l'en-
semble x 4, (n1) de points sélectionnés par 'algorithme A;, 'ensemble x 4,(n3) de points
sélectionnés par lalgorithme As, 'ensemble x4,(n2) de points sélectionnés par 1’algo-
rithme As.

Pour la validation des estimations de f(-), nous avons introduit un nouvel ensemble
T441(100) de 100 points correspondant & des réalisations de variables aléatoires indépen-
dantes uniformes dans [0,1)2. Pour i = 1,...,100, des observations y,u, = f(x;) + &i,
ou g ~ N(0,0.4), ont été simulées aux points Zyq; € Tyer(100). Les Figures 2.10, 2.11,
[2.13, représentent, respectivement, les estimations fini(l‘vali)a fAl (Tval, ) fA3 (Zwal; )
fA2 (pal;); de f(Zyar,), rapportés aux observations « de validation », yyar,, @ = 1, ..., 100.
Le Tableau 2.1 récapitule ’ensemble des résultats obtenus lors de I’étape de sélection de
points, ainsi que erreur quadratique estimée par la formule

1

EQAj = TN

100 > (fAj (i) — yi>2 pour A; = Ay, Az, As.

T;€EXyal (100)

Ensemble de points | Nb. points DCL IE(DCL2) Q EQ
xA (n1) 54 1353 | 72E3 | 6.654 | 022

x4, (n2) 67 3.0E3 | 58E3 |S8.1E4 | 0.34

T A,(n3) 72 4.6E-3 5.4E-3 9.4E-4 | 0.66

xz(n) 100 10E-2 3.8E-3 10E-4 | 1.37

TAB. 2.1 — Tableau comparatif des résultats des différents algorithmes et des ajustements
associés

Le Tableau [2.1 montre que I'algorithme A; donne de meilleurs résultats que les al-
gorithmes Az et As. Ceci n’est pas surprenant car I'objectif de A; est la minimisation
directe du critére Q.

Comme 'objectif principal de 'algorithme A3z n’est pas la minimisation du critére @
mais la sélection d’un ensemble de points réguliérement répartis dans X, celui-ci donne
de moins bons résultats. De plus, le nombre de points sélectionnés par ’algorithme As
est plus important que ceux des algorithmes A; et As. Ainsi, I’ensemble @ 4,(n3) conser-
vera un nombre relativement important de points de I'ensemble initial (n). Comme le
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caractére de répartition uniforme de ’ensemble initial n’est pas jugé « acceptable » selon
nos critéres, le fait de sélectionner, parmi cet ensemble, une partie de cardinalité trop
élevée risque de conserver ce manque d’uniformité. Ainsi @ 4,(n3), risquera lui aussi de ne
pas avoir une bonne « répartition ». Ceci est notamment confirmé par un critére sevére
d’uniformité tel que celui de la discrépance L? centrée, voir le Tableau[2.1.

L’algorithme As permet, en général, d’extraire un ensemble de points « proche » d’une
suite a discrépance faible et donc de bénéficier parfois de caractéristiques semblables (re-
couvrement uniforme de 'espace). Il est également moins cotiteux en temps de calcul, ce
qui le rend particuliérement intéressant lorsque la dimension de ’espace X est élevée.

La sélection d’un ensemble de points par minimisation du critére Q = DCY’ (x(n))/n
prend en compte 'inégalité (2.23). Comme précisé au §2.4, la division par n contraint
la sélection & conserver un nombre de points relativement important. Bien entendu, il
est aussi possible d’appliquer cette méthodologie en cherchant simplement & minimiser
la discrépance centrée DCY. Le nombre de points sélectionné sera alors inférieur & celui
traité par le critére @). Les résultats obtenus seront alors comparables.

2.6 Discussion

En nous appuyant sur les travaux de Hickernell (1998) et Rafajlowicz et Schwabe
(2005) nous avons précisé les liens entre les critéres d'IMSE et de MSE et la notion
de discrépance généralisée, dans le cadre de I'estimation d’un paramétre fonctionnel ba-
sée sur sa décomposition & partir d’'une somme de fonctions orthonormales. Les critéres
d’IMSE et de MISE peuvent tous deux étre majorés par un terme faisant intervenir la
discrépance généralisée.

De fagon générale, une « discrépance » faible d’une suite de points €(n) = {z1,...,2,}
en lesquels sont observés {y1, ..., yn} permet d’obtenir une estimation robuste, au sens de
la MSE, et de bonne qualité au sens de 'IIMSE. La méthodologie proposée au chapitre I
et adaptée au contexte de ’estimation par la méthode des fonctions orthogonales trouve
donc ici une justification théorique.

Le lien entre la discrépance et la méthode des fonctions orthogonales a été établi &
laide de l'inégalité de Koksma-Hlwaka généralisée. D’origine récente (Hickernell (1998)),
cette derniére permet de définir la discrépance & partir d’un noyau auto-reproduisant
convenable d’un espace de Hilbert. Lorsqu’une modélisation par un processus aléatoire
est utilisée, cela revient aussi & considérer des espaces de Hilbert ot le noyau auto-
reproduisant correspond a la fonction de covariance du processus. Il semble donc per-
tinent d’appliquer la notion de discrépance en adaptant la définition & la fonction de

covariance comme mentionné par Hickernell (1999).

D’autre part, lorsqu’une méthode d’estimation fera intervenir des moyennes, approxi-
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mations d’intégrale, 'inégalité de Koksma-Hlwaka généralisée montre que la diminution
de la discrépance d'un ensemble de points permettra de réduire I'erreur de ’estimation.
Cette propriété pourrait aussi étre employée dans le contexte de 1’apprentissage statis-
tique ot I'on considére une fonction de risque empirique, approximation d’une intégrale
(ceci fait notamment l'objet de recherches récentes, voir Cervellera et Muselli (2004),
Marry (2005)). Une perspective consisterait donc & utiliser les méthodes de sélection et
de spécification de points du chapitre I dans la procédure d’apprentissage.
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Chapitre 3

Critéres probabilistes

Dans ce chapitre, nous approfondirons les méthodes destinées a 1’étape 2 de la mé-
thodologie définie en Introduction. Comme pour le chapitre I, 'objectif sera de vérifier
qu’un ensemble de points est réparti de fagon uniforme dans un espace X. L’approche
sera cependant différente de celle du chapitre I ou les techniques utilisées étaient dictées
par des considérations déterministes. Le caractére aléatoire éventuel des données de la
BDDE (cf. Introduction) sera pris en compte. Ici, nous parlerons de répartition uniforme
des points dans X lorsque ces points peuvent étre considérés comme des variables aléa-
toires indépendantes et de loi de probabilité uniforme dans X. Pour accepter ou rejeter
cette derniére hypothése nous aurons donc recours aux tests statistiques.

Nous nous intéresserons au cas ou la dimension d de X est strictement supérieure a 1.
Ainsi, certaines méthodes classiques pour d = 1 ne peuvent plus étre employées. En effet,
pour certains tests, les lois des statistiques (fonctions des variables considérées dans X)
prises en compte lorsque d = 1 ne sont pas connues de facon explicite en dimension supé-
rieure (par exemple, les statistiques de Kolmogorov-Smirnov, de Cramer-Von-Mises). De
plus, le calcul de ces statistiques est parfois délicat (comme la statistique de Kolmogorov-
Smirnov qui correspond alors a I’évaluation de la discrépance a l'origine, cf. chapitre I).

Les statistiques que nous proposerons d’utiliser consistent & effectuer une partition en
cellules disjointes de I'espace X (voir la Figure 3.1 et le §3.2), puis a définir des fonctions
du nombre de points contenus dans chaque cellule (cf. équation (3.18)). Les tests réalisés
permettront de vérifier si la proportion de points contenus dans ces cellules correspond
ou non & celle d’une répartition de variables aléatoires indépendantes et uniformes.

Dans un premier temps, nous préciserons le formalisme. Nous présenterons la notion
de test statistique et la partition de X = [0, 1)? que nous utiliserons. Nous remarquerons
notamment que la loi de probabilité caractérisant le nombre de points par cellule (de la

partition de X) est une loi multinomiale.

Nous rappellerons ensuite deux techniques classiques, faisant usage des statistiques

111
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FIG. 3.1 — Ensemble de n = 150 points dans X = [0, 1)? avec une partition en k = 25 x 25
cellules.

de Pearson, et du rapport de vraisemblance, utilisées ici pour tester 1'uniformité dans
le cadre d’une loi multinomiale. Nous remarquerons que ces statistiques relévent de cas
particuliers de la notion de divergence. Nous ferons dans une premiére étape 'hypothése
que le nombre n de points dans X tend vers l'infini et que le nombre k£ de cellules de la
partition de 'espace X est une constante fixée (cf. théorémes(3.3.1,(3.3.2, et [3.3.3). Les
résultats que nous fournirons dans ces deux paragraphes seront donc exploitables lorsque
le nombre de points dans X est important.

En second lieu, nous nous placerons dans le cas ot le nombre n de points dans X et le
nombre k,, de cellules de la partition de X sont dépendants et tendent vers l'infini. Nous
supposerons, plus particuliérement, que

n—o00, kp—00, A — Aso, avec, Ap:= et 0< Ao <o0. (3.1)

n
kn’
La quantité \,, correspondra au nombre « moyen » de points par cellule. Dans le contexte
d’'une BDDE pré-existante (cf. Introduction), constituée de points dans un espace X de
dimension relativement élevée, il sera délicat d’avoir, « en moyenne », plus d’un point par
cellule (voir du §3.2). Par conséquent, le cas oi1 0 < Ao < 1 dans (3.1) sera, pour
nous, le plus important (nous parlerons de « sparse case », voir L’Ecuyer et al. (2002)).

— Dans un premier paragraphe, nous proposerons d’exploiter les résultats issus du
théoréme de Holst (1972) (cf. théoréme [3.4.1). Au dela des statistiques de Pearson
et du rapport de vraisemblance, nous pourrons considérer des statistiques caracté-
risant le nombre de points de 'espace X par cellule de la partition de cet espace.
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Par exemple, nous étudierons le nombre de cellules « vides » (i.e. ne contenant
aucun point), ou le nombre de cellules contenant au moins m points (ot m > 1 est
un entier).

— Nous proposerons ensuite 1'utilisation de « statistiques par balayage de I'espace »,
ou « scan statistics » (cf. §3.5), qui s’'interprétent comme le nombre maximal de
points contenus dans un pavé constitué de plusieurs cellules. Ces derniéres ont pour
objectif de vérifier qu’il n’existe pas de groupe de points dans X de cardinalité éle-
vée (en comparaison avec des variables aléatoires indépendantes et uniformément
distribuées dans X). Pour les utiliser, nous ferons des approximations que nous
justifierons (cf. §3.5.1). Nous exploiterons essentiellement les résultats des « scan
statistics » discrétes conditionnelles.

Un paragraphe précisant Uinterprétation et l'utilisation des différentes statistiques
introduites sera présenté a la fin du présent chapitre.

De facon a respecter les notations usuelles de la statistique nous désignerons les va-
riables aléatoires par des lettres majuscules. Les points de la BDDE (cf. Introduction)
dans X étant considérés comme tels, nous les noterons & présent Xq,...,X,.

3.1 Notion de Test Statistique

L’objectif de ce paragraphe est de fournir un exposé didactique et élémentaire des
notions de base et du vocabulaire qui sera utile dans la suite de ce chapitre. Pré-
cisons que la notion de test statistique telle que nous la présenterons a été princi-
palement introduite par J. Neyman et E.S. Pearson dans les années 1920-1930 (cf.
Neyman et Pearson (1928)). Pour des informations supplémentaires, on pourra consul-
ter, par exemple, Monfort (1997).

De facon générale, un probléme de test consiste a établir une régle de décision per-
mettant de choisir entre deux hypothéses,

HO: une hypothése nulle,
H1: une hypothése alternative.

Nous nous plagons dans le contexte ol nous observons des éléments aléatoires pour
lesquels nous avons spécifié un modéle statistique paramétrique (Q, A,Pp;p € P) défini
comme suit,

i) 0 est Uespace des résultats et correspond a ’espace dans lequel les observations
prennent leurs valeurs;

i1) A est une tribu de Q, ainsi (£2,.A) est un espace mesurable ;
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iii) P : = {P,;p € P} est une famille de probabilités sur A dépendant d'un parameétre
p, ol p appartient a un espace Euclidien P C R9.

Le probleme de test statistique que nous étudierons reviendra a accepter, ou a rejeter,
I’hypothése selon laquelle la « vraie » valeur du paramétre, p, correspondant & la loi de
probabilité [P, des observations, appartient, ou non, a un sous-ensemble non vide Py de
P. Les hypothéses seront :

HO : p € PyCP,
Hl: peP; ou Ps:=P\Po. (3.2)

Le test ainsi défini est une fonction mesurable :
06:Q0 — {do,dl}, (33)
ou l’ensemble des décisions D : = {dy,d1} est :

do : on choisit HO,
dy : on choisit H1.

Par définition, § est une regle de décision pure. Le test statistique défini par les hypothéses
(3.2) est donc appelé test pur.

Dans ce contexte, nous pouvons distinguer quatre configurations possibles présentées
Tableau (3.1).

HO «vraie» : p € Py H1 «vraie» : pe P\ Py
dp : On choisit HO « bonne décision » erreur de deuzxiéme espéce
dy : On choisit H1 | erreur de premiére espéce « bonne décision »

TAB. 3.1 — configurations possibles lors d’un test statistique

Nous appelons région de rejet ou région critique R, ’ensemble des observations de 2
qui conduisent & refuser HO,

RCQ et R:=0dYd). (3.4)

Le complémentaire de R dans Q est la région d’acceptation, R : = Q\ W.

Nous désignons par
a(p) = Pp(R), pour peP, (3.5)

la fonction puissance du test. Les restrictions de cette fonction sur Py, P, sont, respec-
tivement, le risque de premiére espeéce, le risque de deuxiéme espéce. La puissance du test
correspond a la quantité,

sup Pp(R). (3.6)
P€Po
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Par la suite, nous considérerons essentiellement le cas ott I'hypothése HO ne contient
qu’un seul élément, Py = {po}, ot pg € P C R? dans (3.2). Il s’agit alors du test d’une
hypothése simple HO. Dans ce contexte, la fonction de risque de premiére espéce (cf.
(3.5)) est une constante égale au niveau de puissance du test (cf. (3.6)).

En pratique, nous procéderons de la fagon suivante.

1.

Nous commencerons par définir I’ensemble P des paramétres. En général, P sera
un sous-ensemble non vide fermé de RY.

. Nous testerons une hypothése simple, HO : p € Py = {po} ou py € P C R?, contre

une hypothése alternative, Hy : p # pg et p € P.

. Nous spécifierons la puissance du test a € (0,1).

Nous déterminerons la région critique R, de niveau a qui est définie par I’ensemble
des observations conduisant a écarter ’hypothése simple HO a tort (i.e. alors que
HO est « vraie ») tel que

Ro C6Hd1) et, Pp(Ra)=a. (3.7)

Rq correspond a Uerreur de premiére espéce (cf. Tableau [3.1). Cette région R,
sera déterminée a ’aide d’une statistique, fonction des observations, dont la loi de
probabilité est connue sous I’'Hypothése HO.

. Nous accepterons ’hypothése HO si les observations n’appartiennent pas a la région

critique Rq, et la rejetterons dans le cas contraire.

Pour la méthode de test définie par les étapes 1-5 ci-dessus, nous ne considérons
que lerreur de premiére espéce a (cf. Tableau (3.1)). Ce type de test est appelé test de
premier ordre.

