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ESTUDO DA SENSIRILIDADE DO PROBLEMA DE TRANSPORTE DE
RADIACAO EM MEIO ESPALHADOR

Rogerio Chaffin Nunes
Margo/2002

Orientador: Nilson Costa Roberty
- Programa: Engenharia Nuclear

Neste trabalho, o sistema de equag:(?cs diferenciais obtidos pela aproximagdo angular
da equacdo de transporte bidimensional pelo método de ordenadas discretas é resolvido
através da formulagio de elementos finitos com o objetivo de investigar a sensibilidade
do fluxo emergente de radiagdo com o fluxo incidente e as propriedades de absorgéo e
espathamento do meio. A formulagdo variacional para o sistema de equagdes
diferenciais de 2* ordem com condigdes de fronteira de Neumann generalizadas (3°
tipo) permite uma facil implementa¢do do método dos elementos finitos com malha
triangular ¢ espago de aproximacgdo de 1% ordem. A geometria escothida para as
simulagBes é um circulo com uma nfo-homogeneidade de forma circular em seu
interior. O mapeamento de Dirichlet-Neumann € estudado através de diversas

simulagBes envolvendo o fluxo incidente, o fluxo emergente e as propriedades do meio.
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In this work, the system of differential equations obtained by the angular approach of the
two-dimensional transport equation by the discrete ordinates method is solved through the
formulation of finite elements with the objective of investigating the sensitivity of the outgoing
flux of radiation with the incoming flux and the properties of absorption and scattering of the
medium. The variational formulation for the system of differential equations of 2™ order with
the generalized boundary conditions of Neumann (3™ type) allows an easy implementation of
the method of the finite elements with triangular mesh and approximation space of 1* order.
The geometry chosen for the simulations is a circle with a non homogeneous circular form in
its interior. The mapping of Dirichlet-Neumann is studied through various simulations

involving the incoming flux, the outgoing flux and the properties of the medium.
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CAPITULO 1

INTRODUCAO

A partir da equagfio de transporte de radiaciio € feito um pseudocodigo, cujo
objetivo é adequa-lo a uma geometria de forma circular através do método dos
elementos finitos com gera¢io automatica de malha triangular. A solugio do sistema de
equagdes diferenciais parciais é obtida por um programa que implementa
computacionalmente este pseudocddigo. As condi¢des de contorno prescritas para o
problema s3o as condi¢gdes de contorno generalizadas de Neumann. Desta forma,
pode-se, entdo, calcular os fluxos normais de radiag@o. Neste trabalho serdo analisados
dois casos, para posterior comparagdo dos resultados: no primeiro deles, o caso
referéncia, considera-se a geometria circular homogeénea, isto ¢, sem a perturbagdo. No
segundo caso ¢ introduzida uma perturbagéio circular no interior do circulo principal. A
influéncia desta perturbagfio nos valores de fluxo emergente do circulo principal é o

objeto de estudo desta tese.

Detalhes da descrigdo da geometria e das condigdes de contorno prescritas para o
problema: a fronteira do circulo principal ¢ dividida em oito partes iguais, sendo cada
eixo dessa divisdo a representagio de uma dire¢dio de incidéncia de radiacdo. A
ilustragdio dessa geometria sera feita mais adiante através de figuras. Para cada uma das
oito regides é prescrita a condi¢do de contorno. E escolhida apenas uma dessas regides

com o fluxo de entrada ndo-nulo, ou seja, somente uma dentre essas oito regiGes ¢



iluminada inicialmente e desta forma pode-se observar o comportamento do fluxo de

radiac@o ao longo de sua passagem pela geometria estudada.

O desenvolvimento deste trabalho tem por objetivo investigar a sensibilidade dos
valores de contorno (fluxo normal, Dirichlet, Neumann) a variagdes espaciais dos
coeficientes de absor¢do e de difusdo. O meio que estd sendo considerado neste
trabalho € absorvedor, com espalhamento isotropico e sem fonte interna. Utiliza-se uma
aproximagdo por ordenadas discretas para a equagéo de transporte de radia¢do. Faz-se
uso da formulagdo de paridade, pois esta simplifica o problema devido as suas
condi¢des de simetria e € através desta formulag@io que se encontra o principal objeto

de estudo deste trabalho, isto €, o fluxo de radiag3o e a sua analise.

Visa-se uma futura utilizagdio dos resultados deste trabalho no contexto de
reconstrugdo de pardmetros pela metodologia fonte-detetor, desenvolvida por Reis e

Roberty [13].

A relevancia desse trabalho se deve a importincia em Engenharia da solugdo do
problema de transporte de radiagio em meios absorvedores, espalhadores e emissores,
ou meios participantes. Como exemplo de aplicagiio dessa técnica pode-se citar a
interagdo de particulas ndo carregadas em meios participantes com a sua utilizagdo em
tomografia computadorizada tanto para diagndstico e tratamento em medicina quanto

em ensaios ndo-destrutivos na indUstria

No Capitulo 2 é feita uma revisio bibliografica onde séo citados trabalhos [1, 2, 3,
4, 5, 6, 7] nos quais foram utilizadas varias técnicas que validam toda a formulagéo

desenvolvida e os resultados obtidos neste trabalho.



No Capitulo 3 séo introduzidos alguns conceitos preliminares de matematica [1, 8,
9] que sdo fundamentais para o desenvolvimento desse estudo, tais como o método dos
elementos finitos (MEF), os Espagos de Fungdes - Espagos de Hilbert L,, H'e H'2, a
formulagdo variacional, o problema de Neumann: condi¢des de contorno natural e
essencial e a construgfo e representacdo de uma triangulagdo 7: malha triangular de

elementos finitos.

No Capitulo 4 € desenvolvida a formulagdo matematica do problema de transporte
[5, 6, 10, 12], na qual todos os conceitos utilizados para a construgdo do algoritmo
computacional sdo baseados. Ao longo desse capitulo, nas suas subse¢des, sdo
apresentadas as teorias, ou seja, 0s conceitos para casos mais gerais € sempre que
necessario sdo feitas adaptagles [2, 7, 11] e simplificagdes, de modo a facilitar a
implementagdo computacional, para a descrigdo do modelo que se estd estudando.
Apresenta-se, primeiro, a equacio de transporte de radiagdo estacioniria a uma
velocidade em meios bidimensionais: a equagdo linearizada de Boltzmann. A seguir
faz-se a formulagdo matemdtica do problema direto e na sequéncia formula-se o
problema de transporte com o método de ordenadas discretas. Nesta parte faz-se uma
adaptagdo para o caso bidimensional no plano (x,y). Dando continuidade a formulagéo
matematica aproxima-se a equagfo de transporte por ordenadas discretas para o
problema direto. Com o objetivo de facilitar a implementa¢dio do pseudocodigo que
estd sendo desenvolvido. Optou-se pela utilizagdo da formulagdio de paridade da
equagdo de transporte para o problema direto e por fim chegou-se a solucdo do

problema direto.

No Capitulo 5 sdo apresentados os resultados das vérias simulagGes obtidas através



da implementago computacional do algoritmo desenvolvido. Na seg¢do que inicia esse
capitulo séo feitas algumas consideragdes preliminares, € em seguida apresentam-se €
discriminam-se os termos do algoritmo computacional do problema direto que sdo:
descri¢do da geometria do problema e especificagdo da ndo-homogeneidade, geragio
automatica da malha primitiva, dados de entrada, configurag@o inicial dos pardmetros,
matrizes de segdo de choque (a), matrizes de condutividade (c), termos de fonte (f),
equagdo diferencial parcial (PDE), descrig@o das condigdes de contorno, com as suas
configuragdes possiveis para todo o sistema e também separadas para os seguintes
casos: para o fluxo de paridade par (¢*), para o fluxo de paridade impar (¢7) e
também para o fluxo de paridade par (¢*) para cada dire¢do de incidéncia de radiagio

(gi) no plano (x,y), € a solugdo da equagdio diferencial parcial (PDE). Da segunda

se¢do em diante sfo apresentadas as configuragdes e os resultados da investigagdo da
sensibilidade do fluxo de radia¢do (¢*), num total de trés grupos de simulagdes. No
primeiro prescreve-se a mesma condi¢do de contorno para cada varia¢do da posigdo da
ndo-homogeneidade no interior da geometria circular no plano (x,y) e sdo obtidos os
seguintes resultados: a malha triangular de elementos finitos para a geometria do
problema sem a perturbagdo, as malhas com a perturbago ¢ a analise da sensibilidade
do fluxo de radiagéo perante a variagéio de posi¢do da ndo-homogeneidade. No segundo
grupo, a sensibilidade do fluxo de radiagdo (¢*) ¢ investigada prescrevendo-se

condigdes de contorno para diferentes dire¢des de incidéncia de radiagdo (91) e

mantendo-se fixa a posi¢do da ndo-homogeneidade no interior da geometria circular no
plano (x,y). Sdo obtidos os seguintes resultados: a malha triangular de elementos finitos
com a posi¢do da ndo-homogeneidade fixada e a andlise da sensibilidade do fluxo de

radiagdo (p*) para as diferentes condigdes de contorno prescritas. No terceiro grupo, a



investigacdo da sensibilidade do fluxo de radia¢éo (¢*) € feita para diferentes valores
de parametros (0,,05,k), sendo fixas a posi¢io da ndo-homogeneidade no interior da
geometria circular no plano (x,y) e as condi¢des de contorno prescritas.Obtém-se os
seguintes resultados: a malha triangular de elementos finitos com a posicio da
ndo-homogeneidade fixada e a andlise da sensibilidade do fluxo de radiagdo (¢*)

fixadas as condigdes de contorno prescritas e a dada geometria.

No Capitulo 6 sdo apresentadas a conclusdo e sugestdes para trabalhos futuros.

No apéndice s@io comparados os resultados obtidos entre a técnica utilizada nessa

dissertag@o e o trabalho desenvolvido por NOH et al.[14].
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CAPITULO 2

REVISAO BIBLIOGRAFICA

Este trabalho faz a combinagdo do método dos elementos finitos estudado por
JOHNSON [1] com o método de ordenadas discretas desenvolvido por LEWIS e
MILLER [2]. Esta combinagio hibrida de dois métodos ¢ de longa data utilizada por
LILLIE ¢ ROBINSON [3] para solugdo da equagfio de transporte de néutrons
multigrupo com espalhamento linear. A formulagio variacional do tipo Ritz-Galerkin
apropriada ao método dos elementos finitos foi desenvolvida para um grupo de
néutrons por KAPER ef tal. [4] que mostraram a equivaléncia entre a formulagao de 2°

ordem e o problema de transporte de 1 ordem.

O método de ordenadas discretas foi introduzido na Astrofisica por
CHANDRASEKHAR [5] para solugdes da equagdo de transferéncia radiativa,
equivalente do ponto de vista matematico ao problema de transporte de néutrons com

um grupo.

A aplicagido do método dos elementos finitos para problema de transporte de 1°
ordem em espago e angulo foi feita com sucesso pela primeira vez por
DUDERSTADT e MARTIN [6]. Entretanto, o sistema de equagdes algébricas
resultantes a ser computacionalmente resolvido é assimétrico, e de ordem proporcional

a discretizacdo e ao numero de ordenadas discretas adotadas. Por outro lado, os



esquemas resultantes da implementacio do método dos elementos finitos para a
formulagdo variacional do problema de valor de contorno de 2* ordem resultardo em
uma matriz simétrica, banda, positivo definida e diagonal dominante, o melhor cenario
para a adogdo de métodos iterativos. A quadratura adotada neste trabalho é a bem
conhecida quadratura produto {2, 7] desenvolvida para que em cada nivel se tenha o

mesmo numero de ordenadas.



CAPITULO 3

PRELIMINARES MATEMATICAS

Neste capitulo serdo apresentados alguns conceitos matematicos fundamentais que
s30 basicos para o desenvolvimento deste trabalho de pesquisa, tais como o método dos
elementos finitos (método de Galerkin), o espaco de dimensdo finita no qual as funcdes

estdo definidas, a formulagéo variacional e as condi¢des de contorno natural e essencial.

3.1.0 METODO DOS ELEMENTOS FINITOS (MEF)

O método dos elementos finitos € uma técnica geral para a construgdo de solugdes
aproximadas de problemas de valores de contorno. O método envolve dividir o dominio
da solugdo em um numero finito de subdominios simples, os elementos finitos, usando
conceitos variacionais para construir uma aproximagio da solug@o sobre a colegdo de
elementos finitos. Devido a generalidade e riqueza de idéias que envolve o método, ele
¢ usado com bastante sucesso na resolu¢do de uma vasta quantidade de problemas em

todas as areas da Engenharia e da Fisica Matematica.

A idéia basica em qualquer método numeérico para uma equacdo diferencial €
discretizar o dado problema continuo com muitos (infinitos) graus de liberdade para se

obter um problema discreto ou um sistema de equagdes com somente finitos graus de



liberdade que podem ser resolvidos usando-se um computador.

O processo de discretizagdo usando o método dos elementos finitos € iniciado pela
reformulagdo da dada equagdo diferencial como um problema variacional equivalente.
Para equagdes elipticas este problema variacional em casos basicos € um problema de

minimizagdo da forma:

Encontre u# € V tal que ['(u) < I'(v) V v e V, onde V' € um dado conjunto de fungdes
admissiveis e F': V' —» R é um funcional, ou seja, F(v) € R V v € V' com R denotando
o conjunto de numeros reais. As fungdes v em V' muitas vezes representam uma
quantidade variando continuamente tal como um deslocamento em um corpo elastico,
uma temperatura, etc.... F(v) é a energia total associada com v e o problema de
minimiza¢do corresponde a uma caracterizagdo equivalente da solucdo da equagio
diferencial como a fungdo em ¥ que minimiza a energia total do sistema considerado.
Em geral a dimensdo de V' ¢ infinita, ou seja, as fungdes em V" ndo podem ser descritas
por um numero finito de pardmetros, e deste modo, em geral, o problema de
minimizagdo ndo pode ser resolvido exatamente. Para se obter um problema que possa
ser solucionado num computador, a idéia no MEF ¢ substituir ' por um conjunto V7,
que consiste de fungdes simples que somente dependam de um numero finito de
parametros. Isto leva a um problema de minimizagdo de dimensdo finita da seguinte

forma:

Encontre u, € V), tal que Flup) < F(v) Vyel,.

Este problema € equivalente a sistemas de equagdes lineares ou ndo-lineares. A

expectativa, agora, ¢ que a solugdo wu,do problema seja uma aproximagio
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suficientemente boa da solugdo » do problema de minimizagdo original, isto é, da
equacdo diferencial parcial original. Normalmente se escolhe V), como sendo um
subconjunto de ¥, ou em outras palavras V;, < V, ouseja,seve Vyentiove I, e
neste caso o problema de minimizagdo de dimensdo finita corresponde ao método

classico de Ritz-Galerkin.

O aspecto especial de um MEF como o particular método de Ritz-Galerkin € o fato

de que as fungdes em V/, sejam polindmios continuos por parte.

Pode-se também comegar de formulagdes variacionais mais gerais que o problema
de minimizagdo, o chamado método de Galerkin, que é 0 método que sera usado neste

trabalho.

Para resolver aproximadamente uma dada equacgfo diferencial parcial ou integral
usando o MEF, deve-se seguir basicamente os seguintes passos: 1°) formulagio
variacional do problema dado; 2°) discretizagdo usando o MEF: constru¢do de um
espago de dimensdo finita; 3°) solugdo do problema discreto; 4°) implementag¢do do

método em um computador: programagao.

