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Summary

This thesis applies ideas and concepts from quantum information theory to systems
of continuous-variables such as the quantum harmonic oscillator. In particular, it is
concerned with Gaussian states and Gaussian systems, which transform Gaussian
states into Gaussian states. While continuous-variable systems in general require an
infinite-dimensional Hilbert space, Gaussian states can be described by a finite set of
parameters. This reduces the complexity of many problems, which would otherwise
be hardly tractable. Moreover, Gaussian states and systems play an important role
in today’s experiments with continuous-variable systems, e.g. in quantum optics.
Examples of Gaussian states are coherent, thermal and squeezed states of a light field
mode. The methods utilized in this thesis are based on an abstract characterization
of Gaussian states, the results thus do not depend on the particular physical carriers
of information.

The focus of this thesis is on three topics: the cloning of coherent states, Gaussian
quantum cellular automata and Gaussian private channels. Correspondingly, the
main part of the thesis is divided into three chapters each of which presents the
results for one topic:

3 Cloning An unknown quantum state can in general not be duplicated perfectly.
This impossibility is a direct consequence of the linear structure of quantum mechan-
ics and enables quantum key distribution. The approximate copying or �cloning�
of quantum states is possible, though, and raises questions about optimal cloning.
Bounds on the fidelity of cloned states provide restrictions and benchmarks for other
tasks of quantum information: In quantum key distribution, bounds on cloning fi-
delities allow to estimate the maximum information an eavesdropper can get from
intercepting quantum states in relation to noise detected by the receiver. Beyond
that, any communication task which aims at the complete transmission of quantum
states has to beat the respective cloning limits, because otherwise large amounts of
information either remain at the sender or are dissipated into the environment.

Cloning was investigated both for finite-dimensional and for continuous-variable
systems. However, results for the latter were restricted to covariant Gaussian opera-
tions. This chapter presents a general optimization of cloning operations for coherent
input states with respect to fidelity. The optimal cloners are shown to be covariant
with respect to translations of the input states in phase space. In contrast to the
finite-dimensional case, optimization of the joint output state and of weighted combi-
nations of individual clones yields different cloners: while the former is Gaussian, the
latter is not. The optimal fidelities are calculated analytically for the joint case and
numerically for the individual judging of two clones. For classical cloning, the opti-

1



Summary

mum is reached by a measurement and preparation of coherent states. The bound
on classical cloning is turned into a criterion for the successful transmission of a
coherent state by quantum teleportation.

4 Quantum Cellular Automata Quantum cellular automata (qcas) are a model
for universal quantum computation in translationally invariant lattice systems with
localized dynamics. They provide an alternative concept for experimental realiza-
tion of quantum computing as they do not require individual addressing of their
constituent systems but rather rely on global parameters for the dynamics. Quan-
tum cellular automata seem to be particularly fitted for implementation in optical
lattices as well as for the simulation of lattice systems from statistical mechanics.
For this purpose the qca should be able to reproduce the ground state of a different
dynamics, preferably by driving an initial state into a suitable stationary state in
the limit of large time.

This chapter investigates abstract Gaussian qcas with respect to irreversibility.
As a basis, it provides methods to deal with translationally invariant systems on
infinite lattices with localization conditions. A simple example of a reversible Gaus-
sian qca (a nonsqueezing dynamics with nearest-neighbor interaction on the infinite
linear chain of harmonic oscillators) proves that even reversible qcas show aspects of
irreversibility. In addition, we characterize the stationary states for this type of dy-
namics. While reversible qcas exhibit properties which make their characterization
particularly convenient both for finite-dimensional and Gaussian continuous-variable
systems, the definition of irreversible qcas causes problems. Gaussian systems pro-
vide a testbed to illuminate these difficulties. We present different concepts of local-
ization and their impact on the requirements in the definition of qcas.

5 Private Quantum Channels Besides the generation of classical keys for encryp-
tion, quantum cryptography provides a scheme to encrypt quantum information by
a one-time pad with classical key. The elements of the key are in one-to-one cor-
respondence with the elements of a finite set of unitary encryption operations. A
sequence of input states is encrypted by applying the operations as determined by
the sequence of key elements. A receiver with the same key sequence can easily deci-
pher these states by applying the respective inverse unitary operations. However, to
an eavesdropper without knowledge about the key sequence, the output state of the
encryption looks like a random mixture of all encryption operations applied to the
input and weighted with the probability of the key elements. For a suitable set of
encryption operations, this output does not contain any information about the input
state. Hence any eavesdropping must remain unsuccessful and the encrypted state
can be safely sent over a public quantum channel. The encryption thus establishes
a private quantum channel for sender and receiver with the same key.

We construct a private quantum channel for the sequential encryption of coherent
states with a classical key, where the key elements have finite precision. This scheme
can be made arbitrarily secure, i.e. the trace norm distance of any two encrypted
states is bounded from above. The necessary precision of the key elements depends

2



on the desired security level, an energy constraint for the input states and a maximal
length of correlations over the sequence of input states. For the case of independent
one-mode input states, we explicitly estimate this precision, i.e. the number of key
bits needed per input state, in terms of these parameters.

3



Summary

4



1 Introduction

As quantum systems can behave radically different from classical systems, the con-
cept of information based on quantum mechanics opens up new possibilities for
the manipulation, storage and transmission of information. Quantum information
theory [1] explores these possibilities and transforms them into applications such as
quantum computation and quantum cryptography. For suitable problems, these con-
cepts can perform better than their classical counterparts. A prominent example is
the Shor algorithm [2], which factorizes integers efficiently on a quantum computer;
it is thus exponentially faster than the known classical algorithms.

Quantum information is encoded in the state of a quantum system. To obtain
results which are independent of a physical realization, quantum information theory
usually refers to the physical carriers of information only by an abstract description
based on quantum mechanics. The basic unit of quantum information is the qubit,
which in analogy to a classical bit is modeled as a generic two-level quantum system.

Fundamental features of quantum mechanics are linearity and the tensor product
structure of the Hilbert space formalism, which allow for coherent superpositions of
quantum states and entanglement, i.e. correlations which are stronger than classi-
cally1 possible. Hence in contrast to a classical bit, a qubit can take on not only
logical values �0� and �1�, corresponding to the ground state and excited state, but
also any coherent superposition. While such effects enable an exponential speedup
in quantum computation, some tasks pose difficulties. In particular, it is impossi-
ble to perfectly duplicate a quantum state. However, an approximate copying or�cloning� can be achieved, where the quality of the clones is strictly limited. This
implies that quantum information cannot be completely transformed into classical
information, because otherwise the classical information could be used to generate
multiple copies of the respective quantum state. However, quantum teleportation can
transmit quantum information by sending only classical information if in addition
sender and receiver share entangled states, which are used to restore the quantum
states from the classical data.

For the processing of quantum information, finite-dimensional systems, i.e. qubits
and generalizations to d-level systems, are perfectly suited. Moreover, they can be
implemented in a large variety of physical systems, without a leading contender
so far. The transmission of quantum information over large macroscopic distances,
however, is usually implemented by means of an optical scheme. In principle, single
photons can be used to carry qubits in their polarization degree of freedom. Unfortu-
nately, single photons are fragile objects which have to be treated with care and tend
to get lost. As an alternative, the information can be encoded into a mode of the

1 Read: in a local realistic model.
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1 Introduction

electromagnetic field of �bright�2 laser beams. A field mode is described as a quan-
tum harmonic oscillator with field operators Q, P corresponding to the quadrature
components of the complex amplitude. Since Q and P have continuous eigenvalue
spectrum, the mode is a continuous-variable system, which cannot be represented
on a finite-dimensional Hilbert space.3

Gaussian continuous-variable states are characterized by a Gaussian Wigner quasi-
probability function. They naturally arise as the ground and thermal states of
quadratic bosonic Hamiltonians, in particular for the standard harmonic oscillator,

H = 1
2 (Q2 + P 2) .

(Throughout this thesis, we set ~ = 1. Similarly, we do not distinguish different
modes by their frequency but always assume m,ω = 1. Units of physical quantities
are chosen accordingly.) Hence Gaussian states are relevant wherever quantum sys-
tems are described by such Hamiltonians. Examples of Gaussian states in quantum
optics include coherent states (pure states with minimal uncertainty, �displaced vac-
uum�), thermal states (coherent states with additional classical Gaussian noise) and
squeezed states (with reduced variance for Q or P ). In particular, the output states
of lasers are approximated by coherent states.

Gaussian states are also mathematically appealing, because they can be described
by a finite number of parameters for each mode. The underlying phase space related
to the canonical commutation relation,

[Q,P ] = i1 ,
provides a rich mathematical structure. This makes Gaussian states much easier
to handle than general continuous-variable states, which require tools for infinite-
dimensional Hilbert spaces: Restricting questions to Gaussian states allows to in-
vestigate problems which would otherwise be hardly tractable. Moreover, Gaussian
states are extremal among all states with the same first and second moments with
respect to certain functionals: It is a standard result of statistical mechanics that
Gaussian states maximize the von Neumann entropy S(ρ) = − tr[ρ log ρ] for fixed
energy. Only recently, Wolf et al. [3] have proved that a similar result holds for a
more general class of functionals, which comprises important examples from quantum
information theory (entanglement measures, key distillation rates, channel capaci-
ties). One can thus assume an unknown quantum state to be Gaussian in order to
obtain reliable bounds on such quantities. For these reasons, Gaussian states are of
particular relevance for the study of continuous-variable systems.

While quantum information theory for finite-dimensional systems is quite far de-
veloped, continuous-variable systems have not yet attracted equal attention. In this

2 This emphasizes the contrast to very weak laser pulses with approximately 0.1 photons per
pulse, which are used to emulate single-photon sources.

3 Consider e.g. position and momentum operators Q and P , which obey the canonical commu-
tation relation [Q,P ] = i1. If Q and P could be described by finite-dimensional matrices, the
trace of the commutator would vanish, tr[QP−P Q] = tr[QP ]−tr[P Q] = tr[QP ]−tr[QP ] = 0.
This contradicts tr[1] = dimH.
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thesis, three well-established concepts of quantum information theory are transfered
to the continuous-variable Gaussian world: the cloning of coherent states (chap-
ter 3), Gaussian quantum cellular automata (chapter 4) and Gaussian private quan-
tum channels (chapter 5). In addition, chapter 2 provides the common ground for
all chapters with an overview of the basic tools of phase space as well as Gaussian
states and systems. The main chapters can be read independently of each other and
provide a selfcontained introduction to the respective topics.
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2 Basics of Gaussian systems

This chapter provides basic tools and notions for the handling of continuous-variable
systems in general and for Gaussian systems in particular. It does not strive to ex-
tensively introduce this field but rather tries to provide common prerequisites for the
rest of this thesis in a concise way. For a more thorough treatment of the matter see
the forthcoming review [5] on quantum information with Gaussian systems and the
book by Holevo [6] for topics regarding phase space and Gaussian states. Fundamen-
tal aspects from functional analysis are covered in [7]. For various other topics the
reader is referred to the references mentioned below. The following sections deal, in
this order, with the general concepts of phase space for continuous-variable quantum
systems, Gaussian states and Gaussian quantum channels.

Throughout this chapter, we implicitly refer to a preview version of [5]; a supple-
mentary source was [d].

Remark on notation: We denote the adjoint of an operator A with respect to a
scalar product by a star, i.e. as A∗. Complex conjugation of scalars or matrices is
indicated by a bar, e.g. as α or A. For simplicity, we generally set ~ = 1; units
of physical quantities are understood to be chosen accordingly. The identity oper-
ator and the identity matrix are denoted by the symbol 1. In some instances, the
dimension of matrices is specified by a single index, e.g. 1f .
2.1 Phase space

As in classical mechanics (cf. e.g. [4]), a system of f degrees of freedom (or modes)
can be described in a phase space (Ξ, σ), which consists of a real vector space Ξ of
dimension 2f equipped with a symplectic form σ : Ξ × Ξ → R. This antisymmetric
bilinear form gives rise to a symplectic scalar product σ(ξ, η) =

∑2f
k=1 ξ

T

k · σk,l · ηl
implemented by the symplectic matrix σk,l = σ(ek, el), where {ek} is an orthonormal
basis in Ξ. We will only deal with cases where σ is nondegenerate, i.e. if σ(ξ, η) = 0
for all ξ ∈ Ξ, then η = 0. To keep notation simple, we will not distinguish between
bilinear forms and their implementing matrices in a particular basis. For transla-
tionally invariant systems, we will also identify any matrix γ of entries γx,y with the
function γ(x− y) = γx,y yielding these entries. Similarly, we will refer to the linear
space Ξ alone as the phase space if the symplectic form is of secondary importance
in a particular context.

We introduce the symplectic adjoint A
+

of a matrix A with respect to the sym-
plectic scalar product by

σ(Aξ, η) = σ(ξ, A
+
η) . (2.1)

9



2 Basics of Gaussian systems

Since σ(Aξ, η) = (Aξ)T · σ · η, the symplectic transpose is explicitly obtained as
A

+
= σ−1 · AT · σ.

The symplectic form governs the abstract description of a quantum system via
the canonical commutation relations (ccr) between canonical or field operators Rk
for k = 1, 2, . . . , 2f :

[Rk, Rl] = iσk,l 1 . (2.2)

For a system of f harmonic oscillators, the field operators correspond to position
and momentum operators Qj and Pj of each mode j = 1, 2, . . . , f . In quantum optics
Q and P are replaced by the quadrature components of the electromagnetic field.
By fixing a particular harmonic oscillator as a reference for Q, P of each mode and
choosing a modewise ordering of the field operators,

R2j−1 = Qj , R2j = Pj ,

the symplectic matrix takes on a standard form:

σ =

f⊕

j=1

(
0 1

−1 0

)
= 1f ⊗ σ0 for σ0 =

(
0 1

−1 0

)
(2.3)

(where 1f indicates the f × f identity matrix). In a different ordering, where all
position operators are grouped together and followed by all momentum operators,
i.e.

Rj = Qj , Rf+j = Pj ,

the symplectic matrix has a different block structure:

σ =

(
0 1f

−1f 0

)
. (2.4)

We refer to this ordering as blockwise or (Q,P )-block ordering. Depending on the
situation, one form for σ or the other might be advantageous. In either case, the set of
field operators can be compactly written as a vector ~R = (Q1, P1, Q2, P2, . . . , Qf , Pf )

or ~R = (Q1, Q2, . . . , Qf , P1, P2, . . . , Pf ).
An equivalent description of a continuous-variable quantum system does not use

the field operators Q and P , but builds upon the annihilation and creation operators
ak and a∗k, respectively, which are defined by

ak = (Qk + iPk)/
√

2

and because of (2.2), (2.3) obey the bosonic commutation relations

[ak, a
∗
l ] = δk,l 1 , [ak, al] = [a∗k, a

∗
l ] = 0 .

The operator
N̂k = a∗k ak = (Q2

k + P 2
k − 1)/2

10



2.1 Phase space

yields as its expectation value the occupation number of mode k, i.e. the number of
quanta in this mode.

The commutation relation (2.2) requires that the Hilbert space for any representa-
tion of the Rk is of infinite dimension and that the Rk are not bounded. In quantum
mechanics, the usual representation of the ccr for each degree of freedom is the
Schrödinger representation on the Hilbert space H = L2(R, dx) of square-integrable
functions, where Q and iP act by multiplication and differentiation with respect
to the variable x.1 However, this representation leaves room for ambiguities, as is
discussed with a counterexample in [7, Ch. VIII.5]. This problem can be overcome
by building the theory upon suitable exponentials of the field operators instead. A
possible choice is to use the family of bounded, unitary Weyl operators

Wξ = eiξ
T·σ·~R for ξ ∈ Ξ ; in particular W0 = 1 . (2.5)

Hence for σ in standard form and ξ = (q1, p1, . . . , qf , pf), the Weyl operators can be
written explicitly as

Wξ = exp
(
i
∑f
k=1(qk Pk − pkQk)

)
. (2.6)

By the ccr (2.2), the Weyl operators satisfy the Weyl relations

Wξ Wη = e−iσ(ξ,η)/2 Wξ+η and (2.7a)

Wξ Wη = e−iσ(ξ,η) Wη Wξ . (2.7b)

Note that by these relations and unitarity of Wξ, the inverse of a Weyl operator is

W∗
ξ = W−ξ .

Remark on notation: Where appropriate, we expand the argument of Weyl op-
erators, i.e. we write equivalently to each other

Wξ ≡ Wξ1,ξ2,...,ξn
≡ Wq1,p1,...,qn,pn

.

It is implicitly understood that ξ = (ξ1, ξ2, . . . , ξn) and ξi = (qi, pi). Occasionally, we
find it convenient to write the argument of Weyl operators in parentheses instead as
an index:

W(ξ) ≡ Wξ .

In reverse, the generatorsRk of a family of unitary operators which satisfy the rela-
tions (2.7) give rise to the ccr (2.2), cf. [7, Ch. VIII.5]. Moreover, for representations
of the Weyl relations in a finite-dimensional phase space, the Stone-von Neumann
theorem states conditions for unitary equivalence [5, 7]:

1 That is, for ψ ∈ L2(R,dx): Qψ(x) = xψ(x) and iP ψ(x) = d
dx
ψ(x).

11



2 Basics of Gaussian systems

Theorem 2.1 (Stone, von Neumann):
Two families W(1) and W(2) of unitary operators satisfying the Weyl relations
(2.7) over a finite-dimensional phase space which are

(i) strongly continuous, i.e. ∀ψ ∈ H : limψ→0

∥∥ψ − W
(i)
ξ ψ

∥∥ = 0, and

(ii) irreducible, i.e.
(
∀ξ ∈ Ξ:

[
W

(i)
ξ , A

]
= 0
)

=⇒ A ∝ 1,
are unitarily equivalent, i.e. there exists a unitary operator U mapping one system

to the other by W
(1)
ξ = U∗ W

(2)
ξ U .

Note that the statement of this theorem is definitely not true for an infinite-dimen-
sional phase space. We will only consider Weyl systems which are strongly continuous
and irreducible. For finitely many degrees of freedom, these systems are thus equiv-
alent to the Schrödinger representation, where the Weyl operator of a single mode
acts on the Hilbert space H = L2(R, dx) of square-integrable functions by

Wq,p ψ(x) = ei(qP−pQ) ψ(x) = e−iqp/2−ipx ψ(x+ q) .

Note that by this definition the Weyl operators act on the field operators as a shift
by −ξ, i.e.

W∗
ξ RkWξ = Rk − ξk 1 . (2.8)

Since by (2.7b) and (2.3) Weyl operators of different modes commute, they can be
decomposed into a tensor product of Weyl operators on single modes

Wξ1,ξ2,...,ξf
=

f⊗

j=1

Wξj
, (2.9)

where the Weyl operators on different phase spaces are distinguished only by the
dimension of their argument. The unitary equivalence to the Schrödinger represen-
tation can thus be established for each mode separately. Note that by this decom-
position Weyl operators act on each mode locally.

As the Weyl relations (2.7) give rise to the ccr (2.2), the family of Weyl operators
is a sufficient basis to describe a continuous-variable system for a given phase space
(Ξ, σ). In order to gain more structure, the Weyl operators are used to constitute
an algebra whose norm closure is the ccr algebra ccr(Ξ, σ) of the phase space. This
provides powerful algebraic tools for the description of continuous-variable quantum
systems. Since by (2.9) the Weyl operators can be decomposed into tensor factors
representing single modes, the ccr algebra can be represented by bounded operators
on a tensor product of representation Hilbert spaces for single modes, i.e. by B(H⊗f)
for systems with f degrees of freedom.

Irreducible representations of the Weyl operators allow for a convenient result,
namely that operators which commute with all Weyl operators are multiples of the
identity:

12



2.1 Phase space

Lemma 2.2:
Let X ∈ ccr(Ξ, σ). If for all phase space vectors η ∈ Ξ

Wη XW∗
η = eiσ(ξ,η)X, then X = λWξ , where λ ∈ C .

Proof: Consider X ′ = XW∗
ξ and assume that WηXW∗

η = eiσ(ξ,η)X for all η ∈ Ξ.
Then

WηX
′ W∗

η = e−iσ(ξ,η) WηXW∗
η W∗

ξ = XW∗
ξ = X ′ .

Since the Weyl representation is supposed to be irreducible, X ′ = λ1 follows (cf. the
statement of Theorem 2.1). �

2.1.1 Noncommutative Fourier transform and characteristic

functions

The Weyl operators implement a noncommutative Fourier transform and thus an
equivalence between suitable operators and complex functions on phase space. This
equivalence allows to transform questions on quantum systems from operator alge-
bras to complex analysis. A trace class operator2 ρ and a complex, Lebesgue inte-
grable phase space function χ(ξ) are related to each other by the Weyl transform
and its inverse,

ρ = (2π)−f
∫

Ξ

d2fξ χρ(ξ)W∗
ξ , (2.10a)

χ(ξ) = tr[ρWξ], (2.10b)

where the integral is over a phase space Ξ of dimension 2f and ρ acts on a cor-
responding Hilbert space H. The pair of ρ and χρ constitute a quantum Fourier
transform by a noncommutative version of the Parseval relation connecting scalar
products of operators with those of functions [5]:

Theorem 2.3 (Parseval relation):
Let Ξ be a phase space for f degrees of freedom. Consider a strongly continuous,
irreducible family of Weyl operators which are represented on a Hilbert space
H. Then the mapping ρ 7→ χ(ξ) = tr[ρWξ] is an isometry from the Hilbert-
Schmidt operators3 on H to the function space L2(Ξ, (2π)−f d2fξ). Hence the
scalar products equal each other,

tr[ρ∗1 ρ2] = (2π)−f
∫

Ξ

d2fξ χ1(ξ)χ2(ξ) . (2.11)

2 A bounded operator A ∈ B(H) belongs to the trace class T1(H) if tr
ˆ

|A|
˜

= tr
ˆ

(A∗A)1/2
˜

< ∞.
3 The mapping is defined on trace class operators T1(H) and extends to Hilbert-Schmidt operators

T2(H), i.e. bounded operators A ∈ B(H) with tr[A∗A] <∞. The class T2(H) is a Hilbert space
with scalar product (ρ1, ρ2) = tr[ρ∗1 ρ2].
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2 Basics of Gaussian systems

For a proof of this theorem, see e.g. [6]. An extended discussion of Fourier transforms
between operators and functions can be found in [8]. A useful application of the
Parseval relation (2.11) is the computation of the overlap |〈ψ|φ〉|2 between pure
states |ψ〉 and |φ〉:

∣∣〈ψ|φ〉
∣∣2 = tr

[
|ψ〉〈ψ| |φ〉〈φ|

]
= (2π)−f

∫

Ξ

d2fξ χψ(ξ)χφ(ξ) ,

where χψ and χφ denote the characteristic functions of the two states.
The relations (2.10) connect properties of the density operator ρ with those of the

characteristic function χρ:

⊲ Boundedness:
∣∣χρ(ξ)

∣∣ ≤ ‖ρ‖1.

⊲ Normalization: tr[ρ] = tr[ρW0] = 1 ⇐⇒ χρ(0) = 1.

⊲ Purity: χρ(ξ) corresponds to a pure state4 if and only if ρ2 = ρ or tr[ρ2] = 1
and hence if ∫

Ξ

d2fξ
∣∣χρ(ξ)

∣∣2 = (2π)f . (2.12)

⊲ Symmetry: Since ρ is hermitian, χρ(ξ) = χρ(−ξ).

⊲ Continuity: χ(ξ) is continuous if and only if it corresponds to a normal state,
i.e. to a state which can be described by a density matrix.

A given function χ(ξ) is the characteristic function of a quantum state if and
only if it obeys a quantum version of the Bochner-Khinchin criterion [6]: χ(ξ) has
to be normalized to χ(0) = 1, continuous at ξ = 0 and σ-positive definite, i.e.
for any number n ∈ N of phase space vectors ξ1, ξ2, . . . , ξn ∈ Ξ and coefficients
c1, c2, . . . , cn ∈ C it has to fulfill

n∑

k,l=1

ck cl χ(ξk − ξl) exp
(
iσ(ξk, ξl)/2

)
≥ 0 . (2.13)

The characteristic function in (2.10b) can be taken as the classical Fourier trans-
form of a function. With this interpretation, the result of a classical inverse Fourier

4 A density matrix ρ corresponds to a pure state if and only if ρ2 = ρ, i.e. if ρ is a projector; due
to the normalization tr[ρ] = 1, this projector is of rank one, ρ = |ψ〉〈ψ|. If the state is not pure,
it is mixed and can be written as a convex combination of pure states |ψi〉〈ψi|:

ρ =
P

iλi |ψi〉〈ψi|, where λi ≥ 0 and
P

iλi = 1 .

For continuous-variable states, this convex combination might be continuous, i.e. an integral
over a classical probability density λ(z):

ρ =

Z

dz λ(z) |ψz〉〈ψz |, where λ(z) ≥ 0 and

Z

dz λ(z) = 1 .
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2.1 Phase space

transform of χρ(ξ) with respect to the variable σ ·η is the Wigner function [9] Wρ(η)
of ρ,

Wρ(ξ) = (2π)−2f

∫

Ξ

dη eiξ
T·σ·η χρ(η) . (2.14)

The Wigner function is related to expectation values of the parity operator P [10].
For more than one mode, P is a tensor product of single-mode parity operators,
which act on the respective field operators by inversion of sign. HencePRk P = −Rk.
Moreover, it is unitary and hermitian, P−1 = P∗ = P. With this,

Wρ(ξ) = π−f tr
[
ρ Wξ PW∗

ξ

]
. (2.15)

The description of a quantum state by the Wigner function as a quasi-probability
distribution on phase space is equivalent to the characteristic function.5 However, we
mostly use the characteristic function χ(ξ) to describe states.

Similar to classical probability theory, the derivatives of the characteristic function
of a state yield the moments with respect to the field operators [6]. In particular, the

first and second moments are derived in terms of modified field operators ~R′ = σ · ~R
as

1

i

∂

∂ξk
χρ(ξ)

∣∣∣
ξ=0

= tr
[
ρR′

k

]
,

− ∂2

∂ξk ∂ξl
χρ(ξ)

∣∣∣
ξ=0

= 1
2 tr
[
ρ {R′

k, R
′
l}+

]
,

where {R′
k, R

′
l}+ = R′

kR
′
l +R′

lR
′
k denotes the anti-commutator of R′

k and R′
l. From

these moments we define the displacement vector d′ by

d′k = tr
[
ρR′

k

]
(2.16)

and the covariance matrix γ′ by

γ′k,l = tr
[
ρ
{(
R′
k − 〈R′

k〉
)
,
(
R′
l − 〈R′

l〉
)}

+

]
= tr

[
ρ {R′

k, R
′
l}+

]
− 2〈R′

k〉〈R′
l〉 , (2.17)

where the prime indicates quantities with respect to the modified field operators.
Using the commutation relation (2.2), this is equivalent to

tr
[
ρ
(
R′
k − 〈R′

k〉
)(
R′
l − 〈R′

l〉
)]

= 1
2 γ

′
k,l +

i
2σk,l . (2.18)

Note that necessarily γ + iσ ≥ 0: Consider the matrix

Ak,l = tr
[
ρ
(
Rk − 〈Rk〉

)(
Rl − 〈Rl〉

)]
= (γ + iσ)/2

5 Note that there exist other quasi-probability functions, namely the P- and the Q-function, which
give rise to other characteristic functions. These correspond to different orderings of the field
operators.
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2 Basics of Gaussian systems

for complex vectors ξ ∈ C2f together with the operator L =
∑2f
k=1 ξk Rk. Then A is

positive-semidefinite due to 〈ξ|A |ξ〉 = tr[ρL∗L] ≥ 0. Since γ is real, this is equivalent
to γ − iσ ≥ 0. Moreover, as σ is antisymmetric, the inequality implies γ ≥ 0.

Due to the symplectic scalar product ξT · σ · ~R in the definition (2.5) of the Weyl

operators, these relations are written in terms of modified field operators ~R′ = σ · ~R.
In the standard basis of (2.3), this transformation is local to each mode,

(
Q′
j

P ′
j

)
= σ0 ·

(
Qj
Pj

)
.

Since we are usually not concerned with specific physical realizations but rather with
qualitative results for all continuous-variable systems, we mostly drop the distinction
between R′

k and Rk. Note, however, the effect of displacing a state ρ with Weyl
operators, ρ′ = Wη ρW∗

η , on the characteristic function:

χ′
ρ(ξ) = tr[Wη ρW∗

η Wξ] = tr[ρ W∗
η Wη Wξ] = χρ(ξ) e−iξ

T·σ·η . (2.19)

In field operators R′
k, the state is displaced by the vector −σ · η, which corresponds

to a translation by −η in Rk; cf. also Eq. (2.8).

2.1.2 Symplectic transformations

While an orthogonal transformation leaves the scalar product over a (real) vector
space unchanged, a real symplectic or canonical transformation S preserves the sym-
plectic scalar product of a phase space,

σ(S ξ, S η) = σ(ξ, η) for all ξ, η ∈ Ξ .

By this definition, a symplectic transformation for f degrees of freedom is a real
2f × 2f matrix such that ST · σ · S = σ. The group of these transformations is
the real symplectic group, denoted as Sp(2f,R). Moreover, with S ∈ Sp(2f,R) also
ST, S−1,−S ∈ Sp(2f,R), where the inverse of S is given by S−1 = σ ST σ−1. Sym-
plectic transformations have determinant detS = +1. In addition, the symplectic
matrix σ itself is a symplectic transformation, as can be seen from one of its standard
forms (2.3) or (2.4). The inverse is σ−1 = σT = −σ. For the special case of a single
mode, the symplectic group consist of all real 2×2 matrices with determinant one,
i.e. Sp(2,R) = SL(2,R). Extensive discussions of the symplectic group, including
the topics of this section, can be found e.g. in [11, 12, 13].

By (2.2), symplectic transformations of the vector of field operators, ~R′ = S ~R,
do not change the canonical commutation relations; they do not alter the physics of
a continuous-variable system but merely present a change of the symplectic basis.
Since σ is itself a symplectic transformation, this argument justifies neglecting the
distinction between R′

k and Rk in the computation of the moments above. Under a
symplectic transformation S, displacement vector and covariance matrix are modified
according to d 7→ S·d and γ 7→ ST·γ·S. Weyl operators are mapped to Weyl operators
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2.1 Phase space

by a linear transformation of the argument, Wξ 7→ WS ξ. By Theorem 2.1, the two
families of Weyl operators are connected by a unitary transformation US such that

WS ξ = U∗
S Wξ US .

The operators US form the so-called metaplectic representation of the symplectic
group Sp(2f,R).6

Every symplectic transformation S can be decomposed in several ways of which
we only consider the Euler decomposition into diagonal squeezing transformations
and symplectic orthogonal transformations:

Theorem 2.4:
Every symplectic transformation S ∈ Sp(2f,R) can be decomposed as (written in

standard ordering of ~R)

S = K ·




f⊕

j=1

(
erj 0
0 e−rj

)
 ·K ′ , (2.20)

where K,K ′ ∈ Sp(2f,R)∩ SO(2f) are symplectic and orthogonal and rj ∈ R are
called squeezing parameters.

Remark: This implies that Sp(2f,R) is not compact. In fact, Sp(2f,R) ∩ SO(2f)
is the maximal compact subgroup of Sp(2f,R).

Similar to real-valued normal matrices, which can be diagonalized by orthogo-
nal transformations, symmetric positive matrices can be diagonalized by symplectic
transformations. This corresponds to a decomposition into normal modes, i.e. into
modes which decouple from each other:

Theorem 2.5 (Williamson):
Any symmetric positive 2f × 2f matrix A can be diagonalized by a symplectic
transformation S ∈ Sp(2f,R) such that

SAS
T

=

f⊕

j=1

aj 12 ,

where aj > 0. The symplectic eigenvalues aj of A can be obtained as the (usual)
eigenvalues of iσA, which has spectrum spec(iσA) = {±aj}.

6 Due to an ambiguity in a complex phase, the operators US form a faithful representation of the
metaplectic group Mp(2f,R), which is a two-fold covering of the Sp(2f,R).
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2 Basics of Gaussian systems

2.2 Gaussian states

Gaussian quantum states are states of continuous-variable systems which have a
Gaussian characteristic function7, i.e. χ(ξ) has the shape of a classical Gaussian
distribution. By convention, we write a Gaussian χ(ξ) as

χ(ξ) = e−ξ
T·γ·ξ/4+iξ

T·d , (2.21)

where d and γ are the real-valued displacement vector and the real-valued, sym-
metric, positive-semidefinite covariance matrix from (2.16) and (2.17), respectively.
(Note that the remark on modified field operators applies.) The characteristic func-
tion and thus the Gaussian state is solely determined by γ and d.