3.2 Partition du pavé unité

Par la suite, nous serons amené a considérer une partition du pavé unité X = [0,1)%.
Celle-ci sera effectuée de la fagon suivante :

i)

i)

on réalisera une division de [0,1] en s segments de méme longueur, h: = 1/s;

pour un ensemble d’entiers ji,...,jq, tels que 1 < 51 < s,...,1 < jg < s, nous
considérerons la cellule Aj, . ;, C X définie par :

Aji,.ja 2 = [0 = Dy grh) x [(G2 = D, g2h) x - x [(Ja = Dh, jah) . (3.8)

Pour 1 < j; < s,...,1 < jg < s, les s? cellules Aj .., définies par (3.8), sont
disjointes et forment une partition de X = [0,1)% :
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J1=58,....,Jd=$
[0, 1)d = U Aji,..ja- (3.9)

J1=1,...j4=1

Elles ont toutes le méme volume (mesure de Lebesgue sur X = [0,1)9) : A(4;) = h%.

Dans un premier temps, nous ne nous intéresserons pas aux « emplacements » des
cellules dans le pavé unité. Aussi, de facon a simplifier les notations, nous noterons A;

une cellule, en faisant varier l'indice j de 1 a k : = s%.

Pour Xi,..., X, des variables aléatoires indépendantes indentiquement distribuées
de loi uniforme sur X = [0, 1)d, nous adopterons les notations suivantes.

e Soit 1 4,(X;), la fonction indicatrice de la cellule A; en X :

. 1 si Xi € A]',
Va, (Xo) = { 0si Xi ¢ Aj,
avec j=1,...,keti=1,...,n. (3.10)
Par définition, pour j = 1,..., keti=1,...,n,les 1 4,(X;) sont des variables
aléatoires de Bernouilli ayant pour paramétre py,i¢ : = 1/k, c’est-a-dire,
P(la,(Xs)=1) = 1/k,
i (3.11)
P(14;(X;) =0) = 1-1/k.
Pour un indice j € {1,...,k} fixé, pour des indices distincts i; et iy tels que
1 <ip <netl<idp <n,les variables aléatoires 1.4, (X;,) et 1 4,(Xy,) sont
indépendantes.
e Pour un indice j € {1,...,k} spécifié, nous désignerons par Yj, le nombre de
Xi, i =1,...,n, contenus dans la cellule A; C X. Ceci s’écrit formellement,
n
Y =) 14,(X0), j=1,... k=" (3.12)
i=1
Pour j = 1,...,k = s¢, Y; est la somme de n variables aléatoires indépen-

dantes de Bernouilli (cf (3.11)) et suit donc une loi binomiale de paramétre
(napunlf = %)7

n n n—n
P()/}:nl) = < >pmlw'f(1_pum'f) 1;

ni

P(Y; =ny) = (:) <]1€>m (1 - ;)n_m , (3.13)
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avec la notation usuelle :

n B n!
ni)  nl(n—ng)!

Ainsi, la loi jointe de (Y7,...,Y%) est une loi multinomiale de paramétres
_ 1 _ 1
(TL, (pl =L PE= E)))

1 n
}P’(lem,...,Yk:nk):< K )() sin1+...+nk:n,
ni...Ng k

e Nous noterons

n

A= . 3.15

. (3.15)

Considérons les cellules A;, j = 1,...,k de la partition du pavé unité X =
[0,1)¢ (voir (3.8)). Le terme X dans (3.15) représente le « nombre moyen » de

variables X1,..., X, par cellule.

— Lorsque A > 1, nous parlerons de « dense case » (en « moyenne », plus d'un
point par cellule).

— Lorsque A < 1, nous parlerons de « sparse case » (en « moyenne », moins
d’un point par cellule).

Dans notre contexte,
a) la dimension d de X = [0, 1)? sera fixée et sera relativement élevée,
b) le nombre n de variables aléatoires X1,..., X, dans X sera fixé a 'avance et limité,

¢) nous pourrons choisir le nombre & = s? de cellules comme une puissance d du nombre
s de segments sur chaque axe de I'hypercube unité (d étant fixé on fera varier s, cf.
i) ci-dessus).

Bien qu’ayant le choix de k, il sera souvent difficile de le désigner de fagon & ce que
k << n. En effet, k = s devient trés important lorsque la dimension d augmente. Le
« sparse case » (i.e. n < k) nous concernera donc particuliérement. En pratique, plusieurs
choix de k seront étudiés. En dimension élevée, ce nombre pourra étre choisi le plus grand
possible afin de prendre en compte un nombre important de sous parties de I'espace X.

La partition du pavé unité décrite ci-dessus est souvent utilisée pour vérifier la qua-
lité de générateurs de nombres aléatoires (voir, par exemple, L’Ecuyer et al. (2002)). On
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génére n x d variables aléatoires uniformes sur [0,1), Uy, ...,U,xq. On construit n vec-
teurs de la fagon suivante Vg, = (Ug,, ..., Ug,14—1), pour i = 1...n. On réalise ensuite des
tests statistiques en considérant une partition de I’hypercube unité [0, 1)d comme celle
présentée ci-dessus. Cette méthode classique est aussi connue sous le nom de test pério-
dique, « serial test ». Dans ce contexte, le nombre n de variables dans X = [0, 1)d peut
étre élevé. La plupart des tests périodiques existant concernent donc le « dense case ».
Dans certains cas, le nombre n est aussi considéré comme une variable aléatoire de loi de
Poisson de moyenne n. Les Y}, j = 1,...,k, telles que nous les avons définies en (3.12)
sont alors des variables aléatoires indépendantes et de loi de Poisson de paramétre n/k.
La caractérisation des lois de statistiques définies a partir des Y}, j = 1,...,k, est alors
plus aisée du fait de leur indépendance.

Nous pouvons aussi remarquer des analogies entre cette approche par partition du
pavé unité et des travaux réalisés dans le domaine du « pavage » et de la dispersion
spatiale en biostatistique. Nous renvoyons entre autres a Greig et Smith (1952), Rogers
(1974), Chessel (1978), et Cliff et Ord (1981).

3.3 Test sur le vecteur de paramétres d’une loi multinomiale

Dans ce qui suit, nous ferons référence a ’ensemble des considérations du §(3.2).

Nous désignerons par HOg,,; ¢ 'hypothése d'indépendance et d'uniformité des Xy, ..., X,
dans X = [0,1)%.

Comme exposé précédemment (voir le §(3.2)), sous 'hypothése HOpy;f, le vecteur
(Y1,...,Y)) suit une loi multinomiale de paramétres (n,p = (p1 = %, RN TS %)) On
en déduit qu’accepter ou rejeter ’hypothése HOpy,;; définie ci-dessus revient a effectuer
un test d’une hypothése simple sur le vecteur de paramétres p € Py de la loi de
(Y1,...,Y%) (cf. (3.12) et (3.14)). Nous renvoyons entre autres a L'Ecuyer et al. (2002)
ainsi qu’a leurs références bibliographiques. L’ensemble Pjsi+; alors considéré est défini

par,
k
Prrwiti == (pb cee 7pk) € (07 1)k : ij =1,. (316)
j=1

Les hypothéses du test seront désignées par :

HOpoti p:(l/kval/k)
HlMulti : p# (1/k7a1/k) et pepMulti7 (317)

Pour effectuer ce test, nous allons étudier différentes statistiques, fonctions des Y}, j =
1,...k (cf. (3.12) et (3.14)). Pour une fonction f,, , de {1,...,n} C N dans R, intégrable
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par rapport a la mesure de comptage sur {1,...,n}, les statistiques Sy, (Y1,...,Y%) que
nous prendrons en compte sont définies de la facon suivante,

k
Sra (V1Y) = > {far (V)}, (3.18)
j=1

ol les Y; sont définies en (3.12) et (3.14). Avant de proposer des exemples de fonctions
f intervenant dans (3.18]), nous présenterons ci-dessous le calcul de I'espérance et de la
variance de Sy, , (Y1,...,Y).

3.3.1 Espérance et Variance de Sy, ,(Y1,...,Y;)

Soit (N1, ..., Ni), un vecteur aléatoire de loi multinomiale de parameétres (n, (p1, ..., pk))-
Pour j =1,...,k, pour une fonction f, x, de {1,...,n} C N dans R, intégrable par rap-
port a la mesure de comptage sur {1,...,n}, nous avons,

n

B = 30 (1)) fusto) (3.19)

ni=1

pour n —ni > ng > 0,

n! (p1)™ (p2)™?(1 — p1 — p2)" ™"
P(Ni =n1;Na =ng) = AT Crm—T . (3.20)

Ainsi, pour (Y7,...,Y)) défini en (3.12) et (3.14), de loi multinomiale de paramétres
(n,(p1,-..,pk)) ot p1 = ... =p, = 1/k, (3.19) implique

E(fs(V) = 3 <”)<’“‘” Fax(n), (3.21)

n1 kn
ni=1

et, pour n —nj > ng > 0, (3.20) implique,

n! (n—mnp)! (k —2)n—m—n2

ni!(n —np)! nal(n —ny — na)! kn

- (:1) (” ;;“) W . (3.22)

Pour les Y}, j =1,..., k définies par (3.12) et , Ious posons & présent,

]P’(Yl = nl;YQ = ng) =

E(fnk(Yj) = n,
avec p i= Zn: <:1> (W) Fuk(n). (3.23)

ni=1
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On déduit de (3.22) que
E [(fn,k(Yl) - M)(fn,k(Y2> - :u)]
= > <n> (n_m) W(fn,k(nl) — 1) (fak(n2) — p)

n n2
ni,n2;n1+n2<n

= (M) R ) = i) tns) — )

ni=nz;ni+nz2<n

b (M) S ) — i) tns) — )

ni n2
no<n—mni,noF#En

L”/QJ n . n—2n1
= 30 (M) EER ) - ) slrn) — )

n
ni=1
o Zn: min nzniam 1) n n—ny (k: _ 2)n—n1—n2
n1 N9 kn
ni=1 na=1
X(fan(na) = 1) (far(ne) —p). (3.24)
Avec quelques calculs supplémentaires (voir aussi L’Ecuyer et al. (2002)), nous obte-
nons la proposition suivante concernant une statistique de la forme Sy, (Y,...,Yg) (cf.
3.18)).

Proposition 3.3.1
Soit fn 1 une fonction de {1,...,n} C N dans R intégrable par rapport & la mesure
de comptage sur {1,...,n}.

E[S),, (YV1,.... V)] = kp=Y_ (”)ank(nl) (3.25)

n
ni=1 1

Var [an,k(ylv--"yk)] = Z <n)W(fn,k(nl)_U)2

n
n1=0 1

C S () R -

n1=0

n min(n—ni,ni—1)
n\ (n—ny
exo 2 W0

n1=0 no=0

(= 1)k — 2y
kn—1
X(fn,k(nl) - N) (fn,k(n2) - N)? (326)




Chapitre 8.  Critéres probabilistes 121

ot : n est le nombre de variables aléatoires, X1,...,X,, indépendantes et de loi
uniforme sur X utilisées pour construire les Y;, j =1,...,k (voir §(3.2) et (3.12)),
St (Y1, Yy) est la statistique définie en (3.18), et p:=E(Y), j=1,...,k (cf.
(3.23)).

Ci-dessous nous allons tout d’abord rappeler deux statistiques classiques pouvant
s’écrire sous la forme Sy, (Y1,...,Y)) décrite en (3.18), la statistique de Pearson et la
statistique du rapport de vraisemblance.

Plus généralement, nous étudierons ensuite des familles de fonctions permettant de
définir des statistiques, dont celles de Pearson et du rapport de vraisemblance sont des
cas particuliers. Nous verrons que ces statistiques convergent (lorsque n — oo) vers la
méme loi. La loi sera différente selon que le nombre k de cellules A;, j € {1,...,k} (cf.
(3.8)), dépend de n (k sera alors noté k;,,) ou non.

Les premiers résultats que nous présenterons correspondront au cas ot k est en entier
fixé, et n — oo. Ils seront donc exploitables dans le « dense case » (i.e. n > k, voir
(3.15)). Enfin, nous supposerons que k — oo et n — oo tels que n/k — Ay, 0l Ao € R
est une constante strictement positive. Lorsque, 0 < Ay < 1, les méthodes présentées
s’appliqueront dans le « sparse case ».

3.3.2 Test de Pearson
Une statistique fréquemment utilisée pour le test défini par et (3.17) est la

statistique de Pearson. Soit p1,...,pg, tels que
k
0<pj<l et > pi=1, (3.27)
j=1
et (Np,..., Ni) un vecteur aléatoire de loi multinomiale de paramétres (n,p1,..., k).

Théoréme 3.3.1 (Pearson)
Pour un vecteur aléatoire (N1, . .., Ni) de loi multinomiale de paramétres (n,p1, ..., px)

ot (pla ce. apk‘) € Pmulti; (Cf )7 on a

N, — np:)?
LLJQL.£>fw—m n — oo, (3.28)
— npj
7=1

ot x?(k — 1) désigne la loi du x> a k — 1 degrés de liberté.
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Ce théoréme classique a été obtenu par Pearson (1900). Originellement, la statistique
de Pearson est utilisée pour effectuer des tests d’adéquation de lois permettant de carac-
tériser la qualité d’ajustement d’une distribution théorique a une distribution observée.
Nous l'utiliserons ci-dessous pour effectuer un test d’hypothése simple sur les paramétres
d’un vecteur aléatoire de loi multinomiale (voir (3.16)) et (3.17)).

Le vecteur aléatoire (Y7,...,Y%) défini en (3.12) suit une loi multinomiale de para-
métres (n, (p1,...,pk)) avec p1 = ... = pi = 1/k (cf. (3.14)). Ainsi, d’aprés le théoréme
de Pearson, nous obtenons que

k 2
kE(Y:—n/k
X%::ZM £, 2(k—1), n— oco. (3.29)
n
j=1

Pour un niveau de puissance a spécifié, on déduit de (3.29) une région critique R, 2
du probléme de test défini par (3.16) et (3.17),

k 2
k(Y; —n/k
Ra2 = X?;:E:(Jnn/)zca , (3.30)
J=1

ol ¢, correspond au a-quantile d’une loi du x? & k — 1 degrés de liberté.

La région R, ,2 définie ci-dessus (cf. (3.30)) est une région critique asymptotique car
elle est obtenue pour n — oo. En pratique, on admet que celle-ci est valable lorsque
nxp;>95,j=1...k

Dans notre contexte, 'application du test de Pearson décrit ci-dessus est délicate. En
effet, nous considérons le cas ot p; = pynif = 1/k (cf. et (3.14)) ou k est le nombre
total de cellules de la partition de X = [0,1)¢ (k = s%, cf. le §(3.2)). Pour appliquer le test
de Pearson, nous devons donc avoir n > 5 x s?. Lorsque la dimension d est élevée, cela
suppose de disposer d’un nombre n, trés important de variables Xi,...,X,. Or, nous
supposons que ce nombre est spécifié a ’avance et limité.

Remarques

e Nous avons, pour la statistique X;Q; définie en (3.29) :

Xp = Zk _n/k) (3.31)
=1
2
(Yl//l? 1) ] (3.32)
y/n

k
> on|
fXQn,k<y) =n % by 2 (W) , avec  ¢ye(t) = (t— 1)2 pour t>0. (3.33)

<.

j=1

<.

Nous posons, pour y > 0,



Chapitre 8.  Critéres probabilistes 123

En substituant f,x a f2 , dans .S o (Y1, ..., Yy) définie en (3.18)), nous obtenons que

Sr, (Yi,...,Y%) = xb. (3.34)

X" n,k

e Une autre fagon d’écrire x2 (voir (3.29)) est la suivante,

(v; = n/b)’
n/k

e
I

7j=1
Z§:1 Yj2 —2n/k Z§:1 Y +n?/k

Pourles Y7,..., Y}, définies en (3.12), nous avons Z§:1 Y; = n, ce qui implique n/k Z§:1 Y; =
n? /k, ainsi X?g se ré-écrit comme suit,

¢ - o { () - (50} 339

Nous posons, pour y > 0,

fing(y) 1 =2n []1 ¢1 (%ﬂ , avec @i(t) = %(t2 —t) pour t>0. (3.36)

En remplacant f, . par fi,,;(y) dans Sy, (Y1,...,Y%) définie en (3.18), nous avons

St (V1o Y0) = x5 (3.37)

Les remarques ci-dessus nous permettront de constater que X% est un cas particulier
d’une famille de statistiques appelée ¢-divergence (voir le §3.3.4).