Existem formulagdes variacionais diferentes que podem ser usadas dependendo por
exemplo da escolha de variaveis dependentes. A escolha do subespago de dimensdo
finita V5, que € essencialmente a escolha do elemento de discretizagdo finito, elemento
finito, € influenciada pela formulagdo variacional, pela exigéncia de acuracia , por

propriedades de regularidade da solugdo exata e etc... .

Para se resolver o problema discreto, necessita-se de algoritmos otimizados e/ou
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meétodos para a solugdo numérica de sistemas de equagdes lineares ou ndo-lineares.

A vantagem do MEF ¢ que geometrias complicadas, condi¢des de contorno gerais e
propriedades materiais variaveis ou ndo-lineares podem ser manipulados de uma
maneira relativamente facil. Além disso, a estrutura clara e a versatiidade do MEF
torna possivel a constru¢do de softwares para aplicagdes e também deve-se levar em
consideragdo a grande quantidade de codigos de elementos finitos disponiveis. O MEF
tem uma fundamentagdo teorica solida que proporciona um aumento de confian¢a e em
muitos casos possibilita a andlise matematica e a estimativa de erro da solugdo

aproximada pelo método do elemento finito.

3.2.ESPACOS DE FUNCOES — ESPACOS DE HILBERT
Ly,H'e H

Quando sdo dadas as formulagdes variacionais dos problemas de valores de
contorno para as equagdes diferenciais parciais, ¢ natural, do ponto de vista
matematico, ¢ muito usual trabalhar-se com fun¢des de espagos V' que sejam
ligeiramente maiores, ou seja, que contenham um pouco mais de fungdes que os

espacos de fungdes continuas com derivadas continuas por partes.
Serdo recordados, agora, alguns conceitos basicos de dlgebra linear.
Se V' é um espago linear, entdo diz-se que L é uma forma linear em V' se:

L:V->%Rouseal(yv)eRVveRelélnearVv,welep0chi



12

L(Bv+8w)=BL(v)+6L0w).

Pode-se dizer que a(_,.) € uma forma bilinearem V' x Vsea : V'x V- R, ou seja,
alv, w) e RV vwe Vea(,. )é linear em cada argumento, isto €, ¥V u,v.w € e

B,0 € R tém-se:
a(Bu+0v,w)= Balu,y)+6alu,w)
a(u,Bv+8w)= Ba(uv)+0a(u,w)
A forma bilinear a(.,. ) em V x V¢ dita ser simétrica se:
alvw)=awvyVvwecVl.
A forma bilinear simétrica a(.,. ) em ¥ x V ¢é dita ser um produto escalar em V' se:
alvyw)>0VYvelVerv =0
Anorma ||. ||, associada ao produto escalar ¢ definida por:
Ivll, =@y )*, VveV.

Além disso, se {.,.) € um produto escalar com a correspondente norma ||. ||, entdo

tém-se a desigualdade de Cauchy.
PN PRIRTER
Kl < it

Tendo sido relembradas algumas propriedades de algebra linear, pode-se prosseguir

com a descrigdo do espaco de fungdes.

A seguir serdo introduzidos os espagos de Hilbert L., H'e H'?, cujo terceiro ¢ 0
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espago no qual estdo definidas as fungdes das condigdes de contorno. No segundo estdo
definidas as fungbes da equagfo diferencial parcial que sdo utilizadas nesse trabalho.
Esses espagos sdo muito usuais nas formulagdes variacionais dos problemas de valores

de contomo.
Serdo defimdos, a seguir, espacos de fung¢des para um dominio unidimensional.

Seja I = (a,b) um intervalo no qual estdo definidas as fungdes quadrado mtegraveis.

Entdo:

L, = {v cvédefinidoem/e vaza’x < d}
/

O espaco L, (/) é um espago de Hilbert com o produto escalar
W) = .fvw dx,

e a correspondente norma:

1

Wil = (Jr "2“'-"‘) = (vv).
7

Pela desigualdade de Cauchy,
I(v,w)] = H"’HLZ(DUWHLZ@,
pode-se ver que (v,w) € bem definida, isto €, a integral (v,w) existe se v,w € Lo(J).

Tendo sido definido o espago L, pode-se, agora, definir o espago H!. Este espaco

consiste de fungdes v definidas em 1, as quais juntas com as suas primeiras derivadas,
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v, sdo quadrado integraveis, isto €, pertencem a L.

H'(I) = {v:vev €Ly}, vev sio definidosem / e j[vz + ()} dx < o,
!

Equipa-se este espago com o produto escalar

(v,w)HlU) = j-(vw +vw) dx,
7

e a correspondente norma

i

vilme = (Jrf"z + (“-*’)2]617") :
!
Espacos de fungdes para dominios bidimensionais ou tridimensionais:

Sendo @ um dominio RY para d = 2ou 3, limitado por uma fronteira 0Q.

Define-se:
L.(Q) = {v cvédefindoem Q e .fvzdx < w}
ol

HY{(Q) = {v “vew eLz(Q)}, v e v sdo definidos em Q e J.[v2+(vs)2]
Q

dx < o,

equipa-se esses espagos com oOs seguintes produtos escalares e suas normas

respectivamente.

W) = '{vw dx,
o



.Y f.. \-2- N
Vi) = (J Vzu'w) = (v,v),
Q

W) iq) = J‘(\-»w +vwe) dy,
o

L fr..2 . 7.\ 1\
IVl = (j[" +(v*/2ja’«‘}
Q

E possivel definir, para contornos suaves, espagos fracionarios que contenham

fungdes que sejam definidas na fronteira 6Q do dominio Q.
H*(0Q)), paras > 0.
Esses espacos utilizam as derivadas normais das fungdes em 0€2.

Fulx)

on; 7
7

parax € 0Qe0<j<m—1

Existe uma importante relagio entre os espagos H”(Q), para m > 0, de fungbes

definidas em um dominio limitado por uma fronteira e os espagos de fronteira H*(9€2).
O mapeamento na fronteira ¢ feito por:
H™(Q) - H"712(6Q)), param > 0e 0 <j<m—-1

No trabalho em questdo m = 1, de modo que o espago de fungdes do dominio €

H'(Q). Consequentemente o espago de fungdes da fronteira 6Q2 ¢ H 12(60).

Fica entio estabelecido que os espagos de fungdes nos quais sdo definidos o

problema diferencial e as condigdes de contorno, respectivamente, sdo:
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H'(Q) e H'*(60)).

3.3.FORMULACAO VARIACIONAL

Dado um problema diferencial com sua devida condigdo de contorno, pode-se
buscar uma solugfo aproximada para esse problema através da formulagéo variacional.
Utiliza-se uma funcfo teste a fim de se obter uma solugfo para a equa¢do ou um

sistema de equagdes em todo o dominio.

A formulagdo variacional ¢ dita ser uma formulagdo fraca do problema diferencial e

a sua solugdo é dita ser uma solugo fraca desse mesmo problema.

A formulag@o variacional sera utilizada na proxima segdo através de um exemplo.

3.4PROBLEMA DE NEUMANN: CONDICOES DE
CONTORNO NATURAL E ESSENCIAL

Nesta secdo serdo discutidas, com um exemplo genérico, as condig¢des de contorno

de Neumann e de Dirichlet.
Dado o seguinte problema diferencial
—Au+u=femQ,

com a seguinte condi¢do de contorno
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& = gem3Q

onde Q é o dominio cercado pelo contorno 6Q e < ¢ a derivada normal externa a

Esse problema é chamado de problema de Neumann. A condigdo de contomno ¢ uma
condi¢do de Neumann, enquanto que a situagdo u = u, em 0Q ¢é considerada
previamente como a condigdo de Dirichlet. Em Mecénica ou Fisica a condi¢do de

Neumann corresponde a uma dada forga ou fluxo g em 0.
Pode-se dar a esse problema diferencial a seguinte formulagao variacional:
a(u,v) = (fv) +{g,v).V v € H'(Q),
onde

a(u,v) = j(Vu « Vv +uv) dx,
o
(fv) = [ fdx,
o
(g.vy= [ gvdl
aQ

essa formulagfo variacional € equivalente a seguinte formulagéio de minimizag3o:
Encontre # € H'(Q) tal que I'(x) < I'(¥) V v € H' (), onde

Fv) = a(v,v) - (fv) = (& V).
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A seguir sera mostrada essa equivaléncia.

Para ver que
a(u,v) = (f,v) +{(g,v),

dado o problema diferencial

—Au+u=femQ

P

U

- = gemoQ.

]

D

Deve-se multiplicar

~Au+u=f

pela fun¢do teste v € H'(Q) e integrar em Q.

Faz-se, agora, uma breve recordagiio do teorema da divergéncia
[divAdx = [ A«ndT,
0 a0

onde, 4 = A(A,,A2,A43) é uma fungdo vetor definida em Q,

. BZE 64, 943
i vA = — 4+
al A e oy 2 S

B

n = n(ny,n,,n3) é anormal unitaria externa a o<,
dx é o elemento de volume, no caso tridimensional, em R° e dI" é o elemento de

comprimento de arco ao longo de 6Q.

LS
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Um exemplo num caso bidimensional, cujo 4 = (vw,0) e 4 = (0,vw), encontra-se

[2 udx+‘|'va“ dy = [ vwn dT, parai = 1,2.
0 aQ

Denotando por Vv e Vw os gradientes de v e w, ou seja,

s [ ov v )
W ( Oxy > Oxn /7

Vw = ((fx: ’ BM )’

obtém-se da equagdo integral acima a seguinte formula de Green:

E)xz Oxa

!;Vv <Vwdy = I [a(?] 5’61 2 }dx

= ff\aa“ n1+v

ou seja,

J- Vv -Vwdx = J’ v% dr - j vAw dx,
o}

oQ Q
onde

2 = Do+ —%—nz ¢ a derivada na direcdo normal externa ao contorno 6Q) e
0xy i
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. =
— O°W W
Aw = 22 4 22

2 AL
(l}fi (22

Voltando ao problema diferencial proposto anteriormente na pagina 18 e de acordo

com a formula de Green, sendo % = g em 0Q2, tem-se:

on

(f,v) = J(—Au +uyvdx = — j Syl + fVu « Vv dx +.fuv dx
19) a0 0 O

=—{g,v)+ J-[Vh‘ « Vy 4+ uv] dy
Q

= a{u,v) —(g,v).

Rearrumando-se os termos da expressdo anterior, obtém-se o problema variacional.

Sendo u € H'(2) uma solugdo desse problema.
a(u,v) = (f,v) +{g,v),
que deve satisfazer o problema diferencial
—Au+u=femQ,
& = gem 00,

Usando a formula de Green novamente, encontra-se de a(u,v) = (f,v) +{(g,v), para

uma solugdo u suficientemente regular, que:

(f,v) +{g,v) = a(u,v) = j —g%vdf + I[—Au +ulvdx.
Ele) 0

Explicitando-se os termos do lado esquerdo na forma integral e reordenando-os,
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segue que:

I[—Au +u—flvdx + j [& -g]vdl =0, Vv e H(Q).
0 o

Agora, como a equagdo anterior converge em particular para todo v € H'(Q)) e para
essas fungdes o termo de contorno desaparece, pode-se concluir que —Au +u = fem Q2

converge, 1sto €,
—-Au+u—f=0emQ

Entdo [[-Au+u—flvdr+ [[2 —g]vdl = 0, Vv e H'(Q) é reduzida para
o o)

on

aQ

j’ ﬁ‘_._g]\iciFZO, \V'VEH](Q)‘

Variando v sobre H'(Q)), o que significa que v ira variar livremente em 0C2,

finalmente obtém-se

du
on

g = 0em0Q,
e desta forma segue que

2 = gem 0Q.

on

Nota-se que a condigdo de Neumann(% =gem GQ)néo aparece explicitamente

na formulagio variacional, a solugdo u do problema variacional é somente exigida

pertencer a H'(Q) e nfo ¢ explicitamente exigido que satisfaga ‘3—: = g em 0. Essa

condi¢do de contorno € em vez disso implicitamente contida em
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a(u,v) = (f,v) +{g,v),Vv € H'(Q).

i
on

[
o9
o
=

Variando primeiro v dentro de Q, obtendo —Au +u = fem Q e entdo
0Q pela variagdo de v no contorno. A condigdo de contorno que nioc tem que ser
explicitamente imposta na formulagdo variacional, é dita ser a condi¢do de contorno
natural. Isto esta em contraste com a chamada condigdo de contorno essencial, como a

condigdo de Dirichlet u = 0 em 0Q.
Pode-se a partir de agora formular um MEF para o problema de Neumann.
Sendo T, a triangulagdo de Q e definindo

V, = {v - vécontinuoem Q) v é linear V K € Th}, onde v x denota a restrigdo
de v para K, 1sto ¢, as fungdes definidas em K, sendo K os tridngulos que formam a

malha, estdo de acordo com vem K.
Onde a triangulacgdo é representada por T, = {K1,K,...,Kus},

odominiopor Q2 = | J K =K; UKz UKy

s it

e o parametro de malha # = maxg.r, {didmetro(K)}, com o didmetro(K) = o lado

mais longo de K.

Como parametros para descrever as fungdes em V7, pode-se escolher os valores nos

nds, agora também incluindo o0s ndés no contorno AQ2.

Nota-se que as fungdes em V), ndo sdo obrigadas a satisfazer nenhuma condigéo de

contorno e que V, < H'(QQ). A partir do método variacional a(u,v) = (£,v) +(g,v)
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Vv e H'(Q)), tem-se, agora, o seguinte MEF para o problema diferencial

~

—Au+u—f=0emQe & = gemoQ:

on

Encontre u,, € V), tal que:

a(un,v) = (f,v) +{(g,v) Vv € V5.

Esse problema tem solugdo #, unica, que pode ser determinada resolvendo-se um

sistema de equagdes lineares positivo definido e simétrico.

3.5. CONSTRUCAO E REPRESENTACAO DE UMA
TRIANGULACAO T,: MALHA TRIANGULAR DE

ELEMENTOS FINITOS

Um programa para triangulagdo automatica de um dado dominio pode ser baseado
na 1déia do refinamento sucessivo de uma triangulagdo micial. Por exemplo, pode-se
refinar cada triangulo conectando os pontos de cada lado, tal como esta representado na

figura 3.1, abaixo.

& /"'//. \——\{-} My %;
E oy
!
~
N Hé 1]
v A4

Figura 3.1 - Refinamento Sucessivo de uma Malha Triangular
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Um processo de triangulagdo deste tipo leva a malhas quase-uniformes, cujos

triangulos tém essencialmente 0 mesmo tamanho em todas as partes da malha de Q.

Se o contorno de € for curvo, esta técnica deve ser modificada perto dessa fronteira.

Muitas vezes € desejavel poder construir triangulacdes nas quais os tamanhos dos
tridngulos variem considerdvelmente em diferentes partes de Q. De fato, podem ser

necessarios tridngulos menores em regides cuja solu¢do exata varie ligeiramente ou

onde certas derivadas da solucdo exata sejam grandes.

Uma possivel estratégia de refinamento é mostrada a seguir na figura 3.2. Nela
diferentes redes primitivas de tridngulos sdo refinadas diferentemente de acordo com os

elementos de diferentes tamanhos.

Para se representar uma dada triangulacdo, pode-se proceder da seguinte forma:

Sendo a regido com a linha pontilhada, na figura da direita, chamada de zona de

transicdo entre os elementos de tamanhos diferentes.