For a given Gaussian function χ(ξ) to be the characteristic function of a (Gaus-
sian) state, it has to obey the Bochner-Khinchin criterion (see above). Due to its
shape (2.21), one readily has χ(0) = 1 and continuity at ξ = 0. The requirement
of σ-positive definiteness (2.13) translates into the state condition on the covariance
matrix γ:

γ + iσ ≥ 0 . (2.22)

Since γ is real, this is equivalent to γ − iσ ≥ 0. Moreover, as σ is antisymmetric,
the condition implies γ ≥ 0. That the state condition is necessary for γ to be the
covariance matrix of a state has been shown above. Sufficiency follows from (2.21)
and (2.13), see [6]. Hence any real, symmetric, positive matrix γ which complies with
the state condition describes a valid Gaussian quantum state.8

The inequality (2.22) expresses uncertainty relations for the field operators. In par-
ticular, for a diagonal matrix γ with entries γ1, γ1, γ2, γ2, . . . , γ2f , γ2f , the inequality
requires that the eigenvalues γj±1 of γ+iσ be positive and thus that γj ≥ 1. By the
definition of the covariance matrix in (2.17), this imposes Heisenberg’s uncertainty
relation (

〈Q2
j〉 − 〈Qj〉2

) (
〈P 2
j 〉 − 〈Pj〉2

)
≥ 1

4 . (2.23)

Since due to Theorem 2.5 any covariance matrix can be diagonalized by a symplectic
transformation, the above argument is valid even in the general case, where the
diagonal entries are replaced by the symplectic eigenvalues.

If for the covariance matrix γ of a single mode the inequality (2.22) is �sharp�, i.e.
γ + iσ has one eigenvalue zero, a Gaussian state with this covariance matrix γ has
minimal uncertainty, since the single symplectic eigenvalue is γ1 = 1. Moreover, by
(2.12), such Gaussian states are pure. Since according to Theorem 2.5 the symplectic
eigenvalues can be found from iσ γ, the condition for purity of a Gaussian state in
terms of its covariance matrix γ can be written as

(σ γ)2 = −1 .
7 Equivalently, a Gaussian state is characterized by a Gaussian Wigner function.
8 While the state condition (2.22) on the covariance matrix is always necessary, it is in general

not sufficient to assure σ-positive definiteness of the characteristic function for an arbitrary,
non-Gaussian state.
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2.2 Gaussian states

If, in contrast, a Gaussian state ρ is not pure, its covariance matrix γ can be
written as a sum γ = γpure + γnoise of a covariance matrix γpure belonging to a pure
state ρpure, and a positive-semidefinite matrix γnoise. While γpure is subject to the
state condition, γnoise is not restricted by (2.22). The decomposition of γ results in a
decomposition of the characteristic function of ρ, which can be written as a product

χ(ξ) = χpure(ξ) exp
(
−ξT · γnoise · ξ/4

)
, (2.24)

where χpure(ξ) is the characteristic function of ρpure. Transforming χ(ξ) back into
a density operator by (2.10a) in this form results in a convolution of ρpure with the
classical Gaussian probability density with covariance matrix γnoise [8]:

ρ =

∫
dξ exp

(
−ξT · σT

γ−1
noise σ · ξ/4

)
Wξ ρpure W∗

ξ . (2.25)

(Note the change γnoise 7→ σT · γ−1
noise · σ due to the Fourier transform.) From this

relations, γnoise can be interpreted as Gaussian noise which is added to the pure
state ρpure in order to obtain the mixed state ρ.

2.2.1 Coherent, thermal and squeezed states

Coherent, thermal and squeezed states of the standard harmonic oscillator with
Hamiltonian H = (Q2 + P 2)/2 are special instances of Gaussian states which each
represent particular characteristics of general Gaussian states. We introduce these
states for the case of a single mode; the generalization to more modes is based on
Theorem 2.5 and covered in the next section. All three types of states are character-
ized by their covariance matrix γ: Coherent states have γ = 1, thermal states have
γ = τ 1 (τ > 1) and squeezed states have one of the diagonal elements of γ smaller
than 1, e.g. γ =

(
r 0
0 1/r

)
.

Coherent states are pure Gaussian states with covariance matrix γ = 1 and arbi-
trary displacement vector d, i.e. they can be defined by a characteristic function of
the form

χ(ξ) = e−ξ
2/4+iξ

T·d . (2.26)

Since coherent states differ from each other only in the displacement d, they can be
generated from the coherent state ρ0 with d = 0 by displacing it with Weyl operators
according to (2.19):

ρd = Wσ−1·d ρ0 W∗
σ−1·d ,

where ρd is the coherent state with displacement d. To stress this relation, we alter-
natively write the characteristic function of coherent states with displacement vector
d ≡ σ · α as

χ(ξ) = e−ξ
2/4−iξ

T·σ·α (2.27)

such that ρσ·α = Wα ρ0 W∗
α.
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2 Basics of Gaussian systems

As pure states, coherent states correspond to Hilbert space vectors |α〉, which we
label by the phase space vector α determining the displacement in (2.26). This allows
to write

|α〉 = Wα |0〉 . (2.28)

The state |0〉〈0| has expectation value zero in the field operators and is a minimum
uncertainty state (see above). Moreover, among all such states it has the smallest
possible expectation value of the operatorQ2+P 2, since its variances with respect to
the field operators are equal,9 〈Q2〉 = 〈P 2〉 = 1

2 . Considering that Q2 +P 2 = 2N̂ +1
and hence tr[ρ0 N̂ ] = 0, |0〉〈0| necessarily is the vacuum state.

The relation (2.28) allows to compute the overlap between two coherent states:

〈α|β〉 = 〈0|W∗
αWβ |0〉 = 〈0|Wβ−α |0〉 eiσ(α,β)/2 = e−(β−α)2/4+iσ(α,β)/2 . (2.29)

This overlap is strictly nonzero, hence coherent states are not orthogonal to each
other.

Coherent states are eigenstates of the annihilation operator a = (Q + iP )/
√

2 :
denoting α = (αq, αp), one has10

a |α〉 = Wα W∗
α aWα |0〉

= 1√
2

Wα

(
(Q− αq 1) + i(P − αp 1)) |0〉

= Wα a |0〉 − 1√
2

(αq + iαp)Wα |0〉
= − 1√

2
(αq + iαp)|α〉 . (2.30)

The expectation value of the occupation number operator N̂ = a∗a in a coherent
state is thus tr

[
|α〉〈α| N̂

]
= 〈α| a∗a |α〉 = |α|2/2. This can be interpreted as the

mean energy of a system in the coherent state |α〉〈α| if the result is scaled by the
characteristic energy ~ω of the mode.

A thermal state of the Hamiltonian H = (Q2 + P 2)/2 with covariance matrix
γ = τ 1, τ > 1 is by (2.24) and (2.25) a classical mixture of coherent states, where
γpure = 1 and the noise is described by γnoise = (τ − 1)1:

ρτ =

∫
dξ exp

(
− 1

4 ξ
2 (τ − 1)−1

)
Wξ |α〉〈α|W∗

ξ . (2.31)

The displacement of ρτ is the same as of |α〉〈α|.
9 Recall that for a, b, c ∈ R and a, b, c > 0, the quantity a + b under the restriction a b = c is

minimized for a = b.
10 Note that this differs from the convention where coherent states are labeled by their eigenvalue

with respect to the annihilation operator a:

a
˛

˛

αq+iαp√
2

¸

=
αq+iαp√

2

˛

˛

αq+iαp√
2

¸

.

Defining a complex number α = (αq + iαp)/
√

2, this reads a |α〉 = α |α〉. Consequentially,
relations between coherent states look different, e.g. the overlap (2.29) is given by 〈α|β〉 =
exp(−|α|2/2 − |β|2/2 + αβ

´

.
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q

p

α

ρ1

ρ2

Figure 2.1:
Depicting Gaussian states in phase space by �lollipop sticks� for the single-mode
case. The examples are a coherent state α, a thermal state ρ1 and a squeezed
state ρ2. The amplitude is visualized by a vector (q, p) whose components are the
expectation values of the canonical operators for the state, i.e. q = tr

[
|α〉〈α|Q

]
and

p = tr
[
|α〉〈α|P

]
. The covariance matrix is indicated by the circle or ellipse which

it describes geometrically, centered at the endpoint of the respective amplitude
vector. Note that the squeezed ellipse can be oriented arbitrarily with respect to
the coordinate system and the vector.

In contrast to coherent and thermal states, squeezed states have one of the vari-
ances for the field operators smaller than 1

2 , i.e. below the limit of Heisenberg’s
uncertainty relation (2.23). Correspondingly, one of the diagonal elements of the
covariance matrix γ is smaller than 1. However, this need not be true for any par-
ticular basis of the phase space, but can apply to rotated field operators. In the
geometric interpretation of Fig. 2.1, the covariance matrix of the squeezed state ρ2

describes an ellipse which in one direction is smaller than the circle of a coherent
state. For a single-mode pure squeezed state, the covariance matrix can be written
as γ = ST ·1 ·S, where S is a symplectic transformation. In the Euler decomposition
(2.20) of S, the inner orthogonal transformation K ′ is irrelevant; hence

γ = τ K
T ·
(

e2r 0
0 e−2r

)
·K,

where the squeezing parameter r ∈ R deforms the circle to an ellipse and K is any
orthogonal 2×2 matrix describing the rotation with respect to the basis of the phase
space.

2.2.2 Spectral decomposition and exponential form

Consider a Gaussian state ρ with zero displacement or, equivalently, a symplectic
basis ~R in which the displacement has been transformed to zero by applying suit-
able Weyl operators. Theorem 2.5 implies that every covariance matrix γ of the
state ρ can be diagonalized by a symplectic transformation S. The corresponding
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2 Basics of Gaussian systems

unitary operator US implements this transformation on a density operator ρ such
that US ρU

∗
S decomposes into a tensor product of one-mode Gaussian states:

ρ =

f⊗

j=1

ρj , (2.32a)

where the ρj are thermal states with covariance matrix γj 1 and γj as the symplectic
eigenvalues of γ. Computing 〈mj | ρj |nj〉 from (2.30) and (2.31) for the eigenvectors

|nj〉 of the occupation number operator N̂j for mode j yields the spectral decompo-
sition

ρj =
2

γj + 1

∞∑

nj=0

(
γj − 1

γj + 1

)nj

|nj〉〈nj | . (2.32b)

The eigenvalues νn1,n2,...,nf
of the full state ρ with f modes can be labeled by the

occupation number of each of its normal modes and are given by

νn1,n2,...,nf
=

f∏

j=1

2

γj + 1

(
γj − 1

γj + 1

)
. (2.33)

The occupation number expectation value Nj of a single mode (undisplaced) is
obtained as

Nj = tr
[
ρj a

∗
jaj
]
=

2

γj + 1

∞∑

nj=0

(
γj − 1

γj + 1

)nj

nj =
γj − 1

2
.

Note that Nj ≥ 0 corresponds to the condition on symplectic eigenvalues, γj ≥ 1,
induced by the state condition (2.22). If the expectation value N of the occupation
number follows a Bose distribution, N = (e−β − 1)−1 with inverse temperature β,

the resulting single-mode state ρ is a Gibbs state, ρ = e−βN̂/ tr[e−βN̂ ].

The above spectral decomposition (2.32b) directly gives rise to an exponential
form for the Gaussian state ρj of a single mode j [d]:

ρj = exp
(
log 2 − log(γj + 1) +

(
log(γj − 1) − log(γj + 1)

)
a∗jaj

)
,

where a∗j and aj are the creation and annihilation operators, respectively, associated

with this mode. Since a∗j aj = (Q2
j + P 2

j − 1)/2, the above can be recast as

ρj = exp
(

1
2

(
log(γj − 1) − log(γj + 1)

)
(Q2

j + P 2
j ) − 1

2 log(γ2
j − 1) + log 2

)
.

Generalizing this to the case of f modes and denoting the symplectic basis where
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the density operator decomposes into a tensor product by a prime, we arrive at

ρ = exp

(
1

2

2f∑

k,l=1

M ′
k,lR

′
kR

′
l −

1

2

f∑

j=1

log(γ2
j − 1)

)
, (2.34a)

where M ′ =

f⊕

j=1

(
log(γj − 1) − log(γj + 1)

)12 . (2.34b)

The exponential form for ρ is especially useful to compute entropy expressions in-
volving log ρ, e.g. S(ρ) = − tr[ρ log ρ]. By (2.34a), we get

log ρ =



1

2

2f∑

k,l=1

M ′
k,lR

′
kR

′
l −

1

2

f∑

j=1

log(γ2
j − 1)



 . (2.35)

2.2.3 Entangled states

The term entanglement describes quantum correlations which are stronger than pos-
sible with any local realistic model. In a bipartite setting, these correlations per-
tain between two parties, conventionally named �Alice� and �Bob�, associated with
Hilbert spaces HA and HB, respectively. A nonentangled or separable state ρsep on
HA ⊗HB can be interpreted as a convex combination of product states [14]:

ρsep =
∑

i

λi ρ
i
A ⊗ ρiB , where λi ≥ 0 and

∑

i

λi = 1 , (2.36)

where the ρiA are states on HA and ρiB on HB . A state which can be written in this
form is classically correlated, since it can be reproduce by choosing states ρiA and ρiB
for systems A and B with classical probability λi. Otherwise, the state is entangled.
Note that for a separable pure state the decomposition in (2.36) is trivial, i.e. a pure
state is either a product state or it is entangled.

In general, it is not easy to verify that a given state is separable or entangled, since
a decomposition (2.36) might not be obvious to find. However, there exist several
criteria to assist in this process. A necessary criterion for separability is the positivity
of the partial transpose of the density operator [15, 16]. Partial transposition is a
transposition with respect to only one of the tensor factors: If ρ is a density operator
on HA⊗HB and Θ denotes the matrix transposition, the partial transpose of ρ with
respect to system A is obtained as

ρ
TA = (Θ ⊗ id)(ρ) .

If ρ is ppt with respect to system A, i.e. has positive partial transpose ρTA ≥ 0,
it is also ppt with respect to B by full transposition of the inequality. Note that
transposition of a matrix depends on the basis in which it is carried out. However,
the eigenvalues of the partial transposition are independent of the basis.
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In phase space, transposition of Hermitian density operators is the same as com-
plex conjugation, which in turn can be identified with inversion of sign for the mo-
menta [15], i.e. P 7→ −P while Q 7→ Q under Θ. This corresponds to a �reversal of
time� or rather a reversal of time evolution. As a density operator ρ of a bipartite
Gaussian state is positive if its covariance matrix obeys the state condition (2.22),
γ + iσA ⊕ σB ≥ 0 (where σA, σB are the symplectic forms for systems A and B),
the partial transpose ρTA is positive if the covariance matrix obeys

γ + i(−σA) ⊕ σB ≥ 0 ,

where the sign on σA reflects the change of sign for momenta in the ccr (2.2).
While the ppt criterion is necessary for separability, it is sufficient only for �small�

systems: C2 ⊗C2 and C2 ⊗C3 in finite dimensions [17], Gaussian states with 1×n
modes for continuous-variable systems [18]. In particular, the criterion fails if both
parties A and B of a Gaussian states have more than one mode (an explicit example
is presented in [18]). Since the entanglement of entangled states with positive partial
transpose cannot be freely converted into other forms, the entanglement is �bound�
and the sates are called �ppt-bound entangled�.
2.2.4 Singular states

In a general sense, a quantum state ω is a normalized positive linear functional11 on
the algebra of observables [19], i.e. here on ccr(Ξ, σ) for f degrees of freedom:

ω : ccr(Ξ, σ) → C, where ω(X∗X) ≥ 0 for all X ∈ ccr(Ξ, σ) and ω(1) = 1 .

Note that 1 = W0 ∈ ccr(Ξ, σ). A state is normal if it can be described by a density
operator, i.e. a positive trace class operator ρ on the representation Hilbert space
H⊗f :

ω(X) = tr[ρX ] .

Otherwise, the state ω is singular and can be decomposed into a normal part ωn given
by a density operator and a purely singular contribution ωs, which has expectation
value zero for all compact operators12: ω = ωn + ωs (cf. Section 3.3.1). Singular
states have a characteristic function by

χ(ξ) = ω
(
Wξ

)

and can thus be Gaussian if χ(ξ) is a Gaussian (2.21).
If the ccr algebra is represented on the Hilbert space H⊗f , then the normalized

positive linear functionals ω on ccr(Ξ, σ) form the space B∗(H⊗f). Similarly, the

linear space generated by the density operators is denoted by B∗
(
H⊗f), whose closure

in the weak topology is B∗(H⊗f).

11 Normalized positive linear functionals are automatically bounded and continuous.
12 Compact operators on a Hilbert space are those which can be approximated in norm by finite

rank operators, i.e. operators represented as a finite sum of terms |φ〉〈ψ|, cf. e.g. [7, Vol. I].
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2.3 Gaussian channels

Quantum channels describe transformations between quantum states which corre-
spond to physical operations. For example, applying a unitary transformation U to
a state ρ as UρU∗ is a channel and corresponds to a change of basis or a symme-
try transformation. Formally, a quantum channel T∗ in the Schrödinger picture is
a trace-preserving, completely positive linear map on the trace class operators. For
Hilbert spaces H and K of input and output systems, respectively,

T∗ : B∗(H) → B∗(K), tr
[
T∗(ρ)

]
= tr[ρ] .

T∗ has to be positive, i.e. map positive trace class operators to positive trace class
operators, and it has to preserve the trace to assure normalization. However, posi-
tivity alone is not enough. In addition, applying T∗ to part of a quantum state has
to yield an admissible quantum state for the whole system. This is assured by com-
plete positivity: A map T∗ is completely positive if (T∗ ⊗ id)(ρ′) is positive for every
positive trace class operator ρ′ on a composite Hilbert space H ⊗H′ and id is the
identity on H′.

Rather than transforming states (Schrödinger picture), a corresponding transfor-
mation can be applied to observables (Heisenberg picture), such that both yield
the same expectation values. Instead of preserving the trace, this transformation
is unital, i.e. it preserves 1. The Heisenberg picture variant T of a channel is thus
determined by

tr
[
ρ T (A)

]
= tr

[
T∗(ρ)A

]
, where T : B(K) → B(H), T (1) = 1 . (2.37)

For simplicity, we will also refer to input and output spaces by the respective ccr al-
gebras, e.g. for a channel in the Heisenberg picture T : ccr(Ξout, σout) → ccr(Ξin, σin).

Gaussian channels have been considered e.g. in [20,21,22,23,24,53]. A channel is
Gaussian if it maps Gaussian states to Gaussian states in the Schrödinger picture. In
the Heisenberg picture, such channels are quasi-free, i.e. they map Weyl operators
to multiples of Weyl operators. A general Gaussian channel for f degrees of freedom
acts by

T (Wξ) = WΓ·ξ e−g(ξ,ξ)/4+iξ
T·d , (2.38)

where Γ is a real 2f×2f matrix, g is a real, symmetric bilinear transformation and d
is a real vector of length 2f . The transformations Γ and g cannot be chosen arbitrary,
but are subject to a restriction in order for T to be completely positive. In [20], this
condition is stated and proven. For ease of reference, we repeat the theorem in our
notation:

Theorem 2.6:
A unital map T : ccr(Ξout, σout) → ccr(Ξin, σin) of the form (2.38) is completely
positive if and only if

g + iσout − iΓ
T
σin Γ ≥ 0 . (2.39)
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Remark: Note that d is not subject to restrictions and does not depend on the
input. Hence we can assume d = 0 by implicitly applying a phase space translation
of −d such that

T (Wξ) = WΓ·ξ e−g(ξ,ξ)/4 . (2.40)

The exponential factor t(ξ) = exp
(
−g(ξ, ξ)/4 + iξT · d

)
is the characteristic function

of a Gaussian state with respect to the �twisted� symplectic form Σ = σout−ΓTσin Γ,
since g obeys the state condition

g + iΣ ≥ 0 . (2.41)

For a linear transformation Ω such that Σ = ΩT · σout · Ω, t can be written as
t = χT (Ω · ξ), where χT (ξ) is the characteristic function of a Gaussian state with
respect to σout. For fixed Γ and Ω, this state characterizes the channel T .

Proof: While the complete proof can be found in [20], a brief sketch of the idea
might be in order. Firstly, it suffices to show positivity on the dense subspace of
the ccr algebra ccr(Ξ, σ) spanned by the Weyl operators and extensions by finite-
dimensional matrix algebras. The �if�-part is proven by explicitly showing that T is
completely positive. The �only if�-clause is checked by showing equivalence to the
Bochner-Khinchin condition for t with respect to the �twisted� symplectic form Σ,
i.e. for any number n ∈ N of phase space vectors ξ1, ξ2, . . . , ξn ∈ Ξ and coefficients
c1, c2, . . . , cn ∈ C

n∑

k,l=1

ck cl t(ξk − ξl) exp
(
iΣ(ξk, ξl)/2

)
≥ 0 . �

Note that Σ might be degenerate, i.e. have a nontrivial kernel. In this case, part
of the function t describes a classical state. In particular, if σout = σin and Γ is a
symplectic transformation, Σ = 0 and the condition (2.39) reduces to g ≥ 0. Then
g = 0 is a possible choice for T to be completely positive.

Under the action of a channel T , the characteristic function χ(ξ) of a state ρ is
transformed into χ′(ξ) according to

χ′(ξ) = tr
[
T∗(ρ)Wξ

]
= tr

[
ρ T (Wξ)

]
= tr

[
ρWΓ ξ

]
e−g(ξ,ξ)/4+iξ

T·d

= χ(Γ ξ) e−g(ξ,ξ)/4+iξ
T·d .

Correspondingly, the covariance matrix γ of ρ changes as

γ 7→ Γ
T · γ · Γ + g .

The bilinear form g can be interpreted as additional noise which is necessary
to turn a quasi-free map of the form (2.38) given by Γ into a completely positive
map. Similar to the discussion of (2.22) and (2.24), this noise can be interpreted as
arising from a convolution with a Gaussian distribution exp(−ξT · σT g−1 σ · ξ/4),
cf. Eq. (2.25). However, since g corresponds to a quantum state by (2.41), the noise
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is in general not purely classical. It can be split into a quantum contribution, which
corresponds to the covariance matrix of a pure state with respect to (2.41), and a
classical part given by a semidefinite-positive matrix. Due to the noise, a channel T
from (2.38) is an irreversible operation unless g = 0. However, by (2.41) this requires
Σ = 0 and thus σout = σin and Γ ∈ Sp(2f,R); see above.

Completely positive linear maps can be represented by a set of Kraus operators
{Ki} [25] such that in the Schrödinger picture

T∗(ρ) =
∑

i

Ki ρK
∗
i ,

where Ki : H → K if T∗ : B∗(H) → B∗(K) and
∑
iKiK

∗
i = 1 for trace-preserving T∗.

Conversely, every map of this form is completely positive. In the Heisenberg picture,
the same Kraus operators are applied to the observable by (2.37),

T (A) =
∑

i

K∗
i AKi .

For composite systems, an important class of channels are the trace-preserving
separable superoperators; these are represented by Kraus operators which factorize
into a tensor product of operators on the subsystems: If such a channel T∗ acts on
a composite system with Hilbert space H = HA ⊗ HB, the Kraus operators have
the form Ki = Ai ⊗ Bi, where the Ai act on HA and the Bi on HB. For example,
local operations with classical communication (locc) and in particular completely
classical transformations have this form.

27



2 Basics of Gaussian systems

28



Cloning





3 Optimal cloners for coherent states

This chapter is concerned with optimizing the deterministic cloning of coherent
states, i.e. the approximate duplication of such quantum states. A general feature
of quantum physics is the impossibility of perfect duplication of an unknown quan-
tum state. On the one hand, this is a direct consequence of the linear structure of
quantum mechanics [1, 26, 27]. On the other hand, it is also related to a whole set
of impossible tasks in quantum mechanics1 [28]: Given two identical copies of the
same quantum state, one could in principle obtain perfect measurement results for
two noncommuting observables, which is impossible by virtue of a Heisenberg uncer-
tainty [29]. However, it is possible to turn an unknown input quantum state and a
fixed initial quantum state into two approximate duplicates of the input state. The
quality of these clones is inversely related to each other: the better one resembles
the input state, the worse does the other. This relation can be strictly quantified in
terms of bounds on the cloning quality.

The field of quantum information has turned the impossibility of perfect cloning
into a key feature of secure quantum communication, because it allows to detect
essentially any eavesdropping on a transmission line from the degradation of the
output. It is thus possible to give estimations of the security of the exchanged in-
formation, which is an important element of quantum key distribution (see e.g.
[30,31,32,47] for qkd with coherent states). In addition, bounds on the cloning qual-
ity provide criteria to determine the validity of other protocols, since they cannot
possibly imply a violation of these bounds. A positive example is given in Section 3.6,
where we argue that violation of the cloning bounds necessarily implies certain suc-
cess criteria for quantum teleportation.

A general cloning map, a �cloner�, turns m identical copies, i.e. an m-fold tensor
product, of an input state into n > m output states or �clones�, which resemble the
input state. In contrast to the input state, the overall output state might contain
correlations between the clones. The quality of the output states is measured in
terms of a figure of merit, a functional which compares the output states to the
input state. Usually, this is the fidelity, i.e. the overlap between input and output
states. Depending on whether one considers individual clones or compares the joint
output of the cloner with an n-fold tensor product of perfect copies of the input
state, we call the respective figures of merit either single-copy or joint fidelity. In
case the quality of the output states is identical, the cloner is called symmetric. It
is universal if the quality of the clones does not depend on the input state.

The cloning of finite-dimensional pure states was investigated thoroughly, e.g.
in [33,34,35,36,37,38,39]. Optimal universal cloners exist [33,34,35], which replicate

1 The impossibility of these tasks is not limited to quantum mechanics, but prevails in any
nonsignaling theory with violation of Bell’s inequalities.
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all pure input states with equal fidelity. Remarkably, these cloners simultaneously
maximize both the joint and the single-copy fidelity [39]. For continuous-variable
systems, a universal cloner with finite fidelities for all pure input states cannot exist.
As explained in Section 3.4.1 below, for every cloner there are pure squeezed states
which yield a fidelity of zero. To facilitate handling of the mathematical structures,
the set of input states is further restricted to Gaussian states, which are also im-
portant from a practical point of view (cf. the discussion in the Introduction). The
set of pure, nonsqueezed Gaussian states is the set of coherent states, which we take
as our input states. Similar to the finite-dimensional case, the cloning of coherent
states was studied in depth, see [48,49,50,53,54,55] and references mentioned below.
However, the cloners considered were restricted to Gaussian operations and were also
assumed to be covariant with respect to phase space translations of the input state.
It remained unclear if this set of cloners includes the optimal one. In particular,
the results include a proof [55] that under this presumptions the best symmetric
Gaussian 1-to-2 cloner is limited to a single-copy fidelity of 2

3 as well as its optical
implementation [48,49,50]. While mostly only deterministic cloners are studied, [51]
investigates probabilistic finite-dimensional and continuous-variable cloning.

In the following we optimize the worst-case joint fidelities and weighted single-copy
fidelities for deterministic 1-to-n cloning of coherent input states. These quantities
do not depend on a priori information about the probability distribution of the input
states (as long as all coherent states can occur). We show that the optimal fidelities
can indeed be reached by cloners which are covariant with respect to phase space
translation (Sec. 3.3). These cloners are necessarily quasi-free, i.e. they map Weyl
operators onto multiples of Weyl operators in the Heisenberg picture (Sec. 3.3.2).
Contrary to the finite-dimensional case, the optimization of single-copy and joint
fidelity for coherent input states requires different cloners. While the joint fidelity
is analytically maximized by a Gaussian cloner, the single-copy fidelity can be en-
hanced by non-Gaussian operations (Sec. 3.4.1, 3.4.2). For the case of a symmetric
cloner which takes one copy of the input state into two clones, the maximal fidelity
is approximately 0.6826, compared to 2

3 for the best Gaussian cloner. We also an-
alytically derive the best single-copy fidelities reached by Gaussian cloners for the
1-to-2 cloning with arbitrary weights and symmetric 1-to-n cloning. In addition,
we show that classical cloning is limited to a fidelity of 1

2 (Sec. 3.4.3). This can be
reached by a Gaussian scheme, namely by a heterodyne measurement on the in-
put state and repreparation of coherent states according to the measurement result.
Furthermore, the fidelity cannot be enhanced by the use of supplemental ppt-bound
entangled states. The results on cloning fidelities give rise to success criteria for
continuous-variable teleportation. One of these criteria proves and extends an im-
portant conjecture in the literature (cf. Sec. 3.6).

The main results and arguments presented in this chapter have been published in [a].
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3.1 Setup

A deterministic 1-to-n cloner abstractly is a completely positive, trace-preserving
map which in the Schrödinger picture transforms a single input state into an output
state of n subsystems, the clones. In the Heisenberg picture, these channels map
observables on the output systems onto observables on the input system. Our task
is to characterize these cloning maps and to optimize them with respect to suitable
fidelities.

To more formally describe the class of relevant cloning maps, we start by setting
up the involved phase spaces. If Ξin = R2 denotes the phase space of the one-mode
input system equipped with the nondegenerate symplectic form σin, then the output
is described in terms of the phase space Ξ =

⊕n
j=1 Ξin with symplectic form

σ(ξ, η) = σ
(⊕n

j=1ξj ,
⊕n

j=1ηj

)
=

n∑

j=1

σin(ξj , ηj) .

Where appropriate, we identify a vector in Ξ with the n-tuple of its components
in Ξin, i.e. Ξ ∋ ξ ≡⊕n

j=1 ξj ≡ (ξ1, . . . , ξn).
Recalling the discussion of Section 2, a channel between continuous-variable sys-

tems is a map between (states on) the respective ccr algebras. The cloning map T
in the Heisenberg picture maps the output ccr algebra onto the input ccr algebra,
i.e.

T : ccr(Ξ, σ) → ccr(Ξin, σin) .

In the Schrödinger picture, the cloner T maps input states onto output states,

T∗ : S
(
ccr(Ξin, σin)

)
→ S

(
ccr(Ξ, σ)

)
,

where S
(
ccr(Ξ, σ)

)
denotes the state space of the ccr algebra. For general states,

including singular states, this is the space of positive linear functionals on the
representation Hilbert space H, i.e. S

(
ccr(Ξ, σ)

)
= B∗(H). If only normal states

are involved, it can be restricted to the space of trace class operators on H, i.e.
S
(
ccr(Ξ, σ)

)
= B∗(H). Due to the Stone-von Neumann Theorem 2.1, the represen-

tation Hilbert space is essentially unique: for ccr(Ξin, σin) and ccr(Ξ, σ) we have
Hin = L2(R2, dx) and H = H⊗n

in ≃ L2(R2n, dx), respectively, where dx is under-
stood to have appropriate dimension.

3.2 Fidelities

The fidelity quantifies how well two quantum states coincide [40, 41]. For general
states described by density matrices ρ1 and ρ2, it is defined as

f(ρ1, ρ2) =

(
tr
[ (
ρ
1/2
1 ρ2 ρ

1/2
1

)1/2 ]
)2

.
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If one of the states is pure, as in our case, this expression reduces to f(ρ1, ρ2) =
tr[ρ1 ρ2]. We employ this functional to quantify the quality of the clones with respect
to the input state.

For example, we could require that the overlap between the joint output T∗(ρ) of
the cloner and a tensor product of n perfect copies of the input state ρ becomes as
large as possible. This is accomplished by maximizing the joint fidelity

fjoint(T, ρ) = tr
[
T∗(ρ) ρ

⊗n] . (3.1)

Since this criterion compares the complete output state, including correlations be-
tween subsystems, with a tensor product state, which is noncorrelated, it might be
too strong. Instead, one could measure the quality of individual clones by compar-
ing a single output subsystem, e.g. the i-th, to the input state with an appropriate
fidelity expression:

fi(T, ρ) = tr
[
T∗(ρ) (1⊗ · · · ⊗ 1⊗ ρ(i) ⊗ 1 · · · ⊗ 1)] , (3.2)

where the upper index (i) indicates the position in the tensor product. However, a
single such �one-clone-only� fidelity could be trivially put to one by a cloner which
does essentially nothing, but merely returns the input state in the i-th subsystem of
the output and yields a suitable fixed stated for the other subsystems. So, optimizing
the fidelities for all i in sequence would result in different cloners for each fidelity. To
avoid this, we optimize over a weighted sum of such fidelities,

∑n
i=1 λi fi(T, ρ) with

positive weights λi. The relative weights determine which clones should resemble the
input state more closely and thus allow to describe nonsymmetric cloners.

For a similar reason it is not useful to optimize the cloner for each input state
separately, because that would yield a source which perfectly produces the respec-
tive quantum state. Instead, we can either consider the average or the worst-case
quality with respect to an ensemble of input states. However, both approaches face
conceptual difficulties. In the first case, the process of averaging over the pure Gaus-
sian states is not well defined, because this amounts to averaging over the group
Sp(2n,R) of symplectic transformations, which is noncompact. In the latter case,
for every given cloner squeezed states exist which for sufficiently large squeezing
bring the fidelity arbitrarily close to zero (see end of Section 3.4.1). While this can
in principle be compensated for a fixed and known squeezing by a modified cloner
(desqueeze, clone unsqueezed state and resqueeze output), it is not possible to cir-
cumvent this behavior for arbitrary, unknown squeezing. We address the problem by
optimizing the cloner only for coherent states, which constitute a subset of all pure
Gaussian states.