3.3.3 Test du rapport de vraisemblance

Une autre technique classique utilisée pour résoudre le probléme de test défini par
et (3.17) est l'utilisation du rapport des vraisemblances mazximales.

Soit P, un espace de paramétres, sous-ensemble non-vide fermé de R, et PPy un sous-
ensemble non vide de P de dimension £. Soit Z1,...,Z;, des variables aléatoires dont
la vraisemblance Ly(p; Z1,...,Zy) (correspondant a la densité jointe de Z1,..., Zk) est
définie pour p € P et p € Py.

Le théoréme suivant est issu du lemme de Neyman et Pearson (1933).
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Théoréme 3.3.2 (Rapport de vraisemblances)
Sous les considérations définies ci-dessus, on définit le « rapport des vraisemblances
maximal » Ay par,

SuppG'P Lk(pa Z17 ey Zk)
SuppE’PO Lk‘(p, Zla ey Zk:) ‘

Ak (3.38)

Nous avons alors,

2log(Ar) = x2(g—9). (3.39)

Ce théoréme peut étre appliqué au vecteur aléatoire (Y7,...,Ys) défini en (3.12) et
3.14) (o dim(P) =k — 1 et dim(Py) = 0). Il s’ensuit,

k
2In(Ax) = > Y; In (i’ Yj) L (k- 1). (3.40)
j=1

Ainsi, pour un niveau de puissance a donné, on déduit de (3.40), une région critique
R pour le probléme de test défini par et (3.17),

k
R“vA = 21n(Ak)222}/]1n <k}/]> > Cq
n
=1

ol ¢, correspond au a-quantile d’une loi du x? & k — 1 degrés de liberté.

Comme R, ,2 définie en , Ra, A est une région critique asymptotique.

Remarque

Nous avons,

k
_ LY,/n, (Y/n
2In(Ag) = > 2n [k i ln< )| (3.41)
Nous posons, pour y > 0,

Jonk(y) :=2n []1 b0 (%)} , avec  ¢o(t):=tIn(t) pour t>0. (3.42)

En remplacant f,,  par fo,, ;(y) dans Sy, , (Y1,...,Y}) définie en (3.18), nous constatons
que :

Sfope (Y155 Vi) = 2In(A). (3.43)

A Taide de la remarque ci-dessus, nous verrons que Sy,  (Y1,...,Y;) est un cas
particulier d’une famille de statistiques appelée ¢-divergence (voir le §3.3.4).
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3.3.4 « ¢-divergence family »

Dans ce paragraphe, nous exposerons tout d’abord le concept général de divergence.
Nous présenterons ensuite des « familles » de statistiques ayant la forme S, (Y1,...,Ys)

définie en (3.1R).

— Soient n > 1 et k, > 1 des entiers, o k,, peut éventuellement étre une suite dépendant
de n non décroissante.

— Soient qi, ..., qx, tels que,
kn
0<g <1l et Y gj=1, (3.44)
j=1
— Soit (N1, ..., Ng, ) un vecteur aléatoire de loi multinomiale de paramétres (n, (p1, ..., Pk, ))-

— Nous notons

t= (P Pha)s (3.45)
qa = (@ k) (3.46)

— Soit ¥ (u,v) une fonction, définie pour u > 0, v > 0, et a valeur dans R telle que,

a) 1(u,v) peut étre prolongée par continuité en (u,v) = (0,0) en posant
¥(0,0) = 0, (3.47)
b) pour u > 0, et v > 0,
¥(0,v) = lim (1,0, O(0) = lm (), (3.48)

ou les limites dans (3.48) peuvent éventuellement étre infinies.

— Nous posons :

kn

Dy(g,p) = Y ¥(a5,p5)- (3.49)

j=1

La quantité Dy(q,p) dans (3.49) correspond & la notion de divergence. Elle est
fréequemment employée pour comparer des mesures de probabilités {p(j),7 € E} et
{q(43),7 € E} ou E C N est non vide. Dans notre contexte, nous 1'utiliserons pour effectuer
un test sur les paramétres d’une loi multinomiale d’un vecteur aléatoire (Ny,..., Ny, )
(cf. (3.16) et (3.17)). Dans les pj, j =1,...,ky,, sont alors remplacés par les esti-

mateurs du maximum de vraisemblance p; : = Nj/n, j =1,..., k.
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Plusieurs ensembles de fonctions 1 ont été considérés dans la littérature conduisant a
différentes familles de divergences. Parmi ces familles, citons par exemple, les divergences
de Csiszdr (cf. Csiszar (1963, 1967)), de Bergman (cf. Bergman (1967)), de Burbea-Rao

(cf. Burbea et Rao (1983), Pardo (1999)).

Dans ce qui suit, nous nous intéresserons essentiellement aux divergences de Csiszdr,
connues aussi sous le nom de ¢-divergences. Nous les écrivons de la fagon suivante,

k7L .
Dy(q,p) = §:w¢<%>, (3.50)
= P

ol ¢ est une fonction telle que
i) ¢ est définie sur (0,00) a valeurs dans R,
1t) ¢ admet un prolongement par continuité en 0,

)
ii1) ¢ est convexe,
)

w) ¢ vérifie,
pour u = v =0, UQS(%)EO,
pour u =0, v > 0, v (%) = v¢(0),
pour v =0, u > 0, v (%) = tlgIolo gﬁ(tt) (3.51)

Nous supposerons de plus que

v) ¢ est localement différentiable d’ordre 2 au voisinage de 1, avec
#(1)=0 et ¢"(1) > 0. (3.52)

L’ensemble des fonctions vérifiant 7) — v) ci-dessus sera noté ®*.

Pour un vecteur aléatoire de loi multinomiale, (Ny,..., N, ), de paramétres (n,p =
(p1,---,Pk,)), nous désignons par p : = (p1,...,Pk,) l'estimateur du maximum de vrai-
semblance de p. On a, par calcul, p; = N;/n pour j =1,...,k,. Dans ce contexte, la loi

asymptotique (n — oco0) des ¢-divergences Dy (p,p), ¢ € ®*, définies en (3.50), est fournie
par le théoréme suivant.
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Théoréme 3.3.3 (Lois asymptotiques des ¢-divergences)
Dans le contexte précisé ci-dessus,

a) Sin, ky, et pj vérifient

lim k, =k, et liminfminp; >0 o0k >1 est une constante dans N

n— o0 n—oo 1<k,
alors,
2 g S (k1) (3.53)
— = —1). .
o) Pe P X

b) Si la fonction ¢ € ®* (voir i — v ci-dessus) est localement lipschitzienne dans un
voisinage de 1, sin et k, vérifient, pour § > 1

pi+8
lim k, = oo, et lim —— =0, (3.54)
n—od n—oo n
et les p; sont tels que
hnrr_l)lcgfkn X (1%115%])]) > 0, (3.55)
alors
PN o
2n Dy(p,q) —¢"(1) kn N0, 1), (3.56)

¢"(1) V2kn

Précisons que les convergences en loi des cas a) et b) existent également avec des
hypotheses différentes sur n, ky, et le choix des fonctions ¢ € ®* (voir Tumanyan (1954,
1975), Inglot et al. (1990)). Les résultats du théoréme 3.3.3 sont, a notre connaissance,
ceux dont les hypothéses sont les plus générales (cf. Gyorfi et Vajda (2002)).

Remarques

Les théorémes 3.3.1 de Pearson, et 3.3.2 du rapport de vraisemblance, sont des cas par-
ticuliers du théoréme 3.3.3]

e Pour la statistique de Pearson, nous avions remarqué (voir (3.33) et (3.34)) que

k
XIQ, = nz lqﬁxz <y/n> , avec Py2(t) = (t — )2, t>0.

En utilisant la notation (3.50), avec p = (1/k,...,1/k) et ¢ = p = Y1/n,...,Yr/n),
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nous avons donc
Xp = nDy,(hp). (3.57)

Nous vérifions bien que ¢,2 € ®*, et nous avons ¢”(1) = 2. Ainsi pour k fixé, nous
pouvons appliquer le cas a) du théoréme [3.3.3. Nous obtenons alors le méme résultat
qu’avec le théoréme|3.3.1 de Pearson.

e Nous avions aussi constaté (cf. (3.36) et (3.37)) que
"1 /n 1
=26 (y) L avee G =s(@—1), t20.  (359)
j_

Ainsi, Xz% peut s’écrire de la fagon suivante,

X]23 = 2nD¢1 (ﬁvp)a

avec p = (1/k,...,1/k) et ¢ = p = (Y1/n,...,Yr/n) dans (3.50). Nous vérifions que
¢1 € ®* et nous avons, ¢f(t) = 1. Pour k fixé, nous pouvons appliquer le cas a) du
théoréme et obtenons le méme résultat que le théoréme[3.3.1 de Pearson.

e Concernant la statistique du rapport de vraisemblance, I’équation (3.43) implique que

k
1
2In(Ag) =2n ; 7 %o (%) : avec ¢o(t) =tin(t), t>0. (3.59)
La fonction ¢y admet un prolongement par continuité en 0 en posant ¢g(0) = 0. On
vérifie que ¢y € ®*. Nous avons ¢((1) = 1. En posant p = (1/k,...,1/k) et ¢ =
(Y1/n,...,Y;/n) dans (3.50), on a

2In(Ag) = 2nDg,(p,p).

Pour k fixé, le cas a) du théoréme [3.3.3 s’applique et permet d’avoir le méme résultat
que le théoreme du rapport de vraisemblance.

e Plus généralement nous pouvons considérer la famille de fonctions définies par,

os(t) = 5(514_1)15(#; —1), pour t>0 et 6>—1 (3.60)
La fonction ¢ (voir (3.58)) est obtenue pour § = 1 dans (3.60). La fonction ¢g (voir
(3.59)), correspond au choix de 6 = 0 (obtenue pour ¢ > 0, en prolongeant ¢s(t) par
continuité lorsque § — 0). La famille de divergences définies a I’aide de (3.60) est appelée
« power divergence ». Nous renvoyons a I’étude de Read et Cressie (1988). Les statistiques
alors considérées peuvent s’écrire sous la forme de (3.18) c’est-a-dire,
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k
Stsrn (V1o Y2) =D fipn(Y5), (3.61)
J=1
avec,

JokaW) = 2105 (y> (3.62)

<ngjk>6—1> y>0. (3.63)

Dans notre contexte, le nombre n de variables aléatoires X1, ..., X, dans X = [0, 1)¢
(voir le §3.2) est fixé & I'avance. Le nombre k = s? de cellules de la partition du pavé
unité (voir (3.8) du §3.2)) n’est pas imposé, et peut étre choisi.

3.3.5 Discussion

Pour appliquer le cas a) du théoréme [3.3.3, nous devrons donc choisir k£ tel que
s << n. Un tel choix semble donc délicat, car ceci implique de disposer d’un nombre
trés important de points lorsque la dimension d de X est relativement élevée.

L’exploitation du cas b) du théoréme[3.3.3]implique que k,, (ici, k dépend de n) doit
étre choisi de fagon a ce que ktf < (avec § > 1). Bien qu'ici k;,, n puisse étre une
fonction strictement croissante de n avec k, — oo, la condition (3.54) implique d’avoir
un nombre important de points.

Que ce soit le cas a) ou le cas b) du théoréme(3.3.3, celui-ci s’applique dans le « dense
case », c’est-a-dire lorsque le nombre moyen de variables Xi,...,X,, par cellule de la
partition de X considérée, noté A (voir (3.15)), est strictement supérieur a 1. Pour revenir
au « sparse case » (A < 1), nous allons faire ’hypothése suivante sur k, et n, nous
supposerons que

n

pour n — 00, k, — 00, = Aoo, (3.64)
n

ol Ao € R est une constante strictement positive. Nous verrons qu’il existe des résultats
analogues a ceux du cas b) du théoréme (3.3.3).

3.4 « Sparse case »

Dans ce qui suit, nous ferons usage des notations du §3.2 et considérerons des statis-
tiques de la forme de (3.18) dont nous rappelons I'expression ci-dessous :

kn
S Vi V) = { i, (V)}, (3.65)
j=1
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ou ici, k,, est un entier qui dépend de n, et (Y7,...,Y%,) un vecteur aléatoire de loi mul-
tinomiale de paramétres (n,1/kp,...,1/ky,) (voir (3.12) et (3.14)).

Nous supposerons que

n
n — oo, kp — o0, P Aoo- (3.66)
n
Le contexte est donc différent du puisqu’ici, il est possible de considérer le cas
ou 0 < A\, <1 (avec A\, = n/ky). Ceci signifie qu’'en « moyenne », le nombre de points

par cellule pourra étre inférieur a 1 (voir I’équation (3.15) du §3.2).

Un premier paragraphe présentera des résultats issus du théoréme de Holst (1972).
Celui-ci permettra, entre autres, I’étude du nombre de cellules vides (i.e. ne contenant
aucun point) de la partition de l'espace X (cf. §3.2). Nous parlons alors de « sparse test »
(cf. L’Ecuyer et al. (2002)).

Nous proposerons ensuite une stratégie dont ’objectif est de déterminer le plus grand
pavé (constitué de cellules) ne contenant aucun point.

3.4.1 Application du théoréme de Holst (1972)

Nous désignons par Zi, ..., Zy, des variables aléatoires indépendantes et de méme
loi de Poisson de paramétre A : = n/ky,, et nous posons,

kn
St (Zv Z) = > Afaka (Z9)}, (3.67)
=1
Jkn
nsy = Y Blfak.(Z))]. (3.68)
o =1
]kn
0% = ) Var(fu,(Z))
o ~
1| & i
_E ZCOV[Zjafn,kzn(Zj)] . (3.69)
j=1

Nous avons le théoréme suivant.

Théoréme 3.4.1 (Holst (1972))
Nous reprenons les notations ci-dessus, et faisons les hypothéses suivantes.

i) Soit g, une fonction mesurable de [0,00) x [0,1] dans R telle que

frgea (Y5) = gn(Yj,5/kn).
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1) Soient ¢; € R,co € R des constantes, ne dépendant pas de n, telles que,
lgn(u,v)| < e exp(ezy).

iii) Soient n et ky, qui vérifient .

iv) Soit U?g; qui vérifie

n,kn

2 2

Isy I3y
0 < lim inf —* < lim sup —* < .
n
Alors, on a
Sfupen Y15o s Vi) —psy
L = N(0,1). (3.70)
asi

e On vérifie que le théoréme 3.4.1 s’applique, entre autres, pour les « power divergence
statistics », définies en (3.50)) et (3.60). Nous notons, pour 6 > 0 (voir aussi (3.59), (3.58)
pour, 6 =0, 6 = 1),

kn
St Vi Vi) = > fon n(V), (3.71)
j=1

avec,

0
Fital®) = 5 ((n/yk) —1) powr y=0.  (372)

e Les hypothéses faites sur n et kj, en (3.66) permettent aussi d’introduire, pour y > 0, les
fonctions indicatrices de la forme fi ,(y) = Uly—m avec m > 0, et fi. n(y) = Uy>m avec
m > 1. En effet, celles-ci ne pouvaient pas étre considérées lorsque k est fixé et n — oo.
Dans ce cas, par la loi forte des grands mombres, les statistiques ka’n(Yl,...,Yk) =
Z?:l Uy,=m, et Sp,  (Y1,...,Yk) = Z§=1 Iy, >m, convergent presque stirement, vers 0,
et vers k, respectivement. Nous posons,

k"L
Seqm) g, n(Y15- -5 Y) = Z Uy, =m, pour m > 0,
j=1

kn
S“P(m)kn,n(yl’ LY = Z Iy, >m, pour m > 1. (3.73)
=1
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Seq(m)(Y1, ..., Yy) s’interpréte comme le nombre de cellules Aj, j = 1,..., ky, conte-
nant exactement m variables parmi les X1, ..., X, (cf. (3.8), (3.12)).