-, ., S
- s .
\.\ '\\\\ . o \\\
™. ~,
. ™., \\""-.. ™.
b Y \\_ \ N
“ . .
\ -, ‘\-k\ . .
. “ g
m_,_\ - . .
., . . .,
~. ., o - ~,
. R\x - s

Figura 3.2-Refinamento Nao-Homogéneo

Sendo N, parai= 1, ... MeK,, paran=1,..., N, as enumeracdes dos vértices

(nos) e dos tridngulos de 7', respectivamente. Entdo 7', pode ser especificado usando
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duas matrizes, Z(2.M) e T(3,N), onde Z(j,i),com j=12 e i= 1. . M, sdo as
coordenadas dos vértices N; e 7(j.n).comj =123 en = 1,... N, sdo os nimeros dos
vértices de cada tridngulo que é representado por K,,. A figura 3.3, a seguir, representa

uma ilustracdo de como pode ser feita a enumeracdo dos elementos finitos numa malha

triangular.

A

Os nimeros que estdo indicados por um circulo representam os triangulos enquanto

que os demais si0 0s seus vértices.

Figura 3.3 - Elementos Finitos

Neste caso. pode-se montar a matriz 7(j, n) da seguinte maneira:

112233456 6 7 7 ]
T=| 324754669 7 10 8 |
| 4478667091010 11 11 |

onde cada coluna representa um triangulo e os elementos de cada uma dessas

colunas representam a numeragdo dos vértices desses triangulos



27

CAPITULO 4

FORMULACAO MATEMATICA DO
PROBLEMA DE TRANSPORTE

Neste capitulo sera desenvolvida a formulagéo matematica utilizada neste trabalho,
a qual ¢ dada pela equagio de transporte bidimensional monoenergética e estacionéria,
também chamada de equagfo linearizada de Boltzmann, que serd discretizada pelo
método de ordenadas discretas a fim de se obter a aproximagio angular dessa equagéo,
o que resultara num sistema de equagdes diferenciais que serfio resolvidas através da
formulagiio de elementos finitos. A formulagdio variacional para o sistema de equagdes
diferenciais de 2* ordem com condigdes de fronteira generalizadas de Neumann permite
uma fécil implementacio do método dos elementos finitos com malha triangular e

espago de aproximagdo de 1* ordem.

4.1. A EQUACAO DE TRANSPORTE DE RADIACAO
ESTACIONARIA A UMA VELOCIDADE EM MEIOS
BIDIMENSIONAIS: EQUACAO LINEARIZADA DE
BOLTZMANN

A teoria de transporte tornou-se um topico extremamente importante na Fisica ¢ na
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Engenharia, pois os processos de transporte de particulas aparecem em uma grande

variedade de fendmenos fisicos.

A formulagio matematica da teoria de transporte monoenergética e de particulas nio
carregadas, ou de radiagfio eletromagnética, em um meio absorvedor, emissor e
espalhador, ou seja, um meio participante, ¢ dada pela equagdo de transporte, ou

equagdo linearizada de Boltzmann, como também ¢ chamada.

A equacgio de transporte, considerando as dependéncias temporal, energética,

angular e espacial para meios tridimensionais é mostrada a seguir
op(1EQD
—},—-—-—-5,——-— +Q - VP(x, E,Q.0) + 0i(x, E)P(x, E,Q.1) =

= [0u(x,E » EQ, - Q(x,E ,Q,0dQ + S(x, E, Q. 1), (4.1)
¥ 4

onde:

(x,EQ.0)éo fluxo angular de particulas neutras, ou intensidade de radiacdo,
o,(gg,E) =04(x,E) + os(x, E,Q . Q) é o coeficiente de extingdo total,
04(x, E) € o coeficiente de absor¢io,

os(x, E,_Q’) - Q) € o coeficiente de espalhamento,

S(x,EQ.néa fonte de radiagfo distribuida no interior do meio,

X € a varidvel espacial,
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Q) € a diregdo angular de propagagdo da radiagéo,
t é a variavel temporal,
E ¢ a energia de radiagdo e
V é a magnitude da velocidade de radiagdo.

Como o sistema em estudo ndo considera a dependéncia espectral, ou seja, é
monoenergético, a dependencia da energia E desaparece para cada fungdo, ¢ desta
forma tem-se a formulag3o da equag8o de transporte a uma velocidade. Considerando
também que o sistema é estaciondrio, a varidvel temporal de cada fungdo €
desconsiderada e com isso a derivada parcial com relagdo ao tempo, no primeiro termo
da equagdo (4. 1) € nula e levando em conta que o meio € bidimensional, a equagdo de

transporte (4. 1) pode ser simplificada, resultando em

V- (Q6(x.9)) +ox)¢(x,8) = 5(x.8) . 4.2)

cm

{Vvew2,Qe2ny,

onde
S(%,9) = zf 0(£Q -Q)¢(x.9)d0" +4(x,9). (4.3)

¢ ( x,Q ) é a intensidade de radiagio monocromatica, sem dependéncia espectral, ou

o fluxo angular de particulas a uma velocidade no ponto x, e na direcdo de propagagdo
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de radiagdo Q, sendo absolutamente continua na dire¢do () e mensuravel na diregéio
perpendicular Q*, S(gc’,_f_z)) representa um termo fonte cuja a primeira parcela da
equagio (4.3) significa a contribuigiio da radiagdio que vem da diregdo g' a qual é
espalhada na diregio (), € g representa uma fonte de radiagdo interna do meio. O
coeficiente de espalhamento serd reescrito a seguir de forma a explicitar as

dependéncias espacial e angular.

g )

oi(%9 -Q) = o.(x) 5, (4.4)

onde A(Q, . Q) ¢ denominada funcéo de fase, sendo usualmente representada por

uma expans3o em uma série de polindmios de Legendre.

As coordenadas espaciais e angular no sistema cartesiano so escritas como

Xx=xe€ +yer+ze;. 4.5)

Porém, como no problema em questdo ndo hd a dependéncia na coordenada z, ela
sera deprezada, pois o interesse nesse trabalho € a exploragéo da rotagdo do sistema de
coordenadas no plano (x,y), de modo que as coordenadas espaciais sdo as coordenadas
do plano (x, y) representadas pela equag@o (4.6).

X =xe;t+ye, (4.6)

e as coordenadas angulares podem ser representadas pela equagio (4.7).

Q = sinncos@ €, +sinnsing €, +cosn 3. “4.7)
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onde 717 € o Angulo azimutal e ¢ o angulo polar, conforme a figura (4. 1) a seguir.

e

Figura 4.1 - Sistema de Coordenadas Cartesianas 3D

Desde que, como veremos mais adiante, iremos trabalhar somente com a projegdo
de Q no plano (x,y), podemos fazer, sem a perda da generalidade, a formulagdo do

problema direto com () também no plano (x,y), isto €,
Q= cospe; +sing &,. 4.8)

Sempre serd mencionado, para efeito de esclarecimento, a utilizagdo de Q) também

com a dependéncia azimutal 17 ou 0 seu uso somente com a dependéncia polar .

4.2. A FORMULACAO MATEMATICA DO PROBLEMA
DIRETO

Quando sdo conhecidas a geometria do meio, assim como suas propricdades
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materias, o termo fonte, as condi¢des de contorno e, para o caso com dependéncia
temporal, a condigdo inicial, tem-se o problema direto, e desta forma € possivel calcular
a intensidade da radiagdo, ou fluxo angular de particulas, em todo o meio e em

qualquer instante de tempo.

Neste trabalho sera explorada a geometria circular no plano (x,y) como mostra a

figura (4.2) abaixo:

C |
Figura 4.2 - Sistema de Coordenadas Cartesianas 2D

Para ilustra melhor o problema em questdio, a figura (4.3) representa as quatro
diregdes (por questio de simetria do problema s6 serd necessaria a definicdo dessas
quatro diregdes) de entrada de radiagfio nas quais o problema esté definido € a tabela

(4.1) mostra os valores dos angulos polares @,correspondentes a essas quatro

dire¢des, com relagdo ao sistema de coordenadas cartesiano.
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b9
7,

~

Figura 4.3 - Dire¢des de Incidéncia de Radiagio

h
12

2,

=

Q

233

Q

234

LI‘;‘" N -D-Ia 1)

Tabela 4.1 - Angulos de Incidéncia de Radiagio
A figura (4.4), a seguir, mostra a geometria particionada do dominio. Nela vé-se que o
dominio foi subdividido em duas regides devido a simetria do problema em estudo,
onde a primeira, I';, é chamada de incidente e a segunda, I'}, de emergente. E devido a
essa questdo da simetria que ndio s3o necessdrias oito diregdes para descrever a entrada

da radiagfo no sistema, o que facilita muito o desenvolvimento deste trabalho.
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REGIAO II
" r- (EMERGENTE)

REGIAOI
(INCIDENTE)

r

Figura 4.4 - Explicitando as Regites Incidente ¢ Emergente

Tendo sido especificada a geometria do problema, escreve-se, agora, a equagédo de
transporte e as devidas condigdes de contorno e dessa forma tem-se a caracterizagio da

formulagdo matemdtica do problema direto.

A equagdo (4.2) em conjunto com as suas condi¢des de contorno ddo a formulagdo
do problema direto cujo objetivo ¢ o de calcular o fluxo de particulas, ou intensidade da
radiagio. A seguir serdo escritas as condi¢des de contorno e desta forma estara

completa a descrigéo do problema direto.

As condigdes de contorno sdo de fundamental importincia para o calculo do fluxo
de particulas, ou intensidade da radiagdo. A condigdo de fronteira que serd usada nesse
problema é a chamada condigdo de contorno generalizada de Neumann, pois nesta
pode-se determinar com precisdo a diregdo com a qual a radiagdo entra no meio
material de acordo com a dire¢dio normal externa a superficie do problema. Antes,

porém, serd necessério definir um novo sistema de coordenadas cartesianas para as
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quatro dire¢Bes, conforme mostrado na figura (4.3), nas quais o problema foi definido.
Através desse novo sistema de coordenadas cartesianas serd possivel identificar se a
radiacdio estd entrando pela regido I, incidente, ou se esta entrando pela regido I,

emergente, de acordo com a ilustragdo da figura (4.4).

As figuras (4.5 —6) mostram respectivamente o novo sistema de coordenadas
cartesianas para o plano (x;,y;), de acordo com a dependéncia do dngulo polar ¢;, com
relagdo ao sistema antigo de coordenadas, (x,y), de forma a diferenciar as regides I € II
e o vetor normal externo a superficie em estudo juntamente com a sua dependéncia

angular, 6, em relagdo a aquele sistema .

Utiliza-se até o final dessa se¢@io somente a projegdo de Q no plano (x,y).

Figura 4.5 - Novo Sistema de Coordenadas 2D
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g REGIAO II
Y (EMERGENTE)

R

REGIAOI
(INCIDENTE)

r‘t

Figura 4.6 - Explicitando o Angulo do Vetor Normal

O novo sistema de coordenadas cartesianas ¢ definido a seguir

X; = XCOSQ; +ysing; 4.9)
e

Yi = =xsing; + ycos g, (4.10)
com

x2+y? = R?, (4.11)

onde R representa o raio do circulo.

A regidio incidente da diregfo i é definida abaixo através da coordenada x;:

xcos@; +ysing;=x; < 0 = (x/y < —tang;), (4.12)
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A regidio emergente da dire¢3o i também ¢ definida através da coordenada x;:
xcos@; +ysing;=x; > 0 = (x/y > ~tang,), (4.13)

A seguir sera definido o vetor normal, 7, que aponta sempre para a parte externa da

superficie do circulo.
% = cosfe, +sinfe, = Vl(g)?l +V2(9)?2. 4.14)
Também sera necessario calcular o produto escalar entre S_)ﬁ e n(x,y), pois dessa

forma tem-se a direcdo correta do fluxo ponderado pela diregéo normal.

2
Q -7 = cosOcosp; +sinfsing; = cos(d - 9;) = Y @ixVi. (4.15)
! k=1

As projegdes no eixo xy, levando-se em consideraggo o dngulo 0, relativo ao vetor

normal, 7, serfio vélidas se x? + 3% = R2.

x = Rcosf (4.16)
e
y = Rsiné, 4.17)

Além disso também pode-se chegar a uma outra relagdo que envolva as
componentes x, y, @; € 8, ja que relacionando (4.12 — 13) com (4. 16 — 17) chega-se as

seguintes inequacdes:

X < —tang; < cos(@—¢;) <0 (4.18)
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+ 2 —tang; < cos(0-¢;) = 0. (4.19)

Agora, pode-se definir as condi¢des de contorno para o problema direto.

Se (4.11) e (4.12) = ¢l(x,y) = 1, (%) (4.20)
e
Se (4.11) e (4.13) = ¢7(x,y) = 1. (x,»). (4.21)

onde os indices I e /I representam as regides incidente e emergente para as quais 0s
fluxos foram prescritos, os quais sdo indicados pelos indices in, € ponderando esses

fluxos pela dire¢do normal tém-se agora as seguintes condi¢des de contorno:

Se(4.11)e (4.12) > ¢{(x,y)_§_2’i <7 = ¢, (x,y)c0s(6 - ;) (4.22)
e
Se(4.11) e (4.13) > ¢{’(x,y)gi <7 = §1L,(x,y) cos(0 - ¢;). (4.23)

Desta forma conclui-se a formulagdo do problema direto que ¢ dado pelas equagdes
(4.2 -3) e pelas condigdes de contorno (4.22 —23). Porém, antes de resolver o
problema direto serd necessaria a discretizagdo da equagdio de Boltzmann, equagio

(4.2 - 3), o que sera feito na se¢fo seguinte.

4.3. A FORMULACAO MATEMATICA DO PROBLEMA
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DE TRANSPORTE COM O METODO DE ORDENADAS
DISCRETAS

A complexidade das equagles que descrevem os processos de transporte de
particulas forcam a implementagdo de métodos numéricos de solugdo. Tais métodos
procuram introduzir aproximagdes que convertam a forma integrodiferencial da
equacdo de transporte em um sistema de equagdes algébricas que s3o mais apropriadas

para serem resolvidas por um computador.

O procedimento mais direto € o de aproximagdes por ordenadas discretas no qual a
variavel dependente na equacfio de transporte ¢(x,€.) € substituida por um conjunto
discreto de valores em um conjunto discreto de pontos (ic)k, K_)‘m,t,,). As derivadas ¢ as
integrais que aparecem na equagéio de transporte também devem ser substituidas pela
correspondente representagdo discreta usando-se diferencas finitas e métodos de
integragdes numéricas. Desta forma chega-se a um conjunto de equagdes algébricas

para a representagio discreta da varidvel dependente.

No método de ordenadas discretas a variavel angular ¢ discretizada em um pequeno
nimero de dire¢des, ou raios, entdo a equagio de transporte de particulas € escrita para

cada uma delas.

As aproximagdes sdo feitas pelo método Sy geral a partir da equagéo de transporte.

O dominio angular, Q € S? = 4x (no caso tridimensional, no caso bidimensional

Q € S' = 2r), é discretizado em K diregdes, ou seja,
£
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Qe {Qi}comk = 1,2,...,K,

portanto, pode-se aproximar a integral em Q por uma quadratura numérica cuja a

forma genérica pode ser expressa como

K
[ 4@ da = Eka(Q’k)’ (4.24)
4 =

onde wy representa o peso da quadratura que esta associado a diregéo !_)W a soma de

todos os wy com k = 1,2,...,K ¢ igual a 4r, no caso tridimensional, ¢ igual a 27 no

caso bidimensional.

Desta forma o termo integral da equagio (4. 1),lembrando que se esta trabalhando
com a equagdo de transporte monoenergética e estaciondria, € aproximado pela

seguinte quadratura numérica,

'

X
41” 0s(%,Q, - QP(x,Q,,0d’ ~ Lwio(x9, - §)4(x,9,0, (4.25)

comk=1,2,....K.

