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Resumo da Tese apresentada a COPPE/UFRJ como parte dos requisitos necessarios

para a obtencao do grau de Mestre em Ciencias (M. Se.).

ESTUDO DA SENSIBILIDADE DO PROBLEM DE TRANSPORTE DE

RADIAcAO EM MEIO ESPALHADOR

Rogerio Chaffin Nunes

Marco/2002

Orientador: Nilson Costa Roberty

Programa: Engenharia Nuclear

Neste trabalho, o sistema de equacoes diferenciais obtidos pela aproximacao angular

da equacao de transporte bidimensional pelo metodo de ordenadas discretas e resolvido

atraves da formulacao de elementos fmitos com o objetivo de investigar a sensibilidade

do fluxo emergente de radiacao com o fluxo incidente e as propriedades de absorcao e

espalhamento do meio. A formulacao variacional para o sisterna de equacoes

diferenciais de 2a ordem com condicoes de fronteira de Neumann generalizadas (3°

tipo) permite uma facil implementacao do metodo dos elementos finitos com malha

triangular e espaco de aproximacao de Ia ordem. A geometria escoihida para as

simulacoes a um circulo com uma nao-homogeneidade de forma circular em seu

interior. 0 mapeamento de Dirichlet-Neumann e estudado atraves de diversas

simularoes envolvendo o fluxo incidente, o fluxo emergente e as propriedades do meio.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for

the degree of Master of Science (M.Sc.)

STUDY OF THE SENSITIVITY OF THE RADIATION TRANSPORT PROBLEM IN A

SCATTERING MEDIUM

Rogerio Chaffin Nunes

March/2002

Advisor: Nilson Costa Roberty

Department: Nuclear Engineering

In this work, the system of differential equations obtained by the angular approach of the

two-dimensional transport equation by the discrete ordinates method is solved through the

formulation of finite elements with the objective of investigating the sensitivity of the outgoing

flux of radiation with the incoming flux and the properties of absorption and scattering of the

medium. The variational formulation for the system of differential equations of 2' order with

the generalized boundary conditions of Neumann (3rd type) allows an easy implementation of

the method of the finite elements with triangular mesh and approximation space of 1 S` order.

The geometry chosen for the simulations is a circle with a non homogeneous circular form in

its interior. The mapping of Dirichlet-Neumann is studied through various simulations

involving the incoming flux, the outgoing flux and the properties of the medium.
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CAPITULO 1

INTRODUCAO

A partir da equacao de transporte de radiacao a feito um pseudocodigo, cujo

objetivo a adequa-lo a uma geometria de forma circular atraves do metodo dos

elementos finitos com geracao automatica de malha triangular. A solucao do sistema de

equacoes diferenciais parciais a obtida por um programa que implementa

computacionalmente este pseudocodigo. As condicoes de contorno prescritas para o

problema silo as condicoes de contorno generalizadas de Neumann. Desta forma,

pode-se, entao, calcular os fluxos normais de radiacao . Neste trabalho serao analisados

dois casos, para posterior comparacao dos resultados : no primeiro deles, o caso

referencia, considera-se a geometria circular homogenea, isto e , sem a perturbacAo. No

segundo caso a introduzida uma perturbacao circular no interior do circulo principal. A

influencia desta perturbacao nos valores de fluxo emergente do circulo principal e o

objeto de estudo delta tese.

Detalhes da descricao da geometria e das condicoes de contorno prescritas para o

problema : a fronteira do circulo principal a dividida em oito partes iguais , sendo cada

eixo dessa divisao a representacao de uma direcao de incidencia de radiacao. A

ilustracao dessa geometria sera feita mais adiante atraves de figuras . Para cada uma das

oito regioes a prescrita a condicao de contorno. E escolhida apenas uma dessas regioes

com o fluxo de entrada nao-nulo , ou seja, somente uma dentre essas oito regioes 6
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iluminada inicialmente e desta forma pode-se observar o comportamento do fluxo de

radiacao ao longo de sua passagem pela geometria estudada.

O desenvolvimento deste trabalho tem por objetivo investigar a sensibilidade dos

valores de contorno (fluxo normal , Dirichlet, Neumann) a variacoes espaciais dos

coeficientes de absorcao e de difusao. 0 meio que esta sendo considerado neste

trabalho a absorvedor, com espalhamento isotropico e sem fonte interna . Utiliza-se uma

aproximacao por ordenadas discretas para a equacao de transporte de radiacao. Faz-se

use da formulacao de paridade, pois esta simplifica o problema devido as suas

condicoes de simetria e e atraves desta formulacao que se encontra o principal objeto

de estudo deste trabalho , isto e , o fluxo de radiacao e a sua analise.

Visa-se uma futura utilizadao dos resultados deste trabalho no contexto de

reconstrucao de parametros pela metodologia fonte-detetor, desenvolvida por Reis e

Roberty [13].

A relevancia desse trabalho se deve a importancia em Engenharia da solucao do

problema de transporte de radiacao em meios absorvedores, espalhadores e emissores,

ou meios participantes . Como exemplo de aplicacao dessa tecnica pode-se citar a

interacao de particular nao carregadas em meios participantes com a sua utilizacao em

tomografia computadorizada tanto para diagnostico e tratamento em medicina quanto

em ensaios nAo-destrutivos na industria

No Capitulo 2 e feita uma revisao bibliografica onde sao citados trabalhos [1, 2, 3,

4, 5, 6, 7] nos quais foram utilizadas varias tecnicas que validam toda a formulacao

desenvolvida e os resultados obtidos neste trabalho.
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No Capitulo 3 sao introduzidos alguns conceitos preliminares de matematica [1, 8,

9] que silo fundamentais para o desenvolvimento desse estudo, tais como o metodo dos

elementos fmitos (MEF), os Espacos de Funcoes - Espacos de Hilbert L2, Hle H1"2, a

formulacao variacional, o problema de Neumann : condicoes de contorno natural e

essencial e a construcao e representacao de uma triangulacao Th: malha triangular de

elementos finitos.

No Capitulo 4 e desenvolvida a formulacao matematica do problema de transporte

[5, 6, 10, 12], na qua] todos os conceitos utilizados para a construcao do algoritmo

computacional sao baseados . Ao longo desse capitulo , nas suas subsecoes, sao

apresentadas as teorias , ou seja , os conceitos para casos mais gerais e sempre que

necessario sao feitas adaptacoes [2, 7, 11 ] e simplificacoes , de modo a facilitar a

implementacao computacional , para a descrirao do modelo que se esta estudando.

Apresenta-se, primeiro , a equacao de transports de radiacao estacionaria a uma

velocidade em meios bidimensionais: a equacao linearizada de Boltzmann. A seguir

faz-se a formularao matematica do problema direto e na sequencia formula-se o

problema de transporte com o metodo de ordenadas discretas . Nesta parte faz-se uma

adaptacao para o caso bidimensional no plano (x,y). Dando continuidade a formulacao

matematica aproxima-se a equacao de transports por ordenadas discretas para o

problema direto. Com o objetivo de facilitar a implementacao do pseudocodigo que

esta sendo desenvolvido. Optou-se pela utilizadao da formulacao de paridade da

equacao de transporte para o problema direto e por fan chegou -se a solucao do

problema direto.

No Capitulo 5 sao apresentados os resultados das varias simulacoes obtidas atraves
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da implementagao computacional do algoritmo desenvolvido . Na segao que inicia esse

capitulo sao feitas algumas consideragoes preliminares, e em seguida apresentam-se e

discriminam-se os termos do algoritmo computacional do problema direto que sao:

descrigao da geometria do problema e especificagao da nao-homogeneidade, geragao

automatica da malha primitiva , dados de entrada , configuragao inicial dos parametros,

matrizes de segao de choque (a), matrizes de condutividade (c), termos de fonte (f),

equagao diferencial parcial (PDE), descrigao das condigoes de contorno, com as suas

configuragoes possiveis para todo o sisterna e tambem separadas para os seguintes

casos : pars o fluxo de paridade par (0+), para o fluxo de paridade impar (0-) e

tambem para o fluxo de paridade par (4+) para cada diregao de incidencia de radiagao

(S?,) no piano (x,y), e a solugao da equagao diferencial parcial (PDE). Da segunda

segao em diante sao apresentadas as configuragoes e os resultados da investigagao da

sensibilidade do fluxo de radiagao (0+), num total de tres grupos de simulagoes. No

primeiro prescreve-se a mesma condigao de contorno para cada variagao da posigao da

nao-homogeneidade no interior da geometria circular no piano (x, y) e sao obtidos os

seguintes resultados : a malha triangular de elementos finitos para a geometria do

problema sem a perturbagao , as malhas com a perturbagao e a analise da sensibilidade

do fluxo de radiagao perante a variagao de posigao da nao-homogeneidade . No segundo

grupo, a sensibilidade do fluxo de radiagao (0+) a investigada prescrevendo-se

condigoes de contorno para. diferentes diregoes de incidencia de radiagao (a.) e

mantendo-se fixa a posigao da nao-homogeneidade no interior da geometria circular no

piano (x, y). Sao obtidos os seguintes resultados : a malha triangular de elementos fmitos

com a posigao da nao-homogeneidade fixada e a analise da sensibilidade do fluxo de

radiagao (gyp+) para as diferentes condigoes de contorno prescritas . No terceiro grupo, a
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investigacao da sensibilidade do fluxo de radiacao (0+) e feita para diferentes valores

de parametros (aa, as, k), sendo fixas a posicao da nAo-homogeneidade no interior da

geometria circular no piano (x,y) e as condicoes de contorno prescritas.Obtem-se os

seguintes resultados : a malha triangular de elementos fmitos com a posicao da

nao-homogeneidade fixada e a analise da sensibilidade do fluxo de radiacao (^+)

fixadas as condicoes de contorno prescritas e a dada geometria.

No Capitulo 6 sao apresentadas a conclusao e sugestoes para trabalhos futuros.

No apendice sao comparados os resultados obtidos entre a tecnica utilizada nessa

dissertacao e o trabalho desenvolvido por NOH et al. [14].
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CAPITULO 2

REVISAO BIBLIOGRAFICA

Este trabalho faz a combinacao do metodo dos elementos finitos estudado por

JOHNSON [1] com o metodo de ordenadas discretas desenvolvido por LEWIS e

MILLER [2]. Esta combinacao hibrida de doffs metodos e de longa data utilizada por

LILLIE e ROBINSON [3] para solucao da equacao de transporte de neutrons

multigrupo com espalhamento linear. A formulacao variacional do tipo Ritz-Galerkin

apropriada ao metodo dos elementos finitos foi desenvolvida para um grupo de

neutrons por KAPER et tal. [4] que mostraram a equivalencia entre a formularao de 2a

ordem e o problema de transporte de 1a ordem.

O metodo de ordenadas discretas foi introduzido na Astrofisica por

CHANDRASEKHAR [5] para solucoes da equacao de transferencia radiativa,

equivalente do ponto de vista matematico ao problema de transporte de neutrons com

um grupo.

A aplicacao do metodo dos elementos finitos para problerna de transporte de 1a

ordem em espaco e ingulo foi feita com sucesso pela primeira vez por

DUDERSTADT e MARTIN [6]. Entretanto , o sistema de equaroes algebricas

resultantes a ser computacionalmente resolvido e assimetrico, e de ordem proporcional

a discretizacao e ao numero de ordenadas discretas adotadas . Por outro lado, os
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esquemas resultantes da implementacao do metodo dos elementos finitos para a

formulacao variacional do problema de valor de contomo de 2a ordem resultarao em

uma matriz simetrica, banda, positivo definida e diagonal dominante, o meihor cenario

para a adocao de metodos iterativos. A quadratura adotada neste trabalho e a bem

conhecida quadratura produto [2, 7] desenvolvida para que em cada nivel se tenha o

mesmo numero de ordenadas.
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CAPITULO 3

PRELIMINARES MATEMATICAS

Neste capitulo serao apresentados alguns conceitos matematicos fundamentais que

sao basicos para o desenvolvimento deste trabalho de pesquisa, tais corno o metodo dos

elementos finitos (metodo de Galerkin), o espaco de dimensao finita no qual as funcoes

estao definidas, a formulacao variational e as condirOes de contorno natural e essencial.

3.1.0 METODO DOS ELEMENTOS FINITOS (MEF)

Q metodo dos elementos finitos e uma tecnica geral para a construcao de solucoes

aproximadas de problemas de valores de contorno . 0 metodo envolve dividir o domino

da solucao em um numero finito de subdominios simples, os elementos finitos, usando

conceitos variacionais para construir uma aproximacao da solucao sobre a colerao de

elementos finitos . Devido a generalidade e riqueza de ideias que envolve o metodo, ele

e usado com bastante sucesso na resolucao de uma vasta quantidade de problemas em

todas as areas da Engenharia e da F isica Matematica.

A ideia basica em qualquer metodo numerico para uma equacao diferencial e

discretizar o dado problema continuo com muitos (infinitos) graus de liberdade para se

obter um problema discreto ou um sistema de equacoes com somente fintos graus de
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liberdade que podem ser resolvidos usando-se um computador.

O processo de discretizacao usando o metodo dos elementos finitos e iniciado pela

reformulacao da dada equacao diferencial como um problema variacional equivalente.

Para equacaes elipticas este problema variacional em casos basicos e um problema de

minimizacao da forma:

Encontre it E V tal que F(u) < F(v) V v c- V, onde V e um dado conjunto de funcOes

admissiveis e F: V --> ^R e um funcional , ou seja, F(v) E 93 V v c V com 93 denotando

o conjunto de numeros reais . As funcoes v em V muitas vezes representarn uma

quantidade variando continuamente tal como um deslocamento em um corpo elastico,

uma temperatura, etc.... F(v) e a energia total associada com v e o problema de

minimizacao corresponde a uma caracterizacao equivalente da solucao da equacao

diferencial como a funrao em V que minimiza a energia total do sistema considerado.

Em geral a dimensao de V& infinita, ou seja, as funcoes em V nao podem ser descritas

por um ni mero fmito de parametros , e deste modo , em geral, o problema de

minimizacao nao pole ser resolvido exatamente . Para se obter um problema que possa

ser solucionado num computador, a ideia no MEF e substituir V por um conjunto V,

que consiste de funcoes simples que somente dependam de um numero fmito de

parametros . Isto leva a um problema de minimizarao de dimensao finita da seguinte

forma:

Encontre uh E Vj, tal que F(uh) < F(v) V VG Vh .

Este problema. e equivalente a sistemas de equaroes lineares ou nao-lineares. A

expectativa, agora, e que a solucao uh do problema seja uma aproximacao
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suficientemente boa da solucao it do problema de minimizacao original , isto e, da

equacao diferencial parcial original . Normalmente se escolhe Vj, como sendo um

subconjunto de V, ou em outras palavras V, c V, ou seja, se v e Vj, entao v E V, e

neste caso o problema de minimizacao de dimensao finita corresponde ao metodo

classico de Ritz-Galerkin.

0 aspecto especial de um MEF como o particular metodo de Ritz-Galerkin e o fato

de que as funcoes em V h sejam polinomios continuos por parte.

Pode-se tambem comecar de formulacoes variacionais mais gerais que o problema

de minimizacao, o chamado metodo de Galerkin, que e o metodo que sera usado neste

trabalho.

Para resolver aproximadamente uma dada equacao diferencial partial ou integral

usando o MEF, deve-se seguir basicamente os seguintes passos: 1°) formulacao

variacional do problema dado; 2°) discretizacao usando o MEF: construcao de um

espaco de dimensao finita; 3°) solurao do problema discreto; 4°) implementacao do

metodo em um computador: programacao.

Existem fo n ula^oes variacionais diferentes que podem ser usadas dependendo por

exemplo da escolha de variaveis dependentes. A escolha do subespaco de dimensao

finita Vh, que e essencialmente a escolha do elemento de discretizacao finito, elemento

finito, e influenciada pela formulacao variacional, pela exigencia de acuracia , por

propriedades de regularidade da solucao exata e etc... .

Para se resolver o problema discreto, necessita-se de algoritmos otimizados e/ou
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metodos para a solurao numerica de sistemas de equacoes lineares ou nao-lineares.