S

up(m) 1 n(Yl’ ...,Y}) s'interpréte comme le nombre de cellules A;, j = 1,...,ky,,
contenant au moins m variables parmi les X1, ..., X, (cf. (3.8), ).

e Pour effectuer le test défini par et (3.17) nous utiliserons les statistiques définies
par,

St (Visoo Vi) — pis:

f5n kn
Tf&",kn = o2 , (374)
Sf§n,kn
Seq(m) (Yl, e ,Yk ) HS*
n eq(m)
Teqmppm = 3 = (3.75)
eq(m)
Sup(m)()/iavyk ) — tse
_ " up(m)
Tup(myiy.n = = = (3.76)
up(m)
U fhgx 2 o2 ) 2 T
ou Msfén,kn’ US?M,%’ 1S} S:q(m)’ 1S}y asup(m), sont obtenues a 'aide de (3.68]),

3.69), avec, respectivement, fs, .~ (cf. (3.72)), fin(y) = Vy=m, ¥y 2 0, et fi(y) = Vy>m,
y=>0.

Apreés calcul, nous obtenons,

)\m
HSiymy = o7 XP(=A), (3.77)
1 2
2 = * — * — — * —
08 iy kopss <1 us@q(m)) " [k 1,y (T2 /\)] ) (3.78)
m—1 )\g
Py = 17 rar FeXp( A), (3.79)
2 = * —_— *
Ty My (1 MSup(m))
2
[ (A Z —K exp(—A) — A “Sup(m)] , (3.80)
et, pour § = 1,
s = kn, (3.81)

fln,kn

Tin Jkn

ok, _— ()\ 4+ i) - % k(X + 1)) (3.82)
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Par application du théoréme nous avons :

Tfén,kn - (07 1)7 (383)

Teqmy,.. — NI(0,1), (3.84)
L

Tuptmypn — N(0,1). (3.85)

e Pour un niveau de puissance a, on déduit de (3.83), (3.84) et (3.85) les régions critiques
suivantes du probléme de test défini par (3.16) et )

Ra’Tfén,kn - {’Tfén,kn > Ca/Q} ) (386)
Ra ’TEQ(m)kn,n = { Teq(m)kn,n‘ > ca/2} ) (387)
Ra 7Tup(m)kn,n = { Tup(m)kn,n’ Z Ca/2}7 (388)

Ol ¢4/ correspond au a/2 quantile supérieur d’une loi normale centrée réduite, N (0, 1).

Lorsque m = 0, effectuer un test a I'aide de Ty (), ,, (voir (3.75)) revient a considérer
le nombre de cellules « vides » (i.e. ne contenant aucune variable Xi,..., X, cf. (3.12)
du §3.2). La région critique (3.87) nous fournira alors les nombres minimum et maximum,
(associés a un niveau de puissance a) de ces cellules vides. Ceci nous permettra de vérifier
que les variables X1,..., X,, « recouvrent » I’hypercube unité de fagon satisfaisante (au
sens de la puissance du test a que nous aurons spécifiée) sans qu’il existe un nombre trop
faible ou trop important de « trous » (i.e. de cellules vides).

Lorsque Teq(0) € Ra Tea(oy, (le test est rejeté), nous présentons ci-dessous une
stratégie dont 'objectif est de déterminer le plus grand pavé constitué de cellules ne
contenant aucun point.

kn,n

3.4.2 Recherche du « plus grand pavé vide »

Conformément a la notation du §3.2, nous notons, pour un ensemble d’entiers
jla"'ajda tels que 1 S]l Ssa'”71 deésa

Ajy g =[G = Dhygih) x [(j2 — Db, j2h) x ... x [(Ja — D)h, jah) (3.89)

une cellule de la partition de I’hypercube unité X. Nous nous intéressons & présent &
« 'emplacement » des cellules et notons,

i1 :Z]JXieAjl g J1s---50d € {1,...,8}. (390)

.....

Pour un entier b > 1, pour des indices, s —b+1>j; > 1, et s—b+ 1> jg > 1 nous
posons,
Jib—1  jatb—1
Wijioga Y1050, Ys s) = Z Z Yoo, rar (3.91)

r1=j1 rq=Jd
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Les Wy, . j,, définis ci-dessus, correspondent au nombre de variables X7, ..., X;, conte-
nues dans des pavés « carrés », union de b X ... x b cellules, dont les cotés sont paralléles
aux axes de ’hypercube unité et ont tous la méme longueur b/s. Nous considérerons

Sminb (Yl,...,la s 7Y;,...,S)
= min {ijl,...7jd (Yl.,...,].v R 7§/5,...,S) 3 } (392)

1<j1<s—-b+1,

1<jg<s—b+1

le pavé contenant le moins de variables. Nous ferons varier la taille des pavés a ’aide de

diffréntes valeurs by, ..., by, et retiendrons le plus grand pavé ne contenant aucun point,
Wbo (Yl,...,h s 7}/8,...,s> = max {Smmb (YI,...,17 s 71/8,...78) :
be{b1,....be}

Sminb (Yl,...,b ey }/S,A..,s) = 0} . (393>

Un tel pavé est illustré Figure (3.2 (en vert). Cette technique nous permettra de localiser

les parties « vides » de ’hypercube unité (i.e. ne contenant pas de variables Xj,..., X,,).
o
8
° T T T T T T
00 02 04 06 08 10
e)

Fi1G. 3.2 — Représentation du plus grand pavé vide pour un ensemble de n = 150 points
dans X = [0,1)? avec une partition en k = 25 x 25 cellules.

De fagon analogue, nous considérerons dans le paragraphe suivant des pavés « carrés »
constitués de cellules. L’objectif sera de déterminer si ces pavés contiennent un nombre
important de points en comparaison avec des variables aléatoires indépendantes et de loi
uniforme dans X.
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3.5 « Scan Statistics »

Nous considérons ’ensemble des notations du §3.2 et étudierons ci-dessous le cas o

X =1[0,1)% (d = 2).

Comme précédemment, nous testerons I’'Hypothese HO,,;; d’indépendance et d'uni-
formité des X1, ..., X, dans X. L’objectif poursuivi ici est de vérifier qu’il n’existe pas
de parties de ’hypercube unité X contenant un nombre « trop important » (dans un sens
précisé plus loin) de variables Xj,..., X,,. Nous proposons d’utiliser des résultats issus
de la théorie des « scan statistics ». Ces statistiques sont utilisées dans de nombreux
domaines (santé publique, étude de séquences d’ADN, télécommunications, etc.), voir
Glaz et al. (2001), et aussi, Deheuvels et al. (1988). Elles consistent a effectuer un « ba-
layage » (« scaning ») du temps ou de l'espace a la recherche de groupes d’événements.
Dans le contexte présenté au §3.2, nous prendrons en compte des groupes de variables
Xi,..., X, compris dans des pavés constitués de cellules A, j,, 1 < j1 <5, 1< 73 < s.

Pour 1 < 51 < 5,1 < j5 < s, nous désignons le nombre de variables Xq,..., X,
contenues dans un pavé « carré » constitués de b x b cellules par

J1+b—1j2+b—-1

ij17j2 <Y1717 Tt 7}/515) = Z Z 1/v7"1,7”2- (394)

ri=j1 T2=j2

Nous renvoyons a (3.90) pour la définition de Y;, ,,. Nous introduisons, pour un entier
b>1,

Mb (Y1,17 s 75/8,8) = L<s Iil?}5b+1 {ijhjg (Yi,17 s 7}/875)} . (395)
1<i<e—bit

Cette statistique s’interpréte comme le nombre maximum de variables X, ..., X, conte-
nues dans des pavés « carrés » (union de b x b cellules).

Lorsque les variables Y}, j, (voir (3.12) et (3.90)), sont indépendantes et identique-
ment distribuées, il est possible de déterminer la loi de M;, (Y11, ..., Ys ) (voir Glaz et al.
(2001)). Cependant, dans le contexte décrit au §3.2| les Y}, j, ne vérifient pas cette hy-
pothése (leur somme vaut n).

3.5.1 Approximation par une loi de Poisson conditionnelle
Faisons ’hypothése asymptotique (3.66)), c¢’est-a-dire, supposons que

n — oo, kp — 00, L, Aoo- (3.96)

kn

En considérant A\, = n/k, défini comme en (3.15), I’équation (3.13) caractérisant la
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loi des Yj, j,, 1 < j1 <5, 1< ja <s, (cf. (3.12), (3.90)) se ré-écrit,

n! A\ A\
s =) = o () (%)

ni n—ni |
— Ant 1_ An S L — (3.97)
ny! n n"(n —np)!

Pour n; un entier fixé, pour n et k, qui vérifient (3.96), I’équation (3.97) implique que

ny
P(le,h = nl) - nT; ) exp(—)\oo).

(3.98)

Par conséquent, pour 1 < j; < s, 1 < js < s, la loi asymptotique (au sens de (3.96)) de
Y, j» est une loi de Poisson de paramétre A.

De la méme fagon, pour n; et no des entiers fixés, remarquons que 1’équation (3.20
se ré'écrit7 pour (jmajm) 7é (jrsvjm)?

By v n! A\ 1 20, \ T
( Jrisdrg — T Xgrg gr, = n?) m!ng!(n —nq — n2)' ; a n

(2
n1! no! n

20,0\ T n!
12 . (3.99
% < n > nMtn2(n — ng 4+ ng)! (3.99)

Nous obtenons, pour n et k, qui vérifient (3.96),

ni )\n2

—2 exp(—Aoo) == exp(—Ax). (3.100)

P(Yj,, jr, = n13Yj,y g, =M2) — -~ ]

Les équations (3.98) et (3.100) impliquent l'indépendance asymptotique (au sens de
) de Y et Y

1 7jT2 T3 7j’7‘4 ‘

De la méme fagon il est possible de montrer I'indépendance asymptotique des Y}, j,,
1 <41 <s,1<jy <s, lorsque n et k, vérifient (3.66).

Nous avons donc la proposition suivante.
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Proposition 3.5.1
Soit n — oo et ky, — 00, tels que

— = e, (3.101)

0l Ao € R est une constante strictement positive, les variables aléatoires Yj, j,,
1 <71 <s,1< g5 <s définies par (3.12) sont asymptotiquement indépendantes et
tdentiquement distribuées de lot de Potisson de parameétre Aso.

Rappelons que nous nous plagons dans le contexte ol le nombre n de variables

X1,...,X, dans X = [0,1)? sera limité et le nombre de cellules k = s2, que 'on spécifiera,
pourra étre important (cf. a) b) ¢) du §3.2). Par conséquent, pour 1 < j; < s1 < jy <s,
les variables Y}, j,, correspondant aux nombres de variables X, ..., X, par cellule 4;, .,

prendront des valeurs faibles (par rapport a n). Ainsi, pour de faibles valeurs nj et no
(n1 << n et ng << n)dans (3.97), et (3.99), les approximations données par les limites
dans (3.98), et (3.100) seront justifiées.

Cependant, considérer les variables Y}, ;,, 1 < j1 <5, 1 < jo < s, comme indépen-
dantes reviendrait & ne pas prendre en compte le fait que leur somme vaut n (cf. le §3.2).
Remarquons de plus que le théoréme[3.4.1 montre qu’il n’est pas possible d’appliquer le
théoréme central limite (qui s’applique lorsqu’il y a indépendance).

Pour considérer les variables Yj, j,, 1 < j1 <5, 1 < j2 < s, comme indépendantes et
prendre en compte le fait que leur somme est égale & n, nous considérerons les variables
conditionnelles,

Yii jo Z Z Yiijo=mn]. (3.102)

J1=1j2=1

Les Yj, j,, 1 < j1 < s, 1 < jo < s étant considérées comme des variables aléatoires
indépendantes de loi de Poisson de paramétre A = n/k, la loi jointe des variables condi-
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tionnelles définies en (3.102) s’écrit & l'aide de la formule de Bayes,

s s
P Y1,1:n1,~--,Y:9,s:nk Z Zy}l,jzzn

ji=1ja=1
o . S S L
]P)<}/1,1 - nl?"'71/575 =Nk, Ejlzl Z]Q:l Y71).72 - n)
S S —
P <Zj1:1 Z]g:l Yiig = ”)

exp(—k\) A" n!
nyl...ng! exp(—kN) (kA"

n! 1\"
= — (=] . 1

Les variables conditionnelles (3.102) suivent donc une loi multinomiale de paramétres

(n, (1/k, ..., 1/k)).

Ainsi, que I'on choisisse de considérer les variables représentant le nombre d’éléments
contenus dans une cellule A4; ;,, 1 < j1 < 5,1 < jo < s, comme des variables aléa-
toires dépendantes de loi binomiale (cf. (3.13), (3.14)), ou comme des variables aléatoires
conditionnelles (cf. (3.102)), la loi jointe de ’ensemble de ces variables est la méme (loi
multinomiale de paramétres (n, (1/k,...,1/k))).

Dans ce qui suit, nous ferons I’hypothése que pour 1 < j; < 5,1 < jo < s, les
variables Y;, j, sont indépendantes et équidistribuées de loi de Poisson de parameétre
A = n/k. A Paide de la notation (3.95), pour un entier b > 1, nous introduisons la
variable conditionnelle,

S S
d
Mécon : Yi1,...,Yss) = My (Y, .., Yes) Z Z Yijo=mn |- (3.104)
Ji=1j2=1
Ainsi définie, Mh(cond) correspond & la « conditional two-dimensional discrete scan statis-

tic » (voir Glaz et al. (2001)). 11 est alors possible d’effectuer différentes approximations
de la loi de cette statistique conditionnelle.

3.5.2 Lois des « conditional two-dimensional discrete scan statistic »

Nous présentons ci-dessous des approximations de la loi de Méwnd) Yi1,...,Yss)
(cf. (3.104)). Pour une démonstration détaillée des expressions que nous fournirons, nous
renvoyons a Glaz et al. (2001), Chen et Glaz (2002).

Nous utilisons la nomenclature suivante.
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Pour un entier b > 1, pour un indice 1 < j; < s — b+ 1, nous notons

s—b+1
Ej(m) = § () Wojro Y115 Yas) <m?] 3, (3.105)

(ott Wy, j, est définie en (3.91)). Nous appelons « colonne » du carré unité, une bande
verticale de largeur b/s constituée de b x (sb) cellules (voir Figure(3.3). L’événement Ej,,
1 < j1 <s—m+1, consiste a considérer que les cardinalités des pavés carrés de b x b
cellules constituant une « colonne » (dont 'abscisse inférieure gauche est en (j; —1)/s)

sont toutes strictement inférieures a m2.

(I T I
HNMEEEEEEEEEEEEEE RN

e

F1G. 3.3 — Pavé (en vert) constitué de 2 x 2 cellules contenu dans une « colonne d’abscisse
inférieure gauche 0 » pour une partition de [0,1)% en k = 25 x 25 cellules.

Nous notons I’événement,
S S
B = Y Y Yip=n]|. (3.106)
J1=1j2=1
Les approximations de la loi de lecond) feront intervenir les quantités P(E;(m)|B),
P(E1(m) N Ey(m)|B), P(E1(m) N Es(m)|B) et P(E1(m) N Ex(m) N E3(m)|B). Pour cal-

culer ces quantités, nous procéderons de la maniére suivante.