A equagdio (4.25) é para o caso tridimensional e de acordo com o sistema cartesiano

de coordenadas, pode-se decompor €} , as direg¢des sobre os trés eixos de coordenadas
kaﬂk?l+§k@2+ﬂk?3aondeﬂ% +§%+n% = 19 (4'26)

onde px, {k, Nk sdo cossenos diretores,

com
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X =x€ +yé,+zes, (4.27)
e
V=§;'e\1+%22+%’53. (4.28)

Entdo a equagio (4. 1), para o caso monoenergético e esticionario, € aproximada por

H(x.Q,) o6(x.Q.) op )
m B o ) Y 6 (0)6(2,9,) =

K
= 2wios(%,0, - QIHEQ) +5(5,Q,). (4.29)

Cada direcgdo Qk ¢ relacionada a um peso wy, 0s quais representam areas sobre uma

esfera unitdria, e a sua soma total corresponde, portanto & drea de uma esfera unitéria.
A invaridncia das ordenadas a 90 graus ¢ desejavel assim como a simetria dos pesos na
mesma situagdo, ou seja, no caso em que (U, Gk, Nk) representam uma diregdo no
primeiro octante, a condigdo de simetria exige a existéncia dos pontos (~, 'k, 7x) no
segundo octante, (—ux,—Ck, k) no terceiro octante, (ux,~Ck,Nk) NO quarto octante,
(ux,Ck,—Mk) no quinto octante, (—gi,{x,—Nk) NO sexto octante, assim como
(—2x, ¢ k,—1) NO sétimo octante e por fim (ux, —C'k,~74) no oitavo octante. Portanto a
descrigdo dos pontos de colocagiio em um octante permite, de maneira imediata, a

identificaciio dos pontos de colocagio em todos os demais octantes.

Tém-se N/2 niveis relativos a cada eixo sobre os quais os pontos sdo colocados,
sendo N o valor representante da ordem da quadratura. Os vértices dos tridngulos sobre
a superficie da esfera sio formados pelas interse¢des de cada nivel com os niveis

relativos aos outros eixos, de forma que o namero total de vértices por octante € igual a
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N(N +2)/8 e dessa maneira a aproximagdo S, ¢ definida em cada octante. A figura
(4.7) ilustra uma quadratura com nivel de simetria Sg, vé-se através desse exemplo
que para o caso de uma quadratura de ordem 6, N = 6, que o niimero total de vértices

por octante obedece a formula N(N + 2)/8, e portanto € igual a 6.

Figura 4.7 - Quadratura com Nivel de Simetria S¢

O mais sério problema na utilizagdo do método de ordenadas discretas é o bem
conhecido efeito raio. Este fendmeno ocorre porque o método de ordenadas discretas
trata a migragfo do fluxo de radiagdo, ou de particulas, pelo confinamento deles em

caminhos com dire¢des discretas especificadas.

Existem algumas regides do sistema que ndo podem ser alcangadas ao longo da
trajetoria direta feita pelo fluxo de radiagfio, ou de particulas. As distorgdes nas

aproximagbes dos fluxos, causadas pelo efeito raio, sdo consequentemente mais
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severas € maiores na razio entre as se¢des de choque de absor¢do e de espalhamento,
porque o espalhamento aumenta o nimero de trajetorias com dire¢des prescritas que
estdo disponiveis ao fluxo. O método de ordenadas discretas pode ser considerado
como substituindo a invaridncia rotacional da equagdo de transporte de Boltzmann por
um conjunto de equagdes de transporte as quais sdo acopladas pelo espalhamento. Este
conjunto finito é, na maioria, invariante sob as rotacdes discretas do sistema
coordenado. Por outro lado, célculos de transporte que empregam o método dos
harménicos esféricos ndo exibem o efeito raio, pois as equagdes dos harmdnicos

esféricos s3o invariantes para rotagdes arbitrarias no sistema de coordenadas.

4.3.1. A FORMULACAO MATEMATICA DO PROBLEMA DE
TRANSPORTE COM O METODO DE ORDENADAS DISCRETAS

ADAPTADAS PARA O CASO BIDIMENSIONAL NO PLANO

X.Y)

Tendo em vista o fato da exploragdo da circularidade da variagdo em ¢, o dngulo
polar, serd adotado um sistema de quadratura diferente para os planos (x,y), onde ¢
estd definido, e o dngulo azimutal 77, que varia com p. Sendo p = cosn uma mudanga

de variavel de forma a simplificar a notag@o.

No primeiro caso adota-se a formula da regra trapezoidal extendida de
Newton-Cotes de ordem zero enquanto que no segundo é utilizada a quadratura de

Gauss de ordem 2.

Essas ordens de quadraturas foram escolhidas meramente de modo a simplificar a
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implementagio computacional. Tem-se a seguir a tabela (4.1) com outras ordens de

quadratura de Gauss.
t En Wn i ﬂ' n Wn
N=2 N=10
05773502691  1.0000000000  D.1488743389  0.2955241247
0.4333953941 0.2692667193
N=4 0.6794095682  0.2190863625
0.3399810438  0.6521451549 0.86500330663 0.1494513492
0.8611363115  0.3478548451 09739065285  0.0656713443
0238519 0.46791393 0.1252334085  0.2491470458
.'“m,;m ._ﬁ,:m,g 0.3578314939  0.2334925365
N=8 0.7699026741  0.16008733286
0.9841172563  0.1069393260
0.1834346424  0.3626837834  0.9815606342  0.0471753364
B.525532409%  0.3137066459
0.7966664T74  0.2223810344
0.9602898564  0.1812285363

Tabela 4.2 - Outras Ordens de Quadratura de Gauss

Aqui teremos uma quadratura diferente da equagio (4.25) conforme serd mostrado

a seguir pela equagdo (4.30).
Dada a seguinte integral,

x, Q)= [ 0.(x.9, - Q¢(x,Q)d0 (4.30)

S2=4x

onde o coeficiente de espalhamento, as@, Q_; -Q), pode ser escrito separando-se a
parte radial da angular, na forma de polindmios de Legendre para a parte angular, como

€ mostrado na equacdo (4.31) a seguir,

os(x,Q. - Q) = gas,@P,@. Q) (4.31)

Substituindo-se a equagdio (4.31) na equacdo (4.30), tem-se entdo a equagdo
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(4.32),

15,0 - Sous) | PE. Qs Q)i (4.32)

S2=4x

Observando que o () que esta sendo utilizado aqui leva em consideragdo o dngulo

azimutal e ¢ representado pela equagdo (4.7).

Faz-se agora uma mudanga de variaveis na equagéo (4.32), de forma a explicitar os
angulos polar e azimutal dentro dessa integral transformando-a numa integral dupla

conforme ¢ mostrado na equagdo (4.33).

1 2n

Kx, p1,0) = gcs@) jl g PIQ, - Q)d(x, 1t ¢ )y do’ (4.33)

onde u = cosn, referente ao ngulo azimutal e @ € o angulo polar do plano (x,y).

Nota-se que o polindmio de Legendre da formula (4.33) continua com a varidvel

antiga e esse caso sera tratado agora.

Pelo teorema da adigio o polindmio de Legendre,

!
PR, D) = PUDPR) +2 2 G PTOPF (W) cosimlp — )] (4.34)

depende da diferenga entre ¢ € @ e dos produtos dos polindmios associados de
Legendre P, assim, a adogdo dos dois tipos de quadratura, ou seja, a de Gauss para a
variavel azimutal, u, € a regra trapezoidal extendida para a varidvel polar, ¢, explora

melhor as caracteristicas do problema em estudo.
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Sendo w,, 0 peso para a quadratura de Gauss com ponto de colocagéo N e W ©
peso da regra trapezoidal, entdo substituindo-se a equacéo (4.34) na equagdo (4.33),

obtém-se a equacdo (4.35) a seguir,

1 2%

1(z,10) = Sou(@) | [PGPIG) ..

-190
l I_m)’ ! ! ' ! ' f
+2 3 o PRGOPT () cosim(e - 9 N}(x. 1,0 )du'dp’ (4.35)

Aproximando-se as quadraturas mencionadas na integral dupla da equagdo (4.35),

tem-se a equagdo (4.36),

@ N 2
I(x,y,y,,,q)k) = ZGSI(xsy) Z 2 W/»lan)kk‘ {Pl(ﬂn)Pl(,un’) +...
=0 n'=1k'=1

]
22 e PT ()PP (1, ) cos[m(@ic = 9 )T 60y 1,100 )- (4.36)

Faz-se agora algumas simplificagGes no problema em questio aproveitando-se a sua

simetria e o fato de se estar utilizando o espalhamento isotropico.

N=2, (4.37)
[=0, (4.38)
gy = pa =...= 0.5773502691, (4.39)
Wort = &, (4.40)

Wy =Wy = 1, (4.41)
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¢(xay’ﬂ1"(0k’) = ¢k' (xy) = ¢(x’y99,k’ ), (4.42)

ox(x,y) = 05(x,y). (4.43)

Substituindo-se os valores (4.37 — 38 — 39 — 40 — 41 — 42 — 43) na equacéo (4.36),

obtém-se entdo a quadratura de forma simplificada para esse trabalho,

2
I,y 1, 04) = 106y, 112, 04) = 205(x,p) D Z6,/(x,). (4.44)

K=l

Pode-se entdo escrever a equagdo de transporte de seguinte forma:

V. (Qk¢k(x5y)) +04x,)9,(x.y) =...
2J
=23 WO g (1) (6.3) + Skx.y), (4.45)
k=1

onde o,(x,y) € o coeficiente de extingfo total, sendo representado por,

o4(x,y) = 0a(x,y) + 05(x,). (4.46)
O coeficiente de espalhamento o5(x,)) para o caso isotrépico € dado como:

12xn 2

os(x.y) = J' j.as(x,y,u,u',(p,(p')dud(p = 2kZW¢kk'Gsk'k(x’y)9 (4.47)
-10 =1

ento, substituindo-se na equagéo (4.46) a equagio (4.47), tem-se o coeficiente de

extingfo total para o caso isotropico,

2
6/(x,y) = 6a(x,y) + 2 WG 1, (%,). (4.48)
k=1
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Observando-se que devido ao processo de reversibilidade do fluxo o coeficiente de

espalhamento pode ser escrito em uma das duas formas a seguir:

0 (5y) =0, (x). (4.49)

44. A APROXIMACAO DA EQUACAO DE
TRANSPORTE POR ORDENADAS DISCRETAS

A formulagdo matematica desenvolvida na subsecdo 4.3.1 levou em consideragdo a
adaptagdo das quadraturas que serdo utilizadas na equagio de transporte para o caso
bidimensional, a fim de ajusta-las para que se respeite a geometria circular em estudo.
Sendo assim, nesta se¢fio, sera tratado o problema direto da equagdo de transporte

bidimensional que ser aproximada por ordenadas discretas.

Conforme ilustra a figura (4.8), esta se trabalhando no plano (x,y) e a geometria
deste problema foi dividida, discretizada, em oito regibes devido as direcdes de

incidéncia de radiacéo gk. Porém, devido a simetria rotacional, o nimero de dire¢cdes K

que antes era de oito € reduzido a metade, sendo representado por J, pois J = K/2. As

dire¢des de incidéncia sdo representadas por Qj conforme mostrado na figura (4.3).
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Figura 4.8 - Sistema Completo de Dire¢des de Incidéncia

Manipulando-se as equagdes (4.45—46 —47 —48 —49), que representam a
discretizagio do dominio em estudo, e utilizando-se o fato do espalhamento ser

isotropico, tem-se o seguinte sistema de equagdes:

27
V- (Q0:(x)) +] oalz) +2 2w 0,0 |04(z) = (4.50)
k=1

Kk

K
=2 w0, ()8, () +au(x).
=
k

kl
kl

Parak =1,2,...,2J.

Rearrumando-se os termos da equagio (4.50), obtém-se o sistema de equacgdes de
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transporte discretizadas.

V- (Q9:(x)) +ou(x)oi(x) =

(4.51)
2
=22 W0 D[4y () - 0u(3) ]+ au(x).
k=1
K +k
com k=1,2,...,2J,
e com
W = 27”, (4.52)
e
0 4 (X) = 0s(x), (4.53)

onde as diregdes Q»k’ Qk,, sdo determinadas pela particio de dominio consistente

com o sistema fonte-detetor e Wi sd0 os pesos correspondentes na quadratura.

Manipula-se, agora, a equagdo (4.51), que é a equagdo de Boltzmann na forma

discreta, de modo que os termos no somatério do lado direito da equagdio sejam

reordenados e, desta maneira, chega-se ao seguinte resultado

2J
V-Q0u(x) + LWy 9:(z) = ax(3), (4.54)
k=1

com k,k' =1,2,....,2J,

onde os elementos da matriz Wy matriz de se¢do de choque, sdo dados pelo
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produto dos coeficientes de espalhamento relativos as diregdes gk € aos seus

respectivos pesos de quadratura.
Lembrando que w

ot = 27’;- e 0, (QQ) = as(_)c) (para o caso isotropico), entdo as

matrizes de segdo de choque, W, podem ser escritas como:

2J

W= 0a(5) +2 5 W0, (5) = 0u(z) + (2L Joy(x),  (4.55)
k=1
& +k

Wkk‘ = —2w¢kk(0-skk‘ L&) = — 21[0‘;(5') N (4. 56)

Sera feita agora a representagio dessas matrizes de se¢do de choque, ja
particionadas para as duas regides ( ou dois blocos ), como sera mostrado mais adiante,
levando-se em conta as regides [/ e I, como foi ilustrado na figura (4.4), e

substituindo-se os indices k por i e k por j,

J
Wi =0a (E,) + 2Zw¢ijo-sij(£,)a (4.57)
=l

JH

comi=12,...,J,

W{j = -2W¢ij0'sxj(£)s (4 58)

comij=1,2,....Jei+],
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comij=12,..,Jei+].

Para o caso isotropico, que € o utilizado neste problema, tem-se:

Wi =0a(x) + (Z5E )ou(x), (4.60)
Zfro,Q:)
Wi = 22 (4.61)
€
2765(x)
il = 22 (4.62)

Desta forma pode-se construir as matrizes de coeficientes de absor¢do e
espalhamento em dois blocos conforme a representagéo a seguir, pois de acordo com o

sistema fonte-detetor a matriz W é simétrica e ciclica.

Wi wi
W= AN (4.63)
Wi Wl

comi,j=1,2,...,J,

onde
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g

Wl,l WI,Z W1,3 W]J
Wl — Wia, Wii Wiz ... Wi
ij . . . .
| Wig Wimi Wipa ... Wi |
e
Wisa Wiy Wi ... Wis
| W W Wi Wi

Wi Wiz Wia ... Wiga

(4.64)

(4.65)

tem-se entdo a matriz W, separada pelos dois blocos, de acordo com a férmula

(4.63),
W])] W1’2 W1)3 - W]J
Wi, Wix Wia ... Wi
- Wiy Wi Win2 ... Wiy
Wi Wiy Wi ... Wiy
W]J W1J+1 W]J vee W1’3
| Wi, Wiz Wia .. Wign
onde J = K/2,

e cujas propriedades sdo:

1)Simétrica e diagonal dominante;

(4.66)
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2)A soma dos termos de uma linha € igual ao coeficiente de absor¢do;

3)Linhas ciclicamente rotacionadas;

4)Constituida de dois blocos simétricos.

A figura (4.9) representa a primeira linha da matriz W levando-se em consideracéo
a simetria do coeficiente de espalhamento com relagéo a dire¢éo de incidéncia (simetria

rotacional da matriz de coeficientes W).

W,

W...