A vantagem do MEF e que geometrias complicadas, condicoes de contorno gerais e

propriedades materiais variaveis ou nao-lineares podem ser manipulados de uma

maneira relativamente facil. Alem disso, a estrutura clara e a versatilidade do MEF

torna possivel a construgdo de softwares para aplicacoes e tambem deve-se levar em

consideracao a grande quantidade de codigos de elementos finitos disponiveis. 0 MEF

tem uma fundamentacao teorica solida que proporciona um aumento de confianca e em

muitos casos possibilita a analise matematica e a estimativa de erro da solucao

aproximada pelo metodo do elemento finito.

3.2.ESPACOS DE FUNcOES - ESPACOS DE HILBERT

L2 , H1e H112

Quando sao dadas as formulacoes variacionais dos problemas de valores de

contorno para as equacoes diferenciais parciais, e natural, do ponto de vista

matematico, e muito usual trabaihar-se com funcoes de espacos V que sejam

ligeiramente maiores, ou seja, que contenharn um pouco mais de funcoes que os

espacos de funcoes continuas com derivadas continuas por panes.

Serao recordados , agora, alguns concertos basicos de algebra linear.

Se V e urn espaco linear , entao diz -se que L e uma forma linear em V se:

L: V -} 91, ou seja, L (v) E 91 V v c 91 e L 6 linear V v, w c V e j3, 0 E 91.
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L(/3v+0w)=(3L(v)+0L(w).

Pode-se dizer que a(.,. ) e uma forma bilinear em V x V se a : V x V - 91, ou seja,

a(v, w) E R V v, w c= V e a (. , .) e linear em cada argumento , isto e, V it, v, it, E V e

(3, 0 E 91 tem-se:

a(/3u+0v,w)= /3a(u,v)+0a (u,w)

a(u,(3v + 0w)= /3a (u,v)+0a(u,w)

A f o r m a bilinear a (., .) em V x V e dita ser simetrica se:

a(v, w) = a (w, v) V v, w c V.

A forma bilinear simetrica a(.,.) em V x V e dita ser um produto escalar em V se:

a(v,w)>0Vv€Vev*0.

A norma 1 1. II , associada ao produto escalar e definida por:

Ili, iL=(a(v,v))z,VveV.

Alem disso, se (., .) e um produto escalar com a correspondente norma entao

tem-se a desigualdade de Cauchy.

(v,w. l
^ < ^^^,, IIIi.t- it

Tendo sido relembradas algumas propriedades de algebra linear, pode-se prosseguir

com a descricao do espaco de funcoes.

A seguir serao introduzidos os espacos de Hilbert L2, H'e H''2, cujo terceiro e o
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espaco no qual estao definidas as funroes das condiroes de contorno. No segundo estao

definidas as funroes da equacao diferencial parcial que sao utilizadas nesse trabalho.

Esses esparos sao muito usuais nas formularies variacionais dos problemas de valores

de contorno.

Serao defmidos, a seguir, esparos de funroes para um domino unidimensional.

Seja I = (a, b) um intervalo no qual estao definidas as funroes quadrado integraveis.

Entao:

L2 = v : v e definido em I e $ 1,2,&C <

0 esparo L2(I) e um esparo de Hilbert com o produto escalar

(v, )L2(I) = J vw Cox,

i

e a correspondente norma:

'r
V 2d ) = (v, v)l P' lIL2(I) - (s

Pela desigualdade de Cauchy,

0, '001 < IIvv11L2(I>II1VIIL^(I)I

pode-se ver que (v, w) e bern definida, into e, a integral (v, way) existe se v, w c L2(1).

Tendo sido definido o esparo L2 pode-se, agora, definir o esparo Hi. Este esparo

consiste de funnies v definidas em I, as quais juntas com as suas primeiras derivadas,
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v, sao quadrado integraveis , isto e, pertencem a L2.

H' (I) vet,, e L2}, v e v' sao definidos em I e f [v2 + (v' ) 2 ] dx < 00
I

Equipa-se este espaco com o produto escalar

(v,w)H' (I) = f (vw+v 'w') dx,

I

e a correspondente norma

HVIIH'(I) _ (f[2 +(v) ]dx
r

Espacos de funroes para dominos bidimensionais ou tridimensionais:

Sendo ) um dominio Rd, para d = 2 ou 3 , limitado por uma fronteira CM.

Define-se:

L2(S2) = {v: v 6 definido em Q e f v`dx <

]H' (0) v e v' E L2 (Q) } , v e v ' sao definidos em S2 e J [ v' + (V')2

dx<x.

equipa-se esses espacos com os seguintes produtos escalares e suas normas

respectivamente.
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z
v-

II''llLz(^) 1 v c^c = (v, v),
0

{v its) , (o) = 1(vw ± v-W') dx,
sz

IIVIIJ!o) = (f[v2±v)2]dx)

E possivel definir, Para contornos suaves, espacos fracionarios que contenham

funFoes que sejam defnidas na fronteira aQ do dominio S2.

HS (ac ), para s

Esses esparos utilizam as derivadas normais das funroes em M.

para x a^2 e 0 < j < m -1

Existe uma importante relacao entre os esparos H"' (a), para m > 0, de funroes

definidas em um dominio limitado por uma fronteira e os espacos de fronteira HS (M).

O mapeamento na fronteira e feito por:

H"' (SZ) -3 Ht"-i-1 i2 (ate), Para in > 0 e 0 < j < ni - 1.

No trabalho em questao m = 1, de modo que o espaco de funcoes do dominio e

H1(a). Consequentemente o espaco de funcoes da fronteira aS2 & HI /2 (m),

Fica entao estabelecido que os espacos de fung6es nos quaffs sao definidos o

problema diferencial e as condicoes de contorno, respectivamente, sao:
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H'(c)eH'2

3.3.FORMULAcAO VARIACIONAL

Dado um problema diferencial com sua devida condicao de contorno, pode-se

buscar uma solucao aproximada pars esse problema atraves da formulacao variacional.

Utiliza-se uma funcao teste a fim de se obter uma solucao pars a equacao ou um

sistema de equaroes em todo o domino.

A formularao variacional e dita ser uma formularao fraca do problems diferencial e

a sua solucao e dita ser uma solucao fraca desse mesmo problema.

A formulacao variacional sera utilizada na prdxima se4ao atraves de um exemplo.

3.4.PROBLEMA DE NEUMANN: CONDICOES DE

CONTORNO NATURAL E ESSENCIAL

Nesta secao serao discutidas, com um exemplo generico, as condicoes de contorno

de Neumann e de Dirichlet.

Dado o seguinte problema diferencial

f2,-All +it = fem

com a seguinte condirao de contorno
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a„ _ g em an,ar

e a derivada normal externa aonde ) e o domino cercado polo contorno an e on

esse contorno.

Esse problema e chamado de problema de Neumann. A condicao de contorno e uma

condicao de Neumann, enquanto que a situacao u = uO em 51 e considerada

previamente como a condicao de Dirichlet. Em Mecanica ou Fisica a condicao de

Neumann corresponde a uma dada forca ou fluxo g em M.

Pode-se dar a esse problema diferencial a seguinte formulacao variacional:

a(u, v) v) + (g, v) V v e HI (Q),

onde

a(u, v) = f (Vu • Vv + uv) dx,

(f, v) = f ft, A ,

(g, v) = f gvdi
an

essa formularao variacional e equivalente a seguinte formulacao de minimizacao:

Encontre u c H' (S2) tal que F(u) < F(v) V v E H' (Q), onde

F(v) ; a(v, v) - (f v) - (g, v).
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A seguir sera mostrada essa equivalencia.

Para ver que

a(u, v) = (f i') + (g, v),

dado o problema diferencial

All + it = f em Q

on g em 5Q.

Deve-se multiplicar

Au+u =.f

pela funcao teste v € H' (Q) e integrar em S2.

Faz-se , agora, uma breve recordacao do teorema da divergencia

JdivAdx= JA•ndr,
n an

onde , A = A(A,,A2JA3 ) e uma funcao vetor definida em i,

divA = L, + a4'aXt aX2

v13

ax3

n = n(ni,n2,n3) e anormal unitariaextemaaE3Q,

dx e o elemento de volume, no caso tridimensional , em Ti3 e dF e o elemento de

comprimento de arco ao longo de M.
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Um exemplo num caso bidimensional , cujo A = (vw, 0) e A = (0, vu), encontra-se

f a° w dx + f dx = f vwn, df, Para i = 1, 2
ax; ax;

Denotando por Vv e Vw os gradientes de v e w , ou seja,

e

aa,

obtem-se da equarao integral acima a seguinte formula de Green:

< af Vv•VIVdx= f + (?v--ax, ax, awl ax

Q f)

;
ac)

ou seja,

f [vap-nL!!a, a.2

On

f Vv Vwdx = f

- f
,A W dx,

- f v©w dx,
Q an 0

onde

a:X'+al^. dx
a"i r"2 J

Ow, = a i'-- n j + n2 e a derivada
on CY, ar2

na dire^ao normal externa ao contorno 3 e
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-Aw

Voltando ao problema diferencial proposto anteriormente na pagina 18 e de acordo

corn a formula de Green, sendo = g ern Oft, tem-se:

(f v)= f(-Au+ u)vdx =-$nvdF + fVu•Vvdx+f uvdx
sz ao Q sz

- -\/9, A" f [Vu - Vv + 'iv] dx

= a(u, v) - (g, v).

Rearrumando-se os termos da expressao anterior, obtem-se o problema variacional.

Sendo u E H' (Q) uma solucao desse problema.

a(u, v) _ (f, v) + (g, v),

que deve satisfazer o problema diferencial

-Au +it =,ferQ,

On

on
=gemM.

Usando a formula de Green novamente , encontra-se de a(u, v) = (f v) + (g, v), para

uma solucao a suficientemente regular, que:

(f v) + (g, v) = a(u, v) = J v dh + f [-4u + u]v A.

Explicitando-se os termos do lado esquerdo na forma integral e reordenando-os,
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segue que:

f[-Ali+it -f]vdx+J[ a -g]vdF=0, VvEH'(O).
^ arz

Agora, como a equacao anterior converge em particular para todo v c H' (0) e para

essas funcoes o termo de contorno desaparece, pode-se concluir que -Au + u = fern 0

converge, isto e,

-All +u-f= 0 em Q.

Entao f [-Au + it - f]v dx + J [-L-' - g ]v dF = 0, Vv e H' (O) e reduzida para

JCS
ant

1c/F=0, VvEH'(S2).

Variando v sobre H' (0), o que significa que v ira variar livremente em an,

finalmente obtem-se

61 - g = O em aS2,T-

e desta forma segue que

Cl
on

= gem 60.

Nota-se que a condicao de Neumann ( ,; = g em 60) nao aparece explicitamente

na formulacao variacional, a solucao u do problema variacional e somente exigida

pertencer a H' (0) e nao e explicitamente exigido que satisfaca a- = g em an. Essa

condicao de contorno 6 em vez disso implicitamente contida em
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a(u, v) = (f v) + (g, v), Vv E H' (Q).

Variando primeiro v dentro de SZ, obtendo -Au + u = f em Q e entao Cr =gem

aS2 pela variacao de v no contorno. A condicao de contorno que nao tern jue ser

explicitamente imposta na formulacao variacional, e dita ser a condicao de contorno

natural. Isto esta em contraste com a chamada condicao de contorno essencial, como a

condicao de Dirichlet u = 0 em 8Q.

Rode-se a partir de agora formular um MEF para o problema de Neumann.

Sendo Th a triangulacao de S2 e definindo

Vh = {v v e continuo em S2, v, e linear V K Th }, onde v i K denota a restricao

de v para K, isto e, as funcoes definidas em K, sendo K os triangulos que formam a

malha, estao de acordo com v em K.

Onde a triangulacao e representada por Th = (Ki, K2, . .

o domino por S2 = U K = Ki U K2... U KA,,

e o parametro de malha h = maxKT,,(didmetro(K)}, corn o didmetro(K) = o lado

mais longo de K.

Conio parametros para descrever as funcoes em V1, pode-se escolher os valores nos

nos, agora tambem incluindo os nos no contorno 5S2.

Nota-se que as funcoes em Vh nao sao obrigadas a satisfazer nenhuma condirao de

contorno e que Vh c H'(-(2). A partir do metodo variacional a(u, v) = (f, v) + (g, v)
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Vv E H' (a), tern-se , agora, o seguinte MEF Para o problema diferencial

-Ali +u-f= 0ernQ _ gem 3Q:

Encontre uh E 1'h tal que:

a(it _ ( r) + (g, >') Vv c V17.

Esse problerna tem solusao 11h unica, que pode ser determinada resolvendo-se um

sistema de equacoes lineares positivo definido e simetrico.

3.5. CONSTRUI3AO E REPRESENTA(AO DE UMA

TRIANGULAcAO Th: MALHA TRIANGULAR DE

ELEMENTOS FINITOS

Um programa para triangulacao autornatica de um dado dominio pode ser baseado

na ideia do refinamento sucessivo de uma triangulagdo inicial. Por exemplo, pode-se

refinar cada triangulo conectando os pontos de cada lado, tal como esta representado na

figura 3.1, abaixo.

}44 % ^' I rr^ //

Figura 3.1 - Refinamento Sucessivo de uma Malha Triangular
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Um processo de triangulacao deste tipo leva a malhas quase-uniformes, cujos

triangulos tern essencialmente o mesmo tamanho em todas as partes da malha de Q.

Se o contorno de S for curvo, esta tecnica dove ser modificada perto dessa fronteira.

Muitas vezes e desejavel poder construir triangularoes nas quaffs os tamanhos dos

triangulos variem consideravelmente em diferentes partes de Q. De fato, podem ser

necessarios tnangulos menores em regi.oes cuja solucao exata varie ligeiramente ou

onde certas derivadas da solucao exata seam crandes.

Uma possivel estrategia de refinamento e mostrada a seguir na figura 3.2. Nela

diferentes redes primitivas de triangulos sao refinadas diferentemente de acordo com os

elementos de diferentes tamanhos.

Para se representar uma dada triangulacao, pode-se proceder da seguinte forma:

Sendo a regiao com a linha pontilhada_ na figura da direita, chamada de zona de

transicao entre os elementos de tamanhos diferentes.

Figura 3.2-Refinamento Nao-Homoizeneo

Sendo N;, para i = 1, ... M e K„, para n = 1, ... , N, as enumeracoes dos vertices

(nos) e dos triangulos de Th respectivamente. Entao T,, pode ser especificado usando
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duas matrizes , 7_(2, M) e 70,A), onde Z(j, i),com j = 1.2 e i = 1, ... , M, sao as

coordenadas dos vertices Ni e T(j, n),com j = 1, 2, 3 e n = 1, ... , N. sao os numeros dos

vertices de cada triangulo que e representado por K. A figura 3 .3, a seguir, representa

uma ilustracao de como pode ser feita a enumerarao dos elementos finitos numa malha

triangular.

Os nunneros que estao indicados por um circulo representann os triangulos enquarito

que os demais sao os seus vertices.

3 5

Figura 3.3 - Elementos Finitos

Neste caso, pode-se montar a matriz T(j,n) da seguinte maneira:

r 1 1 2 2 3 3 4 5 6 6 7

T= 3 2 4 7 5 4 6 6 9 7 10 8

4 4 7 8 6 6 7 9 10 10 11 11

onde cada coluna representa um triangulo e os eementos de cada uma dessas

colunas representam a numeracao dos vertices desses triangulos
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CAPITULO 4

FORMULACAO MATEMATICA DO

PROBLEMA DE TRANSPORTE

Neste capitulo sera desenvolvida a formulacao matematica utilizada neste trabalho,

a qual a dada pela equacao de transporte bidimensional monoenergetica e estacionaria,

tambem chamada de equacao linearizada de Boltzmann, que sera discretizada pelo

metodo de ordenadas discretas a fim de se obter a aproximacao angular dessa equacao,

o que resultara num sistema de equacoes diferenciais que serao resolvidas atraves da

formulacao de elementos finitos . A formulacao variacional para o sistema de equacoes

diferenciais de 2$ ordem com condicoes de fronteira generalizadas de Neumann permite

uma facil implementacao do metodo dos elementos finitos com malha triangular e

espaco de aproximacao de 1 ordem.