As the figure of merit, we choose the worst-case fidelities fjoint(T ) and fi(T ),
defined as the infima of (3.1) and (3.2) over the set coh =

{
|ξ〉〈ξ|

∣∣ ξ ∈ Ξin

}
of all

coherent states,

fjoint(T ) = inf
ρ∈coh

fjoint(T, ρ) and fi(T ) = inf
ρ∈coh

fi(T, ρ) .
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Figure 3.1:
Schematic diagram of the convex set fsc of achievable worst-case single-copy fideli-
ties for 1-to-2 cloning. Any fidelity pair between the origin and the arc (e.g. on the
dotted line) can be realized by a classical mixture of an optimal cloner on the arc
and a fixed output state, represented by the origin. The shaded area of fidelities
is not accessible. The right diagram illustrates the interpretation of tangents. In
contrast to (a), the optimal cloners in (b) are the trivial cloners for small values
of λ or (1−λ), indicated by the finite slope of the tangent in (0, 1) and (1, 0). See
text for further details.

Therefore, our task is to find the maximal worst-case joint fidelity with respect to
all cloners T ,

fjoint = sup
T
fjoint(T ) = sup

T
inf
ρ∈coh

fjoint(T, ρ) ,

and the set fsc of all achievable n-tuples
(
f1, f2, . . . , fn

)
of worst-case single-copy

fidelities.

This set is schematically depicted in Fig. 3.1 for the case of 1-to-2 cloning. Each
point in the diagram corresponds to a pair of worst-case single-copy fidelities for
the two clones in the output and thus to a cloner yielding these fidelities. The
achievable fidelities are of course restricted by the requirement that f1 ≤ 1 and
f2 ≤ 1. From two cloners one can construct a whole range of cloners by classical
mixing; the resulting fidelities lie on the line connecting the fidelity pairs of the two
initial cloners, indicated by the points on the dotted line. Consequently, the set fsc
is convex. The points with fidelities (f1, f2) = (1, 0) and (0, 1) represent the trivial
cloners which return the input state in one output subsystem and leave the other in
a fixed reference state. All fidelity pairs below and on the dashed line can be reached
by a classical mixture of these cloners and a fixed output state, represented by the
origin with (f1, f2) = (0, 0). Optimizing cloners has the effect of enlarging the convex
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area of achievable fidelity pairs. The optimal cloners yield fidelities corresponding to
points on the �high fidelity� rim of this set, schematically indicated by the arcs in
Fig. 3.1. Any 1-to-2 cloning fidelity pair allowed by quantum physics can be reached
by classically mixing an optimal cloner with a fixed output state (depicted by the
dotted line). The fidelities beyond the curve of optimal cloners are not accessible
(indicated in Fig. 3.1(a) by the shaded region).

An additional aspect of the interpretation of the diagrams is provided by the
tangents, depicted by the thin solid lines in Fig. 3.1(b). Following from the total
weighted single-copy fidelity for 1-to-2 cloning, f = λ f1 + (1 − λ)f2, all cloners
on the line f2 = f/(1 − λ) − f1 λ/(1 − λ) yield the total fidelity f for weight λ.
Conversely, a line with slope s = −λ/(1 − λ) and abscissa t = f/(1 − λ) comprises
all cloners yielding f for weight λ. Moving a line with slope s parallel to itself until
it touches the set fsc results in the optimal cloner for the corresponding weight (the
dot in Fig. 3.1(b) for λ = 1

2 ). Moreover, the slope of the tangent in (0, 1) and (1, 0)
conveys important information about the optimality of the trivial cloners, which
solely map the input state into one of the two output subsystems. If the line with
slope corresponding to some λ0 > 0 touches the curve of optimal cloners in (0, 1),
the optimal cloner for weight λ0 is the trivial cloner with (f1, f2) = (0, 1), degraded
by a fixed output state (f1, f2) = (0, 0) with weight λ0 and total fidelity f = (1−λ0).
This is illustrated in Fig. 3.1(b). In contrast, Fig. 3.1(a) corresponds to a case where
the trivial cloners are optimal only for λ = 0 and λ = 1, since the tangent in the end
points of the arc is horizontal or vertical.

Since we show below that the optimal worst-case fidelities can be reached by
cloners which are covariant with respect to phase space translations of the input
state, we simultaneously optimize the average fidelities.

3.3 Covariance

In this section, we will show that for every cloner we can define a cloner which is
covariant with respect to translations of the input state in phase space and which
yields at least the same worst-case fidelity for coherent input states. For 1-to-n
cloning, such cloners are necessarily quasi-free, i.e. they map Weyl operators to
multiples of Weyl operators, and are essentially determined by a state on the output
ccr algebra.

A map on states is phase space covariant in the above sense if displacing the input
state in phase space gives the same result as displacing the output by the same
amount. If we define the shifted cloner Tξ by

T∗ξ(ρ) = W⊗n
ξ

∗
T∗(Wξ ρW∗

ξ ) W⊗n
ξ , (3.3)

translational covariance means T∗ξ(ρ) = T∗(ρ). Note that the same phase space
translation ξ is used for the input system as well as for all output subsystems. This
is justified from the intention to replicate the input state as closely as possible. Given
covariance of T∗ in the Schrödinger picture, the covariance of T in the Heisenberg pic-
ture follows immediately: If T∗ is covariant with respect to phase space translations,
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3.3 Covariance

the expectation value of an arbitrary observable A in a state ρ obeys

tr
[
ρ T (A)

]
= tr

[
T∗(ρ)A

]
= tr

[
W⊗n
ξ

∗
T∗(Wξ ρW∗

ξ )W⊗n
ξ A

]

= tr
[
ρ W∗

ξ T (W⊗n
ξ AW⊗n

ξ

∗
)Wξ

]
.

(3.4)

Thus, covariance of T follows from covariance of T∗ and we will in the following use
the one or the other interchangeably. Using T , the fidelities can be written in a unified
form as f(T, ρ) = tr[ρ T (A)], where A = ρ⊗n and A =

∑
i λi 1⊗· · ·⊗1⊗ρ(i)⊗1 · · ·⊗1

for f = fjoint and f =
∑

i λi fi, respectively. Furthermore, for coherent states we get

f
(
T, |ξ〉〈ξ|

)
= tr

[
|0〉〈0|Tξ(A)

]
= f

(
Tξ, |0〉〈0|

)
, where

Tξ(A) = W∗
ξ T

(
W⊗n
ξ AW⊗n

ξ

∗)
Wξ

in strict analogy with (3.3).
By applying an average Mξ over the symmetry group of phase space translations,

we can define for every map T a covariant map which we denote by T̃ξ. However,
since the group of translations is noncompact, Mξ has to be an �invariant mean� [42]

which does exist only by virtue of the Axiom of Choice. The cloner T̃ξ yields worst-
case fidelities which are not lower than those achieved by T [43]. For a discussion,
see the proof of

Lemma 3.1:
For every 1-to-n cloner T there exists a covariant cloner T̃ξ such that for f = fjoint

or f =
∑

i λi fi
f(T ) ≤ f(T̃ξ) .

Remark: The cloner T̃ξ might be �singular�, i.e. its output for normal states de-
scribed by a density operator ρ could be a purely singular state, which cannot be
connected to any density operator. This issue is addressed in the next Section 3.3.1,
where it is shown that such cloners are not optimal.

Proof: The invariant mean Mξ will not be applied to T directly but to bounded
phase space functions g(ξ), where Mξ

[
g(ξ)

]
is linear in g, positive if g is positive,

normalized as Mξ[1] = 1 and indifferent to translations, Mξ

[
g(ξ + η)

]
= Mξ

[
g(ξ)

]
.

For expectation functionals of a bounded operator A on the cloner output T∗ξ(ρ), the
invariant mean Mξ tr

[
T∗ξ(ρ)A

]
is well-defined as the argument is a function bounded

by ‖A‖. Moreover, by the properties of Mξ it is a covariant, bounded, normalized,
positive linear functional on A, which describes a state on the output ccr algebra.
Since it is also linear in ρ, we can introduce a linear operator T̃∗ such that T̃∗(ρ) is
the respective state. However, this state might be singular (see Section 3.3.1 below),

hence T̃∗ has to map density operators of the input system onto the linear functionals
on the output ccr algebra:

T̃∗(ρ) : B∗(H) → B∗(H⊗n) , such that

T̃∗(ρ)[A] = Mξ tr
[
T∗ξ(ρ)A

]
.
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3 Optimal cloners for coherent states

By (3.1) and (3.2), joint and single-copy fidelity for the shifted cloner Tξ are
bounded phase space functions to which we can apply Mξ. For f = fjoint or f =∑
i λi fi, this yields the relations

f(T ) = inf
ξ
f
(
T, |ξ〉〈ξ|

)
= inf

ξ
f
(
Tξ, |0〉〈0|

)

≤ Mξ f
(
Tξ, |0〉〈0|

)
= f

(
T̃ξ, |0〉〈0|

)
= f(T̃ξ) .

The first equality is the definition of f(T ) from Eqs. (3.1, 3.2), the second corresponds
to f

(
T, |ξ〉〈ξ|

)
= f

(
Tξ, |0〉〈0|

)
. The inequality is due to the fact that the minimum of a

function is less than or equal to its average. As discussed above, the averaged fidelity
can be attributed to a cloner which is denoted by T̃ξ. Moreover, T̃ξ is covariant and
thus yields constant fidelities for all coherent input states. Consequently, the function
η 7→ f

(
T̃ξ, |η〉〈η|

)
is constant for this cloner and the worst-case fidelity as the infimum

over η is attained for any η. �

This lemma assures that for every cloner T the averaging, covariant cloner T̃ξ is
at least as good as the initial map T with respect to joint and single-copy fidelity.
Therefore, we can restrict the optimization to covariant cloners in the first place,
which yield constant fidelities for all coherent input states.

3.3.1 Technicalities

While the averaging cloner T̃ξ does exist, care must be taken in employing it. The
output states of such a cloner might be singular, i.e. a functional on the observables
which cannot be described by a density operator. Consider for example a �cloner�
which outputs a constant normal state, T∗(ρ) = ρ0. This cloner can be turned into a

covariant cloner T̃∗ by applying the invariant mean from above. The output T̃∗(ρ) is
a constant, translationally invariant state. However, it is purely singular since there
cannot be a translationally invariant density operator as the following argument
shows: Assume the density operator ρ0 were covariant with respect to all phase
space translations. Then one would expect that for all ξ ∈ Ξ

tr[ρ0A] = tr
[
ρ0 WξAW∗

ξ

]
= tr

[
W∗
ξ ρ0 Wξ A

]
, (3.5)

which can only be true if ρ0 commutes with all Weyl operators Wξ. Since the Weyl
system is supposed to be irreducible, this implies ρ0 ∝ 1, which is not a trace class
operator and thus cannot constitute a density operator.

However, a purely singular output state yields fidelity zero for the cloner, since
both single-copy and joint fidelity, f = fjoint or f =

∑
j λjfj, of a cloner can be

written as expectation values of compact operators Fjoint and Fi in the output state
of the cloner. In particular, for covariant cloners and coherent input states we can
restrict attention to tensor products of compact operators of the form |α〉〈α| with
itself or the identity operator: Fjoint = |α〉〈α|⊗n and Fi = 1 ⊗ · · · ⊗ 1 ⊗ |α〉〈α|(i) ⊗1⊗ · · · ⊗ 1 (where the upper index denotes the number of the tensor factor, i.e. the
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3.3 Covariance

clone). A more general type of cloner yields normal output on some of the clones
and a singular state on the rest, i.e.

T∗(ρ) = (T∗Λ ⊗ T̃∗Λc)(ρ) , (3.6)

where T∗Λ is a normal cloner on the clones indicated by Λ ⊂ {1, 2, . . . , n} and T̃∗Λc is
a purely singular cloner on the rest. The following lemma shows that cloners which
contain purely singular parts in the output are not optimal:

Lemma 3.2:
For covariant 1-to-n cloners optimized with respect to worst-case single-copy or
joint fidelity, the following holds:

(i) A cloner with a purely singular contribution to the output state cannot be
optimal. The optimal cloner is a linear combination of covariant cloners which
yield a normal state for some of the clones and purely singular output for the
rest, i.e. a linear combination of the cloners in (3.6).

(ii) For joint fidelity, the optimal cloner is normal.

(iii) If the cloner is to be covariant with respect to more clones than enter the
fidelity criterion, then the optimal cloner is singular.

Remark: If the weighted single-copy fidelity f =
∑n

i=1 λi fi contains terms with
λi = 0, these clones do not enter the fidelity criterion but formally require a 1-to-n
cloner which is covariant with respect to all n clones. In this case, the proof shows
that the optimal cloner is either not covariant for all clones or singular. We cope with
this issue by disregarding clones with λi = 0. Instead, we consider a cloner which
is restricted to the clones with λi 6= 0. For the only exception, see the following
Corollary 3.3.

Proof: The proof follows [43]. In general, a state ω is a positive linear functional on
the algebra of observables, i.e. ω ∈ B(H⊗f), cf. Section 2.2.4. However, since we are
only interested in expectation values for fidelities, we can restrict states to a specially
tailored subalgebra. For a single system, we define D ⊂ B(H) as the algebra of all
operators of the form

D = C + d1 , yielding expectation values ω(D) = ω(C) + ω(1) d , (3.7)

where C is a compact operator on H and d ∈ C. This definition separates contribu-
tions to the expectation value from normal and purely singular parts of a state ω:
Since a purely singular state ω′ yields an expectation value of zero on compact oper-
ators, the parameter d can be obtained as d = ω′(C + d1) from any such state. The
decomposition (3.7) is thus unique. Hence any state ω on D consists of two parts:
a linear functional on the compact operators, which necessarily corresponds to a
(nonnormalized) density operator ω1 by ω(C) = tr[ω1 C], and a term proportional
to d, which introduces another parameter ω0 ∈ R. Expectation values of ω are thus
given by

ω(D) = ω(C) + ω(1) d = tr[ω1 C] + d
(
tr[ω1] + ω0

)
. (3.8)
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3 Optimal cloners for coherent states

Normalization of ω imposes ω(1) = tr[ω1]+ω0 = 1 and positivity requires that ω0 ≥ 0
and ω1 ≥ 0. An intuitive interpretation would suggest that ω0 is the probability for
a system in state ω to be �at infinity�,2 while ω1/(1− ω0) is the normalized density
operator describing the nonsingular part of ω. Note that the fidelity of ω with respect
to a coherent state α is determined by the compact operator |α〉〈α| as

f
(
ω, |α〉〈α|

)
= ω

(
|α〉〈α|

)
= tr

[
ω1|α〉〈α|

]
, (3.9)

which is independent of ω0. Hence one can expect that the optimization of the cloner
output state reduces the weight at infinity ω0.

In order to obtain a more rigorous argument, we introduce the tensor product
subalgebra D⊗n ⊂ B

(
H⊗n) generated by the identity as well as all operators of the

form 1 ⊗ · · ·1 ⊗ C ⊗ 1 · · · ⊗ 1 which have a compact operator C in a single tensor
factor. A product of such operators is characterized by the set Λ ⊂ Λn = {1, 2, . . . , n}
of tensor factors with compact entry; the complement Λc = Λn \Λ contains a factor1⊗Λc

. A general element D ∈ D⊗n is thus decomposed according to

D =
∑

Λ

DΛ ⊗ 1⊗Λc

, (3.10)

where DΛ is the respective compact part on the tensor factors indexed by Λ and
the sum runs over all subsets of Λn. Similarly, a state ω is decomposed into parts
which are labeled by a set of tensor factors Λ on which the state is normal and
thus described by a density operator ωΛ; on the complement Λc, the part describes
systems �at infinity�. The purely singular contribution is denoted by ω∅. A part ωΛ

yields nonzero expectation value for D from (3.10) only on terms DΛ′ ⊗ 1⊗Λ′c

for
which Λ′ ⊂ Λ because else a singular part would meet a compact operator. Hence

ω(D) = ω
(∑

Λ′DΛ′ ⊗ 1⊗Λ′c
)

=
∑

Λ

∑

Λ′⊂Λ

tr
[
ωΛ

(
DΛ′ ⊗ 1⊗Λ\Λ′)]

. (3.11)

Positivity of ω is assured if all ωΛ ≥ 0 and normalization requires
∑

Λ tr[ωΛ] = 1.
This relation implies that the fidelity of the i-th clone with ω is obtained as

ω(Fi) =
∑

Λ∋i
tr
[
ωΛ Fi|Λ

]
, (3.12)

where the sum runs over all Λ containing the index i and Fi|Λ is the restriction
of Fi to the tensor factors Λ. For a weighted sum of such fidelities, determined by
F (λ) =

∑
i λi Fi with λi ≥ 0, the expectation value is given by a sum over the above

expression,

ω
(
F (λ)

)
=
∑

Λ

tr
[
ωΛ F (λ)

∣∣
Λ

]
. (3.13)

2 This interpretation can be made rigorous by a correspondence between spaces of functions and
spaces of operators, which allows a �one-point compactification� of the phase space, i.e. the
process of adjoining a point at infinity to the real vector space. By using only a single point at
infinity we identify all purely singular states, which is justified since they do not contribute to
fidelities as explained above. This is a main motivation in the definition of D.
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3.3 Covariance

In the case of joint fidelity, the respective expression contains only ωΛn
(Fjoint) since

Fjoint = |α〉〈α|⊗n is compact on all tensor factors.

To investigate the fidelities of a possibly singular, covariant cloner T̃∗, consider
the restriction ω = T̃∗(ρ)|D⊗n of its output to D⊗n. Denote by T̃∗Λ the map which

takes the density operator ρ on H to T̃∗Λ(ρ) = ωΛ, the unique density operator

on the tensor factors Λ from the decomposition of ω. Since T̃∗ is covariant, so is
T̃∗Λ. However, it lacks normalization, as only the overall T̃∗(ρ) is normalized. To

renormalize T̃∗Λ, we introduce the normalization operator NΛ which implements the
bounded linear map ρ 7→ tr

[
T̃∗Λ(ρ)

]
= tr[ρNΛ] ≤ 1. As T̃∗Λ is covariant, NΛ has to

commute with all Weyl operators and is thus a multiple of the identity, NΛ = pΛ 1
with 0 < pΛ ≤ 1. We define by

T∗Λ(ρ) = T̃∗Λ(ρ)/pΛ = ωΛ/pΛ (3.14)

a family of normalized, covariant 1-to-|Λ| cloning transformations, where |Λ| denotes
the number of elements in the set Λ. Note that the normalization constant pΛ does
not depend on the input state. T∗Λ(ρ) is normal, since the output ωΛ/pΛ is a den-
sity operator. With the help of T∗Λ, the fidelity of possibly singular cloners can be
expressed in terms of nonsingular cloners. For joint fidelity, we get:

fjoint

(
T̃∗
)

= fjoint

(
T̃∗, |0〉〈0|

)
by covariance of T̃∗

= ω(Fjoint) for ω = T̃∗
(
|0〉〈0|

)

= tr
[
ωΛn

Fjoint

]
by (3.11), Fjoint is compact on Λn

= pΛn
tr
[
T∗Λn

(
|0〉〈0|

)
Fjoint

]
by (3.14)

= pΛn
fjoint(TΛn

) by (3.1).

Since 0 < pΛ ≤ 1, this fidelity is enlarged if pΛn
= 1 and hence pΛ = 0 for Λ 6= Λn,

i.e. if T̃∗ = T∗Λn
. But this better cloner is covariant and normal, which proves (ii)

and (i) for joint fidelity, where the linear combination consists of a single covariant
cloner which yields normal output for all clones.

For a proof of (iii), we discuss the role of zero and nonzero coefficients λi in the
weighted single-copy fidelity

∑n
i=1 λi fi. If one of the weights is zero, e.g. λn = 0,

the figure of merit does not care for the respective clone n. A 1-to-n cloner can thus
be optimized by using the optimal, covariant 1-to-(n− 1) cloner and amending the
output with an arbitrary state for the n-th output system. However, if this additional
state is a normal state, the resulting cloner is not covariant (see above). If this cloner
is subjected to the averaging procedure from Lemma 3.1, the averaged cloner will
be covariant and hence the state of the n-th clone in its output will be singular.
Consequentially, if a clone is not contained in the figure of merit, the optimal cloner
is either not covariant with respect to all clones or it is covariant but singular. This
proves (iii).

Consider now the single-copy fidelity with nonzero weights λi > 0. We denote the
respective fidelity operator by F (λ) =

∑
i λi Fi, where λ = (λ1, λ2, . . . , λn). With
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3 Optimal cloners for coherent states

this,

f
(
T̃∗
)

= f
(
T̃∗, |0〉〈0|

)
by covariance of T̃∗

= ω
(
F (λ)

)
for ω = T̃∗

(
|0〉〈0|

)

=
∑

Λ

tr
[
ωΛ F (λ)

∣∣
Λ

]
by (3.11)

=
∑

Λ

pΛ tr
[
T∗Λ

(
|0〉〈0|

)
F (λ)

∣∣
Λ

]
by (3.14),

where F (λ)|Λ is the restriction of F (λ) to tensor factors Λ. The normal output states
of the cloners T∗Λ can be amended with a constant, translationally invariant and
thus purely singular state on Λc. This proves (i) for single-copy fidelity. �

This lemma leaves the possibility that cloners optimal with respect to weighted
single-copy fidelities are singular. For the case of 1-to-2 cloning, this is ruled out
from the results, see Section 3.4.2.

While we are nearly always interested in covariant nonsingular cloners, there is one
exception: 1-to-n cloners which output the exact input state in one of the clones,
or �copy-through� cloners. They occur as extremal cases in the optimization of
weighted single-copy fidelities

∑
i λi fi if λi = 0 for i 6= j but λj 6= 0. Optimal

cloners of this type effectively copy the input state to the j-th output system and
yield a respective fidelity of one. By the above Lemma 3.2, they are either not
covariant with respect to all n clones or singular:

Corollary 3.3:
The covariant 1-to-n �copy-through� cloners, i.e. those cloners which output the
exact input state in one of the clones, are singular. In fact, they are cloners of
type (3.6) with Λ = {i} for perfect replication of the input in the i-th clone:

T∗(ρ) = (T∗{i} ⊗ T̃∗Λc)(ρ) .

3.3.2 Characterization

The characterization of covariant cloning maps is best carried out in the Heisenberg
picture, where the cloner T : ccr(Ξ, σ) → ccr(Ξin, σin) maps operators in the output
ccr algebra to the input ccr algebra. Since the Weyl operators are eigenvectors
of the phase space translation operation, W∗

η Wξ Wη = e−iσ(ξ,η) Wξ according to
Eq. (2.7b), the covariance property takes on a particularly simple form for these
operators. Moreover, since they give rise to a dense subset of the whole algebra, it
is sufficient to assure covariance for an arbitrary Weyl operator.

In strict analogy to Eq. (3.3) and according to Eq. (3.4), covariance with respect
to phase space translations for T is understood as

Wη T (Wξ1,...,ξn
)W∗

η = T (W⊗n
η Wξ1,...,ξn

W⊗n
η

∗
)

= exp
(
i
∑n

j=1σin(ξj , η)
)
T (Wξ1,...,ξn

) ,
(3.15)
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3.3 Covariance

where the second identity is due to the Weyl commutation relation (2.7b). As
T (Wξ1,...,ξn

) is thus an eigenvector of all phase space translations η ∈ Ξ, Lemma 2.2
requires that it is a multiple of an appropriate Weyl operator,

T (Wξ1,...,ξn
) = t(ξ1, . . . , ξn) WP

i ξi
,

where t is a functional on the output phase space, t : Ξ → C. Since T maps Weyl
operators to multiples of Weyl operators, it is quasi-free. In terms of characteristic
functions of input and output states, this functional t acts as the characteristic
function of the cloner itself:

χout(ξ1, . . . , ξn) = tr
[
T∗(ρ)Wξ1,...,ξn

]
= tr

[
ρ T (Wξ1,...,ξn

)
]

= t(ξ1, . . . , ξn)χin(
∑

i ξi) .
(3.16)

For T to be completely positive and χout to describe a quantum state, t has to fulfill
the condition stated in Theorem 2.6, i.e. it has to be the characteristic function of a
state with respect to the ccr algebra over the output phase space (Ξ,Σ) equipped
with the �twisted� symplectic form Σ [20]. In the case of 1-to-n cloning,

Σ(ξ, η) = σ(ξ, η) − σin(
∑n

j=1 ξj ,
∑n

k=1 ηk) = σ(Ω ξ,Ω η)

for a suitable linear transformation Ω. A possible choice for this operator is to change
momentum coordinates into positions, pj 7→ qj , and position coordinates according
to qj 7→

∑
k 6=j pk. For details on Ω, see the end of this section.

Using Ω, the above condition on t is equivalent to t(ξ) = χT (Ω ξ) where χT (ξ) is
the characteristic function of a state ρT with respect to σ(ξ, η), i.e.

t(ξ) = tr[ρT WΩ ξ] = χT (Ω ξ) . (3.17)

Hence, given Ω, a (deterministic) covariant cloner is completely described by the
state ρT . The cloner is Gaussian if and only if it maps Gaussian states to Gaus-
sian states and consequently if and only if χT (ξ) is a Gaussian function. For later
reference, we state the characteristic function of the output explicitly:

χout(ξ1, . . . , ξn) = χT (Ω ξ)χin(
∑

i ξi) . (3.18)

The above results are summarized in the following

Proposition 3.4:
For every 1-to-n cloner T ′, there is a cloner T covariant with respect to phase
space translations in the sense of Eq. (3.3) which on coherent states yields constant
fidelities not less than the worst-case fidelities of T ′. The cloner T is quasi-free
and described by a state ρT with characteristic function χT (ξ) such that

T (Wξ) = χT (Ω ξ) WP

i ξi

for a fixed Ω satisfying σ(Ω ξ,Ω η) = σ(ξ, η) − σin(
∑n

j=1 ξj ,
∑n

k=1 ηk).
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3 Optimal cloners for coherent states

Transformation Ω

In (Q,P )-block representation and with a square matrix (En)i,j = 1 for i, j =
1, 2, . . . , n we have

Σ(ξ, η) = ξ
T ·
(

0 1n −EnEn − 1n 0

)
· η = σ(Ω ξ,Ω η) choosing3

Ω =

(
0 En − 1n1n 0

)
. (3.19)

For later use, we compute detΩ = (−1)n (det1n) det(En − 1n). Since we will also
need the eigenvalues of En, we more generally compute its characteristic polynomial
det(En − λ1n). By inspection, we find the recursion relation

det(En − λ1n) = (2 − λ− n) det(En−1 − λ1n−1) + (n− 1)λ det(En−2 − λ1n−2)

and prove by induction that

det(En − λ1n) = (−1)n λn (λ− n) . (3.20)

Letting λ = 1, this yields

detΩ = 1 − n . (3.21)

The inverse of Ω is

Ω−1 =

(
0 1nEn/(n− 1) − 1n 0

)
. (3.22)

3.4 Optimization

A key ingredient of our optimization method is the linearity of the fidelities in T and
hence in ρT . Using again the abbreviation f = fjoint or f =

∑
i λi fi, we can thus

write the fidelity as the expectation value of a linear operator F in the state ρT :

f(T, ρ) = tr[ρT F ] . (3.23)

The applicable operators F = Fjoint and F =
∑

i λi Fi are obtained by expressing
the fidelity in terms of characteristic functions by noncommutative Fourier transform
and the Parseval relation (2.11), regrouping the factors and transforming back to
new operators4 ρT and F . The latter depends only on the symplectic geometry via
the transformation Ω mediating between symplectic forms, but not on the cloner T .
In principle, F also depends on the input state ρ. However, since we can restrict the

3 This choice is not unique, but can involve arbitrary symplectic transformations, i.e. S−1 ΩS for
S ∈ Sp(2n,R) is permissible, too.

4 A similar method has been used independently by Wódkiewicz et al. to obtain results on the
teleportation of continuous-variable systems [60] and the fidelity of Gaussian channels [61].
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3.4 Optimization

search to covariant cloners of coherent states, the worst-case fidelity is attained for
any input state and we can fix the input state to the vacuum, ρ = |0〉〈0|:

f(T ) = inf
ρ∈coh

f(T, ρ) = f(T, |0〉〈0|) .

Maximizing the fidelity by taking the supremum of Eq. (3.23) over all covariant
cloners is therefore equivalent to finding the state ρT that maximizes the above
expectation value, i.e. the pure eigenstate corresponding to the largest eigenvalue
of F .

3.4.1 Joint fidelity

In order to optimize the joint fidelity by the method sketched above, we need to
determine the appropriate operator F = Fjoint. To this end, we calculate the joint
fidelity from the characteristic functions of input and output states. By Eq. (3.18),
the characteristic function of the output state T∗(ρ) is χout(ξ) = χT (Ω ξ)χin(

∑
i ξi).

The reference state is the n-fold tensor product of the input state, described by∏n
i=1 χin(ξi) = tr

[
ρ⊗n Wξ1,...,ξn

]
. Together with the definition (3.1) and the non-

commutative Parseval theorem (2.11), this yields:

fjoint(T, ρ) = tr
[
T∗(ρ) ρ

⊗n]

=

∫
dξ

(2π)n
χout(ξ)

n∏

i=1

χin(ξi)

=

∫
dξ

(2π)n
χT (Ω ξ) χin(

∑
i ξi)

n∏

i=1

χin(ξi) . (3.24)

Since we can restrict the discussion to the vacuum as input state, we can fix its char-
acteristic function as χin(ξ) = tr

[
|0〉〈0| Wξ

]
= exp(−ξ2/4), cf. Eq. (2.26). Grouping

together the terms involving χin, substituting ξ 7→ Ω−1 ξ and introducing a suitable
quadratic form Γ, this can be rewritten as:

fjoint(T ) =
1

n− 1

∫
dξ

(2π)n
χT (ξ) e−ξ

T·Γ·ξ/4

= (n− 1)−1 tr[ρT Fjoint] , (3.25)

where we have again employed the Parseval relation (2.11) in the last line with char-
acteristic functions χT (ξ) and exp(−ξT ·Γ · ξ/4) defining ρT and Fjoint, respectively.
For simplicity we have excluded the factor |detΩ−1| = (n−1)−1, cf. (3.21), from the
definition of Fjoint. Since the input state is fixed, the quadratic form Γ is determined
solely by the linear transformation Ω from (3.19). As a consequence, the operator
Fjoint is independent from T , as required. Moreover, it is a Gaussian operator with
covariance matrix Γ and in suitable canonical coordinates, it separates into a ten-
sor product of single-mode thermal states. Maximizing the joint fidelity amounts
to finding the maximal expectation value in Eq. (3.25). This is given by the largest
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3 Optimal cloners for coherent states

eigenvalue of Fjoint, which in turn is the product of the largest eigenvalue of each of
the thermal states in the tensor product and thus nondegenerate. It is attained for
ρT as the unique eigenstate to the maximal eigenvalue, which is a suitably squeezed
vacuum state. Hence the cloner optimal with respect to joint fidelity is Gaussian.

In order to determine these eigenvalues, we need the exact form of Γ and its
symplectic eigenvalues. In (Q,P )-block representation and for coherent input states
we get

Γ = (Ω−1)
T ·
(En + 1n 0

0 En + 1n) · Ω−1 =

( 3−n
(1−n)2 En + 1n 0

0 En + 1n)
with Ω−1 from (3.22). To compute the symplectic eigenvalues of Γ, we turn back to
the modewise representation and get

Γ = En ⊗
( 3−n

(1−n)2 0

0 1

)
+ 1n ⊗ 12 , (3.26)

where the indices of the square matrices indicate the dimension of the respective
vector space. From the characteristic polynomial (3.20) of En it is clear that the
spectrum of En consists of only n and 0 with multiplicities 1 and n−1, respectively.
It follows that En can be diagonalized by an orthogonal transformation5 Θ and
that (Θ ⊗ 12)

T · Γ · (Θ ⊗ 12) is diagonal. Since in this modewise representation
σ = 1n ⊗ σin, clearly (Θ ⊗ 12) is a symplectic transformation. After squeezing by a
factor of (n−1) in one mode, the diagonal elements (n+1)/(n−1) and 1 of Γ are its
symplectic eigenvalues with multiplicities 1 and n− 1, respectively. Hence Fjoint can
be decomposed into a tensor product of a one-mode thermal state with symplectic
eigenvalue (n + 1)/(n − 1) and (n − 1) modes of vacuum. Since by Eq. (2.33) the
eigenvalues νj of a one-mode thermal state with covariance g are

νj =
2

g + 1

(
g − 1

g + 1

)j
,

we get for the largest eigenvalue of Fjoint that max spec(Fjoint) = ν0 = (n− 1)/n for
g = (n+ 1)/(n− 1). By (3.25) this yields the desired maximal joint fidelity as

fjoint = sup
T
fjoint(T ) = max spec(Fjoint)/(n− 1) = 1

n .

The optimal cloner can be described by a pure state ρT which in suitable coordinates
corresponds to a tensor product of n−1 modes of unsqueezed vacuum and one mode
of vacuum squeezed by a factor of n− 1, i.e. it has a covariance matrix

γT =

(
1/(n− 1) 0

0 n− 1

)
⊕ (1n−1 ⊗ 12) .