\,V__: ) Direcéio de
incidéncia

W,
- Wi,

W W.,

Figura 4.9 - Simetria Rotacional da Matriz de Coeficientes W

Também se observa que ao se deslocar de um angulo

9, =(G-1E (4.67)

J 2

pode-se escrever sem perder a generalidade que
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Win=W,;

(4.68)
comj = 1,2,...,2J,

e os termos fora da diagonal sio tomados simetricamente a ela e também
observa-se, por exemplo, que a segunda linha de W pode ser obtida a partir da primeira

linha dessa matriz fazendo-se apenas o deslocamento dos seus coeficientes.

Conforme mencionado anteriormente, o sistema foi particionado em dois blocos, um
para cada regido conforme a divisdo da geometria do problema, e desta forma o

conjunto de equagdes que constituem o sistema fica representado da seguinta maneira:
Sistema de equagdes para o bloco I ( recebe o indice 7 por ser a regido incidente):
V.Q + Wil + Wil = qi (4.69)
comij=12,...,J.

Sistema de equagdes para o bloco I, (recebe o indice indice II por ser e regido

emergente):
-v. _!_Z’i + W{-} T+ Wil =qf (4.70)
comij=1,2,...,J.

O bloco II tem as dire¢Ses Qj invertidas em relagdo ao bloco I, sendo assim, a

representagio das dire¢des para o sistema completo € dada por:

Q‘j = —Q’jﬂ’ (471)
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comj = 1,2,...,J.

Com o objetivo de preparar o algoritmo computacional € por uma questdo de

simplificacdo serdo introduzidas algumas notag¢Ges a seguir,

2
Qi = CosQ;€1 +5iNQ;€; = @18 + ;22 = Y, w;/€, 4.72)
1

onde as coordenadas de _Qi sdo as coordenadas em relagéo ao plano (x,y).
i, by 2 o0
V¢,~=—-’-e1+ x; e2=2?’e1, (4.73)

vV.Q =0. (4.74)

Reescrevendo as equagbes (4.69—-70) com a notagdo utilizada em
(4.72 — 73 - 74) obtém-se dois sistemas de equagdes diferenciais, sendo um sistema
de equagdes para cada bloco no qual o dominio foi particionado e juntamente com as
condi¢gbes de contorno prescritas, dadas pelas equagdes (4.22 —23), obtém-se a
formulagdo aproximada da equag@io de transporte por ordenadas discretas para o

problema direto particionada em dois blocos.

Para o bloco I:

2 / J J
Soult + SWi+ S Wi = ol (4.75)
=1 F P

¢1((x’y)9.,i -h= {,in(x’y) cos(6 - (Pi)s (4.76)
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comi=1,2,...,J.

Para o bloco /I

2 & 11 4 1 4 oY 1
-1 = =
e
¢,”(x,J’)Q,i <7 = ¢l (x,y)cos(8 - ). (4.78)

comi=1,2,...,J.

4.5. A FORMULACAO DE PARIDADE DA EQUACAO
DE TRANSPORTE

A introdugdo da formulagio de paridade tem como objetivo a simplificagdo do
problema direto. O fluxo angular, considerado como uma fungdo da diregéo, € separado
em duas partes, uma par e outra impar. O passo matematico fundamental de se resolver
o fluxo angular nas componentes par ¢ impar ¢ significativo para aplicagdes, pois ele
complementa o principio variacional para essas componentes. Este principio pode ser
usado para construir limites numéricos superiores e inferiores proximos da solugdo

exata.

As componentes de paridade do fluxo angular também tem um significado fisico a
parte do seu uso matematico. A de paridade par, ¢*, d4 o fluxo de particulas, ou

intensidade de radia¢do, enquanto que a de paridade impar, ¢, dd a densidade de
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corrente de radiagdo. As componentes de paridade ¢*e ¢~ resultam na transformagdo

da equagdo de transporte de primeira ordem num par de equagdes de segunda ordem,

uma para ¢* e a outra para ¢~

A formulagdo de paridade para todas as fungdes envolvidas na equagdo de

transporte serd dada a seguir:

¢r = (o] +¢0) (4.79)
€
¢; = 3 (@] -1, (4.80)

onde ¢; é o fluxo de particulas, ou intensidade de radiaggo, e ¢; ¢ a densidade de

corrente.
Wi = (Wi + Wi (4.81)
€
W = (W Wi, (4.82)

onde W} e W;; sdo as componentes par e impar das matrizes de se¢do de choque.

g7 = +(q! +q) (4.83)

q; = +(q! -4}, (4.84)
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onde g7 e g7 sdo as componentes par e impar dos termos de fonte de radiagdo

interna ao meio.

Pode-se também escrever os fluxos das regides / e II em fungio das componentes

de paridade (4.79 — 80) como:

¢ = @7 +47) (4.85)
c
o' = @7 - 9. (4.86)

Com a utilizagdo da formulagio de paridade, equagdes
(4.79 — 80 — 81 — 82 — 83 — 84), nas equagdes aproximadas de transporte (4.75 — 77)
tém-se entdo dois sistemas de equagdes diferenciais com dependéncias, apenas, dos

termos de paridade par e impar.

Zwu Z o = qt, (4.87)

comi=1,2,...,J,

Zwu Z 7 =45, (4.88)

comi=12,...,J.

Utilizando-se a propriedade de inversdo de matrizes nas equagdes (4.87 — 88)
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encontram-se os valores de ¢*e de ¢, que sdio representados pelas seguintes

expressoes:

21 gk — ZZ kwklax, (4.89)

k=1 I=1

comi=12,...,J,

ZIW,qu ZZIW;kwkI o (4.90)

k=1 =1
comi=1,2,...,J,
onde /W é a matriz inversa de W.

Ao substituir-se os valores de ¢*e ¢~ calculados por (4.89 —90) nas equacdes
(4.87 — 88), serdo obtidas as equagbes que contenham separadamente os termos de

¢*e ¢, como sera visto a seguir:

Para o fluxo de particulas ¢*:

EEE & [omoni]s "
o, | @itV @k 50 |
J=1 =1 k=1

J L&,
3] = af - 23 & [0ulWi; )

P 1 =1

comi=1,2,...,J.
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Para a densidade de corrente ¢~

bl o 99
RO LouWjouae |+ (4.92)

J J 2
+-21: Wib; = q; - 22 2 [oulWiq] ],
<

1 =1
comi=1,2,...,J.

Pode-se observar que as equagdes (4.91 — 92) sdo de segunda ordem, ou seja, a
inclusdio das componentes de paridade ¢*e ¢~ resultam na transformagio da equagdo

de transporte de primeira ordem num par de equagSes de segunda ordem.

Rearrumando-se as equagdes (4.91 — 92) com o objetivo de escrevé-las na forma da
equacio de transporte de radiagéo, ou particulas, para um sistema eliptico no qual estdo

explicitas as matrizes de difusdo, de absor¢io e os termos de fonte.

Vet @V +att =f (4.93)
e

Ve @V )+ad =1, (4.94)
em B(0,R),

onde ® representa o produto tensorial, B(0,R) = Q) representa o dominio do
problema, uma bola centrada em zero e com raio igual a R, c¢* € ¢~ séo os tensores de

difusdo, a* e a~ as matrizes de absor¢do e f* e f~ os termos de fonte.



Tensores de difusio:

+ — . + N
Cijki = wi W Dk

Cijit = @illW 04,

com i,j=1,2,....Jekl=12.

Matrizes de absorcio:

+ — Wt
e
a,»‘sz;-,

com i,j=12,...,J.

Termos de fonte:

J 2

fi= q,-*-;l 1 % [oulWyg; ]
Py

J 2
fi=ai - 22w oulWiq) ],

=1 k=1

comi=12,..,J

62

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)
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Para que seja completada a formulagio de paridade para o problema direto €

necessdria a descri¢do das condi¢des de contorno com essa mesma formulagéo.

Condicdes de contorno para o fluxo, ¢/, e para a densidade de corrente, ¢;:

A partir das equacdes (4.85 —86) eliminando-se os ¢;, substituindo-os pela
expressdo obtida em (4.90), restario como incégnitas somente os termos de ¢, pois
¢! e ¢! sdo valores prescritos e gq; sdo os termos de fonte interna que também sdo

conhecidos.

As expressodes para os ¢ sdo, entdo, escritas das seguintes formas:

J

ZZ GO = -3 Wyq; (4.101)
J=1 =1 J=1
€
J
¢F +ZZ GOk = 87 + Y Wyq;, (4.102)
=1 k=1 1

comi=12,...,J.

Eliminando-se os ¢}, substituindo-os pela expressdo obtida em (4.89), restardo

somente os termos de ¢; como incognitas.

As expressdes para os ¢; s3o entdo escritas das seguintes formas:

ZZI b = §l - ZI (4.103)

J=1 =1
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o7 +ZZ (0;1 = ¢+ Z tqr, (4.104)

=1 k=1
comi=1,2,...,J.

Ponderam-se as equagdes (4.101 — 102), equagdes em relagdio a ¢™, para a dire¢do
normal 7, utilizando-se para isso de (4.15). Isto se faz necessario por se tratar das

condig¢des de contorno generalizadas de Neumann.

A diregdo normal as regides I e II s6 difere por um sinal ja que, por convengdo, a

dire¢do normal a regido II é escolhida como sendo positiva.

Para a regido I:

—cos(0 — @:)p; + kaZZa),k w,; b = —cos(0 — ¢,)¢! + (4.105)

k= =1 =1
J
+2_IW,q; cos(6 — ).
1
Para a regido II:

+cos(@ — ;)P + kaZZw,k PO af = +cos(0 — @) + (4.106)

k=1 j=1 k=1
J
+IW;q; cos(8 — ¢,).
=

Fazendo o mesmo procedimento anterior para as equagdes (4. 103 — 104), equagdes
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em relagdo a ¢, tém-se entdo:

Para a regido I:

2 J 2 .
—cos(0— )7 + D vk ZZCOL];IW;-(D];]%‘ = —cos(0 — ;)¢ + (4.107)
P gy

J

+ZIW;;qJ+ cos(0 - ¢;).
J=1

Para a regifio II:

2 J 2 +
+008(0~ )7 + Vi Y 0l Wy, = —cos(8 - 9. )p” + (4.108)

P
J
s
+§1quj cos(@ — ¢,).

Considerando-se as equagdes (4.11 — 18 —19-20-21), entdo, as equagdes
(4.105 — 106) podem ser reescritas da seguinte forma, para os casos cujo cos(f — ¢;)

< 0 e cos(d — ¢;) > 0 respectivamente:

Para a regidio I{cos(8 — ¢;) < 0}:

2 J 2

oot
S vy, Zw,—)kIWg-a),—JaL;’[ —cos(@ —@i)d; =
g
J
= —cos(f - fPi)l: tn— 2 IWa; J (4.109)
M

Para a regidio 7I{ cos(6 — ¢;) > 0}:
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2 J 2
_ o4
2 Vi 2 2 0idW0, 5L +cos(0 - 9.)¢; =
k=1 =l =

J
= +cos(9—(p,-)’: o +ZIW5-q;J. (4.110)
=

Repetindo o procedimento anterior para as equag¢des (4.107 — 108), nos casos cujo

cos(0 — ;) < 0 e cos(8 — 9;) > 0 respectivamente, leva-se aos seguintes sistemas de

equacgdes:

Para a regido I{cos(@ — ¢;) < 0}:

2 J 2 047
2 Vi 2 2 0uldWia; 2 — cos(0 - ¢,)¢; =
P =y

J
= —cos((?—(p,-)[gb{,,-,,—-ZIW;q;:'. 4.111)
=
Para a regido /I{ cos(f — ¢;) > 0}:

2 J 2

op; _
2 vi LY 0irdW =L + cos(@ - pi)g; =
k=1 =l i=1

J
= +cos(8 - (p,-)[— n+ Y Wiqt } (4.112)
=

Serdo analisados os intervalos angulares a fim de se obter uma tinica expressdo, ou

seja, um algoritmo que seja valido para todo o dominio.

Considerando-se os seguintes intervalos angulares do dominio, define-se a fung¢do

¢iin a partir de (4.109 — 110). Essa fungfio relaciona os fluxos prescritos para as
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regides / e 1] com os termos de fonte interna.

Para {Z < |0 — i < 3= = cos(0—¢;) < 0):
2 2

J
Giin = Ol — D IW;q; < cos(0— ;) <0 (4.113)

=l
ou

Para {0 < |0 - ;] < ZouE <|9-¢;| <2r = cos(@—¢@;) > 0}:
J

Giin = bin + 2 IW,q; < cos(0- ;) > 0. (4.114)
=

Também ser4 definida a fungdo ¢, , utilizando-se as equagdes (4.111 - 112).

ijin

Para {£ < |0-¢i| < 3 = cos(6— ;) < 0):
J
Pim = :{m - ZIW;;Qf < cos(@-¢;) <0 (4.115)
=

ou

Para {0 <0 —¢i| < £ ou3E < |0—@,| <2m = cos(@— ;) > 0}:
J

Biin = i+ 2 IWiq; < cos(0-9,) > 0. (4.116)
A1

Pode-se, finalmente, escrever a equagéo, ou algoritmo, das condi¢des de contorno

eneralizadas de Neumann para ¢}, que é vilida para todo o dominio.
g p i»9q p
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ZV;,ZZ&),;J cojz +abs(cos(9 Pi))T = (4.117)

k= J=1 =1
= abs(cos(0 — ¢,))Pin

Parai = 1,2,...,J e x> + y? = R?, onde a fungfio abs leva em conta somente o valor

absoluto do cosseno.

Sera mostrada a seguir a equag#o para ¢~ das condi¢bes de contorno generalizadas

de Neumann:

kaZZw,kIW,]a)ﬂ a] + abs(cos(@ - ¢,))¢; = (4.118)

k= 1 =1
= abs(cos(6 - ¢i))¢-i,in
Parai = 1,2,...,Jex? +y* = R%.

As equagdes (4.113-114-115-116— 117 — 118) sdo reescritas de forma mais

simplificada.

e (ctVP*) + 0t = g (4.119)

em 0B(0,R) = 0Q, que € a fronteira do dominio do problema.

ne(cVg )+ Qp =g (4.120)

em 6B(0,R),
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onde

7 (V) = S S S W GO (4.121)
k=l =l k=

e

Ae(cVe) = kazz:w,kl prRan 6; (4.122)
k= =1 =1

Q = abs(cos(0 - ¢:)), (4.123)

gt = abs(cos(0 — @i))Piin (4.124)

€

g = abs(cos(0 — 9))F - (4.125)

onde Q e g sdo relacionados aos valores das derivadas normais.

Devido a utilizag@o da formulagfo de paridade, o problema direto € representado

pela equagdes (4.93 — 94 — 119 — 120).

4.6. A SOLUCAO DO PROBLEMA DIRETO

De posse da geometria, do sistema de equagdes diferenciais da equagdo de
transporte ja aproximado devidamente e também das condi¢des de contorno, ou seja,
com o problema direto ja especificado, pode-se a partir de agora resolvé-lo através do

método dos elementos finitos, conforme foi descrito no capitulo 3, utilizando-se da
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formulag@o variacional, ou formulagdo fraca, de modo que a sua solugo, chamada de

solugdo fraca do problema diferencial, seja a solugdo do sistema.

O método dos elementos finitos pode ser resumido basicamente como a proje¢do da

forma fraca da equagéo diferencial em um espago de fungdes de dimensio finita.