4.1. A EQUACAO DE TRANSPORTE DE RADIACAO

ESTACIONARIA A UMA VELOCIDADE EM MEIOS

BIDIMENSIONAIS : EQUACAO LINEARIZADA DE

BOLTZMANN

A teoria de transporte tornou-se urn topico extremamente importante na Fisica e na
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Engenharia , pois os processos de transporte de particulas aparecem em uma grande

variedade de fenomenos fisicos.

A formulacao matematica da teoria de transporte monoenergetica e de particulas nAo

carregadas , ou de radiacao eletromagnetica , em urn meio absorvedor , emissor e

espalhador, ou seja, um meio participante, a dada pela equacao de transporte, ou

equacao linearizada de Boltzmann , como tambem a chamada.

A equacao de transporte , considerando as dependencias temporal , energetica,

angular e espacial para. meios tridimensionais a mostrada a seguir

y a.aa t) + S? • o¢ ., E, Q, t) + a i ( , E)i (,, E, S2, t) _

= f a (,,E' E,SQ' • SQ?)O^,Ef ,Q'^,t)d1 +S(x, E, (4.1)
4;c

onde:

q 5(x, E, SQ, t) e o fluxo angular de particulas neutras , ou intensidade de radiacao,

6t(,x,E) = (7a(x,E) + 6S^,E,KY • S2) e o coeficiente de extincao total,

6a(x,E) e o coeficiente de absorcao,

vS ,, E,S^ • Ste?) e o coeficiente de espalhamento,

S( , E, S? , t) e a fonte de radiacao distribuida no interior do meio,

6 a variavel espacial,
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S? e a direcao angular de propagacao da radiacao,

t e a variavel temporal,

E e a energia de radiacao e

V6 a magnitude da velocidade de radiacao.

Como o sistema em estudo nao considera a dependencia espectral, ou seja, e

monoenergetico , a dependencia da energia E desaparece pars cada funcao , e desta

forma tem-se a formulacao da equacao de transporte a uma velocidade . Considerando

tambem que o sistema a estacionario, a variavel temporal de cada funcao e

desconsiderada e com isso a derivada parcial com relacao ao tempo , no primeiro termo

da equacao (4. 1) a nula e levando em conta que o meio a bidimensional, a equacao de

transporte (4. 1) pode ser simplificada , resultando em

em

{V E 912,_? E 29r},

onde

s(, )=f 6S(x,S? •Q) (,, )dn +q(
21r

(4.2)

(4.3)

x, S2 } e a intensidade de radiacao monocromatica, sem dependencia espectral, ou

o fluxo angular de particulas a uma velocidade no ponto x, e na direcao de propagacao
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de radiacao S.?, sendo absolutamente continua na direcao S2 e mensuravel na direcao

perpendicular SQ?', S(,x n,) represents um termo fonte cuja a primeira parcela da

equacao (4.3) significa a contribuicao da radiagAo que vem da direcao SQ' a qual e

espalhada na direcao SQ?, e q representa uma fonte de radiacao interna do meio. 0

coeficiente de espalhamento sera reescrito a seguir de forma a explicitar as

dependencias espacial e angular.

6S
(-xi, • -Q) - 6S C-xi/ 2,r

(4.4)

onde A (S? • S?) a denominada funcao de fase, sendo usualmente representada por

uma expansao em uma serie de polinomios de Legendre.

As coordenadas espaciais e angular no sistema cartesiano silo escritas Como

x=xe1+ye2+ze3. (4.5)

Porem, como no problema em questAo nao ha a dependencia na coordenada z, ela

sera deprezada, pois o interesse nesse trabalho e a exploracilo da rotacao do sistema de

coordenadas no piano (x,y), de modo que as coordenadas espaciais sao as coordenadas

do piano (x, y) representadas pela equacao (4.6).

x=xeI +ye2, (4.6)

e as coordenadas angulares podem ser representadas pela equacao (4.7).

SQT = sin q cos q, e 1 + sin q sin qp e2 + cos q e 3. (4.7)
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onde 17 e o angulo azimutal e T o angulo polar, conforme a figura (4. 1) a seguir.

Figura 4.1 - Sistema de Coordenadas Cartesianas 3D

Desde que , Como veremos mais adiante , iremos trabalhar somente com a projecao

de S2 no piano (x,y), podemos fazer, sem a perda da generalidade, a formulacao do

problema direto com S2 tambem no piano (x,y), isto e,

S2 = cos Te 1 + sinT e2. (4.8)

Sempre sera mencionado, para efeito de esclarecimento , a utilizacao de S? tambem

com a dependencia azimutal i, ou o seu use somente com a dependencia polar V.

4.2. A FORMULACAO MATEMATICA DO PROBLEMA

DIRETO

Quando sao conhecidas a geometria do meio , assim como suas propriedades
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materias , o termo fonte , as condicoes de contorno e, para o caso com dependencia

temporal , a condicao inicial, tem-se o problema direto, e desta forma a possivel calcular

a intensidade da radiacao , ou fluxo angular de particulas, em todo o meio e em

qualquer instante de tempo.

Neste trabalho sera explorada a geometria circular no piano (x,y) como mostra a

figura (4.2) abaixo:

y

Figura 4.2 - Sistema de Coordenadas Cartesianas 2D

Para ilustra melhor o problema em questAo, a figura (4.3) represents as quatro

direcoes (por questao de simetria do problema so sera necessaria a defmicao dessas

quatro direcoes ) de entrada de radiacAo nas quais o problema esta defmido e a tabela

(4. 1) mostra os valores dos angulos polares cp ; correspondentes a essas quatro

direcoes, com relacao ao sistema de coordenadas cartesiano.



33

Figura 4.3 - Diregoes de Incidencia de Radiacao

vi ai

0

4 -z

x
2 -3

k

Tabela 4.1 - Angulos de Incidencia de Radiacao

A figura (4.4), a seguir, mostra a geometria particionada do domino. Nela ve-se que o

dominio foi subdividido em duas regioes devido a simetria do problema em estudo,

onde a primeira, ri , e chamada de incidente e a segunda, Ft, de emergente. E devido a

essa questAo da simetria que nao sao necessarias oito direcoes para descrever a entrada

da radiacao no sistema, o que facilita muito o desenvolvimento deste trabalho.
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REGIAO II
(EMERGENTE)

REGIAO I "'z

Figura 4.4 - Explicitando as Regioes Incidente e Emergente

Tendo sido especificada a geometria do problema , escreve-se , agora, a equacao de

transporte e as devidas condig6es de contorno e dessa forma tem -se a caracterizacao da

formulacao matematica do problema direto.

A equacao (4.2) em conjunto com as suas condicoes de contorno dao a formulacao

do problema direto cujo objetivo e o de calcular o fluxo de particulas, ou intensidade da

radiacao . A seguir serao escritas as condicoes de contorno e desta forma estara

completa a descricao do problema direto.

As condicoes de contorno sao de fundamental importancia pars o calculo do fluxo

de particulas, ou intensidade da radiacao . A condicao de fronteira que sera usada nesse

problema e a chamada condicao de contorno generalizada de Neumann , pois nesta

pode-se determinar com precisao a direcao com a qual a radiacao entra no meio

material de acordo com a direcao normal externa a superficie do problema. Antes,

porem, sera necessario defmir um novo sistema de coordenadas cartesianas para as
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quatro direcoes, conforme mostrado na figura (4.3), nas quais o problema foi defmido.

Atraves desse novo sistema de coordenadas cartesianas sera possivel identificar se a

radiacao esta entrando pela regiao I, incidente, ou se esta entrando pela regiao II,

emergente, de acordo com a ilustracao da figura (4.4).

As figuras (4.5 - 6) mostram respectivamente o novo sistema de coordenadas

cartesianas para o piano (x;,y;), de acordo com a dependencia do angulo polar co.; com

relacao ao sistema antigo de coordenadas, (x,y), de forma a diferenciar as regioes I e II

e o vetor normal extern a superficie em estudo juntamente com a sua dependencia

angular, 0, em relacao a aquele sistema .

Utiliza-se ate o final dessa secao somente a projegao de SQ? no piano (x, y).

Y

Figura 4.5 - Novo Sistema de Coordenadas 2D
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REGL3I O II
(EMERGENTE)

8

REGIAO I
(INCIDENTE)

r

Figura 4.6 - Explicitando o Angulo do Vetor Normal

0 novo sistema de coordenadas cartesianas a defmido a seguir

xi = xcosTi +ysinTi

e

yi = xsinTi +ycos(p;,

com

x2 +y2 = R2 ,

onde R representa o raio do circulo.

(4.9)

(4.10)

(4.11)

A regiao incidente da direcao i e definida abaixo atraves da coordenada xi:

xcosTi +ysin(pixi < 0 => (x/y < -tanVi), (4.12)
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A regiao emergente da direcao i tambem a defmida atraves da coordenada x;:

x cosop; +y sin TiXi > 0 (x/y > -tamp;), (4.13)

A seguir sera defmido o vetor normal, n, que aponta sempre para a parte externa da

superficie do circulo.

n = cos Oe 1 + sin Oe2 = v 1(O)e 1 + v2 (0) e 2. (4.14)

Tambem sera necessario calcular o produto escalar entre Qi e n(x,y), pois dessa

forma tern-se a direcao correta do fluxo ponderado pela direcao normal.

2

SQ?^ • n = cos0cos + sin6singp , = cos(6 - Ti) = LO)i,kVk. (4.15)
k=1

As projecoes no eixo xy, levando-se em consideracao o angulo 0, relativo ao vetor

normal, n, serao validas se x2 +Y 2 = R2.

x = R cos 0 (4.16)

e

y = RsinO, (4.17)

Alem disso tambem pode-se chegar a uma outra relacao que envolva as

componentes x, y, Ti e 0, ja que relacionando (4.12 - 13) com (4.16 - 17) chega-se as

seguintes inequacoes:

7 < -tanVi c-* cos(0 - c;) < 0 (4.18)
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e

y >- - tangp ; -c--> cos(8 - T;) > 0.

Agora, pode-se defmir as condicoes de contorno para o problema direto.

(4.19)

Se (4.11) a (4.12) J;(x,y) = 0;;n(x,y) (4.20)

e

Se (4.11) e (4.13) b;I (x, y) = 0' (x, y). (4.21)

onde os indices I e II representam as regioes incidente e emergente pars as quais os

fluxos foram prescritos , os quais sao indicados pelos indices in, e ponderando esses

fluxos pela direcao normal tem-se agora as seguintes condicoes de contomo:

Se (4. 11) e (4.12) O; (x,y)S; . n = 4 1 (x, y) cos(8 -Ti) (4.22)

e

Se (4.11) e (4.13) ¢;1(x, y)S2; • n = 0; ;n(x, y) cos(8 - cp; ). (4.23)

Desta forma conclui-se a formulacao do problema direto que a dado pelas equacoes

(4.2 - 3) e pelas condicoes de contorno (4.22 - 23). Porem , antes de resolver o

problema direto sera necessaria a discretizacao da equacao de Boltzmann, equacao

(4.2 - 3), o que sera feito na secao seguinte.

4.3. A FORMULACAO MATEMATICA DO PROBLEMA
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DE TRANSPORTE COM 0 METODO DE ORDENADAS

DISCRETAS

A complexidade das equacoes que descrevem os processos de transporte de

particulas forcam a implementacao de metodos numericos de solucAo . Tais metodos

procuram introduzir aproximacoes que convertam a forma integrodiferencial da

equacao de transporte em um sistema de equacoes algebricas que sao mais apropriadas

para serem resolvidas por um computador.

O procedimento mais direto e o de aproximacoes por ordenadas discretas no qual a

variavel dependente na equacao de transporte O(x,, S?, t) a substituida por um conjunto

discreto de valores em um conjunto discreto de pontos
(X k'-Q.' t„

). As derivadas e as

integrais que aparecem na equacAo de transporte tambem devem ser substituidas pela

correspondente representacao discreta usando-se diferencas fmitas e metodos de

integracoes numericas . Desta forma chega-se a um conjunto de equaroes algebricas

para a representacao discreta da variavel dependente.

No metodo de ordenadas discretas a variavel angular a discretizada em um pequeno

numero de direcoes , ou raios , entao a equagao de transporte de particulas a escrita para

cada uma delas.

As aproximacoes sao feitas pelo metodo SN geral a partir da equacao de transporte.

0 domino angular, SZ E S2 = 41r (no caso tridimensional , no caso bidimensional

S2 E S' = 2,r), 6 discretizado em K direcoes, ou seja,
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S? E {S2k} com k = 1,2,...,K,

portanto, pode-se aproximar a integral em S? por uma quadratura numerica cuja a

forma generica pode ser expressa como

K
j A(S?) d2 = I Wk A(4k),

4n k=1

(4.24)

onde Wk representa o peso da quadratura que esta associado a direcao S?k, a soma de

todos os Wk corn k = 1,2,. .. , K e igual a 41r, no caso tridimensional, e igual a 27c no

caso bidimensional.

Desta forma o termo integral da equacao (4.1), lembrando que se esta trabalhando

com a equarao de transporte monoenergetica e estacionaria, a aproximado pela

seguinte quadratura numerica,

K

f 6s(x,^ ' _Q)0(4,^,t)^' Ewius(x,,^l (4.25)
Zr 1=1

com k = 1,2,...,K.

A equarao (4.25) e para o caso tridimensional e de acordo com o sisterna cartesiano

de coordenadas, pode-se decompor -Qk nas direcoes sobre os tres eixos de coordenadas

Sk = pk e I +yk e2 + Ilk e3, onde pk +yk + 7k = 1,

onde Pk, ;k, ilk sAo cossenos diretores,

(4.26)

com
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x = x -& 1 +y e2 +Z 3,

e

v= a e I+* e2 + a e3.

(4.27)

(4.28)

EntAo a equagao (4.1), para o caso monoenergetico e estacionario , a aproximada por

a_x q k ) ao(x S2k ) as(k)
k + k av +I)k az +6rL,)^^,-'k) _

K
(i -Ql •-Qk)YJ(^,1/)+S(XQk)_ E Wla

Cada diregao Qk a relacionada a um peso Wk, os quais representam areas sobre uma

esfera unitaria, e a sua soma total corresponde , portanto a area de uma esfera unitaria.

A invariancia das ordenadas a 90 graus a desejavel assim como a simetria dos pesos na

mesma situagao , ou seja, no caso em que (µk , y k, I►k ) representam uma diregao no

primeiro octante , a condigao de simetria exige a existencia dos pontos (-µk, ^k, ilk) no

segundo octante, (-)Uk,-Ck, 1k) no terceiro octante , (µk,-ck, ilk) no quarto octante,

(,uk,ck,-Ilk) no quinto octante , (-pk,;k,-qk) no sexto octante , assim como

(-Ilk, -^k ,-Ilk) no setimo octante e por fim (µk,--^k,-ilk) no oitavo octante . Portanto a

descrigao dos pontos de colocagao em um octante permite , de maneira imediata, a

identificagao dos pontos de colocagao em todos os demais octantes.

Tem-se N/2 niveis relativos a cada eixo sobre os quais os pontos sao colocados,

sendo N o valor representante da ordem da quadratura . Os vertices dos triangulos sobre

a superficie da esfera sao formados pelas intersegoes de cada nivel com os niveis

relativos aos outros eixos , de forma que o numero total de vertices por octante 6 igual a
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N(N + 2)/8 e dessa maneira a aproximacAo SN e defmida em cada octante . A figura

(4.7) ilustra uma quadratura com nivel de simetria S6, ve-se atraves desse exemplo

que para o caso de uma quadratura de ordem 6, N = 6, que o numero total de vertices

por octante obedece a formula N(N+ 2)/8, e portanto a igual a 6.

Figura 4.7 - Quadratura com Nivel de Simetria S6

O mais serio problema na utilizacao do metodo de ordenadas discretas e o bem

conhecido efeito raio. Este fenomeno ocorre porque o metodo de ordenadas discretas

trata a migracao do fluxo de radiacao, ou de particulas, pelo confmamento deles em

caminhos com direcoes discretas especificadas.