5 The eigenspace for the eigenvalue n is one-dimensional. In the subspace orthogonal to this
eigenvector, choose an orthonormal basis. All its vectors will be eigenvectors to the eigenvalue
0. Together with the above eigenvector, they form a complete orthonormal basis in which En

is diagonal.
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Hence for the case n = 2 this is the cloner already known from [53,54, 55]. Summa-
rizing the results from above and Section 3.3.1 yields

Proposition 3.5:
The worst-case joint fidelity for 1-to-n cloning of coherent states is optimized by
a permutation invariant Gaussian cloner covariant with respect to phase space
displacements. The maximal fidelity is 1/n.

The expression (3.24) for the joint fidelity reveals why the worst-case fidelity over
all pure Gaussian states of any cloner is zero. Starting from a coherent state ρ,
all pure Gaussian states can be obtained by applying a symplectic transformation
S ∈ Sp(2,R) to each copy of ρ in the fidelity criterion, i.e. by replacing ρ 7→ U∗

S ρUS .
This corresponds to the substitution ξi 7→ S · ξi in the argument of the input charac-
teristic function χin(ξ). Equivalently, in Eq. (3.25), the matrix Γ can be replaced by(⊕n

j=1 S
T
)
·Γ ·

(⊕n
j=1 S

)
. For a single mode, any two phase space vectors ξ and η of

finite length can be transformed into each other by a symplectic transformation S.
To see this, refer to the Euler decomposition of S in Eq. (2.20): Choose an orthogonal
transformation K ′ such that K ′ · ξ is parallel to (1, 0), use the appropriate scaling r
and another orthogonal transformation K such that KTη is parallel to (1, 0); then
η = S · ξ. Hence for any cloner given by a normal state with characteristic function
χT , the exponential factor in the integrand of (3.25) can be twisted to maximal mis-
match and be scaled by squeezing such that the fidelity is brought arbitrarily close
to zero. The same arguments hold for the single-copy fidelity.

3.4.2 Single-copy fidelity

As in the case of joint fidelity, we determine the appropriate operators Fi from the
output characteristic function in order to compute the single-copy fidelities as the
expectation values of tr[ρT

∑
i λi Fi]. By Eq. (3.18), the characteristic function of the

i-th clone is given by χi(ξi) = χout(0, . . . , 0, ξi, 0, . . . , 0) = tr[T (ρ) W0,...,0,ξi,0,...,0],
where the zeros in the argument of the Weyl operator lead to tensor factors 1 and
thus effectively trace out all clones except for the i-th. The fidelity of this clone is

fi(T, ρ) =

∫
dξi
2π

t(0, . . . , 0, ξi, 0, . . . , 0)
(
χin(ξi)

)2
. (3.27)

In contrast to the reasoning for the joint fidelity, we will determine the operators
Fi explicitly in terms of the field operators Qj and Pj of each mode. To this end,
we use t(ξ) = tr[ρT WΩ ξ] from (3.17) and write the Weyl operator in the explicit
form (2.6), Wq1,p1,...,qn,pn

= exp
(
i
∑
k(qk Pk − pk Qk)

)
. Together with (3.19) for Ω,

this yields the Weyl operator in question as

WΩ (0,...,0,qi,pi,0,...,0) = exp
(
i (pi Pi − qi

∑
i6=j Qj)

)
.
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3 Optimal cloners for coherent states

Replacing t(ξ) in (3.27) and letting ξi = (q, p), the i-th single-copy fidelity for the
fixed input state |0〉〈0| is fi = tr[ρT Fi], where

Fi =

∫
dq dp

2π

(
χin(q, p)

)2
exp
(
i (pPi − q

∑
i6=j Qj)

)

= exp
(
−P 2

i /2 −∑i6=j Q
2
j/2
)
. (3.28)

In the following, we study the weighted single-copy fidelities
∑

i λi fi by numerical
computation and analytical arguments. For simplicity, we restrict this discussion
to the case of 1-to-2 cloning. While in principle the method can be generalized,
numerical computations of the fidelities might get more involved. The operator F
for the weighted single-copy fidelity λ f1(T ) + (1 − λ) f2(T ) = tr[ρT F ] is composed
of the weighted sum of the respective Fi:

F = λ1 e−(Q2
2+P 2

1 )/2 + λ2 e−(Q2
1+P

2
2 )/2 (3.29a)

≃ λ1 e−(Q2
1+Q2

2)/2 + λ2 e−(P 2
1 +P 2

2 )/2 , (3.29b)

where the second expression is obtained by applying an orthogonal, symplectic trans-
formation such that Q1 7→ −P1 and P1 7→ Q1. Both forms are equivalent for the pur-
pose of computing eigenvalues. The largest eigenvalue of F gives the maximal single-
copy fidelity, the corresponding eigenvector describes the optimal cloner. Before we
detail their approximate computation, we discuss the results depicted in Fig. 3.2.

Since a linear combination of Gaussian operators as in (3.29b) does in general
not have Gaussian eigenfunctions, the optimal cloners are not Gaussian. In fact,
comparing the optimal symmetric cloner yielding f1 = f2 ≈ 0.6826 with the best
Gaussian cloner (see [53,54,55] and below), limited to f1 = f2 = 2

3 , already indicates
the enhancement in fidelity by non-Gaussian cloners. A more detailed study of the
best Gaussian 1-to-2 cloners (see below) results in the dotted curve of fidelity pairs
in Fig. 3.2. Clearly, the non-Gaussian cloners perform better for every region of the
diagram. The two symmetric cloners can be found at the intersection of the dash-
dotted diagonal with the dotted curve of best Gaussian cloners and the solid curve
of optimal cloners. At the points of the singular cloners with f1, f2 = 1, the solid
curve of optimal cloners has a nonfinite slope s = ∞ and s = 0, respectively, while
the dotted curve of the best Gaussian cloners has a finite slope (see in particular (b)
in Fig. 3.2). By the arguments of Section 3.2, this implies that the optimal cloners
for f1 6= 1, f2 6= 1 do not coincide with the singular cloners. In contrast, the best
Gaussian cloners for f1 ≈ 1 and f2 ≈ 1 are determined by the respective singular
cloners; see also below. The trivial �copy-through� cloners, which yield fidelity f1 = 1
or f2 = 1, are singular in any case by Corollary 3.3.

The following subsection gives details on the approximate, numerical computation
of the largest eigenvalue of F and the corresponding eigenfunctions. To complement
the results on optimal cloners, the last two subsections briefly investigate the best
Gaussian cloner for 1-to-2 cloning with arbitrary weights and for symmetric 1-to-n
cloning. Before this, we summarize the results in
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Figure 3.2:
Achievable pairs (f1, f2) of single-copy fidelities in 1-to-2 cloning of coherent states.
The dots represent the optimal Gaussian cloner, while the solid curve indicates op-
timal non-Gaussian operations. Fidelities in the lower left quadrant are accessible
to measure-and-prepare schemes (cf. Section 3.4.3). Classical mixtures of the two�trivial� cloners fall onto the dashed line. The dash-dotted diagonal marks sym-
metric cloners, with intersection points corresponding to the best classical, best
Gaussian, and optimal cloning, respectively. The inset shows the infinite slope at
f1 = 1 for non-Gaussian cloners as opposed to the Gaussian case. For a schematic
version of this graph and further explanations see Fig. 3.1 and Section 3.2.
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3 Optimal cloners for coherent states

Proposition 3.6:
The weighted single-copy fidelities for 1-to-n cloning of coherent states are opti-
mized by non-Gaussian cloners. For 1-to-2 cloning, the optimal symmetric cloner
yields fidelities f1,2 ≈ 0.6826. The optimal cloners are nonsingular except for the
cases f1,2 = 1. The best Gaussian 1-to-2 cloners are described by rotation invari-
ant, squeezed Gaussian wave functions. They are nonsingular for weight 1

5 < λ < 4
5

and correspond to the singular cloners beyond this regime. In the symmetric case
λ = 1

2 , the fidelities are f1,2 = 2
3 . The best symmetric Gaussian 1-to-n cloners

yield fidelities fi = (2 − 1/n)−1.

Numerical optimization

In order to approximately calculate the largest eigenvalue of F in (3.29b), we nu-
merically compute the expectation value 〈φn|F |φn〉 of F in a state obtained from
the iteration φn+1 = F φn/‖F φn‖. This power iteration effectively suppresses the
parts of φ0 outside the eigenspace to the largest eigenvalue, so 〈φn|F |φn〉 approx-
imates the largest eigenvalue of F . From the resulting function φn, the single-
copy fidelities can be computed as the expectation values of the constituents of F ,
f1 = 〈φn| e−(Q2

1+Q2
2)/2 |φn〉 and f2 = 〈φn| e−(P 2

1 +P 2
2 )/2 |φn〉. Varying the weight λ

yields the points on the solid curve in Fig. 3.2.
The starting point for the power iteration is a rotation invariant Gaussian func-

tion φc(x, y) ∝ exp(−c (x2 + y2)). The squeezing value c is taken from the optimal
Gaussian cloner where available, i.e. for 0.2 < λ < 0.8 (see the discussion of op-
timal Gaussian 1-to-2 cloners below). Samples for the solid curve in Fig. 3.2 from
this regime are taken in the interval 0.25 ≤ λ ≤ 0.75 with increment 0.05 and an
iteration depth of eight steps. Alternatively, we start from the state φc resulting
from the iteration for λ = 0.79 with nine steps and scale the squeezing parameter
c by a heuristically determined factor of (− log l)9. Sampling the parameter l for
0.24 ≤ l ≤ 0.36 and 0.64 ≤ l ≤ 0.76 with increment 0.02 yields further points on the
outskirts of the curve. The fidelity pairs obtained by this method are well separated
from the points representing the singular cloners and the iteration does not tend to-
wards a singular state. Moreover, the eigenstate to the largest eigenvector is a pure
state with wave function φ(x). It is unique by the following argument: Both oper-
ators exp

(
−(Q2

1 + Q2
2)/2

)
and exp

(
−(P 2

1 + P 2
2 )/2

)
correspond to positive integral

kernels, hence replacing any wave function ψ(x) by |ψ(x)| yields larger expectation
values while preserving the norm. Assume two states ψ1(x) ≥ 0 and ψ2(x) ≥ 0
were both eigenstates to the largest eigenvalue. Then so is any linear combination
p1 ψ1(x) − p2 ψ2(x). However, since |p1 ψ1(x) − p2 ψ2(x)| yields larger expectation
values, the conclusion is ψ1(x) ≡ ψ2(x) and the eigenstate to the largest eigenvector
is unique.

Addendum: On suggestion of a referee, we complement this discussion with more
details. Note that the following paragraphs have been added after acceptance of the
thesis.

All expressions arising in the iteration φn+1 = F φn/‖F φn‖ have been ob-
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tained without approximations. Since the initial function φ0 is chosen as a
Gaussian, the action of F on φn yields again Gaussian functions and the scalar
products f1 = 〈φn| e−(Q2

1+Q
2
2)/2 |φn〉 and f2 = 〈φn| e−(P 2

1 +P 2
2 )/2 |φn〉 decompose

into sums of Gaussian integrals, which can be evaluated analytically.
As has been argued above, the highest eigenvalue of F cannot be degener-

ated. Hence the speed of convergence of 〈φn|F |φn〉 towards the largest eigen-
value of F can be determined from the distances ∆n = ‖φn−φn−1‖. Since the
distances ∆n decrease exponentially, the gain of accuracy by further iteration
can be estimated from the slope of log ∆n.

The spectrum of the fidelity operator F can be investigated in more detail
by splitting off the compact contributions. Consider F and F 2,

F = λ e−(Q2
1+Q2

2)/2 + (1 − λ) e−(P 2
1 +P 2

2 )/2 ,

F 2 = λ2 e−(Q2
1+Q

2
2) + (1 − λ)2 e−(P 2

1 +P 2
2 ) + compact part ,

where the compact part of F 2 contains contributions of the form e−Q
2

e−P
2

and e−P
2

e−Q
2

. The compact part can be eliminated by identifying all compact
operators with zero or, formally, by dividing the initial algebra into equivalence
classes whose elements differ only by a compact operator.6 Then F 2 is identified
with an operator K as

F 2 ≃ K ≡ λ2 e−(Q2
1+Q2

2) + (1 − λ)2 e−(P 2
1 +P 2

2 ) .

With a parameter z which obeys

max{λ, 1 − λ} ≤ z ≤ 1

and the relations

0 ≤ e−(Q2
1+Q

2
2) ≤ e−(Q2

1+Q
2
2)/2 ≤ 1 ,

0 ≤ e−(P 2
1 +P 2

2 ) ≤ e−(P 2
1 +P 2

2 )/2 ≤ 1 ,
we can estimate

K = λ2 e−(Q2
1+Q2

2) + (1 − λ)2 e−(P 2
1 +P 2

2 )

≤ z λ e−(Q2
1+Q

2
2)/2 + z (1 − λ) e−(P 2

1 +P 2
2 )/2 = z F .

This implies that the noncompact parts of F 2 and F obey F 2 ≤ z F and hence
the essential spectrum of F lies below max{λ, 1−λ}. In reverse, the spectrum
above max{λ, 1 − λ} consists of discrete eigenvalues of finite multiplicity. In
particular, this applies to the maximal eigenvalue of F , which guarantees the
functioning of the power iteration. ♦

6 This is equivalent to considering F 2 in the Calkin algebra.
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3 Optimal cloners for coherent states

The power iteration described above does not work well in the vicinity of the
trivial cloners with f1 = 1 or f2 = 1. Instead, we use a different family of non-
Gaussian, highly squeezed states φc and directly evaluate 〈φc|F |φc〉, varying the
squeezing parameter c. These states are described by φc(x1, x2) = c φ(c x1, c x2)
in a representation on L2(R2, dx1 dx2), such that ‖φc‖2 = ‖φ‖2. In momentum
space L2(R2, dp1 dp2), they are represented by the Fourier transformed function

φ̂c(p1, p2) = φ̂(p1/c, p2/c)/c. According to Eq. (3.29b), the single-copy fidelities for
a cloner determined by these states in the limit c→ ∞ are

f1(c) = 〈φc| e−(Q2
1+Q

2
2)/2 |φc〉

=

∫
dx1dx2 |φ(x1, x2)|2 e−(x2

1+x
2
2)/(2c

2)

→ 1 − 1

2c2

∫
dx1dx2 |φ(x1, x2)|2 (x2

1 + x2
2) ,

(3.30a)

f2(c) = 〈φ̂c| e−(P 2
1 +P 2

2 )/2 |φ̂c〉

=

∫
dp1dp2 |φ̂(p1, p2)|2 e−(p21+p

2
2)c2/2

=
2π

c2

∫
dp1dp2 |φ̂(p1, p2)|2

c2

2π
e−(p21+p22)c

2/2

→ 2π

c2
|φ̂(0, 0)|2 .

(3.30b)

This case describes the cloner in the vicinity of f1 = 1. Differentiating both
quantities with respect to c2 yields the slope s = df2/df1 = f2/(f1 − 1). In or-
der to show that s approaches −∞, we choose the family of functions generated
by φ(x1, x2) = 1/(ǫ + x2

1 + x2
2). Introducing polar coordinates, we approximately

evaluate the relevant quantities in (3.30) as

∫
dx1dx2 |φ(x1, x2)|2 (x2

1 + x2
2) ≈ 2π

R∫

0

dr r3
1

(ǫ+ r2)2

= π

ǫ+R2∫

ǫ

dt (t− ǫ)
1

t2

= π log
ǫ+R2

ǫ
+ π

(
ǫ

ǫ+R2
− 1

)
,

2π φ̂(0, 0) =

∫
dx1dx2 φ(x1, x2)

≈ 2π

R∫

0

dr
r

ǫ+ r2
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= π

R2∫

0

dt

ǫ+ t
= π log

ǫ+R2

ǫ
,

where the approximations become exact for R → ∞. Using these expressions to
compute the slope yields s → −∞ for R → ∞ and arbitrary ǫ, c. By the argument
in Section 3.2, this implies that the optimal cloners in the vicinity of f1 = 1 do not
become singular. Since the problem is symmetric with respect to interchange of f1
and f2, the result can be shown to also hold for f2 = 1 by exchanging the squeezing
parameter c for 1/c.

The solid curve in Fig. 3.2 was complemented with fidelity pairs (f1, f2) from the
above expressions sampled at R = 1000, ǫ = el, c = 100 l−4 for 0.1 ≤ l ≤ 0.9 and
0.6 ≤ l ≤ 1.4 with increments of 0.1.

Best Gaussian 1-to-2 cloners

The best Gaussian cloners for a given weighted single-copy fidelity λf1 + (1 − λ)f2
maximize the expectation value of F in (3.29b) with respect to Gaussian states
ρT . Since F is invariant under simultaneous rotation of the Qi and Pi, an averag-
ing argument similar7 to that in Section 3.3 implies that the maximizing states ρT
are also rotation invariant and thus are described by a rotation invariant Gaussian
function φc(x1, x2) ∝ exp

(
−c (x2

1 + x2
2)
)

for ρT = |φc〉〈φc| in the L2(R2, dx1 dx2)
representation. Depending on the squeezing parameter c, these cloners yield fideli-
ties (f1, f2) =

(
2/(2 + c−1), 2/(2 + c)

)
. The squeezing copt which yields an optimal

weighted fidelity λ f1 + (1 − λ) f2 can be calculated analytically from the weight λ,

copt =
2 − 4λ+ 3

√
λ (1 − λ)

5λ− 1
for 1

5 < λ < 4
5 .

The resulting fidelities are plotted as the dotted curve in Fig. 3.2. At the intersection
with the dash-dotted diagonal lies the best Gaussian symmetric cloner with λ = 1

2 ,
fidelities f1 = f2 = 2

3 and squeezing c = 1. This is the cloner already known from
[53, 54, 55] (see also its optical implementation in Section 3.5, where the state φc is
explicitly used as the idler mode of an opa).

In the regimes of λ ≥ 1
5 and λ ≤ 4

5 , the above expression yields values copt = ∞
and copt = 0, respectively. The corresponding cloners are no longer described by a
density matrix ρT = |φc〉〈φc|, but by singular, �infinitely squeezed� states [44]. This
implies that for strongly asymmetric single-copy fidelities with λ ≤ 1

5 or (1−λ) ≤ 1
5 ,

the singular cloners mapping the input state exactly into one of the output systems
are optimal. Geometrically, this result corresponds to a finite slope of the dotted
curve in Fig. 3.2 at the end points. The discussion in Section 3.2 connects this slope
to the weight λ0 up to which the singular cloners are optimal. From λ0 = 1

5 in this
case, the slope computes to s = − 1

4 .

7 However, since the symmetry group in this case is compact, the averaging does not have to
resort to an invariant mean but can use the Haar measure of the group.
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3 Optimal cloners for coherent states

Best symmetric Gaussian 1-to-n cloners

By a symmetric Gaussian cloner we understand a cloning map which is invariant
under interchanging the output modes and which is described by a Gaussian state ρT .
To investigate these cloners, we use the characteristic function t with respect to the
twisted symplectic form Σ = (1n −En)⊗ σin, confer Eq. (3.16) and its discussion in
Section 3.3.2.

For the cloner to be symmetric and Gaussian, t has to have the form

t(ξ) = exp
(
−ξT · (a1n ⊗ 12 + bEn ⊗ 12) · ξ/4

)
. (3.31)

The map is completely positive if an only if (a1n ⊗ 12 + bEn ⊗ 12) − iΣ ≥ 0.
Introducing the abbreviations

A = a12 − iσin , B = b12 + iσin and X = 1n ⊗A+En ⊗B , (3.32)

this condition is equivalent to X ≥ 0, which in turn is true if and only if 〈φ|X |φ〉 ≥ 0
for all φ =

⊕n
j=1 φj , φj ∈ C2. The evaluation of this condition is simplified by

rewriting φj = ψj + ψ0 where ψ0 =
∑

j φj/n and hence
∑

j ψj = 0:

〈φ|X |φ〉 =

n∑

j=1

〈φj |A |φj〉 +

n∑

i,j=1

〈φj |B |φi〉

=

n∑

j=1

〈ψj |A |ψj〉 + n 〈ψ0|A |ψ0〉 + n2 〈ψ0|B |ψ0〉 .

By evaluating this expression for particular ψj it is easily seen that A ≥ 0 and
nB +A ≥ 0 are necessary and sufficient conditions for X ≥ 0:

ψ1 = −ψ2 6= 0 , ψi6=1,2 = 0 ⇒ 〈φ|X |φ〉 = 2 〈ψ1|A |ψ1〉 ,
ψ0 6= 0 , ψi6=0 = 0 ⇒ 〈φ|X |φ〉 = n 〈ψ0|A |ψ0〉 + n2 〈ψ0|B |ψ0〉 .

The definitions in (3.32) imply that the above conditions on A and B are variants
of the state conditions on covariance matrices (2.22) which are fulfilled if and only
if a ≥ 1 and a+ n b ≥ n− 1.

Since the cloner is symmetric with respect to interchanging the output modes, all
single-copy fidelities are identical. They are calculated as the overlap between one
output subsystem, e.g. the first, and the fixed input state |0〉〈0| with characteristic
function χin(ξ) = exp(−ξ2/4):

fsymmetric(T ) = f1
(
T, |0〉〈0|

)
= tr

[
T
(
|0〉〈0| ⊗ 1⊗ . . .⊗ 1) |0〉〈0|]

=

∫
dξ

2π
t(ξ, 0, . . . , 0)

(
χin(ξ)

)2

=

∫
dξ

2π
e−(a+b+2) ξ2/4 =

2

a+ b+ 2
(3.33a)

≤ n

2n− 1
→ 1

2
for n→ ∞ , (3.33b)
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where the bound is imposed by the state conditions above and is reached for a = 1
and b = (n−1−a)/n. As is to be expected, this cloner performs better than the best
classical cloner (cf. Section 3.4.3) for any finite number n of clones, but approaches
the classical limit for n → ∞. The classical case can be exactly implemented by
letting a = 1 and b = 1, which is the lowest value for b independent of n. By (3.33a),
this yields fsymmetric = 1

2 . For the case n = 2, we recover from (3.33b) the fidelities
f1 = f2 = fsymmetric = 2

3 from the discussion of the best Gaussian 1-to-2 cloners
above and from [53, 54, 55]. In fact, the best symmetric Gaussian 1-to-n cloner is
described by the same state as the optimal joint fidelity cloner (see Section 3.4.1),
as can be seen by a transformation of the covariance matrix from t(ξ) in (3.31) for
the optimal a and b with Ω−1 from (3.22).

3.4.3 Classical cloning

The methods described in the previous sections can also be used to investigate the
cloning of coherent states by classical means, i.e. a protocol that relies on classical
information without any additional quantum resource (e.g. shared entanglement) to
produce output states which resemble the quantum input states. An example is a
measure-and-prepare scheme which employs the classical information obtained by
a measurement on the input to prepare an unlimited number of output systems in
an identical quantum state [64,65]. Although classical schemes are potential 1-to-∞
cloning maps, we describe them as �1-to-1� cloners, T : ccr(Ξ, σin) → ccr(Ξ, σin),
and assume that the classical information can be stored and reused to prepare an
arbitrary number of output systems in the same state. This is indeed true for the
optimal cloner, see below. The result justifies the restriction to 1-to-1 cloners, because
preparing n clones (classically) from the same input cannot yield a higher fidelity
for any of the clones. Note that classical 1-to-1 cloning is nothing but classical
teleportation, i.e. the transmission of quantum information over a classical channel
without supplemental entanglement; cf. Section 3.6.

By the arguments in Section 3.3, T is covariant and thus maps Weyl operators
to multiples of Weyl operators, T (Wξ) = t(ξ) Wξ, according to Section 3.3.2. This
definition does, however, not include the restriction that T is a classical operation.
Especially, t(ξ) is the characteristic function of a state on a classical, i.e. commutative
algebra and can be chosen as t ≡ 1, which leads to the trivial cloner T = id. But since
T corresponds to a classical operation, it has to be completely positive if composed
with time reversal8 τ . Letting ξ = (q, p), this combined map is defined on Weyl
operators by

(τ ◦ T )(Wq,p) = t(q, p) Wq,−p ,

where t is the characteristic function of a state on ccr(Ξ,Σ) for Σ(ξ, η) = 2 σin(ξ, η) =
σin(Ω ξ,Ω η) withR ∋ Ω =

√
2. Hence t(ξ) = χT (

√
2 ξ), where χT (ξ) is the character-

istic function of a state on ccr(Ξ, σ). Using the form (3.18) for the output character-

8 This implies that the map T ⊗ id is positive under partial transposition in the first tensor factor.
Applying such channels T destroys any entanglement in the input state except for ppt-bound
entanglement.
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3 Optimal cloners for coherent states

istic function, χout(ξ1, . . . , ξn) = χT (Ω ξ)χin(
∑

i ξi), we can compute the fidelity of
such cloners. Since there is only one output subsystem, the distinction between single-
copy and joint fidelity is not necessary and we write fclassical(T ) = fjoint(T ) = fi(T ).
For covariant T , we can evaluate the fidelity for the fixed input state |0〉〈0|:

fclassical(T ) = fclassical
(
T, |0〉〈0|

)
= tr

[
T
(
|0〉〈0|

)
|0〉〈0|

]

=

∫
dξ

2π
χT
(√

2ξ
) (
χin(ξ)

)2
=

1

2

∫
dξ

2π
χT (ξ)χin(ξ)

= 1
2 tr
[
ρT |0〉〈0|

]
≤ 1

2 , (3.34)

where χin(ξ) = exp(−ξ2/4) is the characteristic function of the input state |0〉〈0|.
This bound is tight, which has been proven in [63]. However, for completeness and
further investigation we provide

Lemma 3.7:
The fidelity bound (3.34), fclassical(T ) ≤ 1

2 , can be reached by a heterodyne mea-
surement and preparation of coherent states according to the measurement result.
Moreover, this scheme can be extended to a 1-to-n cloner which yields the same
fidelity and is Gaussian as well as covariant.

Proof: A heterodyne measurement is modeled as a povm9
{
|µ〉〈µ|/(2π)

}
based on

coherent states µ ∈ S
(
ccr(Ξin, σin)

)
. The probability pα(µ) of finding the measure-

ment outcome µ for a coherent input state α ∈ S
(
ccr(Ξin, σin)

)
is

pα(µ) = tr
[
|α〉〈α| |µ〉〈µ|/(2π)

]
=

1

2π

∫
dξ

2π
χα(ξ)χµ(ξ)

=
1

2π

∫
dξ

2π
exp
(
−ξ2/2 + iξ

T · (µ− α)
)

= e−(µ−α)2/2/(2π) ,

where χα(ξ) = exp(−ξ2/2 + iξT · α) is the characteristic function of the coherent
state α (likewise for µ) and the bar denotes complex conjugation. In order to produce
n clones of the input state, the output ρout is a classical mixture of n-fold tensor
products |µ〉〈µ|⊗n of coherent states µ, weighted with the probabilities pα(µ):

ρout =

∫
dµ pα(µ) |µ〉〈µ|⊗n,

resulting in a characteristic function

χout(ξ) = tr
[
ρout Wξ

]
=

∫
dµ pα(µ) tr

[
|µ〉〈µ|⊗n Wξ

]

=
1

2π

∫
dµ exp

(
−(µ− α)2/2 − ξ2/4 + i

∑n
j=1 ξ

T

j · µ
)

= exp
(
−ξ2/4 + (

∑n
j=1 ξj)

2/2 + i
∑n
j=1 ξ

T

j · α
)

= exp
(
−ξT · (1n ⊗ 12 + 2En ⊗ 12) · ξ/4 + i

∑n
j=1 ξ

T

j · α
)
, (3.35)

9 A positive-operator-valued measurement (povm) [1], also called generalized measurement, is a
discrete or continuous set of positive operators {Mj} which resolve unity, i.e.

R

dj Mj = 1 where
the symbol

R

dj denotes a discrete summation or a continuous integration.
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where En is the matrix fully occupied with 1, defined for Eq. (3.19). Decomposing
χout into the input part χin and the channel part t according to Eq. (3.16) yields
t(ξ) = exp

(
−ξT · (1n ⊗ 12 + En ⊗ 12) · ξ/4

)
. This is the characteristic function

(3.31) of the best symmetric Gaussian 1-to-n cloner considered in Section 3.4.2 for
the classical case, i.e. for a = b = 1. This cloner indeed yields equal single-copy
fidelities of fi = 1

2 , cf. Eq. (3.33a). It is covariant by design, cf. Section 3.3.2, and
also manifestly, because the output state inherits the displacement vector α from
the input state, see (3.35). �

Remark: For a single clone, e.g. the first one, the output characteristic function
χout(ξ1, 0, . . . , 0) = exp

(
−ξ21/4 + ξ21/2 + iξT

1 · α
)

corresponds to the input coherent
state |α〉〈α| plus two units of vacuum noise.

The characterization of classical 1-to-1 cloners or classical teleportation by time
reversal extends to cloners which are supplemented by ppt-bound entangled states
[45]:

Lemma 3.8:
Every classical teleportation protocol assisted by a ppt-bound entangled state ω
corresponds to a channel T which is completely positive under transposition of the
input density operator in the Schrödinger picture. That is, if Θ denotes matrix
transposition, then T∗ ◦ Θ is completely positive.

Remark: Note that in Schrödinger representation, time reversal of observables cor-
responds to transposition of the Hermitian density operator, cf. [15].

Proof: Denote the Hilbert space of the input state ρ by HI and the Hilbert space of
the bipartite, ppt-entangled state ω by HA⊗HB. Since the teleportation protocol is
classical, the corresponding channel T∗ in the Schrödinger picture can be represented
by a set of Kraus operators {Mi⊗Ri} in product form, cf. Section 2.3. The operators
Mi act on the input plus one part of the entangled state, i.e. on HI ⊗HA, and play
the role of the �measurement�. The Ri act on HB and turn the second part of ω
into the desired output state, thus corresponding to the �repreparation�. Hence T∗
is represented as

T∗(ρ) =
∑

i

trI,A
[
(Mi ⊗Ri) (ρ⊗ ω) (Mi ⊗Ri)

∗] ,

where trI,A denotes the partial trace over subsystems I and A. Since the trace is
invariant under transposition of its argument, we can transpose the above expression
with respect to systems I and A to obtain for T∗ ◦ Θ:

(T∗ ◦ Θ)(ρ) = T∗(ρ
T
) =

∑

i

trI,A
[
(M i ⊗Ri) (ρ⊗ ω

TA) (M i ⊗Ri)
∗] ,

where ωTA denotes the partial transposition of ω with respect to system A. If ω has
positive partial transpose, i.e. if ωTA ≥ 0, then T∗ ◦Θ is completely positive, since it
is implemented by a set of Kraus operators {M i ⊗Ri}. �
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3 Optimal cloners for coherent states

By virtue of this lemma, the fidelity bound for classical cloning also applies to
cloners which are not purely classical but make use of supplemental ppt-bound
entangled states to link measurement and preparation. However, assisting the pro-
cess with non-ppt entanglement can result in substantially higher fidelities, as this
operation describes the teleportation of coherent states [58, 59]. Our derivation of
the limit (3.34) thus proves and extends a success criterion for continuous-variable
teleportation [63, 64], cf. Section 3.6. As the result of this section, we obtain

Proposition 3.9:
Classical cloning of coherent states realized by measuring the input state and

repreparing output states depending on the results is limited to fidelities f ≤ 1
2 .

Supplemental ppt-bound entangled states do not improve this limit. The optimal
cloner is Gaussian and covariant.

For the case of an unassisted measure-and-prepare scheme, an independent proof
has been given in [46]. In Fig. 3.2, the achievable fidelities for classical cloners lie in
the lower left quadrant with f1 ≤ 1

2 and f2 ≤ 1
2 .

3.4.4 Bosonic output

Symmetric cloners yield the same single-copy fidelity for each clone. It is an obvious
question if this implies further symmetries for the output state of the cloner. In
particular, the output might lie in the bosonic sector, i.e. be invariant under the
interchange of two clones. Note that this is not necessarily true since different states
for individual clones could lead to the same single-copy fidelity. We show below
that the output of symmetric covariant cloners belongs to the bosonic sector if the
cloner is described by a bosonic state. Moreover, this condition is met by all optimal

symmetric cloners considered in this chapter (cf. Proposition 3.11 below).
To formalize the statement, we introduce the flip operator F(i,j) which acts on

vectors |ψ〉 ∈ H⊗n by interchanging tensor factors i and j:F(i,j) |ψ1〉 ⊗ · · · ⊗ |ψi〉 ⊗ · · · ⊗ |ψj〉 ⊗ · · · ⊗ |ψn〉
= |ψ1〉 ⊗ · · · ⊗ |ψj〉 ⊗ · · · ⊗ |ψi〉 ⊗ · · · ⊗ |ψn〉 ,

where i, j ∈ {1, 2, . . . , n}. For i = j we define F(i,i) = 1. Since
(F(i,j)

)2
= 1, the

eigenvalues of F(i,j) are +1 and −1. A vector |ψ+〉 which belongs to the eigenspace
of +1 for all F(i,j) describes a state which is invariant under interchange of subsys-
tems, i.e. a bosonic state. Similarly, the intersection of all eigenspaces of −1 for theF(i,j) with i 6= j contains the fermionic states.10 With this, we state the claim as

10 The intersections of all eigenspaces to eigenvalue +1 or to −1 of the flip operators are called
the bosonic or fermionic �sectors�, respectively.
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3.4 Optimization

Lemma 3.10:
The output states ρout of symmetric covariant 1-to-n cloners for continuous-
variable states lie in the bosonic sector, i.e. the output states have expectation
value +1 with every flip operator, if and only if the cloner is described by a bosonic
state ρT in (3.18). In particular,

tr
[
ρoutF(i,j)

]
= tr

[
ρT F(i,j)

]
for i, j ∈ {1, 2, . . . , n} .