Dado o problema de valor de contorno, cujo o objetivo € encontrar ¢/ e

¢; € H'(B(O,R)),

comj=1,2,...,J,

tal que:
V.(ctQVp*)+a'¢t =f (4.126)
¢

Ve @V )+a ¢ =f, (4.127)
em B(0,R),

- (V) + O = gt (4.128)
e

Ae(cV)+0p =g, (4.129)
em 8B(0, R),

pode ser dado pela seguinte formulagfo variacional:
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Assumindo que ¢; seja uma solugdo da equagdo diferencial (4.126 —127),

multiplica-se essa equag@io por uma fungdo teste arbitraria \V; e integra-se em todo o

dominio ¥ = B(0,R) € H'(B(0,R)), o que resulta em:

[ V- (cV)¥idV+ [ ap¥dV= [ f¥dV, (4.130)
B(0,R) B(0,R) B(0.R)
lembrando que:
V-l@pH=UA-VH+(V-ADf, (4.131)
entdo,
V-ADf=V-A@H-A-V (4.132)
como
4 = vy, (4.133)
€
f=Y; (4.134)

a equacio (4.132) € escrita como:

V. (CV¢}')\P,' =V (CV¢j"Pi) - (CV¢J) . V“P,‘, (4. 135)

portanto, substituindo (4. 135) na equagdo (4. 130), segue que:
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[ {-V-(cV$¥)+ (V) -V }dV+ [ ap¥dV= [ f¥:dV, (4.136)
B(0,R) B(O,R) B(0O,R)

rearrumando-se 0s termos, vem que:

[ (cVg)-V¥i+ap¥)dV— [ V- (Vp¥)dV= [ fdV,  (4.137)
B(O,R) B(O,R) B(O,R)

utilizando-se das propriedades do teorema de Green, ou da divergéncia, a integral de

todo o dominio, B(0, R),

[ V(g ¥n)av, (4.138)
B(0.R)

se transforma numa integral da superficie 6B(0, R), tal como,

[ viZav= | Z.#dr, (4.139)
B(O,R) 9B(0,R)

com

Z =V, (4.140)
€ portanto,

[ V(v ¥)av= [ 7-(cV$¥))dl (4.141)
B(O,R) 9B(0,R)

substituindo-se (4.141) em (4. 137) tem-se entio,

[ (V) -V¥i+ap¥)dV— [ 7-(cV;¥)dl = [ foidv, (4.142)
B(0O,R) OB(0,R) B(O.R)
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substitui-se, agora, o termo referente as condi¢des de contorno (4.128 — 129) na

integral de superficie e desta forma obtem-se:

[ (V) -V¥i+ap¥)dV- [ (-Qi+@)¥idl = [ f¥:dV, (4.143)
B(O,R) 0B(0,R) B(0,R)

rearrumando-se os termos chega-se a seguinte expressio:

[ (cV8))-V¥i+ap)¥i -V~ [ (-0 +g)¥idl = 0 (4.144)
B(O,R) 0B(0,R)

= V¥, € H'(B(O,R))

onde a equagdo (4.144) ¢ chamada de forma variacional, ou fraca, e a sua solugio
de solugdo fraca do problema diferencial (4.126 — 127 — 128 — 129). Obviamente
qualquer solugdo da equagfio diferencial também € uma solugdo do problema

variacional e a reciproca também € verdadeira sob algumas restri¢des no dominio e nas

fungdes coeficientes.
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CAPITULO 5

RESULTADOS

Neste capitulo serdo apresentados os resultados obtidos pela implementagio
computacional do problema direto formulado no capitulo anterior. A rotina
computacional desenvolvida para a solugdo desse problema foi escrita para o
MATLAB 6.0.0.88 RI12. O algoritmo foi compilado ou codificado num
microcomputador com 128 Mb de memoéria RAM e com um microprocessador da
marca Pentium, cujo modelo ¢ PIIl 550 MHz. Foram feitas varias simula¢des na
investigagdo da solugfio desse problema, tais como variagdes da geometria, das
condi¢des de contorno, e também dos pardmetros, ou seja, das constantes de

condutividade (ou difuséo) e os coeficientes de absor¢do e espalhamento.

5.1. AS CONSIDERACOES PRELIMINARES

5.1.1. A APRESENTACAO E A DISCRIMINACAO DOS

TERMOS DO ALGORITMO COMPUTACIONAL

Algumas considera¢Ges iniciais sd0 necessarias para a implementagio do algoritmo

computacional do seguinte problema direto,



75

Ve(c®@Vp)+ad =f (5.1)

em B(0,R),

ne(cVo)+Q0p=¢g (.2)

em 0B(0,R),

onde B(0, R) representa o dominio do problema, uma bola centrada em zero € com

raio igual a R, ¢ é o tensor de difusdio, a a matriz de absorgdo e fo termo de fonte, Qe g

sdo relacionados aos valores das derivadas normais.

A figura (5. 1) representa um diagrama esquematico deste algoritmo.

[DESCRICAO DA GEOMETRIA
DO PROBLEMA
E
ESPECIFICACAO DA
NAO-HOMOGENEIDADE

¥

GERACAO AUTOMATICA
DA

Y

DESCRICAO DAS
CONDICGOES DE
CONTORNO

v
SOLUCAO DO
PROBLEMA
DIRETO: ¢*

Figura 5.1 - Histograma do Algoritmo Computacional

A seguir serdo discriminados todos os termos do algoritmo computacional do



76

problema direto.

5.1.1.1. A DESCRICAO DA GEOMETRIA DO PROBLEMA E A

ESPECIFICACAO DA NAO-HOMOGENEIDADE

A geometria ¢ composta de dois circulos, o maior deles possui raio igual a 1

(R = 1 ¢cm) enquanto que o menor, a ndo-homogeneidade, tem raio igual a 0,2
(r =0,2cm). O dominio é entdo dividido igualmente em oito regides iguais

observando-se a questio da simetria para a formulagio do problema direto.

5.1.1.2. A GERACAO AUTOMATICA DA MALHA PRIMITIVA

O dominio é mapeado, aproximado por tridngulos, gerando uma malha de elementos

finitos.

5.1.1.3. OS DADOS DE ENTRADA

Esses dados de entrada sdo utilizados ao longo do programa.

5.1.1.3.1. A CONFIGURACAO INICIAL DOS PARAMETROS

O coeficiente de absorgéio é 0,001 (6, = 0,001 cm™');

O coeficiente de espalhamento é 0,249 (6, = 0.249 cm™);
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o centro da circunferéncia menor, a ndo-homogeneidade, é (xo[cm];yo[cm]);

o valor maximo para a altura dos tridngulos da matha € 0,01 (Amex = 0,01 cm);

a constante de condutividade da circunferéncia maior é 1 (k; = 1);

a constante de condutividade da circunferéncia menor € 10 (k, = 10).

onde as constantes de condutividade k; e k, sfio fatores de ajuste que estdo
embutidos nos termos de absor¢io e espalhamento da equagdo de transporte de
radiagdo, ndo sendo necessdrio explicitd-los ao longo do desenvolvimento da
formulagiio matematica, contudo para a implementagdo computacional a discriminagio
desses termos se faz necessdria para que se possa diferenciar com maior clareza o

termo de perturbagéo.

5.1.1.4. AS MATRIZES DE SECAO DE CHOQUE (a)

As matrizes de secdo de choque s3io dadas pelas equagles

(4.97 — 98 — 60 — 61 — 62).

onde as constantes de condutividade k; ¢ k, devem ser explicitadas na rotina

computacional por uma simples multiplicagdo direta nas formulas (4.97 — 98).

5.1.1.5. AS MATRIZES DE CONDUTIVIDADE (c)

As matrizes de condutividade s3o dadas pelas equagdes (4.95 — 96).
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onde as constantes de condutividade k; e k; devem ser explicitadas na rotina

computacional por uma simples multiplicagdo inversa nas férmulas (4.95 — 96).

5.1.1.6. OS TERMOS DE FONTE ()

Os termos de fonte sdo dados pelas equagdes (4.99 — 100), mas neste trabalho sdo

considerados como nulos (f = 0).

5.1.1.7. A EQUACAO DIFERENCIAL PARCIAL

A equagdo diferencial parcial (PDE) € dada pela equagéo (5.1).

5.1.1.8. A DESCRICAO DAS CONDICOES DE CONTORNO

A condigdo de contorno de Neumann generalizada ¢ dada pela equagdo (5.2).

5.1.1.8.1. AS CONFIGURACOES POSSIVEIS PARA AS CONDICOES

DE CONTORNO DO SISTEMA

A tabela (5.1), a seguir, mostra todas as configuragdes possiveis para as condigdes

de contorno do sistema,
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b1 [ bz [ b3 [ b4 | bs [ be [ b7 [ bs |
v—prs|ctiprifrt—pins| srapr|r—Pics hys—porser iy ca—pis

*l,in *lt,lin "llfin ¢:,in *:,m ¢:,in 4’:,,,1 ﬂl,li,. *fi,.
. fg,in ‘*:m ‘f:n *;[,m f;,i,. '*:,in *;,in *Zﬂn *;I,m
P [P | o [ 5 [#5m | #h | fm | B | #h
boim [ #om |[#am [P | o | Fomm | Poim | Poim | Poim
-{Lin 'ﬂ?in -¢£in ":,m :,in 4‘:,in f:,;,. 'ﬂl,li,. '*fm
¢ ?i,in "P-.lvl,in ""‘.l'l,in ‘*g,in *;,in ‘f‘:,in *;,in *fll,in 'ﬁin
?3,&. -’:in 413[,5; _¢131’h '*l:,m ¢fli,in ¢;,m ¢';,in f’;,m
Foim [Pom [Pain [Poim [P [Foin | #aim | $aim | Pain

Tabela 5.1 - Configuragdo Completa das Condigdes de Contorno
5.1.1.82. AS CONFIGURACOES PARA A PRESCRICAO DAS

CONDICOES DE CONTORNO DO FLUXO DE PARIDADE PAR (¢*)

Neste trabalho s6 serfo apresentados os resultados referentes a ¢* que € o fluxo, os

resultados relativos a corrente ¢~ ndo serdo apresentados. Neste caso as configuragdes

para as condigdes de contorno que serfo utilizadas nesta pesquisa sdo dadas pela tabela

(5.2), que sdo referentes a ¢*. As configuragSes da tabela (5.3) que se referem as
q

condigdes de contorno de ¢~ ndo sero utilizadas, porém serdio mostradas para efeito de

ilustrag@o.
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b1 b2 b3 | b4 bs | bs b7 bs

v—Ppxifri—Ppxifsi—pPpiss ind—Ppz | F—Pix s b3 4—Prx Yoz 3PpTx 3 tx-3—p i1

i | Fim | fom | Pin | Fron | o | $h | 5 | #F

L in

At | fom [ | fon | | foin | Bhin | F2m | Hrm
¢

*3,in ¢131,m ’lgl,m ¢lf.::,m #’I.m *g,h ¢;,in *g,h ¢;,in

4 in *:.in 4 in f:i.. f:i,. f:m f:,i, ’.I“,. *:,in

Tabela 5.2 - Condigdes de Contorno para o Fluxo de Paridade Par

5.1.1.8.3. AS CONFIGURACOES PARA A PRESCRICAO DAS

CONDICOES DE CONTORNO DO FLUXO DE PARIDADE iIMPAR (¢°)

Conforme mencionado anteriormente, essas configuragdes da tabela (5.3) ndo serdo

utilizadas nesse trabalho.

b1 b2 b3 b 4 b5 bs b7 bs

v—Pprt|xi—Prijxi—PpirI iz s—pr|r—Ppirg tr J—prYor i pic g Tr-3—Pix

T g o I I I I | o

fl,in +l,in -él,in *1,in *1,in ¢l,in ‘h,in P |
T 14 i I I I I n

- *"-’,in -*Z,in -¢2,i11 -¢2,in *:,i,. *g,;,. *z,i‘ ¢z,in -¢2,h

—_ I n I 1§ I 1 I

*3,in '¢3,in "3 in '¢3,in '¢3,in 4’3,in *3,in ¢3 in

Iun "iin '*ﬁ-. "ﬁth -#f,i. 'f:h f.:,i,. ﬁ,h élh

Tabela 5.3 - Condigdes de Contorno para o Fluxo de Paridade impar

5.1.1.84. AS CONDICOES DE CONTORNO DO FLUXO DE
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PARIDADE PAR (¢') PARA CADA DIRECAO DE INCIDENCIA DE

RADIACAO (Q,) NO PLANO (X,Y)

Serdio mostradas pelas figuras (5.2 -3 -4 -15) com as suas respectivas tabelas
(5.4-5-6-7), a configuragio das condi¢des de contorno para cada diregdo de

incidéncia de radiag@o, ou seja, para as dire¢Ges gi (plano (x,y)), comi = 1,2,3 e 4.

Configuragéo das condiges de fronteira para a diregio g] (i=1)

cbl.iny
COS (s - )0

(I)Lz'u!
COS(sg - A0 s 81

Figura 5.2 - Diregéio ) |

CONDICOES DE CONTORNO PARA A DIRECAO 1(i= 1)

b1 b2 b3 b4 bs | b b?

b b b bs |

g—Ppxd |z i—Pprzl—Pird| ixd—T | T—Pix 3 by —Ppr1-Yex x_’ﬁx;?x-;—-’:x

"mn *11,[51 ‘*:,Iin ﬁ,in *:,in '*:,h ‘*:in "’ll,lin ’:in

Tabela 5.4 - Condi ¢des de Contorno para a Diregdo gl
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Configuragio das condigdes de fronteira para a diregdo Qz (i=2):

Q

—

q) I

2in

COS(s3 — )0

2

D 2.in o
COS(s3

Figura 5.3 - Dire¢do Q2

= )0

CONDICOES DE CONTORNO PARA A DIRECAO 2 (i= 2)

b1 b2 b3 | b4 bs | bs b7 bs |
6 —Pprt|riaPrsiadpist] tz gt | ToPixg hygpprr Hez Py T 3—P 22
n I I 1 I I o
$2in | P2, | Poin | P2in [P2im | Poin | Poin $2in | P2 in

Tabela 5.5 - Condi¢des de Contorno para a Diregio Q2
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Configuragio das condi¢des de fronteira para a dire¢do g3 (i=3):

Q_.B q)linz
COS(s3 - A0

by

P

q)liu

z

COS(s3 - A0

Figura 5.4 - Diregéo Q3

CONDICOES DE CONTORNO PARA A DIRECAO 3 (= 3)

b1 b2 b3 b4 bs bs b7 bs
6 —Pprt|stmPprdeiafpied| iz st | T—Pig g 1 gpprr ez i—Pi ¥ r-3—Pix
I I i I I I I I
¢3,in *3,& ¢3,in *3,in ¢3,h *3,in *3,in ¢S,in ¢3,in

Tabela 5.6 - Condi¢des de Contorno para a Dire¢éo Q3
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Configuragio das condigdes de fronteira para a diregéio Q4(i = 4):

o

¥ig
4.in

COS(s3 ~ )0

@

I

4 in

COS(s3 - A0

Figura 5.5 - Direc¢do g4

CONDICOES DE CONTORNO PARA A DIRECAO 4 (= 4)

b1 b2 b3 | b4 | b5 | bs b? bs
v—Pprs|zr—Pprifsi—Ppins] sz s—pr|r—Ppiz g pg ;_px-&f&; Py Tx 8P s
I o I I n I I I
‘h,in ¢4,i:. ¢4,in ‘h,in ‘h,i,. ¢4,in ¢4,in "4,in *iin

Tabela 5.7 - Condigdes de Contorno para a Diregéo Q4
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onde a figura (5.6) ilustra a localizagdo dos b;, comi = 1,2,3,4,5,6,7 ¢ 8.

b3 b2

b4 b1

bs bs

be—— b7

Figura 5.6 - Contorno do Sistema

5.1.1.9. A SOLUCAO DO PROBLEMA DIRETO

A solugio do problema direto € o fluxo ¢*[cm~2s7].