Existem algumas regioes do sistema que nao podem ser alcancadas ao longo da

trajetoria direta feita pelo fluxo de radiacao, ou de particulas. As distorcoes nas

aproximacoes dos fluxos, causadas pelo efeito raio, sao consequentemente mais



43

severas e maiores na razao entre as secoes de choque de absorcao e de espalhamento,

porque o espalhamento aumenta o numero de trajetorias com direcoes prescritas que

estAo disponiveis ao fluxo. 0 metodo de ordenadas discretas pode ser considerado

como substituindo a invariancia rotacional da equacao de transporte de Boltzmann por

um conjunto de equacoes de transporte as quais sao acopladas pelo espalhamento. Este

conjunto fmito e, na maioria, invariante sob as rotacoes discretas do sisterna

coordenado. Por outro lado, calculos de transporte que empregam o metodo dos

harmonicos esfericos nAo exibem o efeito raio, pois as equacoes dos harmonicos

esfericos sao invariantes para rotacoes arbitrarias no sistema de coordenadas.

4.3.1. A FORMULAcAO MATEMATICA DO PROBLEMA DE

TRANSPORTE COM 0 METODO DE ORDENADAS DISCRETAS

ADAPTADAS PARA 0 CASO BIDIMENSIONAL NO PLANO

(X,

Tendo em vista o fato da exploracao da circularidade da variacao em gyp, o angulo

polar, sera adotado um sistema de quadratura diferente para os plans (x, y), onde q

esta definido, e o angulo azimutal 7 , que varia com y. Sendo p = cos q uma mudanca

de variavel de forma a simplificar a notacao.

No primeiro caso adota-se a formula da regra trapezoidal extendida de

Newton-Cotes de ordem zero enquanto que no segundo a utilizada a quadratura de

Gauss de ordem 2.

Essas ordens de quadraturas foram escolhidas meramente de modo a simplificar a
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implementacao computacional. Tem-se a seguir a tabela (4. 1) corn outras ordens de

quadratura de Gauss.

N=2
0.5773502691 1.0000000000

N=4
0.3399810435 0.6521451549
0.8611363115 0.3478548451

N=6

±PC a WA

N=10
0.1488743389 0.2955242247
0.4333953941 0.2692667193
0.6794095682 0.2190863626
0.86506336663 0.1494513492
0.9739065285 0.0666713443

N=12
0.2386191860 0.4679139346 0.1252334085 0.2491470458

0.6612093864 0.3607615730 0.3678314989 0.2334925365

0.9324695142 0.1713244924 0.5873179542 0.2031674267

N=8 0.7699026741
90411725630

0.1600783286
0 1069393260

0.1834346424 0.3626837834
.

0.9815606342
.

0.0471753364
0.5255324099 0.3137066459
0.7966664774 0.2323810344
0.9602898564 0.1012285363

Tabela 4.2 - Outras Ordens de Quadratura de Gauss

Aqui teremos uma quadratura diferente da equacao (4.25) conforme sera mostrado

a seguir pela equacao (4.30).

Dada a seguinte integral,

I(x,S?) = f as(x • S2x,K2 )dn
s2=4,r

(4.30)

onde o coeficiente de espalhamento, as[,x,52 • S?), pode ser escrito separando-se a

parte radial da angular, na forma de polinomios de Legendre pars a parte angular, como

e mostrado na equacao (4.31) a seguir,

(4.31)

Substituindo-se a equacao (4.31) na equacAo (4.30), tem-se entAo a equacao
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(4.32),

00
Ic,2) _ E(Ts1W f P1( - _Q)O( ,g )

1=0 52 1!

(4.32)

Observando que o SQ? que esta sendo utilizado aqui leva em consideracao o angulo

azimutal e e representado pela equacAo (4.7).

Faz-se agora uma mudanca de variaveis na equacao (4.32), de forma a explicitar os

angulos polar e azimutal dentro dessa integral transformando-a numa integral dupla

conforme a mostrado na equacao (4.33).

OD 12n
I(,,µ,(o) _ 6,,,W f f PIL-, - _Q)O(x,, µ T )dµ d(p' (4.33)

-1 0

onde µ = cos q, referente ao angulo azimutal e qp e o angulo polar do piano (x,y).

Nota-se que o polinomio de Legendre da formula (4.33) continua com a variavel

antiga e esse caso sera tratado agora.

Pelo teorema da adicao o polinomio de Legendre,

1

P1 S^ =- P1(µ)P1 (µ') + 2 L (1-m)' PI (p)PI (µ) cos[m((p - (p)]
m

(1+m)!
=1

(4.34)

depende da diferenca entre qp e gyp' e dos produtos dos polinomios associados de

Legendre P' , assim, a adocao dos dois tipos de quadratura, ou seja, a de Gauss para a

variavel azimutal, µ, e a regra trapezoidal extendida para a variavel polar, gyp, explora

melhor as caracteristicas do problema em estudo.
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Sendo wµn o peso para a quadratura de Gauss com ponto de colocacao N e wpb o

peso da regra trapezoidal, entAo substituindo-se a equacao (4.34) na equacAo (4.33),

obtem-se a equacao (4.35) a seguir,

00 1 2n

I(,p, (P) _ Ea,i(x) f f {PI(µ)PI(µ)+...

1= -10

1

+2 E (% m)^ P;`(µ)P^ (P')cos[m (^ - w')]}O(,µ', p')dji'd^', (4.35)

Aproximando-se as quadraturas mencionadas na integral dupla da equacao (4.35),

tem-se a equacao (4.36),

eo N 2J

I(x,y, µn, cPk) _ E 6s1(x,Y) E E wµnwip,u. {PI(µn)PI(µn') +...
1=0 n'=1 k'=1

1

+2 It mj Pi (Pn)P, ( jIn') cos[m ((Pk - (Pk )]}^(x,Y, pn', (Pk ). (4.36)

Faz-se agora algumas simplificacoes no problema em questAo aproveitando-se a sua

simetria e o fato de se estar utilizando o espalhamento isotropico.

N= 2, (4.37)

I= 0, (4.38)

P1 = µ2 =...= 0 . 5773502691, (4.39)

- 2,r
w (4 40)opkki - 2J

wµ1 =wµ2 = 1,

.

4.41
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O(x,Y,µ1', (Pk') = `Ykp (x,Y) = O(x,Y,Qk),

6so(x,Y) = 6s(x,Y)•

(4.42)

(4.43)

Substituindo-se os valores (4.37 - 38 - 39 - 40 - 41 - 42 - 43 ) na equacao (4.36),

obtem-se ent io a quadratura de forma simplificada para esse trabalho,

2J

I(x,Y,P1,(Pk) =I(x,Y,P2,TPk) = 26s(x,y) -5-bk(x,Y)•
k =1

Pode-se entAo escrever a equacao de transporte de seguinte forma:

V ' (2kcbk (x,Y)) +6t(x,Y)cbk(x,Y)

2J

= 2 E wipkk 6kk' (x,Y)Ok (x,Y) + Sk(x,Y),
k=1

onde a1 (x,y) e o coeficiente de extincao total , sendo representado por,

at(x,y) = 6a(x,Y) + 6s(x,Y)•

O coeficiente de espalhamento 6s(x,y) para o caso isotropico a dado como:

11
2x 2J

6s(x,Y) = J f 6s(x,Y,µ,µ',co,co')dpdco = 2E w,kk'6skk(x,y),

-1 0 k=1

(4.44)

(4.45)

(4.46)

(4.47)

entAo, substituindo-se na equacao (4.46) a equacao (4.47), tem-se o coeficiente de

extincao total para o caso isotropico,

2J

cr t(x,Y) = 6a(x,Y) +2Ew,,kk'6sk'k(x,Y). (4.48)
k=1
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Observando-se que devido ao processo de reversibilidade do fluxo o coeficiente de

espalhamento pode ser escrito em uma das duas formal a seguir:

Cr kk ' (x,Y) = Csk k(x,Y). (4.49)

4.4. A APROXIMACAO DA EQUACAO DE

TRANSPORTE POR ORDENADAS DISCRETAS

A formulacao matematica desenvolvida na subsecao 4.3. 1 levou em consideracao a

adaptacao das quadraturas que serao utilizadas na equacao de transporte para o caso

bidimensional , a fun de ajusta-las pars que se respeite a geometria circular em estudo.

Sendo assim , nesta secao , sera tratado o problema direto da equacao de transporte

bidimensional que sera aproximada por ordenadas discretas.

Conforme ilustra a figura (4.8), esta se trabalhando no piano (x, y) e a geometria

deste problema foi dividida , discretizada, em oito regioes devido as direcoes de

incidencia de radiarao Stk. Porem , devido a simetria rotacional, o numero de direcoes K

que antes era de oito a reduzido a metade, sendo representado por J, pois J = K/2. As

direcoes de incidencia silo representadas por 2i conforme mostrado na figura (4.3).
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Q

--3

Figura 4.8 - Sistema Completo de Direcoes de Incidencia

Manipulando-se as equacoes (4.45 - 46 - 47 - 48 - 49), que representam a

discretizacao do dominio em estudo, e utilizando-se o fato do espalhamento ser

isotropico , tem-se o seguinte sistema de equacoes:

V • (-kOk (-x'i)) +

I
2J

6Q (-xi) + 2 E wgkk aAk' W

k =l

k *k

4k (X) = (4.50)

K

= 2 E Wckk 6skk ((-
,^.

)Ok ('x) + qk (xi),

k=1

k*k

Para k = 1,2,...,2J.

Rearrumando-se os termos da equacao (4.50), obtem-se o sistema de equacoes de
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transporte discretizadas.

IV. (^kck (a)) + 6a (X) ck (X) =

]= 2 E wpkk 6skk (4) C Ok
(
(-xi) - Ok (xi) ] + qk( ),

k=1

k'*k

corn k = 1,2,...,2J,

e corn

w
2r ,gkk - 2J

(4.51)

(4.52)

e

65kk' W = 6s(-X-.), (4.53)

onde as direcoes Qk' 2k" sao determinadas pela particao de dominio consistente

com o sistema fonte-detetor e q kk1 silo os pesos correspondentes na quadratura.

Manipula-se, agora, a equacao (4.51), que e a equacao de Boltzmann na forma

discreta , de modo que os termos no somatorio do lado direito da equacao sejam

reordenados e, desta maneira, chega-se ao seguinte resultado:

2/

0•c bk(-X)+ Wkk 4k(-',) =qk (-xi)'

k =1

com k, k' = 1,2,...,2J,

(4.54)

onde os elementos da matriz W , matriz de secao de choque, silo dados pelo
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produto dos coeficientes de espalhamento relativos as direcoes Qk e aos seus

respectivos pesos de quadratura.

Lembrando que w= e 6T / skk r, x) = as(x) (para o caso isotropico), entAo as

matrizes de secao de choque, W, podem ser escritas como:

( ll
2J

Wkk = 6a C X) +2 E wpkk 6skk X) = 6a (x) 2x (2J-I)R )
6s , (4.55)

k'=1

k'*k

W ((,,. 2Jra,

kk = -2wq,kk
6skk '-a) J (4.56)

Sera feita agora a representacao dessas matrizes de secao de choque, ja

particionadas para as duas regioes (ou dois blocos ), como sera mostrado mais adiante,

levando-se em conta as regioes I e II, como foi ilustrado na figura (4.4), e

substituindo-se os indices k' por i e k porj,

j
I _ r

W i = 6a x) + 2 L.^ wgijaij
(

s(
,

),

i=1
I

com i = 1,2,...,J,

e

W,^ = -2w,,#aij(,),

com i,j = 1,2,...,Je i * j,

(4.57)

(4.58)
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e

WJ=Wtj = -ZWvy6 j(am),

com i,j = 1,2,...,Je i * j.

Para o caso isotropico , que e o utilizado neste problema , tem-se:

(4.59)

I ( \ (2x(2J-1)s )(
x)W = + (4 60)^ ,6a J 6Sii .

2 ra (&
W = (4 61),j - j , .

e

_ 2ftos(x.)WI' 62)(4
_

.

Desta forma pode-se construir as matrizes de coeficientes de absorgao e

espaihamento em dois blocos conforme a representacao a seguir, pois de acordo com o

sistema fonte-detetor a matriz W d simetrica e ciclica.

W= r W10
Wq

W,I W,^
(4.63)

com i,j = 1,2,...,J,

onde
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e

WI J W1 2 WI ,3 ... WI J

WI,2 W W1,2 ... W1.7+1
(4.64)

L WI,J WI,J+l WI,7+2 ..

WI,J+I WIC WI,.1 ... W12

WI,J WI,J+1 WI,J ... W133

W12 WI3 WI,4 ... WI,J+I I

(4.65)

tern-se entao a matriz W, separada pelos dois blocos , de acordo com a formula

(4.63),

W=

WI,I W12 2 WI,3 ... WI,J

W1,2 W1,1 W1,2 ... Wl,i+l

Wl,l Wl,7+l W1,J+2 ... Wl,l

WI,J+I W1 J WI ,1-1 ... WI 2

W I,r W l,J+l WIJ ... W1,3

W12 W13 W14 ... WI,/+I

WI,1+1 WI,j WI,j-I ... W1,2

WI,J WI,J+1 WI J ... WI 3

W1,2 W1,3 W1,4 ... WI J+1

WIJ WI,2 WI ,3 ... W1,3

WI,2 W1,1 W1,2 ... WIJ+l

WI,J Wl,J+l Wl,3+2 ... WI,1

(4.66)

onde J = K/2,

e cujas propriedades sao:

1)Simetrica e diagonal dominante;
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2)A soma dos termos de uma linha a igual ao coeficiente de absorcao;

3)Linhas ciclicamente rotacionadas;

4)Constituida de dois blocos simetricos.

A figura (4.9) representa a primeira linha da matriz W levando-se em consideracao

a simetria do coeficiente de espalhamento com relacao a direcao de incidencia (simetria

rotacional da matriz de coeficientes W).

Figura 4.9 - Simetria Rotacional da Matriz de Coeficientes W

Tambem se observa que ao se deslocar de um angulo

9;=(j-1)ir ,

pode-se escrever sem perder a generalidade que

(4.67)
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Wi,i = W.ii, (4.68)

comj = 1,2,...,2J,

e os termos fora da diagonal sao tornados simetricamente a ela e tambem

observa-se, por exemplo, que a segunda linha de W pole ser obtida a partir da primeira

linha dessa matriz fazendo-se apenas o deslocamento dos seus coeficientes.

Conforme mencionado anteriormente, o sistema foi particionado em dois blocos, urn

para cada regiao conforme a divisao da geometria do problema, e desta forma o

conjunto de equacoes que constituem o sistema fica representado da seguinta maneira:

Sistema de equacoes para o bloco I ( recebe o indice I por ser a regiao incidente):

0-S2.+Wy0;+N^OII =q' ( 4.69)

com i,j = 1,2,...,J.

Sistema de equacoes para o bloco II, (recebe o indice indice II por ser e regiao

emergente):

-v • 0. + W l 0; + W I y O ° = q;' (4.70)

com i,j = 1,2,...,J.

O bloco II tern as direcoes S? invertidas em relacao ao bloco I, sendo assim, a
j

representacao das direcoes pars o sistema completo a dada por:

(4.71)
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comj = 1,2,...,J.

Com o objetivo de preparar o algoritmo computacional e por uma questAo de

simplificacAo serao introduzidas algumas notacoes a seguir,

2

COS (piel +sinq,e2 = O)i,lel +Q)i,2e2 = wilel,
1=1

onde as coordenadas de S2i sao as coordenadas em relacao ao plan (x,y).

2
a±; ^

vOi = ax, e l + aXZ e 2 = E axi e 1,
1=1

v•s^i=0.

(4.72)

(4.73)

(4.74)

Reescrevendo as equacoes (4.69 - 70) com a notacao utilizada em

(4.72 - 73 - 74) obtem-se dois sistemas de equacoes diferenciais , sendo urn sistema

de equacoes para cada bloco no qual o domino foi particionado e juntamente com as

condiroes de contorno prescritas , dadas pelas equacoes (4.22 - 23 ), obtem-se a

formulacao aproximada da equacao de transporte por ordenadas discretas para o

problema direto particionada em dois blocos.

Para o bloco I.-

2 al J r
J

+Wyoi +
WloJ7

= q ,
1=1 j=1 j=1

e

lpi(x,y)R • ii = 0i1 (x,y)COS(8-(Pi),

(4.75)

(4.76)
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com i = 1,2,...,J.