Proof: To simplify notation, we understand ρ ≡ ρout as the output state of a 1-to-n
cloner described by a state ρT . Since we only consider deterministic cloners, the
output states ρ are normalized anyway, tr[ρ] = 1, and the proof can be restricted
to flip operators F(i,j) with i 6= j. To shorten expressions, we drop the phase space
arguments of modes which are not considered and indicate the remaining modes by
upper indices, e.g. for a characteristic function χ(ξ):

χ(i,j)(ξ, η) = χ(0, . . . , 0, ξ︸ ︷︷ ︸
i

, 0, . . . , 0, η︸ ︷︷ ︸
j−i

, 0, . . . , 0) .

The same convention is used for other functions as well as Weyl operators and in a
similar way for a single mode.

We start by discussing properties of F = F(1,2) for two modes and generalize later.
In order to transport the action of F to phase space, note thatFW(ξ, η) = W(η, ξ)F . (3.36)

We introduce the parity operator P(j), which acts on the field operators of mode j
by P(j) RkP(j) = −Rk for k = 2j − 1 and k = 2j in standard ordering of ~R. On
Weyl operators, P(j) induces a change of sign for the respective argument,P(2) W(ξ, η) = W(ξ,−η)P(2).

Under a symplectic transformation S which maps two modes to symmetric and
antisymmetric combinations according to

S : (ξ, η) 7→
(
ξ+η√

2
, ξ−η√

2

)
,

U∗
S FUS acts as 1(1) ⊗P(2):

U∗
S FW(ξ, η)US = U∗

S W(η, ξ)FUS
= U∗

S FUS W
(
ξ+η√

2
, ξ−η√

2

)
= W

(
η+ξ√

2
, η−ξ√

2

)
U∗
S FUS .

Hence the expectation value of F(i,j) can be written as an expectation value of1(i) ⊗P(j),

tr
[
ρF(i,j)

]
= tr

[
ρ′ 1(i) ⊗P(j)

]
, where ρ′ = U∗

S(i,j) ρUS(i,j) (3.37)
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3 Optimal cloners for coherent states

and S(i,j) acts on modes i and j.
Recall that by (2.15) the expectation value of P in ρ is obtained from the Wigner

function, which in turn by (2.14) is a classical Fourier transform of χρ:

tr[ρP] = πf Wρ(0) ,

Wρ(ξ) = (2π)−2f

∫
dη eiξ

T·σ·η χρ(η) .

Hence

tr
[
ρ′ 1(i) ⊗P(j)

]
= (2π)−2f

∫
dη χ

(i,j)
ρ′ (0, η)

= (2π)−2f

∫
dη χ(i,j)

ρ

(
η/

√
2,−η/

√
2
)
,

(3.38)

where

χ
(i,j)
ρ′ (0, η) = tr

[
ρ′ W(i,j)(0, η)

]
= tr

[
ρ W(i,j)

(
η+ξ√

2
, η−ξ√

2

)]
= χ(i,j)

ρ

(
η+ξ√

2
, η−ξ√

2

)
.

Since ρ is the output state of a cloner determined by a state ρT , its characteris-
tic function can be decomposed into χρ(ξ) = t(ξ)χin(

∑
i ξi) = χT (Ω ξ)χin(

∑
i ξi)

according to (3.16) and (3.17). Continuing (3.38), this yields

tr
[
ρ′ 1(i) ⊗P(j)

]
= (2π)−2f

∫
dη t(i,j)

(
η/

√
2,−η/

√
2
)
χin

(
η/

√
2 − η/

√
2
)

= (2π)−2f

∫
dη χ

(i,j)
T

(
η/

√
2,−η/

√
2
)
. (3.39)

Note that χin(0) = 1 and furthermore, Ω−1 from (3.22) has been applied to the
argument of t together with a suitable substitution for η. Traveling back along the
lines of (3.39), (3.38) and (3.37) for ρ and ρT , we get

tr
[
ρF(i,j)

]
= tr

[
ρ′ 1(i) ⊗P(j)

]
= tr

[
ρ′T 1(i) ⊗P(j)

]
= tr

[
ρT F(i,j)

]
. �

We now prove that all optimized symmetric cloners which were discussed in this
chapter are described by a bosonic state ρT . Hence their output states are bosonic,
too. Starting with the optimal joint fidelity cloner from Section 3.4.1, note that
the fidelity operator Fjoint commutes with all flip operators F(i,j): The flip acts
by interchanging the phase space arguments of modes i and j, see (3.36), and the
Gaussian characteristic function exp(−ξT ·Γ · ξ/4) describing Fjoint is invariant with
respect to interchange of modes since its covariance matrix Γ from (3.26) is invariant.
Hence the eigenvectors of Fjoint are eigenvectors to all flip operators F(i,j). But since
the eigenstate to the maximal eigenvalue is pure and unique (cf. Section 3.4.1), it
must be an eigenvector with eigenvalue +1 for all flips and thus lies in the bosonic
sector.
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3.5 Optical implementation

The weighted, symmetric single-copy fidelity is represented by an operator F =∑
i Fi, where Fi = exp(−P 2

i /2−
∑

i6=j Q
2
j/2) from (3.28). This operator is invariant

under permutations of the modes and thus commutes with all flip operators F(i,j).
Just as for the joint fidelity, its eigenvectors are eigenvectors to the flip operators.
For the optimal symmetric 1-to-2 cloner, the eigenvector to the maximal eigenvalue
is unique by the arguments given in Section 3.4.2 (see discussion of the numerical
optimization). Hence it is an eigenvector with eigenvalue +1 for all flip operators
and thus bosonic.

Symmetric Gaussian 1-to-n cloners are described by a state ρT with characteristic
function χT (Ω ξ) = exp

(
−ξT · (a1n ⊗ 12 + bEn ⊗ 12) · ξ/4

)
by (3.31). Applying

the transformation Ω−1 from (3.22) to the covariance matrix shows that the state
commutes with all permutations of modes. By the above arguments, ρT as well as the
output of the cloner is thus bosonic for all a and b. In particular, this is true for the
best symmetric Gaussian 1-to-n cloner with a = 1, b = (n−1−a)/n (cf. Section 3.4.2)
and the best classical cloner with a = 1, b = 1 (cf. Section 3.4.3). These results are
summarized in

Proposition 3.11:
The optimal joint fidelity cloner, the optimal 1-to-2 cloner, the best symmetric
Gaussian 1-to-n cloners and the best classical cloners are described by a bosonic
state ρT in (3.18) and thus yield bosonic output states by Lemma 3.10.

3.5 Optical implementation

An implementation of the optimal 1-to-2 cloners for single-copy and joint fidelity was
briefly described by Cerf and Navez in [a]. A more detailed discussion is provided
in e.g. [47,48]. For reference and completeness, we sketch their ideas in this section.
Note that optical implementations of the best symmetric Gaussian cloners have been
described in [49] as well as in [50], where also the best asymmetric Gaussian 1-to-2
cloner is discussed.

The implementation is based on an optical parametric amplifier (opa). In the
setup depicted in Fig. 3.3 (taken from [a], see also [47]), it effectively acts as a linear
amplifier [52] of intensity gain 2 for the signal in ain, mixing in one part of the state
ψ as the idler in b1. This results in a signal output described by the annihilation
operator a′in =

√
2 ain + b∗1 (not indicated in the picture). The idler output, given by

b′1 =
√

2 b1 + a∗in, is discarded. The signal is then mixed with the other part of ψ in
b2 at the beam splitter bs. Its output constitutes the two clones in modes a1 and a2.
The state ψ characterizes the cloner and is equivalent to ρT in Eq. (3.17) and (3.23).

In the simplest setting, ψ is the vacuum state. This corresponds to the best sym-
metric Gaussian cloner [49, 50]. For the general case, the input–output relations of
the system yield as annihilation operators for the output modes

a1 = ain + (b∗1 + b2)/
√

2 ,

a2 = ain + (b∗1 − b2)/
√

2 .
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OPA
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Figure 3.3:
Optical scheme of a displacement-covariant cloner. The input mode ain is injected
on the signal mode of an optical parametric amplifier (opa) of gain 2, the idler
mode being denoted as b1. After amplification, the signal mode is divided at a
balanced beam splitter (bs), resulting in two clones in modes a1 and a2. The
second input mode of the beam splitter is noted b2. If both b1 and b2 are initially in
the vacuum state, the corresponding cloner is the Gaussian cloner of [53,54,55]. In
contrast, if we inject a specific two-mode state |ψ〉 into b1 and b2, we can generate
the whole set of displacement-covariant cloners, in particular the non-Gaussian
optimal one. Picture and caption are taken from [a].

If the input state is the vacuum state |0〉〈0|, the single-copy fidelities are the expec-
tation values of the operators

F1 = e−(Q1+Q2)2/4−(P1−P2)
2/4 ,

F2 = e−(Q1−Q2)2/4−(P1−P2)2/4

in the state |ψ〉〈ψ|. These operators differ from those in Eq. (3.29a) only by the
symplectic transformation which describes the action of a beam splitter, i.e. by the
mapping a1 7→ (a1 + a2)/

√
2 and a2 7→ (a1 − a2)/

√
2, resulting in

Q1 7→ (Q1 +Q2)/
√

2 , P1 7→ (P1 − P2)/
√

2 ,

Q2 7→ (Q1 −Q2)/
√

2 , P2 7→ (P1 + P2)/
√

2 .

Cerf and Navez [a] argue that it is not necessary to implement the exact state
ρT = |ψ〉〈ψ| to get substantial improvements over the fidelities of a Gaussian cloner.
Already an approximation of the optimal state by a linear combination of a small
number of few-photon states yields fidelities which clearly exceed the Gaussian limit.
For example, the exact state for the symmetric cloner,

|ψ〉 =

∞∑

n=0

cn |2n〉|2n〉 , (3.40)
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can be truncated at n = 2 with f1 = f2 ≈ 0.6801 compared to f1 = f2 = 2
3 for the

best Gaussian cloner, which is obtained for n = 0.

While this scheme is conceptually clear, it relies on a nonlinear interaction in
the opa, which poses difficulties in the experimental realization. Recently, Leuchs
et al. [56] have proposed a scheme to realize the best symmetric Gaussian cloner
based on linear quantum optical elements alone, namely beam splitters and homo-
dyne detection. Their experiment implementing this scheme for 1-to-2 cloning was
reported to yield estimated fidelities of 0.643 ± 0.01 and 0.652 ± 0.01 for the two
clones. An implementation of the optimal cloner has not yet been reported in the
literature.

3.6 Teleportation criteria

The limits on cloning of coherent states constitute at the same time criteria which
allow to ascertain the successful conduction of a continuous-variable teleportation ex-
periment. In quantum information theory, teleportation is the task of transmitting an
arbitrary, unknown quantum state by sending only classical information [57,58,59].
This is not possible without the help of entangled states shared between sender and
receiver which provide sufficiently strong correlations. The process consists of three
steps, cf. Fig. 3.4: The sender, conventionally named Alice, performs a measurement
on the input system ρin and her part of the shared entangled resource ω. She com-
municates the (classical) outcome c to the receiver, called Bob. Depending on this
result, he applies a suitable unitary transformation on his part of the entangled
state and ideally gets back the original input state in ρout. Note that the measure-
ment �destroys� the quantum information in the input state, i.e. the state of the
joint system on Alice’s side after the measurement does not convey any information
about the input state anymore. For continuous-variable systems, a common proto-
col [59,60] uses a two-mode squeezed state as the entanglement resource. It consists
of measuring two commuting quadrature components of the joint system at Alice’s
side and applying the outcome as a phase space displacement on Bob’s system.

The fidelity of the output with respect to the original input state is determined
by the �quality� of the entanglement, i.e. its amount quantified by a suitable entan-
glement measure.11 In the finite-dimensional case, perfect teleportation is in princi-
ple possible with maximally entangled states as a resource. For continuous-variable
systems, the output only approximately resembles the input state, because a maxi-
mally entangled state does not exist in this case.12 If entanglement were not required,
the classical information could be stored and used to replicate the input state, i.e.
clone it. Reversing this argument shows that if the fidelity of the output state is
higher than the limit of classical cloning in Eq. (3.34), the process must indeed have
used entanglement. This turns the classical cloning limit into a success criterion for

11 The relevant entanglement measure is the entanglement of formation; see [62] for the relation
between fidelity and entanglement in continuous-variable teleportation.

12 Such states could be abstractly realized as infinitely entangled states [44]. However, these are
not normal states, i.e. they cannot be described by a density matrix.
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ω

Alice Bob

ρin ρout

c

Figure 3.4:
Teleportation scheme: Alice and Bob share a bipartite entangled state ω. Alice
performs a measurement on the input state ρin and her part of ω. She sends the
classical outcome c to Bob, who adjusts his part of ω accordingly. This yields the
output ρout.

continuous-variable teleportation. Until recently, the value of this bound was only as-
sumed to be 1

2 (though various papers provided ample evidence [60,63,64,65,66]). By
the calculations in Section 3.4.3, published in [a], we could ascertain this value and
thus prove the criterion. Moreover, since the derivation included procedures assisted
by ppt-bound entanglement, we could even extend the criterion to this case:

Corollary 3.12:
A process that replicates a single input coherent state by measuring the input,
forwarding classical information only and repreparing output states with a fidelity
exceeding 1

2 must have necessarily been assisted by non-ppt entanglement.

In [46] it has been proven in a more general context that the bound fclassical ≤ 1
2

is valid and tight for classical measure-and-prepare schemes where the fidelity is
averaged over a flat distribution of input coherent states. For the standard telepor-
tation protocol [59] involving only measurements of the quadrature components, i.e.
the field operators Qi and Pi, the findings of [60] imply that the maximum fidelity
for teleportation of coherent states without supplemental entanglement is 1

2 . Our
above result is more general as it does not make additional assumptions about the
measure-and-prepare scheme and, moreover, distinguishes between ppt and non-ppt
entanglement. Note, however, that teleportation of coherent states with the standard
protocol can be described by a local-realistic model, cf. [60].

Another connection between cloning and teleportation concerns the distribution
of quantum information. It is not necessarily clear that the output state of the
teleportation process is the best remaining approximation to the input state. In
fact, if the fidelity of the teleportation output is low, the input state might have
not been used efficiently and still retain most of the information. However, if the
fidelity of the output with respect to the original input state exceeds the single-copy
fidelity of the optimal (non-Gaussian) 1-to-2 cloner, then the output system must
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carry the best approximation to the input state since there can be no better clone
in any other subsystem. This constitutes the second type of success criterion for
continuous-variable teleportation:

Corollary 3.13:
If the fidelity of a teleported coherent state with respect to the original input state
exceeds a value of f ≈ 0.6826, the output system is the best remaining clone of
the input state.

Of course, by Corollary 3.12, this teleportation process must have been assisted by
non-ppt entanglement. A similar result has been obtained in [65]; while it is based
on the same argument, it considers only the best Gaussian cloner with fidelity 2

3 .
Until recently, experimental teleportation of coherent states reached fidelities just

below 2
3 , the fidelity of the best Gaussian 1-to-2 cloner. For example, the seminal

experiment of Furusawa et al. [66] yielded fidelities of 0.58 ± 0.02. Later, Bowen
et al. [67] reached fidelities of 0.64 ± 0.02 and Zhang et al. [68] reported fidelities
of 0.61 ± 0.02. Only recently, Furusawa et al. [69] achieved a fidelity of 0.70 ± 0.02,
surpassing both the Gaussian and the optimal limit.
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4 Gaussian quantum cellular automata

This chapter presents an approach to characterize a quantum version of cellular
automata which is based on continuous-variable systems and equipped with a quasi-
free dynamics. For the general concept of quantum cellular automata we follow the
lines of Schumacher and Werner [70].

A cellular automaton (ca) is a discrete, regular, dynamical system with syn-
chronous, uniform time evolution generated by a local interaction. The dynamics
acts on an infinite lattice, exhibits translational symmetry and has finite propaga-
tion speed. These characteristics render them a useful tool for the simulation of
dynamical systems of regularly arranged, discrete, identical constituents. Within
physics classical cas have been employed to study problems in particular from sta-
tistical mechanics, e.g. Ising spin dynamics, point particle gases, percolation or an-
nealing [71]. Other problems include the dynamics of bacteria colony growth, forest
fires, sand piles or road traffic. Moreover, in classical information theory cas are
a model of universal computation, since a Turing machine can be simulated by
a ca. And finally, cas can provide diversion, e.g. in the form of John Conway’s�Game of Life� [72]. Due to these applications the concept of a quantum cellular
automaton (qca), i.e. a quantum system with the above characteristics, seems to
promise exciting possibilities. In fact, such a quantum extension of cas has already
been considered by R. Feynman in his paper on the power of quantum computation
from 1982 [73]. Different notions of qcas were studied in the literature and found
to be capable of universal quantum computation [74, 75, 76, 77, 78]. And recently,
Vollbrecht et al. [79,80] have introduced a scheme for reversible, universal quantum
computing in translationally invariant systems which proved to be a qca.

While the development of a universal quantum computer is perhaps the most am-
bitious aim of quantum information science, it is at the same time possibly the most
difficult undertaking (especially for interesting input problem size). However, spe-
cific computational tasks might be more easy to accomplish but nevertheless very
useful from the point of view of general physics, e.g. the simulation of quantum
systems. Since Hilbert space dimension grows exponentially with the number of con-
stituents, classical computers face serious performance problems even for moderate
system sizes. This obstacle could be overcome by quantum computers which con-
vert the scaling into a feature. Even the simulation of quantum toy models with
moderate system size could provide valuable insight into real-world systems. The in-
herent translational symmetry would make qcas especially suited for the simulation
of models in solid state physics.

In addition, the concept of a qca might prove useful for the realization of quan-
tum computing in optical lattices [81] and arrays of microtraps [82]. The experimen-
tal technology of these systems is quite highly developed and they are promising
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candidates for the successful realization of a quantum computing device; in par-
ticular, they can be scaled to considerable systems sizes. However, most quantum
computing concepts today require the individual addressing of specific constituents,
e.g. qubits within the system, which is difficult in these approaches. It is much more
feasible to change external parameters for the whole system, which is exactly a char-
acteristic of a ca. As the essence of these arguments, we believe that quantum cellular
automata are a promising concept which should not be neglected in the process of
designing and developing systems capable of performing quantum computation.

We will in the following deal with Gaussian quantum cellular automata, i.e. a
continuous-variable quantum system with the above characteristics of a ca. As a
motivation to their study, consider the application of simulating a one-dimensional
quantum random walk [83] on a qca. In the most simple case of a random walk, a
single �particle� or excitation moves from a starting cell to one of the neighboring
sites. The direction of each step is determined randomly, e.g. by �flipping a coin�
in the one-dimensional case. This dynamics is perfectly suited for implementation
on a ca since the particle moves in steps within a finite neighborhood. From many
repetitions of the walk with identical initial conditions, one obtains a distribution of
final positions for the particle. In a quantum random walk, the states of the particle
and the coin can be coherent superpositions. A unitary evolution maps the state
of the coin onto the direction of the particle and moves it to the neighboring cell
on the left or right accordingly. The outcome of a single run over several steps is a
distribution of final positions of the particle in dependence of the initial conditions
and the number of steps. In a realization on a qca, each cell could correspond to the
combination of a �slot� to host the particle and a �coin� to flip for the direction of
the next step. If a particle is present in the respective cell, the dynamics of the qca

unitarily maps the state of the coin onto the direction of the particle and moves it
to the neighboring cell on the left or right accordingly. Running the qca from an
initial state with one particle and the coins on every site in a coherent superposition
of �left� and �right� then results in a quantum random walk on the line.

An obvious extension of this model to quantum diffusion is to populate the lat-
tice with additional particles. However, in this case it is necessary to specify the
treatment of collisions between particles. One possible solution limits the number of
particles per site to a maximum of one particle moving left and one moving right.
This corresponds to a �hard core interaction�, i.e. particles are not allowed to share
sites but bounce off each other upon collision. Another solution allows for an arbi-
trary number of particles per site by second quantization of the random walk. This
attaches to every cell a Fock space equipped with an occupation number state basis.
Equivalently, every cell can be described as a quantum harmonic oscillator in an
excited state according to the number of particles occupying the cell. The movement
of particles over the lattice corresponds to the exchange of excitations between the
oscillators. Together with a dynamics which can be implemented or approximated by
a quadratic Hamiltonian, this bosonic system naturally gives rise to Gaussian qcas,
i.e. continuous-variable qcas which map Gaussian states onto Gaussian states in
the Schrödinger picture and which start from a Gaussian initial state. Examples of
Gaussian qcas include the free evolution, the �left-� and �right-shifter�, a contin-
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ued squeezing (see below) and symplectic rotations. An experimental realization of
a Gaussian qca might use the vibrational degrees of freedom of atoms in an optical
lattice.

Our principle aim in this chapter is to discover and access irreversibility in qcas for
the case of Gaussian systems. We prove that conceptually simple reversible Gaussian
qcas exhibit signs of irreversibility. Moreover, we examine the conceptual problems
in the definition of irreversible qcas, which become especially clear in the Gaussian
case. In the long run, such qcas could be employed to simulate ground states of other
systems; by tuning global parameters of their dynamics, they could robustly drive a
range of initial states into a limit state corresponding to a different Hamiltonian. We
set out with a brief discussion of the definition and properties of a quantum analog
of (deterministic) cas along the lines of [70], including the problem of quantizing
them in the first place. The remaining part of this chapter is devoted to Gaussian
quantum cellular automata and the special instance of a one-dimensional chain of
harmonic oscillators complete with Gaussian dynamics and Gaussian initial states.
We present methods to deal with an infinite number of modes and investigate this
system by decomposition into plane-wave modes. As a result, we show that the
system exhibits properties typically related to irreversibility: Although the system
evolves from a pure, uncorrelated state under a reversible dynamics, the correlation
function describing the state converges. Moreover, this implies convergence in trace
norm of the density operators describing the state for finite regions of the lattice.
The reflection symmetric limit states are thermal equilibrium states determined by
the correlation function of a pure state and a modewise temperature parameter. The
last section examines the conceptual problems in the definition of irreversible qcas,
even in the Gaussian case. In particular, we present different concepts of localization
and their impact on the definition of qcas.

The contents of this chapter have in part been published in [b].

4.1 Quantum cellular automata

This section introduces the concept of qcas formally and briefly presents some
general results. In both we closely follow Schumacher and Werner [70].

Repeating the above characterization, a cellular automaton (ca) is a discrete, reg-
ular system with uniform dynamics arising from a local interaction. Abstractly, it is
realized as an infinite lattice of identical, finite systems, where each cell is coupled to
the sites in its neighborhood by a uniform dynamics called local transition rule. The
neighboring cells are determined from a uniform, finite neighborhood scheme relative
to any cell. While this scheme can be arbitrarily complex, it is mostly defined in the
usual sense as the nearest or next-nearest neighbors of a cell. The time evolution
of the whole system, the global rule, is discrete and synchronous. These properties
imply a finite propagation speed. While a qca is essentially a ca where the cells are
(identical) quantum systems, there are some points to clarify.
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4 Gaussian quantum cellular automata

Since our notion of a quantum cellular automaton is based on an infinite lattice,
any attempt to define a qca has to deal with the infinite number of quantum systems
at the lattice sites. As discussed in [70], several previous definitions found in the
literature suffer from conceptual shortcomings which prevent a successful application
to infinite lattice systems. In particular, the notion of localization as implemented
by states on the infinite lattice is problematic. For example, the basic operation of
applying the same unitary transformation to each cell separately would require the
multiplication of an infinite number of phase factors, which does not allow for a
well-defined unitary operator describing the global state change.

In order to circumvent these problems, we work in the Heisenberg picture and
define the dynamics of observables. This approach was motivated by methods used
in statistical mechanics of quantum spin systems, where infinite arrays of simple
quantum systems play a prominent role [70]. In contrast to a notion of localized
states, localized observables are clearly defined: they require a measurement of a
finite collection of cells only. If the lattice sites are labeled by s-tuples of integers,
where s is the lattice dimension, we denote by Ax the algebra of observables which
are localized on the single lattice site x ∈ Zs. This algebra could be an algebra of
d× d matrices for a spin system or a ccr algebra for a continuous-variable system.
The set of all observables which are localized on a finite region Λ ⊂ Zs of the lattice
constitutes the algebra A(Λ) =

⊗
x∈Λ Ax associated with this region. For two regions

Λ1 ⊂ Λ2, we take A(Λ1) as a subalgebra of A(Λ2) by tensoring with unit operators
as necessary, i.e. on Λ2 \ Λ1. This allows us to properly define the product of two
operators A1A2 from different local algebras A(Λ1) and A(Λ2), respectively, as the
corresponding element from A(Λ1 ∪ Λ2). Since this procedure does not affect the
norm, all local algebras are normed and their completion is the quasi-local algebra
[84], denoted by A(Zs).

This inclusion of algebras is especially instructive in connection with the neigh-
borhood. If N ⊂ Zs is defined as the finite neighborhood of the cell x = 0, we can
install it as the uniform neighborhood scheme and obtain the neighborhood of any
cell x as the set x + N ≡ {x + n | n ∈ N}. Accordingly, the neighborhood of a
finite region Λ ⊂ Zs of the lattice is the set Λ + N ≡ {x + n | x ∈ Λ, n ∈ N}.
The observables on any finite region Λ are contained in the algebra on the region
enlarged by its neighborhood, A(Λ) ⊂ A(Λ + N ), if and only if Λ ⊂ Λ + N . This
is only true if the neighborhood scheme explicitly contains the origin. While this
need not necessarily be the case, we can formally enlarge the neighborhood without
actually considering the additional elements in the interaction. Hence we can always
assume 0 ∈ N . By the same argument, we can w.o.l.g. assume the neighborhood N
to be simply connected. Note that by the above definition the �pointwise difference�
of two sets is in general not empty, e.g. N −N = {x− y | x, y ∈ N}.

The dynamics of the system is implemented as linear transformations on the ob-
servable algebras. In particular, one time step in the global evolution of the qca

is a transformation T on the observable algebra A(Zs) of the infinite system. To
describe a proper time evolution, T has to be completely positive. Since we only
consider deterministic dynamics, it has also to be unital, T (1) = 1, i.e. it has to
be a quantum channel. In addition, uniformity of the whole system requires that T
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is translationally invariant. It has thus to commute with all lattice translations τx,
where x ∈ Zs and τx is the isomorphism from Ay to Ay+x. Hence we have to require
that T (τxA) = τx T (A). If T is to arise from a local interaction coupling a cell to
its neighborhood, it has to obey a suitable locality condition: For any observable A
localized on a finite region Λ, the observable T (A) obtained after one time step has
to be localized in Λ + N :

T
(
A(Λ)

)
⊂ A(Λ + N ). (4.1)

While T implements the global rule, i.e. one time step of the whole system, the local
rule as the time evolution of a single cell x is obtained as the restriction Tx of T to
this cell. Due to the translational invariance, it suffices to consider the origin; hence
given T , the local rule is determined as T0 : A0 → A(N ). A qca is called reversible if
the global rule T has an inverse which also is a quantum channel. This is equivalent
to T being an automorphism of the quasi-local algebra. The above considerations
give rise to the following definition of a qca:

Definition 4.1:
A (deterministic) quantum cellular automaton (qca) on the lattice Zs with finite
neighborhood scheme N ⊂ Zs, where 0 ∈ N , is a quantum channel T : A(Zs) →
A(Zs) on the quasi-local algebra which is translationally invariant and satisfies
the locality condition T

(
A(Λ)

)
⊂ A(Λ + N ) for every finite region Λ ⊂ Zs. A

qca is called reversible if T is an automorphism of A(Zs). While T constitutes
the global rule, the local rule is its restriction to a single cell, T0 : A0 → A(N ).

This definition essentially complies with the respective definition from [70]. How-
ever, we do not restrict it to reversible qcas. Moreover, a qca can be proven to
be reversible if T is only a homomorphism.1 For an extended discussion, including
qcas on finite lattices, see [70]. The elements of this definition correspond to the
characteristics of a ca given at the beginning of this section as follows:

⊲ lattice of discrete cells: an infinite lattice labeled by x ∈ Zs with local observ-
able algebras Ax

⊲ discrete, synchronous global time evolution: a quantum channel T : A(Zs) →
A(Zs) on the quasi-local algebra A(Zs)

⊲ uniformity: translational invariance of T

⊲ locality and finite propagation speed: for every finite set Λ ⊂ Zs and the
algebra of observables A(Λ) localized on this region, T

(
A(Λ)

)
⊂ A(Λ + N )

with the finite neighborhood scheme N

⊲ local transition rule: the restriction of T to a single site, T0 : A0 → A(N )

⊲ reversibility: T is an automorphism.

1 This is a corollary of the structure theorem for reversible qcas [70], which states that the inverse
in this case is again a qca.
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While in this way the local rule can be directly inferred from the global rule, the
definition of a particular qca is not constructive. One would possibly rather start
with a prescribed neighborhood scheme together with a local interaction and obtain
a global rule to match. We join the authors of [70] on that a satisfactory theory
of qcas should connect the global transition rule T and the local rule such that
either can be uniquely inferred from the other. They argue that the class of global
rules should have an axiomatic specification, with locality and the existence of a
finite neighborhood scheme as the most important aspect. In contrast, the local rule
should be characterized constructively. This is easily possible for reversible qcas.
For later reference, we provide the relevant Lemma 2 from [70] and its proof:2

Lemma 4.2:
For a reversible qca, global and local rule are equivalent, i.e.

(i) The global automorphism T is uniquely determined by the local transition
rule T0.

(ii) An automorphism T0 : A0 → A(N ) is the transition rule of a reversible qca

if and only if for all x ∈ Zs such that N ∩ (N + x) 6= ∅ the algebras T0(A0)
and τx

(
T0(A0)

)
commute elementwise.

Remark: Note that for all x ∈ Zs not affected by (ii), i.e. those with N∩(N+x) = ∅,
the algebras T0(A0) and τx

(
T0(A0)

)
commute anyway, because T0(A0) ⊂ A(N ).

Proof: By translational invariance of T it suffices to consider T0, since Tx : Ax →
A(x + N ) is recovered as Tx(Ax) = τx T0 τ−x(Ax). Because T is an automorphism,
it can be expressed in terms of Tx: any finite tensor product

⊗
x∈ΛAx of one-site

operators Ax gives rise to

T
(⊗

x∈ΛAx
)

= T
(∏

x∈ΛAx
)

=
∏

x∈Λ

Tx(Ax). (4.2)

For the first equality sign we have identified Ax with a subalgebra of A(Λ) by ten-
soring with unit operators (see above) and the second identity is due to T being an
automorphism. Since the operators on the right hand side have overlapping localiza-
tion regions x+N , their product cannot be replaced by a tensor product. However,
the argument of T is a product of commuting operators, hence is the right hand side.
The commutativity condition of (ii) is thus necessary.

It is also sufficient because if the factors Tx(Ax) commute, their product is un-
ambiguously defined. Moreover, every local observable can be expressed as a linear
combination of finite tensor products. Consequently, Eq. (4.2) defines an automor-
phism on the quasi-local algebra, proving (i). �

The commutation relation in (ii) above is in fact a key to the notion of a qca

from [70]. While it is automatically satisfied for reversible qcas, it becomes an
issue for the irreversible case (cf. Section 4.3). We therefor illustrate it in Fig. 4.1

2 The lemma is slightly restated to match the modified definition of a qca.
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r r
At Bt

a b

· · · · · · −→T r r rr r r
At+1 Bt+1

a b

· · · · · ·

Figure 4.1:
One time step for a generic, one-dimensional nearest-neighbor qca. Observables
At and Bt are localized on different single sites, indicated by shaded cells. After
one time step, implemented by applying the global rule T to the observables, their
localization regions are enlarged by the neighborhood scheme N = {−1, 0, 1} and
overlap.

for a generic qca on a linear chain. For simplicity, we assume a nearest-neighbor
interaction, i.e. the neighborhood scheme is N = {−1, 0, 1}. At time t, consider
two observables At and Bt which are localized on different, single sites a and b,
respectively, two cells apart from each other. Then after one time step implemented
by application of the global rule T the corresponding observables are At+1 and Bt+1,
which are localized on their original cell and its respective neighborhood, a+N and
b+ N ; hence their localization areas overlap at a+ 1 = b− 1. The essence from the
proof of Lemma 4.2 is the observation that the local rule T0 determines the global
rule if At+1 and Bt+1 commute on their overlap region, i.e. if in the example the
restrictions At+1

∣∣
a+1

and Bt+1

∣∣
b−1

commute. This is necessarily true for reversible
qcas, but has to be imposed for the irreversible case.

As another important aspect of qcas, it should be possible to concatenate two
qcas into a compound system, which again is a qca. For reversible qcas, this is
assured as a consequence of the above lemma:

Corollary 4.3:
The concatenation of reversible qcas is again a reversible qca.