5.2. A INVESTIGACAO DA SENSIBILIDADE DO FLUXO
DE RADIACAO (¢*) PRESCREVENDO-SE A MESMA
CONDICAO DE CONTORNO PARA CADA VARIACAO
DA POSICAO DA NAO-HOMOGENEIDADE NO

INTERIOR DA GEOMETRIA CIRCULAR NO PLANO

(X, Y)

Os resultados que serdo apresentados nesta se¢do com o objetivo de investigar a
sensibilidade do fluxo ¢* consideram como referéncia as simulagdes sem a
perturbagdo. As simulagdes com a ndo-homogeneidade levam em conta a variagdo da

posi¢do dela no interior do circulo, dada uma condi¢do de contorno fixa, assim como
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todos os outros parametros.

A condigiio de contorno prescrita nessa simulagdo ¢ representada, a seguir, pela

tabela (5.8).
PRESCRICAO DAS CONDICOES DE CONTORNO
b1 b2 b3 b4 bs bé b7 bs
o—Pprd|zi—Pprifrt—pind} it gpr | T—Pir g hgjprr-ter—Picy *r3—pix
frim | 1 0 0 0 0 0 0 0

$2: ]| O 0 ] 0 0 0 0 0

P3| O 0 0 0 0 0 0 0

Piin | O 0 0 0 0 0 0 0

Tabela 5.8 - Condi¢do de Contorno Prescrita

As posigdes do centro da ndo-homogeneidade em cm sdo:

para a primeira simulag@o:

Cl = (0,7;0, 3);

para a segunda simulag@o:

C> =(0,3;0,7);

para a terceira simulagéo:

C3 = (—09 3a 09 7);
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para a quarta simulag@o:

Cs = (-0,7;0,3);

para a quinta simulagéo:

Cs = (-0,7;-0,3);

para a sexta simulag@o:

Ce = (-0,3;-0,7);

para a sétima simulagdo:
C7 = (0,3;0,7);
para a oitava simulagdo:

C8 = (09 7; -07 3);

5.2.1. A MALHA TRIANGULAR DE ELEMENTOS FINITOS

PARA A GEOMETRIA DO PROBLEMA SEM A PERTURBACAO

A figura (5.7) representa a malha de elementos finitos para a geometria do

problema sem a perturbagdo.
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Figura 5.7 - Malha de Elementos Finitos Triangulares da Geometria Homogénea

5.2.2. AS MALHAS COM A PERTURBACAO E A ANALISE DA
SENSIBILIDADE DO FLUXO DE RADIACAO PERANTE A

VARIACAO DE POSICAO DA NAO-HOMOGENEIDADE

A partir de agora serdo apresentadas as malhas para cada posi¢do da perturbagdo,
assim como as representagdes do fluxo sem e com a ndo-homogeneidade, também
serdo mostrados os resultados dos fluxos nos pontos nodais da fronteira de modo a

comparar as duas situagdes e observar a sensibilidade do fluxo.
Os resultados da primeira simulagio sio mostrados a seguir pelas figuras

(5.8-9-10-11-12).
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A figura (5. 8) representa a malha para a primeira simulagao.
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Figura 5.8 - Malha da Geometria com a Ndo-Homogeneidade

A figura (5.9) ilustra a passagem do fluxo através da superficic com € sem
perturbagdo. Observa-se a diferenga nos dois casos, ou seja, a sensibilidade da regido

ndo-homogénea mediante a passagem do fluxo.
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Fluxo+ S.P.(=1) Fluxo+ C.P.(F1)

Rt 05
=2

6a2 Q.04 -

00 0.02

=)

Figura 5.9 - Passagem do Fluxo pelas Geometrias Homogénea e Nio-Homogeénea

As figuras (5.10 — 11) representam o fluxo que passa pela fronteira dos problemas
homogéneo e ndo-homogéneo, nas quais o pico maior € o fluxo incidente enquanto que
o menor é o fluxo emergente. A diferenga entre os dois picos se d4 devido ao sistema

ser espalhador e absorvedor.
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Fluxo nos Pontos Nodais do Contorno (sem perturbagao)

1.4 T T T

08

06|

Fluxo nos Pontos Nodais do Contorno

02

N

8] 1 2 3

Perimetro do Contomo

Figura 5.10 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogénea

Fluxo nos Pontos Nodais do Contome (com perturbagao)

14 T ,

12+

06

Fluxo nos Pontos Nodais do Contorno

04F

02

N

) \

/ |

./.I L5

ul
0 1 2

3 4
Perimetio do Contorno

Figura 5.11 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagdo
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A figura (5.12) compara o caso homogéneo com o ndo-homogéneo, pode-se ver que
no segundo caso o fluxo emergente ¢ menor que o do primeiro ¢ isso se da devido a

sensibilidade ao defeito.

Fluxo nos Pontos Nodsis do Contomo
14 T L T T T

T
—=  Fluxe + Com Perurbagac
—— Fluxe + Sem Perturbagao

08 -

06}

Fluxo nos Pontos Nodais do Contorno

02

vvvvvvvvvvvv

Perimetro do Contorno

Figura 5.12 - Superposi¢do dos Fluxos nos Pontos Nodais

Os resultados da segunda simulagio sdo mostrados a seguir pelas figuras

(5.13-14-15-16).
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Figura 5.13 - Malha da Geometria com a Nao-Homogeneidade

Fluxo+ S.P.(F1) Fluxo+ C P.(=t)

002+ 0.05+

Figura 5.14 - Passagem do Fluxo pelas Geometrias Homogénea e Néo-Homogénea
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. Fluxo nos Pontos Nodais do Contomo (com perturbagac)
1. T T T T T T
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J
04F } \ f,‘\ B

B [N

/ /
\ / .\\ A .

0 1 2 3 4 5 [ 7
Perimetro do Contorno

Fluxo nos Pontos Nodais do Contorno

Figura 5.15 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagio

Fluxo nos Pontos Nodais do Contomo
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Figura 5.16 - Superposigdo dos Fluxos nos Pontos Nodais
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Os resultados da terceira simulagio sd3o mostrados a seguir pelas figuras

(5.17-18-19 -20).

06

Cél-

AVAVAVAY,
02} "‘éﬂ W‘:’VEL‘AVAQ KD

Figura 5.17 - Malha da Geometria com a Ndo-Homogeneidade
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Fluxo+ S.P.{=1) Fluxo+ C.P.(=1)

0.2 0@
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002,
0.014

Figura 5.18 - Passagem do Fluxo pelas Geometrias Homogénea e Ndo-Homogénea

Fiuxo noa Pontos Nodais do Contoma (com perturbagao)
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Figura 5.19 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagéio
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Fluxo nas Pontos Nodais do Contomo
1.4 T T T T 1

I
~e  Fluxo + Com Perturbagac
—4— Fiuxo + Sem Perturbagao

08+ 4

0B

i1

Fiuxo nos Portos Nodais do Contorno

04+

i3

02k

D\ bttt nererd-

gttt et ; 4
0 1 2 3 4 5 6 7
Perimetro do Contomo

-
++

Figura 5.20 - Superposigdo dos Fluxos nos Pontos Nodais

Os resultados da quarta simulagio sdo mostrados a seguir pelas figuras

(5.21 -22 - 23 - 24).
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Figura 5.21 - Malha da Geometria com a Ndo-Homogeneidade

Fiuxo+ S.P.(F1} Fluxo+C P (=1}

Figura 5.22 - Passagem do Fluxo pelas Geometrias Homogénea e Ndo-Homogénea
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Fluxo nos Pontos Nodais do Contarne (com parturbagao)
14 T T T T T T

08r

Fluxo nos Pontos Nodais do Contorno

04t

02 -\ f \x ./ -
N . / A\

3
Perimetra do Contorno

Figura 5.23 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbaggo

Fluxo nos Pontos Nodais do Contomo
14 ] T T H

T
—~= Fluxe + Com Perturbagaco
—— Fluxe + Sem Perturbagac

124+ 1

08 -

06

Fluxo nos Pontos Nodais do Contorno

04

i

82}

vvvvvvvvvvvvvv

Perimetre do Contorna

Figura 5.24 - Superposigdo dos Fluxos nos Pontos Nodais
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Os resultados da quinta simulagio sdo mostrados a seguir pelas figuras

(5.25-26 -27-28).

08

06t

0.2}

021

04}

06}

D8k

Figura 5.25 - Malha da Geometria com a Ndo-Homogeneidade
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Fluxo+ C P.(=1)

Fluno+ 8.P.(F1)

0.01

0.o2
001

Figura 5.26 - Passagem do Fluxo pelas Geometrias Homogénea e Ndo-Homogénea

Fluxo nos Pontos Nodsis do Contomo (com perturbagac)
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Figura 5.27 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagéio
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Fluxo nos Portos Nodais do Contomo
14 T T T T

—=  Fluxo + Com Periurbagas
= Fluxo + Sem Perturbagas

06 -

Fluxe nos Pontes Nodais do Contorno

04} E
02} E
u\::::‘.“ bttt 44 FEERAASSARS o L
0 1 2 3 4 5 3 7
Perimetro do Contorna

Figura 5.28 - Superposigio dos Fluxos nos Pontos Nodais

Os resultados da sexta simulagdo sdo mostrados a seguir pelas figuras

(5.29 - 30 — 31 - 32).
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Figura 5.29 - Malha da Geometria com a Ndo-Homogeneidade

Fluxo+ S.P.(=1) Fluxg+ C.P.(=1)

ToEn -

Figura 5.30 - Passagem do Fluxo pelas Geometrias Homogénea e Nao-Homogénea
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Fluxo noe Pontog Nodais do Contorna (com perturbagac)
14 T 1 ¥ T i
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Figura 5.31 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagio

Fluxo nos Ponios Nodais do Contomo
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Figura 5.32 - Superposi¢io dos Fluxos nos Pontos Nodais
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Os resultados da sétima simulagdo s3o mostrados a seguir pelas figuras

(5.33 - 34 - 35 - 36).
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Figura 5.33 - Malha da Geometria com a Ndo-Homogeneidade
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Fluxo+ C.P.(=1)

Fluxo+ 8.P.(F1)

Figura5.34 - Passagem do Fluxo pelas Geometrias Homogénea e Ndo-Homogénea

Fluxo nos Pontos Nodeis do Contomo (com perturbagao)
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Figura 5.35 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbag@o
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Fiuxo nog Pontos Nodais do Cantorna
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Figura 5.36 - Superposico dos Fluxos nos Pontos Nodais

Os resultados da oitava simulagdo sfo mostrados a seguir pelas figuras

(5.37 - 38 — 39 - 40).
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Figura 5.37 - Malha da Geometria com a Ndo-Homogeneidade

Fluxo+ S.P.(=1) Fluxo+C P (=1)
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Figura 5.38 - Passagem do Fluxo pelas Geometrias Homogénea e Nao-Homogénea
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Fluxo nos Pontos Nodsis do Contomo (com perturbagao)
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Figura 5.39 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagdo
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Figura 5.40 - Superposicgo dos Fluxos nos Pontos Nodais
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De acordo com as figuras geradas para as oito simulagdes pode-se ver que a
sensibilidade do fluxo diante da ndo-homogeneidade para a dada condigdo de fronteira
s6 é notada nas simula¢des que envolvem o primeiro e o quarto quadrantes enquanto

que nas demais simulagdes essa sensibilidade néo € percebida.

5.3. A INVESTIGACAO DA SENSIBILIDADE DO FLUXO
DE RADIACAO (¢*) PARA DIFERENTES CONDICOES
DE CONTORNO PRESCRITAS SENDO FIXA A
POSICAO DA NAO-HOMOGENEIDADE NO INTERIOR
DA GEOMETRIA CIRCULAR NO PLANO (X, Y)

Nesta se¢do serdo apresentados os resultados da sensibilidade do fluxo para
diferentes condi¢des de contorno e fixando-se a geometria e os pardmetros (coeficientes

de absorgdo, de espalhamento e de condutividade).

O centro da ndo-homogeneidade, em cm, sera fixo em (x = 0,7;y = 0,2) com raio

igual 2 0,2 cm.

5.3.1. A PRESCRICAO DAS CONDICOES DE CONTORNO
PARA DIFERENTES DIRECOES DE INCIDENCIA DE

RADIACAO (Q) NO PLANO (X,Y) NA INVESTIGACAO DA

SENSIBILIDADE DO FLUXO DE RADIACAO (¢*)



111

As tabelas (5.8 -9 —10-11) representam as configuragdes das condigdes de

contorno que serdo utilizadas nos resultados que serio apresentados nesta se¢o.

Para a diregéo Ql a condi¢do de fronteira é dada pela tabela (5.8) que foi mostrada

no inicio da segfio anterior, a qual indica que a entrada da radiagdo ¢ feita através do

contorno b; como mostra a figura (5.6).

Para a diregio Q. a condigio de fronteira é dada pela tabela (5.9) a qual indica que

a entrada da radiago € feita através do contorno b, como mostra a figura (5.6).

PRESCRICAO DAS CONDICGES DE CONTORNO

b1 b2 b3 b4 b s bé b? bs

O—Prd|xt—Pprri—Ppir| ix I—pr|r—Psixs x gt r ez 3—PTx-$ *x3—Pls

$rim | O 0 0 0 0 0 o | o

. $rim | 1 0 0 0 0 0 0 0
¢ $3im| O 0 0 0 0 0 0 0
$on | O o | o 0 0 0 0 0

Tabela 5.9 - Condigdo de Contorno Prescrita

Para a diregio Q3 a condi¢do de fronteira ¢ dada pela tabela (5.10) a qual indica

que a entrada da radiag@o ¢é feita através do contorno b3 como mostra a figura (5.6).
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PRESCRICAO DAS CONDICOES DE CONTORNO
b1 b2 b3 | b4 b s bé b7 bs |

=Pt [x3—Ppx2lzt—Ppind| Ix eyt [ T—Pir g hy gamfpir ez Pt @ Tx3—P 21

$rim| O 0 0 0 0 0 o | o

$2 in 0 0 0 0 0 0 0 0

10| 1 0 0 0 0 0 0 0

$iim | O 0 0 0 0 0 0 0

Tabela 5.10 - Condig¢do de Contorno Prescrita

Para a direcéo g4 a condigdo de fronteira ¢ dada pela tabela (5.11) a qual indica

que a entrada da radiagdo ¢é feita através do contorno b, como mostra a figura (5.6).

PRESCRICAO DAS CONDICOES DE CONTORNO

b1 b2 b3 b4 bs bé b7 bsg |

V—Ppri|ri—PpriziPpic? iz depps [T —Psxg FEENVIS SXEEL S Tx-3—P 22

$im | O 0 0 0 0 0 0 0

20| O 0 0 0 0 0 0 0

$1m| O 0 0 0 0 0 0 0

o | 1 0 0 0 0 0 0 0

Tabela 5.11 - Condigio de Contorno Prescrita

5.3.2. A MALHA TRIANGULAR DE ELEMENTOS FINITOS
COM A POSICAO DA NAO-HOMOGENEIDADE FIXADA E A

ANALISE DA SENSIBILIDADE DO FLUXO DE RADIACAO (¢*)
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PARA AS DIFERENTES CONDICOES DE CONTORNO

PRESCRITAS

O centro da ndo-homogeneidade, em cm, sera fixo em (x = 0,7;y = 0,2) com raio

igual a 0,2 cm.