Para o bloco II-

2 II J J
-E^.

>
a^ +EWilo{+5 Wloir = q,

,1 (4.77)^ r
1= 1

ax,
j -I

>
i 1=1

e

0i'(x'Y)S2r • n = O;;n(x,Y) cos(6 - (pi). (4.78)

corn i = 1,2,...,J.

4.5. A FORMULAcAO DE PARIDADE DA EQUAcAO

DE TRANSPORTE

A introducao da formulacao de paridade tem como objetivo a simplificacao do

problems direto. 0 fluxo angular , considerado como uma funcao da direcao, a separado

ern duas partes , uma par e outra impar . 0 passo matematico fundamental de se resolver

o fluxo angular nas componentes par e impar a significativo pars aplicacoes , pois ele

complementa o principio variacional para essas componentes . Este principio pode ser

usado para construir limites numericos superiores e inferiores proximos da solucao

exata.

As componentes de paridade do fluxo angular tambem tern um significado fisico a

parte do seu use matematico. A de paridade par, 0+, da o fluxo de particulas, ou

intensidade de radiacao , enquanto que a de paridade impar, 4-, da a densidade de
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corrente de radiacao . As componentes de paridade ¢+e 0- resultam na transformacao

da equacao de transports de primeira ordem num par de equacoes de segunda ordem,

uma para 0+ e a outra para r-.

A formulacao de paridade para todas as funcoes envolvidas na equacao de

transporte sera dada a seguir:

2 (^' + c;I ) (4.79)

e

o ^ = 2('I - OlI ),1
(4.80)

onde e o fluxo de particulas , ou intensidade de radiacao , e 0; e a densidade de

corrente.

Wy =(W'y +W;) (4.81)

e

Vli = (Wy - WTI), (4.82)

onde Wj e Wry sao as componentes par e impar das matrizes de secao de choque.

q; = (4; + qrI) (4.83)

e

1 I 1/ (4 84)4; = 2(41-9,), .
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onde q; e q; sao as componentes par e impar dos termos de fonte de radiacao

intema ao meio.

Pode-se tambem escrever os fluxos das regioes I e II em funcao das componentes

de paridade (4.79 - 80) como:

_(0;+4 )

e

OY = (Ott - 0i )•

(4.85)

(4.86)

Com a utilizacao da formulacao de paridade , equacoes

(4.79 - 80 - 81 - 82 - 83 - 84), nas equacoes aproximadas de transporte (4.75 - 77)

tem-se entAo dois sistemas de equacoes diferenciais com dependencias, apenas, dos

termos de paridade par e impar.

2 3
ao-

wr,t ; + LW q5 = q+j,
t=1 ,rl

com i = 1,2,...,J,

e

2 3

w + E R',i^^ = q, ,axi
1=1 j=1

com i = 1,2,...,J.

(4.87)

(4.88)

Utilizando-se a propriedade de inversao de matrizes nas equacoes (4.87 - 88)
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encontram-se os valores de 4+e de 0-, que sao representados pelas seguintes

expressoes:

0
J J 2

+ 10+ amk
_ IWikgk -ikwk,l axe

k=I k=1 1=1

(4.89)

com i = 1,2,...,J,

e

J J 2 aO+
0i = IW kgk - EEIK k(o k,l 8x^

k=1 k=11=1

com i = 1,2,...,J,

onde IW e a matriz inversa de W.

(4.90)

Ao substituir-se os valores de O+e q- calculados por (4.89-90) nas equacoes

(4.87 - 88), serao obtidas as equacoes que contenham separadamente os termos de

¢+e ¢-, como sera visto a seguir:

Para o fluxo de particulas ¢+:

a0-E E cc) i llW;jCOj,k axk ] +
j=1 1=1 k=1

J J 2

+ Wij^j = gi - E E axe C w,,,Iwl,q 1,
j=1 j=1 1=1

(4.91)

com i = 1,2,...,J.
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Para a densidade de corrente /-:

ao;-EEC a- 1o)1l17 'Uwi,k 8xk ] +
j=1 1=1 k=1

J 2

qt - E E , [wl>IIW qi ],
j=1 j=1 l=1

com i = 1,2,...,J.

(4.92)

Pode-se observar que as equacoes (4.91 - 92) sao de segunda ordem, ou seja, a

inclusAo das componentes de paridade ¢+e ¢- resultam na transformacao da equacao

de transporte de primeira ordem num par de equacoes de segunda ordem.

Rearrumando-se as equacoes (4.91 - 92) com o objetivo de escreve -las na forma da

equacao de transporte de radiacao , ou particulas, para um sistema eliptico no qual estao

explicitas as matrizes de difusao, de absorcao e os termos de fonte.

-V • (c+ ®VO+) + a+o+ = f (4.93)

e

-V • (c- ®0¢-) + a-0- = f , (4.94)

ern B(0, R),

onde ® representa o produto tensorial, B(0, R) = 92 representa o dominio do

problerna, uma bola centrada em zero e com raio igual a R, c+ e c- sao os tensores de

difusao, a+ e a- as matrizes de absorrao e fe f os termos de fonte.
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Tensores de difusao:

Clikl = wt,lIW wj,k

e

Ci,l,k,l = C)Uffl O)f,k,

com i,j = 1,2,...,Je k,l = 1,2.

Matrizes de absorgao:

a+, = W+,j

e

= VY,

com i,j = 1,2,...,J.

Termos de fonte:

J 2

f; = qi -E5 ,
j=1 1=1

e

J 2

Ji = qi - axe Co)l,II jgj
j=1 1=1

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)

com i = 1,2,...,J.
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Para que seja completada a formulacao de paridade para o problema direto e

necessaria a descricao das condicoes de contorno com essa mesma formulacao.

Condicoes de contomo para o fluxo, e para a densidade de corrente, 07:

A partir das equacoes (4.85 - 86 ) eliminando-se os 0 ; , substituindo-os pela

expressao obtida em (4.90), restarao como incognitas somente os termos de ¢; , pois

Of e 0 1 silo valores prescritos e qj- silo os tenmos de fonte interna que tambem silo

conhecidos.

As expressoes para os 0; silo, entAo, escritas das seguintes formas:

J 2 a0+

i I ljmj,l -ax
j=1 1=1 `

IWŷqj
i=1

(4.101)

e

J 2 1
^i + E L^ IW wj,l ^ = ^)il + IIWijgj ,

j=1 1=1 j=1

com 1 = 1,2,...,J.

(4.102)

Eliminando-se os 01, substituindo-os pela expressao obtida em (4.89), restarao

somente os termos de or como incognitas.

As expressoes para os 0 silo entAo escritas das seguintes formas:

01 -EEIW9CoJl-, = 0, - EIW q^ (4.103)
j=1 l=1 j=1
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e

J 2 J

+Io)jl +IW+yq^,
j 1 1=1 / j=1

corn i = 1,2,...,J.

(4.104)

Ponderam-se as equacoes (4.101 - 102), equacoes em relacao a 0+, para a direcao

normal n, utilizando-se para isso de (4.15). Isto se faz necessario por se tratar das

condicoes de contorno generalizadas de Neumann.

A direcao normal as regioes I e II so difere por urn sinal ja que, por convencao, a

direcao normal a regiao 11 6 escolhida como sendo positiva.

Para a regiao I:

2 J 2

-COS(9 - q,)Oi +Evk Lwi,JWi
k=1 j=1 1=1

= -cos(O - q )O; + (4.105)
30
axe

J

+EIW,jqj-. cos(O - q),).
rl

Para a regiao II-

2 J 2 aO+

+cos(9 - (4.106)+cos(8 - tp;)¢i + E vk EE c0,,kIW^joJj,l -,
=

k=1 j=11=1

J

+IW^qj- cos(9 - tpi).
j=1

Fazendo o mesmo procedimento anterior para as equacoes (4.103 - 104), equacoes
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em relacao a r-, tem-se entAo:

Para a regiao I:

2 J 2 _

-cos(9 - (pl)y; +
ao

E Vk EEo) i,kIW 1)),1 » , = -cos(6 - (p l)cf + (4.107)
k=1 j=11=1

J

+EIW+q,+ cos(O - (p l).
j=1

Para a regiao II:

2 J 2 ao+
+coS(0 - to )(bi + E vk E E (t) l,kff^+, O)j l »r = -COS (9 - (pl)o ;l + (4.108)

k=1 j=1 1=1

J

+EIW+gj cos(O - q) j).
j=1

Considerando-se as equacoes (4.11-18-19-20-21), entAo , as equacoes

(4.105 - 106) podem ser reescritas da seguinte forma , para os casos cujo cos(6 - Ti)

< 0 e cos(O - Ti) > 0 respectivamente:

Para a regiao I{cos(O - (pi) < 0}:

2 J2 +

EVkEEOJ1,kIW O)J,l a -COS (6-(pi)^r =
k=1 j=1 1=1

= -cos(6 - (pl)
j=1

(4.109)

Para a regiao II{ cos(O - Ti) > 0}:
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2 J 2

vk w i,klWijwj l a,^ +COS(9-(p1)o; _
k=1 j=1 1=1

=+COS(O-(pi )

rl
(4.110)

Repetindo o procedimento anterior para as equacoes (4.107 - 108 ), nos casos cujo

cos(O - (pi) < 0 e cos(O - (pi) > 0 respectivamente, leva-se aos seguintes sistemas de

equacoes:

Para a regiao I{cos(O - (pi) < 0}:

2 J 2

E V k E ^-
r

+(0 i,kIW Jo)j•1 8x^
k=1 j=1 1=1

- cos(6 - (pi)Oi =

J

= -COS(8 - (pi ) Oi in _ JW qj ] .
rl

Para a regiao II{ cos(O - (pi) > 0}:

^2` J 2 ao_

L.rvkwi,kIWijwjl axJ +COS(6- lpi)^i =
k=1 j=1 1=1

r J
_ +cos(6 -(pi) -0iin +EIWugj ^•

j=1

(4.112)

Serao analisados os intervalos angulares a firn de se obter uma unica expressao, ou

seja, urn algoritmo que seja valido para todo o dominio.

Considerando-se os seguintes intervalos angulares do dominio, define-se a funcao

Oi,in a partir de (4.109 - 110). Essa funcao relaciona os fluxos prescritos para as
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regioes I e II com os termos de fonte interna.

Para {-L T i I < If- =cos(0-Ti)<0}:

(pi,in - 'pr,in IW,;q; cos (0 - Ti) < 0
i=1

(4.113)

ou

Para {0 < 10-WiI < i ou 32 < 10-q I < 2,r cos(0 -Bpi) > 0}:

(akin = l^li,in + EIVUq; G cos(0 - (pi) > 0.
rl

(4.114)

Tambem sera definida a funcao Ji in utilizando-se as equacoes (4.111 - 112).

Para {Z < 10-(piI < 2 cos(0-Bpi) < 0}:

l i,in = Of in - EIW+ijqj+ cos(0 - Ti) < 0 (4.115)
f=i

ou

Para {0< 10-BpiI < i ou <10-(piI <27r =cos(0-(pi)>0}:

J

i,in = iin + EIW+ijqj+ G cos(0 -(pi) > 0.
rl

(4.116)

Pode-se, finalmente, escrever a equacao, ou algoritmo, das condigoes de contorno

generalizadas de Neumann para 0+ , que 6 valida para todo o domino.
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EVkEEO i,klWijWj,1 a,, +abs(cos(O-(^i))^i =

k=1 j=1 1=1

= abs(cos (O - ip;))O,,;,,

(4.117)

Para i = 1,2,... , J e x2 + y2 = R2, onde a funcao abs leva em conta somente o valor

absoluto do cosseno.

Sera mostrada a seguir a equacao para 0 - das condicoes de contorno generalizadas

de Neumann:

2 J 2 a-
EVkEEot)i,kIWwU)jl a +abs(cos(O-q,i))Yli =

k=1 j=1 1=1

(4.118)

= abs(cos (O - (pi))ji in

Para i = 1,2,...,Jex2 +y2 = R2.

As equacoes (4.113 - 114 - 115 - 116 - 117 - 118) sao reescritas de forma mais

simplificada.

n - (c+VO+) + QO+ = g+

em DB(0, R) = M, que e a fronteira do dominio do problema.

e

n • (c-Vr-) + Qc- = g-

em OB(0, R),

(4.119)

(4.120)
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onde

2 J 2 ao+

(C+OO+) - vk 0)i,kIVU0)jl iax

e

k=1 j=1 1=1

E

+ a^;
[[2^^ J++ 2

n (C ^^ ) = Vk
^^
L.^E ()i,kIWijwj,l ax,

k=1 j=1 1=1

(4.121)

(4.122)

Q = abs(cos(9 - Ti)), (4.123)

g+ = abs(cos(O - (pi))l^► i,in (4.124)

e

g = abs(cos(O - (pi))i ,,,,. (4.125)

onde Q e g sao relacionados aos valores das derivadas normais.

Devido a utilizanao da formulacao de paridade, o problema direto a representado

pela equacoes (4.93 - 94 - 119 - 120).

4.6. A SOLUcAO DO PROBLEMA DIRETO

De posse da geometria , do sistema de equacoes diferenciais da equacao de

transporte ja aproximado devidamente e tam[-)dm das condicoes de contorno , ou seja,

com o problema direto ja especificado, pode-se a partir de agora resolve-lo atraves do

metodo dos elementos fmitos, conforme foi descrito no capitulo 3, utilizando-se da



70

formulacao variacional , ou formulacao fraca, de modo que a sua solucao, chamada de

solucao fraca do problema diferencial , seja a solucao do sistema.

0 metodo dos elementos fmitos pode ser resumido basicamente como a projecao da

forma fraca da equacao diferencial em um espaco de funcoes de dimensao fmita.

Dado o problema de valor de contorno, cujo o objetivo a encontrar O,

O, E H' (B(0, R)),

comj = 1,2,...,J,

tal que:

-V • (c®®o¢+) + a+q+ = f (4.126)

e

-V•(c-®0O-)+a-r-=f,

em B(0, R),

n - (c+0O+) + QO+ = g+

e

n • (c-0r-) + QO- = g ,

em aB(0, R),

pode ser dado pela seguinte formulacao variacional:

(4.127)

(4.128)

(4.129)
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Assumindo que cb seja uma solucao da equacao diferencial (4.126 - 127),

multiplica-se essa equacao por uma funcao teste arbitraria Ti e integra -se em todo o

domino V = B(0, R) E H' (B(0, R)), o que resulta em:

f -V • (cVtb )VidV+ f a4j'V ;dV = f f'P;dV, (4.130)
B(O,R) B(O,R) B(O,R)

lembrando que:

V • (AJ) = (A .Vj)+(V - A).f

entao,

(V - A)f = V . (A J) - (A . VJ)

Como

f = Ti,

a equacdo (4.132) a escrita como:

V - (cVo )Vi = V • (cVgj'Pi) - (CDg1J) • VTi,

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

portanto, substituindo (4.135) na equacao (4.130), segue que:
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f {-V • (cV 'I';) + (cVoj) • V'V }dV+ f a4j'P;dV = f f'P;dV, (4.136)
B(O,R) B (o,R) B(O,R)

rearrumando-se os termos , vern que:

f ((cV4j) •VV +acj'P,)dV- f V •(cV4'P,)dV= f if dV, (4.137)
B(O,R) B(O,R) B(O,R)

utilizando-se das propriedades do teorema de Green , ou da divergencia , a integral de

todo o dominio, B(0, R),

f V V. (cVojT i)dV, (4.138)
B(O,R)

se transfonma numa integral da superficie aB(0, R), tal Como,

f 0•ZdV= f Z•ndr,
B(o,R) aB(o,R)

com

(4.139)

Z = cVcj'P,, (4.140)

e portanto,

f V • (cVOj'P,)dV = f n • (cV¢b P;)dr
B(O,R) aB(o,R)

substituindo-se (4.141) em (4.137) tern-se entAo,

(4.141)

f ((cVoj) • V'V +aojTi)dV- f n • (cVoj'P;)dr = f f'P;dV, (4.142)
B(O,R) aB(o,R) B(o,R)
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substitui-se, agora , o termo referente as condicOes de contorno (4.128 - 129) na

integral de superficie e desta forma obtem-se:

f ((cVoj) • V`P, +a4JP;)dV- f (-Q.ioi +g)IP,dF = f f FidV, (4.143)
B(O,R) aB(O,R) B(O,R)

rearrumando-se os termos chega-se a seguinte expressao:

f ((cV 4i) • V P, + abj`P, - )l', )dV - f (-QiO, + g)P,dF = 0 (4.144)
B(O,R) aB(O,R)

VP, E HI (B(O,R))

onde a equacao (4.144) a chamada de forma variacional, ou fraca, e a sua solucao

de solucao fraca do problems diferencial (4.126 - 127 - 128 - 129). Obviamente

qualquer solucao da equacao diferencial tambem a uma solucao do problema

variacional e a reciproca tambem a verdadeira sob algumas restricoes no domino e nas

funcoes coeficientes.
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CAPITULO 5

RESULTADOS

Neste capitulo serao apresentados os resultados obtidos pela implementacao

computacional do problema direto formulado no capitulo anterior . A rotina

computacional desenvolvida para a solucao desse problema foi escrita para o

MATLAB 6.0.0.88 R12 . 0 algoritmo foi compilado ou codificado num

microcomputador com 128 Mb de memoria RAM e corn um microprocessador da

marca Pentium , cujo modelo a PIII 550 MHz. Foram feitas varias simularoes na

investigacao da solucao dense problema , tail como variaroes da geometria, das

condiroes de contorno, e tambem dos parametros , ou seja, das constantes de

condutividade (ou difusao) a os coeficientes de absorcao e espalhamento.