Soit (N1, ..., Ns,s) un vecteur de loi multinomiale de paramétres (n, (1/s%,...,1/s?)).
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On déduit de (3.94) et (3.103) (ot k : = s2), que, pour 1 < j; < s—b+1,1 < jo < 5—b+1,

c s+b—1 s+b—1
(Wojp <m®[B) = | D Y Njyjp<m—1]. (3.107)
Ji=t  ja2=t

Ainsi, pour t = 1,2,3, on a

P{ﬂ E,(m) yB}

t s—b+1 [s+b—1s+b—1

PAOYMNO DY D Nyp<m—1]3, (3.108)

r=1 jo=1 J1=t jJo=t

s—b+1 [s+b—1s+b—1

P{Ei(m)n E3(m) | B} = P () ()| D) D Nyp<m—1| 7. (3109

r=1,3 ja=1 Ji=t  je=t

Pour estimer les quantités ci-dessus, nous ferons des simulations de vecteurs aléatoires
N1,17 ey Nb—i—?,s de loi

P(Nii=n11,...,Nptos = Npy2,s)

- <n1,1 . ..nbf;s (n— n*)) C)n (1 - W)nn . (3.110)

ou n* = Z;’jﬁl 2;2:1 nj, j,- Nous organiserons ces vecteurs sous forme de matrices de
taille (b + 2) x s. Pour l'estimation de P(E;(m)|B) nous considérerons les b premiéres
lignes des ces matrices. Nous calculerons la proportion de ces matrices (de taille b x s)
telles que, les sommes des éléments de toutes les sous-matrices carrées b x b que l'on
peut définir sont strictement inférieures a m.Les estimations de P(E;(m) N Ea(m)|B),

P(E1(m) N Es(m)|B) et P(E1(m) N E2(m) N E3|B) sont analogues.
e Une approximation de la loi de lecond) (cf. (3.104)) est donnée par

P (Mécond) (Yin,... Ye) > m)

o 1 P(E(m) 0 Ey(m) 0 By(m)|B)* " (3.111)
P (E1(m) N Ex(m)|B)* "2

Nous renvoyons a Chen et Glaz (2002) pour la démonstration de cette approximation.

e En utilisant des lois de Poisson, il est possible d’obtenir

P <Mb(cond)(Y1,1,-~~7Ys,s) > m)
~ 1— exp(—B(m)), (3.112)
avec,

plm) = (s =b+1)(1 = P(Er(m)|B)).
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e Par composition de lois de Poisson, nous avons (voir Ross (1993, 1994) et Glaz et al.
(2001)),

P (lecond) Yi1,...,Y) > m)

~ 1 —exp(—pi(m) — B2(m) — B3(m)), (3.113)
avec,
Bi(m) = % 2t (s—b— Dma], i=1,23,
ot
Bi(m) — % 2+ (s—b—1)m] =123,
t,
1 = P(Ei(m)|B) —P(E1(m) N Ez(m)|B),

T2 = 1— 2P(E1(T7‘L)|B) +]P’(E1(m) N Eg(m)’B),
T 1 = P(El(m) N Eg(m)|B) — ]P’(El(m) N Eg(m) N E3(m)|B),

a2 = 2[P(Ei(m)B)—P(Ei(m)N Ey(m)|B) —P(E1(m)N E3(m)|B)
+ P(E1(m) N E2(m) N E3(m)|B)],

mTo3 = 1— 3P(E1(m)B) + 2]P(E1(m) N EQ(WL)’B) + P(El(m) N Eg(m)‘B)
—P(E1(m) N Ex(m) N Es(m)|B).

e A l'aide d’inégalités a la Bonferroni, on montre que (voir Glaz et al. (2001))
P (M (V.o Vo) Z2m) < 1 (s—b— 1) P(Ey(m)|B)
—(s = b)P(E1(m) N E2(m)|B), (3.114)
et

P (M (Vo Vo) Zm) € 14 (s — b= 1) B(Ey(m) N Ba(m)|B)
—(s —b— 1)P(E1(m) N Ex(m)|B). (3.115)

Le Tableau [3.2 présente le calcul des expressions (3.111), (3.112), (3.113), (3.114),
pour différentes valeurs de n, k, b, et m (voir aussi Glaz). La colonne Simu présente des
estimations obtenues par simulation dans le contexte du §3.2. On fait ngim, simulations
de n variables aléatoires dans le carré unité. Pour chaque simulation, on considére le
nombre maximal de points contenus dans un pavé de b x b cellules. La colonne Simu
donc représente la proportion de ce nombre tel que celui-ci est supérieur & m. Ce tableau
montre que, dans le contexte du §3.2 la considération de Mbc""d (Yi1,...,Y, ) présentée
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s b n om (3I11) (3.112) (3.113) (3.114) Simu

25 5 150 12 0.8952 0.945
13 0.6784 0.722
14 0.4006 0.415
15 0.1895 0.21
16 0.0794 0.085
17 0.0278 0.038
18 0.0100 0.014
19 0.0027 0.006
25 5 300 20 0.9193 0.946
21 0.7766 0.819
22 0.5761 0.59
23 0.3747 0.369
24 0.2137 0.201
25 0.1097 0.106
26 0.0521 0.052
27 0.0252 0.02

TAB. 3.2 — Approximations de IP’(Mb(cond) Yi1,...,Yss) >m)

ci-dessus fournit des résultats corrects.

Pour effectuer le test de répartition uniforme des variables Xi,..., X, dans [0,1)?,
nous chercherons ny,,, 4., le nombre maximum de variables contenues dans un pavé consi-
tué de b x b cellules. Nous rejetterons le test si

P (Mb(cond) (}/1,17 .. 7YS,S) Z nbmaa)) S a, (3116)

oll a est la puissance du test.

3.5.3 Cas continu

Il est aussi possible d’utiliser les « scan-statistics » dans le cas continu (i.e. sans
effectuer de partition de I'espace X en cellules). Pour des valeurs, 0 < u; < 1 et 0 < ug <
1 fixées, on désigne par Wy, 4, (ur,u2;Y11,...,Ys ) le nombre de variables Xi,..., X,,
contenues dans un rectangle [ty, ¢y + uy) X [ta,ta +ug) C [0,1)%, o1 0 < t; < 1 — uy,
0 <ty <1 — uo, et on considére la statistique,

Mul,ug (}/i,lv LRI 7)/:978) == ma)l( {Wt1,t2 (Ul, u2; Yl,la .. 7}/575)} . (3117>
1

0<t1 <1—wuy
0<ty <1-—

e D’aprés Naus (1965), des minorations et des majorations de la loi de probabilité de
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cette variable convergent, pour de faibles valeurs de u; et ug vers,
n
P(My,y (Yid,...,Yes) >m) = m? (S) ()™ + o ([wrwa] 1) . (3.118)

e Lorsque u; > 0, ug > 0, et € > 0, sont tels que m = Nujuz(l + €) est un entier, pour
de grandes valeurs de n, on a (voir Loader (1991)),

m2uiuz (1 — up)(1 — ug)e?
P(MULUZ (Yl,lw-wys,s) > m) ~ (1 —u1UQ)3(1+€)

nug(l — uy)e nui(l — ug)e
1 — ujus (14 e)(1 — ugug)?
(1 + 6)(1 — U1UQ)

B(m> n, U1UQ)

2

B(m,n,ujug),

€
(3.119)
avec
B(m,n,ujug) = <n) (uru2)™(1 — ugug)™™ ™. (3.120)
m

e Nous considérons & présent I’hypercube unité X = [0,1]¢. De facon analogue au cas
d = 2, nous présentons la loi de My, . ., (Y1 . 1,...,Ys ), le nombre maximal de
variables X1, ..., X, € X contenues dans des hyperrectangles de coté uq, . .., uq paralléles
aux axes. Nous notons w = uj X ... X ug, le volume de ces hyperrectangles. Tu (1997)

(voir aussi Glaz et al. (2001)) a obtenu 'approximation suivante,

P (Mu1,...7ud (}/1,..,,1’ ) Ys,...,s) > m)
nw 2d-1 r

~ 1—-— B . 3.121
(1-odts) S Bmaw) (3.121)
Pour effectuer le test de répartition uniforme des variables X7, ..., X, dans [0,1)?,

nous chercherons 7y, ... uy 4.0 1€ NOMbre maximum de variables contenues dans un pavé
de la forme [r1,r1 +u1) X ... X [tg,tqg +vg) C X. Nous rejetterons le test si

P(Mul,mud (Yl,...,l, cee 7YS7~--,S) 2 Nuy,..., <a, (3.122)

Ud maac) —

oll a est la puissance du test.

En pratique, il est cependant délicat d’effectuer des tests a 'aide de My, . v, (Y1, 1,

.., Y, ). Pour n fixé, la précision des formules présentées ci-dessus concernent les pro-

babilités P (M, .. u, (Y1, 1,...,Ys . s) > m) faibles (< 0.1 le plus souvent). La puissance
du test a sera alors trés faible, et un test sera systématiquement rejeté.
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3.6 Utilisation

Nous nous plagons dans le contexte décrit au §3.2] o1,

a) la dimension d de X = [0,1)? est fixée et est relativement élevée,
b) le nombre n de variables aléatoires X1,..., X, dans X est fixé a 'avance et limité,

¢) nous pouvons choisir le nombre k de cellules comme une puissance d du nombre s de

segments sur chaque axe de I’hypercube unité, k = s%.

Pour Y1, 1,...,Y; . s définies en (3.12), nous utiliserons les statistiques,

Sp 1= Sflnk(Yl o Vos)s
Seatm) © = Seatm) (Vi 518
Supm) = Supgm) (V... o).
pend (cond)( 1, ...,Ys,...,s)~

Nous renvoyons aux équations (3.72), (3.73), et (3.104) pour leurs définitions.

Comme précisé dans le §3.4 (« Sparse case »), ces statistiques permettent de tester
I’hypothése d’indépendance et de répartition uniforme de variables Xi,..., X, € X =
[0, l)d. Cependant, elles s’interprétent de fagon différente et permettent d’étudier plu-
sieurs caractéristiques de X7y, ..., X,,. Ci-dessous, nous précisons leurs interprétations, et
présentons quelques applications des tests présentés au §3.4 et [3.5]

e Utilisation de Sy,

Effectuer un test a 'aide de la statistique Sy, revient a effectuer un test d’adéquation
(ou ajustement) de loi de probabilité. Nous testons en fait ’hypothése p = (1/k,...,1/k)
ot p est la loi de probabilité des 1.4,(X;), j = 1,...,k (voir le §3.2). La statistique Sy,
s’'interpréte comme une « distance » entre la loi de probabilité p=1/k,...,1/k) et la
loi de probabilité empirique p = (Y1 /k, ..., Yy /k) (cf. les §3.2 et §3.4).

Nous choisirons s, tel que le nombre de cellules k soit supérieur a n (i.e. k = st > n).
Nous augmenterons ensuite s afin d’effectuer plusieurs tests. Ce test peut parfois étre
rejeté pour certaines valeurs de s et accepté pour d’autres. Par exemple, pour la suite
de variables X1, ..., X150 représentée Figure 3.4 (150 points dans X = [0,1)?), pour un
niveau de puissance a = 0.1, le test a été rejeté pour k = 132, 142 et accepté pour k = 152
(}). Pour comprendre ce phénoméne, on effectuera, par exemple, différents tests a I'aide

1i] est rejeté aussi pour s = 162,172, 182,202 et accepté pour s = 192
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de Seq(m)s Ou Syp(m)- Précisons que pour s = 15, le calcul de la région d’acceptation
de niveau a = 0.1 (complémentaire de la région critique, cf. le §3.1), obtenu a l'aide de
(3.81), (3.82) et (3.83), aboutit a R(Sy,) = [191,259]. Nous observons une valeur de la
statistique Sy, = 249 € [191,259].

+(2)

0.0
L

FIG. 3.4 — Ensemble de 150 points dans X = [0,1)?

e Utilisation de Sey(m) €t Sup(m)

La premiere de ces statistiques, Sq(,), s'interpréte comme le nombre de cellules conte-
nant exactement m points. Lorsqu’un test effectué¢ a ’aide de Sy, est rejeté, on pourra
utiliser cette statistique afin de caractériser une des propriétés singuliéres de la suite de
variables X7, ..., X, étudiée. Par exemple lorsque m = 0, Sey(m) représente le nombre
de cellules vides (ne contenant aucune variable Xi,...,X,,), et peut donc s’interpréter
comme le nombre de « trous » dans la partition de X. Le rejet d’un test faisant usage
de Seq(m) indique que le nombre de cellules vides est soit insuffisant, soit trop important
(par comparaison au nombre obtenu lorsque X7, ..., X, est une suite de v.a. i.i.d. de loi
uniforme).

Pour m > 0, la statistique Syp(,,,) correspond au nombre de cellules contenant au
moins m points. Ainsi, nous pourrons évaluer si cette quantité est soit trop faible, soit
trop élevée, en comparaison avec une suite de v.a i.i.d. uniformes.

En pratique, k = s% doit étre relativement élevé, de facon & ce que puisse étre étudiée
la répartition des variables X7, ..., X,, dans de nombreuses sous-parties (cellules) de X.
Comme nous avons choisi k supérieur a n, le nombre m intervenant dans Seq(,m) €t Sup(m)
devra étre faible. En effet, pour m grand, les probabilités P(Seq(m) = m), P(Sypm) = m),
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m | Seq(m) | R (Seqim)) | Sup(m) | R (Supm))
0 | 122 [109,122]

1| 65| [66,58] 103 | [103,116]
2| 31| [20,32] 38 | [28,37)

3 51 B9 7 [4.10]

1 2 0,7 2 [0,2)

TaB. 3.3 — Valeurs et régions d’acceptation de Seq(m) et Sypm) pour Xi,..., Xi50 (cf.
Figure[3.5) (k = 152)

convergent vers 0.

Reprenons I’exemple de I'ensemble de 150 variables dans X = [0, 1)? illustré par la
Figure [3.4] Nous fixons k = 152 et essayons de comprendre pourquoi le test effectué
avec Sy a été accepté. Le Tableau [3.3| reproduit les différentes valeurs observées pour
m = 0,1,2,3,4 des statistiques Scy(m) et Sup(m), ainsi que leurs régions d’acceptation,
RS (Seq(m)), RS (Sup(m)) (complémentaires des régions critiques voir le §3.1), pour un
niveau de puissance a = 0.1.

Les valeurs en rouge correspondent aux statistiques qui permettent de rejeter le test.
Par comparaison & une suite de variables Uy, ..., Us9 uniformes et indépendantes dans
X = [0,1)2, on déduit de Seq(1) = 65 < 66 que la proportion de cellules contenant exac-
tement une variable est trop faible, et de S,,2) = 38 > 37 que le nombre de cellules
contenant au moins deux variables est trop important. Nous remarquons aussi que les
statistiques, Seq(O) = 122, et Sup(l) = 103, atteignent, respectivement, les bornes, supé-
rieure, et inférieure, de leurs régions d’acceptation.

e Utilisation de Mb(cond)

Par sa définition, Mb(cond) permet de « localiser » un groupe de variables Xq,..., X,
contenant un nombre « important » de variables X1, ..., X,. La recherche de ce groupe
se fait ici parmi tous les pavés carrés composés de b x b cellules (contrairement aux
statistiques Sey(;,,) o0t 'on considere simplement chaque cellule). La statistique Méwnd)
correspond au nombre maximum de variables contenues dans I'un de ces pavés.

Pour 'exemple des variables X1, ..., X150 représentées Figure[3.4, pour s = 25, b = 5,
nous obtenons que Mécond) = 18. Le pavé constitué de 5 x 5 cellules correspondant est
représenté a la Figure[3.5 par le carré rouge. Le carré vert représente le plus grand pavé
carré ne contenant aucun point, pour s = 25, la longueur d’un coté de ce carré est 6 x 1/s.
D’aprés le tableau 3.2, nous avons,

P (M >18) ~ 01,
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. . . - d .
Ainsi, pour un niveau de puissance a = 0.1, la statistique Mb(am ) atteint sa borne
supérieure de région d’acceptation.

0.8
L

e

Fi1G. 3.5 — Localisation d’un groupe de points & l'aide de la « scan statistic » parmi
I’ensemble illustré (k =252, b=05)

e [’exemple présenté illustre qu’il est parfois délicat d’interpréter certains résultats de
tests. Cependant, les statistiques que nous avons présentées permettent de caractériser
quelques propriétés d'un ensemble de variables X7, ..., X, dans X = |0, l)d. Par com-
paraison avec une suite de variables aléatoires indépendantes et uniformes, les résultats
concernant I'ensemble illustré Figurel3.4 montrent que la proportion générale de variables
dans les cellules semble convenable (test accepté avec Sy, ), mais que 'ensemble présente
certaines pathologies,

— nombre de cellules vides élevé ,
Seq0y = 122,
— nombre de cellules contenant un unique point « anormalement » faible,
Seq(1) = 65 < 66,
— nombre de cellules contenant plus de deux variables « anormalement » élevé,
Sup(2) = 38 > 37,
— existence d’un groupe de variables de cardinalité importante,

P (M >18) ~ 0.1,
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Par conséquent, nous rejetterons I’hypothése d’indépendance et d’uniformité de la
suite Xl, cee ,X150.