Proof: Consider two automorphisms T1, T2 : A(Zs) → A(Zs) which are global rules
of reversible qcas with isomorphic one-site algebras A0 and possibly different neigh-
borhood schemes N1 and N2. The local rules are given by the restrictions Ti

∣∣
0
: A0 →

A(Ni). A candidate for the local rule of the compound qca is obtained as

T0 : A0 → A(N1 + N2), (4.3a)

T0(A0) = T2

(
T1

∣∣
0
(A0)

)
(4.3b)

= T2

(⊗
y∈N1

By
)

= T2

(∏
y∈N1

By
)

=
∏
y∈N1

T2

∣∣
y

(
By
)
∈ A(N1 + N2),

(4.3c)

where we assumed that T1

∣∣
0
(A0) =

⊗
y∈N1

By and used arguments from the proof of

Lemma 4.2 for (4.3c). Since T1

∣∣
0

and T2 are automorphisms, T0 is an automorphism
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as well by (4.3b). In addition, T0 inherits the necessary and sufficient commutation
properties for application of Lemma 4.2 (ii) from T2

∣∣
0
. �

Again, this property becomes an issue for the concept of irreversible qcas, see
Section 4.3.

4.2 Reversible Gaussian QCA

A Gaussian quantum cellular automaton is a continuous-variable system which con-
forms to the Definition 4.1 of a qca and evolves under a quasi-free dynamics, i.e.
a dynamics that maps Gaussian states to Gaussian states in the Schrödinger pic-
ture. For the sake of clarity, we discuss our methods by means of a simple example
system: an infinite one-dimensional chain of one-mode harmonic oscillators with
nearest-neighbor coupling and translational invariance. The single-site algebras are
thus isomorphic to the ccr algebra of one mode. Setting the lattice dimension s = 1,
the quasi-local algebra becomes A(Zs) = A(Z). While this restricts the generality
of some of the results, the presented ideas are valid for arbitrary lattices with trans-
lational symmetry and a suitable elementary cell.3 However, even for this restricted
case there is an instance which exhibits the characteristics of irreversibility we are
looking for (see Section 4.2.4).

4.2.1 Phase space and basics

While the rest of this thesis is concerned with Gaussian systems of finitely many
modes, in this chapter the lattice structure requires a concept for infinitely many
degrees of freedom. The phase space of such systems is an infinite-dimensional linear
space of functions. Since we are interested in localized observables only and the
ccr algebra is spanned by the Weyl operators, we can restrict ourselves to localized
functions. Hence the phase space of the systems under consideration is the set Ξ ={
ξ : Z → R2

∣∣ ξx ≡ ξ(x) = 0 almost everywhere
}
, where R2 is the phase space of a

single oscillator and the functions ξ vanish everywhere except for a finite number of
sites. The global phase space �vectors� ξ relate every site x with a proper local phase
space vector ξx ∈ R2 for a single mode. This generalizes the concept of a direct sum
of one-site phase spaces to an infinite set of such systems. The symplectic form on
this phase space is defined in terms of the symplectic form on the one-mode phase
space, σs, as

σ(ξ, η) =
∑

x∈Zσs(ξx, ηx).

3 In [70], the authors argue that any qca can be converted into a qca with nearest-neighbor
interaction at the expense of loosing full translational symmetry. We will not pursue this further,
though.

4 To avoid too many indices, we write the arguments of Weyl operators in parentheses in this
chapter, W(ξ) ≡ Wξ .
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Similarly, Weyl operators4 W(ξ) ∈ A(Z) on the whole system are defined as tensor
products of single-site Weyl operators wx(ξx) ∈ Ax,

W(ξ) =
⊗

x∈Zwx(ξx).
Both definitions are well-formed even on the infinite lattice, since the ξx are zero
except for finitely many sites.

As we work in the Heisenberg picture, states are positive, normalized, linear
functionals ω : A(Z) → C on the observable algebra, yielding a positive expec-
tation value ω(A) for positive observables A. Alternatively, they can as usual be
described by their characteristic function χ, the expectation value of all Weyl oper-
ators, χ(ξ) = ω

(
W(ξ)

)
. For Gaussian states this is Gaussian and in strict analogy

of Eq. (2.21)

χ(ξ) = exp
(
− 1

4 γ(ξ, ξ) + i
∑
x∈ZξT

x · dx
)
.

Similar to the symplectic form, the covariances are contained in a bilinear correla-
tion function γ(ξ, η) =

∑
x,z∈Z ξT

x · γx,z · ηz defined as an effectively finite sum of
terms involving (2×2 blocks of) covariance matrices for finitely many modes. The
covariance matrix of a finite restriction of the chain is obtained as a block matrix of
the respective γx,z. For example, the covariance matrix γ|{x,z} of two modes x and z
is the 2×2 block matrix

γ|{x,z} =

(
γx,x γx,z
γz,x γz,z

)
.

For translationally invariant states, the displacement dx has to be independent of
the position in the chain, dx ≡ d, and can be interpreted as a global �amplitude�.
Likewise, the real 2×2 matrices γx,z depend only on the distance between the two
sites x and z, i.e. γx,z = γ(x− z). Since the correlation function γ(x) takes the role

of the covariance matrix, it has to be symmetric, so we require γ(−x) =
(
γ(x)

)T
.

A translationally invariant Gaussian state thus has a characteristic function of the
form

χ(ξ) = exp
(
− 1

4

∑
x,y∈ZξT

x · γ(x− y) · ξy + i
∑
x∈ZξT

x · d
)
. (4.4)

In order to describe an admissible Gaussian quantum state, the correlation func-
tion γ has to obey the state condition (2.22). The positivity condition γ + iσ ≥ 0
on matrices is in the present case replaced by the respective condition on bilinear
functions, where complex-valued analogs to the phase space functions take the place
of complex phase space vectors:

γ(µ, µ) + iσ(µ, µ) ≥ 0 , (4.5)

for all µ = µre + iµim with µre, µim ∈ Ξ and µ as the complex conjugate. This con-
dition stems from a direct generalization of the argument leading to (2.22). Writing
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this out in components of µ and using the definitions of γ and σ above results in the
detailed condition

∑

x,y∈ZµT

x ·
(
γ(x− y) + iδ(x− y)σs

)
· µy ≥ 0 (4.6)

for all µ as above. Here δ denotes the Kronecker delta with δ(x) = 1 for x = 0 and
δ(x) = 0 otherwise.

4.2.2 Transition rule

To implement a Gaussian system, the global transition rule T has to be quasi-free,
i.e. it has to map Gaussian states into Gaussian states in the Schrödinger picture.
In the Heisenberg picture, this is accomplished by mapping the Weyl operators to
Weyl operators subject to a symplectic transformation Γ:

T
(
W(ξ)

)
= W(Γ ξ). (4.7)

Clearly, the so-defined T is a homomorphism, since

T
(
W(ξ)

)
T
(
W(η)

)
= e−iσ(Γ ξ,Γ η) W(Γ ξ + Γ η)

= e−iσ(ξ,η) W(Γ ξ + Γ η) = T
(
W(ξ) W(η)

)
.

It is also an automorphism, since as a symplectic transformation Γ is invertible.
Hence together with a suitable locality condition T could indeed be the global rule of
a Gaussian qca. In fact, this is the only possible configuration: any transformation
Γ resulting in a homomorphism would have to be linear in the arguments of the
Weyl operators and fulfill σ(Γ ξ,Γ η) = σ(ξ, η) for all ξ and η, which is exactly the
definition of a symplectic transformation.

As with the generalization of matrices above, Γ acts on phase space functions by
sitewise applying suitable real 2×2 matrices Γx,z,

(Γ ξ)x =
∑

z∈ZΓx,z · ξz .

For T to be translationally invariant, i.e. invariant under lattice translations5 τ∆,
where (τ∆ ξ)x = ξx+∆ with ∆ ∈ Z, the transformation Γ has to be invariant, too. It
has thus to commute with τ∆ for all ξ ∈ Ξ and all x,∆ ∈ Z:

(Γ τ∆ ξ)x = (τ∆ Γ ξ)x ⇐⇒ Γx,z = Γx−z .

We assume nearest-neighbor coupling for the example, which imposes Γx−z = 0
unless |x − z| ≤ 1. Consequently, Γ is completely determined by three real-valued

5 We denote both the isomorphism of local algebras on different sites, τx Ay = Ay+x, and the
shifting of phase space functions, (τ∆ ξ)x = ξx+∆, by the same symbol τ . This is justified
because both transformations represent the same change of origin of the lattice.
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4.2 Reversible Gaussian qca

2×2 matrices Γ− ≡ Γ−1, Γ+ ≡ Γ+1 and Γ0, acting on phase space functions as

(Γ ξ)x =

+1∑

z=−1

Γz · ξx−z . (4.8)

Comparing this with a usual matrix, Γ might be depicted as an �infinite matrix� of
the form

Γ =




. ..
0 Γ+ Γ0 Γ− 0

0 Γ+ Γ0 Γ− 0

0 Γ+ Γ0 Γ− 0
.. .


 .

To express that Γ has to be symplectic, σ(Γ ξ,Γ η) = σ(ξ, η), we make use of the
symplectic transpose Γ

+
defined in Eq. (2.1) such that σ(Γ ξ, η) = σ(ξ,Γ

+
η) and

(Γ
+
)x,z = (Γz,x)

+
= −σs · (Γz,x)T ·σs. A transformation Γ is symplectic if and only if

Γ
+
Γ = 1 . (4.9)

Writing this in components of Γ yields the compound condition

δ(u)1 =
∑

x∈N
Γ

+

x · Γu+x for all u ∈ Z . (4.10)

For a nearest-neighbor interaction this results in

δ(u)1 =

+1∑

x=−1

Γ
+

x · Γu+x = Γ
+

−
· Γu−1 + Γ

+

0
· Γu + Γ

+

+
· Γu+1 for all u ∈ Z

and in detail imposes the conditions

u = 0 : Γ
+

−
· Γ

−
+ Γ

+

0
· Γ

0
+ Γ

+

+
· Γ

+
= 1 , (4.11a)

u = +1: Γ
+

−
· Γ0 + Γ

+

0 · Γ+ = 0 , (4.11b)

u = −1: Γ
+

0 · Γ
−

+ Γ
+

+ · Γ0 = 0 , (4.11c)

u = +2: Γ
+

−
· Γ

+
= 0 , (4.11d)

u = −2: Γ
+

+ · Γ
−

= 0 . (4.11e)

(The conditions for |u| ≥ 1 correspond exactly to the requirement that observables
which overlap on 3 − |u| cells have to commute, as can be seen from the discussion
of (4.38) in Section 4.3.) Note that all these conditions are manifestly invariant
under common symplectic transformations, i.e. the choice of a symplectic basis:
subjecting two matrices A and B to the same symplectic transformation S in the
above equations is equivalent to a similarity transformation with S, since

(S
T
AS)

+
(S

T
BS) = −σ ST

A
T
S σ S

T
BS = S−1A

+
BS .
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4 Gaussian quantum cellular automata

In the case of one mode per site, the requirements of (4.11) simplify readily: The
conditions for u = ±2, meaning σ(Γ− ξ,Γ+ η) = σ(Γ+ ξ,Γ− η) = 0 for all ξ, η ∈ R2,
imply that Γ− and Γ+ project onto the same, one-dimensional subspace of R2. Hence
both are multiples of a common matrix Γ± with rank one. For any real 2×2 matrix
M we get M

+ ·M = (detM)1 and thus immediately have Γ
+

−
· Γ

−
= Γ

+

+
· Γ

+
= 0 as

well as Γ
+

0 ·Γ0 = 1 from the condition for u = 0. But for one mode, this is equivalent
to Γ0 being a symplectic matrix. If we choose the one-dimensional subspace of Γ−

and Γ+ as the direction of the position variable,6 we get

Γ+ = Γ− = f Γ± with Γ± =

(
(Γ0)2,1 (Γ0)2,2

0 0

)
, (4.12)

where f is a common, arbitrary, real-valued coupling parameter and (Γ0)i,j denotes
the respective matrix entries of Γ0. The shape of Γ± is a consequence of the conditions
for u = ±1. We summarize these results in

Proposition 4.4:
The quasi-free quantum channel

T
(
W(ξ)

)
= W(Γ ξ),

where Γ is translationally invariant by (4.8) and symplectic by the conditions in
(4.11), results in a reversible qca on an infinite linear chain of harmonic oscillators
with nearest-neighbor interaction. For the case of one mode per site, the on-site
transformation Γ0 is symplectic and determines the interaction Γ± , except for the
coupling constant f , according to (4.12).

Remark: The fact that in this case the coupling is identical in both directions im-
plies that the �left-� and �right-shifter� mentioned as examples in the introduction
cannot be realized with one mode per site. Instead, they require a spare �swap�
system and an alternating partitioning scheme in order to avoid collision problems.
For details, see [70].

Proof: These definitions result in a qca in the sense of Definition 4.1. The local ob-
servable algebra Ax is spanned by the Weyl operators on single lattice sites, wx(ξx)
with ξx ∈ R2. The global Weyl operators W(ξ) with ξ ∈ Ξ span the quasi-local
algebra A(Z). Since Γ is a symplectic transformation and translationally invariant,
T as defined above is a translationally invariant automorphism of A(Z). The re-
quirement of locality and finite propagation speed is met by the nearest-neighbor
coupling inherent in Γ. The local rule is the restriction of T to the algebra of single-
site observables. �

A single time step of the system is implemented by applying T to the observable in
question. For Weyl operators, this is by the definition in (4.7) the same as applying

6 This choice can be interpreted either as a specification of the interaction Γ± or as a choice of
the symplectic basis in the phase space R2 of a single site.
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4.2 Reversible Gaussian qca

Γ to the phase space argument ξ. Further iteration of the dynamics for t time steps
is equivalent to an overall transformation Γt+1 = Γ Γt. Due to the translational
invariance, this is a convolution-style operation,

(Γt+1)x,z = (Γt+1)x−z =

+1∑

y=−1

Γ(x−z)−y · (Γt)y . (4.13)

4.2.3 Fourier transform

Since the system obeys translational invariance, it can be diagonalized together
with the momentum operator generating the translations. Hence we can simplify
expressions like the iteration relation (4.13) by turning to the Fourier transform
of the phase space, i.e. we decompose the phase space elements ξ into plane-wave
modes as the eigenstates of the momentum operator and consider the resulting weight
functions ξ̂ with values ξ̂(k) ∈ R2:

ξx =
1

2π

π∫

−π

dk ξ̂(k) e+ikx and ξ̂(k) =
∑

x∈Z ξx e−ikx . (4.14)

Due to the discrete structure, k is unique only up to multiples of 2π, hence the
Fourier transform is determined by k ∈ [−π, π]. All other translationally invari-
ant quantities are treated similarly. This casts the iteration relation (4.13) into an
ordinary multiplication of matrices,

Γ̂t(k) =
(
Γ̂(k)

)t
, where Γ̂(k) = Γ0 + 2f cos(k) Γ± (4.15)

is the Fourier transform of Γx according to (4.14).
The Fourier transform also simplifies the state condition (4.6) for γ. To prop-

erly define the transformed γ̂(k), we restrict γ(x) to be absolutely summable, i.e.∑
x∈Z‖γ(x)‖ < ∞. This condition excludes problematic correlation functions, e.g.

those with singular portions but retains the important cases of product and cluster-
ing initial states. From a mathematical point of view, it requires γ(x) to decrease
faster than 1/|x| and makes γ̂(k) continuous. With this, the state condition (4.6) on
the correlation function reads in terms of Fourier transforms

1

2π

π∫

−π

dk µ̂T(k) ·
(
γ̂(k) + iσs

)
· µ̂(k) ≥ 0. (4.16)

This is equivalent to the condition on 2×2 matrices that γ̂(k) + iσs ≥ 0 for all
k ∈ [−π, π]: if this condition holds for all k, then the l.h.s. of (4.16) is indeed positive
semi-definite; if, however, γ̂(k0) + iσs is not positive semi-definite for some k0, then
the l.h.s. of (4.16) can be made negative by choosing an appropriate µ̂(k), e.g. the
sharply peaked Fourier transform of a flat Gaussian which is centered around k0 and
has been restricted to finite support. Moreover, if γ̂(k0) + iσs is strictly positive for
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4 Gaussian quantum cellular automata

some k0, this property will be spread out by inverse Fourier transform to the whole
of γ(x). In this case, γ determines the characteristic function of a pure Gaussian
state plus additional Gaussian noise and therefore corresponds to a mixed state.

Conversely, γ̂(k) describes a pure Gaussian state if
(
σs γ̂(k)

)2
= −1 (cf. Section 2.2).

The state condition on the bilinear form γ over the infinite chain is thus transformed
into a condition of the same form on finite matrices under Fourier transform. This
is summarized in the following

Lemma 4.5:
A function γ which maps x ∈ Z to real 2×2 matrices, is absolutely summable,
∑
x∈Z‖γ‖ <∞, and symmetric, γ(−x) =

(
γ(x)

)T
,

(i) defines a translationally invariant Gaussian state on the linear chain labeled
by Z if and only if the Fourier transform γ̂(k) fulfills γ̂(k) + iσs ≥ 0 for all
k ∈ [−π, π] and

(ii) corresponds to a pure Gaussian state if and only if γ̂(k) + iσs is not strictly

positive for any k ∈ [−π, π], i.e. if
(
σs γ̂(k)

)2
= −1.

During time evolution of the system, the correlation function γ changes according
to the symplectic transformation Γ of the phase space argument in (4.7) as

γt(x) =
∑

y,z∈Z(Γt(y))T · γ0(x+ y − z) · Γt(z) or (4.17a)

γ̂t(k) = Γ̂T

t (k) · γ̂0(k) · Γ̂t(k), (4.17b)

where γ0 denotes the correlation function of the initial state.

4.2.4 Example system

To gain more specific results, we consider a more concrete instance of the above
system: The initial state is a coherent product state described by the correlation
function γ0(0) = 1 and γ0(x) = 0 otherwise, resulting in the Fourier transform
γ̂0(k) = 1. Clearly, γ conforms to the requirements of Lemma 4.5 and thus describes
a translationally invariant, pure Gaussian state. For the on-site part Γ0 of the dy-
namics, we choose a rotation, Γ0 =

( cosφ − sinφ
sinφ cosφ

)
, where −π ≤ φ ≤ π, which by

(4.12) determines Γ up to the coupling parameter f . Repeating (4.15) and (4.12),
the Fourier transform is

Γ̂(k) = Γ0 + 2f cos(k) Γ± with Γ± =

(
(Γ0)2,1 (Γ0)2,2

0 0

)
. (4.18)

Since Γ± contains a row of Γ0, the determinant is det Γ̂(k) = det Γ0 = 1. Hence
Γ̂(k) induces a symplectic transformation on every single mode k. The value of the
coupling parameter f determines whether the two eigenvalues of Γ̂(k) are real and

82



4.2 Reversible Gaussian qca
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Figure 4.2:
Depicting the eigenvalues of Γ̂(k): for small coupling parameter |f | < fcrit the
two eigenvalues are complex phases and conjugated to each other (left figure); for
large coupling |f | > fcrit, the eigenvalues are real and inverse to each other (right
figure). All eigenvalues meet at a value of 1 for f → fcrit.

inverse or complex and conjugate to each other.7 To obtain a quantitative statement,
we write the eigenvalues as e±iα(k), where α(k) is either real- or purely imaginary-
valued, and consider the trace as their sum:

tr Γ̂(k) = eiα(k) + e−iα(k) = 2 cosα(k) = 2 cosφ+ 2f cos(k) sinφ

⇒ α(k) = arccos
(
cosφ+f cos(k) sinφ

)
.

(4.19)

If |tr Γ̂(k)| ≤ 2, then α(k) is real-valued, |e±iα(k)| = 1 and Γ̂(k) is a rotation on
mode k. Otherwise, α(k) is purely imaginary-valued, the eigenvalues are real and
Γ̂(k) corresponds to a squeezing. For |tr Γ̂(k)| = 2 the eigenvalues meet at a value of
1. The relevance of the eigenvalues lies in their direct consequence for the dynam-
ics: if some Γ̂(k0) had real eigenvalues larger than 1, the respective mode would be
constantly squeezed, which would transform any input state over time into an �in-
finitely squeezed state� [44]. The limit state of such dynamics is highly singular; for
example, the probability for any oscillator in the chain to be finitely excited is zero.
The nonsqueezing regime with real eigenvalues for all Γ̂(k) is given by the inequality

∣∣cosα(k)
∣∣ =

∣∣cosφ+f cos(k) sinφ
∣∣ ≤ 1 ,

which has to hold for all k ∈ [−π, π]. Except for cases where sinφ = 0 or cos(k) = 0
and the above inequality is trivially true, the respective condition on f is

|f | ≤ fcrit =
1 − |cosφ|
|sinφ| ⇐⇒

{
|f | ≤

∣∣tan(φ/2)
∣∣ for |φ| ≤ π/2 ,

|f | ≤
∣∣cot(φ/2)

∣∣ for π/2 < |φ| ≤ π .
(4.20)

(Note that either none or both conditions hold, since
∣∣tan(φ/2)

∣∣ ≤
∣∣cot(φ/2)

∣∣ for
|φ| ≤ π/2 and vice versa.) In order to retain the possibility of finding (normal) limit

7 The general case of eigenvalues which are complex and inverse to each other is excluded since
Γ̂(k) is real-valued. Hence the characteristic polynomial of Γ̂(k) has real coefficients and complex
solutions are conjugated to each other.
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α(k)

k
ππ/2−π −π/2

1.0

0.5

Figure 4.3:
Plot of α(k) = arccos

(
cosφ + f cos(k) sinφ

)
according to Eq. (4.19), for f = 0.4

and φ = π
4 .

states, we concentrate on the nondegenerate case of small couplings |f | <
∣∣tan(φ/2)

∣∣
or |f | <

∣∣cot(φ/2)
∣∣. The above relations between f and the eigenvalues are illustrated

in Fig. 4.2; for a plot of the resulting α(k) see Fig. 4.3.
We will consider below the time evolution of the initial state, show that it converges

and characterize the possible limit states. The following arguments make use of the
projectors onto the eigenspaces of Γ̂, which are provided by

Lemma 4.6:
If Γ̂(k) has nondegenerate, complex eigenvalues e±iα(k) with α(k) ∈ (0, π), the

(nonorthogonal) projectors Pk and Pk onto its eigenspaces in a decomposition

Γ̂(k) = eiα(k) Pk + e−iα(k) Pk (4.21)

are given by

Pk = 1
2 1+ i

2

(
cosα(k)1− Γ̂(k)

) (
sinα(k)

)−1
(4.22)

and Pk as the complex conjugate of Pk.

Proof: The operators Pk and Pk = 1 − Pk are projectors onto the disjoint eigen-
spaces of Γ̂(k).8 Since Pk + Pk = 1, the real and imaginary parts of both projectors
are connected via RePk = 1 − RePk and ImPk = − ImPk. Writing the above
decomposition (4.21) in terms of RePk and ImPk yields

Γ̂(k) = cosα(k)1− 2 sinα(k) ImPk + i sinα(k) (2 RePk − 1). (4.23)

By (4.18), Γ̂(k) has to be real-valued. Hence the last term of (4.23) has to vanish
and we immediately obtain RePk = 1/2. Note that we excluded the degenerate

8 Proof of this statement: If ψ− is the eigenvector of Γ̂(k) to eigenvalue e−iα(k), then e−iα(k) ψ− =

Γ̂(k) · ψ− =
`

eiα(k) Pk + e−iα(k) (1 − Pk)
´

· ψ−, which implies Pk · ψ− = 0 and Pk · ψ− = ψ−.

Similarly, Pk ·ψ+ = ψ+ and Pk ·ψ+ = 0 for the eigenvector ψ+ to eigenvalue eiα(k). Since Γ̂(k)
has determinant 1 and thus full rank, the eigenvectors are linearly independent and span the
whole space R2. Hence 0 = Pk ·Pk = Pk · (1−Pk) = Pk −P 2

k or P 2
k = Pk, i.e. Pk is a projector.

The same holds for Pk.
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4.2 Reversible Gaussian qca

case, which corresponds to sinα(k) = 0. The imaginary part is readily obtained
from (4.23) as ImPk =

(
cosα(k)1−Γ(k)

)
/
(
2 sinα(k)

)
, which proves (4.22). For the

remaining projector, we get RePk = RePk and ImPk = − ImPk from the beginning
of the proof. Hence Pk is indeed the complex conjugate of Pk. �

Convergence

The decomposition (4.21) of Γ̂(k) is particularly useful for a compact description of
the iterated transformation Γ̂t(k). By (4.15),

Γ̂t(k) =
(
Γ̂(k)

)t
= eitα(k) Pk + e−itα(k) Pk , (4.24)

since as projectors on disjoint eigenspaces Pk and Pk obey P 2
k = Pk, Pk

2
= Pk and

Pk · Pk = 0. With this relation, the time-dependent correlation function γt(x) is
obtained by inverse Fourier transform from (4.17) as

γt(x) =
1

2π

π∫

−π

dk eikx Γ̂T

t (k) · γ̂0(k) · Γ̂t(k)

=
1

2π

π∫

−π

dk eikx
(
e2itα(k) P

T

k · γ̂0(k) · Pk + e−2itα(k) Pk
T · γ̂0(k) · Pk

)

+
1

2π

π∫

−π

dk eikx
(
P

T

k · γ̂0(k) · Pk + Pk
T · γ̂0(k) · Pk

)
.

(4.25)

In (4.25), the transformation is separated into a time-dependent, oscillating part
in the first term and a stationary part in the second. In the limit of large time
t, the rapidly oscillating term vanishes and the correlation function converges by
an argument similar to the method of stationary phase: Starting from a product
state (or any clustering state), γ̂0(k) is continuous; since we excluded the degenerate
case, Γ̂(k), Pk and Pk are continuous, too, and the whole integrand is well-behaved.
Note that α(k) is differentiable and has only finitely many extrema (cf. Fig. 4.3
and caption). The main contribution to the integral stems from intervals where
α′(k) ≈ 0, i.e. from around the extrema of α(k) at kn, ordered such that kn ≤ kn+1

for n = 1, 2, . . .N < ∞. We explain the argument for the first term in the first
integrand of (4.25). Splitting the integral at the extrema of α(k) at kn and writing
ĉ(k) = PT

k · γ̂0(k) · Pk, we obtain:

π∫

−π

dk ĉ(k) exp
(
ikx+ 2 itα(k)

)
=

N∑

n=1

kn+ǫ∫

kn−ǫ

dk ĉ(k) exp
(
ikx+ 2 itα(k)

)

︸ ︷︷ ︸
≡A

+

N∑

n=1

kn+1−ǫ∫

kn+ǫ

dk ĉ(k) exp
(
ikx+ 2 itα(k)

)

︸ ︷︷ ︸
≡B

+R
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where

R =

k1−ǫ∫

−π

dk ĉ(k) exp
(
ikx+ 2 itα(k)

)
+

π∫

kN+ǫ

dk ĉ(k) exp
(
ikx+ 2 itα(k)

)
.

Integrals of type A cover intervals around the extrema of α(k), integrals B the
intervals in between extrema. The other two integrals in R cover remainders at the
ends of the whole integration interval [−π, π]; they are effectively of type B. If the
derivative of α(k) is nonvanishing, α′(k) 6= 0, we can substitute u = 2α(k) and
k = α−1(u) to obtain for integrals of type B:

kn+1−ǫ∫

kn+ǫ

dk ĉ(k) exp
(
ikx+ 2 itα(k)

)
=
(
2α′(k)

)−1

u′
n∫

un

du ĉ
(
α−1(u)

)
exp
(
ixα−1(u) + 2 itu

)
,

where un = 2α(kn + ǫ) and u′n = 2α(kn+1 − ǫ). Since this integrand is absolutely
integrable, the Riemann-Lebesgue lemma [7, Ch. IX] assures that the integral van-
ishes for t → ∞. For integrals A, this substitution is not possible since α′(kn) = 0.
However, we can expand α(k) to second order around kn, yielding

kn+ǫ∫

kn−ǫ

dk ĉ(k) exp
(
ikx+ 2 itα(k)

)
= e2itα(kn)

kn+ǫ∫

kn−ǫ

dk ĉ(k) exp
(
ikx+ 2 it(k− kn)

2α′′(kn)
)
.

Again, the integral vanishes for t → ∞. These arguments would be spoiled by any
Γ̂(k0) with real eigenvalues, which would turn the phase factor e2itα(k) into a real-
valued exponential and thus result in continued squeezing of the respective mode.
Hence we restrict the dynamics to small coupling parameter f .

While the correlation function γ(x) converges, the amplitude part
∑

x∈Z ξT

x · d of
a translationally invariant state in (4.4) does not unless d = 0: Under time evolution
for t steps, the initial sum is mapped to

∑

x∈Z ξx 7−→
∑

x∈Z(Γt ξ)x = Γ̂t(0) · ξ̂(0)

=
(
eitα(0) P0 + e−itα(0) P0

)
· ξ̂(0) =

(
Re(eitα(0) P0)

)
· ξ̂(0).

This expression clearly depends on t since α(k) = 0 was excluded as the degenerate
case. Hence the convergence of an initial state under the dynamics of the qca is
restricted to states with vanishing first moments.

It is remarkable that while the initial state is a pure, uncorrelated state and the
dynamics is reversible for the whole system as well as for every mode, the system
exhibits convergence under interplay of the plane-wave modes. However, we only
consider observables with finite support on the chain; hence this behavior suggests
that correlations are �radiated to infinity� during time evolution. Since the whole
range of intermediate states is mapped to the same limit state, the system exhibits
the signs of irreversibility we are interested in:

86



4.2 Reversible Gaussian qca

Proposition 4.7:
A translationally invariant linear chain of single harmonic oscillators which evolves

⊲ from a pure Gaussian state with finite correlation length (clustering state)
and vanishing first moments

⊲ under a quasi-free dynamics governed by a nonsqueezing symplectic trans-
formation

reaches a stationary state in the limit of large time.

The limit state of the time evolution is determined by the second, stationary term
in (4.25). For all reflection symmetric states, i.e. states with γ(x) = γ(−x) and thus
γ̂0(k) = γ̂0(−k) as in our example system, the projection character of Pk and Pk
effectively reduces γ̂0(k) to a single matrix element c(k). The limit state is thus
described by a single parameter for each mode:

γ∞(x) =
1

2π

π∫

−π

dk eikx

((
Pk

T · γ̂0(−k) · Pk
)T

+ Pk
T · γ̂0(k) · Pk

)

=
1

2π

π∫

−π

dk eikx c(k)
(
P

T

k · Pk + Pk
T · Pk

)
(4.26)

Reversing the argument, we can describe any stationary, reflection symmetric state
by a unique pure such state and a modewise �temperature� parameter. Casting the
expression into a different form gives rise to

Theorem 4.8:
All stationary, translationally invariant and reflection symmetric Gaussian states
of the linear chain of single harmonic oscillators with nondegenerate, nearest-
neighbor dynamics Γ̂(k) from (4.18) are thermal equilibrium states, described by
their Fourier transformed correlation function γ̂stat(k) = g(k) ε̂(k) comprising

⊲ the correlation function of a pure state with Fourier transform

ε̂(k) = iσs(Pk − Pk) for 0 < φ < π

ε̂(k) = iσs(Pk − Pk) for −π < φ < 0
where Γ0 =

(
cosφ − sinφ
sinφ cosφ

)

⊲ and a continuous function g(k) of modewise �temperature� parameters with

g(k) = g(−k) ≥ 1 .

Proof: The proof is divided into several parts. First, ε̂(k) is shown to possess the
properties claimed in the prelude. Second, ε̂(k) has to obey the state condition.
Third, it corresponds to a pure state and is modified to a mixed state by g(k).
And finally, there exists a g(k) such that g(k) ε̂(k) describes the limit state (4.26).
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For clarity, the proof is formulated for the case 0 < φ < π. However, it holds for
−π < φ < 0 by the same arguments. An exception is made for the state condition
of ε̂(k), where positivity requires consideration of both cases.

Firstly, the Fourier transformed correlation function ε̂(k) is indeed symmetric
under interchange of k and −k since Γ̂(−k) = Γ̂(k) by (4.18) as well as α(−k) = α(k)
by (4.19) and thus P−k = Pk, P−k = Pk from (4.22). Moreover, ε̂(k) is invariant
under the dynamics. To see this, note from (4.21) that Γ̂(k) commutes with Pk and Pk
since Pk Pk = Pk Pk = 0. For a single mode per site, as in our example, det Γ̂(k) = 1
by the definition in (4.18) implies that Γ̂(k) is a symplectic transformation and thus
leaves σs invariant. The following equalities then show that ε̂(k) does not change
under the action of Γ:

Γ̂
T
(k) · ε̂(k) · Γ̂(k) = i Γ̂

T
(k)σs Γ̂(k) · (Pk − Pk) = iσs (Pk − Pk) = ε̂(k).

In order to see that ε̂(k) also fulfills the state condition ε̂(k) + iσs ≥ 0 from
Lemma 4.5 consider the identity

ε̂(k) + iσs = iσs · (Pk − Pk + 1) = 2iσs Pk .