5.1. AS CONSIDERACOES PRELIMINARES

5.1.1. A APRESENTAcAO E A DISCRIMINAcAO DOS

TERMOS DO ALGORITMO COMPUTACIONAL

Algumas consideracoes iniciais sao necessarias para a implementacao do algoritmo

computacional do seguinte problema direto,
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-V.(c0V )+a4=f (5.1)

em B(0, R),

n•(cv0)+QO=g (5.2)

em DB(0, R),

onde B(0, R) representa o domino do problema, uma bola centrada em zero e com

raio igual a R, c e o tensor de difusao , a a matriz de absorcao e f o ten-no de fonte, Q e g

sao relacionados aos valores das derivadas normais.

A figura (5. 1) representa urn diagrama esquematico deste algoritmo.

ESCRIVAO DA GEOMETRLI
DO PROBLEMA

E
ESPECIFICAcAO DA

NAO-HOMOGENEIDADE

7

DADOS
DE

ENTRADA

MATRTZES
DE

SECAO DE CHOQUE

L

nrATRIZES
DE

CONDUTIL'IDADE
(DIFUSAO)

TERMO FONTE

GERAAAO AUTOMATICA
DA

MALHA PRIAITI A

PUS

SOLUCAO DO
PROBLEMA
DIRETO: ++

DESCRIcAO DAS
CONDIcOES DE
CONTORNO

Figura 5.1 - Histograms do Algoritmo Computacional

A seguir serao discriminados todos os termos do algoritmo computacional do
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problema direto.

5.1.1.1 . A DESCRICAO DA GEOMETRIA DO PROBLEMA E A

ESPECIFICAcAO DA NAO-HOMOGENEIDADE

A geometria a composta de dois circulos , o maior deles possui raio igual a 1

(R = 1 cm) enquanto que o menor , a nao-homogeneidade , tem raio igual a 0,2

(r = 0,2 cm). 0 dominio a entAo dividido igualmente em oito regioes iguais

observando-se a questAo da simetria para a formulacAo do problema direto.

5.1.1.2 . A GERACAO AUTOMATICA DA MALHA PRIMITIVA

0 dominio a mapeado , aproximado por triangulos , gerando uma malha de elementos

fmitos.

5.1.1.3. OS DADOS DE ENTRADA

Esses dados de entrada sao utilizados ao longo do programa.

5.1.1.3 .1. A CONFIGURACAO INICIAL DOS PARAMETROS

0 coeficiente de absorcao a 0,001 (6a = 0, 001 cm-1);

0 coeficiente de espalhamento 6 0,249 (6s = 0.249 cm-1);
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o centro da circunferencia menor , a nao-homogeneidade , a (xo[cm];yo[cm]);

o valor maximo para a altura dos triangulos da malha a 0,01 (ham = 0, 01 cm);

a constante de condutividade da circunferencia maior e 1 (k1 = 1);

a constante de condutividade da circunferencia menor a 10 (k2 = 10).

onde as constantes de condutividade k1 e k2 sao fatores de ajuste que estao

embutidos nos termos de absorcao e espalhamento da equacao de transporte de

radiacao, nao sendo necessario explicita -los ao longo do desenvolvimento da

formulacao matematica , contudo para a implementacao computacional a discriminagao

desses termos se faz necessaria para que se possa diferenciar com maior clareza o

termo de perturbacao.

5.1.1.4 . AS MATRIZES DE SEcAO DE CIIOQUE (a)

As matrizes de secao de choque sao Was pelas equacoes

(4.97-98-60-61 -62).

onde as constantes de condutividade k, e k2 devern ser explicitadas na rotina

computacional por uma simples multiplicacao direta nas formulas (4.97 - 98).

5.1.1.5 . AS MATRIZES DE CONDUTIVIDADE (c)

As matrizes de condutividade sao dadas pelas equacoes (4.95 - 96).
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onde as constantes de condutividade kl e k2 devem ser explicitadas na rotina

computacional por uma simples multiplicacao inversa nas formulas (4.95 - 96).

5.1.1.6 . OS TERMOS DE FONTE (f)

Os termos de fonte sao dados pelas equacoes (4.99 - 100), mas neste trabalho sao

considerados como nulos (f = 0).

5.1.1.7. A EQUAcAO DIFERENCIAL PARCIAL

A equacao diferencial parcial (PDE) e dada pela equacao (5. 1).

5.1.1.8. A DESCRIcAO DAS CONDIcOES DE CONTORNO

A condicao de contorno de Neumann generalizada a dada pela equacao (5.2).

5.1.1.8.1. AS CONFIGURACOES POSSIVEIS PARA AS CONDICOES

DE CONTORNO DO SISTEMA

A tabela (5. 1), a seguir , mostra todas as configuracoes possiveis para as condicoes

de contorno do sistema,
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bl b 2 b3 a 3 b6 b 7 be

Li*I' I i b Z 1 ! • I j^SI

#1, in #in 11II, in •I, in •1, in •1, in #1, in #1, in in

#2, in
II

#2, in
II

#2, in
II

#2, is
I

#2, in #2, in +2, In #2, in #2 , in

3, in +3 in #3 in #3 in #3, in #3, in 13, in #3, in +3, in

#4, in #4, in #4, in #4, in #4, in #4, is #4, in 04, in

#I, in
II

#1, in
II

- #I, in
I

#1, in
I

#1, in
I

#1, in
I

#1, in
II

- #1, in

II
- #1, in

#2, in 2, in

II
#2, is

II

#2, in
I

# 2, in
I

2, in
1I
T2, in

I

#2, in
II

#2, in

#3, iA -+3, in

II
-+3, in

II
43, in

II
#3, in

I
#3, in

I
+3, in

I
03, is

I
#3, in

#4, in +4, in

II
+4, in

II

-#a, in
II

#4, in

II
- #4, in

I

#.,% in

I
#a, in

I
+4, in

Tabela 5.1 - Configuracao Completa das Condicoes de Contorno

5.1.1.8.2. AS CONFIGURAcOES PARA A PRESCRIcAO DAS

CONDICOES DE CONTORNO DO FLUXO DE PARIDADE PAR (j^+)

Neste trabalho so serao apresentados os resultados referentes a 0+ que e o fluxo, os

resultados relativos a corrente 4- nao serao apresentados. Neste caso as configuracoes

para as condicoes de contorno que serao utilizadas nesta pesquisa sao dadas pela tabela

(5.2), que sao referentes a 4+. As configuracoes da tabela (5.3) que se referem as

condicoes de contomo de /r nao serao utilizadas, porem serao mostradas para efeito de

ilustracao.
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bi b 2 b 3 b4 b 3 b b b7 b 8

#1, m
II

#1, in
II

#1, in
I

o1, in
I

#1, in
I

#1, in
^I

in
II

#1, in
^II

in

#2, in #2, in 02, in #2, in #2, in #2, in #2, in #2, in #2, in

# 3, in
• 3

in

#3
in

# 3
in #3, in #3, in

I
#3, in

I
03, in

I
# 3, in

#4, in #,4', in #in in 4, in #4, in #4, is #4, is r4, in

Tabela 5.2 - Condicoes de Contorno para o Fluxo de Paridade Par

5.1.1.8.3. AS CONFIGURACOES PARA A PRESCRIcAO DAS

CONDICOES DE CONTORNO DO FLUXO DE PARIDADE IMPAR (0-)

Conforme mencionado anteriormente , essas configuracoes da tabela (5.3) nao serao

utilizadas nesse trabalho.

bi b 2 b3 b4 b3 b6 b7 b

J iz.. ,...x3 ? xi.--'x z .-+ •,'i z -Va ezJ^7z'J 'A X . 4

1, in
_ II ilk - ^ II

1, in T1, in i, in in in - III in

- Y2, in - #2, in

if

- #2, in

11

- #2, in #2, in
1

#2, in #2, is "2, in
it

- #2, in

#3, in
-#3

in
i

3 in

-13
in

-T3
in 3, in #3,,1 #3, in #3, in

in ?4, in 4, in
.#4H

in
H

#4, in
.

# 4, in #4, in #4, in T4, in

Tabela 5.3 - Condicoes de Contomo para o Fluxo de Paridade Impar

5.1.1.8.4. AS CONDIcOES DE CONTORNO DO FLUXO DE
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PARIDADE PAR (#+) PARA CADA DIRECAO DE INCIDENCIA DE

RADIAcAO (_Q,) NO PLANO (X, Y)

Serao mostradas pelas figuras (5.2 - 3 - 4 - 5) com as suas respectivas tabelas

(5.4 - 5 - 6 - 7), a configuracao das condicoes de contorno pars cada direcao de

incidencia de radiacao, ou seja, para as direcoes S2i (plan (x, y)), corn i = 1, 2,3 e 4.

Configuracao das condicoes de fronteira para a direcao SQ? I (i = 1):

Lin
I

COS(Aq - )p

COS(pSi - (0

Figura 5.2 - Direcao S21

CONDIcOES DE CONTORNO PARA A DIREcAO 1(i= 1)

bi b2 b3 b4 5 b 6 b7 be

+J --, Z Z Z• Z'y^xZ'i

01, i, ¢II;, 4; In #1, in T1, in T1, in #i, n. •i,, in IIin

Tabela 5.4 - Condi toes de Contorno pars a Direcao Q
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Configuracao das condicoes de fronteira para a direcao 22(i = 2):

I
qP 2,ix

IF

co (pS j - 4))o

(1) 2, in

COS(a`j - (Q

Figura 5.3 - Direcao S22

CONDIcOES DE CONTORNO PARA A DIRECAO 2 (% 2)

bI b 2 b3 4 ba 6 b T b

i z l-.z xl Is "z

II
#2, in #2, in

II
#2, in

II
#2, in

I
#2, in

I
#2, in

I
+2, in

I
02, in

II
#2, in

Tabela 5.5 - Condicoes de Contorno para a DireCdo SQ?2
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Configuracao das condicoes de fronteira para a direcao 13(1 = 3):

II

Iz )
I

COS(gr - t3(0

Figura 5.4 - Direcao 123

CONDICOES DE CONTORNO PARA A DIREcAO 3 (r- 3)

bI b2 b3 b 4 b6 b6 b7 b8

: -♦ r z-.-};: Iz s --- z z^,: s .zs-♦rz rz""z °za--0-:

#3, in

II
#3, is

II
#3, ii

II
3, in AII3, is

^I
3, in

^I
3, in #I3, in

^I
3, in

Tabela 5.6 - Condicoes de Contomo para a Direcao 123
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Configuracao das condicoes de fronteira para a direcao S?4(i = 4):

(D4.ix IT

COS(fi - ^0

Figura 5.5 - Direcao +4

CONDIcOFS DF CONTORNO PARA A DmFcAO 4 (r- 4)

bi b 2 b3 b4 b$ b 6 b7 b s

v t I L1

04, in

I
#d, in

II
#4, in

II

#4 in
II

#4, in

II

#4, in
I

#4, in
I

#4, in
I

'4y in

Tabela 5.7 - Condicoes de Contorno para a Direcao 44
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onde a figura (5.6) ilustra a localizacao dos b;, com i = 1, 2, 3, 4, 5, 6, 7 e 8.

Figura 5 .6 - Contorno do Sisterna

5.1.1.9. A SOLUcAO DO PROBLEMA DIRETO

A solucao do problema direto e o fluxo 0+[cm-2s-l].

5.2. A INVESTIGACAO DA SENSIBILIDADE DO FLUXO

DE RADIACAO (OF) PRESCREVENDO-SE A MESMA

CONDIcAO DE CONTORNO PARA CADA VARIAcAO

DA POSIcAO DA NAO -HOMOGENEIDADE NO

INTERIOR DA GEOMETRIA CIRCULAR NO PLANO

(X, Y)

Os resultados que serao apresentados nesta secao com o objetivo de investigar a

sensibilidade do fluxo 0 + consideram corno referencia as simulacoes sem a

perturbacao. As simulacoes com a nao-homogeneidade levam em conta a variacao da

posicAo dela no interior do circulo , dada uma condicao de contorno fixa, assim como
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todos os outros parametros.

A condicao de contomo prescrita nessa simulacao a representada, a seguir, pela

tabela (5.8).

PRESCRIcAO DAS CONDI9OES DE CONTORNO

bi b2 b3 b4 b$ b6 b7 bs

1)^L j Z '4_1 = ♦ Z,--*lZj ?L 3-iZ L--^iZ1 Z..''-y,L. e?K "1L !Z'j--+^L

0 0 0 0 0 0 0

#2, in 0 0 0 0 0 0 0 0

#3, in 0 0 0 0 0 0 0 0

04, i3lL 0 0 0 0 0 0 0 0

Tabela 5.8 - Condicao de Contorno Prescrita

As posicoes do centro da nao-homogeneidade em cm sao:

para a primeira simulacao:

CI = (0,7;0,3);

para a segunda simulacao:

C2 = (0, 3; 0, 7);

para a terceira simulagao:

C3 = (-0,3;0,7);
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para a quarta simulacao:

C4 = (-0, 7; 0, 3);

para a quinta simulacao:

C5 = (-0, 7; -0, 3);

para a sexta simulacao:

C6 = (-0, 3; -0, 7);

para a setima simulacao:

C7 = (0, 3; 0, 7);

para a oitava simulacao:

C8 = (0,7;-0,3);

5.2.1. A MALHA TRIANGULAR DE ELEMENTOS FINITOS

PARA A GEOMETRIA DO PROBLEMA SEM A PERTURBAcAO

A figura (5.7) representa a malha de elementos fmitos para a geometria do

problema sem a perturbacao.
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0.8

0.6

0.4

02

0

0 0.5 I

Figura 5.7 - Maiha de Elementos Finitos Triangulares da Geometria Homogenea

5.2.2. AS MALHAS COM A PERTURBAcAO E A ANALISE DA

SENSIBILIDADE DO FLUXO DE RADIAcAO PERANTE A

VARIAcAO DE POSIcAO DA NAO-HOMOGENEIDADE

A partir de agora serao apresentadas as malhas pars cada posicao da perturbacAo,

assim como as representacoes do fluxo sem e com a nao-homogeneidade, tambem

serao mostrados os resultados dos fluxos nos pontos nodais da fronteira de modo a

comparar as duas situacoes e observar a sensibilidade do fluxo.

Os resultados da primeira simularao sao mostrados a seguir pelas figuras

(5.8-9-10 -11-12).
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A figura (5.8) representa a malha para a primeira simulacao.