3.7 Discussion

Dans la pratique, il est nécessaire d’effectuer ’ensemble des tests présentés, et de faire
varier le nombre de cellules de fagon & avoir un apercu global de la répartition de la suite
de variables étudiée dans ’hypercube unité?. On pourra alors avoir recours au contrdle
du risque multiple (voir, par exemple, Lallich et al. (2004)).

Pour I’étude d’un ensemble de points dans I'’hypercube unité, ces statistiques nous
permettront, entre autres, de localiser certaines parties « vides » de ’espace (i.e. ne conte-
nant aucune variables) voir (3.93) du §3.5. Si une spécification de points est possible en
vue d’améliorer la répartition uniforme de I’ensemble, celle-ci pourra se faire dans cette
partie. La «localisation » de groupes de points redondants se fera a ’aide des « scan sta-
tistics ». Si une suppression de points est envisageable en vue d’améliorer la répartition
uniforme de l’ensemble, nous choisirons un (ou des) point(s) de ce groupe. L’ensemble
obtenu devra faire I'objet de nouveaux tests de fagon & accepter ’hypothése de réparti-
tion uniforme.

En dimension élevée la partition du pavé unité devient délicate, le nombre de cellules
devient vite important puisqu’il s’agit d’une fonction exponentielle de la dimension. Les
résultats concernant les lois des « scan statistics » discrétes en dimension supérieure &
deux font actuellement 1'objet de recherche (cf Glaz et al. (2001)).

2Ces tests ont été programmés avec le logiciel R et sont réalisables en dimension assez grande (8 ou
9) avec un nombre de cellules inférieur & 3° (temps de calcul de ordre d’une heure pour le cas de la
dimension 9 avec 3° cellules).






150 Chapitre 8. Critéres probabilistes




Conclusion

L’objectif des travaux de recherche présentés dans ce mémoire est 'analyse d’une base
de données en vue d’effectuer la calibration d’un code de calcul. Nous nous sommes placé
dans le contexte général ou la fonction de code, c’est-a-dire le modéle représentant un
phénoméne expérimental, est analytiquement inconnue. Nous avons aussi supposé que
la méthode de calibration, i.e. d’estimation des paramétres, n’a pas été choisie. Ainsi,
I’objectif de notre étude consistait & vérifier que les données en entrée de la fonction de
code occupent au mieux leur domaine de variation (ce qui correspond a la notion de
« space filling »). Pour atteindre cet objectif, nous avons distingué deux approches qui
se différencient par la modélisation des données,

e [’approche déterministe ol les données sont considérées comme des variables
« déterministes » |

e [’approche probabiliste ol les données sont considérées comme des variables aléa-
toires.

e Concernant ’approche déterministe, nous avons introduit de nombreux critéres
utilisés parfois dans des contextes différents (comme I'intégration numeérique). Dans ce
cadre, ces critéres sont quantitatifs.

Les premiers critéres que nous avons considérés sont définis a I’aide de distances, dis-
tances entre les points des données considérées, ou distances entre les points des données
et les points de 'espace dans lequel elles sont définies, comme la dispersion (cf. §1.2.2).
Ils permettent de caractériser la disposition des points dans ’espace, par exemple, la
régularité des espacements entre les données, la présence éventuelle de « trous », i.e. de
parties de I’espace ne contenant aucun point. Des « défauts » de la répartition uniforme
des données dans I'espace peuvent ainsi étre identifiés qui risquent d’entrainer une « mau-
vaise » calibration de paramétres par la suite (faible précision, sensibilité aux variations
des données prises en compte pour l'estimation des paramétres).

Nous avons ensuite étudié des critéres plus généraux qui permettent de comparer le
nombre de points contenus dans des pavés et le volume de ces pavés, comme les critéres de
discrépance (cf. §1.3). Nous avons fait le choix d’étudier la notion générale de discrépance
définie & partir d’un noyau auto-reproduisant d’un espace de Hilbert convenable (RKHS
pour « Reproducing Kernel Hilbert Space », cf. §2.2.2). S’agissant d’un critére général
de répartition uniforme de points dans ’espace, nous ’avons utilisé pour proposer des
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méthodes de sélection et de spécification d’un ensemble de points en vue d’améliorer sa
« qualité de répartition uniforme » (au sens des critéres introduits).

La considération de l’inégalité de Koksma-Hlwaka généralisée nous a permis de mon-
trer 'existence de liens entre la discrépance et une méthode d’estimation d’un para-
métre fonctionnel dite des fonctions orthogonales. Une discrépance faible d’un ensemble
de points permet d’obtenir une estimation robuste (MSE faible) et de bonne qualité (IMSE
faible). Parfois certaines méthodes de calibration impliquent une estimation d’un para-
métre fonctionnel. Ce pourra étre, par exemple, la fonction de code, ou une fonctionnelle
faisant intervenir une différence entre la fonction de code et les résultats du phénoméne
observé. Nous avons donc formellement établi que I'utilisation de la méthode des fonctions
orthogonales avec la méthodologie de sélection et de spécification des données présen-
tée au chapitre I permettra d’obtenir une estimation robuste et de bonne qualité. Plus
généralement, lorsqu’une méthode d’estimation fera intervenir des moyennes, approxi-
mations d’intégrale, 'inégalité de Koksma-Hlwaka généralisée montre que la diminution
de la discrépance d’un ensemble de points permettra de réduire I'erreur de ’estimation.
Cette propriété pourra aussi étre utilisée dans le contexte de I’apprentissage statistique
ot 'on considére une fonction de risque empirique, approximation d’une intégrale (ceci
fait notamment l'objet de recherches récentes, voir Cervellera et Muselli (2004), Marry
(2005)). Ceci justifie donc les méthodes de sélection et de spécification de points propo-
sées.

Lorsque la modélisation du phénoméne fera intervenir un processus aléatoire, cela
reviendra a considérer des espaces de Hilbert ou le noyau auto-reproduisant correspond
a la fonction de covariance du processus. Comme la discrépance est définie & partir d’'un
RKHS, il semble pertinent d’adapter la définition de la discrépance a la fonction de cova-
riance comme mentionnée par Hickernell (1999) et de poursuivre la recherche de relations
dans ce contexte.

e L’approche probabiliste nous a permis de prendre en compte le caractére aléatoire
des données disponibles. Les critéres de répartition uniforme des données correspondent
alors & des résultats de tests statistiques. On rejette ou on accepte '’hypothése d’indé-
pendance et de loi de probabilité uniforme des données (considérées alors comme des
variables aléatoires). Ici, les critéres correspondent a des régles de décision.

Précisons que la propriété d’indépendance des données n’étaient pas prise en compte
par I'approche déterministe. En effet, nous prenions en compte des critéres qui permet-
taient de vérifier la régularité des espacements entre les données. Or si les données sont
réguliérement réparties, celles-ci ne peuvent pas étre indépendantes.

Une partition de ’espace des données en pavés disjoints (appelées aussi cellules) ayant
été réalisée, les statistiques prises en compte pour ces tests permettent de comparer la
proportion des données contenues dans ces pavés avec celle d’'une suite de variables aléa-
toires indépendantes et de loi de probabilité uniforme.

Nous nous sommes particuliérement intéressé au cas ol le « nombre moyen » de points
par cellule est faible (« sparse case », cf. §3.4). En effet, en dimension relativement élevée,
le nombre de cellules intervenant dans la partition de l’espace devient trés important.
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En pratique, il est alors délicat de disposer d’un nombre suffisant de points pour qu’il
puisse y en avoir au moins un par cellule. Dans ce contexte, les lois de statistiques clas-
siques utilisées pour effectuer des tests sont donc modifiées. Par exemple, la statistique
de Pearson et la statistique du rapport de vraisemblance ont une loi gaussienne.

Nous avons aussi étudié les « statistiques par balayage de ’espace », ou « scan statis-
tics ». L’objectif de ces statistiques est de vérifier qu’il n’existe pas de groupe de points
de cardinalité trop importante parmi les données (par comparaison avec une suite de va-
riables aléatoires indépendantes et uniformes). A I’aide d’approximations (cf. §3.5.1), nous
nous sommes focalisé sur les scan statistics discrétes conditionnelles. Celles-ci semblent
particuliérement adaptées au contexte de notre étude. L’étude des lois de ces statistiques
en dimension élevée est récente et fait actuellement 'objet de recherches (voir Glaz et al.
(2001)).

En pratique, il est nécessaire d’appliquer plusieurs tests & ’'aide des différentes sta-
tistiques que nous avons introduites. Comme expliqué au Chapitre III, ces différentes
statistiques caractérisent certaines propriétés des données. Par exemple, elles permettent
d’affirmer qu’il existe de trop nombreuses sous-parties de ’espace sans point, ou qu’il
existe des points redondants, i.e. un groupe de points de cardinalité élevée (tout ceci,
en comparaison avec une suite de v.a i.i.d. de loi uniforme). Nous serons donc a méme
d’identifier certains défauts de la répartition uniforme des données, oul ici, I'uniformité
correspond & la réalisation de variables aléatoires indépendantes et de loi uniformes.

Nous proposons aussi de faire varier le nombre de cellules formant la partition de
I’espace prises en compte pour la définition de ces statistiques. Le développement de
techniques appropriées dans ce contexte fait actuellement l’objet de recherches (voir
Glaz et Zhang (2006)).

Bien que la formalisation des données par ’approche déterministe et par 'approche
probabiliste soit différente, certains critéres utilisés comportent des « analogies ». Parmi
les critéres déterministes, la discrépance peut s’interpréter comme une comparaison entre
le nombre de points contenus dans des pavés et le volume de ces pavés. Les statistiques
utilisées pour approche probabiliste permettent de vérifier que la proportion de points
contenus dans des pavés (formant une partition de I'espace des données) est « acceptable »
(en comparaison avec celle de variables aléatoires indépendantes de loi de probabilité uni-
forme). Dans les deux cas, nous étudions donc les mémes propriétés de la base de données
a savoir, la répartition des points dans des sous-parties (des pavés) de leur domaine de
variation. Le critére de discrépance tel que nous ’avons utilisé pour ’étude d’une base
de données peut notamment étre vu comme un critére probabiliste puisque nous considé-
rons une valeur seuil qui correspond & une espérance ou & un quantile lorsque les données
sont indépendantes et de loi de probabilité uniforme. La loi de la statistique alors définie
n’est pas connue de fagon explicite, et nous I'obtenons par simulation. Une perspective
de recherche consisterait en ’étude de sa loi exacte.

Le travail réalisé permet a la fois de faire une synthése des outils pouvant étre utiles
a I’analyse de la qualité d’une base de données au sens de sa répartition uniforme et de
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proposer des techniques de sélection ou de spécification de points en vue de 'améliorer.
Nous avons notamment justifié formellement ’emploi de ces techniques dans le cas de I'es-
timation d’un paramétre fonctionnel par la méthode des fonctions orthogonales. Dans le
contexte de la calibration, les outils proposés permettront d’identifier des défauts parmi
les données qui risquent d’entrainer une estimation peu robuste de paramétres. Notre
approche est heuristique puisqu’il n’est pas formellement établi que des données uni-
formément réparties permettront d’obtenir une estimation de paramétres convenables
quelle que soit la modélisation utilisée pour représenter le phénomeéne étudié. Dans ce
contexte, des perspectives de recherche consisteraient & prendre en compte les réponses
du phénomeéne et/ou du modeéle dans 'analyse des données, et & poursuivre 1'étude de
liens théoriques entre certaines méthodes d’estimation utilisées pour la calibration et les
critéres que nous avons introduits. Ceux-ci pourraient étre établis, par exemple, & l'aide
de l'inégalité de Koksma-Hlwaka généralisée.
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Annexe

Dans ce qui suit nous utiliserons le vocabulaire et les notations utilisés dans I’intro-
duction du mémoire.

Cette annexe concerne les méthodes de calibration. Il s’agit de détailler quelques mé-
thodes utilisées dans I'étape 3 de la méthodologie définie en introduction. Comme précisé
lors de la présentation de I’étape 3, nous distinguerons les cas ot il y a « Connaissance de
la fonction de code » et ceux ot il y a « Absence de connaissance de la fonction de code ».

Dans le premier cas, il s’agira d’un rappel succinct des méthodes bien connues de ré-
gression linéaire et non linéaire (voir Walter et Pronzato (1994), Antoniadis et al. (1992),
et aussi de Crécy et Bazin (2004) par exemple).

Dans le second cas, nous présenterons des techniques générales qui prennent en compte
une différence entre les expériences simulées (résultats de la fonction de code) et les ob-
servations, une technique mise au point dans le contexte d’application hyodrologique par
Beven et Binley (1992), la méthode GLUE (Global Likelihood Uncertainty Estimation),
une technique d’estimation bayésienne développée par Kennedy et O’'Hagan (2001a), et
des techniques communément utilisées dans des applications de la chimie, les méthodes
dites de calibration multivariée ou d’étalonnage multivarié (pour multivariate calibration,
voir Martens et Naes (1991) et Sundberg (1999) ainsi que leurs références).

4.1 « Connaissance » de la fonction de code

Ci-dessous, nous supposons que la « fonction de code », f, représentant le phénomeéne
expérimental, est connue analytiquement. Dans ce contexte, les méthodes utilisées pour
résoudre le probléme de calibration correspondent essentiellement aux techniques clas-
siques et bien connues de régression linéaire ou non linéaire.

Nous supposerons que la relation entre les résultats expérimentaux et la fonction de
code peut s’exprimer de la fagon suivante :

y(x) = f(z,0) +e(x), (4.1)

157
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o,
e y(x) € Y C R est la réponse expérimentale en un point « € X (cf. Introduction) ;

e f(z,0) est le résultat de la fonction de code (ou modéle) en un point z € x(n), et en
0 € © C RP, vecteur de paramétres de la calibration (cf. Introduction) ;

e £(x) est une variable aléatoire représentant ’erreur entre la réponse expérimentale et la
réponse du modéle au point x € X, liée par exemple & des erreurs de mesure. Ces erreurs
seront supposées de méme loi de probabilité aux différents points z € X.

De fagon & écrire la modélisation a ’aide de vecteurs, nous désignerons par,

e Y le vecteur des réponses expérimentales :
Vo= (y(z1),...,y(zn)) € V" CR™ (4.2)

e M(0), le vecteur correspondant aux réalisations du modéle aux points (n) = {z1,...,x,}
(z; € X, cf. Introduction) connus, et en 6 € ©, inconnu, paramétre a calibrer :

M@©) = (f(z1,0),..., f(2n,0)) (4.3)

e £, le vecteur aléatoire représentant les erreurs d’observations aux points de la BDDE
m(n) = {$17 s 71'71} :

e = (e(x1),...,e(xp)), (4.4)
celui-ci sera supposé centré, et nous notons

V =0’R sa matrice de covariance, ou :
R = (K(xi’xj))lgign,lgjgn pour z;, z; € x(n).
Ainsi, la modélisation (4.1)) s’écrit sous forme vectorielle comme suit :

Y = M(6) +e. (4.5)

Nous estimerons # par moindres carrés généralisés. C’est-a-dire, nous chercherons a
minimiser le critére

Ly(0) = Y =M@)[y— (4.6)

< .y >V—17 et ||.Hv—1, (47)
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désignent respectivement, le produit scalaire, et la norme, induits par 'inverse de la ma-
trice V' (supposée symétrique définie positive).

e Lorsque f est linéaire en 6, lorsque la matrice M est de rang plein, I'estimateur des
moindres carrés est donné par :

by = (M'R™'M) ™ M'R7Y. (4.8)

Cet estimateur est le meilleur estimateur linéaire sans biais de # (BLUE). Lorsque les
erreurs e(z;), ¢ = 1,...,n sont gaussiennes, il s’agit aussi de l'estimateur du maximum
de vraisemblance, il est alors efficace, on a donc,

Ove ~ N (6.0% (MR ). (4.9)

e Lorsque f est non linéaire en 6, lorsque 'opérateur M vérifie un certain nombre de pro-
priétés (voir Antoniadis et al. (1992)), 'estimateur 07¢ des moindres carrés est solution
des équations dites normales :

(Y — M(Ore)) R M(Oyc) = 0, (4.10)

oit M(6) est la matrice jacobienne de M en 6. L’estimateur Ay;¢ est alors estimé par
optimisation. Lorsque les erreurs sont gaussiennes, il s’agit aussi du maximum de vrai-
semblance et il est, sous certaines hypothéses, asymptotiquement efficace.