A figura (5.41) representa a malha de elementos finitos para a posigdo da

ndo-homogeneidade que foi escolhida para as simula¢des desta se¢do.
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Figura 5.41 - Malha da Geometria com a Nao-Homogeneidade

Os resultados para a primeira condigdo de contorno, tabela (5.8), serdo mostrados a

seguir pelas figuras (5.42 — 43 — 44 - 45).
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Fiuxo+ S.P.(F1) Fluxo+ C.P.(=1)

"2

Figura 5.42 - Passagem do Fluxo pelas Geometrias Homogénea e Ndo-Homogénea

Fluxo nos Valaras Nodais do Contomo (sem perturbagao)
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Figura 5.43 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogénea
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Fiuxo nos Pontes Nodais do Contomo (com perturbagao)
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Figura 5.44 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagéo

Fluxo nos Pontos Nodais do Contorno- C.C(=1)
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~—=  Fluxo + Com Perturbagao
—+— Fluxo + Sem Psrurbagao
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061

Fluxo nos Pontos Nodais do Contomo
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Figura 5.45 - Superposigéo dos Fluxos nos Pontos Nodais
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Os resultados para a segunda condigdo de contorno, tabela (5.9), serdo mostrados a

seguir pelas figuras (5.46 — 47 — 48 — 49).

Fluxo+ 8.P.(i=1) Fluxo+ C.P.(=1)

Figura 5.46 - Passagem do Fluxo pelas Geometrias Homogénea e Nado-Homogénea
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Fluxo nos Valores Nodais do Contome (sem perturbagao)
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Figura 5.47 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogénea

Fluxo nos Pontos Nodsis do Contorna (com perturbagao)
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Figura 5.48 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagéo
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Fluxo nos Pontos Nodais do Contorno- C.C(=2)
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Figura 5.49 - Superposigdo dos Fluxos nos Pontos Nodais

Os resultados para a terceira condigdo de contorno, tabela (5. 10), serfio mostrados a

seguir pelas figuras (5.50 — 51 — 52 - 53).
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Fluxa+ 8P (=1) Fluxa+ C.P.(=1)
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Figura 5.51 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogénea
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Fluxo nos Pontos Nodasis do Contorno (com perturbagao)
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Figura 5.52 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbag&o

Fiuxa nos Pontos Nodeis do Contomo- C.C(=3)
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Figura 5.53 - Superposi¢dio dos Fluxos nos Pontos Nodais
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Os resultados para a quarta condi¢éo de contorno, tabela (5.11), sero mostrados a

seguir pelas figuras (5.54 — 55 — 56 — 57).

Fluxo+ S.P.¢=1) Fluxo+ C.P.(=1)

0G24 0.024

Figura 5.54 - Passagem do Fluxo pelas Geometrias Homogénea e Ndo-Homogénea
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Fluxo nos Valores Nodais do Contomo (sem perturbagac)
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Figura 5.55 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogénea

Fluxo nos Pontos Nodsis do Contornn (com peturbagac)
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Figura 5.56 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagio
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Fiuxe nos Pontog Nodais do Contomo- C.C(=4)
0.014 T
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Figura 5.57 - Superposi¢do dos Fluxos nos Pontos Nodais

Observa-se que nos resultados obtidos, variando-se as condigdes de contorno para
esta geometria fixa, a sensibilidade do fluxo diante do defeito é notada com maior

clareza nos trés primeiro casos.

5.4. A INVESTIGACAO DA SENSIBILIDADE DO FLUXO
DE RADIACAO (¢*) PARA DIFERENTES VALORES DE
PARAMETROS SENDO FIXAS A POSICAO DA
NAO-HOMOGENEIDADE NO INTERIOR DA
GEOMETRIA CIRCULAR NO PLANO (X,Y) E AS
CONDICOES DE CONTORNO PRESCRITAS
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Nesta se¢fo serdo apresentados os resultados de algumas simulagdes envolvendo-se
variagdes nos valores dos pardmetros ( 04, 05, k; € k») e fixando-se a condig¢do de

fronteira, dada pela tabela (5. 8), e a geometria.

5.4.1. A MALHA TRIANGULAR DE ELEMENTOS FINITOS

COM A POSICAO DA NAO-HOMOGENEIDADE FIXADA

O centro da circunferéncia menor, a n3o-homogeneidade, ¢ fixo (xo = 0,2 cm,

yo = 0,5 cm).

A figura (5.58) representa a malha que sera usada nas simula¢Ses a seguir.
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Figura 5.58 - Malha da Geometria com a Nao-Homogeneidade
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542. A REPRESENTACAO DAS DIFERENTES
CONFIGURACOES DOS VALORES DE PARAMETROS (0., 0, k)
E A ANALISE DA SENSIBILIDADE DO FLUXO DE RADIACAO
(¢*) FIXADAS AS CONDICOES DE CONTORNO PRESCRITAS E
A POSICAO DA NAO-HOMOGENEIDADE NO INTERIOR DA

GEOMETRIA CIRCULAR NO PLANO (X,Y)

A configurag8o para os pardmetros € a seguinte:

Primeira simulag3o:

Problema padrio.

O coeficiente de absorgdo é 0,001 (6, = 0,001 cm™);

O coeficiente de espathamento é 0,249 (6, = 0.249 cm™);

a constante de condutividade da circunferéncia maior é 1 (k1 = 1);

a constante de condutividade da circunferéncia menor é 10 (k, = 10).

Os resultados sdo representados a seguir pelas figuras (5.59 — 60 — 61 — 62).
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Fluxo+ C P.(F1)

Fluxo+ S.P.(F1)

Figura 5.59 - Passagem do Fluxo pelas Geometrias Homogénea e Ndo-Homogénea

Fluxo nos Valoras Nodsis do Cantomo (sem perturbegao)
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Figura 5.60 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogénea
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Fluxo nos Pontos Nodais do Contorno (com perturbagao)
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Figura 5.61 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagao
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I
—=  Fluxo + Com Perturbagao
—+ Fluxo + Sem Pedurbagac

08

06

Fluxo nos Pontos Nodais do Contorno

041

021

Perimetro do Contomo

Figura 5.62 - Superposi¢do dos Fluxos nos Pontos Nodais
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Segunda simulagéo:

Variando ¢, € 0.

O coeficiente de absor¢do € 0,5 (6, = 0,5 cm™);

O coeficiente de espalhamento € 0,5 (65 = 0,5 cm™);

a constante de condutividade da circunferéncia maior é 1 (k; = 1);

a constante de condutividade da circunferéncia menor é 10 (k, = 10).

Os resultados sdo representados a seguir pelas figuras (5.63 — 64 — 65 — 66).

Fluxo+ 8.P.(F1) Fluxo+ C P (1)

0Q2
0.01

0.02
0m

Figura 5.63 - Passagem do Fluxo pelas Geometrias Homogénea e Nao-Homogénea
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Fluxo nos Valores Nodais do Contorna (sem perturbagao)
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Figura 5.64 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogénea

Fluxo nos Pontos Nodsis do Contomo (com perturbagac)
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Figura 5.65 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagio
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Fluxo nos Pontas Nodais do Contomo
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Figura 5.66 - Superposi¢do dos Fluxos nos Pontos Nodais

Terceira simulago:

Variando k1.

O coeficiente de absorgio € 0,001 (o, = 0,001 cm™);

O coeficiente de espalhamento € 0,249 (o5 = 0.249 cm™');

a constante de condutividade da circunferéncia maior é 0,1 (k; = 0,1);

a constante de condutividade da circunferéncia menor é 10 (k, = 10).

Os resultados sdo representados a seguir pelas figuras (5.67 — 68 — 69 — 70).
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Fluxo+ S.P.(=1) Fluxo+ C P.(i=1)
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Figura 5.67 - Passagem do Fluxo pelas Geometrias Homogénea e Nao-Homogénea

Fiuxo nos Vslores Nodais do Cantomo (sem perturbagao)
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Figura 5.68 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogénea
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Fluxo nos Pontos Nodais do Contomo (com perturbagao)
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Figura 5.69 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbag&o
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Figura 5.70 - Superposi¢do dos Fluxos nos Pontos Nodais
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Quarta simulagdo:

Variando £2.

O coeficiente de absorgdo ¢ 0,001 (6, = 0,001 cm™);

O coeficiente de espalhamento é 0,249 (o, = 0.249 cm™);

a constante de condutividade da circunferéncia maior é 1 (k; = 1);

a constante de condutividade da circunferéncia menor ¢ 100 (k> = 100).

Os resultados sdo representados a seguir pelas figuras (5.71 — 72 — 73 - 74).

Fluxo+ 8.0.(F1) Fluxo+ C P (=1)

0.02
00

05
=3)

Figura 5.71 - Passagem do Fluxo pelas Geometrias Homogénea ¢ Nao-Homogénea
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Fluxo nos Vslores Nodais do Contomo (3em pertutbagan)
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Figura 5.72 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogénea

Fluxo nos Pontos Nodais do Contomo (com perturiragao)
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Figura 5.73 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbagéo
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Fluxo nos Pontos Nodais do Contarno
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Figura 5.74 - Superposigdo dos Fluxos nos Pontos Nodais

Como se pode observar pelas figuras
(5.59-60-61-62-63-64—-65-66—-67—-68—-69—-70—-71-72-73-174)
desta sec¢do diante dos resultados das quatros simulag¢des, a sensibilidade do fluxo é
percebida em todas as situagSes propostas em relagdo a referéncia (primeiro caso),
desde o segundo caso, para o qual aumentam-se os valores das se¢des de choque de
absorgdo e de espalhamento, da mesma forma para a terceira simulagdo cujo valor da
constante de condutividade da circunferéncia maior, k1, ¢ diminuido e por fim, o quarto
caso, no qual ¢ aumentado o valor da constante de condutividade da

ndo-homogeneidade, k2.
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CAPITULO 6

CONCLUSAO E TRABALHOS
FUTUROS

O capitulo 5 apresenta os resultados obtidos pela implementagdo computacional do
problema direto na investigagdo da sensibilidade do fluxo de radiagdo para vérias
simulagdes envolvendo variagdes na geometria, nas condigdes de contorno e nos

parametros.

Foi gerada uma malha de elementos finitos com 3 mil tridngulos. Num total de 12
mil equagdes, isto €, 3 mil equagdes para cada diregio de incidéncia de radiagio /, onde

i=1,234.

Deve-se mencionar aqui que o motivo da escolha do espalhamento isotropico e de
outras simplificagdes ao longo do desenvolvimento deste trabalho foi meramente por

uma questio de simplificagdo da implementagio computacional.
As simulag¢des foram divididas em trés grupos:

no primeiro grupo de simulagdes foram fixados os pardmetros € as condigdes de
contorno, variando-se apenas a posigdo da ndo-homogeneidade no interior da geometria
no plano (x,y). Quis-se aqui investigar a sensibilidade do fluxo de radiagdo mediante

alteragBes na configuragdo da geometria para uma mesma condicdio de contorno
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prescrita para todas essas simulagdes.

No segundo grupo de simulagdes foram mantidos fixos os pardmetros e a posi¢éo da
ndo-homogeneidade no interior da geometria no plano (x,y), variando-se somente as
condigdes de contorno. Estudou-se aqui o efeito na sensibilidade do fluxo de radiagéo

devido a rotagdo das condigdes de contorno para uma dada configuragéo da geometria.

No terceiro grupo de simulagdes foram mantidos fixos a posicdo da
ndo-homogeneidade no interior da geometria no plano (x,y) e as condi¢des de contorno,
variando-se os pardmetros. Assim como nos outros dois grupos de simulaggo, o
objetivo aqui também é o de investigar a sensibilidade do fluxo de radiag8o,
alterando-se valores dos pardmetros tais como os coeficientes de se¢do de choque de
absorc¢io e de espalhamento assim como os coeficientes de condutividade, ou difuséo,
tanto para a regido homogénea quanto para a perturbagdo. Nesse grupo de simulagdes

sdo desconsideradas variagdes tanto na geometria quanto nas condigdes de contorno.

Conclui-se que para valores apropriados de seg¢do de choque de espalhamento e de
absorg¢do (os pardmetros), a atenuagdo que a radiagdo incidente sofre, ao passar através
da geometria homogénea, nfio é suficiente para inibir completamente a sensibilidade a
perturbagdo que foi introduzida nesse meio. A perturbagio e a geometria homogénea
possuem se¢Oes de choque diferentes. Pode-se perceber em todos os grupos de
simulagdes uma sensibilidade em relagio ao fluxo de radiagdo, deste modo, a
possibilidade de identificagdo deste tipo de perturbagdo usando a presente metodologia

esta preliminarmente demonstrada.

A validagdo da técnica utilizada nessa tese serd feita mediante a comparagdo com o
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trabalho desenvolvido por NOH ef tal.[14]. Esses resultados se encontram no apéndice.

Uma sugestdo de trabalho futuro como extenséo desta dissertagdo € a utilizagdo de
uma geometria com simetria axial. O objetivo € o de investigar a sensibilidade do
problema de transporte de radiagdo com as devidas propriedades do meio material € a
reconstru¢dio das suas se¢des de choque. Visa-se uma futura utilizagdo dos resultados

no contexto de reconstrugéo de parametros pela metodologia fonte-detetor.

Uma outra sugestio refere-se a fazer a adogdo de uma formula¢io do problema
ainda com uma geometria com simetria axial, mas usando sistemas de coordenadas
diferentes para cada uma das diregSes radiais de ordenada discreta. Neste caso, o
problema com simetria axial podera ser tratado como se fosse bidimensional, e efeitos

negativos como, por exemplo, o efeito raio sdo atenuados.
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APENDICE

No apéndice serd feita uma comparagio entre resultados. O objetivo dessa
comparagdo € o de validar a técnica utilizada nessa dissertagdo. Para se fazer a
comparagdo entre os resultados serdo necessdrias algumas mudangas: a geometria
circular serd substituida pela retangular, figura (1), sendo que duas das paredes do
retangulo sdo superficies reflexivas e as outras duas obedecem as condi¢des de vacuo.
As condigdes de contorno sdo reflexivas. Os resultados obtidos apds essas

modificagdes serdo comparados com os do trabalho desenvolvido por NOH et tal.[14].

CONDICOES DE CONTORNO REFLEXIVAS

VACUO

VACUO

PLANO XY REFLEXIVA  FLUXO

Figura 1 - Geometria Retangular com Superficie Reflexiva
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Os fluxos de radia¢do nas oito dire¢des de incidéncia:

1
2
$3
4
¢s
b6
¢
s

Condigdes de reflexdo:

$1 =95
¢2 = ¢a
$3 = ¢
b6 = ¢3

Formulagio de paridade:

Paridade par:

o7 +[6) + ¢s]
¢35 32 + del
03 53 + ]
¢; 104+ sl

Paridade impar:

M
2
3)
“4)

)
(6)
(7
®)
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¢7 51— ¢s] )
¢; +[02— sl (10)
¢35 593 —¢1] (11)
¢7 +(pa~ o] (12)

Condigdes de interface:

$i+é7 =di-¢1 =2¢7=0 (13)
$3+9¢2 =¢i+¢s = Se(D)+(4) = ¢7 =65 (14)
$3+¢3 =¢3-¢3 =>¢3=0 (15)
$3-9; =¢i—9¢:s = Se(2)-(4) =>¢2=4¢; (16)

Condigdes de contorno nos pontos da interface, isto €, em 0Q reflexivo:

Superficie reflexiva vertical:

(13) = (7-Q Vo1 =0 7
(14) = ¢; = 9§ (18)
(15) = #7-Q)=0 (19)
(16) = (n-Q )¢5 = (7 -Q Vs (20)

Superficie reflexiva hotizontal:

(14) = ¢3 = 9% (22)
155>  (#-Q )V =0 23)

(16) > (-9 )3 = (7 -QVj (24)
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