1

0.0

0.6

0.4

02

0

-06

-0.0

_1
0 0.5 1

Figura 5.8 - Malha da Geometria com a Nao-Homogeneidade

A figura (5.9) ilustra a passagem do fluxo atraves da superficie com e sem

perturbacao. Observa-se a diferenca nos dois casos, ou seja, a sensibilidade da regiAo

nao-homogenea mediante a passagem do fluxo.
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Fluxo+SP(r1)

1 .1 -05
(-4)

-----^-----1

1

Fluxa+C . P(F1)

Figura 5.9 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea

As figuras (5. 10 - 11) representam o fluxo que passa pela fronteira dos problemas

homogeneo e nao-homogeneo, nas quais o pico maior e o fluxo incidente enquanto que

o menor e o fluxo emergente. A diferenca entre os dois picos se di devido ao sistema

ser espalhador e absorvedor.
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1.4

1.2

0.2

00
0 1

Fluxo nos Pontos Nodais do Contorno (sera perturbacao)

2

Fluxo

j^ I ^- ---- 1 J 1
3 4

Penmetro do Contomo
5 6

Figura 5.10 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogenea

1.4

1.2

0.2

0 t

Fluxo nos Pontos Nodais do Contomo (com perturbarcao)

2 3 4
Penmetro do Contomo

Figura 5.11 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao
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A figura (5.12) compara o caso homogeneo com o nao-homogeneo, pode-se ver que

no segundo caso o fluxo emergente a menor que o do primeiro e isso se di devido a

sensibilidade ao defeito.

1.4
Fluxo nos Pontaa Nodais do Contomo

- Fluxo + Com Perturbarao
-a- Fluxo + Sern Perturbacao

0.2

a
0

1.2

1 2 3 A
Perirnetro do Contorno

t 6 7

Figura 5 . 12 - Superposicao dos Fluxos nos Pontos Nodais

Os resultados da segunda simulacao sao mostrados a seguir pelas figuras

(5.13-14-15-16).
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Figura 5.13 - Malha da Geometria com a Nao-Homogeneidade

Flum+ S .P.(F1) Fluxo+ C P (Ft)

Figura 5 . 14 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea
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1.4

1.2

0.2

oCo

Fluxo nos Pontos Nodais do Contorno (com perturbagao)

1 ,

1
+ S

J
f I

1

1
t Il1

2 3 4
Penmetro do Contorno

Fluxo

5

r

Figura 5.15 - Fluxo nos Pontos Nodais do Contorno da Geometria corn a Perturbacao

1.4

1.2

1

Perimetro do Contorno

Tl 1 l 1 1 1 1 M ! l 1 1 1r0 4 4 4 4 4
1 2 3 1

Fluxo nos Pomos Nodais do Contorno

1 -1 1 1 1 1 1 f'

fi 7

Fluxo + Com Perturbagao
+ Fluxo + Sam Perlurbagao

6 7

Figura 5.16 - Superposirao dos Fluxos nos Pontos Nodais
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Os resultados da terceira simulacao sao mostrados a seguir pelas figuras

(5.17 - 18 - 19 - 20).

i

08

0.6

04

0.2

0

-02

-04

-0.8

-1
-1 -0.5 0 0.5 1

Figura 5.17 - Malha da Geometria com a Nao-Homogeneidade
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Fluxo+ C .P(r--1)

Figura 5.18 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea

1.4

1.2

Fluxo+S .P.(F1)

Fluxo nos Pomos Nodais do Contorno (com perturbagao)

(1

0.2

oo
0 1 2 3 4

Perimetro do Contomo
5 6

Fiuxo

7

Figura 5.19 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao
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1.4

0.2

0L
0 3 4

Perimetro do Contomo

Figura 5 .20 - Superposicao dos Fluxos nos Pontos Nodais

Os resultados da quarta simulacao sao mostrados a seguir pelas figuras

(5.21 - 22 - 23 - 24).

Fluxo nos Pontos Nodais do Contomo

1.2

r '' tt'ttt44$44/ t 46444 44i j
52

-. Fluxo + Corn Perturbagao
-I- Fluxo + Sem Perturtacao

6 7
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1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0.02

0.01

0
1

-1 435 0 0.5 1

Figura 5.21 - Malha da Geometria com a Nao-Homogeneidade

FIUNO+ S.P.(Fl)

0.5
0 i -0.5

(i=4)

Flux0+C P (Ft)

Figura 5.22 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea
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1.4

1.2

0.2

0L
0

Fluxo nos Pontos Nodais do Contorno (com padurbaSao)

1
Per6rretro do Contomo
3 4 5 6 7

Figura 5.23 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao

1.4

12

0.2

Fluxo nos Pontos Nodais do Contorno

1 1 1 1 1
3 4

00 x rfi r 4 1 l I 1 1 1 1 02

Penmetro do Contoma

4-4+444

I
Fluxo +Com Perlurbagao

-+ Fluxo+SamPerlurbarao

6 7

Figura 5.24 - Superposicao dos Fluxos nos Pontos Nodais
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Os resultados da quinta simulacao sao mostrados a seguir pelas figuras

(5.25 - 26 - 27 - 28).

0.8

0.6

0.4

0.2

0

-0.8

-1 0 0.5 I

Figura 5.25 - Malha da Geometria com a NAo-Homogeneidade
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Fluxo+S . P.(Fl) Fluxo+C P, (1=1)

Figura 5.26 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea

1.4

1.2

Fluxo nos Pontos Nodsis do Contomo (com perturbacao)

7 1

1 4

0.2

0o
0

1

1 2 3 4 5 6

Penmetro do Coruoma

Fluxo

7

Figura 5.27 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao
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1.4
Fluxo nos Pontos Nodsis do Contomo

Fluxo + Com Perlurbagao
-+ Fluxo + Sem Pedurbagao

1.2h

02

0` }!!lfi 11 h1 lilt 111111!!! 1 '1
0 1 2 3 4

Penmetro do Contomo

1
6

l
7

Figura 5 .28 - Superposicao dos Fluxos nos Pontos Nodais

Os resultados da sexta simulacao sao mostrados a seguir pelas figuras

(5.29 - 30 - 31 - 32).
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1

08

0.6

04

0.2

0

-02

-0.6

-0.6

-1
-0.5 0 0.5 1

Figura 5.29 - Malha da Geometria com a Nao-Homogeneidade

Fluxo+S.P.(F1)

0.02

0.01

(F4)

Fluxo+ C . P. (F1)

Figura 5.30 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea
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1.4

1.2

0.2

oU
0 1

Fluxo nos Pontos Nodsis do Contorno (com parturhagao)

t
2

Fluxo

3 4 5 6 7
Perimetre do Contomo

Figura 5.31 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbarao

1.4

1.2

0.2

Flux* nos Pordos Nodes do Contomo
I

Fluxo +Com Perturbagao
+ Fluxo +Sem Perturbagao

00 1 2 3 1 6 7
Perimetro to Contomo

Figura 5.32 - Superposicao dos Fluxos nos Pontos Nodais
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Os resultados da setima simulacao sao mostrados a seguir pelas figuras

(5.33 - 34 - 35 - 36).

1

0.8

0.6

0.4

0.2

a

-0.2

-0.4

-1
-1 0 0.5 1

Figura 5.33 - Malha da Geometria com a Nao-Homogeneidade



106

Fluxo+ S .P. (F1) Fluxo+C.P.(=1)

Figura5.34 - Passagem do Fluxo pelas Geometrias Homogenea e NAo-Homogenea

1.4

12

Fluxo nos Pontos Nodeis do Contoma ( com perturhagao)

t

0.2

0O
0 1 2

Fluxo

3 4 5 6 7
Perimetro do Contomo

Figura 5.35 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao
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1.4
Fluxo nos Pantos Nodais do Contomo

Fluxo +Com Perturbariao
-I- Fluxo + Sem Perturbacao

1.2

0.2 F

00 1 2 3 4
Perimetro do Contomo

4f41s4

Figura 5.36 - Superposicao dos Fluxos nos Pontos Nodais

Os resultados da oitava simulacao sao mostrados a seguir pelas figuras

(5.37 - 38 - 39 - 40).
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1

0a

06

DA

0.2

0

-02

-0.4

-1 a 05 1

Figura 5.37 - Malha da Geometria com a Nao-Homogeneidade

Flueo+S . P.(F1)

0.02

001

0 5
0 -0.5

1 1 (i=4)

Fluxo+ C P Cpl)

Figura 5.38 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea



109

1.4

0.2

00

1.2

ti

L

Fluxo noo Pontoe Nodaie do Contomo (com perturbacso)

2 7

Figura 5.39 - Fluxo nos Pontos Nodais do Contomo da Geometria com a Perturbacao

1.4

0.2

1.2

3 4
Penmetro do Contomo

Fluxo rtoe Pontoa Nodaie do Contomo

Fluxo

65

I
Fluxo +Com Perturbacao

-+ Fluxo +Sem Perturbarac

00 1 2 3 4 6 7
Penmetro do Contomo

Figura 5.40 - Superposicao dos Fluxos nos Pontos Nodais
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De acordo com as figuras geradas para as oito simulagoes pode-se ver que a

sensibilidade do fluxo diante da nao-homogeneidade para a dada condigao de fronteira

so a notada nas simulagoes que envolvem o primeiro e o quarto quadrantes enquanto

que nas demais simulagoes essa sensibilidade nao a percebida.

5.3. A INVESTIGAcAO DA SENSIBILIDADE DO FLUXO

DE RADIACAO (q^+) PARA DIFERENTES CONDICOES

DE CONTORNO PRESCRITAS SENDO FIXA A

POSIcAO DA NAO-HOMOGENEIDADE NO INTERIOR

DA GEOMETRIA CIRCULAR NO PLANO (X, F)

Nests segao serao apresentados os resultados da sensibilidade do fluxo para

diferentes condigoes de contorno e fixando-se a geometria e os parametros (coeficientes

de absorgao, de espalhamento e de condutividade).

0 centro da nao-homogeneidade , em cm , sera fixo em (x = 0, 7;y = 0, 2 ) com raio

igual a 0, 2 cm.

5.3.1. A PRESCRITAO DAS CONDIcOES DE CONTORNO

PARA DIFERENTES DIREcOES DE INCIDENCIA DE

RADIAcAO (a.) NO PLANO (X, Y) NA INVESTIGAcAO DA

SENSIBILIDADE DO FLUXO DE RADIAcAO (q f '- )
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As tabelas (5.8 - 9 - 10 - 11) representam as configuracoes das condicoes de

contorno que serao utilizadas nos resultados que serao apresentados nesta serao.

Para a direcao S21 a condicao de fronteira a dada pela tabela (5.8) que foi mostrada

no inicio da serao anterior, a qual indica que a entrada da radiacao a feita atraves do

contorno b I como mostra a figura (5.6).

Para a direcao -Q2 a condicao de fronteira a dada pela tabela (5.9) a qual indica que

a entrada da radiacao a feita atraves do contorno b2 como mostra a figura (5.6).

PRESCRIcAO DAS CONDIcOES DE CONTORNO

bi b2 b 3 b4 5 b 6 b7 bs

U--+K,4 x i-l xa . ! --+ 11' 4 11 1 -f z 1 $ 4 tz "- X 'z-z-$

0 0 0 0 0 0 0 0

#2, v► 1 0 0 0 0 0 0 0

#3,fa 0 0 0 0 0 0 0 0

#4, i3ft 0 0 0 0 0 0 0 0

Tabela 5.9 - Condicao de Contorno Prescrita

Para a direcao 43 a condicao de fronteira a dada pela tabela (5. 10) a qual indica

que a entrada da radiacao 6 feita atraves do contorno b3 como mostra a figura (5.6).
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PRFSCRIcAO DAS CONDIcOES DE CONTORNO

bi b2 b3 b4 b3 6 b7 b s

d-1si suss s.-^'rzi txj--J^z z $ x3 : r t- z N : 3 i"r si--*?s

0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0
0

#3, in 1 0 0 0 0 0 0 0

#4, in 0 0 0 0 0 0 0 0

Tabela 5.10 - Condicao de Contorno Prescrita

Para a direcao 24 a condicao de fronteira a dada pela tabela (5. 11) a qual indica

que a entrada da radiacao a feita atraves do contomo b4 como mostra a figura (5.6).

PRESCRIcAO DAS CONDIcOES DE CONTORNO

bi b2 b3 b 4 b3 b6 b 7 b

V --# x'i x i -* x z--;#x- i xi ._$ I z_$ -s
x. -♦b x` bx ' i... K' r.i--+ {x

#1, in 0 0 0 0 0 0 0 0

+ #2,ij, 0 0 0 0 0 0 0 0
#

#3,;n 0 0 0 0 0 0 0 0

#4, is 1 0 0 0 0 0 0 0

Tabela 5.11 - Condicao de Contorno Prescrita

5.3.2. A MALHA TRIANGULAR DE ELEMENTOS FINITOS

COM A POSIcAO DA NAO-HOMOGENEIDADE FIXADA E A

ANALISE DA SENSIBILIDADE DO FLUXO DE RADIAcAO (,p+)



113

PARA AS DIFERENTES CONDICOES DE CONTORNO

PRESCRITAS

0 centro da nao-homogeneidade , em cm , sera fixo em (x = 0, 7;y = 0, 2) com raio

igual a 0, 2 cm.

A figura (5.41) representa a malha de elementos fmitos para a posicao da

nAo-homogeneidade que foi escolhida para as simulacoes desta secao.

08

0.6

0.4

0.2

0

2-0

-0.6

-0.8

-1
-0.5 0 0.5 1

Figura 5.41 - Malha da Geometria com a Nao-Homogeneidade

Os resultados para a primeira condicao de contorno, tabela (5.8), serao mostrados a

seguir pelas figuras (5.42 - 43 - 44 - 45).
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Fluxo+ S .P.(Ft)

0.04,

0.02

Fluxo+C P.(=1)

-0.5 0 05-1 •1
G=41

Figura 5.42 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea

1.4

1.2

0.2

ti

Fluxo nos Valares Nodais do Coraomo (sem perturba5ao)

2 3 4
Perimetm do Contorno

0o
0 1 6 6 7

Figura 5.43 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogenea
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1.4

1.2

02

0n
0

1

Fluxo not Pomos Nodeis do Contorno (com perturbacao)

2 3 4
Perimetro do Contomo

Fluxc

l
5 6 7

Figura 5.44 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao

1.4

12

0.2

Fluxo nos Pantos Nodeis do Contorno- C.C(F1)

00 1 2 '3 4
Perimetro do Contorno

i-1-4-4-1-+4

-+ Fluxo + Com Perturbayao
+ Fluxo + Sam Perturbagao

6 7

Figura 5.45 - Superposicao dos Fluxos nos Pontos Nodais
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Os resultados para a segunda condicao de contomo, tabela (5.9), serao mostrados a

seguir pelas figuras (5.46 - 47 - 48 - 49).

Fluxo+ S.P. (i=1) Fluxo+C .P.(^=1)

Figura 5.46 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea
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0.014

0.012

0.004

0.002

0O
0

Fluxo nos Valores Nodeis do Contomo (sam perturbacao)

- - - - - - - - - -- -
1 3 4

Penmetro do Contomo
2 5 6 7

Figura 5.47 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogenea

Fluxo

n o%

0.03

0.01

0.00,5

00
0 1

Fluxo nos Potkos Nodsis do Contomo (com perturbagao)

1 11 " \

3 4
Perimetm do Contomo

2 5 B 7

Figura 5.48 - Fluxo nos Pontos Nodais do Contomo da Geometria com a Perturbacao
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0.04

0.035

0.03

0.01

0 1

Fluxo nos Pontos Nodais do Contomo- C.C(=2)

Fluxo +Cam Perturbagao
-4- Fluxo +Sam Parturbagao

3 4 5 6
Perimetm do Contomo

Figura 5.49 - Superposicao dos Fluxos nos Pontos Nodais

7

Os resultados para a terceira condirao de contorno, tabela (5. 10), serAo mostrados a

seguir pelas figuras (5.50 - 51 - 52 - 53).
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Fluxo +S P (r--1) Fluxo+ C .P.(r--1)

Figura 5.50 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea

10

9

l•^

J +,

rf 1 I
11-1

4

3

2

Fluxo nos Valores Nodais do Contomo (sem perturbsceo)

1 /
1 /
1 1

1 2 3 4
Penmetro do Contomo

5 6 7

Figura 5.51 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogenea
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0.014

0012

0c
0

Fluxo

I

Fluxo nos Pontos Nodsis do Contorno (com pedurbagao)

N

2 3 4
Perimetro do Comomo

f

5 6 7

Figura 5.52 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao

0.014

0012

0.002

0c
0 1

Fluxo nos Pomos Nodete do Comomo . C.C(I-3)

2 5 73 4
Perimetro do Contorno

6

Figura 5.53 - Superposicao dos Fluxos nos Pontos Nodais
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Os resultados para a quarta condicao de contomo, tabela (5. 11), serAo mostrados a

seguir pelas figuras (5.54 - 55 - 56 - 57).