Nous ne détaillerons pas davantage cette partie et nous renvoyons a Pronzato (1986),
Antoniadis et al. (1992) et de Crécy et Bazin (2004). Il existe d’autres méthodes d’es-
timation pouvant étre employées pour I'estimation du parameétre. Celles-ci consistent &
considérer d’autres critéres (critére des moindres valeurs absolues, critére maximal, etc.).
Le critére des moindres carrés a ’avantage d’étre relativement simple a calculer. De plus,
comme il s’agit aussi de l'estimateur du maximum de vraisemblance dans le cas d’er-
reurs gaussiennes, il dispose d’'un ensemble de propriétés particuliérement intéressantes
(notamment la propriété d’efficacité). Il est aussi possible d’effectuer une approche bayé-
sienne en faisant une hypothése a priori sur le paramétre 6.

Dans le contexte décrit ci-dessus, il existe de nombreux critéres permettant d’analyser
la qualité de données (n) = {z1,...,x,}. Ce sont les critéres utilisés pour la construction
de plans d’expériences. Leur objectif est de réduire une région de confiance de ’estimateur
de 6 (réduction du volume de cette région, par exemple). Nous renvoyons entre autres a

Chernoff (1953), Kiefer (1959, 1961, 1974), Fedorov (1972, 1980), Wynn (1970), Pronzato
(1986) et Droesbeke et al. (1997).

4.2 Absence de « Connaissance » de la fonction de code

Nous supposons que la fonction de code, f, est inconnue analytiquement. Les mé-
thodes exposées précédemment ne peuvent donc pas étre utilisées, puisque celles-ci font
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directement intervenir la fonction f (au travers de l'utilisation de lopérateur M, cf.
(4.8) et (4.10)). Dans ce contexte, nous supposerons disponibles des résultats de la
fonction de code en différents x; € X,i = 1,...n et différents vecteurs de paramétres
#; € ©,5 =1,...,k. Nous les noterons :

z(n,0;) = {z1(0;) = f(21,0;),...,2(0;) = f(zn,0;)},

ounf; €0O,j=1,...,k, est connu.

Les premiéres méthodes que nous décrirons consistent simplement a considérer des
différences entre les résultats de la fonction de code et les résultats expérimentaux.

Nous présenterons ensuite la méthode GLUE, qui peut étre vue comme une méthode
de pondération des vecteurs de paramétres (k) = {61,...,0;} utilisés pour les réponses
du code z(n,01),...,2z(n,0).

Nous décrirons une approche bayésienne, développée par Kennedy et O’Hagan (2001a),
qui est essentiellement adaptée pour réaliser une prédiction de la réponse expérimentale.

Enfin, nous présenterons succinctement les méthodes dites de « calibration multiva-
riée » utilisées essentiellement dans le domaine de la chimie.
4.2.1 Différence entre réponses du code et réponses expérimentales

Une premiére quantité (ou fonction objectif) que 'on peut considérer pour cette
approche est,

Errp(0;) = |[Y —Z(;)|,
n 1/2
2
P= (Z lyi — 2i(0;)] ) ,
i=1
o, ||.||2 représente la norme euclidienne dans R, Y = (y1,...,y,) € R™, le vecteur des
réponses expérimentales, et Z(6;) = (21(0;), ..., 2n(0;))’, le vecteur des réponses du code

enf; € O,je{l,....k}.

Une premiére fagon d’estimer le vecteur de paramétres # € © consiste & poser sim-
plement,

0* = i Erry(6;). 4.1
arg, Jmim rra(6;) (4.1)

D’autres fonctions objectifs peuvent étre prises en compte pour I'estimation du vec-
teur de paramétres, par exemple,

Erry(0;) := > lyi—z(05)],
=1

Erre(0;) := ie?llaxn} lyi — 2i(65)] .
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Par cette approche, le vecteur solution appartient a I’ensemble 0(k) = {61,...,0;}. 1l
parait donc important que les paramétres de cet ensemble recouvrent au « mieux » leur
domaine de variation. Pour vérifier cette propriété, les différentes techniques présentées
aux Chapitres I et II pourront donc étre utilisées. Remarquons aussi que I'utilisation de

cette méthode implique un nombre élevé d’éléments de 'ensemble 0(k) = {61, ..., 0k}, et,
par conséquent, de disposer de nombreuses réponses de code z(0;) = (21(6;), - .., zn(0;))',
j€{1,...,k}. Lorsque ceci n’est pas possible, on a alors recours a la construction d’un

métamodeéle (ou surface de réponse) de la fonction critére considérée pour l'estimation
du vecteur de paramétres. Nous renvoyons, par exemple, aux études de Pérot (2005),
Hervouet et al. (2006) et Jones et al. (1998). Ces métamodéles permettent de fournir
une estimation rapide de la fonction objectif pour tout 8 € ©. A T'aide de ces surfaces
de réponses, il est alors possible d’utiliser des techniques d’optimisation multiobjectifs
(par exemple a 'aide d’algorithmes génétiques, voir Collette et Siarry (2002)) de fagon
a prendre en compte différentes fonctions objectifs. On obtient alors un ensemble de
solutions du vecteur de parameétres (appelé front de Pareto dans le cadre de I'utilisation
d’algorithmes génétiques).

4.2.2 Meéthode GLUE

La méthode de calibration appelée méthode GLUE pour Generalized Likelihood Un-
certainty Estimation a été introduite par Beven et Binley (1992). Précisons que la « vrai-
semblance généralisée » (generalized likelihood) considérée par cette méthode ne corres-
pond pas & la définition de la vraisemblance usuelle en statistique.

Conformément aux notations introduites précédemment et en Introduction, nous re-
présentons un phénomeéne de la fagon suivante, pour x; € ©(n) = {z1,...,2,}, 0 € O,

yi = zi(0)+e;.

Formellement, le principe de la méthode GLUE consiste & considérer le vecteur des
paramétres comme un vecteur aléatoire défini sur ©, puis & approcher la loi de ce vecteur
aléatoire par une loi discréte sur 6(k) = {61, ...,60}. Cette méthode peut étre résumée
de la fagon suivante.

1. On considére que les k vecteurs #; ont une loi de probabilité a priori 7y(#) sur ©.
2. On désigne par « vraisemblance généralisée » la quantité L(6;|y) = 7(Y|0;)m0(6;),
ou7(Y'|0;) désigne la densité de probabilité conditionnelle du vecteur d’observations
Y = (y1,...,yn), et mo(;) la densité de probabilité a priori en 6;, j € {1,...,k}.

3. On calcule, pour j € {1,...,k},

e )
P S LYy 42
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Cette méthode consiste simplement & effectuer des pondérations pq,...,pr des dif-
férents vecteurs de parameétres de 6y,...,0;. Les couples (6;,p;) sont ensuite utilisés
pour déterminer différentes caractéristiques du paramétre & calibrer . Une estimation
du paramétre par cette méthode peut étre donnée par :

bcgrve =

k
Z L(6,]Y). (4.3)

?r' \

En général, de simples fonctions appelées, par abus de langage, « vraisemblances
généralisées », sont utilisées pour le calcul des p;, j € {1,...,k}. Un exemple d’'une telle
fonction consiste a prendre en compte l'erreur quadratique entre réponses observées et
réponses du modéle en 0; € §(k) = {61,...,0;},

1 k
L(O;]Y) : = <a> avee o} = *Z% y(e:))*.
J

A Taide de cette fonction, pour j € {1,...,k}, le poids p; de §;, sera d’autant plus
important que le vecteur des réponses du code, {z1(6;),..., 2,(0;)}, sera proche du vec-
teur des réponses expérimentales {y1, ..., y,}. Nous renvoyons a Beven et Binley (1992),
Ratto et al. (2001) et Romanowicz (2006) pour d’autres exemples de fonctions dites de
« vraisemblances généralisées », ainsi qu’a leurs références.

Comme pour la méthode présentée au §(4.2.1), la technique GLUE implique de dispo-
ser de nombreuses réponses de code z(0;) = (21(8;), ..., 2.(0;)), j € {1,...,k}. Lorsque
ceci n’est pas possible, des métamodeéles (dépendant de 0 €0) permettant de considérer
une substitution de la fonction de code pourront étre utilisées de fagon & considérer un
nombre plus important de parameétres 6; € ©, j = 1,..., k. Les différentes pondérations
p1, ..., Pk alors obtenues (telles que p; +. ..+ pr = 1) pourront alors étre assimilées a des
« probabilités », fournissant ainsi une loi de probabilité (a posteriori) discréte du vecteur
de parameétre de calibration 6 en {61, ...,0;}. Il apparait donc nécessaire de vérifier que
les paramétres (k) = {01, ...,0;} occupent « au mieux » leur domaine de variation ©.
Les outils présentés aux Chapitres I et III pourront étre employés a cet effet.

4.2.3 Approche de Kennedy et O’Hagan (2001)

L’objectif de cette méthode est de fournir une prédiction de la réponse expérimen-
tale. La modélisation utilisée par Kennedy et O’Hagan (2001a) est la suivante, pour
1=1,...,n

i = Gté& (4.4)
pzi(0) +6; + i, (4.5)
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e y;, © = 1,...,n, représentent des résultats expérimentaux issus de ’observation d’un
phénomeéne en {zy,...,z,} € X™ (cf. Introduction).
e (i =1,...,n, représentent les « vrais » résultats du phénomeéne en {z1,...,z,} € X",

c’est-a-dire, les résultats du phénomeéne sans sources d’incertitude liées & la nature des
observations.

e 2zi(0), i =1,...,n, représentent les réponses d’une fonction de code en {z1,...,z,} €
X", et en 6 € O (cf. Introduction). Par la suite, on utilisera un métamodéle de la fonction
de code qui interpolera les {21(6;),...,2,(65)}, j = 1,..., k, déja réalisés (conformément
au contexte décrit au début du §4.2). Le métamodeéle sera construit par « krigeage » (voir
Cressie (1993), Vazquez (2005), Marrel et al. (2006) par exemple). La réponse du code
sera donc assimilée & la réalisation d’un processus gaussien stationnaire (isotropique).
Nous supposerons que la moyenne de ce processus sera de la forme

7774(:6,9) = hl(l’,e)lﬁl, (46)

ot hi(x,0) est un vecteur de fonctions en x € X et § € O, et 1 est un vecteur de
paramétres. La fonction de variance-covariance du processus représentant la réponse de
la fonction de code pourra s’écrire de la fagon suivante,

ci(u,t)(v,8) = oFexp [—(u—v) Qu(u—v) — (t—5) Qo(t — 5)], (4.7)

ou ), et g sont des matrices diagonales. On notera le vecteur de paramétres composé
de o1 et des éléments diagonaux de ces deux matrices 1,

Y1 = (o1, diag(Qy)’, diag(Qp)") . (4.8)

e p, est un paramétre issu d’une régression.

e 0; correspond & une erreur de « représentativité » de la fonction de code. Nous fe-
rons ’hypothése que les §; sont des variables aléatoires corrélées et indépendantes de la
fonction de code. Nous les considérerons comme des réalisations d’un processus gaussien
stationnaire (isotropique). La moyenne de ce processus sera de la forme,

mg(ac) = hg(l‘)/ﬁg, (4.9)

ot hg(x) est un vecteur de fonctions en x € X, et 51 est un vecteur de paramétres. La
fonction de variance-covariance du processus s’écrira comme suit,

ca(u,v) = o5exp [—(u—v) Qs(u—0)], (4.10)

ou {15 est une matrice diagonale. On notera le vecteur des paramétres composé de o9 et
des éléments diagonaux de cette matrice s,

by = (00, diag(2s)). (4.11)
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e g, i =1,...,n, correspondent aux erreurs (incertitudes) liées a la nature des observa-
tions du phénomeéne. Nous les considérerons comme des variables aléatoires indépendantes
de loi gaussienne, de moyenne nulle, et de variance A2,

g N(O,)\). (4.12)

Nous renvoyons & O’Hagan (1998) et Kennedy et O’'Hagan (2001a) pour justifier ['uti-
lisation de la modélisation décrite par les équations (4.4) et (4.5)).

Pour fournir une prédiction de la réponse expérimentale y, nous devrons dans un

premier temps estimer les hyperparamétres, p (cf. (4.5)), 81 (cf. (4.6)), B2 (cf. (4.9)), ¥1
(cf. (4.8)), o (cf. )s A (cf. (4.12)). Ci-dessous, nous posons,

¢ = (p,\Y). (4.15)

Les estimations des hyperparamétres (§ et ¢ se feront par approche bayésienne. Nous
commencerons donc par faire des hypothéses a priori concernant les paramétres intro-
duits ci-dessus.

Hypothéses a priori
Nous supposons disposer de lois a priori des vecteurs de parameétres ¢ (voir (4.15))

et 0. Nous supposons que le vecteur de paramétres § = (01, 35) (voir (4.6), (4.9), (4.13))
suit une loi uniforme,

p(B1,B2) o 1. (4.16)

Nous faisons 'hypothése d’indépendance de 6 et ¢. Par conséquent, d’aprés (4.16), nous
obtenons que,

p(0,8,6) = p@)p(9). (4.17)

Estimation des hyperparamétres
L’estimation des hyperparamétres introduits ci-dessus se fait en deux étapes.
Etape 1

Tout d’abord, nous estimons le vecteur de paramétres ¢; intervenant dans la fonction
de covariance c¢i(.,.)(.,.) (cf. (4.8)) a I'aide des réponses du code z(6;), i = 1,...,n,
Jj=1,...,k. A cette étape, les 0;, j = 1,..., k, intervenant dans la fonction de code sont
connus. Par conséquent, la variable 6 ne correspond pas & un parameétre & estimer. Nous
notons donc simplement Z, le vecteur aléatoire représentant 1’ensemble des réponses du
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code déja réalisées. A 'aide d’une loi a priori sur le vecteur de parameétres w1, notée
p(1)1), nous estimons le parameétre 11, en considérant la quantité,

p(B1,¥1|Z) o p(Br,v1)p(Z|61,91), (4.18)

avec (31 défini en (4.6), et, ou par hypothése, la loi de Z|51, 1, désignée par p(Z|51,¢1),
est une loi normale de moyenne hq(z,0) (cf. (4.6)), et de fonction de variance-covariance
c1(ey)(es.), (cf. (4.7)). Pour estimer 1, on maximise la quantité (4.18) que l'on aura
intégrée par rapport a i,

Ji = argma / p(B1,v1|2)dpr. (4.19)

E‘tape 2

Nous estimons a présent les paramétres p, 82,19 (voir (4.5), (4.9), (4.11), respec-
tivement), a I'aide de I’ensemble des observations y; et des réponses du code z;(6;),
i=1,...,n,j=1,...,k Nous notons d = (Z',Y”’), le vecteur constitué de 1’ensemble
des réponses du code, et de I’ensemble des réponses expérimentales. Nous cherchons a
estimer les paramétres p, 82,12 par maximisation de la quantité

p(629p7A71/}2’d7 wl) (420)

Ici, selon la modélisation décrite par la formule (4.5), la réponse du code considérée est
obtenue en un parameétre 6 (parameétre a calibrer). Nous désignons donc ici par Z(6) le
vecteur des réponses du code obtenues en #. Comme la réponse du code est indépen-
dante des paramétres p, 02,19, nous pouvons considérer, de fagon équivalente a (4.20),
la quantité,

(B2, ps A abald,apr) o p(B2, p, A ab2) p(YZ(8), B2, @), (4.21)

ou ¢ = (p, A\, ¥}, v)). Cependant, il n’est pas possible d’obtenir la loi de Y|Z(0), 32, ¢
de fagon analytique. Néanmoins, par hypothése, nous savons que le vecteur aléatoire
Y|Z(0), B2, ¢, 0 est normalement distribué. De plus, apreés calcul (voir Kennedy et O’Hagan
(2001b)), il est possible d’obtenir la moyenne et la variance de ce vecteur aléatoire.
Nous faisons ensuite I"approximation que p(Y'|Z(0), 2, ¢, 8) correspond aussi a la loi de

Y|Z(0), B2, ¢. Nous approchons donc la quantité (4.20) par

(B2, p, A, ald,p1) o< p(B2, p, X, V2)p(Y|Z(0), B2, 0,0). (4.22)

Nous estimons alors les paramétres 02, p, A, ¥2 par maximisation de (4.22).