Since Pk has rank one, the only nonzero eigenvalue of iσs Pk is given by the trace,
tr[iσs Pk] = (sinφ − f cos(k) cosφ)/ sinα(k). As α(k) is restricted w.l.o.g. to the
interval (0, π), cf. Lemma 4.6, the denominator is always positive, sinα(k) > 0. By
the condition on f from (4.20), the numerator and thus the nonzero eigenvalue is
positive for 0 < φ < π and negative for −π < φ < 0. (Note that we have excluded the
degenerate cases with φ ∈ {0,±π} for which the numerator is zero.) Hence ε̂(k) obeys
the state condition with the appropriate differentiation of cases from the statement

of the theorem. In addition, ε̂(k) corresponds to a pure state since
(
σs · ε̂(k)

)2
= −1.

Moreover, ε̂(k) can be modified modewise by a factor g(k) = g(−k) ≥ 1 without
affecting the above relations, except for the pure state condition. Hence g(k) plays
the role of a �temperature� for the plane-wave modes.

It remains to connect the stationary states g(k) ε̂(k) to the limit state of Eq. (4.26).
This is accomplished by the choice g(k) = c(k) ‖φk‖. Note that c(k) is real-valued
and obeys c(k) = c(−k) since γ̂0(k) as well as Pk and Pk are reflection symmetric
(see beginning of proof). Hence g(k) = g(−k) ∈ R. The first task is to connect
iσs Pk with P ∗

k Pk. Since Γ̂(k) is a symplectic transformation, expanding the identity

PT

k ·
(
σs ·Pk

)
= PT

k ·
(
Γ̂T(k)σs Γ̂(k) ·Pk

)
implies PT

k σs Pk = 0 and in turn the relation

iσs Pk = i(P
T

k + P ∗
k ) · σs Pk = P ∗

k · iσs · Pk . (4.27)

The nonorthogonal projector Pk can be written as Pk = |φk〉〈ψk|, where we assume
w.l.o.g. that ‖ψk‖ = 1 while in general ‖φk‖ 6= 1. However, the condition P 2

k = Pk
requires 〈ψk|φk〉 = 1. With this, we have iσs Pk = P ∗

k · iσs · Pk = r |ψk〉〈ψk|, where
r = 〈φk| iσs |φk〉. Indeed, r is real-valued since

r2 =
(
〈φk| iσs |φk〉

)2
= 〈φk| iσs · Pk P ∗

k · iσs |φk〉 =
∣∣〈φk|ψk〉

∣∣2 ‖φk‖2 = ‖φk‖2.
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4.2 Reversible Gaussian qca

So, iσs Pk = ‖φk‖ |ψk〉〈ψk| (if we assume again that 0 < φ < π). Compare this with
P ∗
k Pk = ‖φk‖2 |ψk〉〈ψk| to see that g(k) iσs Pk = c(k)P ∗

k Pk. By complex conjuga-
tion, −g(k) iσs Pk = c(k)PT

k Pk follows. Moreover, g(k) = g(−k) = c(k) ‖φk‖ is an
admissible temperature function, i.e. c(k) ‖φk‖ ≥ 1 by the following reasoning: Since
the correlation function γ0(x) is real, it has to obey two complex conjugated versions
of the state condition, γ0 ± iσ ≥ 0 (see Section 4.2.1 for a discussion). Similarly, its
Fourier transform has to obey γ̂0(k) − iσ ≥ 0. Compressing this relation with Pk
yields:

0 ≤ P ∗
k · γ̂0(k) · Pk − P ∗

k · iσ · Pk =
(
c(k) − 1/‖φk‖

)
P ∗
k Pk .

But since P ∗
k Pk ≥ 0, necessarily c(k) ‖φk‖ ≥ 1. So, indeed g(k) = c(k) ‖φk‖ =

g(−k) ≥ 1 and g(k) ε̂(k) is the limit state of (4.26). �

Note that ε̂(k) can be expressed in terms of Γ̂(k) and α(k) more directly:

ε̂(k) = iσs(Pk − Pk) = −2σs ImPk = −σs

(
cosα(k)1− Γ̂(k)

) (
sinα(k)

)−1
. (4.28)

Since we excluded the degenerate case with sinα(k) = 0, the matrix elements of
ε̂(k) are always finite. Moreover, ε̂(k) is continuous and hence γ∞(x) is absolutely
summable.

In [3], pointwise convergence of characteristic functions χn(ξ) to χ∞(ξ) was used
to establish convergence of the respective density operators ρn to ρ∞ in trace norm.
The argument is based on results from [85], where pointwise convergence of χn(ξ)
was shown to imply weak convergence of ρn, and from [86, 87], showing that weak
convergence of density operators is equivalent to convergence in trace norm. Similar
reasoning in our case leads to the following result:

Theorem 4.9:
Let ρ0 be a translationally invariant Gaussian state with reflection symmetric
correlation function γ0(x) = γ0(−x), finite correlation length and vanishing first
moments. Under the dynamics of a qca as described, ρ0 converges to a stationary
state ρ∞ in trace norm on finite regions of the lattice. The limit state is described
by the correlation function γ∞(x) from (4.26) and the characteristic function

χ∞(ξ) = exp
(
− 1

4

∑
x,y∈ZξT

x · γ∞(x− y) · ξy
)
. (4.29)

Proof: The input state ρ0 has exactly the properties which are prerequisites in
Proposition 4.7. Hence its correlation function γ0(x) evolves to functions γt(x) from
(4.25) and converges pointwise to γ∞(x) from (4.26). The characteristic functions

χt(ξ) = exp
(
− 1

4

∑
x,y∈ZξT

x · γt(x− y) · ξy
)

of the intermediate states ρt thus converge pointwise to χ∞(ξ) from (4.29). We use
the arguments from [85] and [86, 87] to turn this pointwise convergence of charac-
teristic functions first into weak convergence of the ρt to ρ∞ and then to establish
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convergence in trace norm, i.e.

‖ρt − ρ∞‖1 = tr
[
|ρt − ρ∞|

]
→ 0 as t→ ∞ .

Note that the knowledge about the limit state simplifies the proof. Since the
characteristic function χ∞ is continuous, the limit state is indeed described by a
density operator ρ∞. Moreover, χ∞(0) = 1 implies tr[ρ∞] = 1, cf. Section 2.1.1.

In contrast to the general case considered in [85], we restrict the discussion to
expectation values of the ρt with operators from the quasi-local algebra A(Z), which
is generated by the Weyl operators with finite support. Therefore, it suffices to assure
convergence with respect to these operators. But expectation values with such Weyl
operators are exactly the pointwise values of the characteristic function:

tr
[
ρ∞ W(ξ)

]
= χ∞(ξ) = lim

t→∞
χt(ξ) = lim

t→∞
tr
[
ρt W(ξ)

]
.

This is the statement of weak convergence ρt
w−→ ρ∞ on A(Z).

To establish convergence in trace norm, we closely follow the proof of Lemma 4.3
in [86], which we provide for completeness: Given 0 < ε < 1, let P be a spectral
projector for ρ∞ with finite rank and ‖ρ∞−Pρ∞P‖1 < ε. By the triangle inequality,
we can bound the trace norm distance of any ρt and ρ∞ as

‖ρ∞ − ρt‖1 ≤ ‖ρ∞ − Pρ∞P‖1 + ‖Pρ∞P − PρtP‖1 + ‖PρtP − ρt‖1 . (4.30)

Assuming the spectral decomposition ρt =
∑∞

m=1 rm|em〉〈em|, where {|em〉}∞m=1 is
an orthonormal basis of the Hilbert space, the authors of [86] derive an upper bound
for the last term:

‖ρt − PρtP‖1 ≤ ‖ρt − Pρt‖1 + ‖Pρt − PρtP‖1

≤
∞∑

m=1

rm
∥∥|em〉〈em| − P |em〉〈em|

∥∥
1
+

∞∑

m=1

rm
∥∥P |em〉〈em| − P |em〉〈em|P

∥∥
1

= 2
∞∑

m=1

rm

(
1 −

∥∥P |em〉
∥∥2

1

)1/2

≤ 2

{ ∞∑

m=1

rm

}1/2{ ∞∑

m=1

rm

(
1 −

∥∥P |em〉
∥∥2

1

)}1/2

≤ 2

{
tr[ρt] −

∞∑

m=1

rm
∥∥P |em〉

∥∥2

1

}1/2

= 2
{
tr[ρt] − tr[PρtP ]

}1/2
. (4.31)

As ρt
w−→ ρ∞, PρtP converges weakly to Pρ∞P . Since P is of finite rank, there exists

a number T ∈ N such that for all time steps t ≥ T the bound ‖PρtP−Pρ∞P‖1 < ε2
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4.3 Irreversible Gaussian qca

holds. Note that the trace norm bounds also imply bounds on the respective traces:

‖A−B‖1 < ε2 =⇒
∣∣tr[A−B]

∣∣ ≤ tr
[
|A−B|

]
= ‖A−B‖1 < ε2.

This allows to establish a bound on (4.31) for all t ≥ T :

∣∣tr[ρt] − tr[PρtP ]
∣∣ ≤

∣∣tr[ρt] − tr[ρ∞]
∣∣+
∣∣tr[ρ∞] − tr[Pρ∞P ]

∣∣

+
∣∣tr[Pρ∞P ] − tr[PρtP ]

∣∣

≤ 0 +
∥∥ρ∞ − Pρ∞P

∥∥
1

+
∥∥Pρ∞P − PρtP

∥∥
1

< 2ε2,

since tr[ρt] = tr[ρ∞] = 1. Hence, by (4.31), ‖ρt − PρtP‖1 < 2
√

2 ε and finally
from (4.30)

‖ρ∞ − ρt‖1 < ε2 + ε2 + 2
√

2 ε < 6ε.

This proves convergence of ρt and thus of ρ0 under the dynamics to ρ∞ in trace
norm with respect to finitely localized observables, i.e. finite lattice regions. �

4.3 Irreversible Gaussian QCA

By an irreversible qca, we understand a qca with a global rule T which has, however,
no completely positive inverse. The dynamics thus cannot be inverted by physical
operations. In contrast to the reversible case, irreversible qcas still resist a detailed
characterization. So far, investigations have been restricted to special classes of such
systems, e.g. in [88]. In this chapter, we highlight a few problems in the characteri-
zation of irreversible qcas for Gaussian systems.

As mentioned above, several desirable features which come built in for reversible
qcas pose difficulties in the irreversible case. While Definition 4.1 covers the essential
properties of a qca, it does, however, not consider two important principles:

(i) the local rule should determine the global rule (Lemma 4.2) and

(ii) the concatenation of qcas should again be a qca (Corollary 4.3).

The first principle allows to explicitly obtain the global rule of a qca for every valid
local dynamics. This complements the axiomatic definition of the class of qcas with
a constructive approach for individual automata. The second property allows to
build a qca out of set of �module� qcas. In particular, two steps of any given qca

would result in a combined dynamics which again is a (different) qca. We will in
the following investigate how these properties influence the definition of irreversible
Gaussian qcas.

As above, an irreversible Gaussian qca has a quasi-free dynamics, which maps
Weyl operators to multiples of Weyl operators. This is accomplished by a linear
transformation Γ of the phase space argument and additional noise to assure com-
plete positivity (cf. Section 2.3). In the reversible case, a symplectic Γ renders
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T
(
W(ξ)

)
= W(Γ ξ) an automorphism. Consequentially, for irreversible qcas Γ must

not be symplectic. Instead, the dynamics T is determined by a general linear trans-
formation Γ and an appropriate noise factor which we write as an exponential for
convenience, cf. Eq. (2.40):

T
(
W(ξ)

)
= W(Γ ξ) e−g(ξ,ξ)/4 , (4.32)

where g(ξ, η) is real-valued and symmetric. (As in the reversible case, it suffices to
consider T on Weyl operators, cf. Section 4.2.2.) A translationally invariant Gaus-
sian input state with correlation function γ(ξ, ξ) and uniform displacement d is
transformed into a state with characteristic function

χ(ξ) = exp
(
−γ(Γ ξ,Γ ξ)/4 + g(ξ, ξ)/4 + i

∑
x∈Z(Γ ξ)T

x · d
)
, (4.33)

which has again Gaussian shape. Since the dynamics is supposed to be translation-
ally invariant, Γ and g have to be invariant under lattice translations and are thus
determined by functions Γ(x) and g(x) of the distance x between sites. In addition,
to assure a finite propagation speed for compliance with Definition 4.1, Γ has to be
restricted to N by requiring Γ(x) = 0 for x /∈ N . According to Theorem 2.6, T is
completely positive if

C ≡ g + iσ − iΓ
T
σ Γ ≥ 0 (4.34)

in the sense of (4.5). As an aside, note that this condition allows for two special
solutions:

⊲ Γ is symplectic: This corresponds to a reversible qca with classical Gaussian
excess noise determined by g ≥ 0.

⊲ Γ = 0: The resulting qca immediately discards its input and replaces it by a
translationally invariant Gaussian state with covariance matrix g, which is ad-
missible since (4.34) reduces to the state condition g+iσ ≥ 0. This completely
depolarizing dynamics has a classical analog for product states, where the ca

locally replaces the state of every cell by a uniform standard value.

The dynamics described above conforms to Definition 4.1, but does not necessarily
incorporate the extensions (i) and (ii) from above. To see this, consider the outcome
of T for a product of Weyl operators:

T
(
W(ξ)W(η)

)
= exp

(
−iσ(ξ, η)/2

)
T
(
W(ξ + η)

)

= exp
(
−iσ(ξ, η)/2 − g(ξ + η, ξ + η)/4

)
W(Γ ξ + Γ η)

= exp
(
iσ(Γ ξ,Γ η)/2 − iσ(ξ, η)/2 − g(ξ, η)/2

)

e−g(ξ,ξ)/4 W(Γ ξ) e−g(η,η)/4 W(Γ η)

and hence

T
(
W(ξ)W(η)

)
= e−C(ξ,η)/2 T

(
W(ξ)

)
T
(
W(η)

)
. (4.35)
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4.3 Irreversible Gaussian qca

(Recall that g is symmetric and C = g + iσ − iΓT σ Γ from (4.34).) The couplings
introduced by the dissipation form C spoil the connection between local and global
rule for property (i), since unlike in the proof of Lemma 4.2, T (A) for an arbitrary
localized observable A cannot be solely expressed in terms of single-site constituents.
This problem can in principle be overcome by imposing additional conditions on
C and thus on Γ and g. However, it is not immediately clear what requirements
correspond to properties (i) and (ii).

As a first step towards a resolution of this issue, we distinguish between different
notions of �localization� which are relevant for general, not necessarily Gaussian
irreversible qcas. These are connected to different neighborhoods (which we again
w.l.o.g. assume to contain the origin):

I. Finite propagation speed with neighborhood scheme N : Observables which are
localized on a finite region Λ of the lattice are mapped to observables localized
on Λ + N ,

T
(
A(Λ)

)
⊂ A(Λ + N ).

II. Factorization with respect to a symmetric M, i.e. M = −M: A tensor product
of observables A1 ∈ A(Λ1) and A2 ∈ A(Λ2) on disjoint, finite regions Λ1 and
Λ2 which are separated by M, i.e. (Λ1 +M)∩Λ2 = ∅, is mapped to a product,

T (A1 ⊗A2) = T (A1)T (A2).

III. Localization of Kraus operators on K: For any finite region Λ there exists a
finite set of Kraus operators localized on Λ+K which implement the dynamics,

∀Λ ∃
{
Ki | Ki = Ki(Λ) ∈ A(Λ + K)

}
∀A ∈ A(Λ): T (A) =

∑
i
K∗
i AKi .

IV. Local dilation on D: The dynamics consists of three steps. First, in the Schrö-
dinger picture, for each cell a local ancilla system is prepared in a fixed state
ρ0. Second, a reversible qca given by an automorphism T1 with neighborhood
scheme D is run on the extended system. And third, at each site the ancilla
system is traced out. Denote the algebra of the ancilla system by E and the
respective quasi-local algebra for the whole lattice by E(Zs). If A′(Zs) is the
tensor product A(Zs) ⊗ E(Zs) and trE is the trace over the ancilla systems,
then

T1 : A′(Zs) → A′(Zs) automorphism with T1

(
A′(Λ)

)
⊂ A′(Λ + D),

T∗(ρ) = trE
[
T1∗(ρ⊗ ρ⊗Zs

0 )
]

in the Schrödinger picture and

T (A) = trE
[1⊗ ρ⊗Zs

0 T1(A⊗ 1)] in the Heisenberg picture.
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Note that every system which is a qca by Definition 4.1 falls into category I. In
addition, II has to hold with N −N ⊆ M in order to assure causality.9 In order to
establish which conditions should be imposed to guarantee the desired properties,
consider connections between the cases:

Lemma 4.10:
The above notions of locality constitute a partial hierarchy in the sense that

(i) III implies I with N = K,

(ii) IV implies III with K = D,

(iii) IV implies II with M = D −D,

(iv) IV implies I with N = D.

(v) However, II does not imply I and vice versa.

IV

III

III

(ii)

(i)

(iii)(iv)

Remark: It remains open if any of the lower cases imply higher ones, e.g. if I and
II together already require IV.

Proof:

(i) By the embedding described in Section 4.1, A ∈ A(Λ) is also in A(Λ + K).
Since Ki ∈ A(Λ + K), obviously T (A) =

∑
iK

∗
i AKi ∈ A(Λ + K) and hence

T
(
A(Λ)

)
⊂ A(Λ + K).

(ii) As every channel, the dynamics of IV can be described by Kraus operators,
see Section 2.3. For A ∈ A(Λ), we have by definition T1(A) ∈ A′(Λ + D)
and T (A) = A(Λ +D) since the ancilla systems do not introduce correlations.
Hence Ki ∈ A(Λ + D).

(iii) For A1 ∈ A(Λ1), A2 ∈ A(Λ2) and (Λ1 + D) ∩ (Λ2 + D) = ∅, the observables
T1(A1) and T1(A2) are localized on different regions A′(Λ1+D) and A′(Λ2+D)
without overlap. Hence their product can be written as a tensor product with
respect to the sites by implicit embedding. Since T1 is an automorphism, this
yields:

T (A1A2) = trE
[1⊗ ρ⊗Zs

0 T1(A1 ⊗ 1)T1(A2 ⊗ 1)]
= trE

[1⊗ ρ
⊗(Λ1+D)
0 T1(A1 ⊗ 1)] trE

[1⊗ ρ
⊗(Λ2+D)
0 T1(A2 ⊗ 1)]

= T (A1)T (A2).

9 Note that (Λ1 + D − D) ∩ Λ2 = ∅ ⇐⇒ (Λ1 + D) ∩ (Λ2 + D) = ∅. Causality is the notion
that operations on sufficiently far separated areas should be independent of each other. In our
terms, this requires for observables A1 ∈ A(Λ1) and A2 ∈ A(Λ2), where T (Ai) ∈ A(Λi + N )
and (Λ1 + N ) ∩ (Λ2 + N ) = ∅ that

T (A1 ⊗ 1|Λ2+N ) = T (A1) ⊗ 1|Λ2+N ,

T (1|Λ1+N ⊗A2) = 1|Λ1+N ⊗ T (A2).

(For details and a brief discussion, see e.g. [89].) Note that under this conditions in II we get
T (A1 ⊗ A2) = T (A1)T (A2) = T (A1) ⊗ T (A2) by implicit embedding.
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4.3 Irreversible Gaussian qca

Note that the tensor products above are with respect to the decomposition of
main system and ancilla at each site.

(iv) This follows from (ii) and (i).

(v) Consider a dynamics which completely depolarizes an initial state ρin to a

translationally invariant product state ρ
NZs

0 . For A1 ∈ A(Λ1), A2 ∈ A(Λ2)
and (Λ1 + M) ∩ Λ2 = ∅ we get

tr
[
ρin T (A1 ⊗A2)

]
= tr

[
ρ

N

Λ1

0 A1

]
tr
[
ρ

N

Λ2

0 A2

]
= tr

[
ρin T (A1)

]
tr
[
ρin T (A2)

]
.

Hence T (A1 ⊗ A2) = T (A1)T (A2) and II holds true independently of I and
M (as long as 0 ∈ M). For the converse, the Gaussian dynamics from (4.32)
serves as a counterexample by virtue of (4.35) if g(x) is not restricted to a
finite M. �

For Gaussian irreversible qcas, the cases I and II are easily expressed in terms of
Γ and g:

Lemma 4.11:
A Gaussian irreversible qca, described by dynamics Γ and noise form g, complies
with type I or II, respectively, if

I. Γ(x) = 0 for x /∈ N ,

II. g(x) = 0 for x /∈ M and

∀∆ ∈ (N −N ) \M :
∑

x∈N
Γ

+

x Γ∆+x = 0 . (4.36)

Remark: If N − N ⊆ M, case II does not impose a condition on Γ. Otherwise,
(4.36) corresponds to part of the condition (4.10) for Γ to be symplectic. Consider
in particular the important case M = {0}; as for reversible qcas, this allows to
reconstruct the global rule from the local rule by the arguments from the proof of
Lemma 4.2. For a nearest-neighbor interaction, in detail Γ has to obey the conditions
(4.11b–e) but not (4.11a). Hence for systems with one mode per site a deviation from
symplectic transformations is possible by choosing e.g. Γ

+

0
Γ

0
6= 1.

Proof: Compliance with case I was already considered above and corresponds to
finite support for Γ, i.e. Γ(x) = 0 for x /∈ N . For case II to apply, the dissipation
form C from (4.34) has to vanish due to (4.35) if the supports supp ξ and supp η are
separated by M,

(supp ξ + M) ∩ supp η = ∅ =⇒ C(ξ, η) = g(ξ, η) + iσ(ξ, η) − iσ(Γ
T
ξ,Γ η) = 0 .

Since we assume 0 ∈ M, this implies supp ξ ∩ supp η = ∅ and σ(ξ, η) ≡ 0. As Γ and
g are real-valued, the condition can be split into real and imaginary parts

g(ξ, η) = 0 and σ(Γ
T
ξ,Γ η) = 0 , (4.37)
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respectively, which have to hold true independently of each other. Hence require
g(x) = 0 for x /∈ M. Recall that for causality, g(x) = 0 for x /∈ N −N is necessary
in any case, see above. If N − N ⊆ M, even σ(ΓT ξ,Γ η) ≡ 0 and the condition is
satisfied independently of Γ. Otherwise, however, (4.37) imposes restrictions on Γ
also, which are obtained in the same way as for (4.10):

∀∆ ∈ (N −N ) \M :
∑

x∈N
Γ

+

x Γ∆+x = 0 . (4.38)

�

While the combination �I+II� of cases I and II with M = {0} thus assures that
the global rule can be inferred from the local rule, a concatenation of two such
systems is in general not of this type. Hence they comply with property (i), but not
with (ii). The concatenation of two channels T1 and T2 from (4.32) determined by
transformations Γi(x) with support on Ni and noise forms gi(x) with support on
Mi for i = 1, 2 results in a combined dynamics T according to

T
(
W(ξ)

)
= T2

(
T1(W(ξ))

)
= W(Γ2 Γ1 ξ) exp

(
−g2(Γ1 ξ,Γ1 ξ)/4 − g1(ξ, ξ)/4

)

= W(Γ ξ) exp
(
−g(ξ, ξ)/4

)
, where Γ = Γ2 Γ1 and g = g1 + Γ

T

1 g2 Γ1 .

The support of Γ and g can be found from the respective translationally invariant
functions:

(Γ2 Γ1)(x) =
∑

z∈ZΓ2(x− z) · Γ1(z) =⇒ N = N1 + N2 ,

g(x) = g1(x) +
∑

y,z∈ZΓ
T

1 (y − x) · g2(y − z) · Γ1(z)

=⇒ M = M1 ∪ (M2 + N1 −N1) .

This implies that two systems of type I+II with Mi = Ni−Ni can be concatenated
to yield a system with the same characteristics since M = (N1 + N2) − (N1 + N2).
However, for Mi = {0} an additional condition on g2 is necessary. In this case,
gi(x) = δ(x) gi(0) due to the restricted support of gi. Hence

g(x) = δ(x) g1(0) +
∑

y,z∈ZΓT

1 (y − x) · δ(y − z) g2(0) · Γ1(z)

= δ(x) g1(0) +
∑

y∈Z Γ
T

1 (y − x) · g2(0) · Γ1(y) .

To get g(x) = δ(x) g(0), we need

∑

y∈ZΓ
T

1 (y − x) · g2(0) · Γ1(y) = δ(x) g′2(0) (4.39)

with a suitable g′2(0) such that g and Γ obey the condition (4.34). However, there
exist systems of type I+II with M = {0} which cannot meet this condition. As a
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4.3 Irreversible Gaussian qca

simple and relevant example, consider the reversible qca from Section 4.2.4 plus
uncorrelated noise and concatenate two steps of this dynamics. It turns out on
inspection that the noise form g2 does not fulfill the condition (4.39) if the coupling
constant f is nonzero.

For qcas of type IV, concatenation is possible by design; since the ancilla systems
are used locally, concatenation concerns only the reversible part T1. Unfortunately,
we do not have a complete characterization of all Gaussian qcas of this type. How-
ever, if the reversible qca and the ancilla state are Gaussian, the irreversible qca is
Gaussian, too, and its parameters can be derived easily. Consider a linear chain of
n modes per site plus local ancilla systems with m modes each. We write the trans-
lationally invariant symplectic transformation S which determines T1 according to
(4.7) in block decomposition as

Sx =

(
Ax Bx
Cx Dx

)
=⇒ Ŝ(k) =

(
Â(k) B̂(k)

Ĉ(k) D̂(k)

)
,

where Ax, Âk are 2n × 2n matrices, Dx, D̂(k) have dimension 2m × 2m and Bx,
B̂(k), CT

x , ĈT(k) are 2m× 2n matrices. For the on-site part S0, A acts on the chain
site, D on the ancilla system and B, C introduce local correlations between both.
The correlation function of the product state of the ancilla systems is γ′x = δ(x) γ′0,
which is a real, symmetric 2m× 2m matrix. Then the following holds:

Lemma 4.12:
A reversible Gaussian qca with dynamics T1 on n + m modes together with a
fixed Gaussian state for all ancilla systems implements an irreversible Gaussian
qca T of type IV. In particular, with the above notation, T is determined by a
linear transformation Γ and a noise form g according to (4.32) which have Fourier
transforms

Γ̂(k) = Â(k) and ĝ(k) = ĈT(k) γ̂′(k) Ĉ(k).

Proof: The reversible Gaussian qca T1 acts on Weyl operators according to (4.7)
by applying a translationally invariant symplectic transformation S to the phase
space argument,

T1(Wξ) = WS ξ .

The overall dynamics T of the irreversible qca attaches to each cell an ancilla sys-
tem in state ρ0 with correlation function γ′ and transforms the combined correlation
function γx ⊕ γ′x with S:

γx 7→
∑

y,z∈Z[ST

y · (γz ⊕ γ′z) · Sx−y+z
]
11
,

where [M ]11 is the upper left block with dimensions 2n×2n for a 2(n+m)×2(n+m)
matrix M . Under Fourier transform, the mapping is

γ̂(k) 7→
[
ŜT(k) ·

(
γ̂(k) ⊕ γ̂′(k)

)
· Ŝ(k)

]

11
.
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4 Gaussian quantum cellular automata

After carrying out the reduction, this becomes

γ̂(k) 7→ ÂT(k) · γ̂(k) · Â(k) + ĈT(k) · γ̂′(k) · Ĉ(k). (4.40)

The output state of an irreversible Gaussian qca with transformation Γ and noise
form g is given in (4.33) and corresponds to a transformation of the correlation
function as

γ̂(k) 7→ Γ̂T(k) · γ̂(k) · Γ̂(k) + ĝ(k). (4.41)

Comparing (4.40) and (4.41) yields for the irreversible qca T :

Γ̂(k) = Â(k) and ĝ(k) = ĈT(k) γ̂′(k) Ĉ(k).

Indeed, g is real and symmetric as required, i.e. ĝ(k) = −ĝ(−k) = ĝ(k), because C
is real and γ′ is real and symmetric. �

So, while reversible Gaussian qcas with local ancillas can implement irreversible
Gaussian qcas of type IV, the converse is unfortunately not clear: are all irreversible
Gaussian qcas of type IV? The answer to this question is an important step towards
the definition of Gaussian as well as general irreversible qcas.
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5 Gaussian private quantum channels

A private quantum channel is a quantum analog of the classical one-time pad en-
cryption1 or Vernam cipher: it uses a classical random key to encrypt quantum infor-
mation. This private information can be exchanged over a public quantum channel
if an eavesdropper is not able to extract information from the transmitted states.
This is true if the output states of the encryption scheme resemble a randomized
state which can only be decrypted if the classical key is known. Besides providing a
cryptographic primitive, private quantum channels are, according to [94], conceptu-
ally connected with locc data hiding, locking of classical correlations and remote
state preparation.

To encrypt the i-th input state in a sequence, the sender, conventionally called
Alice, applies a unitary operation chosen from a publicly known, finite set E =
{Uk}k=1,2,...,K according to the i-th element of the key sequence {ki}i=1,2,... labeling
the operations. The resulting state Uki

ρU∗
ki

is sent to the receiver, Bob, who applies
the inverse transformation U∗

ki
to recover ρ. The only additional information possibly

needed for decryption is the position i in the key sequence which could be safely
sent in plain text along with the encrypted quantum state. Each element of the key
sequence is used only once, hence the protocol resembles the classical one-time pad
for quantum states. For an eavesdropper, called Eve, without knowledge about the
key, the encryption appears to be a randomization of ρ with respect to the set E , i.e.
the channel T from Alice to Eve in the Schrödinger picture is a �shuffle� applied to
the input state,

T (ρ) =

K∑

k=1

pk UkρU
∗
k ,

where pk denotes the a priori frequencies of the label k in the key sequence. If Eve
cannot distinguish the output of T for different input states, the protocol is secure.
Apart from an explicit construction of the set of encryptions E it is interesting to de-
termine the number of operations Uk needed to encrypt a certain set of input states.
The binary logarithm of this gives the number of classical bits needed to encrypt
e.g. a qubit. Relaxing the security condition to an arbitrarily small distinguishability
ǫ > 0 (to be defined below) can significantly lower the number of operations needed.

For finite-dimensional quantum systems, these questions have been addressed e.g.
in [90, 91, 92, 93]. In particular, for the ideal encryption of d-level systems a num-
ber of d2 unitaries is necessary and sufficient to completely randomize any input
state, i.e. to map it to the maximally mixed state 1/d. Furthermore, Hayden et al.

1 In this scheme a classical message is encrypted with a random key of the same length (by
combining both sequences bit for bit with the �exclusive or� operation xor). If the key is truly
random and used only once, the cipher is unbreakable.
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5 Gaussian private quantum channels

have shown in [94] that near-perfect encryption can be achieved with order of d log d
random unitary operations.2 These results have been complemented in [95] by Am-
bainis and Smith with a deterministic protocol. An investigation of private quantum
channels for continuous-variable systems has been started in [96]. Contrary to the
finite-dimensional case there is no ideal encryption due to the lack of a maximally
mixed state, so one has to rely on approximate encryption. Our aim is to rigorously
perform the related discussion for the encryption of coherent input states where the
unitary operations are shifts in phase space occurring with probabilities according to
a classical Gaussian weight function. On the one hand, the Gaussian weight function
renders the channel T between Alice and Eve quasi-free and the randomized states
are Gaussian, too. On the other hand, this weight function assures that the twirl3

over the noncompact group of all phase space translations exists in the first place.
This randomization introduces classical noise which can be made large enough to
render two coherent input states arbitrarily indistinguishable by inducing a substan-
tial overlap between the resulting output states; see Fig. 5.1 for illustration. As a
measure of indistinguishability, we choose the trace norm4 distance of the output
states at Eve’s end of the channel, ‖T (ρ) − T (ρ′)‖1. This quantity has the advan-
tage of an operational meaning since it equals the maximal difference in expectation
values of any measurement performed on these states [1].

However, this scheme has several inherent problems. First, the amount of noise
to be added depends on the input state; heuristically, the larger its amplitude, the
larger the variance of the Gaussian weight function has to be. To keep the protocol
as general as possible, this requires a bound on the amplitude of the input coherent
states |α〉〈α|, i.e. a bound on their occupation number expectation value and hence
on their energy5 E = |α|2/2 ≤ Emax. Second, encryption with a continuous set
of phase space displacements would require an infinite key for each input state in
order to specify the phase space vector precisely. This problem can be overcome by
restricting the continuous integral for randomization to a finite area of phase space,
e.g. to a hypersphere with radius a, and approximating it with a finite sum over
a discrete set of displacements. Finally, since the encryption is only near-perfect,
the output state might be distinguishable up to a security parameter ǫ. A general
choice for the protocol with approximate security is whether it should be a �block�
2 If output states are required to differ by at most ǫ > 0 in trace norm distance, approximately

(d log d)/ǫ2 unitaries are needed. The operators can be chosen randomly, since the proof shows
that almost any such set of encryption operations yields the desired security.

3 A twirl is the averaging over all elements of a group, i.e. in our case the phase space displace-
ments,

Z

dξ e−ξ
T·G·ξ/4 Wξ ρW∗

ξ .

4 The trace norm ‖X‖1 of an operator X is defined as ‖X‖1 = tr|X| where |X| =
√
X∗X is the

modulus of X.
5 The energy contained in a mode in a state ρ equals the occupation number expectation value in

that state scaled with the characteristic energy of ~ω of the associated harmonic oscillator with
frequency ω. We assume that the frequencies of all modes are the same. This would be the case
if all modes originate from the same laser mode, but states of this mode might be distinguished
e.g. by their temporal ordering.
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Figure 5.1:
Illustrating the encryption of single-mode coherent states. Two coherent states
|α〉〈α| and |β〉〈β|, described by their amplitudes and minimum uncertainty quan-
tum noise and depicted as �lollipop sticks�, are effectively encrypted by adding
isotropic classical Gaussian noise. This enlarges the uncertainty from the small cir-
cle for γ = 1 (solid line) to medium and large noise with γ > 1 (dotted line) and
γ ≫ 1 (dashed line), respectively. With growing overlap area of the uncertainty
disks, the states become less distinguishable.

or a �stream� cipher, i.e. whether to encrypt blocks of input states or each input
state individually, possibly with additional classical correlations between consecutive
states. We consider individual encryption but require that the protocol conceals
correlations spanning N input states. This includes attacks on the protocol in which
Eve performs joint quantum operations on blocks of N output states.

Our task is hence to determine the required key length for a private quantum
channel encrypting coherent states with correlations over N input states and max-
imum energy expectation value Emax such that any two output states at Eve’s end
differ by at most ǫ in trace norm distance. All other parameters will be fixed accord-
ingly. To assess the security of the protocol, we do not restrict the operations Eve is
allowed to perform. However, we assume that she has access only to the transmitted
states, neither to the classical key nor to Alice’s or Bob’s systems or to the original
input states.

A quantum device operating according to this scheme could be useful as a building
block of a distributed quantum computer using Gaussian quantum systems, e.g. a
laser mode, for the transmission of quantum information. Our version of the proto-
col requires only generic resources (public quantum channel and classical, discrete
random key sequence) and does not make particular assumptions about the input
states. (While the quantitative security promise requires the knowledge of global
parameters about the input states, their values can be arbitrary and thus do not im-
pose restrictions on the set of input coherent states.) It also does not rely on block
encoding and can thus send each input state as it arrives. In this sense, the device
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5 Gaussian private quantum channels

would be modular and could be readily attached to the computing units. In addi-
tion, our encryption operations are deterministic and implicitly defined, reducing
the communication overhead needed to establish the protocol.

We start by formally setting up the continuous encryption as well as cutoff and
discrete approximations as quantum channels. After proving the principal security
of the continuous encryption, we estimate the precision of the key for the discrete
scheme. For correlated multi-mode coherent input states the result can be obtained
only implicitly. This is made explicit for independent one-mode coherent states.

The material presented in this chapter is currently being prepared for publication [c].
We would like to thank Kamil Brádler for bringing the topic to our attention as well
as for stimulating discussion.

5.1 Setup

This section defines the encryption scheme with continuous displacement formally
and introduces its discrete approximation. The security proof will be given in the next
section. In the following, all channels will be considered in the Schrödinger picture,
i.e. operating on states rather than observables. However, we will customarily write
T (ρ) without a star at the index position of T .

To encode an input quantum state ρ, Alice chooses the phase space displacement
vector ξk matching the first unused element from the key sequence {ki}i=1,2,... and
applies the corresponding shift to get Wξk

ρW∗
ξk

, which she sends to Bob over a public
quantum channel. Bob can reverse the encoding by applying the inverse shift −ξk. A
vector ξ is supposed to occur with probability exp

(
−ξT ·G ·ξ/4

)
in the key sequence,

whereG ≥ 0 is the classical covariance matrix of the Gaussian distribution. If Eve has
no further knowledge about the sequence, a state T (ρ) she might intercept appears to
her as a classical mixture of all possible displacements of the input state, weighted
with the Gaussian distribution. The protocol should be secured against collective
attacks on blocks of N states. Hence we consider the randomized output T (ρ) of a
tensor product of N input coherent states of f modes each,

T (ρ) =
1

c

∫
dξ e−ξ

T·G·ξ/4 Wξ ρW∗
ξ , (5.1)

where ξ is understood to be a phase space vector ofNf modes, and the normalization
constant c assures that tr

[
T (ρ)

]
= tr[ρ]:

c =

∫
dξ e−ξ

T·G·ξ/4 = (4π)Nf/
√

detG .

Classical correlations introduced by Alice between consecutive input states are de-
scribed by a classical covariance matrix G ≥ 0 with nonzero off-diagonal blocks.
However, for this first analysis, we will not consider the effect of such correlations,
but take G = 1/g with g ≫ 1. The randomized state T (ρ) is described by its
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characteristic function

χrand(ξ) = tr
[
T (ρ)Wξ

]
=

1

c

∫
dη e−η

T·G·η/4 tr
[
Wη ρW∗

η Wξ

]

=
1

c

∫
dη e−η

T·G·η/4 eiσ(η,ξ) χin(ξ)

= exp
(
−ξT · (σT

G−1 σ) · ξ/4
)
χin(ξ).

In the Heisenberg picture, T maps Weyl operators to multiples of themselves, so it is
a completely positive map: Wξ 7→ Wξ exp

(
−ξT·(σTG−1 σ)·ξ/4

)
, where σTG−1 σ ≥ 0

(cf. Section 2.3). Since the factor c assures normalization, it is even a channel. A
Gaussian input state with covariance matrix γ and displacement α is transformed
into a Gaussian state with characteristic function

χrand(ξ) = exp
(
−ξT · (γ + σ

T
G−1 σ) · ξ/4 − iσ(ξ, α)

)
, (5.2)

i.e. the covariance matrix is changed according to γ 7→ γ + σTG−1 σ, but the (av-
erage) displacement is not affected. This is visualized in Fig. 5.1: an initial coherent
state |α〉〈α| is represented by a �lollipop stick�, where amplitude and phase are de-
picted by the vector α and the uncertainty is indicated by the circle corresponding
to the covariance matrix γ = 1 (cf. Section 2.2); adding classical, uncorrelated Gaus-
sian noise with isotropic variance g, i.e. with covariance matrix G = 1/g, enlarges
the uncertainty by σT G−1 σ = g 1 and hence the radius of the circle by g (the dotted
and dashed circles for medium and larger g). Since the displacement is not affected,
these circles are centered around the endpoint of α.

In view of the discretization we define two variants of the above channel, a cutoff
version T[ ] where the integration is restricted to phase space translations with abso-
lute value |ξ| ≤ a and its discretized counterpart TΣ, which replaces the integration
by a summation over a finite set of phase space displacements {ξk}k=1,...,K suitable
to approximate the integral:

T[ ](ρ) =
1

c[ ]

∫

|ξ|≤a

dξ e−ξ
T·G·ξ/4 Wξ ρW∗

ξ , (5.3)

TΣ(ρ) =
1

cΣ

K∑

k=1

e−ξ
T
k ·G·ξk/4 Wξk

ρW∗
ξk
, (5.4)

where c[ ] and cΣ provide normalization. The set {ξk} and the cutoff radius a remain
to be determined below. For convenience, we introduce a short-hand notation for
randomized coherent input states |α〉〈α| of Nf modes,

T (α) = T
(
|α〉〈α|

)

and likewise for T[ ](α) and TΣ(α). Furthermore, we can write T (α) = Wα T (0)W∗
α

for all three flavors of T .
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5 Gaussian private quantum channels

Repeating our task in this notation, we want to ensure that any two discretely
randomized tensor products TΣ(α) and TΣ(β) of N coherent input states with f
modes each are nearly indistinguishable, ‖TΣ(α) − TΣ(β)‖1 < ǫ, if they obey the
energy constraint |α|2, |β|2 ≤ 2NfEmax, i.e. if each single mode contributes at most
energy Emax.

5.2 Security estimation

Since the relevant distinguishability ‖TΣ(α) − TΣ(β)‖1 is not easily accessible, we
use the triangle inequality and derive a bound in terms of the trace norm distances
‖TΣ(α)−T[ ](α)‖1 and ‖T[ ](α)−T (α)‖1, which determine the quality of the involved
approximations and can thus be bounded, and ‖T (α)−T (β)‖1, which can be bounded
by the relative entropy distance. These quantities are introduced by applying the
triangle inequality for the trace norm:

∥∥TΣ(α) − TΣ(β)
∥∥

1
≤ ‖TΣ(α) − T[ ](α)‖1 + ‖TΣ(β) − T[ ](β)‖1 + ‖T[ ](α) − T[ ](β)‖1

≤ ‖TΣ(α) − T[ ](α)‖1 + ‖TΣ(β) − T[ ](β)‖1 + ‖T[ ](α) − T (α)‖1

+ ‖T[ ](β) − T (β)‖1 + ‖T (α) − T (β)‖1 .

(5.5)

We proceed by deriving bounds for each term. The trace norm distance of two
density operators ρ, ρ′ can be estimated by the relative entropy distance S(ρ ‖ ρ′) =
tr[ρ (log ρ− log ρ′)] between the operators [97, Thm. 5.5]. This is used to establish

(
‖T (α) − T (β)‖1

)2 ≤ 2S
(
T (α) ‖ T (β)

)
. (5.6)

The exponential form (2.34a) for the density operator of a Gaussian state allows to
express the relative entropy in terms of the symplectic eigenvalues γn of its covariance
matrix:

S
(
T (α) ‖ T (β)

)
= tr

[
T (α)

(
logT (α) − logT (β)

)]

= tr
[(
T (0) − T (α− β)

)
logT (0)

]
since T (α) = Wα T (0)W∗

α

=
1

2

2Nf∑

i,j=1

M ′
i,j tr

[(
T (0)− T (α− β)

)
R′
iR

′
j

]
by (2.35)

=
1

2

2Nf∑

i,j=1

M ′
i,j

(
tr
[
T (0)R′

iR
′
j

]
− tr

[
T (α− β)R′

iR
′
j

])

=
1

2

2Nf∑

i,j=1

M ′
i,j

(
tr
[
T (0)R′

iR
′
j

]
−

tr
[
T (0)

(
R′
i − (α′ − β′)i

) (
R′
j − (α′ − β′)j

)])
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= −1

2

2Nf∑

i,j=1

M ′
i,j (α′ − β′)i (α

′ − β′)j ,

where M ′ =

Nf⊕

n=1

12 log

(
γn − 1

γn + 1

)
.

The last identity is due to the fact that T (α), T (β) and T (0) all possess the same
covariance matrix γ = 12Nf + σTG−1 σ by (5.2) and that T (0) is centered around
zero, i.e. tr[T (0)R′

k] = 0 for all field operators R′
k with k = 1, . . . , 2Nf . Recall from

Section 2.2.2 that the prime indicates the basis in which the covariance matrix is
diagonal. For isotropic, uncorrelated Gaussian noise with G = 12Nf/g this yields
γ = (1 + g)12Nf with symplectic eigenvalues γn = 1 + g and thus

S
(
T (α) ‖ T (β)

)
= log(1 + 2/g) |α− β|2/2 ≤ 4 log(1 + 2/g)NfEmax .

Combining this estimate with (5.6) yields the bound
∥∥T (α) − T (β)

∥∥
1
≤ 2
√

2 log(1 + 2/g)NfEmax , (5.7)

which proves the functioning of the continuous randomization in the first place,
since both output states can be made arbitrarily indistinguishable from each other
by choosing g large enough.

As a first step towards the discrete protocol, we approximate the ideal random-
ization (5.1) by the cutoff integral (5.3). To estimate the error ‖T[ ](α) − T (α)‖1 we
compare both channels with the nonnormalized, completely positive map

c[ ]
c T[ ](α):

∥∥T[ ](α) − T (α)
∥∥

1
≤
∥∥T[ ](α) − c[ ]

c T[ ](α)
∥∥

1
+
∥∥ c[ ]
c T[ ](α) − T (α)

∥∥
1
. (5.8)

Both terms will be estimated by the same bound for the difference between the full
and the cutoff classical integral:

∥∥T[ ](α) − c[ ]
c T[ ](α)

∥∥
1

= 1
c |c− c[ ]|

∥∥T[ ](α)
∥∥

1

=
1

c

∣∣∣
∫

dξ e−ξ
T·G·ξ/4 −

∫

|ξ|≤a

dξ e−ξ
T·G·ξ/4

∣∣∣

since
∥∥T[ ](α)

∥∥
1

= 1

=
1

c

∫

|ξ|≥a

dξ e−ξ
T·G·ξ/4 , (5.9a)

∥∥ c[ ]
c T[ ](α) − T (α)

∥∥
1

=
∥∥∥

1

c

∫

|ξ|≥a

dξ e−ξ
T·G·ξ/4 Wξ |α〉〈α|W∗

ξ

∥∥∥
1

=
1

c

∫

|ξ|≥a

dξ e−ξ
T·G·ξ/4 (5.9b)

since
∥∥Wξ |α〉〈α|W∗

ξ

∥∥
1

= 1.
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This integral is estimated for isotropic, uncorrelated Gaussian noise with uniform
covariance g as follows:

1

c

∫

|ξ|≥a

dξ e−ξ
T·G·ξ/4 =

(
22Nf−1 gNf (Nf − 1)!

)−1

∞∫

a

dr r2Nf−1 e−r
2/(4g)

by introducing polar coordinates and
integrating over angular coordinates

=
(
22Nf gNf (Nf − 1)!

)−1

∞∫

a2

dt tNf−1 e−t/(4g)

substituting t = r2

≤
(
22Nf gNf (Nf − 1)!

)−1

∞∫

a2

dt e−t/(8g) (5.10)

if a2 is large enough to ensure that
tNf−1 e−t/(4g) ≤ e−t/(8g) for t ≥ a2

=
(
22Nf−3 gNf−1 (Nf − 1)!

)−1
e−a

2/(8g) . (5.11)

Note that for the single-mode case Nf = 1 the inequality in the second to last
line becomes an equality and there is no additional condition on a. Otherwise, the
condition reads a2 ≥ t0 , where t0 is the larger, real solution of t = 8 g (Nf −1) log t.
This solution exists, if 8 g (Nf − 1) ≥ e, which we assume to be true in the case
Nf ≥ 2 due to g ≫ 1. Combining Eqs. (5.8), (5.9) and (5.11), we arrive at the
bound ∥∥T[ ](α) − T (α)

∥∥
1
≤
(
22Nf−4 gNf−1 (Nf − 1)!

)−1
e−a

2/(8g) . (5.12)

In the next step, the cutoff integral (5.3) over a hypersphere of the phase space is
replaced by a summation (5.4) over a discrete, regular grid of hypercubes (cf. Fig. 5.2).
Each cell is labeled by a positive integer k and described by a corner point ξk and
the characteristic function of a set, χk(ξ) = 1 if ξ belongs to the k-th hypercube and
zero otherwise. The length δ of the diagonal of the hypercubes yields the maximal
distance |ξk − ξ| ≤ δ between a point in phase space and the corner of the cell in
which it is situated. The vectors ξk will constitute the set of encryption operations.
The error introduced is estimated as follows:

∥∥TΣ(α) − T[ ](α)
∥∥

1
=
∥∥∥

1

cΣ

∫

|ξ|≤a

dξ
K∑

k=1

χk(ξ) e−ξ
T
k ·G·ξk/4 Wξk

|α〉〈α|W∗
ξk

−

1

c[ ]

∫

|ξ|≤a

dξ e−ξ
T·G·ξ/4 Wξ |α〉〈α|W∗

ξ

∥∥∥
1
,
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x

p

δ

ξk ξ

Figure 5.2:
Depicting the discretization TΣ (5.4) of the cutoff integral in T[ ] (5.3) for a single
mode (showing the upper right quadrant of phase space only). The highlighted
cell is indicated by the positive integer k and described by the vector ξk pointing
to its lower left corner. This ensures that |ξk| ≤ |ξ| for all phase space points ξ
which lie in cell k, i.e. for which the characteristic function χk(ξ) is nonzero. The
length δ of the dashed diagonal bounds the distance |ξk − ξ| ≤ δ between ξ and
the corresponding cell vector.

where the summation in the definition (5.4) of TΣ was formally recast into an inte-
gration using the characteristic function χk(ξ) of the grid cells;

≤
∥∥∥

1

cΣ

∫

|ξ|≤a

dξ
K∑

k=1

χk(ξ)
(
e−ξ

T
k ·G·ξk/4 − e−ξ

T·G·ξ/4) Wξk
|α〉〈α|W∗

ξk

∥∥∥
1
+

∥∥∥
(

1

cΣ
− 1

c[ ]

) ∫

|ξ|≤a

dξ e−ξ
T·G·ξ/4

K∑

k=1

χk(ξ)Wξk
|α〉〈α|W∗

ξk

∥∥∥
1
+

∥∥∥
1

c[ ]

∫

|ξ|≤a

dξ e−ξ
T·G·ξ/4

( K∑

k=1

χk(ξ) Wξk
|α〉〈α|W∗

ξk
−Wξ |α〉〈α|W∗

ξ

)∥∥∥
1

by double invocation of the triangle inequality;

≤ 1

cΣ

∫

|ξ|≤a

dξ
∣∣∣e−ξ

′T
k ·G·ξ′k/4 − e−ξ

T·G·ξ/4
∣∣∣
∥∥∥Wξ′

k
|α〉〈α|W∗

ξ′
k

∥∥∥
1
+

∣∣∣∣
1

cΣ
− 1

c[ ]

∣∣∣∣
∫

|ξ|≤a

dξ
∣∣∣e−ξ

T·G·ξ/4
∣∣∣
∥∥∥Wξ′

k
|α〉〈α|W∗

ξ′
k

∥∥∥
1
+

1

c[ ]

∫

|ξ|≤a

dξ
∣∣∣e−ξ

T·G·ξ/4
∣∣∣
∥∥∥Wξ′

k
|α〉〈α|W∗

ξ′
k
−Wξ |α〉〈α|W∗

ξ

∥∥∥
1
,

(5.13)

where the integrations are performed piecewise over the grid cells in such a way that
ξ′k ≡∑k χk(ξ) ξk effectively denotes the vector ξk of that cell to which ξ belongs.
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Since ‖Wξ′
k
|α〉〈α|W∗

ξ′
k
‖1 = 1, the first term in (5.13) can be bounded in terms of

the classical integral alone. We assume isotropic, uncorrelated Gaussian noise with
G = 12Nf/g, perform the integration piecewise over the grid cells and bound the
integrand as

e−ξ
T
k ·G·ξk/4 − e−ξ

T·G·ξ/4 = e−ξ
2
k/(4g) − e−ξ

2/(4g)

= e−ξ
2
k/(4g)

(
1 − e−(ξ2−ξ2k)/(4g)

)

≤
(
1 − e−|ξ2−ξ2k|/(4g)

)

≤
(
1 − e−aδ/(2g)

)
(5.14)

if the integration domain is restricted to |ξ| ≤ a and the hypercubes constituting the
grid are identified by vectors ξk such that |ξk| ≤ |ξ| and |ξ − ξk| ≤ δ (see Fig. 5.2),
implying that |ξ2−ξ2k| = (ξ+ξk)(ξ−ξk) ≤ 2aδ. Note that the scheme sketched in the
caption of Fig. 5.2 requires that one of the cells is described by the vector 0; together
with the cutoff radius a and the diagonal δ of the hypercubes, this already fixes the set
of phase space displacements {ξk}k=1,...,K . Hence it is not necessary to communicate
this set between sending and receiving parties. The integration introduces a factor of
(a2 π)Nf/(Nf)!, which is the volume of a hypersphere of radius a in dimension 2Nf .

The second term can be reduced to the case above. Due to ‖Wξ′
k
|α〉〈α|W∗

ξ′
k
‖1 = 1

again, it suffices to consider
∣∣∣∣

1

cΣ
− 1

c[ ]

∣∣∣∣ c[ ] =
1

cΣ
|c[ ] − cΣ|

≤ 1

cΣ

∫

|ξ|≤a

dξ
∣∣∣e−
(

P

k χk(ξ) ξk

)T
·G·
(

P

k χk(ξ) ξk

)
/4 − e−ξ

T·G·ξ/4
∣∣∣

≤ 1

cΣ

(a2 π)Nf

(Nf)!

(
1 − e−aδ/(2g)

)
(5.15)

by (5.14). This is in fact the same bound as for the first term.
In order to derive a bound for the third term in (5.13), we express the trace norm

distance of pure states by their fidelity [1, Ch. 9],
∥∥|ψ〉〈ψ|−|φ〉〈φ|

∥∥
1

= 2
√

1 − |〈ψ|φ〉|2,
and find for any given value of ξ that

∥∥Wξk
|α〉〈α|W∗

ξk
−Wξ |α〉〈α|W∗

ξ

∥∥
1

= 2
(
1 − |〈α|W∗

ξk
Wξ |α〉|2

)1/2
=

2
(
1 − exp(−|ξ − ξk|2/2)

)1/2 ≤ 2
√

1 − e−δ2/2 , (5.16)

where ξk identifies the hypercube in which ξ is situated and the length δ of its
diagonal is the maximal distance |ξ − ξk|. This already is the bound for the third
term of (5.13), since the remaining integral is normalized by c[ ]. Combining the
estimations (5.15) and (5.16) with (5.13) yields the bound

∥∥TΣ(α) − T[ ](α)
∥∥

1
≤ 2

cΣ

(a2 π)Nf

(Nf)!

(
1 − e−aδ/(2g)

)
+ 2
√

1 − e−δ2/2

≤ 2
c

(a2 π)Nf

(Nf)!

(
1 − e−aδ/(2g)

)
+ 2
√

1 − e−δ2/2 , (5.17)
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where in the second line we have replaced the factor 1/cΣ ≤ 1/c for convenience.6

In order to guarantee the security condition ‖TΣ(α)−TΣ(β)‖1 ≤ ǫ we require that
every term in the estimation (5.5) contributes at most ǫ/5. This is accomplished
through the above bounds (5.7), (5.12) and (5.17) for all coherent states |α〉〈α| and
|β〉〈β|. Additionally, we use the estimations log(1 + x) ≤ x and 1 − e−x ≤ x for all
x ≥ 0 to obtain:

∥∥T (α) − T (β)
∥∥

1
≤ 4
√
NfEmax/g ≤ ǫ/5 , (5.18a)

∥∥TΣ(α) − T[ ](α)
∥∥

1
≤ 2

c
(a2 π)Nf

(Nf)!
aδ
2g +

√
2 δ ≤ ǫ/5 , (5.18b)

∥∥T[ ](α) − T (α)
∥∥

1
≤
(
22Nf−4 gNf−1 (Nf − 1)!

)−1
e−a

2/(8g) ≤ ǫ/5 , (5.18c)

subject to the additional condition from (5.10) that for Nf ≥ 2

a2 ≥ t0 where t0 is the larger, real solution of t = 8 g (Nf − 1) log t . (5.18d)

From these inequalities qualitative conditions on the parameters can be readily de-
duced: (5.18a) is used to determine a large value for g; (5.18c) yields a large value of a
in accordance with (5.18d); both terms of (5.18b) require small δ. Unfortunately, an
explicit bound in the general case cannot be given for a. The first condition (5.18a)
imposes

g ≥ 400NfEmax/ǫ
2. (5.19)

This bound is positive since ǫ, Emax ≥ 0; as is to be expected, g grows with Emax and
with shrinking security parameter ǫ. The third inequality (5.18c) formally requires

a ≥
√
−8 g log(ǫ gNf−1 22Nf−4 (Nf − 1)!/5) .

If the argument of the logarithm is larger than 1, then (5.18c) is true for all a ≥ 0
and a is governed by the additional condition (5.18d). We expect this to hold true
for all practical applications, except for Nf = 1. A bound on δ in terms of g and a
can be derived from (5.18b) together with c = (4πg)Nf :

δ ≤ ǫ
5

(
a2Nf+1 g−Nf−1 22Nf/n! +

√
2
)−1

.

It remains to compute the number K of hypercubes for the discretization from
the volume ratio between the hypersphere with cutoff radius a and a hypercube with

6 Note that cΣ ≥ c by the arguments leading to (5.14). With ξ′k ≡ P

k χk(ξ) ξk as the effective
ξk for given ξ and G = 1/g,

cΣ − c = (cΣ − c[ ]) + (c[ ] − c) =

Z

|ξ|≤a

dξ
`

e−ξ′
T

k ·G·ξ′k/4 − e−ξ
T·G·ξ/4

´

+

Z

|ξ|≥a

dξ e−ξ
T·G·ξ/4

=

Z

|ξ|≤a

dξ e−ξ2
k/(4g)

`

1 − e−(ξ2−ξ2
k)/(4g)

´

+

Z

|ξ|≥a

dξ e−ξ2/(4g) ≥ 0

since both integrands are positive.
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diagonal length δ (cf. Fig. 5.2). In dimension 2Nf , the volume of the hypersphere is
Vsph = (a2 π)Nf/(Nf)! . The hypercubes have edge length d =

√
δ/(2Nf) and thus

volume Vcub = d2Nf =
(
δ/(2Nf)

)2Nf
. Hence the number of cells in the discretization

amounts to

K =
Vsph

Vcub
=
(a
δ

)2Nf (4πN2f2)Nf

(Nf)!
. (5.20)

The hypercubes are labeled by the phase space vectors ξk, which also describe the
unitary displacement operators Wξk

in the randomization. Consequently, the num-
ber of hypercubes K is the number of encryption operations. Its binary logarithm
log2K is the number of classical bits needed to encrypt an input state under the
prescribed conditions. However, our derivation is based on input states which are
tensor products of N coherent states. Hence a single coherent input state is encoded
by (log2K)/N classical bits. To decrease the number of bits per input state, a small
value of a/δ is required. In principle, this could be achieved by the smallest value
possible for a and the largest for δ. Unfortunately, these are interlocked with each
other and g by Eq. (5.18b), which makes it problematic to determine the optimal
key rate even for this specific protocol.

Single mode

In order to provide a more explicit solution, we study the special case of Nf = 1,
i.e. single-mode input states without consideration of correlations. The conditions
(5.18) together with c = 4πg simplify to

∥∥T (α) − T (β)
∥∥

1
≤ 4
√
Emax/g ≤ ǫ/5 ,

∥∥TΣ(α) − T[ ](α)
∥∥

1
≤ δ
(
a3/(4g2) +

√
2
)
≤ ǫ/5 ,

∥∥T[ ](α) − T (α)
∥∥

1
≤ 4 e−a

2/(8g) ≤ ǫ/5 ,

while the condition (5.18d) is irrelevant. The conditions on g, a and δ thus read:

g ≥ 400Emax/ǫ
2,

a ≥ 40
√

2Emax ǫ
−1
(
log(20/ǫ)

)1/2
,

δ ≤ ǫ
5

(
a3/(4g2) +

√
2
)−1

.

The number K of encryption operations (5.20) depends on a/δ which is bounded by

a/δ ≥ 5
ǫ

(
a4/(4g2) +

√
2a
)

and hence computes as

K = 4π
(a
δ

)2

=
(
16
(
log(20/ǫ)

)2
+ 80

√
Emax ǫ

−1
(
log(20/ǫ)

)1/2)2

.
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5.3 Result and outlook

The calculations of the previous sections culminate in the following proposition and
provide its proof:

Proposition 5.1:
A private quantum channel with approximate security and discrete classical key
can be realized for coherent states by randomization with isotropic, uncorrelated
Gaussian noise. The protocol can be secured against all collective attacks, includ-
ing coherent schemes, involving a finite number of output states by considering
tensor products of input states. In particular, any two output states T (α), T (β) of
the randomization T for tensor products |α〉〈α|, |β〉〈β| of N coherent states with
f modes each are nearly indistinguishable in the sense of arbitrarily small trace
norm distance ‖T (α) − T (β)‖1 ≤ ǫ. This is accomplished by

⊲ addition of Gaussian noise with uniform covariance g ≥ g(ǫ, Emax, Nf),

⊲ restriction to a hypersphere of radius a ≥ a(g,Nf) in phase space and

⊲ discretization to K = K(a, δ,Nf) hypercubes with

⊲ diagonal δ ≤ δ(a, g,Nf),

where the exact values are established through Eqs.(5.18) and (5.20). The encryp-
tion scheme requires (log2K)/N classical bits of the discrete key per input state
encrypted. Moreover, the phase space displacements determining the encryption
operations are defined deterministically and implicitly. Hence no preparatory com-
munication between sending and receiving parties is needed apart from exchange
of the global parameters and the classical key.

For the simplest case of single-mode coherent states without consideration of cor-
relations, the following corollary summarizes the more explicit results derived above:

Corollary 5.2:
For Nf = 1 the protocol guarantees security up to ǫ, i.e. ‖T (α) − T (β)‖1 ≤ ǫ,
with the following parameter values:

⊲ g ≥ 400Emax/ǫ
2,

⊲ a ≥ 40
√

2Emax ǫ
−1
(
log(20/ǫ)

)1/2
,

⊲ δ ≤ ǫ
5

(
a3/(4g2) +

√
2
)−1

,

⊲ K =
(
16
(
log(20/ǫ)

)2
+ 80

√
Emax ǫ

−1
(
log(20/ǫ)

)1/2)2

.

The above parameter values have been derived for a specific protocol and with
the help of several estimations; this leaves plenty of space for optimization. A few
more �technical� improvements could be achieved by finding tighter estimations
for the various steps of the computation or by optimizing the contributions of the
terms in (5.18). A conceptual extension could include the application of correlated
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5 Gaussian private quantum channels

noise in the randomization, implemented by locc operations spanning consecutive
input states. Finally, the protocol could be considerably altered by employing non-
Gaussian noise, e.g. a flat distribution with finite cutoff radius, which would come
nearer a randomization onto a maximally mixed state. In any case, the results of
this chapter already prove that coherent states can be encrypted.
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[61] C. M. Caves and K. Wódkiewicz, �Fidelity of Gaussian channels�,
Open Sys. Inf. Dynamics 11, 309 (2004).

[62] G. Adesso and F. Illuminati, �Equivalence between Entanglement and the
Optimal Fidelity of Continuous Variable Teleportation�, Phys.Rev. Lett. 95,
150503 (2005).

[63] S. L. Braunstein, C. A. Fuchs and H. J. Kimble, �Criteria for
continuous-variable quantum teleportation�, J. Mod.Opt. 47, 267 (2000).

[64] S. L. Braunstein, C. A. Fuchs, H. J.Kimble and P. van Loock, �Quantum versus
classical domains for teleportation with continuous variables�,
Phys.Rev. A 64, 022321 (2001).

[65] F. Grosshans and P. Grangier, �Quantum cloning and teleportation criteria for
continuous quantum variables�, Phys.Rev. A 64, 010301 (2001).

[66] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J.Kimble and
E. S. Polzik, �Unconditional quantum teleportation�, Science 282, 706 (1998).

[67] W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor,
T. Symul and P. K.Lam, �Experimental investigation of continuous-variable
quantum teleportation�, Phys.Rev.A 67, 032302 (2003).

[68] T. C. Zhang, K.W. Goh, C. W. Chou, P. Lodahl and H. J.Kimble, �Quantum
teleportation of light beams�, Phys.Rev.A 67, 033802 (2003).

121



Bibliography

[69] N. Takei, H. Yonezawa, T. Aoki and A. Furusawa, �High-Fidelity Teleportation
beyond the No-Cloning Limit and Entanglement Swapping for Continuous
Variables�, Phys.Rev. Lett. 94, 220502 (2005).

[70] B. Schumacher and R. F. Werner, �Reversible quantum cellular automata�,
quant-ph/0405174 (2004).

[71] B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems

(Cambridge University Press, Cambridge/UK, 1998).

[72] E. R. Berlekamp, J.H. Conway and R. K. Guy, Winning Ways for your

mathematical plays (Academic Press, London/UK, 1982).

[73] R. Feynman, �Simulating physics with computers�, Int. J. Theor.Phys. 21, 467
(1982); reprinted in Feynman and Computation – Exploring the Limits of

Computers, edited by A. J. G. Hey (Perseus, Reading/MA, 1999).

[74] J. Watrous, �On one-dimensional quantum cellular automata�, in Proceedings

of ieee 36th Annual Foundations of Computer Science, 528 (ieee Press,
Los Alamitos/CA, 1995).

[75] W. van Dam, �A Universal Quantum Cellular Automaton�, in Proceedings of

PhysComp96, edited by T. Toffoli, M. Biafore and J. Leão, 323 (New England
Complex Systems Institute, Boston/MA, 1996); InterJournal manuscript 91
(1996).

[76] R. Raussendorf, �A quantum cellular automaton for universal quantum
computation�, Phys.Rev. A 72, 022301 (2005).

[77] R. Raussendorf, �Quantum computation via translation-invariant operations
on a chain of qubits�, Phys.Rev. A 72, 052301 (2005).

[78] D. J. Shepherd, T. Franz and R. F. Werner, �A universally programmable
Quantum Cellular Automaton�, quant-ph/0512058 (2005).

[79] K. G. H. Vollbrecht, E. Solano and J. I. Cirac, �Ensemble quantum computation
with atoms in periodic potentials�, Phys.Rev. Lett. 93, 220502 (2004).

[80] K. G. H. Vollbrecht and J. I. Cirac, �Reversible universal quantum computation
within translation invariant systems�, quant-ph/0502143 (2005).
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