Fluxo+S P (F1)

0.02,

0.01 ^

0.02,

2

0.02,

0.01 a

Fluxo+ C.P.(=1)

0 0.50
-05.1 1 (i=2)

0.01

0 0.50
1 1 05

(i=3)

0 0.5 1

(i 2)

0
1 -1

0.5 0 0.5 i 1-"Mw
i

2,

1

p -05 0 0.5
•1 -1

Figura 5.54 - Passagem do Fluxo pelas Geometrias Homogenea e NAo-Homogenea
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0.014
Fluxo nos Valores Nodais do Contomo (sera penurbagao)

Fluxo

0012

E

C)

v

0.01

T 0.008

0 002

oCo

T

1 '

ti / f

2 3 4
Perimetro do Contomo

5 6 7

Figura 5.55 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogenea

0.014
Fluxo nos Ponta Nodsie do Contomo (com perturbagao)

Fluxo

0012

0.01

0.002

C
00

1 ; I

I

1 f^` tl I
,~^ 1 I

1 /
2 3 4

Perimetro do Contorno
5 6 7

Figura 5.56 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao
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0.014
Fluxo nos Pantos Nodais do Contomo • C.C(4)

Fluxo + Corn Perturbayao
-t- Fluxo + Sam Perturba4ao

0.012

0.01

0.002 k

Co
1 2 3 4

Perimetro do Contomo

Figura 5.57 - Superposicao dos Fluxos nos Pontos Nodais

7

Observa-se que nos resultados obtidos, variando-se as condicdes de contorno pars

esta geometria fixa, a sensibilidade do fluxo diante do defeito a notada corn maior

clareza nos tres primeiro casos.

5.4. A INVESTIGAcAO DA SENSIBILIDADE DO FLUXO

DE RADIAcAO (q^+) PARA DIFERENTES VALORES DE

PARAMETROS SENDO FIXAS A POSIcAO DA

NAO-HOMOGENEIDADE NO INTERIOR DA

GEOMETRIA CIRCULAR NO PLANO (X, Y) E AS

CONDICOES DE CONTORNO PRESCRITAS
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Nesta secao serao apresentados os resultados de algumas simulacoes envolvendo-se

variacoes nos valores dos parametros ( a, c r , , k1 e k2) e fixando-se a condicao de

fronteira , dada pela tabela (5.8), e a geometria.

5.4.1. A MALHA TRIANGULAR DE ELEMENTOS FINITOS

COM A POSIcAO DA NAO-HOMOGENEIDADE FIXADA

0 centro da circunferencia menor, a nao-homogeneidade , e fixo (xo = 0,2 cm,

yo = 0, 5 cm).

A figura (5.58) representa a malha que sera usada nas simulacoes a seguir.

08

06

04

0.2

0

02

-04

-0.6

-08

-1
0 0.5 1

Figura 5.58 - Malha da Geometria com a Nao-Homogeneidade
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5.4.2. A REPRESENTACAO DAS DIFERENTES

CONFIGURACOES DOS VALORES DE PARAMETROS (oh, q, k)

E A ANALISE DA SENSIBILIDADE DO FLUXO DE RADIAcAO

(q') FIXADAS AS CONDIcOES DE CONTORNO PRESCRITAS E

A POSIcAO DA NAO-HOMOGENEIDADE NO INTERIOR DA

GEOMETRIA CIRCULAR NO PLANO (X, Y)

A configuracao para os parametros e a seguinte:

Primeira simulacao:

Problema padrao.

O coeficiente de absorcao a 0,001 (6a = 0, 00 1 cm-I );

O coeficiente de espalhamento e 0,249 (a = 0.249 cm-I );

a constante de condutividade da circunferencia maior e 1 (kl = 1);

a constante de condutividade da circunferencia menor a 10 (k2 = 10).

Os resultados sao representados a seguir pelas figuras (5.59 - 60 - 61 - 62).
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Fluxo+ S .P.(i=1) Fluxo+C P (Ft)

Figura 5.59 - Passagem do Fluxo pelas Geometrias Homogenea e NAo-Homogenea

1.4
Fluxo nos Valores Nodais do Comomo (sem perturbaceo)

Fluxo

1.2

0.2

2 3 4
Perimetro do Contomo

6 6

Figura 5.60 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogenea
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1.4

12

0.2

Cca 1

Fluxo nos Pantos Nodais do Contorno (com perturbagao)

_ J
2

Fluxo

1 ^.

1

T 1 /^
f 1

1 f 11

3 4
Perimetro do Contomo

5 6 7

Figura 5.61 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao

1.4

1.2

Fluxo nos Pantos Nodais do Contomo

Fluxo +Com Perturbacao
-4- Fluxo + Sem Perturbar as

00 1 2 2 4 6 7
Penmetro do Contomo

Figura 5.62 - Superposicao dos Fluxos nos Pontos Nodais
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Segunda simulacao:

Variando 6Q e 6S.

O coeficiente de absorcao a 0,5 (6Q = 0, 5 cm-) );

O coeficiente de espalhamento a 0,5 (a = 0, 5 cm-1);

a constante de condutividade da circunferencia maior e 1 (kt = 1);

a constante de condutividade da circunferencia menor a 10 (k2 = 10).

Os resultados sao representados a seguir pelas figuras (5.63 - 64 - 65 - 66).

Fluxo+S.P.(Fl) Fktxo+ C P (Ft)

Figura 5.63 - Passagem do Fluxo pelas Geometrias Homogenea e NAo-Homogenea
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1.4

12

02

0S
0 1

Fluxo nos Valores Nodais do Contomo (sem perturbasao)

I
3 4

Penmetro do Contomo
2 6 6 7

Figura 5.64 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogenea

1.4

1.2

0.2

Fuxo not Pontot Nodais do Contomo (com pttturbacso)

2 3 4
Penmetro do Contomo

6 6 7

Figura 5.65 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao
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1.4

1.2

0.2

c,

Fluxo nos Pomos Nodais do Contomo

1 2 3 4
Perimetm do Contomo

r
Flung + Com Pedurbagao

+ Fluxo + Sam Perturbagao

4 4" - 1

6 75

Figura 5.66 - Superposicao dos Fluxos nos Pontos Nodais

Terceira simulacao:

Variando kl.

O coeficiente de absorcao a 0,001 (6a = 0, 001 cm-1);

O coeficiente de espalhamento e 0,249 (6g = 0.249 cm-1);

a constante de condutividade da circunferencia maior a 0,1 (k1 = 0, 1);

a constante de condutividade da circunferencia menor a 10 (k2 = 10).

Os resultados sao representados a seguir pelas figuras (5.67 - 68 - 69 - 70).
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Fluxo+S. P.(F1)

0.04

0.02

y

Fluxo+C P (r--1)

Figura 5.67 - Passagem do Fluxo pelas Geometrias Homogenea e Nao-Homogenea
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Fluxo nos Valores Nodais do Contomo ( sem perturbagao)
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1
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Figura 5.68 - Fluxo nos Pontos Nodais do Contorno da Geometria Homogenea
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1

0.9

0.8

0.2

0.1

Co
1

Fluxo nos Pontos Nodais do Contomo (cam perturbacao)

2 3 4
Perimetro do Contomo

5

Fluxo

6 7

Figura 5.69 - Fluxo nos Pontos Nodais do Contorno da Geornetria corn a Perturbacao

1
Fluxo + Cam Perturbagao

+ Fluxo+Sem Perturbagao

I
Fluxo nos Pordos Nodais do Contomo

0.9

0.8

0.2

0.1

Penmetro do Contomo
°0 1 2313 4 6 7

Figura 5.70 - Superposicao dos Fluxos nos Pontos Nodais
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Quarta simulacao:

Variando k2.

O coeficiente de absorcao a 0,001 (6a = 0, 001 cm-' );

O coeficiente de espalhamento e 0,249 (6S = 0.249 cm-' );

a constante de condutividade da circunferencia maior e 1 (kl = 1);

a constante de condutividade da circunferencia menor a 100 (k2 = 100).

Os resultados sao representados a seguir pelas figuras (5.71 - 72 - 73 - 74).

Fluxo+S.P.(i=i) Fluxo+C.P (t=1)

Figura 5.71 - Passagem do Fluxo pelas Geometrias Homogenea e NAo-Homogenea
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1.2

0.2
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Fluxo nos Valores Nodais do Contomo (sem perturbacao)

2 3 4
Perimetro do Contomo

ti
1

I
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5 6 7

Figura 5.72 - Fluxo nos Pontos Nodais do Contomo da Geometria Homogenea

1A

1.2

0.2

1

Fluxo not Pantos Nodais do Contomo (com petwrbagao)

Fluxo

,mi l A*I I I\1 • 1

3 4
Perimetro do Contorno

2 5 6 7

Figura 5.73 - Fluxo nos Pontos Nodais do Contorno da Geometria com a Perturbacao
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1.4
Fluxo nos Pontos Nodais do Contorno

-. Fluxo +Corn Pwturbacao
-+ Fluxo + San Perturbanao

0.2

0

1.2

1 2 3 4
Perimetro do Contomo

^ i 1 1 0 1 A 0 0 1 4 i i i ! 1 01 4 i 4 4 0 4 4 , - ! 1 0 4 4 4 444

Figura 5.74 - Superposicao dos Fluxos nos Pontos Nodais

Como se pode observar pelas figuras

(5.59-60-61 -62-63-64-65-66-67-68 - 69-70 -71 -72-73-74)

desta secao diante dos resultados das quatros simulacoes, a sensibilidade do fluxo e

percebida em todas as situacoes propostas em relacao a referencia (primeiro caso),

desde o segundo caso , para o qual aumentam -se os valores das secoes de choque de

absorcao e de espalhamento , da mesma forma para a terceira simulacao cujo valor da

constante de condutividade da circunferencia maior, kl, a diminuido e por fim, o quarto

caso, no qual a aumentado o valor da constante de condutividade da

nao-homogeneidade, k2.
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CAPITULO 6

CONCLUSAO E TRABALHOS

FUTUROS

O capitulo 5 apresenta os resultados obtidos pela implementacao computacional do

problema direto na investigacao da sensibilidade do fluxo de radiacao para varias

simulacoes envolvendo variacoes na geometria, nas condicoes de contorno e nos

parametros.

Foi gerada uma malha de elementos finitos com 3 mil triangulos . Num total de 12

mil equacoes , isto e , 3 mil equacoes para cada direcao de incidencia de radiacao i, onde

i = 1, 2, 3, 4.

Deve-se mencionar aqui que o motivo da escolha do espalhamento isotropico e de

outras simplificacoes ao longo do desenvolvimento deste trabalho foi meramente por

uma questao de simplificacao da implementacao computacional.

As simulacoes foram divididas em tres grupos:

no primeiro grupo de simulacoes foram fixados os parametros e as condicoes de

contorno, variando-se apenas a posicao da nao-homogeneidade no interior da geometria

no piano (x, y). Quis-se aqui investigar a sensibilidade do fluxo de radiacao mediante

alteracoes na configuracao da geometria para uma mesma condicao de contorno
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prescrita para todas essas simulacoes.

No segundo grupo de simulacoes foram mantidos fixos os parametros e a posicao da

nao-homogeneidade no interior da geometria no piano (x,y), variando-se somente as

condicoes de contorno. Estudou-se aqui o efeito na sensibilidade do fluxo de radiacao

devido a rotacao das condiroes de contorno para uma dada configurarao da geometria.

No terceiro grupo de simulacoes foram mantidos fixos a posicao da

nao-homogeneidade no interior da geometria no piano (x,y) e as condicoes de contorno,

variando-se os parametros. Assim como nos outros dois grupos de simulagao, o

objetivo aqui tambem e o de investigar a sensibilidade do fluxo de radiacao,

alterando-se valores dos parametros tais como os coeficientes de secao de choque de

absorcao e de espalhamento assim como os coeficientes de condutividade, ou difusao,

tanto para a regiao homogenea quanto para a perturbacao. Nesse grupo de simulacoes

sao desconsideradas variacoes tanto na geometria quanto nas condicoes de contorno.

Conclui-se que para valores apropriados de secao de choque de espalhamento e de

absorcao (os parametros), a atenuacao que a radiacao incidente sofre, ao passar atraves

da geometria homogenea, nAo a suficiente para inibir completamente a sensibilidade a

perturbacao que foi introduzida nesse meio. A perturbacao e a geometria homogenea

possuem seroes de choque diferentes. Pode-se perceber em todos os grupos de

simulacoes uma sensibilidade em relacao ao fluxo de radiacao, deste modo, a

possibilidade de identificacao deste tipo de perturbacao usando a presente metodologia

esta preliminarmente demonstrada.

A validacao da tecnica utilizada nessa tese sera feita mediante a compararAo com o
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trabalho desenvolvido por NOH et tal.[ 14]. Esses resultados se encontram no apendice.

Uma sugestao de trabalho futuro como extensao desta dissertacao e a utilizacao de

uma geometria com simetria axial . 0 objetivo e o de investigar a sensibilidade do

problema de transporte de radiacao com as devidas propriedades do meio material e a

reconstrucao das suas secoes de choque . Visa-se uma futura utilizarao dos resultados

no contexto de reconstrucao de parametros pela metodologia fonte-detetor.

Uma outra sugestAo refere-se a fazer a adocao de uma formulacao do problema

ainda com uma geometria com simetria axial, mas usando sistemas de coordenadas

diferentes para cada uma das direcoes radiais de ordenada discreta. Neste caso, o

problema com simetria axial podera ser tratado como se fosse bidimensional, e efeitos

negativos como, por exemplo, o efeito raio sao atenuados.
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APENDICE

No apendice sera feita uma comparadao entre resultados. 0 objetivo dessa

comparadao e o de validar a tecnica utilizada nessa dissertacao. Para se fazer a

comparadoo entre os resultados serao necessarias algumas mudancas: a geometria

circular sera substituida pela retangular, figura (1), sendo que duas das paredes do

retangulo sao superficies reflexivas e as outras duas obedecem as condicoes de vacuo.

As condicoes de contorno sao reflexivas. Os resultados obtidos apos essas

modificacoes serao comparados com os do trabalho desenvolvido por NOH et tal. [ 14].

CONDIcOES DE CONTORNO REFLEXIVAS

VACUO

VACUO

VEIOR
NORMAL

Figura I - Geometric Retangular com Superficie Reflexiva
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Os fluxos de radiacao nas oito direcoes de incidencia:

Condicoes de reflexao:

0 1 = 0 5 (1)

02 = 04 (2)

0 3 = 0 7 (3)

0 6 = 0 8 (4)

Formulacao de paridade:

Paridade par:

2 [O l + 05] (5)
02 2 [02 + 061 (6)
0 3 z [0 3 + 07] (7)
04 2 [04 + 08] (8)

Paridade impar:
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O T -L [01 - 051
02- 2 [02 - 06]
03 2 IP3 - Y'71

04 Z L0 4 - 08]

Condicoes de interface:

0+1+0-1 = 01 - 01 = 0

01 + 0-z =
0a

+ 0- Se (2) + (4) i = a

03+ +0-3 = 03 - 43 X 03 = 0

021 -02 = 04 - 04 Se (2) - (4) 02 = 04

Condicoes de contorno nos pontos da interface, isto e, em 81 reflexivo:

Superficie reflexiva vertical:

(13) = (n ' SZ)Vgi = 0

(14) => 2 = 04

(15) = (n • -Q3) = 0

(16) (n • R2)V42 ' = (n ' ^4)V

Superficie reflexiva hotizontal:

(13) = (;i . Rd = 0

(14) => 02 = 04

(15) (n ' -Q3)V43 = 0

(16) (i ' Q2 )V42 = (n ' K24 )0O4
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