Nous désignerons par qg le vecteur correspondant & ’estimation des hyperparamétres
¢ (cf. (4.15)),(4.20), (4.19)).
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Une fois obtenue qB, nous cherchons & approcher la loi a posteriori du vecteur des
paramétres de calibration 6. Par hypothése a priori, le paramétre 6 est indépendant de
¢ (voir (4.17)), et [ suit une loi uniforme (voir (4.16)), ce qui implique,

p(0,8,6) = p0)p(9). (4.23)

Nous approchons la loi a posteriori du vecteur de parameétres 6 en considérant que
p(0l¢ = 6,d) o p(8) p(d|f, d = ). (4.24)

Nous considérons ensuite le processus y(x)|6, ¢,d (ou d = (Z,Y)). Celui-ci est gaus-
sien par hypothése, et, aprés calculs, il est possible d’obtenir son espérance et sa fonc-
tion de variance-covariance (voir Kennedy et O’Hagan (2001b)). En combinant la loi de
y(x)|0, ¢, d et la loi a posteriori de 6 (cf. (4.24)), nous pouvons alors effectuer une pré-
diction d’une réponse expérimentale. Nous considérerons, par exemple, pour ¢ = qZ;,

E(y(x)|p.d) = /@ E [y(z) 6. 6. ] p(6]6, d)db. (4.25)

Rappelons que I'objectif de la méthode décrite ci-dessus est la prédiction de la réponse
expérimentale. Elle pourra donc étre appliquée, par exemple, dans le contexte ot 1’on
dispose d’un nombre restreint de résultats expérimentaux, ou lorsque le code utilisé pour
décrire le phénomeéne est difficilement réalisable (temps de calcul assez long) et qu'une
prédiction rapide de la réponse expérimentale est souhaitée.

L’expression de la loi a posteriori du parameétre 6 (cf. (4.24)) semble indiquer qu'’il
est possible d’obtenir une estimation de ce paramétre. Cependant, tel qu’il a été intro-
duit ici, ce paramétre intervient dans le métamodéle utilisé pour représenter la fonction
de code. L’estimation de 6 a l'aide de (4.24) (par maximisation de cette quantité, par
exemple) ne correspond donc pas a la calibration de la fonction de code, mais plutot,
a la « calibration du métamodéle » qui représente la fonction de code. L’utilisation de
cette technique d’estimation du parameétre 6 est donc délicate et & manier avec précaution.

Nous avons supposé ici que les réponses expérimentales et les réponses du code sont
obtenues pour les mémes données x; € X, i = 1,...,n. Ceci n’est en fait pas nécessaire.
Nous pouvons donc avoir en entrée de la réponse expérimentale une base de données
u(n) = {u1,...,un} € X", et en entrée de la fonction de code une base de données
v(m) = {v1,..., v} € X™ et un jeu de paramétres O(k) = {61,...,0;} € OF.

La principale difficulté pour la mise en oeuvre de cette méthode est, & 1’étape 2,
I'inversion d’une matrice carrée de taille (n + m) x (n + m), ot n est le nombre de
données u(n) = {u1,...,up} € X" en entrée des réponses expérimentales et m le
nombre de données v(m) = {vi,...,vn} € X™ en entrée de la fonction de code (voir
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Kennedy et O’Hagan (2001a)). Des données bien choisies pourront permettre de consi-
dérer plusieurs matrices de taille bien inférieure & inverser (voir Kennedy et O’Hagan
(2001b)). Une autre difficulté concerne I'intégration par rapport a 6 dans (4.25). Une
méthode envisageable consisterait alors & utiliser les méthodes de sélection et/ou de spé-
cification des paramétres introduites au Chapitre I de ce mémoire, de fagon a réduire au
mieux l'erreur de ’approximation d’une intégrale par sa moyenne. En effet, ces méthodes
ont pour objectif de réduire la discrépance qui intervient dans 'erreur de I'estimation
d’une intégration par sa moyenne du fait de I'inégalité de Koksma-Hlwaka (voir Chapitre

11).

4.2.4 Meéthodes de « calibration multivariée »

Ces méthodes sont essentiellement appliquées dans le domaine de la chimie. Elles
consistent & exprimer une relation entre un jeu de données d’entrées et de sorties. On dis-
tingue deux approches, 'approche indirecte, et I’approche directe (voir Sundberg (1999)).
Dans le contexte décrit en introduction ces deux approches peuvent étre vues de la fagon
suivante.

— Par 'approche indirecte,

on considérera les parameétres 6,7 = 1,..., k de la fonction de code comme des don-
nées d’entrées et les résultats {z(61),...,2(0;)} comme des sorties. Les techniques
utilisées alors consisteront essentiellement & effectuer des régressions linéaires mul-
tivariées.

— Par 'approche directe,
on considérera les résultats de la fonction de code {z(6:),...,2(0x)} comme des
données d’entrée, et les différents parameétres, 6,7 = 1,...,k, comme des données
de sortie. On utilisera les techniques de régression PLS pour « prédire » une valeur
d’un paramétre 6 € O.

Dans ce qui suit nous présentons succinctement ces deux approches. Certains principes
des techniques utilisées pour chacune de ces approches seront décrits de fagon simplifiée.

4.2.4.1 Approche indirecte

Les méthodes indirectes consistent a effectuer une régression de z(0) € R™ sur 0 €
© C RP, puis a en déduire une estimation de . Une méthode fréquemment employée est
la régression linéaire multiple. On souhaite alors obtenir une relation de la forme :

z(0) ~ o+ BO. (4.26)

Dans le contexte du paragraphe §4.2, le vecteur « et la matrice B sont des paramétres a es-
timer. Pour i = 1,...,n, on effectue des régressions des vecteurs (z(z;,61),.. ., z(z;,0%))
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sur 61, ...,0; pour trouver une relation du type,
Z(l’i, 91) 1 93
: ~ &l |+ | B (4.27)
2(x;, O0k) 1 0.
Les paramétres &; et 3; issus de la régression de (z(z;,601),...,2(x;,0;)) sur 01,...,0;

correspondront respectivement aux composantes du vecteur «, et aux lignes de la matrice
B dans (4.26]). Sous ’hypothése que la matrice B est de rang plein, on estime alors 6 par
moindres carrés a I'aide du vecteur des observations Y = (y1,...,y,),

s = (BB’) T B -a). (4.28)

On peut aussi utiliser I’estimation par moindres carrés généralisés en prenant en compte
une matrice 3 de variance-covariance du vecteur des observations Y,

) A1 A\ L Ayl A
ors = <B2 B) B LY - a). (4.29)

Pour obtenir une approximation de la variance de I'estimation de 6 par cette approche,
nous renvoyons entres autres a Sundberg (1996).

La technique de calibration décrite ci-dessus ne correspond pas exactement au contexte
décrit en Introduction. En effet, cette technique ne prend pas en compte, dans la modé-
lisation, la différence entre la nature des incertitudes liées aux réalisations de la fonction
de code et la nature des incertitudes liées aux observations du phénoméne. Certaines
approches indirectes de calibration en tiennent compte, nous renvoyons par exemple
a Brown (2002). L’objectif de ces méthodes est alors d’estimer un paramétre a l'aide
d’observations « précises » d’un phénoméne, et d’observations « moins précises » de ce
méme phénomeéne. Dans notre contexte (cf. Introduction), les observations « précises »
correspondraient aux observations du phénomeéne, i.e. aux expériences, et les observa-
tions « moins précises » aux expériences simulées, résultats d’une fonction de code. Les
techniques indirectes de calibration multivariée s’appliquent le plus souvent lorsque le
phénomene étudié est linéaire par rapport au paramétre a estimer, . Ces méthodes
pourront donc étre utilisées dans ce cadre.

4.2.4.2 Approche directe

Cette approche consiste & établir une relation entre les différentes sorties du code
{z(01),...,2(0,)} € R™ x R¥ et les paramétres {fy,...,0;} € OF, o © € RP, en effec-
tuant directement une régression de 6 sur z(#). On cherche donc & obtenir une relation
de la forme

0 =~ Zﬁiz(xi,é?), (4.30)
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ou les 3; sont des coefficients a estimer. Une fois obtenue cette relation, nous pourrons
considérer le vecteur des réponses expérimentales y1, . . ., ¥, (cf. Introduction), et estimer
le paramétre de calibration par :

n
i = S (431
i=1
De fagon a employer les notations usuelles en régression, nous posons & présent :
z2(x1,01) ... z(xp,6h)
X = : : , (4.32)
z2(x1,0) ... z(zp,0k)
01
Y := : . (4.33)
Ok
Nous désignerons par z; € R¥, j = 1,...,n, une colonne de la matrice X, et y; € RP,
7 =1,...,k, une ligne de la matrice Y.

Dans ce contexte, une méthode de régression fréquemment employée pour expliquer
Y a laide de X est la régression PLS. Celle-ci a été introduite par Wold et al. (1982)
Nous présentons ci-dessous briévement son principe dans le contexte ou la variable a
expliquer, y, est unidimensionnelle, y € R (il s’agit alors de la régression PLS1, voir
Tenenhaus (1998)). Le terme y;, j = 1,...,k est alors un réel, et Y un vecteur, Y € R*.
Nous supposerons que les données sont centrées et réduites.

On considére une composante t1,
L1 = wir + .. Wy, (4.34)
ou
L Cov(xs,y)
- VI Covaiy)

On réalise ensuite une régression simple de y sur ty.

W1,

)

(4.35)

y = ati+y, (4.36)

ol ¢ est le coefficient de la régression, et y; le vecteur des résidus. Si le pouvoir explicatif
de cette régression est trop faible on construit une nouvelle composante to. On considére
les résidus x1; des régressions des x; sur ¢;. La composante ¢y est construite de la facon
suivante,

to 1= woix11t+ ...+ WopT1n, (437)
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ol
C )
wo,; = nov(xl’“yl) . (4.38)
\/Ei:1 COV(JCM, Y1)

On réalise ensuite une régression de y sur t; et to,

Yy = c1t1 + cato + Y9, (4.39)

ol c¢o est le coefficient de la régression, et ys le vecteur des résidus. On itére le procédé
jusqu’a obtenir une régression ayant un pouvoir explicatif satisfaisant, celui-ci étant dé-
terminé par validation croisée.

Cette méthode se généralise aussi lorsqu’il existe des données manquantes ou lorsque
Y est une matrice (régression PLS2). Il est aussi parfois nécessaire d’effectuer un traite-
ment des données X. Nous renvoyons a Tenenhaus (1998) pour une présentation détaillée
des algorithmes de régression PLS1, PLS2, et de leurs propriétés mathématiques.

Cette méthode est extrémement employée dans le domaine de la spectroscopie, no-
tamment la spectroscopie proche infrarouge. Les spectres considérés représentent 1’absor-
bance (mesure de la capacité d’un milieu & absorber la lumiére) en fonction de la longueur
d’onde. Les x1,..., 2, correspondent & des valeurs des spectres en différentes longueurs
d’ondes. La variable a expliquer est le plus souvent une concentration. Le contexte est
donc quelque peu différent de celui fixé en Introduction. Précisons que d’autres méthodes
bien différentes peuvent encore étre employées, analyse de Fourier, réseaux de neurones.
Nous renvoyons a Martens et Naes (1991) ou Naes et al. (2002).

Les méthodes présentées dans ce dernier paragraphe ne concernent pas exactement le
contexte décrit en Introduction puisque le plus souvent, elles ne font pas intervenir une
fonction de code. Elles semblent cependant étre appropriées pour fournir une estimation
du paramétre recherché. Précisons que, pour ces approches, il existe des méthodes de
sélection de données appropriées & la technique de calibration que ’on utilisera. Nous
renvoyons entre autres & Martens et Martens (2001), ainsi qu’a leurs propres références.

4.3 Discussion

Dans la pratique, la technique de calibration que ’on utilisera dépendra essentielle-
ment des propriétés de la fonction de code.

e Lorsqu’il y a connaissance de la fonction de code, I'estimation du paramétre se fera
a l'aide des méthodes classiques présentées au §4.1. L’estimation ne pose absolu-
ment aucune difficulté dans le cas ou la fonction de code est linéaire. Elle peut
parfois étre délicate lorsque celle-ci est non linéaire. Il s’agit alors essentiellement
d’un probléme d’optimisation.
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e Lorsqu’il y a absence de connaissance de la fonction de code, nous pouvons distin-
guer les cas suivants.

— Si la fonction de code est « simple » & utiliser (temps de calcul négligeable) et
qu’il est possible de réaliser un grand nombre d’appels, alors, les techniques des

§4.2.1] et §4.2.2/ sont les plus appropriées.

— Si la fonction de code est complexe (cotteuse en temps de calcul) et que 1'on dis-
pose d’un nombre relativement important de résultats déja réalisés, il est alors
préférable de construire un métamodéle de la fonction de code et d’utiliser les
techniques des §4.2.1 et §4.2.2] en substituant la fonction de code par la surface
de réponse.

— Si la fonction de code est complexe et que le nombre de résultats de cette fonc-
tion est restreint, on utilisera la technique présentée au et, lorsque le code
est linéaire par rapport au paramétre de calibration, on pourra aussi utiliser les
techniques d’approche indirecte de calibration multivariée du §4.2.4.1.

Les différentes méthodes présentées illustrent la diversité des domaines d’application
de la calibration. L’analyse des données présentée dans ce mémoire pourra étre utile
pour chacune d’entre elles, et plus particuliérement pour les méthodes présentées aux
§4.2.1] §4.2.2/ et §4.2.3 En effet, pour ces méthodes, il est semble important que les
parameétres 61, ..., 0, en lesquels sont disponibles les résultats du code, z(61),. .., z2(0k),
« explorent » (remplissent) « au mieux » I'espace O. Ceci permettra de prendre en compte
un jeu de parameétres « représentatifs » de 'espace © pour la calibration.
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Résumé :

Cette recherche s’insére dans le contexte général de la calibration, en vue d’applications
industrielles. Son objectif est d’évaluer la qualité d’une base de données, représentant la
maniére dont celle-ci occupe, au mieux des objectifs recherchés, son domaine de variation.
Le travail réalisé ici fournit une synthése des outils mathématiques et algorithmiques
permettant de réaliser une telle opération. Nous proposons en outre des techniques de
sélection ou d’importation de nouvelles observations permettant d’améliorer la qualité
globale des bases de données. Les méthodes élaborées permettent entre autres d’identifier
des défauts dans la structure des données. Leurs applications sont illustrées dans le cadre
de I'évaluation de paramétres fonctionnels, dans un contexte d’estimation par fonctions
orthogonales.

Mots clés : calibration, « space filling design », discrépance, estimation fonctionnelle,
test d’uniformité.

Abstract :

This thesis takes place in the general context of the calibration for industrial application.
It aims at evaluating the quality of a data base by checking that the data, with respect
to our objectives, "best fill" the space. This work provides a synthesis of algorithmic and
mathematic tools to achieve such a purpose. Extraction and importation techniques to
improve the global quality of the data are proposed. These methods allow identifying
some defaults of the data structure. An illustration of its application is exposed in the
context of functional estimation with orthogonal functions.

Keywords : calibration, space filling design, discrepancy, functional estimation, uni-
formity test.
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