J. E. N. 264

Sp ISSN 0081 - 3397

·-----

<u>.</u>

80

500

"ORBITALES" Programa de cálculo de Funciones de Onda para una Potencial Central Analítico

> ^{por} J. Yunta Carretero E. Rodríguez Mayquez

JUNTA DE ENERGIA NUCLEAR

MADRID, 1974

Toda correspondencia en relación con este trabajo debe dirigirse al Servicio de Documentación Biblioteca y Publicaciones, Junta de Energía Nuclear, Ciudad Universitaria, Madrid-3, ESPAÑA.

Las solicitudes de ejemplares deben dirigirse a este mismo Servicio.

Los siguientes descriptores se han seleccionado del Thesaure del INIS para describir las materias que con tiene este informe con vistas a su recuperación. Para más detalles consultese el informe IAEA-INIS-12 (INIS: Manual de Indisación) y IAEA-INIS-13 (INIS: Tesauro) publicado por el Organismo Internacional de Energía Atómica.

Se autoriza la reproducción de los resúmenes analíticos que aparecen en esta publicación.

Este trabajo se ha recibido para su impresión en Abril de 1973.

Depósito legal nº M-10706-1974

I.S.B.N. 500-6357-4

INDICE

٢

1.	INTRO	DUCCION	1
2.	METOD	DOS DE CALCULO UTILIZADOS EN EL PROGRAMA	5
	2.1.	Método de Numerov	6
	2.2.	Elección del intervalo de integración	7
	2.3.	Estimación del cero de la función f(r)	8
	2.4.	Condiciones iniciales de la solución ascendente ,	11
	2.5.	Condiciones iniciales de la solución descendente	12
	2.6.	Empalme de las integraciones ascendente y descendente,	
		normalización y corrección del autovalor E $_{ m n}$	13
	2.7.	Cálculo de las integrales y derivadas	14
	2.8.	Interpolación	15
3.	DESCRIPCION DEL PROGRAMA "ORBITALES"		17
	3.1.	Descripción general del programa principal	17
	3.2.	Determinación del autovalor E _n de cada orbital	19
	3.3.	Integración de la ecuación de los orbitales	23
	3.4.	Determinación de las condiciones iniciales y duplicación	
		del intervalo de integración	23
	3.5.	Cambio de energía	25
	3.6.	Interpolación de la solución del orbital en radios pre-	
		fijados	29
	3.7.	Descripción de la subrutina CEROF	29
	3.8.	Descripción de las subrutinas EFE, INTER y DFDR	31
4.	LISTA	DO DEL PROGRAMA	35
5.	UTILI	ZACION DEL PROGRAMA "ORBITALES"	53
	5.1.	Datos de entrada	53
	5.2.	Salida de resultados	54
	5.3.	Ejemplo	55
APE	IND. JE .	Descripción del programa "CPC1" para la determinación de	
		los valores autoconsistentes de $\boldsymbol{\varkappa}$ y k \ldots	63
	A.1.	Criterio de autoconsistencia	63
	A.2.	Descripción del programa CPC1	66
	A.3.	Instrucciones para su utilización	68
	A.4.	Listado del programa	70

110.01.

. . .

···• ;• ·

1. INTRODUCCION

100

En este informe se describe el programa denominado ORBITALES, escrito en lenguaje FORTRAN IV, que permite el cálculo de los llamados orbitales en las funciones de onda atómicas, para un potencial de la forma

$$V(r) = (N-1)(k - \frac{1}{r})e^{-\alpha r^{2}} - \frac{Z - N + 1}{r}$$
 (1.1)

donde Z representa la carga del núcleo, N el número de electrones y \propto , k y γ tres parámetros propios de cada átomo. Los criterios de selección de estos parámetros son objeto de otras publicaciones (YUNTA CARRETERO, J., RODRIGUEZ MAYQUEZ, E. y SANCHEZ DEL RIO, C.; (1973), (YUNTA CARRETERO, J., RODRIGUEZ MAYQUEZ, E. y SANCHEZ DEL RIO, C.), pero en el Apéndice de este informe se describe una variante del programa, que permite aplicar algunos de los criterios de selección para la determinación de los valores adecuados de estos parámetros.

Recuerdese que, en el caso partícular de considerar un potencial cen tral, la función de onda permite la separación de variables, de tal modo que, para la componente radial R(r) la ecuación de Schrödinger queda reducida a

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR(r)}{dr} \right) + \left[- \frac{\ell(\ell+1)}{r^2} + 2E_n - 2V(r) \right] R(r) = 0 \quad (1.2)$$

donde ℓ es el número cuántico azimutal ($\ell = 0, 1, 2, ...$) y E_n es uno de los autovalores de la energía que permiten cumplir las condiciones de contorno de la solución. Este autovalor queda identificado por el subíndice n o nú mero cuántico total, de forma que n- ℓ -1 es el número de nodos que posee la componente radial R(r).

En la expresión (1.2) se han utilizado, para simplificar la escritura, las unidades de Hartree caracterizadas por tomar como:

Unidad de masa = masa reducida en reposo del electrón μ Unidad de carga eléctrica = carga eléctrica del electrón Unidad de longitud = radio de la primera órbita de Bohr del hidrógeno $\frac{1}{\mu} = 0.52917 \cdot 10^{-8}$ cm (DU MOND, J.W. M., COHEN, E.R.; 1953), (U.I.F.P.A. 11; 1965). de las cuales se deduce:

y

ti di

Unidad de energía = energía potencial mutua de dos cargas unidad -

separadas la unidad de distancia
= doble de la energía de ionización del estado normal del átomo de hidrógeno
= 27.1956 eV

La condición de normalización, para que la probabilidad de encontrar un electrón a cualquier distancia r sea la unidad, viene dada por

$$\int_{0}^{\infty} 4\pi r^{2} R^{2} dr = 1$$
 (1.3)

El cambio de variable

$$P = 2\sqrt{r}rR$$

transforma las expresiones (1.2) y (1.3) en

$$\frac{\mathrm{d}^{2}P_{\mathrm{n}}}{\mathrm{d}r^{2}} = \left[\frac{\boldsymbol{\ell}(\boldsymbol{\ell}+1)}{r^{2}} - 2E_{\mathrm{n}} + 2V(\boldsymbol{r})\right]P_{\mathrm{n}}$$
(1.4)

 $\int_{0}^{2} P_{n}^{2} dr = 1$ (1.5)

La función P suele recibir inadecuadamente el nombre de orbital y representa la densidad de probabilidad de encontrar un electrón dentro de un estrato esférico dr a la distancia r.

Dado un átomo, caracterizado por su número atómico Z, el programa O<u>R</u> BITALES resuelve la ecuación (1.4) con un potencial central del tipo (1.1), para orbitales caracterizados por los números cuánticos total n y azimutal $\boldsymbol{\ell}$, encontrándo el autovalor E_n que corresponde a cada orbital y proporcionando una tabla de valores de los orbitales P y sus cuadrados en función del radio. Asimismo calcula el radio efectivo medio $\overline{\mathbf{r}}$ definido por

$$\overline{\mathbf{r}} = \int_{0}^{\infty} \mathbf{r} \, \mathbf{p}^{2}(\mathbf{r}) \, \mathrm{d} \, \mathbf{r} \qquad (1.6)$$

y el radio efectivo inverso $1/r_i$ dado por

$$\frac{1}{\overline{r}_{i}} = \int_{0}^{\infty} \frac{p^{2}(r)}{r} dr \qquad (1.7)$$

Este programa estima, además, el potencial creado por la propia distribución de carga de los electrones, dada por las soluciones obtenidas pa ra todos y cada uno de los electrones presentes en el átomo. Para ello se tiene en cuenta que, promediando esféricamente, el potencial que producirían sobre el electrón i los otros (Z - 1) restantes y el núcleo, sería -(CONDON, E.U. y SHORTLEY, G.H.; 1953)

$$V_{c}(r_{i}) = -\frac{Z}{r_{i}} + \sum_{j \neq i} \int_{0}^{\frac{P_{j}^{2}(r_{j})}{r'}} dr_{j}$$
 (1.8)

donde r' es el mayor de los radios r_i, r_i.

Como se trata de encontrar un potencial único para todos los electrones, se puede hallar el promedio de $V_c(r_i)$ extendiendo el sumatorio a todos los electrones presentes en el átomo y multiplicándolo por (N-1)/N, lo cual equivale a suponer que cada electrón contribuye al potencial en un - punto, sólo con la fracción (N-1)/N de su carga eléctrica. Con esta hipótesis, el potencial debido al núcleo y a la distribución de carga de los - electrones será:

$$V_{c}(r) = -\frac{Z}{r} + \frac{N-1}{N} \frac{1}{r} \sum_{n,k=0}^{r} \int_{0}^{r} P_{n,k}^{2}(r) dr + \frac{N-1}{N} \sum_{n,k=0}^{r} \int_{r}^{\frac{2}{n}} \frac{P_{n,k}^{2}(r)}{r} dr \quad (1.9)$$

Evidentemente los sumatorios se refieren a todos los orbitales comp<u>a</u> tibles con el principio de Pauli.

El potencial así hallado puede compararse con el definido por la expresión (1.1).

Una vez definidos aquí los objetivos del programa y la información que puede proporcionar, en los capítulos siguientes se describen: los fundamentos de cálculo en que está basado (Capítulo 2), los detalles de la realización en el programa (Capítulos 3 y 4) y, por último, la forma práctica de utilizar el programa, es decir, la manera de introducir los paráme tros específicos de un cálculo e interpretación de la salida de resultados (Capítulo 5) con un ejemplo ilustrativo (Capítulo 6). Con ello se pretende separar los diferentes niveles de interés que se puedan presentar: simple utilización del programa para obtener los resultados deseados, conocimiento de los algoritmos utilizados por el progra ma cuando sea necesaria una interpretación más profunda de los resultados obtenidos, o necesidad de introducir alguna modificación de éstos en el programa.

Para comprobar la bondad de los resultados obtenidos con este progra ma, se contrastaron los cálculos de diferentes estados del átomo de hidrógeno con las soluciones analíticas, bien conocidas, de éstos. Para 100 pa sos de integración entre modos y un índice de precisión de 0,001, los auto valores de la energía obtenidos, diferían en valor relativo de los analíti cos en menos de 0,00001 y las soluciones de los orbitales en menos de -0,0001. La ecuación de Schrödinger para los orbitales es del tipo

$$P'' = f(r) P \qquad (2.1)$$

con

÷.

200

::::

$$f(r) = \frac{\ell(\ell+1)}{r^2} - 2E + 2(N-1)(k-\frac{1}{r}) e^{-\alpha r^2} - 2\frac{Z-N+1}{r}$$
(2.2)

El proceso de integración de (2.1) suele subdividirse frecuentemente en dos fases: una con valores crecientes de r (ascendente), para aquella zona en que f(r) < 0, y otra descendente, con valores decrecientes de r, p<u>a</u> ra f(r) > 0. Con ello se evita la deformación de la solución, típica de la segunda zona. La primera fase parte de r=0 y llega hasta un valor r_a para el que $f(r_a) = 0$. La segunda, parte de un valor de r suficientemente elevado y, en sentido decreciente, llega hasta el valor anterior r_a . En este punto deben coincidir tanto las dos soluciones, como sus derivadas. Para la igualdad de las dos soluciones, basta con una adecuada correspondencia entre los valores iniciales del proceso de integración de ambas fases. La igualdad anterior no implica la de las derivadas. Esta sólo ocurre si el valor de E tomado en (2.2) es el del verdadero autovalor. Afortunadamente, la propia desigualdad entre las derivadas permite hacer una estimación de la corrección necesaria (HARTREE, D.R.; 1952).

Dado que en la zona de solución descendente es necesario partir de un valor de r muy elevado, para no disminuir el número de pasos de integra ción sin recurrir a un incesante cambio de intervalo de integración, suele usarse (HARTREE, D.R.; 1952) el cambio de variable

$$t = l_n r \qquad (2.3)$$

que junto con el cambio

$$F(t) = \frac{P(r)}{\sqrt{r}}$$
(2.4)

transforma la ecuación diferencial (1.4) en

$$\frac{d^{2}F}{dt^{2}} = \left[\left(\ell + \frac{1}{2} \right)^{2} - 2\left(E - V(r) \right) r^{2} \right] F \qquad (2.5)$$

que sigue siendo del mismo tipo, pero con una función f(r) distinta.

En el programa ORBITALES, la integración ascendente ha sido hecha so bre la ecuación (1.4) y la descendente sobre la (2.5).

En lo que sigue se describen con más detalle las diferentes expresiones numéricas utilizadas para conseguir los fines del programa.

2.1. Método de Numerov

El método de Numerov, utilizado para resolver ecuaciones del tipo - (2.1), equivale a un cálculo limitado hasta las diferencias finitas cuartas.

Suelen emplearse diversas variantes del método. En una de ellas - (HARTREE, D.R.; 1952) se deduce el valor de la solución y (x+h) a partir de los valores de y(x - h), de y(x) y de la diferencia finita segunda de - la solución, que viene dada por la expresión

$$\boldsymbol{\delta}^{2} y(x) = h^{2} \left[y''(x) + \frac{1}{12} \boldsymbol{\delta}^{2} y''(x) \right]$$
(2.6)

donde y"(x) se conoce por la propia ecuación diferencial, mientras que - δ^2 y"(x), desconocida a priori, se calcula mediante un proceso reiterativo muy convergente.

En otra variante se introduce la variable auxiliar

$$Z(x) = \left[1 - \frac{h^2}{12} f(x) \right] y(x)$$
 (2.7)

en la que se verifica que

.

$$Z(x+h) = 2Z(x) - Z(x-h) + h^{2}f(x) y(x)$$
(2.8)

- 6 -

Una vez calculada Z(x+h) se deshace el cambio de variable.

Ambos procedimientos exigen el conocimiento del valor de la solución en los dos puntos anteriores. El primero presenta la ventaja de un fácil criterio de la bondad del intervalo de integración,a través del número de reiteraciones necesarias para deducir δ^2 y"(x); tiene en cambio el inconveniente de exigir el conocimiento de la diferencia finita segunda de y"(x) que exige conocer el valor de y"(x - h), lo que impide, en el caso particular de la función f(x) definida por (2.2), que el primero de los valores iniciales sea el x = 0, ya que el valor de y"(0) es infinito.

En el programa se utiliza normalmente la expresión (2.6), excepto en la iniciación de la solución ascendente, donde se emplean la (2.7) y (2.8) como se verá en el apartado 2.4.

2.2. Elección del intervalo de integración

La expresión (2.6) proporciona un fácil criterio para la selección del intervalo de integración, exigiéndose que el número de reiteraciones en cada paso de integración esté comprendido entre 2 y 5. Sin embargo, pa ra evitar contínuos cambios de intervalo, no se ha hecho uso de él, sino que se han fijado los nodos como posibles puntos de duplicación del intervalo, de forma que un número de pasos prefijados por el usuario se realicen con el mismo intervalo. No obstante, el programa mantiene vigilancia sobre el número de reiteraciones que han sido necesarias en cada paso de integración y en la salida proporciona el número de pasos en los que, durante el último tanteo de E, se han sobrepasado las cinco reiteraciones.

El número de pasos aconsejable es 100, pero el usuario del programa puede utilizar un valor cualquiera. Sólo en la fase ascendente se realizan duplicaciones del intervalo. En toda la fase descendente se conserva el mismo intervalo pero, al tantear valores de la energía E próximos al a<u>u</u> tovalor E_n , el número de pasos es doble.

El fijar el intervalo de integración "a priori" tiene la ventaja de aligerar el cálculo en el proceso más reiterativo del programa y no presen ta inconvenientes, salvo en los primeros tanteos del valor de E, en los que no se conoce con suficiente aproximación la posición de los nodos. En estos casos es necesaria una estimación de dichas posiciones . Ha resulta do práctica la hipótesis de suponer que las sucesivas zonas, de intervalo constante, eran cada una aproximadamente el doble de la anterior. Es por ésto por lo que sólo se han previsto duplicaciones del intervalo de integración. Para un orbital identificado por los números cuánticos total n y azi mutal ℓ , el número de nodos viene dado por n - ℓ - 1. Es decir, el número de zonas de intervalo constante, durante la integración ascendente, será n - ℓ . Ello indica que el intervalo inicial aconsejable sea

$$h = \frac{1}{100} \frac{r_a}{2^{n-\ell} - 1}$$
(2.9)

siendo ra el radio final de la integración ascendente.

El problema de la estimación del intervalo inicial queda, pues, reducido a encontrar el valor de r_a en el que el valor de f(r) pasa de un valor negativo a otro positivo. Esto obliga a encontrar los ceros de la función (2.2) y elegir el primero con derivada positiva.

2.3. Estimación del cero de la función f(r)

en.

. . . .

No existe un método universal de determinación de los ceros de una función. Con frecuencia solamente convergen en zonas próximas a la solución y la mayoría carecen de criterios para prevenir la carencia de solución real. Estas dificultades exigen realizar un estudio de las propiedades de la función f(r) con el fin de encontrar previamente una zona suficientemente estre cha alrededor de la solución, si existe, para después aplicar en ella métodos de convergencia seguros.

Aunque para la finalidad del programa carezcan de sentido los valores positivos de E, el método aplicado para la determinación del cero adecuado de la función, no exige que E sea negativo.

Separando el término en E, la función queda de la forma

$$f(r) = g(r) - 2E$$
 (2.10)

y haciendo el cambio de variable $g = \frac{1}{r}$

$$g(g) = l(l+1)g^{2} + 2(N-1)(k-g)e^{-\frac{2}{7}} - 2(Z-N+1)g$$
 (2.11)

Por lo tanto los ceros de f(r) serán las inversas de las intersecciones de la curva y = $g(\mathbf{q})$ con la paralela al eje de abcisas y = -2E.

La función g(g) está comprendida entre dos funciones extremas corres pondientes a los valores cero e infinito del parámetro \approx

$$g_0(\mathbf{q}) = \mathbf{l}(\mathbf{l}+1) \mathbf{q}^2 \mathbf{k} 2(N-1) \mathbf{k} - 2Z \mathbf{q}$$
 (2.12)

$$g_{(q)} = l(l+1)q^2 - 2(Z - N+1)q$$
 (2.13)

Ambas curvas son parábolas, ninguna depende del parámetro γ y la segunda pasa por el origen y tampoco depende del parámetro k. La dependencia de la primera respecto de k es la de una traslación paralela al eje de abcisas. Es fácil comprobar que ambas parábolas son cóncavas y que la abcisa del mínimo de la 1ª es mayor que la del de la segunda. Para $\ell = 0$ estas parábolas se transforman en rectas.

También se verifica que

-920

$$g_{q}(q) \leq g_{q}(q) \leq g_{q}(q)$$
 para $q < k$ (2.14)

$$g_{(\mathbf{q})} \ge g_{(\mathbf{q})} \ge g_{(\mathbf{q})} para \mathbf{q > k}$$
 (2.15)

y que todas coinciden en q = k.

Estas dos funciones extremas sólo pueden presentar entre sí las posiciones relativas representadas en la Fig. 1. Las comparaciones (2.14) y (2.15) muestran que la curva general $g_{\mathbf{x}}(\mathbf{g})$ sólo puede tener existencia den tro de la zona rayada. Esto es, las posibles soluciones de $g_{\mathbf{x}}$ han de quedar comprendidas entre las dos intersecciones de y = -2E con las curvas extremas $g_{\mathbf{n}}(\mathbf{g})$ y $g_{\mathbf{x}}(\mathbf{g})$.

No obstante, en la Fig. 1 se puede observar que esta acotación puede presentar múltiples combinaciones, puesto que el número de zonas acotadas depende del número de parábolas para las cuales existe solución real de la intersección.

Sólamente interesa la primera solución que se encuentre para $g_{\alpha}(g)$ tomando valores decrecientes de g (crecientes de r), por lo tanto, en el ca so de una única zona, el estudio de $g_{\alpha}(g)$ deberá comenzar en la rama derecha de la parábola intersectada y terminar en la izquierda (ejemplo E1 de la Fig. 1 (c)). En el caso de dos zonas, la primera comenzará en la rama - 10 -

g∞ g ç 2E1 g,

(e)

g

g 🗢

(f)

TIPOS DE ZONAS DE SOLUCION

Ŷ

g,

art:

13. 13.

derecha de $g_0(\mathbf{g})$ y terminará en su rama izquierda (ejemplo E1 de la -Fig. 1.(b)), o en la rama derecha de $g_{\mathbf{m}}(\mathbf{g})$ (ejemplo E2 de la Fig. 1.(b)) según que sea una u otra rama la que quede al mismo lado del punto común de todas las curvas ($\mathbf{g} = \mathbf{k}$). La segunda zona estará delimitada por el res to de las intersecciones.

ei g

Las acotaciones así conseguidas indican que la posible solución sólo puede estar en una de ellas, pero no garantizan que lo esté. Puede no - existir solución o de existir no ser la adecuada, pues se exige que ésta - sea positiva y con derivada respecto a q negativa.

Estas acotaciones son aún demasiado grandes para aplicar un método que resulte convergente. Para disminuirlas, ha resultado práctico dividir la zona acotada en 25 partes, y vigilar, de derecha a izquierda, en qué subzona el valor de $g_{ex}(g)$ pasa de negativo a positivo. Es en esta subzona donde ya se puede aplicar cualquier método con la seguridad de que existirá solución.

No obstante, existe el riesgo de que pase desapercibida una pequeña ondulación de la curva en la que se halla la primera solución adecuada. Pa ra evitarlo se mantiene vigilancia sobre el signo de la derivada respecto a g. En el caso de que esta vigilancia indíque riesgo de perder la solución, se investiga la existencia de ésta mediante subdivisión de la subzona hasta encontrarla o alcanzar una subzona de tamaño despreciable, que permita suponer que era infundada la sospecha tenida.

Como método convergente para la determinación del cero se ha utiliza do el parabólico. Esto es, sobre tres puntos de $g_{\mathbf{x}}(\mathbf{g})$ se ajusta una parábola y se considera solución aproximada la intersección de ésta con la rec ta y = -2E. Repitiendo el proceso con este punto y dos de los anteriores, que cumplan la condición de tener signos diferentes los valores de $g_{\mathbf{x}}(\mathbf{g})$, se consigue una mejor aproximación, evitándose al mismo tiempo el riesgo de escape hacia otra solución distinta.

2.4. Condiciones iniciales de la solución ascendente

La aplicación del método de integración de Numerov con la expresión (2.6) impide que el punto r = O sirva como uno de los iniciales, puesto - que en este punto el valor de la derivada segunda de la solución se hace - infinito.

Podrían hallarse dos puntos iniciales con r $\neq 0$ mediante un desarrollo en serie, lo cual llevaría a la necesidad de tomar exclusivamente val<u>o</u> res enteros para el exponente χ . Queda, pues, el recurso de aplicar la <u>se</u> gunda variante propuesta en el apartado 2.1., que no exige el conocimiento de las derivadas segundas, y partir de los puntos r = 0 y r = h, con los valores P(0) = 0 y P(h) = A, donde A es un parámetro de libre elección que quedará, a posteriori, bien determinado al exigir que la solución esté normalizada.

Como el intervalo de integración h sugerido en el apartado 2.2., pue de resultar grande para este primer paso, es conveniente reducirlo partien do de un intervalo h' del orden de 10^{-5}

$$h' = \frac{h}{2^a}$$
(2.16)

y duplicar el intervalo cada vez que se calculen dos nuevos puntos, hasta recuperar el valor del intervalo idóneo para zonas no próximas a r = 0.

El valor del número entero a viene dado, pues, por

$$a \stackrel{\mathbf{2}}{=} \frac{5 + \log h}{\log 2} \tag{2.17}$$

2.5. Condiciones iniciales de la solución descendente

11

Es fácil demostrar (HARTREE, D.R.; 1957) para la ecuación de Numerov (2.1) con f(x) > 0, que, si la relación entre los valores de la solución en dos puntos consecutivos, muy alejados del origen, es (1+x), se verifica - que

$$x = h \sqrt{(1+x) f(x)}$$
 (2.18)

Esta expresión permite, por un método reiterativo, encontrar el valor de x, y por lo tanto hallar dos puntos iniciales r_1 y r_2 con los valores B y B(1+x). El parámetro B tendrá al principio un valor arbitrario, que quedará fijado después, al exigir que el valor de la solución en el punto r_a de empalme sea idéntico para ambas integraciones. Los dos puntos de partida no son exactos, puesto que la relación - (2.18) sólo es aproximada, pero ello no representa inconveniente alguno, - ya que en el proceso de integración descendente los errores de partida se van atenuando.

30

:::::

2.6. Empalme de las integraciones ascendente y descendente, normalización y corrección del autovalor E_n

En el proceso de cálculo seguido para hallar la solución del orbital P(r) que cumpla la ecuación de Schrödinger (1.4) para un autovalor E_n , se han introducido tres valores arbitrarios: la energía E, el parámetro A de - las condiciones iniciales de la integración ascendente, y el parámetro B - de las condiciones iniciales de la integración descendente. Estos tres parámetros alcanzarán su verdadero valor cuando se verifiquen las tres condiciones siguientes:

1ª) Que coincidan los valores de la solución para ambas integraciones en - el punto de empalme r_a . Esto permite hallar una relación que ligue los parámetros A y B.

 $2^{\underline{a}}$) Que coincidan los valores de las derivadas primeras en el punto de empalme. De no ser así la corrección \underline{A} E a aplicar sobre el valor de E tanteado, viene dada (HARTREE, D.R.; 1957) aproximadamente por

$$\Delta E = \frac{1}{2} \frac{\left(\frac{P'}{P}\right)_{asc} - \left(\frac{P'}{P}\right)_{desc}}{\int_{0}^{r_{a}} \frac{p_{asc}^{2} dr}{p_{asc}^{2} (r_{a})} + \frac{1}{p_{desc}^{2} (r_{a})} \int_{r_{a}}^{r_{a}} \frac{p_{desc}^{2} dr}{p_{desc}^{2} dr}$$
(2.19)

donde P' es la derivada primera de P respecto de r.

3ª) La solución debe estar normalizada, esto es, cumple la condición (1.5). Esta condición fija el valor correcto del parámetro A.

Así pues, encontradas las soluciones ascendente y descendente para los valores de tanteo A, B y E, se pueden estimar como mejores valores apro ximados de dichos parámetros los siguientes:

$$A_{n} = \frac{A}{\sqrt{\int_{0}^{r} a_{asc}(r)dr + (\frac{P_{asc}(r)}{P_{desc}(r)})^{2}}} \int_{r}^{P_{asc}^{2}(r)dr} (2.20)$$

$$B_{n} = \frac{A}{A} \frac{P_{asc}(r)}{P_{desc}(r)} \cdot B \qquad (2.21)$$

$$E_{n} = E + \frac{1}{2} \left[\left(\frac{P'}{P} \right)_{asc} - \left(\frac{P'}{P} \right)_{desc} \right] \left(\frac{A_{n}}{A} \right)^{2} P_{asc}^{2} (r_{a})$$
(2.22)

Como la expresión (2.19) no es exacta, el valor encontrado E_n es sólo aproximado. Sin embargo, un método reiterativo permite obtener E_n con suficiente precisión. El programa elige el mismo índice relativo de precisión que se utiliza para las reiteraciones de cada paso del método de Num<u>e</u> rov, pero la precisión final se mejora al efectuar una reiteración más por las razones que se indican en el apartado 3.5 para IS = 2. Para todos los orbitales se parte del valor inicial E = -8.

2.7. Cálculo de las integrales y derivadas

En la estimación de la corrección a efectuar sobre el valor tanteado de E, para poder hallar el verdadero autovalor E_n , aparecen integrales y - derivadas de P(r) que habrán de ser determinadas a partir de la solución - y(x) obtenida por el método de Numerov. Esta determinación se realizará - de diferente forma según sea la fase de cálculo. Así en la fase ascendente será:

$$\int_{a}^{b} P^{2}(r) dr = \int_{a}^{b} y^{2} dx \qquad (2.23)$$

$$\frac{d P}{d r} = \frac{d y}{d x}$$
(2.24)

y en la descendente

$$\int_{a}^{b} P^{2}(r) dr = \int_{a}^{b} y^{2} r^{2} dx \qquad (2.25)$$

$$\frac{\mathrm{d} P}{\mathrm{d} r} = \frac{1}{\sqrt{r}} \left(\frac{\mathrm{d} y}{\mathrm{d} x} + \frac{y}{2} \right)$$
(2.26)

Las integrales, resueltas por el método de Simpson y muy equivalentes a un desarrollo hasta las diferencias finitas cuartas, se van incremen tando durante el propio proceso de Numerov, al resolver la ecuación diferen cial, sin pérdida de precisión.

Para la deducción de la derivada se emplea la expresión:

$$\frac{d y}{d x} = \frac{2}{h} - \frac{h}{6} Z_2$$
(2.27)

donde Z_0 y Z_2 son los promedios de las diferencias finitas primeras consecutivas de la solución y de su derivada segunda respectivamente. Esto es

$$Z_{0} = \frac{\delta y (x + \frac{h}{2}) + \delta y (x - \frac{h}{2})}{2}$$

$$Z_{2} = \frac{\delta y'' (x + \frac{h}{2}) + \delta y''(x - \frac{h}{2})}{2}$$
(2.28)

La derivada así obtenida equivale a un desarrollo hasta la cuarta di ferencia finita.

2.8. Interpolación

El proceso de integración de las soluciones correspondientes a orbitales con diferentes números cuánticos n y ℓ , se realiza para radios que no coinciden entre sí, ya que cada orbital exige un intervalo de integración

\$10

distinto. Sin embargo, a la hora de querer comparar las soluciones, es con veniente que estén calculadas para los mismos radios. Se exige, pues, una interpolación durante los cálculos del último valor tanteado de la energía, de cada una de las soluciones de los orbitales en unos radios elegidos previamente y comunes a todos los orbitales. Estos radios se eligen subdividiéndo, con una escala logarítmica (mayor densidad de puntos en los radios pequeños) y en número prefijado por el usuario del programa, la zona comprendida entre el radio mínimo y el radio máximo para los cuales exista solución numérica en algún orbital.

La interpolación se realiza utilizando la expresión

$$y = y_{o}\left[1 - \theta^{4}\right] + \frac{h^{2}\theta^{2}}{2}\left[1 - \theta^{2}\right]y_{o}^{"} + \theta\left[A - \frac{Bh^{2}}{3!}\left(1 - \theta^{2}\right) + C\theta^{3}\right]$$

$$(2.29)$$

con
$$A = \frac{1}{2}(y_1 - y_1)$$
 $B = \frac{1}{2}(y''_1 - y''_1)$ $y C = \frac{1}{2}(y_1 + y_1)$

que utiliza datos obtenidos en el proceso de Numerov y que, como éste, des precia los términos superiores a las diferencias finitas cuartas. En ella es $\theta = \frac{x - x_0}{h}$, donde h es el intervalo de integración usado en el proceso de Numerov.

3. DESCRIPCION DEL PROGRAMA ORBITALES

1....

En este capítulo se describe el programa "ORBITALES", escrito en len guaje FORTRAN IV, de manera que resulte fácil, no sólo comprender su forma de trabajar para una mejor interpretación de los resultados, sino permitir hacer las modificaciones que se consideren pertinentes al aplicarlo a casos particulares en los cuales los criterios aceptados en esta versión no sean los más adecuados o se precisen otros cálculos.

Se ha intentado que el programa resuelva, por sí mismo, todas las si tuaciones que puedan aparecer durante sus diversas fases, por ejemplo, modificar unas condiciones iniciales que conducían a una mala convergencia de la solución, sustituir unos criterios por otros, etc. Esto supone la introducción en el programa de diversos controles y variantes del proceso de cálculo que dan como resultado cierta complejidad del programa. No obsta<u>n</u> te, las explicaciones que siguen, los diagramas y los comentarios del listado de sentencias permiten confiar en su comprensión.

Para facilitar la descripción del programa se da primero una explica ción de la marcha general del mismo, dejando para sucesivos apartados las correspondientes a sus diferentes fases. Dichas fases aparecen en los dia gramas de cálculo con un doble recuadro y una identificación que consiste en el prefijo "D" seguido de un número que coincide con la segunda clave decimal de los apartados de este capítulo.

Cada bloque del diagrama lleva un prefijo "C" y un número identific<u>a</u> dor que, por coincidir con la numeración de un comentario en el listado, sirve para encontrar la correspondencia entre el diagrama y las sentencias FORTRAN.

La simplicidad de la mayoría de las subrutinas hace innecesaria la existencia de sus diagramas de cálculo, siendo suficiente una descripción de la operación que resuelve y el listado.

3.1. Descripción general del programa principal

Tal como se ve en el diagrama de cálculo "D-1", el programa comienza leyendo las fichas que le proporcionan información sobre el átomo a estudiar, la precisión con que se van a efectuar los cálculos y la información que se deseetener (vease Capítulo 5). A continuación siguen unas preparaciones previas y puestas a cero.

.

Puesto que el usuario solamente indica el número de puntos en los que desea la salida de resultados, pero no la longitud de la zona en la que los resultados van a ser significativos, el programa no puede seleccionar los puntos de salida de información hasta que no haya encontrado las soluciones de todos y cada uno de los orbitales característicos del átomo en estudio.

Por esta razón se ha introducido el índice IAK, que toma al principio del programa el valor 1 y lo conserva mientras se van tanteando y corrigien do valores de la energía y de los parámetros A y B, hasta conseguir el verdadero autovalor de la energía y una buena normalización en todos y cada uno de los orbitales. Una vez conseguidos todos los valores adecuados, -IAK toma el valor 2 y se procede a un nuevo cálculo, en el que ya no es n<u>e</u> cesario modificar los valores E, A y B, y en el que se está en condiciones de efectuar las adecuadas interpolaciones y salidas de resultados particulares que se hayan solicitado. Por último se efectúa la salida final descrita en el apartado 5.2.

3.2. Determinación del autovalor E_n de cada orbital

En el diagrama D-2 se describe el cálculo del autovalor de la ener gía. En él aparecen los indicadores K2, I1 e IS, cuyo significado, en fun ción del valor que adquieren, es el siguiente:

- $K^2 = 1$ Fase ascendente de la integración
- K2 = 2 Fase descendente de la integración
- K2 = 3 Punto extra calculado durante la fase ascendente para poder aplicar la integral de Simpson a un número impar de puntos. No interviene en el diagrama "D-2".
- I1 = 1 Identifica los primeros tanteos de E durante los cuales los cálculos se realizan con una precisión inferior a la pedida por el usuario.
- I1 = 2 Fase en que se llevan los cálculos con la precisión pedida.
- I1 = 3 Se conoce ya el autovalor E_n y los parámetros A y B (apartados 2.4 y 2.5). Se procede a la interpolación de la solución en los puntos seleccionados (apartado 2.8) y posible salida de la solución.
- IS = 1 Durante las fases de cálculo en que I1 = 2, este valor del indicador muestra que se debe seguir aplicando la corrección contínua de E para una mejor aproximación al autovalor E_p .
- IS = 2 Indica que ya se conoce E_n con la aproximación deseada, pero los parámetros A y B (apartados 2.4 y 2.5) deben

1.1

Ĥ

22

,

todavía ser modificados para obtener la solución normaliza da.

IS = 3 Se debe comprobar si A y B dan ya la solución normalizada como es de esperar, pero que no siempre sucede.

Las fases de cálculo en las que se modifica el valor del indicador -IS no aparecen explicitamente en el diagrama. Este detalle se puede ver mejor en el apartado 3.5.

En el apartado 2.6 se describió el método empleado para corregir un valor de tanteo de la energía E con objeto de conseguir una mejor estimación del verdadero autovalor E_n . Sin embargo, cuando el valor de tanteo es tá muy alejado del real, la ecuación (2.22) no debe ser aplicada, sino que, para asegurar la convergencia, es conveniente acudir a una modificación discreta de E, cuyos criterios de aplicación se describirán en el apartado 3.5. Por ello, en el diagrama "D-2" existe la distinción entre corrección del valor de la energía de forma discreta y de forma contínua (aplicación de la ecuación (2.22)).

Con las aclaraciones anteriores es fácil seguir el diagrama de flujo de cálculos "D-2". En él se observa cómo a la entrada se dan los valores iniciales, tanto de algunos parámetros como A y B, como de algunos de los indicadores que dirigen el flujo de cálculo.

Al terminar la integración ascendente (C-57), se observa si el número de nodos contabilizado n' ha sobrepasado el valor n correspondiente al orbital en estudio y si es así, el valor de tanteo de E debe someterse a una corrección discreta, pues la corrección dada por (2.22) no sería válida en este caso. Si n' \leq n se procede a la integración descendente y si al final n' = n se procede al cálculo de Δ E mediante la ecuación (2.22) y de las correcciones a aplicar a los parámetros A y B para obtener una buena normalización.

r Gàc

> En C-69 se comparan los dos tipos de correcciones, a efectuar sobre la energía para el próximo tanteo, con objeto de elegir la más adecuada.

> En cualquier caso siempre se observa si la corrección a efectuar es excesivamente pequeña. Si esto sucede cuando se está realizando una corrección discreta de E (C-63), se debe iniciar nuevamente el método con un margen de convergencia grande, pues ello significaría que con el método <u>se</u> guido era imposible alcanzar el verdadero autovalor (apartado 3.5). En cambio, si el flujo de cálculo alcanza C-86 con un valor de la corrección discreta DE no demasiado pequeño, los cálculos no deben ser llevados con mucha precisión (I1 debe valer 1).

3.3. Integración de la ecuación de los orbitales

-

En el diagrama "D-3" se representa el flujo de cálculo que se refiere exclusivamente a la integración de la ecuación (1.4) de los orbitales -(apartado 2.1). En él aparecen los indicadores de estado de flujo K2, I1 e IS que ya aparecían en el apartado y diagrama anterior y los K1 y K3 cuyos valores tienen los siguientes significados:

- K1 = 1 Indica que el punto acabado de calcular interviene como punto par en el cálculo de la integral de Simpson, necesaria para la normalización de la solución.
- K1 = 2 El punto acabado de calcular es impar.
- K1 = 3 El punto calculado es el punto final para completar una in tegral de Simpson.
- K1 = 4 Indica que se acaba de calcular el punto intermedio para una duplicación del intervalo de integración.
- K3 = 1 Se trata de una iteración del proceso de Numerov normal.
- K3 = 2 Se trata de una iteración extra que se efectúa para el cálculo de la derivada de la solución ascendente en el pun to de empalme.

K3 = 3 Lo mismo que el anterior, pero para la solución descendente.

- K3 = 4 Permite utilizar la parte fundamental del proceso de Numerov, para el primer paso de una duplicación del intervalo de integración, en las condiciones iniciales de la solución ascendente (apartado 3.4).
- K3 = 5 Igual que el anterior para el segundo paso.

Con estas aclaraciones, es fácil seguir el proceso de cálculo median te la sola observación del diagrama "D-3". La variable n' contabiliza el número de nodos de la solución del orbital.

3.4. <u>Determinación de las condiciones iniciales y duplicación del interva-</u> lo de integración

El diagrama D-4 describe el flujo de cálculo para las fases que se especifican en el encabezamiento de este apartado.

El indicador NIS representa el número de reducciones del intervalo de integración óptimo para un cálculo normal, necesario para una buena in<u>i</u> ciación de los cálculos de los dos primeros puntos (apartado 2.2). La variable NI contabiliza la recuperación del intervalo óptimo y n' el número de nodos de la solución orbital. ,

En este diagrama, con tres entradas y tres salidas posibles, aparecen también, aunque en forma muy reducida, aquellas partes comunes con otras fases normales de cálculo cuyo detalle puede verse en el diagrama D-3.

Los indicadores K2 y K3 ya fueron explicados en los apartados 3.2 y 3.3.

3.5. Cambio de energía

En el diagrama "D-5" se especifican con más detalle algunas de las fases del "D-2", con el fin de facilitar una mejor comprensión exclusivamente sobre la forma en que se realiza el cambio de energía en la búsqueda del autovalor.

En él aparecen los indicadores I1 e IS ya definidos en los apartados 3.2 y los I4 y LL con los siguientes significados:

- I4 = 1 Indica que las modificaciones de la energía se han realiza do sólo en forma discreta (apartado 2.6),o que se ha vuelto a esta forma.
- I4 = 2 Indica que las modificaciones de la energía se están reali zando en forma continua.
- LL = 0 Indica que se ha realizado un cambio discreto de la energía porque el número de nodos contabilizado en la solución del orbital no coincidía con el deseado.
- LL = 1 Indica, por el contrario, que existió dicha coincidencia pero el cambio de energía ha de ser discreto.

El diagrama "D-5" se presenta dividido en dos partes relacionadas por cuatro puntos de conexión identificados por las letras A, B, C y D.

De acuerdo con el esquema del diagrama "D-2", hay una doble posibil<u>i</u> dad de entrada en esta fase del proceso de cálculo: al final de la integra ción ascendente, si el número de nodos contado no coincide con el esperado, o bien al final de la integración descendente.

Con ΔE y DE se representa la corrección contínua o discreta a efectuar sobre el valor de la energía E tanteado. Los valores E' y E" son los valores de la energía en los tanteos precedentes. El índice de precisión, coincidente con el elegido por el usuario del programa para las reiteracio nes del método de Numerov, está representado por $\boldsymbol{\xi}$. Los valores R2 y CC representan, respectivamente, la zona y el número de puntos, que ha de existir en ella, para fijar el valor del intervalo de integración. A y B

- 27 -

.

. د . . .

son los parámetros de las condiciones iniciales de ambas integraciones - (apartado 2.4).

ي م

: : -:-: En el listado de C-61 y C-62 se ve el método seguido para impedir que la solución se escape en los cambios discretos de la energía. Para ello, en cada modificación discreta de la energía hacia un valor absoluto inferior, la corrección DE se hace por un valor mitad de la aplicación anterior (así no se sobrepasa el cero) y en los cambios hacia valores absolu tos superiores, la corrección DE en cada aplicación es el doble de la anterior (lo que permite alcanzar con rapidez valores muy negativos), salvo si ya hubo antes un cambio hacia valores absolutos inferiores, en cuyo caso la corrección DE es la mitad de la aplicación anterior (se asegura así que los futuros cambios discretos de energía nunca sobrepasarán el valor que anteriormente se manifestó como excesivamente negativo).

En C-65 se observa el valor absoluto de E para evitar dificultades posteriores que nazcan de su pequeñez (por ejemplo en C-82).

En C-74 se conservan todos los parámetros característicos de aquel valor de tanteo de la energía en que por primera vez se utilizó el cambio contínuo de la energía. Así, si más tarde aparecen dificultades, debidas quizás a una aplicación prematura de este método, es posible retornar al cambio discreto de la energía partiendo del mismo valor de E en que se abandonó este último método.

En C-81 se observa la posible oscilación de las sucesivas correcciones. Es difícil que ocurra, pero alguna vez coinciden ciertas circunstancias que conducen a dicha oscilación. Ello se evita alterando levemente la marcha del cálculo para conseguir salir de aquellas circunstancias esp<u>e</u> ciales.

También, en ciertas situaciones, puede llegarse a un falso autovalor E_n . En efecto, las zonas de energías correspondientes a la transición entre dos números de nodos cosecutivos, también proporcionan una corrección ΔE muy pequeña, que puede dar la falsa sensación de haberse alcanzado el verdadero autovalor. Esta circunstancia se vigila en C-82. En efecto, - una vez conseguido en C-80 el valor del autovalor dentro de la precisión - deseada, se efectúa un nuevo tanteo de la energía con IS = 2 y, al terminar la integración de la solución, se observa en C-82 el signo de la derivada de las correcciones, que debe ser negativo si se trata del verdadero autovalor. Asegurada la solución sólo resta preparar la normalización haciendo IS = 3.

En C-84 se observa si los parámetros A y B normalizan la solución del orbital. Así debe ocurrir normalmente al llegar a este punto del flujo del cálculo, pero debe comprobarse, pues existe la posibilidad de que el parámetro B haya sido estimado para otro radio inicial de la integración descen dente.

3.6. Interpolación de la solución del orbital en radios prefijados

El diagrama del flujo de cálculo "D-6", se refiere a la forma de rea lizar la interpolación de la solución de cada orbital en unos mismos radios prefijados, partiendo de las soluciones obtenidas en los radios que la aplicación del método de Numerov ha exigido para cada uno de ellos (aparta do 2.8).

Su interpretación es sencilla. El indicador K2, como ya se ha dicho anteriormente, especifica si la solución es ascendente o descendente. Esto permite tener en cuenta si las variables del proceso de Numerov corresponden a la solución del orbital P o a su transformada F (capítulo 2), que exigen un tratamiento diferente.

3.7. Descripción de la subrutina CEROF

El diagrama de cálculo correspondiente a la subrutina CEROF, que determina el primer cero de la función f(r) (ecuación 2.2) con derivada pos<u>i</u> tiva, se presenta dividido en dos partes con cuatro puntos de conexión ide<u>n</u> tificados por las letras, A, B, C y D.

Es fácil apreciar en el diagrama D-7 la realización de las conclusiones a las que se llegó en el apartado 2.3. Así, por ejemplo, la primera - mitad del diagrama está dedicado a la búsqueda, si existen, de las zonas - de posible solución, usando diferente tratamiento según que el número cuán tico azimutal $\boldsymbol{\ell}$ sea cero o distinto de cero. La segunda mitad se refiere a la determinación de la solución, dentro de la zona prevista, o a la de- claración de no existencia de la solución en dicha zona.

La existencia de una sola zona, de posible solución, a investigar, ya sea porque sólo existe una, o porque existiendo dos la primera dió result<u>a</u> do negativo, queda declarada por el valor 1 del indicador JS. Los restantes valores de este indicador se utilizan para definir cuales han de ser los límites de la segunda zona de posible solución.

El indicador I determina si se está en la primera fase de subdivisión de la zona en 25 partes para acotar aún más la zona de aplicación del méto do parabólico, o si se está ya en la segunda aplicando éste.

En C-22 se observa si entre dos puntos de la primera fase se ha pasa do por un máximo. Esto se analiza a través del cambio de signo de la deri vada de f(r). En caso afirmativo se investiga si el máximo permite la

- 30 -

existencia de solución aplicando el método parabólico entre estos dos puntos y un tercero intermedio.

Siempre que se aplique la predicción parabólica de la solución se obtendrán dos valores, pero sólo uno de ellos (C-33) es aceptable por tener derivada positiva. No obstante, aunque es muy difícil que esto suceda, puede ocurrir que la solución que cumplía las condiciones necesarias para ser aceptada, quede fuera de la acotación (C-34) que el método de selección de puntos para la predicción parabólica ha venido asegurando. En este caso, como lo más probable es que sea debido a errores de redondeo en los cálculos, si la acotación de la solución es suficiente, se toma como solución el valor medio de los tres últimos puntos.

3.8. Descripción de las subrutinas EFE, INTER y DFDR

Las finalidades de cada una de estas subrutinas son las siguientes:

Subrutina EFE(K2) - Cálculo de la función f(r) tanto en su versión (2.2) para la integración ascendente (K2 = 1) como en la (2.5) para la descendente (K2 = 2).

Subrutina INTER(R2, CC, H) - Determinación del intervalo de integración -"h" en la zona de longitud R2 que ha de subdividirse en CC partes. Se busca obtener el valor de H con una expresión binaria sencilla,con objeto de asegurar la terminación de la integración descende<u>n</u> te en el punto de empalme de ambas integraciones.

Subrutina DFDR(X) - Calcula la derivada de la función f(r).

La forma práctica de abordar los diferentes problemas específicos de cada subrutina puede verse, sin necesidad de aclaraciones, en el propio – listado que aparece en el capítulo 4.

- 32 -

- 33 -

:

222

.

· · ·

- 35 -4. LISTADO DEL PROGRAMA

4. LISTADO DEL PROGRAMA

•

Programa principal

1 *	C-D ESTE PROGRAMA CALCULA LOS ORBITALES PARA UN POTENCIAL ATOMICO)
2*	C CENTRAL DE LA FORMA	
3≉	C * V=(N-1)*(K-1/R)*EX*(-ALFA*R**C)-(Z-N+1)/R	
4,⇒	DIMENSION NELE(25) +NCP(25) +RCI(25) +PV(2050) +V1(1025) + V2(1026)	9
· 5*	1 VP(1025)•NOP(25)•EE(25)•RP(2050)•NRA(25)•NRD(25)•NRC(25)•NTI(251
6*.	2NS(25)	
7*	COMMON ALFA;AK;CVC;DE;E;ELE;ELEP;ELEP;ELEP;ENEP;I2;R;T1;U;V;VE;Z;	7P
8*	C-1 LECTURA DE TITULOS Y DATOS	
9 *	1 READ(5+913)	
10*	READ(5,920) PUNT + ANP + EDIF	
11*	REAJ(5+923) ZVENE+ALFA+UVAK	
12*	ENEP=ENE-1.	
13*	ZP = Z - ENE + 1 •	
14*	READ(5+930)N	
15*	READ(5+940)(NCP(I)+NELE(I)+NOP(I)+NS(I)+I=1+N)	
16*	C-2 SALIDA DE TITULOS Y PARAMETROS DE CALCULO	•
17*	WRITE(6+953)	
18*	WRITE(6+910)	
19*	WRITE(6+963)PUNT+ANP+EDIF+Z+ENE+ALFA+U+AK	
2ů*	C-3 PREPARACION DE LOS CALCULOS	
21*	RP0=0.3625	
22*	RPF=100.	
23*	IAK=1	
24*	DO 3 L=1.N	
25*	3 EE(L) = -B	
26*	C-4 PUESTA A CERO DE LAS SUMAS DE LOS CUADRADOS DE LOS ORPITALES	
27*	C PARA CAUA RADIO PP	
28*	10 ANP1=2.* (ANP+1.)	
29#		
20*		
21*		
32+		
ンンギ マル +	177-860018777 Tot-Tos-Tog	
297 75+	1 F 1 - 1 F F - 1 F V A L 1 - TNTCO (TO T, AN D1, 40 V	
33+ 76+	UALL INTERVERITANCITOR /	
20+	RF(1)-RFU/2•	

4.1 -

201

- 36 -PV(1)=0. RP0=1. RPF=1.0 TP=TP0 11 D0 12 M=2+NP1 RP(M)=EXP(TP) TP=TP+HP 12 PV(M)=0. ELECCION DEL ORBITAL CARACTERIZADO POR UN VALOR DE LOS NUMEROS C-5 ELECCION DEL ORBITAL CARACTERIZADO POR UN VALOR DE LOS NUMEROS CUANTICOS AZIMUTAL L Y PRINCIPAL N DO 380 L=1+N ELE=NELE(L) OP=NOP(L) ELEP=ELE*(ELE+1.) ELEP=(ELE+0.5)**2 NNE=NCP(L)+IFIX(ELE)+1 CALCULO DE E C C-6 CALCULO DE E CALCULO DE E CONDICIONES INICIALES GENERALES NRC(L)=0 NTI(L)=3 C-7 15 A=1. an an an th**air an tha an an tha**irtean an tha an 8=1.0E-23 E = E E (L)EAA=E 16 DE=-E DELTE=DE I S=1 11=1 12=1 14=1 CALCULO APROXIMADO DEL CERO DE LA FUNCION EFE(R) C = 8CALL CEROF R2 = R CALCULO APROXIMADO DEL INTERVALO DE INTEGPACION MAS ADECUACO C-9 33 CALL INTER(R2+CC+HR) IF(HR.GT.0.25)HR=0.25 IAB=(IAK-1)+NS(L)+(I1/3)+1 GO TO (40+35)+IAB ~ 35 WRITE(6+1010) NCP(L)+NELE(L)+EE(L) 40 K2=1 CALCULO DE LAS CONDICIONES INICIALES DE PIRTA DE LAS C-10 NNC=0 IF(I1.EQ.3)RPO=AMIN1(HR,RPD) DISMINUCION DEL INTERVALO DE INTEGRACION PARA UN CALCULO MEJOR DE C-11 LOS DOS PRIMEROS PUNTOS С NIS = (5. + ALOGIO(HR))/ALOGIC(2.) + 1. H = HR/2. * *NISNT=1 CALCULO DE LOS PRIMEROS PUNTOS PARA LA APLICACIÓN DEL METODO. C-12 DE NUMEROV С EFE1=EFE(1) R=R+H EFEC=EFE(1) YA = A * HYX = YA*(2. + 5./6.+H+H+EFE3)/(1. - H+H+EFEC/12.) C-13 PREPARACION DEL CALCULO DE NUMEROV DY=YX-YA Y2A=YA*EFE1 Y2X = YX*EFEC DY2=Y2X-Y2A D2Y2A=0.

7.73

- 37 -00* R = R + Hand a second s 01+ XIR C-14 COMPROBACION DEL POSIBLE CAMBIO DE SIGNO DE YX 02* 03* 475 IF(YX*SIGN(A+YA).LT.D.) NNC=NNC+1 C-15 SE OBSERVA SI SE HA REPUESTO YA EL INTERVALO ADECUADO Ωű± IF(NI-NIS) 4711,4711,475 (Section of the mark of the mark 2018 Part of the 05× 4711 GO TO (471,479,471),K2 06* 07.* 471 K3=4 08* GO TO 70 C-16 PREPARACION PARA CALCULAR EL SEGUNDO PUNTO NECESARIO PARA LA n9* DUPLICACION DEL INTERVALO 10+ С 472 K3=5 11* - ...X=X+H 12* . . . الالتروافي الديجين العالمين والاحت يحترك الاستحاف ال 13* 2 R=X 14 * 60 TO 70 15* 479 K3=5 . 16* * X = X + H 17* R=EXP(X) 18* 60 TO 70 19* 473 X=X+2.*H 2ū* GO TO 173 C-17 ESTA AUN DUPLICANOO EL INTERVALO PARA EL CALCULO DE LOS JOS 21* PRIMEROS PUNTOS. CONTINUA CON ESTE PROCESO 22* С 23* 474 NI=NI+1 GO TO 476 24* C-18 HA TERMINADO EL CALCULO DE LAS CONDICIONES INICIALES 25* COMIENZA EL CALCULO NOPMAL 26* С 475 GO TO (477,53,477), K2 27# • • • 28* 477 SP=YA*+2 . 29# SI=YX **2 C-19 CALCULO DE LA INTEGRACION ASCENDENTE 30* 31÷ 53 AI=3. 32* BI=0. the the the second second 5 1 C 2 . 33× K3=1 60 K1=1 34 * C-20 CALCULO DE UN NUEVO PUNTO EN LA INTEGRACIÓN POR EL METODO NUMEROV 35* **36*** 70 EFEA=EFEC EFEC=EFE(K2) 37* D0 74 J=1,5 D2Y2=D2Y2A 38× 39* 40= D2Y=H**2*(Y2X+D2Y2/12.) DYH=DY+D2Y 41* a a shekara a shekara ta a shekara a shekara a YH=YX+DYH 42* COMPROBACION DE LA VALIDEZ DEL VALOR APROXIMADO DE D2Y2 43* С Y2H=EFEC*YH 44 = 45* DY2H=Y2H-Y2X 46* D2Y2A=DY2H-DY2 • IF(D2Y2+D2Y2A)71+72+71 47* 71 IF(ABS((D2Y2-D2Y2A)/(D2Y2+D2Y2A))-EDIF) .75,75,74 ... 48**×** 49* 72 IF (D2Y2)73+75+73 50* 73 IF(ABS((D2Y2-D2Y2A)/D2Y2)-EDIF)75+75+74 51* 74 CONTINUE SI HAN SIDO NECESARIAS MAS DE 5 REITERACIONES SE ANOTA LA ANOMALIA 52* С 53* G0 T0(79.78.79).K2 54* 79 NRA(L)=NRA(L)+1 75 IF(K2-2) 753+751+753 55* 56* 751 IF(NI) 752,753,753 57* 752 NIS=-NI 58* NI=1 59* GO TO 476 60* 753 YAA=YA 61* YA=YX **62*** YX=YH

.

e e en en entre entre

. . . . - 38 -12. res articles and DY=DYH ... Y2AA=Y2A Y2A=Y2X Y2X=Y2H DY2=DY2H G0 T0(77,20),240,77,77),X3 C-21 PREPARACION PARA EL CALCULO DE LA INTEGRAL POR EL METODO DE SIMPSON 77 GO TO(83,85,80) + K2 78 IF(NI) 782,782,783 2. . 782 IF(X-H-H-X1)783+781+781 . : 781 HT=HT/2. an at start t NI=NI+1 • · · · · 60 TO 211 783 NRD(L)=NRD(L)+1 GO TO 75 C-22 CASO DE LA SOLUCION ASCENDENTE 80 P=YX PI=P**2 GO TO 88 C-23 CASO DE LA SOLUCION DESCENDENTE 85 P=YX*SQRT(R) IF(ABS(P)-1.0E-13) 86+86+87 86 PI=0. 60 TO 89 87 PI=(R*YX)**2 IF(11-3) 88,588,88 588 IF (SP+51) 688,688,88 688 RPF=AMAX1(RPF+R) 88 RA=R 90 GO TO (100,100,91),11 C-24 INTERPOLACION DE LA SOLUCION DEL ORBITAL CORRESPONDIENTE AL RADIO PP 91 RPS=RP(件) GO TO (92+94+92)+K2 C-25 COMPRUEBA SI EN ESTA ZONA SE DEBE HACER LA INTÉRPOLACION 92 IF(H-NP1) 592,592,100 C-26 COMPRUEBA SI SE HA SOBREPASADO ALGUN PADIO DONDE SE DEBE INTERPOLAR 592 IF(R-RPS) 100+93+93 C-27 CALCULO DE LA FRACCION DEL INTERVALO A INTERPOLAR 93 TITA=1.-(R-RPS)/H GO TO 96 C-28 COMPRUEBA ST SE HA SOBREPASADO ALGUN RADIO DONDE SE DEBE INTERPOLAP 94 IF(RPS-R) 130,95,95 C-29 CALCULO DE LA FRACCION DEL INTERVALO A INTERPOLAR 95 TITA=1.-(X-ALOG(RPS))/H C-3C INTERPOLACION 96 EA=(YX-YAA)/2. EB=(Y2X-Y2AA)/2. EC=(YX+YAA)/2. CT=1.-TITA**2 CAC=EA-(H**2*EB)/6.*CT+EC*TITA**3 YP=YA*(1.-TITA**4)+(TITA*H)**2/2.*CT*Y2A+TITA *CAC GO TO(97+98:97)+K2 C-31 CALCULO DEL ORBITAL PARA CADA RP+ DE SU DENSIDAD Y DE SU SUMA 97 P=YP P2=P*P PV(M) = P2 * 0P + PV(M)C-32 SE OBSERVA SI HAY QUE HACER SALIDA EN ESTE ORPITAL GO TO (597:596) . IAB C-33 SALIDA DE INFORMACION 595 WRITE(6+1315) RPS+P+P2 C-34 MIRA SI SE DEBE HACER OTRA INTERPOLACION 597 M=M+1 GO TO 91

C-35 CALCULO DEL ORBITAL PARA CADA RP; DE SU DENSIDAD Y DE SU SUMA :26* :27* 98 IF(ABS(YP)-1.02-13) 99,99,598 598 P=YP*SORT(RPS) 28* P2 = P * P129* 130* $PV(M) = P2 \times 0P + PV(M)$ SE OBSERVA SI HAY QUE HACER SALIDA EN ESTE ORBITAL :31 + C-36 GO TO (99,599) + IAB :32* :33* C - 37SALIDA DE INFORMACION 599 WRITE(6:1015) RPS:P.P2 !34* C-38 MIRA SI SE DEBE HACER OTRA INTERPOLACION 135* 136* 99 M=M-1 !37* GO TO 91 C-39 SE OBSERVA LA FINALIDAD DEL ULTINO CALCULO DE NUMEROV 138* 133 GO TO (131+131+131+472+473), K3 139× C-40 CALCULO NORMAL DE LA INTEGRACION DE LA ECUACIÓN DE OREITALES :4ū* !41* C SE INCREMENTA **X** ?42* 101 X=X+H 143* GO TO(110+180+143)+K2 +44** 110 R=X 145* GO TO (111,111,103),IS 146* C-41 OBSERVA SI SE HA LLEGADO AL PUNTO DE EMPALME . 147* 103 IF(R-H-RFF) 105+140+140 C-42 OBSERVA SI SE HA LLEGADO A UN CERO DEL ORBITAL 14A* ·49* 135 IF(R-H-RCI(NNC+1)) 130,150,150 150 # C-43 ESIUDIO DE F(X) !51* 111 IF(EFEA) 112,120,120 !52* 112 IF(EFEC) 120+140+140 C-44 ESTUDIO DEL CAMBIO DE SIGNO DE YX :53# !54# 120 TF(YA) 121,130,121 :55* 121 IF(YX # SIGN(A, YA)) 150, 150, 130 !56# 130 GO TO (131+133+160+153) + ¥1 :57* 131 K1=2 :58* C-45 SUMA DE LOS TERMINOS PARES DE LA INTEGRAL DE SIMPSON 132 SP=SP+PI :59* :60# GO TO 70 ·61* 133 K1=1 C-46 SUNA DE LOS TERMINOS IMPARES DE LA INTEGRAL DE SIMPSON 162* ·63* SI=SI+PI ·64* GO TO 70 140 TF(K1-2) 141,142,142 ?65× :66* 141 K2=3 67* GO TO 123 '68**≉** 143 R=X :69* 142 K3=2 170+ K1=3 ·71* GO TO 123 72* C-47 YX HA CAMBIADO DE SIGNO, SE CONTABILIZA EL NODO 73* 15) NNC=NNC+1 · · · · · · 74= RCI(NNC)=RA ·75× GO TO (152,130,130),K2 152 IF(K3.EQ.2) GO TO 130 ·76* 77* GO TO (153,160,160,153),K1 _ 153 K1=3 :78* 79* GO TO 132 CALCULO DE LA INTEGRAL POR EL METODO DE SIMPSON 80* C-48 :81 # 160 AI=AI+(BI+4.*SP+2.*SI+PI)*H/3. !82# GO TO (170+190+190+190+190)+K3 C-49 PUESTA A CERO PARA CONTINUAR EL CALCULO DE LA INTEGRAL DEL OPRITAL 183+ :84* 170 BI=PI :85× SP=0. SI=0. :86* :87* GO TO(60+171+171)+I1 ·88* C-50 OBSERVA SI EL INTERVALO DE INTEGRACION ES ADECUADO

- 39 -

a Startin and start in 12 x 13 X 4 1 and a second 171 IF((RCI(NNC+1)-RCI(NNC))/PUNT-2.*H) 60+60+172 C-51 PREPARACION PARA UN INTERVALO DOBLE 172 X=X+H 173 YA=YAA Y2A=Y2AA D2Y2A=4.*D2Y2A DY=YX-YA DY2=Y2X-Y2A G0 T0 (175,176,175),K2 175 R=X G0 T0 177 176 R=EXP(X) 177/H=2.*H C-52 SE OBSERVA LA FINALIDAD DE LA DUPLICACION DEL INTERVALO GO TO(174,174,174,474,474) K3 C-53 ESTA EN EL PASO POR UN NODO. SE PREPARA PARA VER SI ES NECESARIO C UNA NUEVA DUPLICACION DEL INTERVALO Merci 174 K1=4 toto del toto del Base Boscia del Basedo de Constante Constante de Co 60 TO 70 183 R=EXP(X) . C-54 COMPRUEBA SI HAY QUE CALCULAR LA INTEGPAL Y SI HA TERMINADO LA INTEGRACION . C 181 IF(X-XFF) 182+120+120 S C HA TERMINADO LA INTEGRACION DESCENDENIE PPA=P GO TO 16C C-55 PREPARACION DE PARAMETROS PARA EL CALCULO DE LA DERIVADA DE C LA SOLUCION DEL OPBITAL DY2AA=DY2 and the constant of GO TO 70 CALCULOS FINALES DE LA INTEGRACION ASCENDENTE C-56 233 P1=3.5/H*(DY+DYA)-H/12.*(DY2+DY2AA) PAR=P1/YA AIR=AI/YA**2 PU=YA AIA=AI Х = Х – Н C-57 COMPRUEBA SI SE HA SOBREPASADO EL NUMERO DE CEROS CORRESPONDIENTE A ESTE OFBITAL С <u>.</u> LL=0 IF (NNE-NNC) 252+201+202 231 CCC=2.*PUNT _G0 T0%203 232 CCC=FLOAT (NNE-NNC+2) *P UNT 203 RCI(NNC+1)=X RFF=X IF (I1.EQ.1) ... CCC=CCC/2. CALCULO DE LAS CONDICIONES INICIALES PARA LA SOLUCION DESCENDENTE C-58 216 XF=ALOG(X) NI=D TF=3.9-0.5*AL06(-2.*E)-XF 214 CALL INTER(TF+CCC+HT) XI=XF+HT*(2.*AINT(TF/2./HT)+1.) 211 H=-HT . X=XI R=EXP(X) RA=R . EFEC=EFE(1) IF(EFEC+0.9*E) 212,213,213 212 TF=1.1*TF GO TO 214

22* 213 EFECALEFE(2) 53 YES YES 54 YES YES 55 YES YES 56 YES YES 57 YES YES 58 YES YES 59 YES YES 50 YES YES 50 YES YES 50 YES YES 51 YES YES 52 YES YES 53 YES YES 54 YES YES 55 YES YES 56 YES YES 57 YES YES 58 YES YES 59 YES YES 50 YES YES 51 YES YES				·						
52* 213 EFECATEFE(2) 53* YAB 54* XXXH 55* YAB 54* XXXH 55* YAB 54* XXXH 55* YAB 55*<										
52* 213 CFECA-EFE(2) 53* YA-B 54* X244 55* H2741-R 55* USA 55* 220 MALU 55* 221 MALU 55* 221 MALU 56* 221 MALU 57* USA 58* 221 MALU 59* 221 MALU 59* 121 FIRS(14-MALT-DIF123D, 230, 220 61* YX:Y/SORT(A) 63* YX:Y/SORT(A) 64* YX:Y/SORT(A) 65* YATESCHARA 65* YZ:SCCARA 65* YZ:SCCARA 70* C2:SCCARA 71* C2:SCCARA 72* C0 TO SC 73* YZ:SCCARA 74* YX:Y/SORT(R) 75* GO TO SC 76* C-90 THE TANKADO LA INTEGRACION DESCENDENTE 77* C-97 HA TERTANAO LA INTEGRACION DESCENDENTE 78* C-40 COMPROBACION DEL NUMERO CUM TICO PEINCIPAL MALLADO 79* C44 79* C44 79*										
22* 213 EFECATEFE(2) 33* YEERYON 35* XEERYON 35* YEERYON 35* RADELL-JANFEFEC 35* YEERYON 35* RADELL-JANFEFEC 35* YEERYON 35* RADELL-JANFEFEC 35* YEERYON		· .	ran i			- 41 -				
52* 213 EFECAFEE(2) 53* YAED 54* YAED 55* NEXP(N) 55* NEXP(N) 55* 220 MACW 55* RADIL,*AJYEFEC 64* U=HAASGRIAAD-EDIP1230.230.220 65* Z20 MACW 64* U=HAASGRIAAD-EDIP1230.230.220 65* XFTXATL-40 64* YEXTXASGRIAAD-EDIP1230.230.220 65* XFTXATL-40 64* YEXTXASGRIAAD-EDIP1230.230.220 65* XFTXATLAAD-EDIP1230.230.230.220 65* XFTXATLAAD 66* YEXTXASGRIAAD-EDIP1230.230.230.220 66* YEXTXASGRIAAD-EDIP1230.230.230.220 66* YEXTXASGRIAAD-EDIP1230.230.230.220 7* YEXTXASGRIAAD-EDIP1230.230.230.220 7* YEXTXASGRIAAD-EDIP1230.230.230.220 7* YEXTXASGRIAAD-EDIP1230.230.230.220 7* YEXTXASGRIAAD-EDIP1230.230.230.220 7* YEXTXASGRIAAD-EDIP1230.230.230.230.220 7* YEXTXASGRIAAD-EDIP1230.230.230.230.230.230.230 7* YEXTXASGRIAAD-EDIP1230.230.230.230.230.230.230.230			•						3 	
223 CPLUMETCLEY 533 MARSHAR 534 MARSHAR 535 MARSHAR 536 MARSHAR 537 MARSHAR 538 MARSHAR 539 RADILL-VANSEFEC 640 MARSHAR 639 RADILL-VANSEFEC 641 MARSHAR 639 TATATAGETRAN 641 MARSHAR 642 MARSHAR 644 MARSHAR 645 MARSHAR 646 MARSHAR 647 MARSHAR 648 MARSHAR 649 MARSHAR 641 MARSHAR 642 MARSHAR 643 MARSHAR 644 MARSHAR 645 MARSHAR 646 MARSHAR 647 MARSHAR 748 MARSHAR 749 MARSHAR 741 MARSHAR 742 STACA 744 MARSHAR 745 STACA		50+					•			
55 ACXAN 55 ACXAN 56 HARABAR 57 UC3. 58 200 KACU 59 RADIL.+JAJEFEC 60 WHKA-SGRTGRAD 61 TERSS(4-WAL-CAIF1230-230,220 62 230 KACU 63 YEXAY/SOBTRAD 64 YEXAY/SOBTRAD 65 YEXAY/SOBTRAD 65 YEXAY/SOBTRAD 66 YEXAY/SOBTRAD 67 YEXAY/SOBTRAD 77 YEXAY/SOBTRAD 78 K222 79 SEC 70 YEXAY/SOBTRAD <td></td> <td>52¥ 57★</td> <td>213</td> <td>EFELA-EFE(2)</td> <td></td> <td>•</td> <td>n in an sinan</td> <td></td> <td>· · · · ·</td> <td></td>		52¥ 57★	213	EFELA-EFE(2)		•	n in an sinan		· · · · ·	
S54 RETPY(x) S55 RETPY(x) S57 H23. S57 H23. S58 220 MACW S59 RADIL:A):EFEC G00 H24MASGAT(RAD) G11 TFL85S12-MAI-CDIF1330.230.220 G22 S20 VFAATL:A):EFEC G01 X:YXSOBT(R) G44 YX:YXSOBT(R) G45 YX:YXSOBT(R) G46 DYTXYA G47 YA:YXSOBT(R) G46 DYX:YXSOBT(R) G47 YA:YXSOBT(R) G47 YA:YXSOBT(R) G48 YX:YXSOBT(R) G47 YA:EFE(2)*YX G47 YA:EFE(2)*YX G47 YA:EFE(2)*YX G48 YX:YXSOBT(R) G48 YX:YXSOBT(R) G49 DY:EYZ:A G40 DY:EYZ:A G47 YA:EYXSOBT(R) G48 YX:EYXSOBT(R) G47 C:ES G48 C:ES G47 <td></td> <td>50* 54*</td> <td></td> <td>X=X+H</td> <td>(1) A strand water to a second sec</td> <td></td> <td>anta ana ana amin'ny faritr'i Anta</td> <td></td> <td>• •. •</td> <td>· · · · ·</td>		50* 54*		X=X+H	(1) A strand water to a second sec		anta ana ana amin'ny faritr'i Anta		• •. •	· · · · ·
56* HRARAR 57* H23. 58* 220 HARW 59* RBD11.+315EFEC 60* HEMS1.4-315EFEC 60* HEMS1.4-315EFEC 61* IFEMS1.4-4315EFEC 62* 230 YECTAK140 64* YECTAK140 65* YECTAK140 66* YECTAK140 67* YZAFEFEC21*YX 67* YZAFEFEC21*YX 67* YZAFEFEC21*YX 70* DYZAF0. 71* XEXT 72* SIGO. 73* SIGO. 74* YZAFEFEC21*YX 75* GO TO 50 76* C0 To 50 77* SIGO. 78* ZAG ERAFEA 79* CASE 70* COMPROBACION DEL NUMERO CUANTICO POTHOLIPAL MALLADO 61* IFELEZAN 78* CAMID A UNA EMERGIA MEGATIVA MENOR 79* C122 70* C250 71* CASE EXEAS 72* CASE EXEAS		55*		R=EXP(X)		g la ser i la	1. A.		and and a second se Second second s	يندين محمد من م
57* 220 221 59* RADE(1,*A)*EFEC 64* 210 117:134:14*1723.0.233.233.220 64* 210 117:134:14*1723.0.233.233.220 64* 210 117:134:14*1723.0.233.233.220 64* 210 117:134:14*1723.0.233.233.220 64* 210 117:133.0.233.233.220 64* 210 117:12*1723.0.233.233.220 64* 211:12*1723.0.233.233.220 65* 212:12*1723.0.233.233.233.233.233.233.233.233.233		56 *		HRA=RA-R			·			• •
58* 220 HAEW 59* RAD=11+A1>EFEC 64* U=RHA-SGRT(RAD) 64* 230 VX:YA(1+C) T(P)230+230+220 64* YA:YA/SGRT(RA) 64* YA:YA/SGRT(RA) 65* XF:RAC-HT/2. 66* Y2:YA:SGRT(RA) 67* Y2:YA:SGRT(RA) 68* Y2:YA:SGRT(RA) 69* DY=YX-YA 67* Y2:STEFECA-YA 68* Y2:STEFECA-YA 69* DY=YX-YA 70* DY=YZ-YA 71* Y2:STEFECA-YA 72* Y2:STEFECA-YA 73* Y2:STEFECA-YA 74* M=NP1 75* K2=2 76* GO TO 50 77* M TERRINADO LA INTEGRACION DE SCENDINTE 78* Z4: EASEECAA 79* EAASE 70* C-40 COMPROBACION DEL NUMERO CUANTICO PPINCIFAL MALLADO 77* C4ASEIO A UNA ENERGIA MEGATIVA MENOR 78* C30 TO 20 79* C4ASE 79* C56 CONFROBACION DEL NUMERO CUANTICO PPINCIFAL MALLADO <td></td> <td>57*</td> <td></td> <td>W=3.</td> <td>- "x</td> <td></td> <td>and the second</td> <td>11.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1</td> <td></td> <td></td>		57*		W=3.	- "x		and the second	11.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1		
31 Number 1 100 100 41 IF(AS:U-A)+EDIF/23D, 23D, 22D 100 42 230 YX=YA/SORT(RA) 44 YX=YA/SORT(RA) 100 45 YX=YA/SORT(RA) 100 46 YX=YA/SORT(RA) 100 47 YZ=CFECCA+YA 100 46 YX=YA/SORT(RA) 100 46 YX=YA/SORT(RA) 100 47 YZ=CFECCA+YA 100 46 YZ=YZ=ZACA 100 47 YZ=CFECCA+YA 100 46 YZ=YZ=ZACA 100 47 YZ=CFECCA+YA 100 46 YZ=YZ=ZACA 100 47 YZ=CFECCA+YA 100 48 GO TO 50 110 49 HERET 100 40 DY=CYZ=YZ=ZA 100 40 TFINIC-WINE 1 250 250 41 TFINIC-WINE 1 250 250 120 425 DE=DI/Z= 100 100 100 53 TE <eco< td=""> 100<td></td><td>58* 50+</td><td>. 220</td><td>WAEW</td><td></td><td></td><td>ورواقي المعموريون والم</td><td></td><td>• • •••</td><td></td></eco<>		58* 50+	. 220	WAEW			ورواقي المعموريون والم		• • •••	
64 TF(AS;U-A)=CDF23D,23D,22D 65 230 YA:YA(1:A) 65 YA:YA/SDRT(AA) 65 XF:ZAF-HT/Z- 66 DY:YX-YA 67 Y2:EFECA+YA 68 DY:YX-YA 78 DD:ZAS-Y2A 78 DD:ZAS-Y2A 78 DY:XX-YA 78 DY:XX-YA 79 DY:XX-YA 71 DY:XX-YA 72 S:E 74 M:EPECA 75 K2=2 76 GO TO 50 77 CAMEID A UNA ENERGIA NE GATUVA #ENDR 78 Z50 DE:DY/2 79 Z50 DE:DY/2 70 Z50 DE:DY/2 71 Z50 DE:DY/2 <td></td> <td>07∓ 60≠</td> <td>•</td> <td>W=HRA*SQRT(RAD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• •• •• •• •</td>		07∓ 60≠	•	W=HRA*SQRT(RAD						• •• •• •• •
62* 230 YAZYA*(1.+W) 63* YAZYA*(SARY(RA) 64* YXZYA*(SARY(RA) 64* YXZYA*(SARY(RA) 64* UTYX*(A) 64* UTYX*(A) 64* UTYX*(A) 64* UTYX*(A) 64* UTYX*(A) 65* YZAEFE(CA*YA) 66* YZAEFE(CA*YA) 66* YZAEFE(CA*YA) 66* YZAEFE(CA*YA) 66* YZAEFE(CA*YA) 74* MEAPI 75* STED 76* G0 TO 50 77* C-59 78* R222 76* G0 TO 50 77* C-59 78* R220 79* EAAEE 80* C-61 80* C-61 80* C-61 80* C-61 80* C-62 80* C-62 80* C-62 80* C-64 80* C-64 80* C-64		61*		IF(ABS(W-WA)-8	EDIF1230+230+	220				2 51 (p. 1
63* YAEYYASOBYTER) 64* YZEYYZATER 65* YFFXXF-HT/Z. 66* YZEYZATER 66* YZEYZATER 66* YZEYZATZA 67* YZEYZATZA 68* YZEYZATZA 69* ZAATTA 69* ZAATTA 60* DIZZZA 60* ZAATTA 60* DIZZZA 60* </td <td></td> <td>62*</td> <td>230</td> <td>YX=YA+{1.+W}</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>gi a s</td>		62*	230	YX=YA+{1.+W}						gi a s
64 YEETY ATA 65 DT=YX+TA 66 DT=YX+TA 67 TALEFECAYA 66 DT=YX+TA 67 TALEFECAYA 68 TYALEFECAYA 69 TYALEFECAYA 60 TYALEFECAYA 70 DYALEFECAYA 71 TYALEFECAYA 72 SIGO 73 SF20 74 C-59 75 K222 76 GO TO 50 77* C-59 78 K222 79 CASECAA 79 CASECAA 79 CASECAA 70 CASECAA 70 CASECAA 70 CASECAA 70 CASECAA 70 CASECAA 71 C-50 72 CASECAA 73 K252 74 CASECAA 75 CASECAA 76 CASECAA 77 CASECAA 78 DEECAA </td <td></td> <td>63*</td> <td>•</td> <td>YA=YA/SORT(RA)</td> <td>)</td> <td></td> <td>a 43</td> <td>1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -</td> <td></td> <td>1 22 10:00</td>		63*	•	YA=YA/SORT(RA))		a 43	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		1 22 10:00
0 0 0 10 0 0 12 12 12 0 0 0 12 12 12 10 0 0 12 12 12 12 11 X:X:H 12		64* 65÷	·· · · · .	YXCYX/SQRI(R) YCC-YC-HT/2				· • · · ·	···· •·· · · · ·	• •
67* Y2ASEFE (2)*YX 60* DY2EYZX-Y2A 70* DY2EYZX-Y2A 70* DY2EYZX-Y2A 70* DY2EYZX-Y2A 70* DY2EYZX-Y2A 70* DY2EYZX-Y2A 71* X=X+H 72* SP=0. 74* M=DP1 75* K2=2 76* GO TO 50 77* C-59 MA TERRIVADO LA INTEGRACION DESCENDENTE 76* C40 COMPROBACION DEL NUMERO CUANTICO PPINCIPAL FALLADO 81* DETERIANADO LA UNA ENERGIA MEGATIVA MENOR 82* C-61 CAMBIO A UNA ENERGIA MEGATIVA MENOR 83* 253 12=2 84* 251 DEDEZ-2 84* DEDEZ/2+ 256 85* E=E=0E/2+ 86* DEDEZ 97* CASE DE A UNA ENERGIA MEGATIVA MAYOR 91* 252 CO TO 256 92* 254 DEDEZ-2 93* 254 DEDEZ-2 94* 250 DEDEZ-2 95* 255 DESEC-0DE<		-66*		DY=YX-YA						
66+ Y2X=FEC(2)*YX 70+ DY2=Y2X=Ca. 71+ X=X+H 72+ SI=0. 73+ SP=0. 74+ MENP1 75- K2=2 76- GO TO 5D 77- C-SP 78- SP=0. 74- MENP1 75- K2=2 76- GO TO 5D 77- C-SP 78- 240 EABEEAA 79- EAAEE 80- C-61 CAMBIO A UNA ENERGIA MEGATIVA MENOR 81- EF(NC-NNE) 250-250-250 82- C-61 CAMBIO A UNA ENERGIA MEGATIVA MAYOR 83- DET=62 84- C51 DE72. 85- EEF+0E 86- IF(KE) 253-250+250 87- 255 DE72. 88- DET=72. 90- C-62 CAMBIO A UNA ENERGIA MEGATIVA MAYOR 91- 255 DE72. 95- 255 DE72. 95- 255 DE72. 95- 255 DE72. 96- 16 DE072. <		·67*		Y2A=EFECA+YA						
69* D2Y2AZO. 71* XEX+H 72* SPEJ. 73* SPEJ. 74* HEMPI 75* K222 76* C-50 77* SPEJ. 78* REAA 79* EAAEE 80* C-60 TO 50 77* C-57 78* EAAEE 80* C-61 COMPROBACION DEL NUMERO CUANTICO PPINCIPAL FALLADO 81* TINNC-NNEI 220+260+252 82* C31 DEEDE/2. 83* E251 DEEDE/2. 85* E254 DEED/2. 86* IFIED 256+258+258 87* 226 OTO 10253-254)+12 90* C-62 COMPID A UWA ENERGIA NEGATIVA MAYDP 91* 253 DEED/2. 92* 255 DEED/2. 93* 256 DEED/2. 94* 251 DEEDE/2. 95* 255 IFICLECE 96* 1FICD/FE-16.+EDIF) 361+351+257 97 255 DEE-02 98* C 97 C-63 SE OBSERVA SI + *0CHOFA DEE LAENERGIA		;68 ≠		Y2X=EFE(2) + YX						1.1
71* VICALUS 71* XIX+H 72* SIIO. 73* SPID. 74* MISPI 75* K2-2 76* GO 70 50 77* SIID 76* C-59 76* C-50 76* C-61 76* C-61 76* C-61 76* C-61 76* C-52 76* C56 76* C56 76* C57 77* C0 76* C56 77* C0 77* C0 76* C56 76* C56 76* C56 <t< td=""><td></td><td>169*</td><td> •</td><td>DY2=Y2X-Y2A</td><td></td><td></td><td></td><td>And the</td><td></td><td></td></t<>		169*	 •	DY2=Y2X-Y2A				And the		
72* SITED. 73* SP-2. 74* MENP1 75* K2=2 76* C-59 HA TERMINADO LA INTEGRACION DESCENDENTE 77* C-59 HA TERMINADO LA INTEGRACION DESCENDENTE 78* 240 EAR-E 80* C-60 COMPROBACIÓN DEL NUMERO CUANTICO PPINCIPAL HALLADO 81* FINNC-NNEJ 230+260+252 82* C-61 CAMBIO A UNA ENERGIA MEGATIVA MENOR 83* 253 DE-24 84* 251 DE-DE/24. 85* E-EE+0E EE 86* IF(E) 256+258+258 87* 258 E-2(E-DE)/2. 88* DE-E-E 60 89* GO TO 255 94 91* 253 DE-2-DE 92* 253 DE-2-DE 93* GO TO 255 94 94* DEDE/2. 257 95* 255 E-2-DE 96 DE-D/2. 0F DELTE 94 DEDE/2. 0F DELTE 95* 255 DE-2-D		7U¥		UZTZA-U. X=X+H				هم هي دروني و	· ··	
73* SP=3. 74* M = M = M = M = M = M = M = M = M = M		72*	•	SI=0.						
74+ MSNP1 75+ K2=2 76+ GO TO 50 77+ C-50 77+ C-50 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 240 78+ 251 78+ 251 78+ 251 78+ 251 78+ 251 78+ 256 78+ 256 79+ 250 79+ 250 79+ 250 79+ 250 79+ 250 70+ 257 70+ 257 70+ 250 70+		73*	•	SP=J.			-			
75* K2=2 76* GO TO 50 77* C-59 HA TERRIVADO LA INTEGRACION DESCENDENTE 78* 244 EAA=E 80 C-60 COMPROBACION DEL NUMERO CULANTICO PRINCIPAL MALLADO 81* EAA=E Status 82* C-61 CAMBIO A UNA ENERGIA NEGATIVA MENOR 83* 251 DE=DE/2. 84* 251 DE=DE/2. 85* E=E+DE Status 86* DE=C-0E/2. 87* GO TO 256 90* C-62 CAMBIO A UNA ENERGIA NEGATIVA MAYOR 91* 252 CO TO 1255 92* 250 DE=DE/2. 93* GO TO 255 94* 255 DE=DE/2. 95* 255 E=-0E 94 256 DETOE/2. 95* 255 E=-0E 94 256 DETOE/2. 95* 255 E=-0E 94 256 DETOE/2. 95 DE=-E DE 96 IF(LE/E+16.*EOTF) 361+361+257		74*		M=NP1					•	
<pre>77* C-59 HA TERMINADO LA INTEGRACION DESCENDINTE 78* 240 EABEEAA 79* EAAE 80* C-60 COMPROBACION DEL NUMERO CUANTICO PPINCIPAL FALLADO 81* IF(NNC-NNE) 250+260+252 82* C-61 CAMBIO A UNA ENERGIA NEGATIVA MENOR 83* 250 DE=DC/2. 84* 250 DE=DC/2. 85* E=FDE 86* IF(E) 256+258+258 86* 26* C-62 CAMBIO A UNA ENERGIA NEGATIVA MAYOP 91* 252 GO TO (253+254)+12 92* 250 DE=2.*DE 93* GO TO 255 94* 255 DE=2.*DE 94* 255 DE=2.*DE 95* 255 DE=2.*DE 95* 255 E=E-DE 95* 256 IF(LL_E0.1) GO TO 360 97* C-63 SE 0BSERVA SI * #DE* ES PEQUE/ISIMO SIN HABER PASADO AL CALCULO 98* C 95* 256 IF(LL_E0.1) GO TO 360 97* C-64 CALCULO DE LA CORRECCION A FFECTUAR SCOPE LA ENERGIA 00* C 250 02* C-64 CALCULO DE LA CORRECCION A FFECTUAR SCOPE LA ENERGIA 03* C C-64 CALCULO DE LA CORRECCION A FFECTUAR SCOPE LA ENERGIA 04* 267 /1=0.57/#*NICO PRINCIPAL HALLADO ES EL ADECUADO 04* 267 /1=0.57/#*NICO PRINCIPAL HALLADO ES EL ADECUADO 04* 017:=3.57/**JONICO PRINCIPAL HALLADO ES EL ADECUADO 04* 017:=3.57/**JONICO PRINCIPAL HALLADO ES EL ADECUADO 04* 017:=0.57/#*NICO PRINCIPAL HALLADO ES EL ADECUADO 04* 017:=1.57/#*NICO PRINCIPAL HALLADO ES EL ADECUADO 04* 017:=1.57/#*NICO PRINCIPAL PROVI/O II 10* 015:=1.55(MICHIE)-1.55(FAR-POR)/DIVI 11* C-65 SE 0BSERVA SI **DELIEX**ES IXCESIVAMENTE PEOUE/O 12* 16* ADECUE 14* 016* 16* 16* 16* 16* 16* 16* 16* 16* 16*</pre>		75*		K2=2						
78* 244 EAGEEAA 79* EAAEE 80* C-60 COMPROBACION DEL NUMERO CUANTICO PPINCIPAL MALLADO 81* IF(NNC-NNE) 250:260:252 82* C-61 CAMBID A UNA ENERGIA MEGATIVA MENOR 83* 250 I2:22 84* 251 DE:DE/2* 85* E:E+0E 86* IF(E) 256+258:258 87* 60 TO 256 90* C-62 CAMBID A UNA ENERGIA NEGATIVA MAYOR 91* 252 00 TO (253+254)+I2 92* 250 DE:DE/2* 93* GO TO 255 94* 254 DE:DE/2* 95* 255 E:E-0E 96* 256 IF(LLECA:I) GO TO 360 97* 255 DE:=-0E 98* 60 TO 255 94* 254 DE:DE/2* 95* 255 E:E-0E 96* 256 IF(LLECA:I) GO TO 360 97* 257 DE:=-E 98* 60 TO 20 98* C 99* 16 TO 20 99* 17 DE:=-E 91* 250 DE:=-E 92* 251 DE:=-STA:SCENA SI *=DE TE A ENERGIA		(0≠ .77±	6-59	HA TERMINADO I	A INTEGRACIO		VTF			
79* EAAEE 80* C-60 COMPROBACION DEL NUMERO CUANTICO PEINCIPAL HALLADO 81* IF(INNC-NNE) 253+240+252 82* C-61 CAMBIO A UNA ENERGIA MEGATIVA MENOR 83* 251 D2-22 84* 251 D2-22 84* 251 D2-24 85* E2E+0E 86* DE-24 86* DE-4 87* 258 88* DE-4 90* C-62 60 10 90* C-62 90* C-62 90* C-62 90* C-62 90* C-62 90* C-62 91* 252 92* 253 93* G0 94 DE-2+00E 95* 255 96* 256 97* C-63 98* G0 99* DE-172- 99* DE-2 91* DE-2 92* DE-		78*	240	EAB=EAA			···			
80* C-60 COMPROBACION DEL NUMERO CUANTICO PRINCIPAL HALLADO 81* IFINNE-NNE) 250:200:252 82* C-61 CAMBIO A UNA ENERGIA NEGATIVA MENOR 83* 253 12:2 84* 251 DE=DL/2. 85* E=E+DE 86* IF(10:256:258:258) 87* 258 E=(E=0E)/2. 88* OE=-E 89* G0 TO 256 90* C-62 CAMBIO A UNA ENERGIA NEGATIVA MAYOR 91* 252 GO TO 255 94* 251 DE=DL/2. 95* 260 TO 255 C-63 96 GO TO 255 C-64 97* C-63 SE OBSERVA SI * #DE * DE DUL/ISIMO SIN HABER* PASADO AL CALCULO 98* GO TO 23 DE=-E 91* GO TO 23 DE 92* C-64 CALCULO DE LA CORRECCION A FFECTUAR SOBE LA ENERGIA 93* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 94* 12(Y1+3.5*YA)/SQRT(RA) D 95* PL=(Y1+7.5*YA)/SQRT(RA) D 94* DIVI=AIR*0IR		79#	· · ·	EAA=E						
81* IF (NNC-NAE) 250.250.252 82* C-61 CAMBID A UNA ENERGIA MEGATIVA MENOR 83* 250 JE=D6/2. 85* E=E+DE 86* IF (E) 256+258+258 86* 0E=-E 86* 0E=-E 86* 0E=-E 87* 258 E=(E-DE)/2. 88* 0E=-E 89* G0 T0 256 90* C-62 CAMBID A UNA ENERGIA MEGATIVA MAYOP 91* 252 G0 T0 (253:254)+12 92* 253 0E=2.*DE 92* 253 0E=2.*DE 92* 255 0E=E-DE 92* 255 0E=E-DE 92* 255 0ESERVA SI-*DE*E SPEQUE/ISIMO SIN HABER PASADO AL"CALCULO 98* C 0F DELTE 99* IF(DE/E*15.+EDIF) 361*361*257 00* 257 0E=E 01* G0 T0 23 02* C-64 CALCULO DE LA CORRECCION A FFECTUAR SCBPE LA ENERGIA 03* C EL NUMERD CUANITCO PRINCIPAL HALLADO ES EL ADECUADO 04* 26(YI=0.5/H*(DYA-DY)-H/12.*(DY 2AA+DY2) 05* PI=(YI=3.5/H*(DYA-DY)-H/12.*(DY 2AA+DY2) 05* 0IVI=AIR+0JF 06* 0IVI=AIR+0JF 06* 0IVI=AIR+0JF 07* 0IR=-AI/PPA**2 08* 0IVI=AIR+0JF 09* 0ELT=0.5*(PAR-POR)/DIVI 10* 0ELTE=0.5*(PAR-POR)/DIVI 11* C-65 SE OBSERVA SI **0ELTE* ES EXCESIVAMENTE PEQUE/0 12* IF(ABS(DELTF)=1.0E=71) 261*262*262 13* C-66 POR SER EXCESIVAMENTE PEQUE/0 SE SUSTITUYE POP UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=07)*0ELTE)		80≠	C-90	COMPROBACION E	DEL NUMERO CU	ANTICO PRI	NCIPAL HALL	ADO	i. I s ela	en e
0.2 0.4 0		81* 82*	6-61	IF (NNC-NNE) 25 CAMBIO A UNA F	FNFRGIA NFEAT	TVA MENDO	and a second second	-fast in stårdet er	1.1465 (Friday)	- 25 8 - 1-64
84+ 251 DE=DE/2+ 85+ E=E+DE 85+ E=E+DE 86+ IF(E) 256+258+258 87+ 258 E=(E=DE)/2+ 88+ DE=-E 89+ GO TO 256 90+ C-62 CAMBIO A UNA ENERGIA NEGATIVA MAYOR 91+ 252 GO TO (253+254)+12 92+ 253 DE=2++DE 93+ GO TO (255) 94+ 254 DE=DE/2+ 95+ 255 E=E-DE 96+ C DE DELTE 96+ C DE DELTE 97+ C-63 SE OBSERVA -SI **DE* ES PEQUE/ISIMO SIN HABER* PASADO AL "CALCULO 98+ C DE DELTE 99+ IF(DE/E+16+*ES FEQUE/ISIMO SIN HABER* PASADO AL "CALCULO 98+ C DE DELTE 99+ IF(DE/E+16+*EDIF) 361+351+257 004+ 257 DE=-E 014+ GO TO 23 C 024+ C+4 CALCULO DE LA CORRECCION A FFECTUAR SHOPE LA ENERGIA 034+ DELTE-DE/PA DIVI-DE/E+16+16+170 </td <td></td> <td>83¢</td> <td>253</td> <td>12=2</td> <td>-</td> <td>LTR HENDA</td> <td>•</td> <td>•</td> <td></td> <td></td>		83¢	253	12=2	-	LTR HENDA	•	•		
85* E=E+DE 86* EF+EP E 86* EF+EP E 86* 258 E=(E=DE)/2. 88* DE==E 89* GO TO 255 90* C=62 CAMBIO A UNA ENERGIA NEGATIVA MAYOR 91* 252 GO TO (253:254)+12 92* 253 DE=2.*DE 93* GO TO (253:254)+12 94* 254 DE=DE/2. 95* 255 E=C=DE 96* 256 IF+(LL.CC.1) GO TO 360 97* C=63 SE OBSERVA SI **OE* ES PEDUE/ISIMO SIN HABER* PASADO AL CALCULO 98* C 97* IF+(DE/E*16.*EDIF) 361:361:257 00* 257 DE==E 01* GO TO 23 02* C=64 CALCULO DE LA CORRECCION A FFECTUAR SOBPE LA ENEPGIA D3* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26(YI=0.5/H*+(DYA+DY)-H/12.*(DY 2AA+DY2) D5* PI=(Y1+0.5)*YA)/SORT(RA) 06* DIVI=AIR+DIR 07* DIR=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.5*(PAR-POR)/DIVI 11* C=65 SE OBSERVA SI **OELTE** ES IXCESIVAMENTE PEOUE/O 12* IF+ABS(DELTE)-1.0E=77) 261:262:262 13* C=66 POR SER EXCESIVAMENTE PEOUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.*UE=07+DELTE)		84*	· 251	DE=DE/2.			ر بالمحمد المحمد ال	and the second second		4
86* IF(E) 256/258/258 87* 258 E:(E-DE)/2. 88* DE:-E 89* G0 TO 256 90* C-62 CAMBID A UNA ENERGIA MEGATIVA MAYOR 91* 252 G0 TO (253*254)*12 92* 250 DE:2*DE 93* G0 TO 255 94* 254 DE:DE/2. 95* 255 E:=DE 96* 256 IF(LL.EC.1) GO TO 360 97* C-63 SE OBSERVA SI-*DE* ES PEQUE/ISIMO SIN HABER PASADO AL CALCULO 98* C 99* IF(DE/E*16.*EDIF) 361*361*257 00* 257 DE:-E 01* GO TO 23 02* C-64 CALCULO DE LA CORRECCION A FFECTUAR SCBPE LA ENERGIA 03* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C YI:=C,5/H*IDYA+OY)-H/12.*(DY2AA+DY2) 05* PI:(Y1+2,5YA)/SQRT(RA) 06* PDR:=P1/PPA 07* DIR:=A1/PPA**2 08* OIV:=AIR+DIR 09* DELTA:DELTE 10* DELTE:D.5* (PAR-POR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E-CT) 261,262*262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE:SIGN(1.0E-C7+DELTE)		85≉		E=E+DE					i den la companya de	т. •
88* 0EE 89* 06 TO 256 90* C-62 CAMBIO A UNA ENERGIA NEGATIVA MAYOR 91* 252 00 TO (253*254)*12 92* 253 0E-2.*DE 93* 05 TO 255 94* 254 DE-DE/2. 95* 255 E-E-DE 96* 256 IF(LL_EQ.1) GO TO 360 97* C-63 SE OBSERVA SI-*DE* ES PEOUE/ISIMO SIN HABER PASADO AL CALCULO 98* C 00* 257 DEE 01* 06 TO 20 02* C-64 CALCULO DE LA CORRECCION A EFECTUAR SOBPE LA ENERGIA 03* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C YI-0.5/H*(DYA-DY)-H/12.*(DY2AA+DY2) 05* P1=(Y1+3.5*YA)/SORT(RA) 06* P0K=P1/PPA 07* 0IR=-AI/PPA**2 08* 0IVI=AIR+DIR 09* 0ELTA=DELTE 10* 0ELTE=0.5*(PAR-POR)/DIVI 11* C-65 SE OBSERVA SI **OELTE* ES IXCESIVAMENTE PEOUE/O 12* IF(ABS(DELTE)-1.0E-C7) 261;262*262 13* C-66 POR SER EXCESIVAMENTE PEOUE/O SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.UE-C7+DELTE)		86*	250	IF(E) 256+258	258				•	
89* G0 TO 256 90* C-62 CAMEIO A UNA ENERGIA NEGATIVA MAYOR 91* 250 TO (253*254)*12 92* 253 DE=2*DE 93* G0 TO 255 94* 254 DE=DE/2* 95* 255 E=E=DE 96* C 97* C-63 SE OBSERVA SI*#DE* ES PEQUE/ISIMO SIN HABER* PASADO AL"CALCULO 98* OF DELTE 99* IF(DE/E*16*+EDIF) 361*361*257 00* 257 DE=-E 01* G0 TO 23 02* C-64 CALCULO DE LA CORRECCION A FFECTUAR SYBPE LA ENERGIA 03* C 04* 26C Y1=0.5/H*(DYA+DY)+H/12.*(DY 2AA+DY2) 05* PICY1*9.5**AJ/SQRT(RA) 06* PDK=PI/PPA 07* DIT=AI/PPA**22 08* OIVI=AIR+DIR 09* DELTE=0.5*(PAR-POR)/DIVI 11* C-65 SE OBSERVA SI *+DELTE* ES TXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E=-07) 261;262*262 13* C-64 POR SER EXCESIVANTE PEDUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=-07+DELTE)		01≁ 88≉	200	DF=-E						
90* C-62 CAMBID A UNA ENERGIA NEGATIVA MAYOR 91* 252 GO TO (253*254)+12 92* 253 DE=2*DE 93* GO TO 255 94* 254 DE=DE/2. 95* 256 IF(LL.E0.1) GO TO 360 97* C-63 SE OBSERVA SI-*DE* ES PEOUE/ISIMO SIN HABER PASADO AL CALCULO 98* C DF DELTE 99* IF(DE/E*16.+EDIF) 361*361*257 00* 257 DE=-E 01* GO TO 23 02* C-64 CALCULO DE LA CORRECCION A FFECTUAR SOBPE LA ENERGIA 03* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C Y1=0.5/H*(DYA+DY)-H/12.*(DY 2AA+DY 2) 05* P1=(Y1+2.5*YA)/SQRT(RA) 06* DIX=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.55*(PAR-POR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEOUE/O 12* IFABS(DELTE)-1.0E=C7) 261;262*262 13* C-66 POR SER EXCESIVAMENTE PEOUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=C7+DELTE)	•	89*		GO TO 256			an a	· · · · ·		
91* 252 G0 T0 (253,254),12 92* 253 DE=2*DE 93* G0 T0 255 94* 254 DE=DE/2. 95* 255 EE=C-DE 96* 256 IF(LL.E0.1) GO TO 360 97* C=63 SE OBSERVA SI *DE* ES PEQUE/ISIMO SIN HABER PASADO AL CALCULO 98* C OF DELTE 99* IF(DE/E*16.*EDIF) 361*361*257 00* 257 DE=-E 01* GO TO 20 02* C=64 CALCULO DE LA CORRECCION A EFECTUAR SOBPE LA ENEPGIA 03* C EL NUMERO CUANICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26(YI=0.5/H*(DYA=DY)=H/12.*(DY 2AA+DY2) 05* PI=(Y1+0.5**A)/SQRT(RA) 06* DVI=AIR+DIR 07* DIR=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.5*(PAR=PDR)/DIVI 11* C=65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DDELTF)=1.0E=C7) 261; 262+262 13* C=66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POP UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.UE=C7+DELTE)		90*	C-62	CAMBIO A UNA E	ENERGIA NEGAT	IVA MAYOR	·	4 A. 1		
93* G0 T0 255 94* 254 DE=DE/2. 95* 255 E=E-DE 96* 256 IF(LL,EQ.1) GO TO 360 97* C-63 SE OBSERVA SI**DE* ES PEQUE/ISIMO SIN HABER PASADO AL CALCULO 98* DF DELTE 99* IF(DE/E*16.*EDIF) 361:361:257 00* 257 DE=-E 01* G0 TO 23 02* C-64 CALCULO DE LA CORRECCION A EFECTUAR SOBPE LA ENERGIA 03* C 04* 26C Y1=0.57 H*(DYA+0Y)-H/12.*(0Y2AA+DY2) 05* P1:(Y1+3.5*YA)/SQRT(RA) 06* P0R=P1/PPA 07* DIR=-AI/PPA*+2 08* OIVI=AIR+0IR 09* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** IS IXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E-C7) 261,262 262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E-C7.DELTE)		91*	252	GO TO (253+254	+)+12		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		an a' Airte	
<pre>94 254 DE=DE/2. 95 255 E=E-DE 96 256 IF(LL.EQ.1) GO TO 360 97 C-63 SE 0BSERVA SI * 0E* ES PEQUE/ISIMO SIN HABER PASADO AL CALCULO 98 C DF DELTE 99 IF(DE/E*16.+EDIF) 361+361+257 00 257 DE=-E 01* GO TO 20 02* C-64 CALCULO DE LA CORRECCION A FFECTUAR SOBPE LA ENERGIA 03* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C Y1=0_5/H*(DYA+DY)-H/12.*(DY2AA+DY2) 05* P1=(Y1+0_5*YA)/SQRT(RA) 06* PDR=P1/PPA 07* DIR=-A1/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=D_5*(PAR-PDR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E-07) 261,262,262 13* C-66 PDR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE PDR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E-07+DELTE)</pre>		92# ·	255	UE=2					. 5	
95* 255 E=E-DE 96* 256 IF(LL.EQ.1) GO TO 360 97* C-63 SE OBSERVA.SI.*DE*ES PEQUE/ISIMO SIN HABER PASADO AL CALCULO 98* C DF DELTE 99* IF(DE/E*16.*EDIF) 361.361.257 00* 257 DE=-E 01* GO TO 23 02* C-64 CALCULO DE LA CORRECCION A EFECTUAR SOBPE LA ENERGIA 03* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 264 Y1=0.5/14*(DYA+DY)-H/12.*(DY 2AA+DY2) 05* P1=(Y1+3.5*YA)/SQRT(RA) 06* POK=P1/PPA 07* DIR=-AI/PPA*2 08* DIVI=AIR+DIR 09* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E=C7) 261:262:262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=C7.DELTE)	-	94×	254	DE=DE/2.	•		1 - <i>1</i>	an ang ang ang ang ang ang ang ang ang a		•
96* 256 IF(LL.EQ.1) GO TO 360 97* C-63 SE OBSERVA SI-*02* ES PEQUE/ISIMO SIN HABER PASADO AL CALCULO 98* C DF DELTE 99* IF(DE/E*16.+EDIF) 361*361*257 00* 257 DE=-E 01* GO TO 20 02* C-64 CALCULO DE LA CORRECCION A EFECTUAR SCORE LA ENERGIA 03* C 04* 26C Y1=0.5/H*(DYA+DY)-H/12.*(DY 2AA+DY2) 05* P1=(Y1+3).5*YA)/SQRT(RA) 06* PDR=P1/PPA 07* DIR=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 10* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 11* C-65 12* IF(ABS(DELTE)-1.0E=C7) 261:262:262 13* C-66 POR SER EXCESTVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=C7.DELTE)		95*	255	E=E-DE						
<pre>97* C-63 SE OBSERVA SI *0E* ES PEQUE/ISIMO SIN HABER PASADO AL CALCULO 98* C 0 DE DELTE 99* IF(DE/E*16.+EDIF) 361:361:257 00* 257 DE=-E 01* GO TO 23 02* C-64 CALCULO DE LA CORRECCION A FFECTUAR SOBPE LA ENERGIA 03* C EL NUMERD CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C Y1=0.5/H*(DYA+DY)-H/12.*(DY2AA+DY2) 05* PI=(Y1+D.5*YA)/SQRT(RA) 06* DENEPI/PPA 07* DIR=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E-C7) 261:262:262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E-C7+DELTE)</pre>		96*	256	IF(LL.EQ.1)	50 TO 360		•			
98* C UF DELTE 99* IF(DE/E*16.*EDIF) 361*361*257 00* 257 DE=-E 01* GO TO 23 02* C-64 CALCULO DE LA CORRECCION A EFECTUAR SOBRE LA ENERGIA 03* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C Y1=0.5/H*(DYA+DY)-H/12.*(DY 2AA+DY2) 05* P1=(Y1+3.5*YA)/SQRT(RA) 06* P0R=P1/PPA 07* DIR=-AI/PPA**2 08* OIVI=AIR+DIR 09* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 SE 08SERVA SI **DELTE** ES TXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E-C7) 261:262 262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E-G7+DELTE)		97*	C-63	SE OBSERVA-SI	*DE* ES PEQU	EFISIMO SI	N HABER PAS	ADO AL®CA	LCULO	
00* 257 DE-E 01* GO TO 23 02* C-64 CALCULO DE LA CORRECCION À EFECTUAR SOBRE LA ENERGIA 03* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C Y1=0.5/H*(DYA+DY)-H/12.*(DY 2AA+DY2) 05* P1=(Y1+3.5*YA)/SQRT(RA) 06* PDR=P1/PPA 07* DIR=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E-C7) 261, 262+262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.UE-C7+DELTE)		98* 994	C .	TE(DE/E*16-+FC	UTE) 361+361+	257	•			
D1* G0 T0 23 02* C-64 CALCULO DE LA CORRECCION A EFECTUAR SOBRE LA ENERGIA D3* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C Y1=0.5/H*(DYA+DY)-H/12.*(DY2AA+DY2) D5* PI=(Y1+3.5*YA)/SQRT(RA) 06* PDK=PI/PPA 07* DIR=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)=1.0E=C7) 261,262*262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.UE=C7*DELTE)		00*	2 5 7	DE=-E	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
02* C-64 CALCULO DE LA CORRECCION À EFECTUAR SOBRE LA ENERGIA 03* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C Y1=0.5/H*(DYA+DY)-H/12.*(DY2AA+DY2) 05* P1=(Y1+J.5*YA)/SQRT(RA) 06* PDR=P1/PPA 07* DIR=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.5*(PAR -POR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E=C7) 261,262,262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=C7.DELTE)		01*		GO TO 23		-			•	
D3* C EL NUMERO CUANTICO PRINCIPAL HALLADO ES EL ADECUADO 04* 26C Y1=0,5/H*(DYA+DY)-H/12.*(DY2AA+DY2) D5* P1=(Y1+3.5*YA)/SQRT(RA) 06* PDK=P1/PPA 07* DIR=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.5*(PAR-POR)/DIVI 11* C-65 SE 0BSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E=C7) 261,262,262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=C7.DELTE)		02*	C-64	CALCULO DE LA	CORRECCION A	EFECTUAR S	SCBRE LA EN	ERGIA		
U4*2 dt II-0.57 H* (UIA+0I7-0712.* (UI 2AA+012)D5*P1=(Y1+3.5*YA)/SQRT(RA)06*PDR=P1/PPA07*DIR=-AI/PPA**208*DIVI=AIR+DIR09*DELTA=DELTE10*DELTE=0.5* (PAR-PDR)/DIVI11*C-65SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O12*IF(ABS(DELTE)-1.0E=C7)261262.26213*C-66POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO14*261DELTE=SIGN(1.0E=C7.DELTE)		03×	C	EL NUMERO CUAN	VIICO PRINCIP	AL HALLADO	ES EL ADEC	υαπο		
06# PDR=P1/PPA 07# DIR=-AI/PPA**2 08# DIVI=AIR+DIR 09# DELTA=DELTE 10# DELTE=0.5*(PAR-PDR)/DIVI 11# C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12# IF(ABS(DELTE)=1.0E=07) 261:262:262 13# C-66 PDR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14# 261 DELTE=SIGN(1.0E=07:DELTE)		44* . 135*	260	11=U+5/H*(U)A+ P1=(Y1+3=5*YA)	+UII-H/12+*(D)/SQRT(RA)	12AA+1)121				
07* DIR=-AI/PPA**2 08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E=07) 261;262,262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=07+DELTE)		06*		PDR=P1/PPA						
08* DIVI=AIR+DIR 09* DELTA=DELTE 10* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)=1.0E=07) 261:262:262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=07+DELTE)		07*		DIR=-AI/PPA**2	2					
D9* DELTA=DELTE 10* DELTE=0.5*(PAR-PDR)/DIVI 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E=07) 261,262,262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E=07+DELTE)		08*		DIVI=AIR+DIR						
10* DELIE-0.D*(PAR-PUR//01/1 11* C-65 SE OBSERVA SI **DELTE** ES EXCESIVAMENTE PEQUE/O 12* IF(ABS(DELTE)-1.0E-07) 261,262,262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E-07+DELTE)	•	B9*		DELTA=DELTE	-0.001 /0 14 7					
12* IF(ABS(DELTE)-1.0E-07) 261:262:262 13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.0E-07.DELTE)		10¥ 11±	C-45	ULLIL=U.D+(PAN SF DASFRVA ST	**BELLE== 20 **BELLE== 20	TXPECTVAN	ENTE PEONEZ	o .		
13* C-66 POR SER EXCESIVAMENTE PEQUE/O SE SUSTITUYE POR UN VALOR ADECUADO 14* 261 DELTE=SIGN(1.UE-G7.DELTE)		12*		IF(ABS(DELTE)-	-1.0E-07) 261	\$ 262+262	u ++ u - : u !? U !?	**		
14* 261 DELTE=SIGN(1.UE-G7.DELTE)		13*	C-66	POR SER EXCES	IVAMENTE PEQU	E/O SE SUS	TITUYE POR	UN VALOR	ADECUA	00
		14*	261	DELTE=SIGN(1.	UE-07+DELTE)			•		
							• • •		· ·	
				· .						
	•							•		
							•		·	

•••

<u>e</u>

-42 -262 GO TO (270+280+380)+I1 C-67 SE DAN POR TERMINADOS LOS CALCULOS EN FORMA APROXIMADA SE TOMAN COMO NO DOS PROBABLES LOS ENCONTRADOS С EN LOS CALCULOS ANTERIORES and a second 270 11=2 CC=PUNT an Ser is an Addie R2=RCI(1) GO TO 30 CALCULO DE LOS COEFICIENTES A.Y. B. PARA, UNA BUENA NORMALIZACION 86-3 2B) A=A/PU/SQRT(DIVI) B=B/PPA/SQRT(DIVI) B=SIGN(B,A) B=B/PPA/SQRT(DIVI) and a second company and a second company and a A=ABS(A) 60 TO (281 282 352) , IS IS -----281 R2=RCI(1) and a start of the second s 282 CC=PUNT C-69 SE OBSERVA QUE TIPO DE CAMBIO DE ENERGIA ES PREFERIBLE С DISCRETO O CONTINUO LL=I IF(2.*ABS(DELTE)-DE) 303+293+290 ... C-70 ES PREFERIBLE EL CALCULO DISCRETO DE LA ENEPGIA 「海豚」と「雪」と「 29) 60 TO (293,310), 14 C-71 SE OBSERVA EL SIGNO DE ≠*DELTE≠* PARA SABER EL SIGNO DEL INCRE¤ENTO DISCRETO DE LA EVERGIA C 293 IF(DELTE) 291+291+250 291 GO TO (292+254)+ I2 C-72 SE OBSERVA SI **DELTE** Y **DE** DIFIEREN MUCHO 292 IF (ABS(DELTE)-2. +DE) 330,330,253 C-73 ES PREFERIBLE EL CALCULO CONTINUO DE LA ENERGIA 333 GO TO (331,332),14 C-74 SE CONSERVA EL VALOR DE ESTA ENERGIA Y LOS DE +*DE** Y **DELTE** 301 14=2 EA1=E DE A=DE DELTEA=DELTE C-75 CALCULO DE LA ENERGIA 302 E=E+DELTE C-76 SE OBSERVA SI LA ENERGIA SIBUE SIENDO NEGATIVA 305 IF (E) 320+310+310 C-77 PREPARA LOS CALCULOS CON CAMBIO DE ENERGIA DISCRETO PARTIENDO DEL ULTIMO VALOR DE **E** EN EL QUE SE HICIERON CAMBIOS C **NISCRETOS** C 310 E=EA1 DE=DEA DEL TE=DEL TEA TOMA NOTA DE ESTE RETR'OCESO EN LA MARCHA DE LOS CALCULOS: C-78 NRC(L)=NRC(L)+1 14=1 SE OBSERVA EL SIGNO DE **DELTE** PARA SABER EL SIGNO CEL INCREMENTO C-79 DISCRETO DE **E** С IF(DELTE) 252,250,250 SE COMPRUEBA SI LA APROXIMACION PARA EL VALOR DE LA ENERGIA C-80 ES SUFICIENTE C 323 IF (ABS(DELTE/E)-EDIF) 351+351+330 C-81 SE OBSERVA SI SE REPITE EL RESULTADO DE DOS CICLOS ANTES ESTO SUPONE OSCILACIONES EN LOS CALCULOS 330 IF (ABS(1.-EAB/E)-EDIF) 310+310+30 351 GO TO (354,355,352),IS 354 IS=2 GO TO 30 C-82 SE EXAMINA SI EN ESTA ZONA LA PENDIENTE DE **DELTE(E)** ES LA TIPICA DE LA ZONA DE UN AUTOVALOR 355 IF((DELTE-DELTA)/DELTA) 357+357+356

يبر مد

and the second C-83 POR NO SER ZONA DE UN AUTOVALOR SE MODIFICA EL VALOR DE **E** 78# 79* 356 E=1.5*E GO TO 16 80≉ (a) y = (a, b) = 81* 357 IS=3 82* 60 TO 353 SI LA NORMALIZACION NO ES ACEPTABLE SE REPITEN LOS CALCULOS 83* C - 84352 IF(ABS(1.+AI-AIA)-1.0E-06) 358,358,30 84* 85* 358 I1=3 _M=1 86* NRA(L)=) 87× 88* NRD(L)=0C-85 SE REPONE EL VALOR ANTERIOR DE LA ENERGIA PARA DUE COINCIDA EL 89* PUNTO DE EMPALME Y SEA VALIDA LA NORMALIZACION 90* С 91+ 353 E=EAA • . 92* EE(L) = EGO TO 33 93* 94* C-86 SE OPSERVA SI ES CONVENIENTE DAR POR VALIDA LA ENERGIA CALCULADA 95× 36) IF(DE/E+EDIF) 361+361+370 361 IF(I1.EQ.1) GO TO 20 96* R2=RCI(1) 97* 98* I S=1 99* GO TO 33 C-87 SE TOMA NOTA DE QUE VA A TERMINARSE EL CALCULO DEL ORBITAL EN **0**0≠ FORMA NO SATISFACTORIA 01 * C 1. Car 1. 02* 370 NTI(L)=NTI(L)+1 D3* GO TO 351 C-88 SE DAN POR TERMINADOS TODOS LOS CALCULOS DE ESTE OPBITAL **04**≠ 05* 38) CONTINUE GO TO(424+385)+TAK 06* CONOCIDOS AHORA LOS RADIOS MINIMO Y MAXIMO DERE REPETIRSE EL CALCULO 07= C = 8908\$ 424 IAK=2 09* GO TO 13 C-90 SALIDA DE LOS ORBITALES 10* 11* 385 WRITE(6+970) 12* WRITE(6,990) (NCP(L),NELE(L),NOP(L),EE(L),NRA(L),NRD(L),NRC(L), NTI 130 $1(L)_{2}L=1_{2}N$ 14= C-91 CALCULO DE LA SUMA DE INTEGRALES DE P2(R) DESDE CERO A R 15* V1(1)=(4.*PV(1)+PV(2))*RP(1)/3. · · · · 00 400 MM=2.NP3 16* 433 V1(MM)=V1(MM-1)+(PV(2* MM-2)* RP(2* MM-2)+4。*PV (2*MM-1)+RP(2*MM-1)+PV 17* 1(2+HM)+RP(2+MM))+HP/3. 18* CALCULO DE LA SUMA DE INTEGRALES DE P2(R) DESDE RA INFINITO 19* C-92 20* V2(NP3+1)=0.D0 410 MM=2+NP3 21* 22* MMM=NP3+2-MM 413 V2(MMM)=V2(MMM+1)+(PV(2*MMM)+4.*PV(2*MMM-1)+PV(2*MMM-2))*HP/3. 23* V2(1)=V2(2)+(4.*PV(1)+PV(2)/2.)/3. 24* CALCULO DEL POTENCIAL CREADO POR LOS DIFERENTES ORBITALES 25* C - 9326# D0 420 MM=1+NP3 423 VP(MM)=(-Z+ENEP/ENE*V1(MM))/RP(2*MM)+ENEP/ENE*V2(MM+1) 27* 28* 490 WRITE(6,1020) 29* SCD=0. D0 505 J=1+NP3 R = RP(2*J) 30* 31 * EFEC = EFE(1)32* $VV \doteq (VP(J) - V)/VP(J)$ 33* 34* PVS=PV(2*J)/ENE 35* C - 94SALIDA DE LA PROBABILIDAD TOTAL, POTENCIAL CREADO Y POTENCIAL TEORICO 504 WRITE (6+1030) R+PVS+VP(J)+V+VV :36* 535 SCD=SCD+VV*VV 37 # 38* C-95 SALIDAS DE LA DESVIACION CUADRATICA MEDIA DEL AJUSTE. 39* C COMPROBACION DE LA NORMALIZACION Y RADIOS MEDIOS 40* £ EFECTIVO E INVERSO

1929

	· .				
			•	•	
f ·····	and a second	وجير منتجر الماشر بيما بمراجع	يس . من يحديد و يم و م سرم او م الم	يعريهم يشمره المحاوي المحارمين	• • •
		,		•	
2 T (11)			- 44 -		
•					
ata wala a ana a		/ A N D 1	series and the series of	Contraction of the second states of the second s	en al de la ser de la
·	URITE(A.980)				a state of a second
510	WRITE(6+1050) V1(NP3)	and a construction of the second s	e e en	an a canada e a a seconda e se
	RM=V2(11/ENE			가 있는 것은 관계가 가려는 것은 같이 있는 것은	e starte de la companya de la compan La companya de la comp
•	SI=C.		n an the second s		
	SP=J. PT-IR *PV(1)	± R P (1)	D (2) 1 ± 0 0 (1)	n in di Adalah dalah dalah dalah dalah s	
	DO 520 M=2+N	P3			a and a second a seco
	SI=SI+PV(2*M)*RP(2*2)**2	a the second	بروی در ایرون میرون در ایرو ایرو	el sente e da compositiones de la
520	SP=SP+PV(2*M	-1)*RP(2*M-1)*	*2		
	RI=(RI+(PV(2))*RP (2)**2+4.*	SP+2.*SI-PV (NP	1)*RP(NP1)*+2)+	HP) /3 . /ENE
	WRITE (51130)	07 K1200 04 85 45 61 RM	• File and a set	i fut≉ute sees	en Nellige de la Companya de la Comp
	READ(5+933)	K	· · · · · · · · · · · · · · · · · · ·		na anti-anti-anti-anti-anti-anti-anti-anti-
	IF(K) 1+492+	1	Strategy in the second		ి. రాజానలు హోయ రూపాలాలు ర
492	STOP	가 있는 것 같은 것 같아요. 이 가 있는 것 같은 것 같아요. 이 가 있는 것 같아요.	가장에 가지 않는 것은 가격이 가져졌다. - 이상 가격에 가격하는 것은 것이 있는 것이 있 		
C.	FORMATOS	1995 1997 - 1995 1997 - 1997			
. 715	1 FURMAI(DA#72)	8 دائل بشريخ بيني تراهي الم 1	e en lo bon læger bre dir filletar.	u Shiri u Turin an Ali Angela, su a	ી પર કે રસ સાથે છે. જેવા છે છે.
923	FORMAT(6F10.	3)	····	n na manu na provinsi.	
930	FORMAT(12)	- "			• • • • • • • • • • • •
943	FORMAT(413)		· · ·		
- 950	FORMAT(1H1+5)	6HFROGRAMA ORE	SITALES PAPA EL	CALCULO DE LA	FUNCION DE
0.1.0					A DALANTER A DET
<u>के</u> 20 4 के 19	4F8.0,/,5X,20 5 JEL POTENCI 6PONENTE ANTER	HNUMERO DE ELE AL ANALITICO RICR >6X >7HGAMP	CTRONES • 21X • 3H X•6HALFA =•F12 IA =•F12.5•/•5X	N =+F8.0+/+5X+3 -5+/+5X+31HPOTE +33HPARAMETRO D	3FEXPONENTE NCIA DEL EX EL POTENCIA
070	7L ANALITICO,	7X+4HAK =+F12+	5) IS DE CADA ADDT	TAL	1 7850 / 105 4 -
710	11HN#3X#1HL#3	X + 1 HO + 7X + 7 HE NE	RJIA:10X:2HRA:	3X+2HRD+3X+2HRC	• 3X+ 2HTI)
980	FORMAT(////,	10X,40HDESVIA	ION CUADRATICA	MEDIA DEL AJUS	TE =+E18.9)
990	FORMAT(2X+31	4.E17.9.4X.415	i) i te te surve		Second Second Second Second
1000	- FORMAT(49X+E)	16.9) 58.20 USD 1007 AV	I TEL ADDITAL	//.5Y. JELNINGOD	CHANTICO P
	1R INCIPAL +5X+	3HN =+13+/25X	24HNUMERO CUAN	TICO AZIMUTAL+6	X+3HL =+I3+
•	21.5X.23HAUTO	VALOR DE LA E	JERGIA+7X+3HE =	+E17.9+///+19X+	1HP, 17X, 1HP
	3:14X:4HP**2:	(1)			
1015	FORMAT (13X+3)	E18.9)			and a second
1020	FORMAI(1H1+6)	X 73HVALORES L	IEL POIENCIAL C	READ POR LOS EL	ECTRONES Y
1 g. 1 . 1	DEL PUTENCIAL	_ AMALIIICU1//	/*0**288491071	2X VERUENSIUAUFI 21X-12HPPOBABIL	JX#9HPU1ENC TB&P+1AY+6H
	3CREAD0+11X+91	HANALITICO ///			2086+1:000
1030	FORMAT(E15.9	#4E19.9}			
1040	FORMAT (33X . 2)	E16.9)	• • •		•
1050	FORMAT(///+1	7X+33HINTEGRAL	CE TODOS LOS	ORBITALES .= +E18	•9)
1360	FORMAT (/// > 28	8X+22HRADIO ME	DIO EFECTIVO =	#E18.9)	
IU/U		6X124HRAUIO IN	REKOD FLECTING	==E18.91	
	LHU	•	-	•	r.
			- -	•	
OMPILATI	ON: NO	DIAGNOSTICS		· · · ·	
					and the second
			· · · ·		
					·
			· · · · · · · · ·		
	· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		
• • ···· ·	· · · ·		· · · · · · · · · · · · · · · · · · ·		

. .

•

ça el en el estado y el

۰.

and the second a contacta area a cara a car a an aire i اله ال الا الميا معطية المعاد المرامين • 4.8 - 45 -10 64 الدور المغار بالألا Función EFE والانتكار الرابية المستار مافيته 4 1,00 - 19 38 A.A. . . 4 Sec. 1

> and the second second 1= FUNCTION EFE(K) COMMON ALFA+AK+CVC+DE+E+ELE+ELEP+ELEPP+ENEP+12+R+T1+U+V+VE+Z+ZP 2* EX=ALFA #R##U 3≉ 8 IF (EX-53.) 6.7.7 4* 47 7 EX = 0. 5× . GO TO 5 6≉ 7# 6 EX=EXP(-EX)5 V=ENEP*(AK-1./R)*EX-ZP/R 8≉ 9* 3 GO TO (1+2+1)+ K 1 EFE=ELEP/R **2-2 •* E+2 •* V 10* RETURN 11* . 2 EFE=ELEPP-2.*(E-V)*R**2 12* 13* RETURN mand الأرا ومعتمدة برارا المحطور 14* END

OF COMPILATION:

.

<u>;</u>:

NO DIAGNOSTICS.

	مستحد فاستواد والانتقار والمراج والمراج والمراج	
		- 40 - 전상 가지에 가지 않는 것이 가지 않는 것을 생성 사람이 봐야지. 가지 않는 것을 통해서는 방법하게 가지 가지. 이 것은 것은 동안에서 이 것은 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이다.
(*).		
	an a	e in wrand character and and an and a standard in the and a standard for the standard for the standard standard
		and the second secon
	, , , , , , , , , , , , , , , , , , ,	e al la stati 200 la julia da de la completa da la completa da la completa da la completa da completa da comple
	· · · · · · · · · · · · · · · · · · ·	· ····································
480 . Nati	an an Arthur (1997) An Anna Anna Anna Anna Anna Anna Anna A	
	Subra States in the Comments and Subras	cutina CEROF
¥24;	And the second	
		그는 사람이 아이 옷을 들었다. 것 같아요. 그는 것
	a de la companya de l A companya de la comp	and a set of the set of The set of the set of th
•**** * *		· · · · · · · · · · · · · · · · · · ·
		이 가 있는 것 같아요. 이 가 있는 것 같아요. 이 가 있는 것 같아요. 이 가 있는 것 같아요. 이 가 있는 것 같아요. 이 가 있는 것 같아요.
		a statistica de la companya de la co
	n na haran sana sana sana sana sana sana sana	na se se sa analas a la seconda de seconda de seconda Nome Internet de la seconda de l
	· · · ·	
110		
	· · · · · · · · · · · · · · · · · · ·	e e se e
		241 T
	SUBROUTINE CEROE	1773
	C-O ESTA SUBRUTINA CALCULA UN	CFRO DE LA FUNCION **F**
	DIMENSION RA(4)+EFEC(3)+R(COMMON ALFA+AK+CVC+DE+E+E(C(2)+DF(3) LEJELEP+ELEPP+ENEP+I29R+T1+U+V+VE+Z97P
	1 JS=1 IF(FLE) 2+2+3	4371 4380
	C-1 SOLUCIONES EXTREMAS DE LA	FUNCION **F**
	2 RIA=-E/ZP	U . RI PAKA ALPA - INFINITU
	KUA=(-E+ENEP*AK)/Z RJ=AMAX1(RIA+RJA)	
	RI=AMIN1(RIA,REA) GO TO 7	
•	C-2. ESTUDIO DE LAS SOLUCIONES	EXTREMAS DE LA FUNCION **F**
	→ NAUII-41 747 740* E* ELEF	442 .
	· · · · ·	

a to a 1. A. A. RADID=Z#Z#2.# (E-ENEP #AK) #ELEP 16* SE OBSERVA LA POSIBLE EXISTENCIA DE SOLUCIONES REALES DE **F** 17* C-3 18* С PARA ALFA = INFINITO z; , ÷ 7 19* IF(RADII) 29+4+4 SOLUCIONES EXTREMAS DE **F** PARA ALFA = INFINITO 23* C-421* 4 RADII=SQRT(RADII) 22* RIN=(ZP-RADII)/ELEP 23# RIP=(ZP+RADII)/FLEP SE OBSERVA LA POSIBLE EXISTENCIA DE SOLUCIONES REALES DE **F** 24* C-5 25* С PARA ALFA = C IF(RADIO) 31+5+5 26# SOLUCIONES EXTREMAS DE **F** PARA ALFA = 0 C-6 27# 5 RADID=SORT(RADIO) 28* 29* RON=(Z-RADIO)/ELEP 30* RJP=(Z+RADIJ)/ELEP SE OBSERVA SI AMBAS SOLUCIONES EXTREMAS ESTAN AL MISMO LADO DEL C - 731* 32* С PUNTO SINGULAR 1/K EN EL QUE COINCIDEN TODOS 33* С LOS VALORES DE **F** PARA CUALQUIER ALFA 34+ IF ((RIN - AK) + (RON - AK)) 32+6+6 35* C-8 AMBAS SOLUCIONES MAXIMAS EXTREMAS ESTAN AL MISMO LADO DEL 36* C PUNTO SINGULAR 1/K. LUEGO LA SOLUCION VERDADERA 37* С PODRA ESTAR ENTRE AMBAS 38* JS = 36 39# RO = ROP40* RI=RIP 41≉ SELECCION DE LA ZONA DE POSTBEE SOLUCION C - 97 IF(R0)53+72+72 42* 43≠ 72 IF(RI)8,9,9 44* 8 RI=3. C-10 CALCULO DEL INTERVALO PARA LOS SUCESIVOS TANTEOS DEL PAPIO 45\$ 46≉ COMPRENDIDOS ENTRE RO Y RI 47* HR = (RI-RO)/25.48* IF(HR) 10+37+10 the state and the state of the second CALCULO DE LOS TRES PRIMEROS PUNTOS 49\$ C - 1750* 10 RA(1)=1.301*R0 51***** I=1 52* RI=RI+1.1*HR 53# IF(RI) 101,102,102 54= 101 RT=3. 55* 102 D0 11 J=1,3 56* R=1./RA(J) 57* EFEC(J) = EFE(1)58× DF(J) = DFOR(R)59* 11 RA(J+1) = RA(J) + FRC-18 SE OBSERVA SI LA SOLUCION ESTA ENTRE LOS PUNTOS 1 Y 2 63* 61* 111 EFEA=SIGN(Z,EFEC(2)) EFEB=EFEC(1)*EFEC(2) 62* 63* EFEB=SIGN(Z+EFEB) IF(EFEB-EFEA)113+12+12 64* 65+ C-19 SE OBSERVA SI LA SOLUCION ESTA ENTRE LOS PUNTOS 2 Y 3 12 EFEA=SIGN(Z, EFEC(3)) 66* EFED = EFEC(2) * EFEC(3) 67* 68* EFED = SIGN(Z + EFED)IF (EFED-EFEA) 13+114+114 69* EL PUNTO 3 PASA A SER EL 1 70* C-23 71* 13 RA(1)=RA(3) 72* EFEC(1) = EFEC(3)73* C-21 SE EFECTUA UNA INTERPOLACION LINEAL ENTRE LOS PUNTOS 1 Y 2 74* 113 RA(3)=(RA(1)*EFEC(2)-RA(2)*EFEC(1))/(EFEC(2)-EFEC(1)) 75* I =2 76* GO TO 21 114 IF (EFEB*EFED) 17+14+14 77* 78* C-22 SE OBSERVA SI LA FUNCION ***** HA PASADO POR UN MAXIMO

17.122,21.24.0

- 47 -

r.	- 48 -	·.
:		
14	IF(DF(2)*EFEC(2))16,51,15	
15	IF(DF(1)*EFEC(1)) 17+51+49	
C-24	NO PASA POR UN MAXIMO. SE ELIGEN LOS NUEVOS PUNTOS 1 Y 2	
17	IF(EFEC(1)*EFEC(2)) 18+181+181 IF(FFFC(1)*EFFC(3)) 182+181+181	
181	RA(1)=RA(2)	
182	EFEC(1)=EFEC(2)	
. LUL	EFEC(2) = EFEC(3)	
· C-25	GO TO (19:2)).I SE HALLA EL NUEVO VALOR DE RA(3) INCREMENTANDO EL ANTERIOR EN HR	4790
19	RA(3)=RA(3)+HR	481 D
C-26	SE OBSERVA SI EL NUEVO RA(3) ESTATIODAVIA EN LA ZONA RI-RO	
C	SI RI=U NO ES SEGURO QUE SE HAYA RECORPIDO	1. s - x
0	TODA LA ZONA DE POSIBLE SOLUCION	
C	SE TANTER SOLUCION HASTA R=3 O SE DA POR TERMINADO	
192	IF (RA(2)) 39:39:193	
142	GO TO 21	•
C-27	EL RADIO RA(3) ES AHORA EL VALOR PREDICHO PARABOLICAMENTE	
C-28	SE OBSERVA SI RA(3) ES UN VALOR ACEPTABLE COMO DEFINITIVO	924:
	IF(ABS((RA(3)-RA(2))/RA(2))-C.001)138,138,21	
·· 135 C-29	IF (ABS(EFEC(2))-0.301) 38+38+21 CALCULO DE LA FUNCION ++F++ EN EL PUNTO RA(3)	
21	IF(RA(3))211,211,212	
211	RA(3)=0	·
	DF(3) = -2 * ZP	
212	60 TO 213 R=1. (PA(3)	
212	EFEC(3)=EFE(1)	
017	DF(3)=DFDR(R)	
C-30	PREDICCION PARABOLICA DE UN NUEVO VALOR DEL RADIO	
23	ELAM = (RA(3) - RA(2))/(RA(2) - RA(1))	4921 8030
	C1=ELAM/DEL + (ELAM *EFEC(1) + DEL * EFEC(2) + EFEC(3))	4947
	G1=(ELAM*ELAM*EFEC(1)-DEL*DEL*EFEC(2)+(ELAM+DEL)*EFEC(3))/CEL	4950
C-31	SE OBSERVA SI EXISTEN SOLUCIONES REALES PARA LA PREDICCION	470,3
	IF(RADIC) 34+34+24	4970
C-32	SE BUSCAN LOS VALORES DE LAS DOS SOLUCIONES REALES POSIBLES RADICESORTIRADICI	4981
• • 1	ELAM=(-G1-RADIC)/2./C1	4990
•	RC(1)=RA(3)+ELAM*(RA(3)-RA(2)) FLAM=(-G1+RADIC)/2 /C1	5010
	RC(2) = RA(3) + ELAM * (RA(3) - RA(2))	~~~~
C-33	SE SELECCIONA LA SOLUCION ADECUADA PROBABLE Rax=amaxi(ra(1),ra(2),ra(3))	53.4 "
	RAN=AMIN1(RA(1),RA(2),RA(3))	5050
	DR1=ABS(RA(1)-RA(2))	5960 5070
	DR3=ABS(RA(2)-RA(3))	5080
· ·	DRF=AMIN1(DR1+DR2+DR3)	509C
U- 34	SE UDSERVA SI AL MENUS UNA ES SULUCION AUMISIBLE PARA LA PREDICCION RN=AMAX1(RC(1))RC(2))	
•	N=1	5110
25 24	IF(RN-RAX-DRF) 26,26,27 IF(RN-RAN+DRF)27,127,127	5120
20		:

- 49 -127 I=2 42* GO TO 17 .43* 27 GO TO (28+35)+N 28 RN=AMIN1(RC(1) +RC(2)) N=2 GO TO 25 44* 45* 46* .47* SE OBSERVA LA POSIBLE EXISTENCIA DE SOLUCIONES REALES DE **F** 48* C-35 49+ PARA ALFA = C С 29 IF(RADIO) 52+33+30 50× C-36 AL EXISTIR SOLUCIONES EXTREMAS SOLO PARA ALFA = 0 LA SOLUCION 51* 52* PARA EL VERDADERO VALOR DE ALFA HA DE QUEDAR ENTRE ESTAS r .53* 30 RADIU=SQRT(RADIC) - Constraint 54* RI=(Z-RADID)/ELEP :55* RU=(Z+RADIO)/ELEP .56* GO TO 7 C-37 LA SOLUCION FINAL YA SOLO PUEDE ESTAR ENTRE LAS DOS DE ALFA = INFINT :57* .58* 31 RJ=RIP :59* RI=RIN GO TO 7 .63* C-38 AMBAS SOLUCIONES MAXIMAS EXTREMAS ESTAN A LADOS DISTINTOS DEL .61# PUNTO SINGULAR 1/K. LA SOLUCION VERDADERA ES POSIBLE 62* С . .63* C A AMBOS LADOS. SE INVESTIGA PRIMERO LA SOLUCION .64* С COMPRENDIDA ENTRE LAS DOS SOLUCIONES DE ALFA = 3 32 JS=2 :65* 66# RJ=RDP .67# RI=RON GO TO 7 68\$ 169* 34 GO TO (17,35), I C-43 AL NO EXISTIR SOLUCION ADMISIBLE PARA LA PREDICCION, LO MAS PROBABLE .70= ES QUE EL CRITERIO DE CONVERGENCIA (C-28) SEA EXCESIVO :71≉ С .72* С SE TOMA COMO SOLUCION DEFINITIVA EL PROMEDIO DE 3 RADIOS .73* 35 R=3./(RA(1)+RA(2)+RA(3)) 74* RETURN C-42 DA COMO SOLUCION R = 1/K .75* 37 R=1./AK 76* :77* RETURN C-43 SE TOMA RA(3) COMO SOLUCION DEFINITIVA DE F(R) = 0 .78* .79* 38 R=1./RA(3) *C8 RETURN C-44 AL NO HABER APARECIDO NINGUNA SOLUCION SE OBSERVA SI PAY QUE 81× BUSCARLA EN OTRA ZONA RI-RO O SI DEFINITIVAMENTE NO HAY .82* С SOLUCION PARA ESTE VALOR ACTUAL DE LA ENERGIA E .83* C 84 * 39 GO TO (52+40+41)+ JS .85* 40 JS=1 GO TO 31 86* 41 JS = 1:87* RD=AMAX1(RON+RIN) 88* .89* RI=AMIN1(RON + RIN) 93* 1 GO TO 7 C-45 SE ELIGE EL PUNTO INTERMEDIO DE LA ZONA DE POSIBLE MAXIMO .91# 92* 48 RA(1)=RA(2) .93* EFEC(1) = EFEC(2)94* DF(1) = DF(2)GO TO 50 :95* 49 RA(3)=RA(2) 96* 97* EFEC(3) = EFEC(2)98* $DF(3) = \partial F(2)$.99* 50 RA(2)=(RA(1)+RA(3))/2. :00* R=1./RA(2) :01* EFEC(2) = EFE(1)DF(2)=DFDR(R) :02* :03* IF(ABS((RA(1)-RA(3))/RA(2))-0.001)51,51,111 EL MAXIMO NO LLEGA A PERMITIR LA EXISTENCIA DE SOLUCION -1B 4 ± °C-46

								•	
			- 50 -	e dita ya postat	et to a				
							•		
c	CE DOAS			DITENDO DE			MENOD		
ر ب ا	35 FRU3	BERA(2)	LO NON BAL FAR	VIENDO DE	עאז אוט	IU ALO	M- 18 0 R	-	
-	. IF((RI ·	- R0)/HR- 2.)	513+511+511						•
5:	10 HR = (R	I - R0)/4.		9 A.	- 14 				
51	1 GO TO 1	3- 					•		•
C-4	1 ES PULU	F)-0-001)59+5	VALOK UT ¥¥E¥ 19:54	* MUI PEI	QUENO				
C-41	8 R0<0 S0	LO ES POSIBLE	PARA E>O						
С	Y SOLO	HAY SOLUCION	POSITIVA PARA	R SI K	<0				
C- 4 9	53 IF(AK)5 9 AL NO E	4 + 54 + 59 Nronto ADSE So	HINTON JADA P						
	F AL NO LI Gales	SE MODIFIC	CA SU VALOR	SELVALUR /	ACTUAL II	C LA CP	LTOIA C	e .	
Ē	54 ·12=2		• ••• • • •						
	DE=DE/2	• a + a + a + a + a + a + a + a + a + a	· · · · · · · · · · · · · · · · · · ·		• • • ·			•••••	• •
•	GO TO 3	ال الم الم الم الم الم الم الم الم الم ا	and and a second se	ч• ·				1.12	•
5	39 WRITE(6	+133)							
1.7	STOP	///	PECE HN VALOE		DEIAE	NEDETA	51		
. 1 .	END			C ROSOROO	DE LA E	NE ROLA	с су стика. С		545
		a second a s	5. · · · · · · · · · · · · · · · · · · ·						
ONGTE A	TTAN .		STIC						
VALLA		NO DIAGNO	- -					•	
			··· ·						
	· · · ·		· · · · · ·					-	
	•	•					2		
	11 m		× .			•	• •		
124			i strationalis	· •					
		• •							
			. • . a		•				
							•		
							1a		
				-				• • • • • •	. .
•			• · · ·	•	• •	a ser gar	an a tetrago		
	· · · · ·								
					c	at a track		•	
· · ·					-		• • • • • • • • • •		
		·			ан на на н	• •			
							•	11 1 1 1	
					,		181 	¢	
•			•		12				
		 Construction of the second seco	e anna a	• • • • • • • • • • • • • • • • • • •	and a second and a second as a second a		·····		
		•		e presidente de la companya de la co					
				•					
						t de la	•		
			·					•	
		• •							
			, .						
		•	•.						
								•	

. . .

Función DFDR

1.10 -----. FUNCTION DEDR(X) 1* 2≉ COMMON ALFA + AK + CVC + DE + E + ELE + ELEP + ELEP + ENEP + I2 + R + T1 + U + V + VE + Z + Z + 1 AUR=ALFA≠X≠≠U 3* IF(AUR-50.) 3:2:2 2 DFDR=2.*(ELFP/X**2-ZP) 4 ≉ 5≉ GO TO 4 6\$ 7* 3 DFDR=2.*(ELEP/X-ZP-ENEP*(1.+AUR*U*(1.-AK*X))*EXP(-AUR)) 8≉ 4 RETURN 9* END

I OF COMPILATION:

i.

NO DIAGNOSTICS.

.

•/ . f . s. -----Jan en conserva 52 -...

. . .

2050

. SUBROUTINE INTER(TT+CC+HR) 4244 HE=TT/CC 4251 4261 HR=16. 1 HR=HR/2. ŧ..... 4270 IF(HE-HR) 1.3.2 4280 •• 2 HE=HE/HR=8.+9.5 4295. a 7.0 c' HR=AINT(HE) + HR/8. 431 ð_i 3 RETURN END 4325

Subrutina INTER

÷.

OMPILATION: NO DIAGNOSTICS.

.

un di setta del

. . . .

, is

5. UTILIZACION DEL PROGRAMA "ORBITALES"

En este capítulo se dan las normas prácticas de utilización del programa, distinguiendo entre la entrada de datos y la interpretación de la salida.

5.1. Datos de entrada

Tanto los valores de los parámetros que identifican el átomo a calcular, como la precisión de los cálculos a efectuar, se proporcionan en el si guiente orden y forma:

Ficha	Formato	Parámetros
1	5X, 72H	TITULO
2	3F10.3	PUNT, NP, EDIF
3	5F10.3	Z, ENE, ALFA, GAM1A, K
4	12	NO
5,6,(4+NO)	413	N, L, O, NS
Ultima	12	NE

En las cuales es:

TITULO	=	Encabezamiento identificador del cálculo a efectuar
PUNT	=	Número de puntos de integración, entre nodos, para el méto-
		do de Numerov (aconsejable 100) (vease apartado 2.2)
NP	=	Número de puntos en los que se quiere salida de la solu-
		ción de los orbitales (≠ 0) (apartado 2.8)
EDIF	=	Precisión relativa del cálculo en todos los procesos (acon
		sejable 0.001)
Z	==	Carga eléctrica del núcleo
ENE	=	Número de electrones del átomo
ALFA	=	Primer parámetro, 🗙, característico de la expresión analí-
		tica del potencial (Capítulo 1)
GAMMA	=	Segundo parámetro y
ĸ	=	Tercer parámetro k
NO	==	Número de orbitales distintos en el átomo
N	=	Número cuántico principal de un orbital
L	=	Número cuántico azimutal del mismo orbital
0		Número de electrones con este mismo orbital

NS = Indicación de salida de la tabulación de este orbital -(= 0, no se desea salida; = 1, sí se desea salida)
NE = Indicación de la existencia de un cálculo posterior (= 0, no hay otro cálculo; ≠ 0, le sigue otro cálculo).

5.2. Salida de resultados

La salida de resultados contiene la siguiente información:

En la primera página aparece:

- a) Encabezamientos, entre los cuales incluye el TITULO que se le dió en la primera ficha.
- b) Parámetros de la integración. Es decir, número de puntos de integración entre nodos, número de puntos en los que se quiere la sa lida de la solución de los orbitales y el índice de precisión de los cálculos.
- c) Parámetros del átomo. Esto es, carga del núcleo, número de electrones y los tres parámetros característicos de la expresión analítica del potencial.

En las páginas segunda y siguientes es optativa la salida de la solu ción de uno o varios orbitales. Cada uno de ellos viene encabezado por los números cuánticos principal y azimutal y el autovalor encontrado de la energía, siguiendo una tabla que contiene NP valores del orbital P y de su cuadrado P^2 a diferentes radios en escala logarítmica.

En la siguiente página se proporciona una tabla de todos los orbitales, con los númeroscuánticos total y azimutal n y ℓ y número de electrones de cada orbital, autovalor de la energía correspondiente y relación de anomalías aparecidas durante el último tanteo para el cálculo de cada orbi tal; esto es, el número de veces en que hubo excesivas reiteraciones del proceso de Numerov, tanto en la integración ascendente (RA) como en la des cendente (RD); el número de veces (RC) en que se alcanzó un valor demasiado pequeño para el incremento discreto de la energía, lo que significa que para evitar la pérdida del verdadero valor de E_n se ha reiniciado todo el cálculo con una energía inicial igual a la que se estaba tanteando en el momento de presentarse la anomalía; y el número de veces (TI) en que, hallándose en la aplicación de cambio contínuo de la energía, fue necesario volver al cambio discreto partiendo de un valor anterior de la energía de tanteo (apartado 3.5). La aparición de valores distintos de cero en estas anomalías indican ausencia de garantía en la bondad de los resultados. Finalmente, en las últimas páginas, y con objeto de poder observar la bondad del potencial analítico utilizado, se tabulan para cada radio los valores de la suma normalizada de los cuadrados de todos los orbitales, el potencial creado V_c por estos orbitales (expresión 1.9), el potencial analítico V impuesto (expresión 1.1) y la diferencia relativa entre estos dos. Al terminar la tabla se da información sobre la desviación cuadrática media σ entre los dos potenciales, la integral de todos los orbitales I, el radio medio efectivo \overline{r} y el radio inverso efectivo $\overline{1/r_i}$ dados por las definiciones:

$$\sigma = \left[\frac{1}{NP} \sum_{i=1}^{NP} \left(\frac{V(r_i) - V_{e}(r_i)}{V(r_i)}\right)^2\right]^{1/2}$$

$$I = \int_{0}^{\infty} \sum_{i=1}^{N} P_i^2(r) dr$$

$$r = \frac{1}{N} \int_{0}^{\infty} r \sum_{i=1}^{N} P^2(r) dr$$

$$\frac{1}{\overline{r}_i} = \frac{1}{N} \int_{0}^{\infty} \sum_{i=1}^{N} P^2(r) dr$$

siendo NP el número de puntos calculados y N el número de electrones del átomo.

5.3. Ejemplo

.

.::

En las páginas siguientes se muestra un ejemplo de utilización del programa con el cálculo de un átomo de fósforo al que según (YUNTA CARRETE RO, J., RODRIGUEZ MAYQUEZ, E. y SANCHEZ DEL RIO, C.) le corresponden los valores

$$\propto = 1.864$$

 $\chi = 0.75$
 $k = 0.001$

41	80			[ļ		·	ļ	Į .	 				-	· -																	
				·							 			<u>↓</u>		-		-			•					 						
70		<u> </u>		 				-		<u> </u>		Ŀ		. 		 +								·								
프	15				 	ļ	ļ	ļ	i				i –	<u> </u>	ļ	 .	ļ						-				-				<u> </u>	
-					r 	•	ļ	<u> </u>			1			• 				ļ		•••			• • • • •			- -			-			1
<u>،</u>	~			<u>-</u>	ţ		† 		1.		 		<u> </u>		<u>+</u>	+ · ·	+ T		 				• - ·						- · ·	 		
25	2	• •	·				1		-	ļ.,				 	 		 	 	 					-	-	-			-	••••	ļ	
 4					i 	• •	 	•	 	ļ			: • • • •		ļ	+ .	 				-							 		 	•	
E E	S		· ·	<u> </u>		1		г ·	+	ļ			ļ	ļ		<u> </u>		1	<u> </u>				:								r: ·	
Ш.	ى د	} - 	+ +		••••		1 -	•	• • • •	4 4-				<u>+</u>	1. 1	i. +	 !	4 		+ 			• = • : :			-	•				┝ ┝	1
			· 	1 . 	.		•	•	•	į.	•	· ·			•	•	• •	 						1						¦ 		
	0		<u> </u>		- 	 		•	 	1			 		.	÷		<u></u>								<u> </u>				<u></u>	<u> </u>	Į.
	Ŭ		+ 1	- -	į .	-	;		. 	ļ				ļ				•	Į		•	•										
		 	↓		÷			4 4	· · · ·	1	4		<u>↓</u> ↓ ·	ł		! ,	•		• •	1				•				[+ -	· ·	 	1
	55	<u> </u>		+ 	• •			 -	1 		↓	-	• .	† †		••••••••••••••••••••••••••••••••••••••	•••	• 、 -	 		•	•			 	ـــــــــــــــــــــــــــــــــــــ			<u>.</u>		↓	
			<u> </u>	<u> </u>	••••••	 	Ļ				_	_	ļ				• •	1		1.	•	•	•		L.,	•			 		 	}
		<u> </u>	ļ					т ·	4	4	– –			+ 1		• •] 	Ī	- ·	•				•			ļ		į]
	50		+	; ;	÷		ļ_	•		+ -+	 		<u>†</u>	+	-	:	•	<u>.</u>	i	+ 	1		• •	1		.			-	 	↓	
Æ			<u> </u>	+ 	∔ ∔		<u> </u>	:	ļ		•} 		∔. ↓	; 	-	• •		•	-				•		· ·	+ ·			• • • • • •	i		
Ę					i		†	<u>+</u>						 -	•	•	•	:		:		۰ ۱	•	• • •	† -	1			1	; ;		
Ϋ́́	45		<u> </u>]	<u> </u>		ļ				1 	i		•		•	•	•	•		i	+ -	ļ	ļ				<u> </u>	1]
			ļ	6	• • • •	ļ		•••	1	<u> </u>			1	•	•	•	•	•	•	•	•		• • • • •	-	- 	• · · · · ·		•		 	<u> </u>	1
RO	_		<u>ن</u> ــــــــــــــــــــــــــــــــــــ	•			:		+		∔	·	• •	•	•						، ، نىسى		· · · ·			 		<u>.</u> .	-		•	
ΔA	40			<u> </u>	L	-	:	ļ		Ì	•						1 . !	i					l		 	_		<u> </u>	 		; 	{
AM					ļ	L		•	Ì	-		-	: 上.			•	1	•		•				ļ		ľ		: ::				
GR	Ъ.		1	1		+ ·	-+ 	÷	1	.+ 	•		 	 -			+	•	.	1			· · ·	+ 		1	 !	1		<u> </u>		
PRC	Э		† †	h	1 - 1 1		i	•	ł	;			1.							• •	•		•			ļ	 		+ - +	1		
-				.	• •		•	•	<u>+</u>	4 ,							+			••••				 	. 		 		ļ	 ·	 	
	90				•	<u> </u>	:	<u>;</u>	<u>.</u> i	÷	<u></u>			•		1	+-			<u></u>	i 				 		 					
	. ,		1		•		•	Ĩ	1	1				•			1	•				•		. .		<u>.</u>			1.			
			-	•	•	<u> </u>	•	•		1	•		+ -	•	-			:		• • •	 		• -			• • • • •	 					
0	25	0		7	••••••	<u> </u>	•	•	<u>.</u>	÷	•• •	1_	↓ ↓ -	•	•	•	<u> </u>		• • -				•					ļ	<u> </u>	<u>↓</u>		
0 R C		0	0	. 1 0			•	•		ĺ	•			•				•	•	¦ : _			Ţ	- - - -		<u> </u>						
S F		- 69	0		۰ ۱	╞	•	•	-	-	•			•		,	+-	•	1	•	! .				-	-	- •··			<u> </u>	ļ	
L.	20	0					, 1	•		. . .	•		-	; #-	•	; ;	Ļ.		+	•					ļ					<u> </u>		
٦			ļ.		+	+ 	+ -		+ .	•			• .	•	•		ł	4 7	•	† ·				+ +		ļ	<u></u> + 		<u>† </u>	<u> </u>		Ì
ШQ			<u> </u>	. <u>.</u>	-		+	+	+	+	<u> </u>			:	، 	۰. ۱.	. 				-								+			
-,	5	9		4 1	 L		+	ł	-		1	-			L	!			<u> </u>		ţ	.							<u> </u>	+		-
PLO			0	5			L	·	_	+	. .		-	-	Ī	• • •		+	ļ	<u> </u>						1			1		!	1
Σ ω		a	5	-	1		1	+	-	+	· ،+ 				 	•·	+	+	1		; ; ;	[+	:	<u> </u>	 		<u> </u>	1	
ラレ	Ĭ	- iii	• 		 	2	<u>, </u>		2	1 m	, ₁			Ļ	- 				 		<u> </u>	i	j	+ +	<u> </u>			<u> </u>	- 	<u>+</u>	 	1
		Ц Ц	, 	<u> </u>	-	<u>+</u>	<u> </u>	+		1	<u> </u>		<u></u>		<u> </u>	+		+-		1				 			<u> </u>		<u>+</u>	<u> </u>	। ↓	1
g	5				1	0	-	, -	- 0	-	1				+					-						-		·	1	<u> </u> 		$\frac{1}{1}$
B∧.			-			<u>† </u>	-	<u> </u>				-		1	1	_	. <u></u>		 					†		<u> </u>	+ 	<u> </u>		<u> </u>		1
RAI		E	0	_ _ _	<u></u>	<u> </u>	 	<u>, </u>		2 '	+				<u> </u>				 				 			 .	+		.	 		-
-	l	1	-	1 -	1	ł	1	1	1	1	1	1	1	l	1	1	1	i	1	1	ι.	Į .	1	Į.	i	i	1	i	ţ	1	l	1

in in the second se

. .

i. Artis

.

PROGRAMA ORBITALES PARA EL CALCULO DE LA FUNCION DE ONDA

EJEMPLO DEL FOSFORO

.

PARAMETROS PARA LA INTEERA NUMERO DE PUNTOS PUNTOS DE INTEGRACION DEL POTENCIAL INDICE DE PRECISION	ACION PUNT = NP = EDIF =	109. 50. .00100
PARAMETROS DEL ATOMO NUMERO ATOMICO	Z =	15.
NUMERO DE ELECTRONES FXPONENTE DEL POTENCIAL ANALITICO	N = ALFA =	15.

POTENCIA DEL EXPONENTE ANTERIOR GAMMA = .7500D PARAMETRO DEL POTENCIAL ANALITICO AK = .00100

.

NÎ.

•		
10+990262881	*120329991+01	•2350677C5+00
*I26211394+01	*II53#3855+DI	* 51 53 92 61 #+ 99
107537283+01	ID+S8IDDLEOI*	00+699958161*
* 897239693+00	* 6 r 1 2 2 1 3 1 r + 00	• 113328321+00
°134562125+66	*829816539+CD	00+IS388595I*
00+298192065*	00+560055892*	* I#I#005338+03
BB+66945699#*	00+0/5125589*	121804562+00
00+50+6+8595 *	00+112661209*	C0+//E197511*
00+065559612*	00+518508825*	•12431695+00
* 51 551 8633+00	• # 83 81 22 83 + 00	* 445398305-31
00+68502651*	00+1/5100665	19-638855158*
118119051+00	10+565/9/555	- 10-88585169J ·
10-182151898*	10+085971762*	10-118858769*
10-/58020559*	• 521266926+00	10-11926/129*
10-6755555155	nn+895002512*	TA-552/21/96.
10-610192825	00+16/6/1791*	11-96/966216.
10-81262662	00+8+6/56701*	TD=/C/C/8795*
TA-TAC289691*	00+2/9/1/821*	10-9655/1916*
10-001600011	00+06/220801*	
20-1/00//11	10-20002000	
20-160002016*	10-6020000	
20-72575024	10-010475420*	10-052102802
20-6000040120	10-010012007	10-23273820
70-6/0999991*	10-292019404*	10-2000 // 190
20-195102621*	10-090017020	10-119666602*
50-80/10068*	10-185877867*	TE-620002300
£0-500618/09°	Jn-96865697*	10-06-27-9191
C0-662685414*	10-100023740	TC-69526+7271
CO-905006192*	10 1233 132 00	10-012034131
£0~£#6265161	FD	TE-079TT0C2T*
CR-HCGTT/ KZT*	10-2/6369511*	10-4/65/9717*
10-FI0659118*	20-215458954*	10-920-699011
10-601016765°	20-9255500//*	20-60+96+116*
#0-1591A006+*	· 28-T/6/26269	20-242264628*
hn-nchh79692*	· 20-64/020302/	20-0002020200
0-C0020C1070	28-07000075	26-010000212
#D-14646D221*	20-000010604	20-09097/09*
GC-#/ IGDIDZ8 •	20-58/#/5982*	78-571576846*
CA-AIHAICACC*	20-0802500520	20-2028000649
CA-257/5C4053	20-04 84 91 26 8	20-4+62601++*
SD-2098D9/12	20-04866616T*	20-92596666
CO-CCREARCAL ·	20-9/1069921*	20
CO_RICORDITI'	20-04616560T*	
90-613700111	C0~00102304	20-966122942 *
90-936785166	50-TA/567601*	73-966676697*
90-89999097CC+	CA-JT967/9/6*	24-641444642*
98-999955272*	50-628676T/h*	20-540448412*
98-1514/4841*	-SN-76++6+686*	- 20-C/279994T*
10-116055266*	50-918950515*	20-20-20-20-20-20-20-20-20-20-20-20-20-2
10-241188299.	50-8824997852*	• 195143455-05
10-259209266*	50-652185012*	20-515889911
86-61/669612*	hn=12992992C*	Cr_c/91747CJ +
00-21L0370L0	"U-LG 78688C 3	24-360 164626

Z**d

. . .

.

. . .

E = -*#852#1113+21 F = 1 N = 5 NUMERO CURNIICO PRINCIPAL Numero curniico azimutal Autovalor de la Eneraia

.

8

SOLUCION DEL ORBITAL

- 85 -

d

.

•...

÷

.988131389+00

٠

.

			set de la construction de
	260196231+ 0 0	127301991+01	.162057969+01
	.28801)973+0]	•132887396+01	176590601+01
	.318799086+00	.136721672+01	186928156+01
<i>i</i> .	.352878422+03	138477218+D1	.191759399+01
	.390600804+00	-137895992+01	-190152796+01
· ·	432355680+00	134821883+01	.181769401+01
	478574112+00	129230580+01	-167005427+01
	· 52 97 332 4 8+ 0 J	-121248981+01	.147013155+01
	-586361259+00	.111162491+01	123576994+01
	· 1)0737275+ v2	.396688697-12	.157361921-24
	-910085440+01	-816965376-11	.667432422-22
	.822193682+01	.125336736-09	.157017704-19
	.742796091+01	-147300845-08	-216975389-17
	.671354924+31	.136163567-07	.185405169-15
	.606247604+01	.101310975-06	-102639136-13
1.	.547699364+31	.619591972-06	.383894210-12
	.494804871+01	.317424443-05	.100758277-10
	.447018951+01	.138571176-04	.192019706-09
	.403847969+01	.523461654-04	.274012102-08
	.364846233+01	•173494924-03	.301004883-07
	.329611105+01	•510837024-03	.260954465-06
	.297778818+01	135120834-02	.182576397-05
	269020742+01	.324307004-02	.105175033-04
	<u>.243039986+01</u>	.712656422-02	.507879172-04
	.219568330+01	.144537373-01	·208910520-03
	.198363456+01	272534822-01	.742588782-03
		.480674012-01	.231047504-02
	.151899535+31	.797818070-01	•636513671-B2
	.1 46264040+0 1	125247074+00	.156868296-01
and the second	.132138549+31	.186829371+00	.349052139-01
	.119377232+01·	·265911587+00	.707089715-01
	.107848340+01	.362465631+00	.1313 81333+00
	.97 4328563+00	.474789478+00	.225425048+00
	.880232506+0J	•599475138+00	. 359370440+00
	.795223795+0 0	.731625997 +00	. 535276592+00
	• 71 8424834+00	·865291767+00	•748729840+0 0

.649042748+00

.

.

·994047984+00

. -.

. .

. .

e en ser en se

					• • · · ·	•	
			- 60 -			•	
PA	RAME	TROS	DE CADA ORBITAL		ANO	ALIA	S
N	L	o .	ENERGIA	RA	RD	ЯC	TI
1	0	2	705194101+02	C	0	0	0
2	Ð	2	649161428+01	9	Э	0	0
2	1	6	492541778+01	e	0	0	0
3	Ð	2	571920969+00	٥	0	0	0
3	1	3	287334262+00	C	0	0	0

•

· · · · ·

. Selo

•

· · · ·

VALORES DEL POTENCIAL CREAD POR LOS ELECTRONES Y DEL POTENCIAL ANAL

	• •		· · · · · · · · · · · ·	· · · · ·
· · · · · ·	DADTO .	DENETRID	DATENATU	TO DOTENCTAL
	RAUIU	DENSIDAD	PUIENCIAL	POIENCIAL
		PROBABILIDAD	CREADO	ANALITICO
-14	6484375-02	•337570888- 3 2	101910385+35	101075217+05
. 17	9476407-02	.501798571-02	830865686+(4	823186914+04
.21	9899093-02	.744282763-32	677232880+34	670192145+04
<u>.</u> 26	9425998-02	110C97453-01	551841858+54	545468905+04
.33	0107636-02	162325497-31	449501257+34	443647375+04
.40	4456328-02	.238368150-01	365974164+ (4	360672015+04
.49	555.)252-02	.348315788-01	÷。297832609+34	293026083+04
.60	7166663-02	.505926404-01	242164456*14	237888498+04
.74	3909040-02	.729478253-31	195756512+34	192956978+04
91	1456405-02	.104242058+00	159699683+(4	156352666+04
.11	1673974-01	.147339754+00	129460233+)4	126542270+04
.13	6825813-01	205493046+C0	104787325+(4	102274561+04
.16	7642490-01	.281969562+00	846637666+33	825284874+03
. 20	5399871-01	.379366410+00	682488556+53	664708786+03
.25	1661183-01	. 498368821+00	- 548738532+33	534218826+03
. 30	8341729-61	-635699478+60	- 439837429+13	- 428267750+03
.37	7788180-01	-781526111+00	- 351288555+13	- 342329460+03
. 46	2875757-01	-921305388+00	- 279426628+63	272711113+03
- 56	7127233-01	103174023+01	- 221256167+33	216399757+03
- 69	4858814-01-	-108782087+01	- 174316433+63	- 176937167+63
85	1358809-01	107156950+01	- 136571306+33	- 130317280+83
10	1320607 01	09/037763*26	- 104320450×f3	- 10/003320403
10	7894595100	850388810±03° S		- 913590211+02
012	1034075400 (E200E1+00			- 405007772400
10	1951(40,00	724020740402		- 023721312702
e 1 7	1020009400	• 120404304700		
220				- 50707041100
e ∠ 0 7 5		- 747420010700 - 105/3/07/0-04		
• 32	2878422+00	· 1034/48/4+01	- 186540823+12	197270500+02
• 4 5	2355683403	.192902003+01		142932023+02
• 52	9133248+00	• 842 C86 /4 / + CU	943805299+11	101897297402
• 0 4	9042748+00	· J04JUJJY/+UJ		
· 19:	5223195+00	• J16236857+UU	481313378+11	491840005+01
. 47	4223563+03	• 1/9444021+00	341 /2 /4 /6+31	
• 11	4311232+01	• 148403624+00		223134136+01
• 1 4	6264U4U+U1	• 101385735+09	163614449+31	1484/8/90+01
• 17	9206449+01	· 163U51743+0U	106130785+01	442611770+00
21	9568330+01	.136293763+99	709425596+30	675944887+90
• 26'	9020742+01	.932204276-01	476073936+EC	475161314+00
.32	9611105+01	-523384163-31	341426723+30	347686395+00
. 40	3847969+01	.239290020-01	259137958÷C0	264677592+90
• 4 9	4804871+01	.871935019-32	204881826+30	297905520+00
- 60	6247664+01	-241641284-02	165455362+0	166659867+00
.74	2790091+01	• 474383512-03	134691950+30	135053810+00
• 91	0085440+01	-600510948-04	109884998+00	109967161+00
-11	1506000+02	.437245887-35	896815248-71	895955356-01
• 13	6620007+02	.159934633-06	731957396-(1	731975073-01
.16	7390330+02	250351593-38	597496202-31	597407711-01
• 20	5090921+02	.137472908-10	487588737-01	487588723-01
.25	1282649+02	.239513177-13	397958332-31	397958234-01
• 30	7877936+02	• 661727977-17	324804122-01	324804047-01
.37	7219934+02	.333456956-21	265097399-31	255097336-01

DESVIACION CUADRATICA MEDIA DEL AJUSTE =

.304270471-01

- 62 -

INTEGRAL DE TODOS LOS ORBITALES = .149999999+02

RADIO MEDIC EFECTIVO = •103318383+01

RADIO INVERSO EFECTIVO = .349997637+01

....

. . . .

ix.

· · ·

APENDICE

DESCRIPCION DEL PROGRAMA CPC1 PARA LA DETERMINACION DE LOS VALORES AUTOCOM SISTENTES DE \prec y k

A.1. Criterio de autoconsistencia

En la expresión analítica (1.1) del potencia V(r) aparecen los parámetros α, k y χ. El programa CPC1 realiza la determinación de los dos primeros por la aplicación del criterio de autoconsistencia (YUNTA CARRETE RO, J., RODRIGUEZ MAYQUEZ, E. y SANCHEZ DEL RIO, C.; 1973), (YUNTA CARRETE RO, J., RODRIGUEZ MAYQUEZ, E. y SANCHEZ DEL RIO, C.).

Por autoconsistencia se entiende el reencuentro de los valores de \ll y k a través del siguiente proceso:

- a) Resolución numérica, para ciertos valores impuestos de los parámetros e y k, de los orbitales P_{n,l} en la ecuación de Schrödinger (1.4) correspondientes a todos los electrones del átomo en estudio, teniendo en cuenta la prescripción del principio de Pauli.
- b) Determinación del potencial $V_c(r)$ (1.9), creado por la distribución de densidad de probabilidad de los orbitales anteriores.
- c) Determinación de los parámetros $\ll y k$, por medio de un ajuste por mínimos cuadrados del potencial analítico (1.1) al potencia creado V_c(r).

La autoconsistencia se logra cuando los valores de \ll y k hallados en la fase c) coinciden con los impuestos en la fase a). Para alcanzarla se podría partir de valores arbitrarios de \ll y k, y al terminar la fase c) reiterar el proceso total partiendo de los nuevos valores de \nsim y k, hasta que las diferencias entre los valores de iniciación y finales en un mismo proceso sea menor que el índice de precisión. Para acelerar la convergencia del proceso se ha utilizado el método de Wegstein (GROVE, W.E.; 1966) buscando primero la autoconsistencia del parámetro k para el valor consta<u>n</u> te de \ll inicial y, posteriormente, la del parámetro \ll para el valor constante de k acabado de encontrar. El proceso se reitera con una nueva par<u>e</u> ja de valores de partida.

La figura 2 ilustra la realización de esta última reiteración. En - ella la curva \overline{a} representa los valores autoconsistentes del parámetro k - correspondientes a cada uno de los valores constantes de la abcisa \ll .

.

A su vez la curva k representa los valores autoconsistentes del parámetro c correspondiente a cada uno de los valores constantes de la ordenada k. El punto S, intersección de ambas curvas, proporciona los valores autoconsistentes simultáneos de los dos parámetros, esto es, los valores bus cados.

Así, partiendo del valor $\ll = \ll_{11}$ y un valor cualquiera de k, se ll<u>e</u> garía al valor autoconsistente k = k₁ dado por el punto P₁₁ y, con este valor fijo de k, se determinaría el valor autoconsistente $\ll = \ll_{12}$ dado por el punto P₁₂. Análogamente ocurriría con el valor de partida $\ll = \ll_{21}$, que permitiría encontrar los puntos P₂₁y P₂₂. La intersección P de la recta -P₁₁ P₂₁ con la P₁₂P₂₂, proporcionará el valor de \ll para la próxima reitera ción en la que se obtendrán los puntos P₃₁ y P₃₂, que, juntamente con los P₂₁ y P₂₂, darían el valor de partida para el próximo tanteo.

Los valores iniciales de \propto y k son dados por el usuario del programa. Para la segunda reiteración se toma como valor de partida $\approx_{21} = \alpha_{12}$. En las sucesivas reiteraciones se utiliza ya el predicho por la intersección de ambas rectas.

El ajuste de
 y k por el método de mínimos cuadrados, se realiza ha ciendo mínima la expresión

$$S = \sum_{i} \left[\frac{V_{c}(r_{i}) - V(r_{i})}{V(r_{i})} \right]^{2}$$

donde el sumatorio se extiende a radios, en escala logarítmica, comprendidos en la zona de valores significativos de las soluciones de los orbitales, y en número elegido por el usuario del programa a través del dato NP.

El ajuste del parámetro k se realiza despejando k de la ecuación de condición de mínimo:

$$\sum_{i} \frac{\left[V_{c}(r_{i}) - (N-1) (k - \frac{1}{r_{i}}) e^{-\alpha r_{i} t} \right]}{V_{c}^{2} (r_{i})} = 0$$

La expresión equivalente para el parámetro \ll no permite que éste sea despejado. Por ello, en este caso, se ha recurrido a determinar el valor de S para diferentes valores de \ll . Ajustando una parábola a tres valores de S, su mínimo nos dará una aproximación del valor de ajuste de \propto . Una me jor aproximación se obtiene reiterando el proceso sucesivamente con la aproximación acabada de hallar y dos puntos anteriores, hasta conseguir la precisión deseada para el valor del parámetro \propto . El programa CPC1 permite analizar el ajuste simultáneo de los dos parámetros k y \propto , de uno solo cualquiera de ellos, o de ninguno. En este - último caso es equivalente al programa ORBITALES.

A.2. Descripción del programa CPC1

La mayor parte de las fases de cálculo son las mismas, con ligeras variantes fácilmente comprensibles, que en el programa ORBITALES. Esto permite reducir a un sólo diagrama todo el flujo del cálculo.

En él aparecen los indicadores I y J. El primero tiene los siguientes significados:

- I = 1 El cálculo de V_c no ha sido realizado en los radios adecua dos por desconocimiento de la zona con valores significat<u>i</u> vos de los orbitales.
- I = 2 El cálculo de V_c está realizado en radios adecuados y se va a efectuar el ajuste por m.m.c de k.
- I = 3 El cálculo de V_c está realizado en radios adecuados y se va a efectuar el ajuste por m.m.c. del parámetro \propto .
- J = 1 El usuario desea los valores autoconsistentes de los parámetros \measuredangle y k.
- J = 2 El usuario sólo desea el valor autoconsistente del parámetro ∝, conservando el valor inicial dado para el parámetro k.
- J = 3 El usuario sólo desea el valor autoconsistente del parámetro k, conservando el valor de \prec dado inicialmente.
- J = 4 El usuario sólo desea el cálculo de los autovalores de la energía E para el potencial definido por los parámetros k, \prec y χ .

Los bloques del diagrama no necesitan aclaraciones. No obstante, el correspondiente al ajuste por el método de mínimos cuadrados del parámetro α , viene detallado con diagrama de flujo de cálculo que facilita su comprensión.

Los bloques denominados "Ajuste nuevo parámetro" agrupan, tanto el ajuste por m.m.c. del parámetro correspondiente, como la predicción del va lor a usar en el próximo tanteo en la búsqueda de la autoconsistencia. Di cha predicción se realiza con la subrutina ITER que utiliza el método de -Wegstein para acelerar la convergencia, tomando precauciones para evitar la posible oscilación de este método en ciertas circunstancias.

÷.,.

() |-

....

A.3. Instrucciones para su utilización

·

백종

Los datos de entrada se proporcionan de forma análoga al programa $O\underline{R}$ BITALES (apartado 5.1), esto es,

Ficha	Formato	Parámetros
1	5X, 72H	TITULO
2	3F10.3	PUNT, NP, EDIF
3	5 F10.3	Z, ENE, ALFA, GAMMA, K
4	12	J
5	12	NO
$6, 7 \dots (5 + NO)$	312	N, L, O
última	12	NE

con la única diferencia de la aparición de una cuarta ficha con el indicador J,para que el usuario elija sobre qué parámetro desea la autoconsisten cia,y la anulación de los parámetros NS, en la fichas 6 y siguientes, sin objeto en este programa.

La salida de información del procesador contiene en primera página los mismos datos que el programa ORBITALES (apartado 5.2), esto es, el título, los parámetros de cálculo y los de identificación del átomo y del potencial analítico.

En la segunda página y siguientes, si es necesario, aparecen los valores de los diferentes tanteos de los parámetros \propto y k, con los autovalores de la energía correspondientes a cada uno de los orbitales caracteriza dos por los números cuánticos total n y azimutal ℓ a los que les correspon den O electrones. Asimismo da una relación de las incidencias ocurrida du lante el cálculo de cada orbital en forma análoga al programa ORBITALES.

Una vez alcanzados los valores autoconsistentes, el procesador proporciona en una nueva página una tabulación de la suma de los cuadrados de los orbitales, potencial creado por ellos V_c , potencial análitico V y dif<u>e</u> rencia entre ambos.

Al terminar la tabulación, da información sobre la desviación cuadrá tica media σ entre los potenciales, la integral de todos los orbitales I, el valor del radio medio efectivo \overline{r} y el radio inverso efectivo $\frac{1}{r_i}$ con las definiciones dadas en el apartado 5.2.

- 69 -

A.4. Listado del programa

El programa CPC1 y el ORBITALES presentan ligeras diferencias, en la forma de introducir los datos y de sacar los resultados, y en algunas sentencias propias del primero y cuyo objeto es preparar el ajuste de los parámetros. Con objeto de no repetir la mayoría de las sentencias, que son comunes a ambos programas, sólamente se reproduce la parte correspondiente al ajuste por el método de mínimos cuadrados de los parámetros k y <, y - la subrutina ITER que se utiliza para la predicción de futuros tanteos de k y <, por el método Wegstein, con objeto de acelerar la convergencia.

		in the second	
С		SE OBSERVA SI ES MAS CONVENIENTE DAP POR VALIDA LA ENERGIA CALCULADA	3196
	369	IF(DE/E+EDIF) 361+361+370	3290
	361	IF(I1.EQ.1) GO TO 20	320:
		R2=RCI(1)	32.12
		I S=1	
		GO TO 30	3203
	370	NTI(L) = NTI(L) + 1	
		GO TO 351	
	380	WRITE(6,990) NCP(L)+NFLE(L)+NOP(L)+FE(L)+NRA(L)+NRD(L)+NRC(L)+	
	1		•
С		CALCULO DEL POTENCIAL CREADO POR LOS DIFERENTES OPBITALES	3261
С		CALCULO DE LA SUNA DE INTEGRALES DE P2(R) DESDE CERO A R	327
		V1(1)=(4.*PV(1)+PV(2))*RP(1)/3.	328
		D0 403 MM=2+NP3	329
	400	V1(MM)=V1(MH-1)+(PV(2*MM-2)*RP(2*MM-2}+4**PV(2*MM-1)*RP(2*MM-1)*PV	3306
	1	1(2*MM)*RP(2*MM))*HP/3.	3301
С		CALCULO DE LA SUMA DE INTEGRALES DE P2(R) DESDE R A INFINITO	331
		V2(NP3+1)=0.	332
		DO 410 MM=2:NP3	333
		MMM=NP3+2-MM	334
	410	V2(MMM)=V2(HMM+1)+(PV(2*MMM)+4。*PV(2*MMM-1)+PV(2*MMM-2))*HP/3。	335
		V2(1)=V2(2)+(4.*PV(1)+PV(2)/2.)/3.	336
С		CALCULO DEL POTENCIAL CREADO POR LOS DIFERENTEES ORBITALES	337
		DO 420 MM=1•NP3	339
	420	VP(MM)=(-7+ENEP/ENE*V1(PM))/RP(2*MM)+ENEP/ENE*V2(MM+1)	340
С		AJUSTE PUR MINIMOS CUADRADOS DEL POTENCIAL CREADO	342
		GO TO (424,425,426),IAK	342
	424	IAK=?	342
		GO TO 5	342
	425	GO TO(1425+426+1425+490)+JAK	
С		AJUSTE DEL PARAMETRO AK	343

. . . .

- 70 -

. . -. -

- 71 -

•

•

		·
164*	1425	S170.
165*		52=).
166≉		DO 450 ME14KR3
167.		
101-		
1994		V C = V P (A)
169*		EX=ALFA#R**U
170#		IF(EX-36.) 440,440,435
171*	435	EX=J.
172*		GO TO 445
173*	443	FX=FXP(-FX)
174*	445	W-1.+(FNFP*FX+7P)/R/VC
175*	4 F F	C1-C1-C1-U+2Y/JC
17/-	5 F F	
110*	4 5 0	
+11#		AK=SI/ENEP/S2
178*	455	CALL IFER(AKU+AKI+AK18+AK+AKX+AKX1+AKN+AKN1)
179#	2470	IF(ABS((AK)-AK)/AK)-EDIF) 470.470.490
+80+	470	IF(JAK-2) 2471+490+490
+81*	2471	IAK=3
182≠		GO TO 480
183*	С	AJUSTE DEL PARAMETRO ALEA
184 =	426	
185+	420	
+0,0+		
100*		
)8/ ≭		AL 3=EXP(-ALFA)
+88+	430	AGN=0.
·89*		DO 446 M=1+NP3
190*		R = R P (2 # M)
·91#		VC=VP(H)
192=		FFFC = FFE(1)
:93*	446	AGM = AGH + (IVC - V)/VC) + + 2
:94+	110	TELAG3) 451-451-455
05*	11 = 1	
· 704	401	
1704		ALM=U.8#AL3
.9/*		AL2=ALM
÷98≠	1451	ALFA=-ALOG(ALM)
·99*		GO TO 433
i00*	456	IF(AG2) 457+457+458
:01 *	457	AG2=AGM
i02*		ALM=1.5+AL3
i03*		AL 1 TAL M
104 ±		60 TO 1451
105±	453	TE(AC1) 1058-1058-066
:04+	1/50	101-109
07-	1420	
·U / #		
1084	400	AGSTAGM
·D9*	467	Z1 = (AG1 - AG3) / (AL1 - AL3)
•10≠		Z2=(AG2-AG3)/(AL2-AL3)
11=		C=(Z1-Z2)/(AL1-AL2)
·12#		BN=C* (AL 1+AL 3) -Z1
·13*		TF(C) 1463+1463+1461
14 =	1461	41 M=BN/2./C
15*		TE(A) M) 1044.1040.1047
16+	1440	
17+	1402	1F(ADD((ALN-ALD))AL") = CUIF) 14/1414/194CC
1 I P	408	NL1-NL2
107 101		ALZ-ALD
17*		ALJEALM
·20*		AG1=AG2
·21*		AS2=AG3
·22≠		GO TO 1451
·23*	1463	IND=1
-24≠		GO TO 1465
25*	· 1464	IND=2
26=	1465	TF(A) 9-A) 23 1447-1447-1444
LUT	1403	111 THE ARES ATVISITOFFENDO

•			י ד מ י ^א מ			
		na da serie da serie Nota da serie	12 -			
		•				
-pad 14	66 ALX=AL1					
	ALITAL2	•	• • •			
	AGX=AG1		•			•
	AG1=AG2		· ·			
1 4	AG2 = AGX	8461.0441.0441				
14	68 ALX=AL2	11 14 07 114 07 11 400		.		• • •
	AL2=AL3		 A set of the set of	4		
	AL 3=AL X					
	AG2=AG3					
	AG3=AGX					
14	69 IF(AL1-AL2	1472+1472+1470		· · · · · · · · · · · ·	•• `	•
14	AL1=AL2		1.44	• •		
	AL2=ALX		•			
	AGX=AG1					·
	AGITAG2 AG2TAGX					
14	72 60 10 (147	3+1476) + IND	·	• •		
14	73 IF(AG1-AG3	1 1474+1474+1475	•			
14	74 ALM=2.*AL3	-AL1		*		
14	75 ALM=2.*AL1	-AL3			•	
	GO TO 468					
14	76 ALM= (AL1+A	L21/2.				
14	71 ALFA=-ALOG	(ALM)			•	3736
14	77 CALL ITER(A20 + A21 + A213 + ALF	A. A2X. A2X1 . A2N. A2N1	3		3735
	IF(ALFA) 4	82 + 4 82 + 1 4 82	-			3740
4 8	B2 ALFA=A2D*D	•6				3745
14	B2 IF (ABS (TA2	D-ALFA)/ALFA)-ED	(F) 481+481+480	• • • • • • • • • • • • • • • • • • •		3747
C	SE COMPRU	EPA SI HAN TERMIN	ADO LOS CALCULOS	• •		3755
48	81 IF(JAK-1) 85 TE(AE21-AE	493+485+490				-
: 48	33 AF12=ALFA	TIN 404140314C4				
	AF21=ALFA					
	GO TO 487	4 4) FAN FOTO				
- 60° - 48	04 IF(AD3(AF2 86 AC=(AF11-A)	1 = ALFAJ = EUIFJ + 49(F12]/(AF21-A1FA)	114601480			
· •	ANUM=AC#AF	21-AF11			·	
4	AF11=AF21	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
	AF12=ALFA AFFA=ANUA/	(10-1-)				
1	IF(ALFA.LT	.0.) ALFA=AF11*0.	, £		•	
· ·	AF21=ALFA					
41	87 1AK=2 60 TO 1001		• • •	• •		7744
4	80 CONTINUE					3770
C	FINAL DEL	CALCULO Y SALIDA	JEL POTENCIAL			3800
ب و	90 WK11E(6+10) SCD-A.	20) AK +ALFA				381
	D0 505 J=1	*NP3				A3811
	R = RP(2*J))				
	EFEC = EFE	(1) = V (V P (1))				
	PVS=PV(2+J)/ENE				A3810
	WRITE (5+1	330) R.PVS.VP(J)	V • V V			ها با مي ا
50	C5 SCD=SCD+VV	*VV CD (AND)				P3810
in a Sura	WRITE(6+98)	O) DCM			•	A3827 3017
				•		ي بي
	•					

.

: .

Subrutina ITER

-

- 73 -

1 *		SUBROUTINE ITER (X0+Y0+X1+Y1+XX+YX+XN+YN)
2*		IF(Y0) 10+5+10
3*	5	Y 0=1.0
. 4 *		RETURN
5*	10	IF(X1-X0) 50+20+50
6*	20	X=(X1+Y1)/2.
7=		IF(Y1-X1) 30+34C+40
8≠8	30	XN=X1
9*		Y N = Y 1
10*	•	GO TO 143
11*	4 Ú	X X = X 1
12*		YX=Y1
13*		GO TO 140
14×	50	IF(Y1-X1)7),143,90
15*	76	XN=XI
16*		YN=Y1
17*		GO TO 100
18*	93	XX=X1
19#		Y X=Y1
20*	100	EM=(Y1-Y0)/(X1-X0)
21*		EN=Y1-EM+X1
22*		X=EN/(lu-EA)
23*		IF((X-XX)*(X-XN)) 140+140+110 .
24≯	110	X=(XN+XX)/2.
25*	140	X0=X1
26*		X1 = X
27*		Y0=Y1
28*		Y1 = X1
29*		RETURN
30*		END

I OF COMPTLATION:

-

NO DIAGNOSTICS.

24. I с 1.1. 1.1. 1

•

BIBLIOGRAFIA

CONDON, E.U. y SHORTLEY, G.H., "The theory of atomic spectra", pg. 356; Cambridge at the University Press, (1953)

DU MOND, J.W.M. y COHEN, E.R., Rev. Mod. Phys. 25, 691, (1953)

GROVE, W.E., "Brief numerical methods", pag. 20; Prentice Hall Inc. "Series in applied mathematics", (1966)

HARTREE, D.R., "Numerical Analysis", pag. 132; Oxford at the Clarendon Press, (1952)

HARTREE, D.R., "The calculation of atomic structures", pag. 80; Wiley and Sons, (1957)

U.I.F.P.A. - 11, "Símbolos, unidades y nomeclatura en la Física", (S. U. N. 65-3) (1965)

YUNTA CARRETERO, J., RODRIGUEZ MAYQUEZ, E. y SANCHEZ DEL RIO, C. (para publicar en los Anales de Física) (1973)

YUNTA CARRETERO, J., RODRIGUEZ MAYQUEZ, E. y SANCHEZ DEL RIO, C., (present<u>a</u> do en Phy. Rev.)

9H

21. Set.

J.E.N. 265 J.E.N. 265 Junta de Energía Nuclear, División de Química, Madrid Junta de Energía Nuclear, División de Química, Madrid "Gas chromatographic analysis of Tri-N-Octyl-"Gas chromatographic analysis of Tri-N-Octyl-Phosphine oxide (Topo) in D2EHPA-Topo-Kerosene Phosphine oxide (Topo) in D2EHPA-Topo-Kerosene mixtures" mixtures" PEREZ GARCIA, M. (1973) 7 pp. 1 fig. 8 refs. PEREZ GARCIA, M. (1973) 7 pp. 1 fig. 8 refs. A study about the minimum limit of TOPO, detectable by gas chromatography in A study about the minimum limit of TOPO, detectable by gas chromatography in an organic phase formed by D2EHPA and kerosene is carried out. The retention an organic phase formed by D2EHPA and kerosene is carried out. The retention time and response factor under the same conditions are also studied. Octacosane time and response factor under the same conditions are also studied. Octacosane has been used as a reference hydrocarbon. has been used as a reference hydrocarbon. J.E.N. 265 J.E.N. 265 Junta de Energía Nuclear, División de Química, Madrid Junta de Energía Nuclear, División de Química, Madrid "Gas chromatographic analysis of Tri-N-Octyl-"Gas chromatographic analysis of Tri-N-Octyl-Phosphine oxide (Topo) in D2EHPA-Topo-Kerosene Phosphine oxide (Topo) in D2EHPA-Topo-Kerosene mixtures" mixtures" PEREZ GARCIA, M. (1973) 7 pp. 1 fig. 8 refs. PEREZ GARCIA, M. (1973) 7 pp. 1 fig. 8 refs. A study about the minimum limit of TOPO, detectable by gas chromatography in A study about the minimum limit of TOPO, detectable by gas chromatography in an organic phase formed by D2EHPA and kerosene is carried out. The retention an organic phase formed by D2EHPA and kerosene is carried out. The retention time and response factor under the same conditions are also studied. Octacosane time and response factor under the same conditions are also studied. Octacosane has been used as a reference hydrocarbon. has been used as a reference hydrocarbon.

J.E.N. 264

Junta de Energía Nuclear, División de Física, Madrid

"ORBITALES". Programa de cálculo de funciones de onda para un potencial central analítico. YUNTA CARRETERO, J. : y RODRIGUEZ MAYQUEZ, E. (1974) 73 pp. 2 figs. 8 refs.

Se describe la finalidad, fundamentos, realización en lenguaje FORTRAN y utilización del programa ORBITALES, el cual calcula funciones de onda atómicas para el caso particular de considerar un potencial central dado por la expresión analítica:

 $V(r) = (N - 1) (K - \frac{1}{r})e^{+} \propto r^{2} - \frac{7}{r}$

en la que aparecen los parámetros∝,K y૪ típicos de cada átomo y configuración.

J.E.N. 264

Junta de Energía Nuclear, División de Física, Madrid.

"ORBITALES". Programa de cálculo de funciones de onda para un potencial central analítico. YUNTA CARRETERO, J. : y: RODRIGUEZ MAYQUEZ, E. (1974) 73 pp. 2 figs. 8 refs.

Se describe la finalidad, fundamentos, realización en lenguaje FORTRAN y utilización del programa ORBITALES, el cual calcula funciones de onda atómicas para el caso particular de considerar un potencial central dado por la expresión analítica:

$$V(r) = (N - 1) (K - \frac{1}{r})e^{-1} \propto rY - \frac{Z - N + 1}{r}$$

en la que aparecen los parámetros-«, K y 🎖 típicos de cada átomo y configuración.

J.E.N. 264

Junta de Energía Nuclear, División de Física, Madrid.

"ORBITALES". Programa de cálculo de funciones de onda para un potencial central analítico. YUNTA CARRETERO, J. ;y: RODRIGUEZ MAYQUEZ, E. (1974) 73 pp. 2 figs. 8 refs. Se describe la finalidad, fundamentos, realización en lenguaje FORIRAN y utilización del programa ORBITALES, el cual calcula funciones de onda atómicas para el caso particular de considerar un potencial central dado por la expresión analítica:

$$V(r) = (N - 1) (K - \frac{1}{r})e^{-r} \sim r^{2} - \frac{Z - N + 1}{r}$$

en la que aparecen los parámetros 🛛 ,K y 🎖 típicos de cada átomo y configuración.

J.E.N. 264

Junta de Energía Nuclear, División de Física, Madrid.

"ORBITALES". Programa de cálculo de funciones de onda para un potencial central analítico. YUNTA CARRETERO, J. (MI RODRIGUEZ MAYQUEZ, E. (1974) 73 pp. 2 figs. 8 refs.

Se describe la finalidad, fundamentos, realización en lenguaje FORTRAN y utilización del programa ORBITALES, el cual calcula funciones de onda atómicas para el caso particular de considerar un potencial central dado por la expresión analítica:

 $V(r) = (N - 1) (K - \frac{1}{r})e^{-r} \sim r^{2} - \frac{Z - N + 1}{r}$

en la que aparecen los parámetros∝,K y ¥ típicos de cada átomo y configuración.

J.E.N. 264

Junta de Energía Nuclear, División de Física, Madrid.

"ORBITALES". A program for the calculation of wave functions with an analytical central potential. YUNTA CARRETERO, J. and RODRIGUEZ MAYQUEZ, E. (1974) 73 pp. 2 figs. 8 refs.

In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of the analytical central potential

$$V(r) = (N - 1) (K - \frac{1}{r}) e^{-1} \propto r^{3} - \frac{7 - N + 1}{r}$$

where \prec , K and \checkmark are typical parameter of each atomic configuration.

J.E.N. 264

Junta de Energía Nuclear, División de Física, Madrid.

"ORBITALES". A program for the calculation of wave functions with an analytical central potential. YUNTA CARRETERO, J. and RODRIGUEZ MAYQUEZ, E. (1974) 73 pp. 2 figs. 8 refs.

In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of the case of the analytical central potential

$$V(r) = (N - 1) (K - \frac{1}{r})e^{-r} \ll r^{2} - \frac{7}{r} + \frac{1}{r}$$

where \prec , K and \checkmark are typical parameter of each atomic configuration.

J.E.N. 264

Junta de Energía Nuclear, División de Física, Madrid.

"ORBITALES". A program for the calculation of wave functions with an analytical central potential. YUNTA CARRETERO. J. and RODRIGUEZ MAYQUEZ, E. (1974) 73 pp. 2 figs. 8 refs.

In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of the analytical central potential

$$V(r) = (N - 1) (K - \frac{1}{r}) e^{-1} \propto r^{3} - \frac{7}{r} - \frac{N + 1}{r}$$

where \ll , K and \propto are typical parameter of each atomic configuration.

J.E.N. 264

Junta de Energía Nuclear, División de Física, Madrid.

"ORBITALES". A program for the calculation of wave functions with an analytical central potential. YUNTA CARRETERO, J. and RODRIGUEZ MAYQUEZ, E. (1974) 73 pp. 2 figs. 8 refs.

In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of the case of the analytical central potential

 $V(r) = (N - 1) (K - \frac{1}{r}) e^{-\alpha} \propto r^{\alpha} - \frac{Z - N + 1}{r}$

where \thicksim , K and \checkmark are typical parameter of each atomic configuration.