FORCED WATER FLOW IN WOOD
STUDIED BY LOW FIELD MAGNETIC RESONANCE IMAGING

Mateusz Suchanek1 and Zbigniew Olejniczak2,3

1Department of Physics, Agricultural University, Al. Mickiewicza 21, 31-120 Kraków
2M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków
3Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków

Wood is an example of inhomogeneous porous medium. Its properties can be studied by observing the water flow through it. A method was developed to image the water flow in wood using a low field magnetic resonance imaging (MRI) system \cite{1}. Cylindrical samples, 8 cm long, 5 cm diameter, were cut either parallelly or perpendicularly to the principal anatomical direction of the wood fibers. Each sample was inserted into a cylindrical plexiglass tube and sealed by paraphine. The tube was filled with water on one side and evacuated on opposite side, in order to improve the efficiency of the flow. Samples of oak (\textit{Quercus L.}), spruce (\textit{Picea}) and fir (\textit{Abies}) trunks were studied. In all samples, the images show a formation of narrow liquid paths in wood, in which the water flow is much faster than the diffusion driven moisture transport \cite{2}. The water flow velocity profile along the sample was determined by the digital image analysis.

References: