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1. Thin horizontal fluid layers vertically heated •

1.1 Bénard's cellular patterns

It was at the tura of the last century that Bénard

Í1900J reported on carefully controlled experiments of con-

vected motions in thin horizontal liquid layers heated from

below. Since his [1900,1901/ two papers (based on his Ph.D.

dissertation), Bénard and collaborators devoted an extensive

number of publications to the same subject-seeking in the

phenomena he studied a tentative explanation of a large num-

ber of apparently disparate problems.

Bénard worked with layers thinner than about a

millimeter (aspect ratio of 1/1.00 and less with error to about

1 jim) lying on a metallic píate which was heated and maintained

at a uniform temperature. The upper surface of the liquid (most-

ly spermaceti of whale that melts at 46°C) was free, in contact

with the ambient air that was at a lower temperature than the

bottom píate, on occasions at 100°C. The detailed development

of the phenomena he observed occurred in two distinct phases.

Firstly, when the vertical temperature drop was

large enough, a random motion of the fluid resulted. Shortly

thereafter, the first phase of relatively short duration (in-

creasing with fluid viscosity from, a few seconds up to several

minutes) appeared in which the fluid formed cells of almost

regular shapes. In this phase, the cellular cross-sections

showed nearly regular polygons of .four to seven sides. During

the second stage the cells became equal and regularly spaced

hexagons filling up the plañe. Thus, the limit of the second
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phase was a steady regime of prisms with vertical boundaries

and hexagonal cross-sections. The liguid rose in the core of

the cell, moved outward at the top, descended at the outer

periphery and moved inward at the bottom. Incidentally, Bénard

made the circulation visible by pouring in the fluid a few

'grains of lycopod of about 20 .um diameter, whose individual

motion he was able to follow in detail. He correctly charac-

terized the spatial periodicity of the phenomenon by defining

its wavelength as the distance between centers of the hexagonal

parallelepipeds.

A number of other important observations were also

made by Bénard, that, unfortunately, most of the workers in

the field (including Lord Rayleigh) have disregarded. Bénard

attributed an important role in the phenomenon to surface

tensión inhomogeneities without, however, elaborating deeper

on this point (Bénard U.901, pp. 92, 134, 135J ) . He carefully

studied by sophisticated means originally developed by Foucault

in telescope making industry, the free surface deflection and

gave quantitative estimates of the máximum valúes of depression

and elevation from the surface level. He estimated the surface

deflection at maximal 0.5 \im with a 1 mm. deep layer under his

best experimental circumstances.

On the other hand, we rather expect a flattening of

the free surface on increasing cell depth and eventually a

transition to a deflected surface for larger cell gaps with

elevation in the áreas of upwelling fluid (see, however, our

discussion in Section 5 below). But that depression correlates

to upwelling fluid flow in surface tension-driven convection
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as noted by Bénardr does not seem to be so well established.

Berg et al.i 1966J did find the opposite configuration on re-

peating one of Bénard's experiments using approximately 1 mm-

thick layers of melted wax, and found elevation that occurred

above cell centers.

Another result also described by Bénard is that on

decreasing the thermal gradient the surface deflection is first

drastically reduced, then later disappears very slowly with

the teraperature drop.- This was achieved by_merely letting the

spermaceti layer cool off from 100° down to solidification

(46°C). Bénard's thermal gradients were of about a degree per

millimeter. Incidentally, Dauzere11907J produced solidified

Bénard cells by quickly cooling a thin•layer of melted beeswax

undergoing convection. At the same time he also found an analo-

gous behavior for the convective velocity and the heat flux.

The heat flux was linearly depending on the (linear) velocity

field at a given point. He estimated the angular and linear

convective velocities and the mean periods of circulation of

suspended particles in the fluid.

Bénard heuristically.- and correctly attributed the

surface"deflection to sürface tensión tractions: "La tensión

superficielle a elle seule, provoque deja une depression au

centre des cellules et un exces de pression sur les lignes de

faite qui séparent les cuvettes concaves les unes des autres"

(Bénard íl90Íj, p. 92; see also p. 134 ) . He also gave an estí-

mate of minimum curvature radius at both depression at the

cells1 center (30 cm. - 50 cm.) and elevation at the cells'

edges (10 cm. - 15 cm.) at 100°C and 1 rara, layer depth.
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Bénard measured carefully the surface área, s, of

the cells, and compared it with the depth of the fluid layer

in a number of experiments,

Lord Rayleigh j 1916J investigated the dynamical

origin of Bénard1s cells. His analysis yielded the fundamental

result that a top-heavy fluid layer was stable under the joint

influence of viscosity and heat diffusion until the vertical

temperature drop was large enough to overeóme these two dissi-

pative and stabilizing mechanisms. Lord Rayleigh found that

the solé parameter determining stability was the temperature

difference made dimensioniess by a combination of parameters

that yield what is now known as the Rayle/igh number Ra =

agATd /¿v.This is also the product of Prandtl number times

Grashof number. Thus, Lord Rayleigh discovered that convec-

tive flow sets in when the rate at which (free) energy is

liberated by the uprising of the hot, less-dense fluid near

the base exceeds the rate at which energy is dissipated by

thermal conduction and viscous damping. This argument was

later taken up to construct a variational principie (see

Section below) that governs the (linear) mathematical

stability problem (for his.torical remarks and details see

Chandrasekhar £l96l] , Jeffreys [_1956], Pellew and Southwell

£l940] and Sani [^963] ) .

About twenty years after the publication of Lord

Rayleigh' s masterly analysis, sev.eral writers remarked on

the inadequacy of Rayleigh's guantitative predictions, on

two relevant counts. Firstly, Vernotte 11936-3^1 realized

that "en recalculant les anciennes mesures de Bénard, on

trouve, dans l'experience effectuée avec une epaisseur de
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spermaceti égale a 1 mm,, qui semble la meilleure au point

de vue thermique, une valeur du nombre de Rayleigh critique,

dont on que l'ordre de grandeur, mais qui se situé entre 5

et 10" ... instead of 657 as given by Rayleigh (for stress-

free surfaces). As a matter of fact, Low and Brunt 1925 seem

to' have been the first to notice that the gradients in Bénard's

experiments were at least tenfold less than required by the

theory of Lord Rayleigh fl916j. Later, Bénard himself recog-

nized the discrepancy (Bénard fl927, 1928L)-and estimated the

-4 -5ratio at 10 or 10 - - ' , though Vernotte's es-

-2

timate is roughly 10 . It is rather unlikely that so large

a discrepancy arises solely from inaccurate boundary condi-

tions. Yet a serious attack of the problem had to wait twenty

years longer.

Secondly, the wavelength of the cellular pattern

predicted by Lord Rayleigh was not fitting Bénard's results

so well. Vernotte's arguments did not lead, however, to a

more suitable and fertile theory of Bénard convection (see

also Volkovisky Fl939} ) . Though Vernotte £l936a, P« 119J a s k e d

the right question: "A-t'on le droit d'employer le principe

d'Archimede et d'écrire/ comme le fait Lord Rayleigh, les

équations de la convection?".

It was not until the 1950's that scientists realized

the necessity of incorporating surface-tension stresses in a

dynamical model of Bénard convection. This became a necessity

when Block [l956"] found Bénard 'cellules1 in horizontal layers

of fluid, when the higher temperature was on the upper side.

A straightforward and illuminating theoretical description of
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surface-tension-driven convection was given in a paper by Pearson

£l958l . Pearson's model did not adequately accomodate all of

Block's findings, as we shall see below. In retrospect, it is

pitiful that Bénard did not explore the role of surface-tension

inhomogeneities that he however recognized as eventually important

in his experiments (see also Volkovisky £l935*]). A persistent mis-

interpretation of Bénard"s hexagonal cells makes writers even

today illustrate buoyancy-driven convection with some of the

beautiful original pictures of Bénard.

On the side, we recall that Bénard's experiments

referred to above concern the stability of fluid layers uni-

formly heated from below. Providing a non-uniform temperature

at the bottom one is able to forcé the appearance of hexagonal

or any other polygonal patterns. Much more so than a piece of

poetry or the experimenter's signature could, in principie, be

convectively constructed! (see Koschmieder 11975*1.) .

Another remark that Bénard made and that still re-

mains a puzzling guestion to us is that probably the air layer

on top of the spermaceti was strongly convecting. This was one

of the mechanisms that he advocated for the heat exchange be-

tween the spermaceti and the upper air. Has the convecting air

layer any influence on the hexagonal tesselation? Koschmieder

ri967J investigated this point. Straightforward and simple cal-

culations, using the scanty data provided by the experimenters,

permit us to think that the air layer on top of the spermaceti

should have always been convecting. Bénard convection with a

two-liquid layer heated from above or below would probably help

clarify the issue.
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Further experiments on Bénard surface tension-

driven convection had been conducted by Terada Í192-8J ,

Volkovisky [1939J, Block [l956^| , Koschmieder 1*1966,1967] and

others. Volkovisky and Terada worked with fluid layers flow-

ing horizontally with a controlled preimposed horizontal velo-

city. Their results reinforce the picture already presented

by Bénard and we shall not discuss them here. Block was the

first to point out that Bénard's cell can be obtained by

cooling a layer from below. Block was also able to suppress

convection by adding tensioactive agents to the upper surface

of the layer. Koschmieder was the first to remark that two bi-

furcations do contend to finally show up the second one. For

in a finite box, the form of the boundaries impose a transient

primary flow before the hexagonal tesselation develops at the

steady state. Whether or not the primary phenomenon is an exam-

ple of inverted bifurcation is something that remains open.

- These facts- together with the output from experi-

ments conducted by astronauts on board the Apollo XIV and Apollo

XVII spaceships where gravity was 10 g on Earth (see Grodzka

and Bannister fl972,1975J) unambiguously manifest that gravity

was rather playing a minor role, if any, in most of Bénard1s

original experiments. Surface tension-driven convection can be

considered as a specific phenomenon qualitatively different

from. buoyancy-driven flows. Theories that support this view

have been developed first by Pearson [l958l and later, and

more realistically, by Sternling and Scriven |*1959]r Scriven

and Sternling- fl964] , Smith: Ti96€*].,• Bentwich fl97ll . There is
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also the work of Nield fl9 64j , who described the convective

flows when surface tensión and buoyancy are operating in the

fluid layer. We shall describe Nield's predictions further • -

b e l o w . •• •

Lastly, we note that a standard Newtonian and

Boussinesquian liquid layer, say of silicone oil, heated from

below and constrained between two horizontal conducting plates

accomodates patterns of rolls at and beyond a certain critical

temperature difference. That agrees nicely with Rayleigh's

predictions (as later improved upon by many authors; see for

details Chandrasekhar [19 61] or the monograph of Velarde and

Pomeau Í1977j).The particular orientation of these rolls is

strongly influenced by the lateral geometry of the container.

However, non-Newtonian and/or non-Boussinesquian fluid layers

may not follow the same pattern. Symmetry-breaking mechanisms

such as a kinematic viscosity strongly dependent on temperature

or different b.c. at the horizontal píate boundaries may forcé

a pattern-formation of its own. The hexagonal cell pattern un-

der an air surface developed on a pattern of rolls. These tran-

sient circular rolls reflect the unavoidable existence of a

lateral wall. Recent experiments.by Hoard et al.' ri970Jr with

a rather peculiar aromatic hydrocarbon (Aroclor 1248) which has

a viscosity varying exponentially with temperature, support

this conjecture. No definite theoretical explanation exists,

however, to account for all findings of Hoard et al. though

theories seem to point in the right direction since the pioneer-

ing work of Palm fl960J (see Segel and Stuart fl962J, Palm and

0iann [l964j( . Joseph £l97-ÍJ. and Velarde J 1976,19771).
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1.2 Rayleigh's convection: an heuristic approach

The problem that concerns us here. is the stability

of a horizontal (standard) liquid layer heated from below in

the presence of gravity. According to Lord Rayleigh, above a

critical temperature difference the system falls away from un-

stable equilibrium and it raay do so in several principal modes,

in each of which the departure at time t may be assumed to be

proportional to the small displacement of velocity supposedly

present initially, and to an exponential factor e , where a is

positive. If the initial disturbances are small enough, that

mode (or modes) of falling away will become predominant for

which a is a máximum. When it becomes difficult to prove the

máximum growth of a mode, the criterion of (experimental) reali-

zability is rather: the unstable mode that .develops belongs to

the minimum valué of the external constraint, namely the mode

corresponding to the smallest temperature difference. Both cri-

teria are expected to provide the same answer.

Let us consider a bubble of hot fluid, of radius R,

and which according to Archimedes' law moves upward with a

constant velocity V in a fluid layer where a constant linear

temperature gradient is maintained. An heuristic .and appealing

argument will show that, if the mean temperature gradient is

large enough, then the upward buoyancy forcé on the bubble

may overeóme the drag forcé due to the viscosity of the fluid

(actually it could be also proved that the downwards motion of

a cold bubble may become unstable). This viscous drag forcé on

the uprising bubble is in a first approximation (defined here

by the condition VR/v. « 1; this corresponds to low Reynolds
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nurriber, see section below) of order -13RV. With r¡ we denote the

shear viscosity of the liguid and v is its kinematic viscosity

(v = n/P.,. where p is density) . On the other hand, the buoyancy

forcé arises from the instantaneous difference between the fluid

density and temperature in the bubble and its local neighborhood.

The relaxation time of the bubble's temperature fluctuation, as

due to heat diffusivity is T ^ R / K , where K denotes the thermo-

metric conductivity (also called thermal diffusivity). This means

that at a given instant of time, t, the temperature within the

bubble is about that of its surroundings at an earlier instant of

time, t - T; SO that at time t the temperature difference T be-

tween the bubble and the fluid is 5 T = j grad T|."Vf = | grad T VR /< ;

which yields an Archimedean buoyancy forcé F, = pa<5 TR g = p a R g

I grad T| V/K. Here a = — (3p/3T) . Thus, the motionless steady state

approaches unstable equilibrium when this buoyancy forcé slightly

overcomes the viscous drag. The actual ratio of buoyancy to drag

obviously increases with the size of the bubble; so that insta-

bility eventually begins for bubbles of máximum size, of say

height d, compatible with the boundaries of the container. Thus,

at the unstable equilibrium position we have | E, |> Rrj|.V| or else

Ra > 0(1), with Ra = ad j grad T|g h h r o u g h estimate we

cannot however claim any quantitative valué of the critical tem-

perature drop for the onset of convection. We merely single out

which dimensionless combination of parameters is to be of relevant

use in the mathematical stability analysis that will be given below.

This result was indeed achieved by Lord Rayleigh f1916] . Remarkable

enough it appears that for liquids of vanishing viscosity all modes

of disturbance ought to be unstable,even when we include the con-

duction of heat during the disturbance. Roughly speaking, it
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suffices a vanishing small vertical temperature gradient to yield

natural convective flows in compressible idealliquid horizontal

layers when the higher temperature is below.

Furthermore, the heuristic argument developed above

also shows that if the thermometric conductivity vanishes there is

always convective instability when heating a fluid layer from be-

low; but if K and v are finite and large enough, a motionless

steady state can be maintained for (not too large) vertical tem-

perature differences, although a higher temperature is underneath.

The argument easily carries over to (non-Newtonian)

power law fluids, and yields an important consequence. In a power

law the stress-strain relation is given by a law w (-r—) where ai
dy

and m are two material parameters; V and the coordinate y are taken

transverse to each other. Thus, we have a viscous drag of order

wR (V/R)m. Then the unstable equilibrium condition is wR (V/R) £

paR Vgjgrad T|/K. From which it follows

The Newtonian fluid layer, namely the case m = 1, and w = v,

yields back Ra & .0 (1) . It thus appears as a case where the onset

of convection does not explicitly depend on the (experimentally

uncontrollable) initial disturbances.

In our heuristic argument developed above, we have

disregarded compressibility effects. It is instructive, however,

to discuss the physical relevance of such effects as they play

an important role in atmospheric circulation and the convective

motions in the deep ocean.
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Suppose now that the bubble is adiabatically isolated

by a membrane impervious to matter, but which may freely expand

if the pressure of the surrounding fluid is decreased. The fluid,

for simplicity, is assumed inviscid. Let p,(z) denote the density

at the bubble"s center at height z, and at a temperature T. Sup-

pose that an external weak-enough forcé is applied so as to slowly

raise the bubble to a new height z + pz without, however, appre-

ciably disturbing its neighborhood. Such a slow motion is taken

adiabatic, and moreover, isentropic. The bubble's adiabatic ex-

pansión will change its density to

(i)

where use has been made of the adiabatic compressibility Y =
o

-(-r¿) , a derivative taken at .constant entropy. (or heat flux).
P or b

Also, we have introduced the corresponding hydrostatic pressure

variation 6p = -pgóz. Accordingly, the Archimedean buoyancy forcé

per unit mass acting on the bubble at the new height is equal to

the local volume of the bubble times the (mean) local density

of the surrounding fluid, called p. Thus, the net Archimedean

uprising forcé per unit mass is

Q
h] (2)

This equation determines the magnitude of the external forcé

which is required in order to maintain the bubble in equilibrium

at the new height z + Sz. Removal of such an external forcé yields

an accelerated motion of the bubble, whose time evolution is
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governed by Newton's law

(3)

in which (9p/3z) .. , denotes the (mean) adiabatic gradient. This

Eq. (3) describes a vibrating motion of angular frequency N, where

(4)

s _y "' "- [
The quantity N is called the Brunt-Vaisala. frequency (or the

buoyancy frequency) in meteorology and oceanography. It corres-

ponds to the natural frequency of oscillation of a vertical column

of fluid glven a small displacement from its initial equilibrium

position. The corresponding periods 2TT/N are typically of a.few

minutes in the atmosphere up to many hours in the deep ocean,

Notice that if the fluid is (almost) incompressible

and the density gradients are linear then the Brunt-Váisalá fre-

quency is a constant. As in a resting, isothermal fluid column

thcts:- can be acoustic (or high-.frequency) waves and gravity

(or low-frequency) waves the quantity N yields a separation be-

tween these two classes of wave motion in the fluid.

The Brunt-Vaisala frequency in a fluid médium gives

an indication of static stability. Real valúes of N mean stable,

2

zero frequencies mean neutrally stable, and negative valúes of N ,

namely imaginary valúes of the Brunt-Vaisala constant would imply

instability. If we move the bubble upwards a small distance,

then in a stable stratified médium it would be too heavy, so it
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would sink down, and if there were no friction it would overshoot,

and then it would be too light, and it would oscillate with fre-

quency N.

Stability for an incompressible fluid layer reduces

according to definition (4) to the condition •—. < 0. Thus, an in-
ri z

compressible inviscid (or ideal) fluid layer is unstable if its

stratification is mechanically unstable. This intuitive statement

is far from true in real fluid layers where cross-transport pheno-

mena may be operating (see for instance Velarde and Schechter Í1972J)

The condition of instability for a compressible inviscid fluid,
2'

namely that N be negative, is called in Astrophysics the Schwarz-

child criterion.

Alternative expressions to (4) can be obtained by

straightforward use of elementary thermodynamic relations. Let us

consider the equation of state p = p (Trp) . Thus

where = — (̂  )m is the isothermal compressibility. Thus we have
p 3P •»•

The Brunt-Vaisala frequency vanishes when the fluid (mean) tempera-

ture gradient is

c.

In such a case our bubble's and the surrounding fluid!s density

and pressure are equal. Therefore, the adiabatic temperature change
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of the bubble, say T, is equal to ¿— gz, and using (7) we get
9 z

= 0(8)

The quantity T + •̂̂ •(xi>~Xq) i s called the potential temperature in

atmospheric convection analysis. We see that in. the absence of dis-

sipation and heat transfer this potential temperature is conserved.

Notice that according to (8) the bubble's temperature is conserved

in slow motions, when (x<p~Xŝ  ^ S SItia -̂-'-'' namely when the speed of

sound in the fluid médium is very large. The velocity of sound in a

fluid is equal to

Henee, for a slow adiabatic process

)$# ~ f /C do)

Thus, the condition V. -<<c amounts to a situation with

small density contrasts 5p/p; .«1. This corresponds to the Boussinesq-

Oberbeck approximation.

There remains the discussion of the stability cri-

terion for a viscous compressible fluid layer. We shall then bridge

the gap between our two previous and disconnected reasonings. At

the same time, a more transparent interpretation of the Rayleigh

number, as well as of the Brunt-Vaisala constant will come out.

When a dissipative transport process is introduced,

it usually yields a characteristic relaxation time or say a character-

istic frequeney. Let viscosity and heat transport be the two dissi-
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pative processes operating in our fluid layer. Let us disregard

compressibility effects at present, for simplicity. We have

found above that stability is governed by the condition (note

that here ^r— is negative when the heating is from below)
o Z •

(11)

Eq. (11) can be written in terms of the Brunt-Vaisala ponstant,
2 4- - _

N, namely Ra = . Thus, condition (11) is equivalent to

.2. 89

for a viscous heat dissipating incompressible fluid layer

heated from below. Notice that the introduction of dissipa-

tive dynamic mechanisms provides a lower bound valué to the

characteristic Brunt-Vaisala constant of the layer. One is

tempted to state that dissipation rather plays a stabilizing

role when a fluid layer tends to be destabilized by an ex-

ternal (thermal) constraint. Examples exist, however, that

show viscous damping playing a dual role both stabilizing and

destabilizing depending on certain conditions of operation

(see for instance Lin p.967, p. 47^, and Yih Tl961^). If now,

and according to our previous arguments we recall that incor-

porating compressibility merely amounts to readjusting the

actual thermal (temperature or density) gradient in situ to

its excess over the adiabatic valué, the stability criterion

for a viscous and compressible fluid layer is given by the
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3Tsame criterion (11). One needs only to replace ^— by the cor-

responding factor appearing in the Brunt-Vaisala frequency, Eq.

(6). This was the suggestion of Jeffreys ri930j. Lastly, it

remains to discuss whether the upwelling fluid at the cells1

centers provokes, in predominantly buoyancy-driven convection,

a surelevation of an open surface to air.
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2. Thermohydrodynamic description and the Boussinesq-

Oberbeck approximation

2•1 The evolution equations

The governing equations of Newtonlan fluid flow

are the transport balance equations and the two equations

of state (mechanic and caloric) which represent the field

theoretic description of a continuum where we shall assume

that the Gibbs local"equilibrium assumption-holds (see for

instance Prigogine [19 49], Nicolis, Wallenborn and Velarde

u.969j) . As a matter of fact, we shall also restrict our

consideration here to the simplest realistic continuum: a

standard Newtonian fluid. We are interésted in the -combined

interplay of the basic fundamental equations of mass trans-

port, momentum (or vorticity) transport (also called fluid

flow) and energy transport (or heat). There is a straight-

forward analogy between all the three balance equations if

one chooses the physical quantities and the (approximate)

linear phenomenological laws in the proper manner. We shall,

however, not dwell on this basic though rather academic ques-

tion and shall merely reproduce the equations as derived for

instance in the textbook of Landau and Lifshitz [1959] (see

also Bird, Stewart and Lightfoot ^1960^) . For the time being

we shall also restrict our consideration to single-component

fluids. The first equation is the equation of continuity and

expresses the (global) conservation of matter,

O o , v Ox,._^ or alternatively ^ ) oi\VV (D
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in which p and V denote respectively density and velocity.

Next we express Newton's fundamental law as set for a con-

tinuum by Euler

rate of increase rate of momentum external source rate of momentirate of increase rate of mo
of (linear) mo- gained per unit
mentum per unit ' volume by convec

l l ti i t ivolume, namely tion;
the local accel- terms
eration

y
inertia

of momentum or
body forcé per
unit volume

gained per unii
volume by trac-
tions; pressure
and viscous fo:
ees

Here F., p and cr., denote external forcé, pressure and stress

tensor.

We shall approximate the stress-strain relation by

(*)
the Navier-Stokes model

in which r\ and z, denote respectively shear and bulk viscosity.

Thus, if n and x, are taken as constants, a compact form to (2) is

(*)• Every time that two Índices are repeated the summation con-
vection is used. Elastic stress refers to the material1s re-
sponse to volume changes but it is to be noted that there are
two kinds of viscous stresses: those generated by the material
to oppose volume changes and the stresses generated by the ma-
terial to oppose changes of shape. Real fluids.with a non-vanish
ing bulk viscosity exhibit both viscous and elastic behaviour
under isotropic pressure.
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There are authors who instead of using £ to define a bulk

viscosity coeff icient, use X = £ - 2ri/3. Cross-differentiating

Eq. (4) in a convenient way, namely taking the curl of v in the

absence of external forces or with gradient forces, the pres-

sure field can be made to disappear and defining the vorticity

(JO = rotv = curl v, we get

N A (S) V

in which the kinematic viscosity, v, appears as the coefficient

of vorticity diffusion.

The (internal) energy balance is

rate of gain of heat flow or viscous heating energy generatin
(internal) ener- energy in** due to surface by internally di
gy including crease by-con- tractions tributed sources
convective con- duction or chemical pro-
tributions cesses, etc....

In Eq. (6) e, q and Q denote respectively internal energy den-

sity, heat current and internal heat source within the fluid

layer.

We shall restrict ourselves here to Fourier's heat

law

ft a
(7)'

in which k is the coefficient of heat conductivity that we take

constant.
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The energy balance or heat equation can also be

expressed in terms of the (local) entropy density, s,

Thus, entropy is a conserved quantlty in the absence of vis-

cosity, heat flow and internal sources. A more convenient and

familiar equation comes with the use of the temperature field.

After some elementary manipulations, a general heat equation

follows from Eg. (8)',

Alternati.ve forms of the l.h.s. of (9) are

where a and Xm a r e respectively the volumetric expansión coef-

ficient and the isothermal compressibility, and c is the spe-

cific heat at constant volume.

From Eq. (9) a number of useful and more familiar

approximations follow. In the absence of internal sources and

with no viscous heating, and using Fourier's law (7) holding k

constant, we have:

(i) for an ideal gas

r
Cii) for an incompressible fluid, ~ = 0 and c = c
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(iii) for a quasiincompressible fluid or a fluid at constant

pressure namely a fluid with s = s (T) or p = p(T) and •— = 0,

we have

The thermometric conductivity or coefficient of heat diffu-

sivity is K = k/pc whose dimensions are the same as those of

the kinematic viscosity, v.

2.2. The Boussinesq-Qberbeck model applicable to a thin layer

of fluid

The essential feature of the thermoh.ydrodyn.amic

description just given above is that the density, velocity and

temperature fields are interdependent. Indeed, even though

the fluid velocity may. be due entirely (like in Rayleigh-

Bénard convection) to the action of buoyancy (Archemedian)

forces arising from density variations, this density distri-

bution as well as the temperature field, is modified as soon

as the fluid moves. Note that energy is first transported by

conduction, described by the r.h.s. of Eg. (9), which induces

the velocity disturbance through the buoyancy mechanism. The

latter is accounted for the first term in the r.h."s. of Eq.

(4) where F is taken constant and p varies with temperature.

The extent of this coupling is affected by the Prandtl number,

and for instance in liquids with sitial 1 Prandtl number, like

the liquid metáis, the thermal conduction proceeds rapidly and

the velocity also develops quickly. These facts together with

the non-linearity of the inertia terms suffice to genérate an



- 1.23 -

(almost) intractable differential problem. Besides, all para-

meters like i], k, ... are at least functions of the relevant

thermodynamic independent variables, say P and T. A number

of people have tried to reduce the mathematical complexity of

the problem to the most extreme though relevant and useful

simplification. The simplest model in the literature carries

the ñame of Boussinesg though a number of authors had used it

long before Boussinesq. We now merely state the heuristic ar-

gumentation that drastically applied yields .the Boussinesq-

Oberbeck model: (i) The system will consist of a thin hori-

zontal fluid layer heated from below between two rigid plates

or a fluid layer between a rigid píate and an upper surface

open to ambient air. In an experimental situation at least two

different length scales are involved: the vertical depth of

the fluid and its lateral extent, called respectively d and L.

We shall consider (d/L) ,<< 1. d/L defines an aspect-ratio.The

only external mechanical forcé to be considered is gravity

and it will be assumed that the acceleration of gravity (g)

is constant throughout the layer and is directed vertically

downwards. (ii) Variations in density are assumed to be brought

about only by modérate heating (the isothermal compressibility

is ignored) and are taken into account only in the buoyancy

term of the Navier-Stokes equations. This implies that any

convective velocity is much smaller than the speed of sound

in the fluid, and that any accelerations in the fluid are much

less than g. Thus, density differences are considered to be

much smaller than the mean density. Thus, the effects of

compressibility and of adiabatic temperature gradient are
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disregarded. This assumption is easily justified in standard

Rayleigh-Bénard experiments, since the expected pressure con-

tribution to the variation of density is about two orders of

magnitude smaller than that due to the temperature field.

(*)
Roughly, the density variation is of order of magnitude

e

PXmgd. The ratio of the pressure effect to the temperature
102XTPeffect is I xTpg¿/ciAT I'v for a AT ^ 10 and d ^ 1 CGS units.

Thus, for a water layer at room temperature and atmospheric pres-

sure,. a ^ 10 °C and_ x T ^
 1 0 ~ atm" <v 10~_ CGS units; whereas

for air a ^ 10"3°C~1
í x T *

 1(^~6 CGS units and p ^ 10~ 3 CGS units.

Thus, for a water layer we have an estimate of |xTpg<VaAT| 'v 10

_2

whereas for the layer of air it amounts to 10 . It can safely

be disregarded. (iii) The fluid properties ri, k, c and a are

assumed to be constant and obviously £ is disregarded due to

condition (ii) above. On occasion in standard Rayleigh-Bénard

experiments this may be one of the quantitatively l'ess well

founded assumptions. (iv) The rate of heat generation is assumed

to be zero and the irreversible degradation of momentum (energy)

into heat which is described by viscous dissipation is ne-

glected (Di = 0 ) .

With the above stated approximations the evolution

equations reduce drastically though they still do not yield a

simple problem. The caloric equation of state is approximated

by a truncated Taylor expansión

(1)

C*) A pressure of 200 atm. is required to increase the density of
water by one per cent; valúes of the order of one hundred atm. are
also normal for other liquids. And even at the enormous pressures
present in the extreme depths of the ocean the density does not
éxceed its surface valué by more than five per cent. A flow would
have to have a velocity of about two hundred ms.~^- to produce a
pressure rise of two hundred atm. - • • • •
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where p is some constant reference density at temperature T ,

and the volume expansión coefficient a is evaluated at this re-

ference state.

The continuity equation describes a solenoidal field

(2)

The Navier-Stokes equation reduces to

where g = . (0,0,-g) and v = rj/p • Thusf we consider that the

acceleration due to the buoyancy might be even larger than the

inertial acceleration due to the convective term in the r.h.s.

of (3) .

The heat equation is merely

_ ir+V, W.T = se ^ T

Where a second equation of state e = c T has been used, and here

K = k / cp po*

For a formal derivation-and details see Pérez-Cordón.

and Velarde j[l975j and Velarde and Pérez Cordón j[l976\.
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3. The boundary conditions for a horizontal fluid layer

heated from below

In the previous section, we have presented the

thermohydrodynamic description of the spatial and time evolu-

tion of a fluid layer. We are-dealing with a set of nonlinear

partial differential equations and a discussion of initial con-

ditions as well as boundary conditions naturally follows.

To properly fix the initial conditions in our sta-

bility problem poses_a delicate problem. Ajrealistic descrip-

tion of an initial state of the fluid would forcé us to the

introduction of stochastic initial valúes. This is beyond the

present status of the theory and surely beyond the limited

scope of our paper (see, 'however, Newell, Lange and Aucoin

1970|).. On the other hand, and at least for the first in-

stability problem that we are considering here, our interest

is restricted to steady state solutions of the time-dependent

problem. This means that we are interested in the asymptotic

behavior, for large intervals of time (t •*• «>) of the thermo-

hydrodynamic equations for given external constraints. Thus,

we may simply disregard the initial valué problem here, though

it is to. be noted that in nonlinear problems a classification

of the initial conditions may very well yield a classification

of solutions.

3.1 Thermal boundary conditions

Explicit and detailed account of b.c. is indeed a

matter of prime importance. A rigid conducting surface behaves

in a drastically different way from a free and insulating surface.
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In this subsection, we shall consider only the thermal inter-

action of the fluid layer with its eventual boundary.

We consider a thin fluid layer of depth d constrained

between two horizontal infinitely extended "blocks" of width

h and heat diffusivity K . For simplicity, both blocks are

taken from the same material and have the same dimensions.

Note that we are only interested here in small aspect-ratio

configurations for which we can disregard considering lateral

boundary conditions. Lateral boundaries strongly influence,

however, the possible horizontal patterns of the convective

flows. This, together with any preimposed flow does indeed

forcé a pattern of its own, say rolls along a privileged direc-

tion or with axisymmetry according to the configuration adopted

19391,

Soberman f19581, Koschmieder Tl96^1. Stork and Muller fl972?,

Bergé and Dubois Fl974l) . Those peculiarities are not, however,

our main concern here as firstly, in small aspect-ratiO' configu-

rations we may focus attention to a rather small part of the

container and secondly, it does little good to fix lateral b.c.

if we are not capable to solve the complete boundary valué prob-

lem. It is, however, important to note that lateral boundaries

do indeed tend to impose a pattern of their own even in surface

tension-driven convection. In Koschmieder1s experiments, there

appear two symmetry breaking mechanisms, one imposed by the

lateral boundaries and the other being surface tensión inhomo-

geneities, the latter being stronger than the former and deciding

the steady state convective regime at critical and slightly super-

critical conditions. We shall disregard the presence of lateral

boundaries \See Davis 1*1967, 681)' where
 a discussion of the most
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simple theoretical predictions in finite-box problems is pre-

sented. ,

Along each conducting block the temperature distri-

bution is assumed to obey Fourier's law in the steady state.

(*)
We

es o
(1)

whose formal solution is

0 - A (2)

Here the subscript .'s' denotes a point in the solid block.

We have assumed separation of variables (horizontal and vertical)

2
as a consequence of symmetry. The separation constant is a .

First we assume a constant and unifona temperature

along the outer surface of the block, we have 9 = 9 at z = h,• so

where 9 is some controlled valué. We may simply take 9 = 0

and define 9 incorporating this controlled valué. The same
5

occurs at z = -h where 9 =-.^i a n d by redefining 9 we simply

write 9 = 0 .s

At the interface of contact between the blocks and

the fluid we assume continuity of the temperature distribution

and heat flux. We have, on the one hand 9 = 9 at z = 0. Thus

9_(d) = A. On the other hand, K D9 = K D9_ at z = 0. We
r • • S S £ £

Fhave ̂ — D 9p = aB = -a coth (ah) 9p at z = 0. If the vertical
5

origen qf cqordinates is taken midway between the blocks, we

(*}With D we denote derivative along the z-axis: D = d/dz.
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have in dimensionless formv

in which

Similarly, at the lower boundary of the fluid we have

(4.b)

Note that the formal limits B -y 0 or B -*- » roughly correspond

to the extreme situations K << K (a perfectly conducting boun-
t s

dary, e.g. a good metallic píate) and K » K (a perfect in-

sulator). Different valúes of B delinéate possible realistic.

situations. It is also of importance to note that h is con-

sidered finite. Two thick blocks of good conducting material

constraining a thin fluid layer correspond to the simultaneous
limits K P/K •*• 0 and h •»• °°. This case has been considered byr s

Hurle, Jakeman and Pike T1967J. Boundaries of finite heat con-

ductivity have also been considered by Sparrow, Goldstein and

{*) Tó' distlnguiah this parameter B from a similar parameter to
be definedih the next subsection dealing with the mechanical
boundary conditions, we shall denote it here with B . This quan-
tity is called a Biot number or a radiation-like parameter. Strict-
ly speaking at BK -»• °= there is no fluctuation in the heat flux.
Thus, we have a prescribed heat flux condition and this is called
a Robin condition. The subscript 'F' denotes a point in the fluid
itself.
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Jonsson |1964|.

Quantitatxve, as well as gualitative differences

in behavior are to be expected between the two extreme cases

of highly conducting and insulating boundaries. For in the for-

mer, a fluctuation of temperature carried to the boundary soon

relaxes through the block whereas at an insulating boundary it

is rejected back into the fluid, and a guiescent initial linear

temperature profile is more easily distorted. Thus, a lower

critical temperature difference would lead to the onset of con-

vection. On the other hand, a lowering of the critical gradient

yields a smaller energy amount liberated by buoyancy and to ac-

comodate convection the fluid rather accomodates convective cells

of large wavelength. Thus, a drastic decrease in wavenumber is

to be expected with insulating boundaries. As a matter of fact,

the wavenumber is vanishing for an infinitely extended fluid

layer. This case was first considered by 'Jeffreys' jj.926] .•Vanish-

ing of wavenumber merely means a wavenumber going to zero as

the aspect ratio goes to zero, i.e..f as the horizontal dimensión

goes to infinity. For. bounded layers the lateral boundaries

should provide a non-zero cut-off corresponding to the lowest

mode compatible with the prescribed lateral b.c.

At the onset of convection, any motion once initiated

can not be maintained, as Jeffreys pointed out.. The initial

linear temperature profile is distorted. At a slightly super-

critical temperature difference, however, the wavenumber accomo-

dated by the fluid layer would not necessarily be vanishing and

convection would be seen. It is to be noted that a straight-

forward calculation yields a behavior a ̂  B~ ' , a singular be-
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havior for sitial 1 B_. Thus, very little heat conductivity at the

boundaries suffices to eliminate the vanishing of the wavenumber.

This matter needs, however, further elucidation since most if

not all Rayleigh-Bénard experiments are not done with insula-

ting boundaries. However, we will not discuss the thermal

boundary layer problem of such case.

Lastly, it should be mentioned the case of an open

surface to air or to another fluid. From the thermal point of

view, the exchange like in the case of a rigid block, demands

consideration of exchange of energy through radiation, con-

duction and convection. The three phenomena can altogether be

accounted for by a Robin condition that merely reduces to Eq.

(4) with a generalized parameter B that takes into account the

specific characteristics of the two fluids at the interface,

3.2 Mechanical boundary conditions and surface deflection

As we have discussed in the latter part bf the

previous subsection, the boundaries of the fluid layer under

consideration may not be rigid metallic, plástic or crystal

plates. Instead, they might be taken to be other fluid layers

or a combination of rigid plates and surfaces open to ambient

air as in Bénard's original experiments. In this latter case,

we also have the option of whether or not to consider surface

tensión effects.

For large aspect ratio fluid layers, surface ten-

sión stresses should not be of prime importance and instead

the dynawics is expected to be governed by buoyancy effects.

Whether in a particular experiment one or the other mechanism
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is dominating is an interesting question, since for surface

tension-driven convection the up-welling áreas of the fluid

seems to correspond to the hotter points of the surface and

it is then depressed. The opposite may be the case with buoyancy-

driven convection in fluid layers open to air: the surface above

hotter points is then elevated. We shall come back to this prob-

lera further below in this section.

The most extreme cases to be considered are rigid

plates and stress-free boundaries. We shall now give a detailed

description of both cases and the intermediate situation.

To make things simple, we consider a fluid layer F.

sandwiched between two other identical fluid sublayers F». As

before, v denotes the kinematic viscosity and the subscript

refers to each kind of fluid. Let V.(i = 1,2) be the flow

velocity in layer F.(i = 1-2) in steady state.

Every fluid sublayer is dynamically controlled by

the Navier-Stokes equation and the incompressibility condition.

For simplicity, we shall disregard at present any thermal in-

fluence of the boundaries and the temperature is assumed uni-

form throughout the fluid sublayers. For the upper sublayer

we have

(2)

Here v~ = .(-U2/V2'^2^ anc^ W2 a c c o u n t s f°r the pressure contri-

bution. For simplicity we shall restrict consideration to a

second problem and take l^ = 0. At the rigid boundary z = h
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we have V2(h) = W (h) = O, whereas at the fluid-fluid inter-

face there is continuity of the flow and momentum flux,

(3.a,

(3.b)

Z "* - _. O.c)

Symmetry allows separation of variables like in the thermal

case discussed in the previous subsection. We may consider a

two-dimensional problem and take quantities independent of one

of the spatial coordinates, say X. We have

(4.a)

(4.b)

(4.c)

that must satisfy Eqs. (1), (2) and the b.c. Thus we have

~ / ^X (5)
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together with the explicit functions

\L0)=

(6.b)

in which A, B, .C and" D are constants yet to be specified.

From b.c. (3.a) we conclude that B = C/a. We also have V2(0) =

V1(0) = A. From (3.b) and (3.c) it follows that

and finally

in which

(9)

Thüs, we find a similarity to the thermal b.c. The sublayers

F, can be made arbitrarily thin and in the extreme case they

might be reduced to boundary layers in which case a slightly
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revised versión of our argument holds.

Note that b.c. (9) refers to the horizontal flow

field velocity and that at a strictly rigid píate we have

B = 0, i.e. V-, = .0 everywhere. We shall now discuss the b.c.

to be imposed on the vertical component of the flow field

W,(z) at z = 0.

To characterize the b.c. eventually satisfied by

the vertical component of the flow field, we consider first

the two extreme cases most often described in the literature.

For a rigid píate, we shall have U.. = W1 = 0 everywhere on

the surface boundary. Thus, the continuity equation demands

(10)

and this corresponds to B = 0 as discussed above. The oppo-

site case corresponds to a level surface without any stress

on it. The vanishing of the horizontal components of the stress

tensor means the vanishing of the viscous part of it. This con-

dition and the fact that W.. vanishes everywhere on the surface

demands that

(11)

and this case corresponds to B = °°.. Note that considering the

surface to be level amounts. to. neglecting all deformation ef-

fects, namely gravity waves and/or capillary ripples. We shall

discuss the deformation effects. a little further below. A

surface may be level and yet the fluid is able to support
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stress on it. For if the fluid surface is considered open to

ambient air, surface tensión inhomogeneities do genérate sur-

face tractions. Any.non-uniform temperature (or concentration)

distribution at the interface suffices to genérate surface

tensión inhomogeneities. Usually surface tensión decreases

with increasing temperature. Consider the surface tensión E,

to be a function of temperature alone (and thus an implicit

function of horizontal coordinates). At a perturbed state we

have

Tt = -«0 0
° J (12)

where 8 denotes the temperature fluctuation at a given point

and -Cv represents the slope of *j evaluated at a given mean

temperature on the plañe. The balance of forces on a fluid

element in the steady state that endoses a piece of the

interface yields in the first order approximation,

0 r> ~* — -" ~" (13)

On differentiating and making use of the incompressibility

2 2 2 2
condition with A2 = 3 /3x + 3 /9y we get

L J"I = -

and finally

(15,
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Except for scaling factors, CÜ/T). is the Marangoni number, \' _

When the restriction of a plañe free. surface is

relaxed, the surface tensión tractions and deformation in the

gravitational field relax through capillary waves as well as

gravity waves. As we have indicated above, to consider a level

surface with surface tensión stresses on it amounts to a vanish-

ing "Crispation number". This means assuming an infinite surface

tensión. An important matter is to ascertain the role played

by flexibility and resistance to deformation of the surface in

determining stability. This matter is not as simple as it

might be thought of a priori. It turns out that incorporating

surface tensión effects into the Rayleigh problem yields cor-

rections to the rigid or stress-free b.c. problem that are of

same order as such non-Boussinesquian effects like n = XI (T) ° r

k = k(T), as first emphásized by Davis and Segel [1968] . We

have also neglected surface viscosity effects that are also

of second order.

Finally it remains to ascertain whether the upwelling

fluid flow provokes a local depression or elevation of an open

surface and if there is any qualitative difference between sur-

face tension-driven flows and buoyancy controlled convection.

Bénard and Volkovisky found that hotter áreas, i.e., áreas of

upwelling fluid flow, are depressed. However, Berg, Acrivos and

Boudiart Tl96^j repeating Bénard1s experiments with 1 mm.-thick

melted wax found an opposite structure. Since Bénard1s experi-

ments were done with melted spermaceti and Berg et al. used
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melted wax, non-Boussinesquian and/or non-Newtonian effects

might have caused the discrepancy. The only theoretical cal-

culations actually available refer to Newtonian liguids.

Jeffreys |1.9 5 ^ -discusses a fluid layer with a

1964 I

use a very simple model of the interface. In this latter case,

the critical wavenumber is vanishing and the direction of flow
2

under depressed áreas is determined by the inequality (sinh a)

a (see also Smith £l966^ ) .

Theoretically, the deflection of the surface can

be inferred, in the simplest case, by estimating the fluctua-

tion of vertical stress. Up to a first approximation this is

and is a function of the horizontal coordinates. Here Sp refers

to the pressure fluctuation as given by the Navier-Stokes equa-

tions. As the vertical velocity vanishes everywhere at the

boundary |-- < 0 with the upwelling fluid. Thus, -2r}-5— > 0,
o Z • dZ

and this terna tends to elévate the surface in buoyancy-driven

convection whereas Scriven and Sternling £196-0 (see also

Hershey £1939*1) conclude to the contrary structure in surface

tension-driven flows. What we can safely say is that this matter

demands further experimental research before an unambiguous

result is obtained. And7 if it turns out that the qualitative

behavior is indeed opposite for the two driving mechanismS/

there must exist a critical depth to delinéate the predominancy

of one over the other.

We shall not discuss here the problem of lateral

boundaries for we are considering.the gross phenomena that
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already háppen at very low aspect ratios, as originally con-

sidered by Rayleigh JJL916i] .•
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4. A perturbative approach to the nonlinear fields

4.1 Landau-Hopf scheme

Following the analysis initiated by Lord Rayleigh,

the motionless conductive state is not stable above some cri-

tical temperature gradient and a convective regime appears.

In the following, we shall try to explain how to understand

the phenomena that occur in this convective state when the

Rayleigh number increases gradually beyond the critical valué.

In the vicinity of the bifurcation (and it turns out that this

vicinity is quite largel) perturbation methods may be used.

When one goes far away from the bifurcation, other methods of

investigation must be used which require either extensive

numerical computations or drastic simplifications. Perhaps a

"simplicity" is reached in the limit of an infinite Rayleigh

number, i.e., in a fully turbulent convective state. However,

this is not certain at the present time.

In this section we study just the supercritical

range where presumably perturbation methods are useful. Later

on we shall discuss steady state transitions (i.e., the changes

from a time-independent structure to another steady structure).

The perturbative scheme to be used here follows an

approach originally due to Landau Jl944*| and Hopf £1942,19482...

The analysis goes as follows (see fox recent mathematical de-

velopments Joseph "£l976*|) . Let A be the amplitude of a fluctua-

tion that becomes unstable when some physical parameter passes

a certain critical valué. Let a be this parameter which, in

the Rayleigh-Bénard case, may be taken as the difference be-

tween the actual valué of the Rayleigh number, say Ra, and
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the critical one, Ra . Thus, in the vicinity of the bifurca- '

tion, it is natural to assume an equation of evolution for A

in the form

= A<r (1)

When a < 0 (i.e., Ra < Ra ) the fluctuation is damped out

and, when a > 0 this fluctuation grows exponentially. In

this case, when A reaches overly large valúes, one may no

longer assume the validity of the linear equation of the motion.

This is obviously true in the convection case, as the Oberbeck-

Boussinesq equations are non-linear. Then, it is natural to

add non-linear terms on the right hand side of (1) to account

for finite amplitude fluctuations. The nature of these non-

linear terms is limited by the symmetries of the system. Let

us assume, for the moment, that the convection pattern is

such that, by reversing all the fluid velocities, an equivalent

pattern is obtained (in a rectangular box with an even number

of rolls, the equivalent pattern is given by mirror symmetry).

Thus, the inclusión of non-linear terms in (1) must respect

the symmetry A 4r~^ (-A) , and only odd powers of A ought to

be included on the right hand side of (1). Thus, we have

Let us assume first that y• < 0. For a just slightly

larger than 0, a stable steady solution of (2) exists which in

expanded form is:
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(3)

as a approaches zero form above. This case represents a "nor-

mal bifurcation". Suppose that, on the other hand, y is posi-

tive; then one has an "inverted bifurcation". If ® is just

slightly above 0, the state A = 0 (i.e., the motionless state)

is unstable, and another stable state exists which does not

reduce to A = 0 at cr = 0. If 3 > 0 (and neglecting the high-

er order terms on the right-hand side of (2)), the amplitude

of this new state is + 3/Y ata = 0. This inverted bifurcation

is discussed in more detail in the following subsection. But

let us point out that the expansión (3) is meaningful only

near o = 0,and that a limited expansión of the right-hand

side of (2) cannot really be all accurate to describe finite

amplitude fluctuations, as in the case of inverted bifurcation.

The Leray-Schauder topological degree theory, yields a power-

ful method for studying the bifurcation above a critical point,

without requiring explicit details as with, for example, (2) .

It leads to definite statements about the existence and num-

ber of bifurcating solutions, the global properties of these

Solutions and théir stability (see Sattinger \lB~Bs\+ ''••••

The Landau-Hopf theory applies to the standard

Rayleigh-Bénard problem. It yields accurate quantitative pre-

dictions near the onset of convection. In this case we have

a "normal bifurcation".



- I.42V-

The perturbative approach proceeds in two direc-

tions: first, one seeks by expansión the steady solution of

the hydrodynamic equations near the onset of convection.

Then one studies their stability in the frame of this per-

turbation analysis. The search of the steady solution by ex-

pansión involves a number of non-trivial points; we shall re-

port about that in some detail.

4.2 Thermal fluctuations and the onset of convection

Concluding our discussion of the onset of convec-

tion, let us emphasize again that the perturbation approach

is meaningful only if the parameter y in the Eq. 4.1 (2)

(or the equivalent quantity derived from the perturbative

solution of the fluid equations) is negative. It turns out

that this is actually true in the standard Rayleigh-Bénard

case of a Boussinesquian fluid layer. However, it is-possi-

ble that inverted bifurcations occur in other types of con-

vection experiments on surface-tension-driven instabilities

(i.e., the original Bénard experiment, for instance). In

this latter case, Koschmieder ^.967] observed a change of

structure at the onset of convection: an instability with a

roll structure develops first, and then changes spontaneously

(i.e., without any change in the external conditions) into

a hexagonal structure. This denotes probably an inverted bi-

furcation: the rolls are marginally stable at the onset and

grow spontaneously, moving toward a steady convection state

with a finite amplitude and a hexagonal structure.
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Another possibility of inverted bifurcation exists,'

if the symmetry A 4-4(-A) is broken in such a way that a term

la-

s
2

of order A may be inserted in the Landau equation:

(1)

Just before the onset of convection the fluctuations

of the fluid velocity look more or less as those of a ball in

a very fíat valley and a number of authors (Graham Tl973|,

Haken T1.975"]) have examined if, in this situation, the thermo-

dynamic fluctuations could be seen at a macroscopic level.

Unfortunately, their order of magnitude leaves little hope

for measuring these macroscopic fluctuations. Consider a velo-

city fluctuation with a scale of order £ ̂  1 cm. in a fluid

of mass density p ̂  1 g/cm at 300°K. The order of magnitude

of this velocity fluctuation is

X \w p

in which k^ is Boltzmann's constant.

Let us briefly estimate how these fluctuations are

enhanced cióse to the Rayleigh bifurcation. They obey a Langevin

eguation

(2)
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The linear damping factor X vanishes at R = R , and
c

when the amplitude of the fluctuations becomes too large,- they

are limited by non-linear phenomena, as accounted for by the
3

3A term in the Landau equation (1). Thus, it is natural to

expect that for R cióse to R , the fluctuations of V are de-

scribed by the non-linear Langevin equation

(3)

where X is the damping rate of the velocity fluctuations in

the absence of any temperature gradient (i.e., at R = 0). The

noise source f(t) takes its origin in the molecular fluc-

tuations, and is unaffected (at least to a first order approxi-

mation) by the macroscopic temperature gradient; accordingly,

it is a random stationary gaussian function with a white spec-

trum. We have written the equation (2) in order to make ap-

p̂ ear a characteristic velocity V , which is reached in the

convection state at R = ̂ cr i£ o n e neglects the thermal fluc-

tuations in this state. As already seen V is typically of

order 100 ym/sec.

As shown for instance by Stratonovich ¡1963,19671

the probability distribution of the fluctuations of the solu-

tions of a one-dimensional Langevin equation of the general

form

V = flt")
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where f (t) is a stationary gaussian white noise is

where 3 is related to f_ by the fluctuation-dissipation theorem

h

and Z is a normalization factor.

In-the present case this gives

When R becomes. very cióse to R , the dominant contribution
c
4 2in P (V) arises from.the term V /8.V V , which means that the

fluctuations of u have (in the región R % R ) an upper bound of

order '/z

which is somewhat smaller than the smallest measureable fluid

velocity. Furthermore, in order to lie in this domain of "non-

linear fluctuations" one should be very cióse to R , so the

fluctuation.pf V reaches this limit amplitude when

It may be noted further that,. very cióse to R , no
c

2
term like the one represented by e'A should become important,

although one may expect that, owing to the breaking of symme-

tries by non-Boussinesquian effects and/or lateral boundary
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effects, these terms are present anywhere. It is also relé- .

vant to point out that in this extreme vicinity of the cri-

tical point, the typical evolution times may increase very

much, and this critical "slowing down" might be a source of

great experimental difficulties, as it is in many cases.

These thermal fluctuations do not seem to be a

promising phenomenon for experimental studies, ñor have they

anything to do with the actually available experimental data.
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5. Coñvective flows in realistic situations: Quantitative

results

A concrete application of the Landau-Hopf approach

to the Bénard-Rayleigh problem is due to Gor'kov Jj.957*[ and

Malkus and Veronis £l95 8*| . They investigated the case of an

infinite horizontal layer with free- upper and lower surfaces

and two special cases of 3d convection pattern, with rec-

tangular and hexagonal cells. Later on, Schlüter, Lortz and

Busse Tl96^ extended this method by considering an arbitrary

3d flow with either rigid or free boundary conditions. We

shall follow approximately their analysis of the steady state

The starting point is the set of the non-linear dimensionless

Boussinesq-Oberbeck equations for the steady state- '

V =

Cl.c)

where P is the Prandtl number and R the Rayleigh number. By

elimination of the pressure and of the horizontal components

of the velocity, one gets a sixth-order differential equation

for the. vertical velocity W:

(*)• Eqs. (1) are obtained using the scales: </d. for velocity,
3d/Rac for temperature* d

2/<. for time and K2/d2 for pressure. n
This choice. is dictated by our interest in comparing with Schluter
et al. Cl965j .A denotes the Laplacian operator: A=div grad, and ^ i
the 3-component vector (S = 3^3x3z, 6V=3. /3y3z,

 <S
Z
="~A2^ a n d A2 ¿ e~

denotes, the two-dimensional horizontal Laplacian. To simplify no-
tation wé shall indistinctly use R and Ra to denote the Rayleigh
number.
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(2)

where

= Cv.

(4)

The equation which relates 6 to W is

Near the onset of stability the rolls can be con-

sidered as exactly bidimensional, at least for containers

with horizontal dimensions much larger than their height. We

¿hall consider a system of parallel rolls with axis ox, take

0 = 0 and all the variables independent of the x-coordinate.

Therefore, V is related to W by the continuity equation:

w + 5. IAT _ o

We shall consider only the simplifying case of an infinite

Prandtl number fluid, which is highly realistic in many ex-

periments. This amounts to neglecting the non-linearity arising

from I (V.V)vl with respect to I (V.V)8 I. It is also convenient

to introduce a field jz$ such that
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(7)'

The governing equation for 0 is in the limit P

(8)

The temperature and fluid velocity are related to 0 and to

the stream function i¡> = ~z- by:

~~ O.c)

We know that at R = R , together with the proper b . c , a non-

vanishing solution exists for (¿ - R&^w* 0- It follows from

the linearized Boussinesq equations that in the neighbourhood

of R the•time-dependent fluctuations behave like exp{a(R-R )t}

with a > 0. This is about the expected behaviour with the Landau

equation which after linearization describes fluctuations that

behave like exp(ot). For a steady forcé field as we have con-

sidered here, the velocity growth rate is initially zero, but

later it is expected to increase at a rate dependent on the

Prandtl number. Non-linear terms in the Landau equation limit

the growth of the amplitude fluctuations, and it turns out that

1/2
at a = 0 this amplitude is of order a ' '. Thus, it appears
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natural to seek solutions of (8) in the form:

• O)
" " '4- (10)

and similar expressions for V, W and Q. The basic assumption

is that for R slightly above R the motions will develop only

small amplitude: e is assumed small. In convection problems

it is usually assumed that R is set, an experxmenter's figure

say. However, it is ~not known in advance which valué of R will

produce a particular amplitude. Rather we may say that e is

given and we try to find the R required to produce it as a

function of e,

e c % ¿ ^ +u,

Note that up to second order térras and according to the argu-

' 1/2

ments developed above, we should have e = (R - R ) .

Substituting these expansions into (8), a sequence

of linear inhomogeneous equations is generated:

X íf] = ( 1 2. a )

i
I I Mi
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where the linear operatorI,

and

From the existence theorems of solutions at each order, one

gets the unknown parameter R by requiring that the right-

hand side be orthogonal to the solutions of the adjoint homo-

geneous eguation:

(15)

with corresponding b.c. on 9.

The small parameter e can be determined as a func-

tion of the relevant quantity, i.e., | R - R \r if the procedure

is ended after a given number of iteration steps. Note that to

the first order the amplitude of the motion which is identified

with e remains unknown.

(2)
Before solving the 2nd order equation for 9 , the

parameter R^ ' must be determined from the solubility condition:

•=: O (16)

where by definition:
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2 TT/a being the horizontal wavenumber, and the fluid layer being be-

tween the planes z = -1/2 and z = +1/2. We can easily verify that all

quantities of the form:

vanish, provided the functions 0 and jz$V satisfy the boundary condi-

tions and havé the same horizontal dependence. This is the case for

- ^ (19)

Since:

V / I (20)

(1) (*)
R ' must vanish.v

T*l It is of interest to note that this argument is no longer valid if
the plane-form is made of more than one wavenumber. In this casero'•*•'
h^^>may vanish owing to the (z)-^>(-z) symmetry, that leaves ©(-'•'in-
variant and changes the sign of h(^) # Again this argument breaks down
when the latter symmetry does not exist, as it is the case, for in-
stance, with a rigid boundary at the bottom and a stress-free boundary
at the top (Busse |I962,196_3) or if non-Boussinesquian effects are
to be considered (Palm (l960j ) . In all of these cases, the non-vanish-
ing of R(^) is realized for an hexagonal pattern only (for an infinite
horizontal planform at least). This comes from quite general arguments
and could explain what happens in some of Bénard-like experiments.For
we first note that the above defined scalar product is no longer valid
in the case of an arbitrary horizontal planform and must be replaced
with x '

in which X is a two-dimensional vector, and S the surface of the layer.
If this xs infinite, one has just to set lim^l/sjgdx instead of
l/sjldjc. The quantity R^1) depends on the tTLÍrd power of the first or-
der soTutions. Let us assume that .it involves only a finite number of
wave vectors, *./<% 5* 1 0 )IC) &*) £ %
each one of the a.'s having the same length which is defined by the
linear theory at R=R_. Thus, the expression of R^1' is of the form:

over x
. .1 is obtained summiríg over z. In the limit S-5»*>the integrati

over x vanishes, except if a .+_a .+_a, =0. As the three vectors jl^/a. and
a, have the same length, this can only be realized if these vectors
'from a regular triad which yields a hexagonal pattern. In the case of
a two-dimensional roll, the horizontal integral that defines R^1) may
not be vanishing due to lateral boundary conditions which break the
invariance under translation. The situation where R ( D differs from
zero is more complicated from the point of view of the stability of
trie bifurcating solutions. • • • . . • . . •'
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To find the second-order approximation, we look for

a particular solution of Eq. (12.b) with R = 0 . The inhomo-

(2)

geneous term h is made of two parts: a y-independent term

and a term . proportional to cos(2ay) to which we will refer

as the second harmonic.
12) (*) (2)

Valúes of RK ' are given in Table 5.1V . Rv ' is

obtained from the solubility condition of the third-order ap-

proximation in Eq. (15). For B = » (free b.c.) we recover

the result of Malkus and Veronis (R' 2' = ^L- a = 135.2) and
__16 c

for B = 0 (rigid boundaries)t we find the result of Schlüter

et al. (R(2) = 1014.6).

Bergé and Dubois Tl9 76~f have recently made accurate

measurements of the fluid velocity cióse to the onset of con-

vection. In order to compare their results with the results of

the e-expansion, it is necessary to use the parameter e =

(S 1). V/ W and 9 expand like: (21.a)

(21.b)

(21.c)

(2) 2 (2
(*) When Rv '• > 0 as it is the case here, then from R = R + e R

1 2 2 (2.) c

it follows that to order e fs. =(R-R )/R which is valid only if
(2) c

R>R . If it turns out that Rv '. < 0r there is an indication of sub

critical instability (or inverted bifurcation). To conclusively

assess the existence or not of such metastable statesr a more ri-

gorous and complete technique is to be used, like, way, the energy

method (Joseph
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The quantities V^1 , V^2 , w'1^, ... are functions

of z which depend on B and B . For the numerical comparison

with experimental data, it is convenient to take the máximum of

these functions of z, that we shall cali V^ ,. V , ... In the
max max

case B = B = 0 , the dimensionless numerical valué of máxima are;
. v • K •

K a x - 11-82' Wmax = °-2279< C " 11-67' Viax " °-2603'

= 9 4 5 - - 6 '

Here, T ' accounts for a y-independent contribution, whereas

(2 2)
T ' belongs to the second harmonio.

For the ensemble of conditions:

chosen to reproduce data of Bergé and Dubois JTl976l the corres-
r

ponding valúes of the dimensional velocities are:

The comparison with experimental valúes, 140 +_ .10 iim/s. and

132 + 4 \im/s. respectively, shows good agreement.

. 'With the same valúes of the physical parameters, the

theoretical result for the second harmonic is

These figures, though of the same order of magnitude

as those measured by Bergé and Dubois (V = 5 + 0.3 um/s) , are

smaller than the experimental valúes.
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We must point out that for each order there is a

relation between the máxima of V and W, illustrating the con-

servation of flux in a roll:

(22)

A rough estimate of each integral allows us to replace the

previous equality by:

For instance, in the first order approximation where y = ,w~

and z o = 1 / 2 , we have V ^ %" "|- W ( ¿ x ) . (0,0) locates the

center of a roll and y and z^ its horizontal and vertical
•'o o

extent.

Bergé and Dubois ]jL976~| have also measured a third

harmonio mode in the flow.. This comes from the splitting of

the third-order approximation to (15). We have:

(24)

in which .0 . f adds higher-order. contribution to the first

(3 3)

harmonic and já . ' belongs to the third one. Accordingly,

the velocity and temperature fields also split into two mode

contribution

- VsT yJ
- (25.b)
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( 2 5 - C >

It is to be noted that the solubility condition of the fourth-

order approximation y'ields R^ = 0 . Furthermore, R^ = 0

whenever n is odd.

With B = B = 0 , the máximum amplitude of the velo
v • K .. •

city and temperature are for the third harmonios

V ( 3' 3 ) (max) = 0.06826

/W ( 3' 3 ) (max) = 0.1943

T(3f3)(max) = 20.87

The vertical velocity is three times greater than

the horizontal one, expressing the flux conservation in an

elenientary roll.

This corresponds to the dimensional velocity (with

R{ = 2RC, |- = .1.14 cm/ís) :

w(3,3) = 2 i 2

max

W is of the same order as W\ . and this has been observedmax . max'

experimentally (Bergé and Dubois, private communication).

(A)

The valué of R is needed to give the amplitude

and the z-dependence of the quantities (3,1). This has been done

by solving the 4th order approximation and thus writing the solu-

bility condition for the 5th order.



Table 5.1 Quantitative predictions for various valúes of Biot
number in mechanical b . c :

Bv

0

0.05

0.1

0.5

1

100

50000

(00)

ac

3.116

2.942

2.824

2.489

2.381

2.223

2.221

R
c

1707

1355

1186

843

761

658

657

.7

.9

.0

.3

.2-

.6

.5

R<2>

1014.

668.

514.

247.

194.

135.

135.

6

1

4

6

7

8

2

R(4>

849.79

347.43

149.36

3.30

- 2.68--

- 4.625

- 4.626

max

11.82

11.74

11.64

11.24

11.10

10.88

10.88

v ( 2 )

max

0.2603

0.1795

0.1363

0.0459

0.0250

0.0003

0.0

***************

Table 5.2 Quantitative predictions for various valúes of Biot
numbér in thermal b . c :

ai--9* w = v =

a xB R
(4) ' " • "

max
v'(2)
max

0 .

0.5

1

5

50

1000

50000

(00)

3.116

2.669

2.398

1.629

0.803

0.300

0.082

1707.7

1415.1

1267.5

955.1

772.8

727.2

720.5

1014.6

920.48

699.85

198.69

13.54

0.21

0.6xl0"3

849.79

241.90

142.02

15.24

- 0.126

,-4
-8xlO

- lO"7

11.82

8.65

6.98

3.68

1.54

0.54

0.15

0.2603

0.4504

0.5092

.0.5383

0.3807

0.1606

0.0445
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6. Bifurcation of steady states

When the Rayleigh number increases beyond the

critical valué R (1707.8 in the standard case), the horizon-

tal dependence of both the velocity field and the temperature

field become more and more anharmonic, although these quanti-

ties remain time independent. Of course, this analysis was based

upon an expansión in the "small" parameter e % (R - R ), and

it is likely that this fails to describe the phenomena when z

becomes too large.

The experiments have clearly established (see fur-

ther below) that, beyond some valué of R, say R, , the flow be-

comes time dependent. It is also of interest to notice that,

in the steady state when Ra increases from R to R r R ?< Ra^< R. ,

the wavelength of the two-dimensional pattern increases and then

there is (generally) a transition toward a three-dimensional

steady flow. Let us discuss this matter in some detail.

i) Wavelength increase

Koschmieder and Pallas ]~Í974l and Bergé and Dubois

"[1.974]" (see also Bergé"[l976] and Dubois JJ.976J ) have shown in

carefully controlled experiments that a number of rolls disap-

pear when the Rayleigh number increases beyond R . That means

unambiguously that the wavelength of the convective pattern in-

creases.

In the experiments conducted by Bergé and Dubois

the "boat" is rectangular shaped, the axis of the rolls being

parallel to the shorter side. Beyond some valué of the Rayleigh

number, say R^, óne of two extreme lateral rolls (i.e., one of
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the rolls closer to the shorter side) disappears completely.

Thus, two states of convection rolls are well defined: the N-

rolls pattern (N integer) , which is stable at R < R-, , and a
a J-

(N-l)-rolls state which is stable at Ra £ R1. There does not

seem to be any stable intermedíate steady state as would be

expected on intuitive grounds. Furthermore, and contrary to

Koschmieder's Tl969| findings with an (axisynunetric) cylindrical

geometry, Bergé and Dubois T"l974¡ find an hysteresis in this

transition: when Ra slowly decreases from R ,_ the (N - 1)-rolls

state, disappears only when Ra becomes smaller than some R? < R.. .

This finding has some similarity to what Burkhalter and Koschmieder

£L9 73*[ find in the Taylor vórtices problem. Is this hysteresis

in the Rayleigh-Bénard problem just a spurious result of the

experimental conditions of Bergé and Dubois or a consequence
v.

of the rectangular geometry? According to Koschmieder (private

communication), the valúes of R, and R are clearly dependent

on;geometry. By changing the aspect ratio of the apparatus, say

to make room for more rolls, then R1 as well as R¿ would be dif-

ferent, and R| < R.. If, on the other hand, the aspect ratio is

made very small, then rolls would be dropped from the pattern

at very small steps in Rayleigh number. That means, that in the

end, for an infinite layer a steady increase of the wavelength

would be observed.

Following a 'principie of minimum complexity, we

may describe the inverted or first-order bifurcation in finite

containers by the following dynamical model system with one

degree of freedom:
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Let us take A = Ra - R, ; the stationary solutions are:

a) if/-l/4g: A = 0, which is stable. It may be viewed as the

N-rolls state.

b) if -1/4 3 < A < 0: five steady states exist namely A = 0 and

the four roots

K, = ̂ = ± L- y¡ = ± -t

Here, the states A — 0 and A . , are linearly stable, but

the states A , _, are unstable. The stable states A , , may

be viewed as the two (N-l)-rolls stable state; there is a

pai-r of such states since they can be obtained from the N-

rolls state by deleting any one of the two extreme lateral

rolls.

c) If ¿\^0, three steady states exist: A = 0 which is linearly

unstable and A,, ,-, and A ,-,-,, which are stable. The time
Tl|T X —X/ + X

evolution of any solution of Eq. (1) may be obtained at once.

Each stable steady state has its own "domain of attraction"

:in the plañe (Ra,A) starting from a point in the domain of

attraction of a stable solution, the representative point

moves towards this stable solution along a vertical in the

plañe (A, R ). One may also notice that in the present case,

that there is a locus of points for which the evolution is

ambiguous. In the terminology of the catastrophy theory

(Thom, 1974J/ this kind of bifurcation is called Whitney's

•cusp (in French, fronce). The model equation (1) describes

also quite well one other feature observed in the experimental

time dependence of the bifurcation (Bergé and Dubois, private



- 1.60 -

communication). Starting from a situation with N rolls

(A = 0 in our picture and Ra just slightly larger than

R,) , the end roll disappears in. two well defined time

steps: first a very slow motion (half an hour) then a

rapid destruction followed by a rearrangement of the

convective pattern to accomodate the new (N-l) rolls

steady state (a relaxation time of a few minutes).

Cióse to R, , the instability that drives the system

away from the A = 0 state has a small growth (since this in-

crement vanishes at R = R.. , assuming some regularity, it

remains small cióse to R,). Once A has grown sufficiently,

however, the instability is governed by the non-linearity and

the non-linear dynamics appear with a finite time constant

(rate) even at R1 = R, since it does not suffer any qualita-

tive change at R, .

This first order bifurcation has been observed in

rectangular containers only. Koschmieder and Pallas U-974]

have also reported that in a circular box the wavelength of

the concentric annular rolls increases with the increase of

the Rayleigh number. However, in their case the flow pattern

changes continuously. The axisymmetric central roll disap-

pears progressively when the Rayleigh number is slowly in-

creased. Actually, there is nothing like the transition ob-

served by Bergé and Dubois Tl974[. It is possible that, in

their geometry, the structural change is of first order,

although the critical numbers R, and R2 are very cióse to

each other, and that the two structures, namely those corres-

ponding to A = 0 and A . ,, , are very much alike; which in
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our picture means that 3 is very large. With the axisymmetric

geometry the bifurcation cannot be described by a one-degree-

of-freedom system, as there is a single final state which is

the original state without the central roll.

Krishnamurti has also observed a wavelength in-

crease in her experiments, but does not report on any detail
11

of the phenomenon that we discuss here. Schluter, Lortz and

Bus se "HL9 65"[ and Bus se Jl9 67*] have determined the range of

wavenumbers for which-the roll pattern remains stable under

super-critical conditions. They find that rolls are stable

for wavenumbers lying on a finite band that collapses to the

single valué of Pellew and Southwell £L94d*| -at Ra . This

finding does not yield, however, a reason for the spectacular

selection of a single wavenumber that shows up in every ex-

periment. In our opinión, to account properly for this fact

we ought to consider the initial valué problem disregarded

.;here. On the one hand, a classification of initial allowable

conditions may very well provide a classification of patterns

to be found at the steady state, i.e., as the asymptotic solu-

tion. On the other hand, we will show in Appendix II that a

simple model (Lorenz £l963]) may yield either a steady or a

time-dependent regime depending on the initial condition.

The reader will have noticed that in the above dis-

cussion no simple intuitive explanation has been proposed

for the quite general fact of wavelength increase. A striking

feature of this is of geometric nature: in every case, the

roll that disappears is a rather "peculiar" one of the con-

vective structure: the central roll in the axisymmetric con-

tainer and the two far extreme lateral ones in a rectangular
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box. We believe that the "hot spot-instability" to be dis-

cussed below might appear first in this roll which causes

its destruction. Again it should be interesting to assess

or dismiss our conjecture by conducting experiments where

"practically" all rolls play identical role, as we have sug-

gested above.

ii) Eckhaus instability

Though the stability of two-dimensional rolls has

been studied by a number of authors, we shall describe now

an elegant analysis developed by Eckhaus "[19 65,19711 to delin-

éate the range of stability of the primary steady convection

to longitudinal perturbations. Later on (see Section 7.2)

we shall come back to further interesting predictions made

by Clever and Busse [19741.

Restricting our consideration to a small enough

heighbourhood of critical Rayleigh number, let y(k,R) be

the linear growth rate of a perturbation with wavenumber k_

at Rayleigh number R. Thus, neutral stability at R = R_ and

k = k demands y Ck ,R ) = .0, and that for R < R the per-

turbation be damped- (Rayleigh "HL916], Pellew and Southwell

|194o|, Joseph T*196íf]). For slightly super-critical condi-

tions, we expect the following approximate description to hold

(2)

in which a > 0, and X > 0 are some unknown, though constant

parameters. The absence of linear terms in (k - k ) in Eg. (2)
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comes from the necessary damping of all modes below the criti-

cal Rayleigh nuinber. Above R , however, there is a band of

expected unstable perturbations with horizontal wave nuinber
R-Rc

belonging to the open set (k - A / k + A ) with A = .
c o c o A

The actual growth of these unstable modes is limited by non-

linear effects, so that a finite amplitude convective regime

is eventually reached.

Let A(X,t) be an expected temperature fluctuation

at the onset of convection. It can be expanded in Fourier

components as follows:

e
(3)

with A , = A, . According to. the symmetries of the non-linear

Boussinesq-Oberbeck description of a fluid layer heated from

below, and under similar boundary conditions on top and bot-

tom, the system is invariant under translations and has also

the mirror symmetry (5V,6TrZ)4-3>-(-¿V^-aT^-Z) ; Z=0 defines the

mid-plane of the contained. Thus, above R the simplest non-
c

linear Landau-Hopf equation (see Section 4)that describes

the time evolution of a Fourier mode of the temperature per-

turbation is

For simplicity, and without any real loss of generality, we

take g real and k-independent. Note that we are restricting
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consideration to horizontal wavenumbers in a single direction.

Otherwise, 3 would depend on the angles between different

wavenumbers.

In the case of a single wavenumber, Eq. (4) reduces to

The factor 3 in front of 3 accounts for the three possible

choices with the triplet {k.,kfl,k } when k.,kn,k = k and
3 V m 3 ,£ ra

k. + k> + k = k.
j • I m

A steady solution of (5) is

ai— ( 6 )

O

I

provided 3 > 0 and A > |Ak| •• That 3 > 0 follows from the

absence of subcritical instabilities (Joseph P-9 65J).

•; The stability of (6) to infinitesimal perturbations

of wavenumber k + q (q ̂  0) is governed by Eq. (5)

in which 6A already represents a perturbation on (6), and

(̂'""̂  ) 3 • W e a l s o have the coupled equation of

motion

t 7. w

Exponentially growing solutions of (7) with time constant \i yield
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In which, as usual, the time constant y determines stability.

Solution (6) is stable if given any q, y is negative (or at

least has negative real part). One of the two solutions of (8)

has an extremum y = 0 at q = 0. Note that the occurrence of

this neutrally stable solution at q = 0 is an obvious conse-

quence of the translation invariance of the equations of mo-
4

tion. Cióse to this extremal point, we may neglect q with

2 2 2 2
respect to q and q with respect to A and A,, Thus, Eq. (8)

O iC

becomes

(9)

Ao
As Yv ~ 2A, a = at A, =+ .— , the range of stability of the
;.

 K K ° • • K .- 3 • • A A

solution of Eq. (4) is the open set (K - -2., K" + -2-)~\ This
c 3 c 3

result is particularly interesting as it delineates the range

of non-linear stability of the steady roll pattern to longi-

tudinal perturbations with no need, however, to appeal to any

explicit calculations of such non-linear contributions as the

B term in (4). This result of Eckhaus H.965,19711 points in

the right experimental direction as discussed in the previous

subsection. More general two-dimensional perturbations in the
ii

neighbourhood of R have been considered by Schluter et al.

11965̂ j but we shall turn now to the problem of transition to

three-dimensionality.
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iii) Transition to a three-dimensional still steady convection

Let us now turn our attention to another problem also

belonging to the supercritical regime: the transition from

predominantly two-dimensional convection to a three-dimensional

convective pattern. This non-linear regime called "bimodal

convection" by Busse and Whitehead £1974] has been explored

experimentally by Krishnamurti Tl970""| , Koschmieder and Pallas

Tl974~| and Bergé and Dubois £l975] t and has been studied theo-

retically by Busse £1972].

At a Rayleigh number depending on the Prandtl number,

a secondary set of rolls appears with an axis orthogonal to

the axis of the rolls of the first bifurcation. The wavelength

of the. transverse rolls is approximately half the wavelength

of the primary pattern. According to Krishnamurti there is

hysteresis in the formation of this three-dimensional structure.

However, recent experiments conducted by Bergé and Dubois "£l976|

indicate a continuous transition as the first bifurcation is,

except that the growth rate of the new structure of the velo-

city field is much slower than at the primary onset of pre-

dominantly two-dimensional convection. (Needless to note that

convection is always three-dimensional with a real experiment

in a finit'e box!). Owing to such a slow growth, it is rather

tricky to measure accurately the secondary critical Rayleigh

number associated with "bimodal convection". Busse Tl967[ has

shown by computer analysis•that for infinite Prandtl number

fluids, the two-dimensional roll planform for an unbounded

layer becomes linearly unstable whenever Ra is larger than

22,600 .+ 100. Actually, Busse has defined a domain of "linear"
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stability in the plañe (Ra, a) bounded by Ra and 22,600 re-

spectively from below and above. As a matter of fact, Kosch-

mieder and Pallas Tl974j find a well developed three-dimensional

pattern at Ra ̂  S Ra % 13,660. A very similar figure has

recently been found by Bergé and Dubois (private communication)

using a rectangular container. These results contrast with the

reported figure of 22,000 by Busse and Whitehead "[1971].

This super-critical instability may be considered

responsible for the occurrence of three-dimensiqnal convection.

Busse has noted that,in every case, the second instability"

comes first for perturbations with a wavevector orthogonal to

the primary one. Furthermore, the wavelength of the perturba-

tion is also found by Busse to be noticeably smaller than the

wavelength of the primary flow: a result in qualitative agree-

ment with the experimental findings.

Lastly, following Clever and Busse JT.974J , we may

understand aspects of the secondary instability as follows.

Let us assume first that the primary flow is absent. At a

given super-critical Rayleigh number there is, among all the

unstable convective patterns, a horizontal wavenumber with

the highest growth rate which would tend to appear first. The

primary flow stabilizes this secondary flow, but with an

efficiency w.hich is minimum when the two flows are orthogonal.

This supports that the secondary flow is orthogonal to the

primary one and has a wavenumber cióse to that corrésponding

to a máximum growth rate in the absence of primary flow.
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7. Time-dependent phenomena and transítion to turbulence

7.1 Relaxation oscillations

A nuinber of experimenta have shown that the con-

vection flow becomes time-dependent when the Rayleigh number

increases beyond a certain critical valué. This unsteadiness

may be due either to instabilities taking place inside the

convection cell or to relaxation oscillation arising from the ~

coupling between the heating system and the- fluid. Of course,

only the first kind of phenomenon is of intrinsic interest,

as it does not depend on any particular experimental arrange-

ment and reflects basic properties of the fluid eguations.

However, the occurrence of relaxation oscillations may lead

to misunderstandings in the interpretation of experiments and

we shall briefly explain how they may be triggered.

Consider an inverted bifurcation. At R = R.. or

slightly above, the parameter A (which may be viewed as the

convection velocity, for instance) changes its valué from

A = 0 to another one, say +_ A, . At the same time, the net heat

flux through the cell changes from say jó . in the state A = 0,

to 0-,. in the state +_ A, . Suppose now that heat is supplied at

a constant.rate, or that owing to the presence of poorly con-

ducting boundaries, it may vary only very slowly. Thus, heat

is taken by the convective flow in the state + A. in a time

shorter than the scale of supply from boundary. Thus, the

Rayleigh number may decrease from R, to R-, and if flux in

the + Ao state is larger than ÍÓ it overshoots the + A9 state

and falls again in the A = 0 .state with R < R_. At this stage,
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due to the constant heat supply, the Rayleigh nuraber starts

again to increase from R? to R where the A = 0 state again

becomes unstable, jumps to A,, and so on. This explains the

basic phenomenon by which relaxation oscillation may take

place in a fluid heated at a constant power. Using a perturba

tion expansión around the critical number, Busse Tl967j has

obtained a system of equations describing these relaxation

oscillations. Description of the gross features of the pheno-

menon will permit us to emphasize the differences between

normal and inverted bifurcation. In the spirit of the Landau

approach, let us consider first an equation of motion for

A that describes an inverted bifurcation:

Á A3—

The parameter e describes approximately the tem-

perature difference across the cell. This is proportional

to R - R, , where R, is the critical Rayleigh number at which

(*)

the state A = ,0 becomes linearly unstable. This tempera-

ture difference is maintained by a constant external source,

say Sf and it tends to be lowered by the convective motion.

Let |i be the typical rate of evolution of E, then a model

equation for the time dependence of e is:

(2)

(*)• The state. A = .0 does not need "to be the motionless steady
state; the whole -discussion applies to an inverted bifurcation
that can emerge from any steady state, convective or not.
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The system (1) - (2) has A = 0 as a steady solution.

This solution is stable for S < 0 and unstable for S > 0.

Another steady state may exist, which is given by the solution of

1 v-4 - A [*•*-<-j*> = (3)

The linear stability of this steady state is studied

by considering a perturbation like 6AeCT . The characteristic

equation for g is

<4>

if k > l/2.f the perturbation grows in an oscillatory way when

/*-+ 4S + 2A (l-2k) becoines negative. They are two critical

valúes of S if 1 >

the unstable región being S < S. <; S .

The upper bound of this unstable región, S , can be

positive, for instance if k is large enough. This means that,

in a range of valúes of S, p, k and. £, no_ stable steady solution

exists. ..

It may be readily shown that no solution can go to

infinity: consider the quantity K = ,e¿ + AÁ, when e and A tend

to infinity: From (1) and (2),
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& • 6

As A" becomes negligible in front of A as A increases, this

shows that K becomes certainly negative if e and A are too

large. This proves that, beyond some large circle in the plañe

(e,A) , the motion is always directed inwards; thus, according

to general theorems on the continuous vector fields on a plañe,

this shows that the motion of the point (e,A) tends to a limit

cycle at least in the range of valúes of S for which no stable

fixed point exists.

Concluding, we note that if steady oscillations (or

perhaps even more complicated time dependent phenomena!)

occur in a convection experiment where the heat flux is kept

fixed, no definite statements should be made before a careful

analysis rules out possible relaxation oscillations. This ob-

servation might help to clarify a recent dispute concerning

oscillations in ;a two-component Bénard problem, in which the

Soret effect is involved (see Hurle and Jakeman [1975J ,. Platten

F*1975j and Caldwell ]j.974,1975^j).

7.2 The .unsteady f low and the transition to turbulence

Let us turn now to unsteadiness due to instabilities

taking place in the fluid itself. The experimental investiga-

tion concerning this point is not fully satisfactory. A number

of authors (Deardorff and Willis ]T.965"j , Rossby £1969*], Hurle

fl96£¡, Krishnamurti "[1970]., Busse and Whitehead X.197Jl *

Ahlers ^97^1) have observed that beyond a certain Rayleigh

number, say R , the convection flow is no longer steady. We

shall not go into a detailed analysis of these experiments,

but merely indicate a number of questions that we think have
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not yet-received a sensible answer and demand further clari-

fication:

i) How does R depend on the Prandtl number? Krishnamurti • 11970*|

claims that at P % 50, R. reaches an almost constant valué.

This disagrees with the findings of Busse and Whitehead n.974[.

There seems to be a serious experimental difficulty, as the

first occurrence of a time-dependent flow is associated with

regions of strong inhomogeneities in the convection pattern,

which are caused mainly by experimental imperfections. Further-

more, "it is not at all clear whether the bifurcation at R is

of the normal or inverted type, i.e., whether the time-dependent

part of the flow has or hasn't a vanishing amplitude at R. .

ii) Does a periodic (or eventually a multiperiodic stage) pre-

cede a more complicated (or turbulent) stage? A number of au-

thors have reported the occurrence of oscillation cióse to R ;

however, the coherence time of these oscillations is still un-

known. This is unfortunate, since as explained below, there

is a sharp distinction from the theoretical point of view be-

tween periodic motions with an infinite coherence time and

aperiodic motions with a finite coherence time. And it turns

out that, even in this latter case, the motion may very well

look periodic, although it is not.. Ahlers [l974j has measured

the total heat flux in a convection experiment conducted with

liquid helium. He has found that there was a quite well-defined

jump from a steady flow to. an unsteady one with irregular time

dependence. But this does not imply that the flow has jumped
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at the same time from a steady pattern to an unsteady one,

since Koschmieder and Pallas ]~1974] nave shown that well-

defined transitions in the convective pattern might have

no measurable influence on the heat flow. The white noise

spectrum described by Ahlers Jj.974] may very well be due to

the appearance of 'thermals1 (or sitial 1 regions of hot/cold

fluid) in the layer. They origínate in the two thermal boundary

layers cióse to each rigid horizontal boundary where the tem-

perature gradient experiences the greatest deformation under

the extreme conditions observed in the turbulent regime in

Ahlers1 case. The sporadic and random 'thermals1 move rapidly

throughout the cell carrying a finite amount .of (heat) energy

to be released at the opposite píate. Can this be the origin

of the shot-noise in certain time-dependent thermoconvective

phenomena? (This remark was suggested by J. M. Normand; see

also Rossby "£l9 69"j . The thermal boundary layer problem clearly

demands a theoretical analysis, but this has not been done so

far) .

jí,ii,} What is the basic mechanism of unsteadiness? As far as

we know, there are different suggestions which we shall dis-

cuss below.

iv) Is it possible to describe, with reasonable accuracy,

the bifurcation toward an unsteady convection by keeping a

finite (and hopefully, not too large) number of degrees of

freedom? In other words, does the unsteady flow involve fluc-

tuations with an arbitrary large band of wavenumbers?

To explain thé basic mechanism of unsteadiness

there are several theories that we shall describe now (see
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for a more detailed account, Velarde and Pomeau 11977 I). The

first explanation of the onset of oscillations in Rayleigh

convection seems to be that of Rossby "T1969*"! . It is an adap-

tation of the large Rayleigh number theory developed by Howard

Ti9631 .and goes as follows. Let us assume that, at some instant

of time, say t = 0, convection has made the temperature field

almost uniform throughout the layer, with however the obvious

exception of two thin boundary layers near the horizontal plates

Near the horizontal platas conduction is the basic mechanism

of heat transport. Let T, be the "uniform" temperature dis-

tribution and T be the temperature at the bottom píate. We

take T~ > T,. The diffusive boundary layer that develops near

1/2 1/2
each píate has a thickness §(t ) <v d/Pe ' \ (<t ) , in which
t denotes some characteristic time interval. The temperaturec . . . .

drop across the boundary layer is T2 - T, r and if T, does not

vary in an appreciable way it would in turn become unstable

when. (To - T,) ga§ (t )/K.V exceeds some critical Rayleigh number,
f
r £a X.' C

so that convection develops in the boundary layer itself. This

yields an "explosive" instability as convection tends to in-

crease the thickness of the layer which in turn increases

the growth rate. Then a "bubble" or "thermal" of temperature

T~ progresses in a convective fluid of mean temperature T..

This thermal leaves the lower plañe to move upwards. This

motion would in turn destroy the boundary layer setting the

fluid back to the initial configuration. The mean period x of

this oscillation is approximately the time delay needed to

build a new unstable boundary layer,. and it is given by

r \ -t cu
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from which we have

The power dependence given by Eq. (2) fits quite well with the

results of Rossby £19 69"] . Rossby's theory has not as yet been

proven invalid, it uses rather general arguments and it is

not really known whether a given unsteady convective pattern

fits Rossby's theory or not. Measurements-cióse to the upper

and lower boundaries should be very useful.

Another mechanism to secondary instability was

suggested by Welander £l967j . Consider a temperature fluctúa-

tion (or "hot spot") which is convected by the flow. To a

first approximation we may assume that this hot spot rotates

within the roll with a mean period that is approximately pro-

portional to the convective time delay imposed by the velocity

field. Welander noticed an accelerating mechanism for this

periodic motion. His reasoning goes as foliows. A hot spot

moves upwards faster than the average flow, and downwards

slower. As it is cooled in its rising motion, the cooling

stage may become less efficient than the warming one, and

there is a tendency for this hot spot to become hotter and

hotter as it keeps on each rotation a boost which is not

balanced during the cooling stage. Of course, this mechanism

has to struggle against heat and vorticity diffusión.

Let us however come back to the known experimental

facts. In the high Prandtl number limit, Krishnamurti has

observed oscillations of the convection pattern which she

attributes to the instability described by Welander. On
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the other hand, Willis and Deardorff Tl97(^ see no important

difference between the unsteady patterns at low (air, a = .71)

and large (silicon oil, o = .57) Prandtl number. Furthermore,.

they have studied the temperature fluctuations at low Prandtl

number and shown that the oscillations are almost independent

on depth, which is in sharp disagreement with the Welander pie-

ture. The more recent measurement of Busse and Whitehead p.9741

results are essentially in qualitative agreement with those

of Willis and Deardorff: with large Prandtl_ number they ob-

serve first an oscillatory instability whose general struc-

ture closely resembles the one of the low Prandtl number case.

They also observed that, when the amplitude of the oscillations

exceeded some level, a transition to a much more irregular

phenomenon, which they cali "spoke pattern", took place.

Except for the measurements of the temperature field

in the convection cell made by Willis and Deardorff, and various

measurements of the time period, there are actually no quanti-

tative data availablé about the structure of the periodic flow,

so that it is not clear yet whether the oscillations predicted

by Welander have been seen or not. However, recent results of

Clever and Busse Ti.9741 are of interest. In their stability

study of an infinite away from two~dimensional parallel rolls

to infinitesimal time-dependent perturbations at super-critical

Rayleigh numbers. They have predicted a number of instabilitiés,

two of which we shall now briefly describe. These are called

the zig-zag instability and the oscillatory instability. Both

have equal spacial periodicity to the primary roll pattern and

along the latter's axis (say x). In addition, they also have a
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non-vanishing wavenumber component, b, along a perpendicular

direction (say y) to the primary structure. The growth rate

and periodicity, b, of the zig-zag mode tends to the shorten-

ing of the effective rolls wavelength and thus merely repre-

sents a small shift of the roll pattern in the y-direction.

The growth rate of the oscillatory instability, however, does

not vanish with vanishing b. This oscillatory instability

corresponds to a bending of the primary rolls that propágate

in time along the roll axis. Nearly perfect agreement between

the theoretically predicted frequency of this oscillatory in-

stability and the experimental findings of Willis and Dear- •

dorff "Q.97CJ] is claimed by Clever and Busse |jL97£j .

Though Welander also gave a model that yielded some

quantitative results, we shall turn now to describe Saltmann's

jj.962") and Lorenz1 "[196T] theory of the transition to time-

dependent convection. These works procede Welander's but ac-

.cording to Malkus Tl972| .they essentially refer to a similar

phenomenon.
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1. Model equations and stability analysis: one-dimensional

problems

In this part of the 197 6 Report we shall discuss

the role of nonlinearity, and bifurcation to limit cycle and

nonlinear steady structures in simple reaction-diffusión

systems. We shall, however, restrict ourselves here to iso-

thermal, non-convecting media, leaving for the 1977 Report .

a detailed discussion of the coupling of- cbnvection, and con-

vective instability to non-idothermal reaction-diffusión me-

chanisms. Nonlinearity may be brought either by spatially

local strong interaction or by non-local processes in kinetic

phenomena. For motivation, the reader is referred to the book

of Aris ri976l. On the other hand, we are also interested in

understanding the role of binary and ternary colusión pro-
steps

cesses in dense media} i.e. bimolecular and trimolecular reaction /

The following models of#global processes have been

of our interest: We consider two intermedíate reactions in

an open container where strong non-equilibrium reaction takes

place:

y u-a>

(l.C
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To this scheme we associate the following differ-

ential problem in dimensionless form

= X Y - (tf/i+V<) + I ) x A x l2-a)

AY

in which the saturation law is called the first-order Hinshelwood-

Langmuir |Michaelis-Menten[ law. Note that A, P, are products

whose concentration can be externally controlled. q yields

a measure of the strength of the saturation law. X,Y, A de-

note concentrations of the respective reactant that we shall

take positive definite. All reaction constants, besides q,

have been normalized to one (see for details IBAÑEZ, PAIREN and

VELAKDE ri976.áj). Dy^D are respectively the dimensionless

diffusion constants. of X and Y and A denotes the Laplacian

operator. We shall consider either fixed concentrations on the

boundary (Dirichlet problem) or fixed fluxes (Neumann problem).

(ii) : (3.a)

(3.b)

(3.c)

to which we associate the following evolution problem in

dimensionless form
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The symbols have the same meaning as above. For motivation and

details see IBAÍ3EZ, FAIREN and VELARDE 1*1976.bl. :

(iii) (5.a)

H (s-b)
í5'c>

to which we associate the following dxmensxonless problem

X = X ^ Y - X + tl AX (6.a)

= A - ( 6 > b )

Here the cases q = 1 and q = 2 correspond respectively to

binary and ternary colusión processes. For motivation and

details see BALSLEV • and DEGN TÍ975J '•.,

Fixed points (i.e., steady solutions) of these mo-

dels are easily found in the homogeneous case. Once the fixed

points are located we are interested in their stability. We

shall discuss model after model:
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(i) Model (1)

Pixed point (homogeneous)

= A/Ys

Y ,
(7.a)

(7.b)

0,3

A

0.2 II

0.1

0

V

1.0 5.0 10.0 15.0 2 0.0 q 25.0

FIG. 1

Figure 1 describes the linear stability portrait.

Regions I and II correspond to asymptotic sta-

bility of the steady state (X .YJ, with characteristics of
s s

stable node (región i) and stable focus (región II). All
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other regions (III through V) yield instability of the steady

state.

Regions III and IV correspond, respectively, to

únstable focus and unstable node. Prbvided the nonlinear so-

lution is bounded, limit cycle behaviour is to be expected

in these two regions. We nave located the limit cycle

for q = 2.0 and A = 0,1. It is to be noted

that the limit cycle is orbitally asymptotically stable. For

a given valué of g with decreasing A(A < 1/q the limit cycle

3/2
appears as a Hopf bifurcation • at A = 1/q - (1/q) .
Its amplitude viz.. the distance separating (X ,.Y ) , at every

s s*
instant of time, f rom the "movi.ng point with same Y ) on the

s

orbit, is a continuous function of A. Región V is such that

Aq > 1, and corresponds to saddle point. We have also studied

the influence of molecular diffusion of the intermedíate reac-

tantsr X and Y. It suffices to add to the r.h.s. a
2 2term D 3 X/9r and correspondingly to the r.h.s. a
2 2term D 3 Y/9r . Here D and D denote the two molecular dif-

fusivities involved. For simplicity we limit ourselves here

to a one-dimensional problem. The system is thought to be

enclosed in a box of length L(0 < r < L = 1).

For fixed concentrations (f.c.) or fixed fluxes

(f.f.) on boundary, the system still possesses one homoge-

neous steady solution and the same given above: (x ,y ) .
s s

Linear stability analysis . with diffusion yields

the following major results: (i) for D > D and f.f. on

boundaries the regions I and II are unchanged.(ii) For

D > D and f.c. on boundaries, diffusion tends to play a
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stabilizing role; that is, región II increases at the ex-

pense of región III. (iii) For D < D and f.f. on boundar-

ies, diffusión plays a destabilizing role. Región III is en-

larged at the expense of región II. (iv) For D < D and f.c.

on boundaries, diffusión acts both as a stabilizing and de-

stabilizing mechanism with not too dramatic a role to be of

interest to us here.

In cases {iii) and iv) instability first arises

from saddle point-type linear eigenvalues_A that depend

on non-vanishing wave-numbers (m ̂  .0) . It is to be noted

that on demanding which linear normal mode comes with fastest

growth all we find is that D > D if a mode is to grow at

all. Thus to define a critical valué of A, A , we follow the
* » • * . . • - - - - -

prescription given by Segel and Jackson ¡19721. A should belong
Va ""- «*• C

3/2

to the range of A such that A > 1/q - (1/q) in which the

steady homogeneous solution is stable if diffusión is absent.

; Furthermore A should also be smaller than the

c

valúes of A which yield a región of asymptotic stability to

3/2
the homogeneous solution. Thus for A in the range 1/q - (1/q) <
A < A the homogeneous solution is unstable. Dissipative struc-c

tures (i.e. asymptotically stable steady inhomogeneous solu-

tions) appear in such región. Two examples are described in

Fig. 2. In Fig. 2 (bottom) the dissipative structure corres-
-4ponds to a single mode excitation at q = 10.0,D = 1.0 x 10 ,

D = .5.0 x 10"*, and A = 0.07565. Fig. 2 (top) depicts a dis-

sipative structure when four modes are excited at once. This

corresponds to A = 0.07365, and all other quantities as above.

The phase difference of 180° between the X and Y distributions,

corresponds to regions where alternatively the substrate or

the product accumulate.
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O 0.2 C U 0.6 0.8 1.0
r

FIG. 2

(Ü) Model (3)

Fixed point .

= B-A

- A)

(8.a)

(8.b)

Fig. 3 depicts the linear stability portrait.
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15.0 B 2 0.0
( Q.U.)

FIG. 3

'' Regions I and II correspond respectively to stable

focus (I) and stable node (II). Regions III and IV yield in-

stability of the steady state. Here we have respectively un-

stable focus (III) and unstable node (IV) with a Poincaré

index (+1) (which is a necessary condition for the appearance

of limit cycle around the steady state). Región V is of no

interest here as it yields negative or undefined valúes of

concentrations. On the other hand, it corresponds to saddle

point behavior with a Poincaré index (-1). No limit cycle is

to be expected here.

In regions III and IV, the system does satisfy

the necessary and sufficient conditions for the existence of
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limit cycle (Poincaré-Bendixon theorem in dimensión twb). As

an illustration, the limit cycle can be drawn - with

the computer for the triplet A = .14.0, B = 20.0 and q = 0.5.

To study the influence of diffusion of the inter-

mediate reactants we simply add to. the r.h.s. •-. a term

2 2DV3 X/Sr and correspondingly to the r.h.s. . a térro
A

2 2DV8 Y/3r . Here D and Dv respectively denote the rnass dif-

fusivity of X and Y. For simplicity we limit consideration

here to a one-dimensional box of length L(0^ r ^ L = 1 ) .

The new differential system with either fixed concentrations

or fixed fluxes still posseses a unique homogeneous steady

solution given by (<£) . Linear stability of ($) in (l|) to in-

homogeneous perturbations is governed by a wave-dependent

eigenvalue polynomial equation in 4 a
5

in which k denotes the inverse of a characteristic length of

x + Dy)the perturbation. In Eq. (<j) , 6k = 6 + (ku/L)
2(Dx + Dy) and

L i
Í L i

Í



•- 1 1 . 1 0 -

For a given triplet (D ,D ,q), and varying A and

B, we may cross from the asymptotic stability región of the

steady solution (i.e., ReX,. < 0 for all admissible k) to a
Je

región of instability. Assuming that in the unstable región,

bifurcation of secondary solutions corresponds to a single

critical wavenumber k (with all other k ^ k ) , and ReX, < 0) ,
C C K,

the following cases are of interest.
i) Xv(k = k ) is purely imaginary. With fixed fluxesJe c

(f.f.) on boundaries, bifurcation occurs with a vanishing wave-

number. Thusr diffusión does not play any role. However, with

fixed concentrations (f.c.) on boundaries bifurcation appears

with k = 1 . Here, diffusión plays a stabilizing role.

ii) X, (k = k ) is real. In this case k ¿¿ 0 and dif-
je • c c

fusión may play a destabilizing role. However, not all valúes

of the triplet (D ,D ,q) yield bifurcation. Bifurcation with

X, real is only possible provided the following two conditions•

are satisfied.

(10.a)

T(D ,
(10: .b)

= 1-

Cit is to be noted that if D < D v or T < 0 there is bifur-

catión to a time-dependent solution from purely imaginary

eigenvalues). For f.c. diffusión plays a destabilizing role

in the system whereas for f.f. diffusión plays no role.
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When conditions (|o) are satisfied with X, real,

the homogeneous steady solution (?) yields way to an in-

homogeneous steady solution. An asymptotically stable in-

homogeneous steady solution is called a dissipative struc-

ture . Computer solution of the nonlinear system

with diffusion, shows the appearance of dissipative struc-

tures that we have plotted in Fig.4 for the case {D = 10*"*,

DY = 10~
3, q = 0.5, A = .8.916, B = 11.0 and L - 1.0}.

2.10 -

2.09-
Xs

2.08

2.07

A=8 916
B=1 10 Dy = 10 16

0.5

Xs

L
(CLU.)

1.0

FIG. 4
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(iii) Model (5)

Fixed point

XS=A

There is also the possibility of an unbounded solution

(11.a)

(11.b)

(12.a)

(12. b)

The linear portrait of stability around (¿\\) is pictorially

described in Fig. 5.

Aq = q +1 + 2 \fq*

q 10.0

FIG. 5
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Regions IA and IB are of local asymptotic stability

of (\\) with characteristics of stable focus (IA) and stable

node (IB) respectively. In región II the steady state is un-

stable with characteristics of unstable focus (IIA), and un-

stable node (IIB) respectively.

According to a theorem proved by Tysonu.9 73̂ | and

Hanussen.97^2| there is no possibility of limit cycle for g = 1.

This result follows from our computer-aided representation

(Fig. 5 ) . For if q «̂  1, the steady state (j4) is stable for all

valúes of A > 0. The two instability áreas (II) described in

Fig. D just collapse to a point as q approaches one from above.

On the other hand, the máximum of A^ = (q - 1)

occurs at g fy 4.59, and A = A 1 % 1.3. Thus, for A > &

the steady state (44) ¿ s asymptotically stable for all valúes

Of q > 0.

At A = A = (q - 1) '^, there is a Hopf bifurcation

- for all q > 1. The following two conditions are satisfied:

(i) the roots - • . • ' . X, (A) + iXo(A) are such that X, (A ) = .0,
?X1 (A.)

and X2(A ) r 0, and (ii) the transversality condition

These two conditions ensure the existence of a time-periodic
A=AC

solution in at least a small neighborhood of A . If {X (t),Y (t)}
c P P

denote the periodic solution of frequency to = w(A), Hopf bi-

furcation theorem yields that supjx (T)-X | ->• 0, supjY (T)-YC

and w •»• x
2 ^

A c ) f o r TEi°'^"l a s A "* Ac«

The stability of {X ,Y } is related to the Floquet
P P

exponents . It appears. that if the solution exists for

A < A it is orbitally asymptotically stable, whereas for

A > A , if there is one it is unstable.
The analytical form of this time-periodic solution
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can be 'obtained by the Poincaré-Linstedt method. W e take

oo
(13.c)Y = Y. + z; •" Y,

„ > (13.d)

= ̂ . (A) 4- Z £ ^

It is to be noted that the vanishing valué of the new unknown

e yields back the primary solution (41) . Substituting (-Í3) in

r 1 —1
(o) and solving up to third order gives Ao = - -r A (g-1) < 0,
and A < A . Thus, the bifurcated solution is orbitally asymp-

P c .

totically stable.

That Hopf bifurcation theorem only ensures the

existence of a periodic solution in a small enough neighborhood

of A it is olear. For we have found that for A < Á withc . — c .

0.90 < A < 0.91 and q = 2 the periodic solution {X ,Y } is no

longer valid/ and the system (6) takes on the unbounded solu-

tion (H2/) . This behaviour is to be expected as there is no

saturation law in Eq. (6 ) . Ñor is there more than the (q +• .1)-

molecular step and this is just not enough to stop an unlimlted

growth of the intermediate reactants. The transition is illus-

trated in Fig. 6 where sup|x (T)-X I is plotted against A.
p s

A = 1 is the point where the steady solution (44) loses sta-

bility, and the system (&) takes on the limit cycle {X ,Y }.
P P
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We have also studied the role of diffusión in (&),

and the results are qualitatively similar to those found in

the two models previously discussed by the present authors»

Thus, we merely give here the relevant features of the phase

diagram shown in Fig.j . If D ,D denote the respective dif-

fusion coefficients of reactants X and Y, for fixed fluxes on

the boundary (Neumann problem) , there is bifurcation to asymp-

totically stable inhomogeneous steady state for q >̂ .Q(Q = 2.25

with D /D = 5). There is bifurcation to time-periodic solu-Y x - c

tion for 1 < q < Q(Q =2.25 with D /Dx = 5). No bifurcation

exists for q ̂  1. It is to be noted that with D /D -*- °° we

have Q -*- 1.
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2. Nonlinear structures on a sphere

2.1. Fixed point and its stability

In Section II.1 we have considered the stability

of non linear structures (steady states and limit cycle) in

a simple autocatalytic reaction-diffusión scheme involving

the Michaelis-Menten (first-order Hinshelwood-Langmuir) sat-

uration law with restriction, however, to a one-dimensional-

problem. We shall consider here the same process as above (for moti-

1976J), but in the case of a spheri-

cal surface. In dimensionless differential form, the model is

1+qXq

= A - X Y + t>Y A Y tl.b)

in which X, Y and A denote dimensionless concentration of re-

actants. that we take positive. D and D are the respective
A X

dimensionless diffusión coefficients. of X and Yf and q » 0

yields the relative strength of the saturation law in (1).

Let us consider the spherical surface, S, defined

by CR, 0, ¡ó) respectively radial at fixed Rr polar, and azi-

muthal coordinates. In this geometry, the Laplacian operator

takes the forra

In the dimensionless form of the problem we have taken R = 1.
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' The (fixed point) steady homogeneous solution of

(1) is

KM) = (2.a)

(2.b)

For later convenience, we displace this solution to the ori-

gin of coordinates and the system (1) becomes in compact form

(3.a)

in which u is the two-dimensional vector u = (Y) and y accounts

for the four parameters involved in the problem y =(A,q,Dx,D ).

L(y) is- the linear operator

(3.b)

and N(Ytu) describes the non linear contributions to (1)f

XY

\
-XY

(3.o)
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The stability of the fixed point in (3) is related

to the eigenvalues, X, of L

(4)

The eigenfunctions of (4) can be expressed in terms of the

eigenfunctions of the Laplacian. We have

jM)

in which Y» are spherical harmonics. Thus, the eigenfunctions

¡6 are

(6)

in which Í¿\ (i = ,lr2) are complex numbers. r

The eigenvalue characteristic equation that describes

the stability of the fixed point is

with

(7.b)
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(7.c)

For a given triplet of {q,D ,DV} and variable A the

fixed point may become unstable at some critical valué, A , in

one of the two following ways

(i) At a given A there is y = (A ,q,D ,D ) for which the

eigenvalue L cross ~the imaginary axis with non-vanishing

imaginary part. This defines a t and we must have
c

,8.a,

(8-bl

On the other hand, for,all t r A it must be

O

Thus, the only eigenvalues that bring instability to the fixed

point correspond to the. critical valúes X. , and all other eigen
c

valúes have negative real parts. From (8.a) and (9.a) together

with (7.b) we find Z = 0. The only one spherical harmonio that

brings instability belongs to t — m = 0.
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(ii) The" eigenvalues that briiig instability are real and cross

the imaginary axis from left to right. Then we must have

0

(10\b)

together with

TCTeje) < o (11.a)

(11.b)

for all t j* JL . The critical eigenvalue is associated with the

minimum of D in (ll.b) which is given by

-\

- (12.a)

According to (10 ,b) and (7.c) it must be £ i- 0. Thus, we have
c

(2£ + .1) eigenfunctions branching at once at £ . Besides, from
c c

(11.a) and (12.a) we also obtain the necessary condition D > D

for a non linear structure to bifúrcate at A .
c
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A few remarks are now pertinent:

(a) If q < 1 and D v > D the fixed point (2) is asymptotically
X X

stable for all valúes of A: there is no A > 0 that satisfies

(8) and (9) or (10) and (11) for g < 1.

(b) With D > Dv, there exists y = (A ,q,Dv,D ) such that for
X x C ' • C X X

all q > 1, the fixed point (2) is asymptotically stable for all

A > A • The fixed point becomes unstable for A < A with the
• c . c

eigenvalues. X ' . These eigenvalues have vanishing real parts

at A = A . A is given by the relation T(y ., 0) = 0.ce* o

(c) With D v > D v there are two possible bifurcation pictures.
Y X

Either the fixed point becomes unstable for valúes A satisfy-

ing T(y ,0) = 0 with purely imaginary eigenvalues \ or be-

comes unstable satisfying (12.b) with eigenvalues \p , real
c

and vanishing at A .
• c

Figure 1 accounts for the case Dv = 5DV. Región I
x ' X ,

denotes valúes for which the fixed point is stable. At A =
• . c

— - . there is instability. and bifurcation to periodic solu-
q q^cf

tions, and at A as given by (12.b) to spatially inhomogeneous

structures as we shall explain below.

It is to be noted that in case (a) there is only one

eigenfunction 0 O^IP) at bifurcation; in case (b) the null-

eigenvalue of (4) has (2£ + 1) degeneracy -{with t ^ 0) and

this is not a minor difference with respect to the one-dimen-

sional case discussed above-¿
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FIG. 1
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2.2. Non linear steady (inhomogeneous) structureand its stability

In the following we shall restrict consideration to

valúes of D > D , q > 0 and A < A , with A given by (12.b),

such that (i) L(y) possesses eigenfunctlons belonging to the

vanishing eigenvalue at A , '
c

(1)

Here Z is given by (12.a) and the corresponding eigenfunction is

ilm
(2.a)

with.

(2.b)

We shall seek solutions in the space of complex-valued

functions with .continuous second derivatives on the spherical

2 • •*--

surface S . The following scalar product of functions u and u

belonging to the space is introduced

(3)
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in which dQ accounts for the angular integration.

The adjoint.operator L of L is

L U) -
-I \

V
- i

(4)

/
The eigenfunctions belonging to the vanishing eigenvalue are

(5.a)

with

(5.b)

(ii) The following transversality. condition is satisfied

(6)

in which L1(y) denotes the derivative of L with respect to A

\

-2. (7)
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. With the above conventions and restrictions we shall

use the Poincaré-Linstedt method and set

(8.a)

A, (8.b)

in which .e is a new unknown that we shall fix by the solvability

conditions (Fredholm alternative) to be imposed upon (8).

The stability of (8.c) is related to the eigenvalues

of the linearized approximation to (8.a) in the neighborhood

of (8.c). This linearized eigenvalue problem is

in which Mr a linear operator, accounts for the derivative of N

with respect to u.

In accordance to (8), we seek solutions to (9) in the

form

cO

^ O (9.b)



- 11.27 -

We now introduce (8 .b) , (8.c) and (9.b), (9.c) respectively in

(8.a) and (9.a), and we get

(10.a)

N(u,Tf) =

(10. c)

We s h a l l equate ternas of same power in e both. i n (8) and (9) .•

(i) F i r s t - o r d e r approximation

The terms in e and e y i e l d

(11.a)

(11.b)

Thus, the solutions belong to the kernel of L(y )• From (1) we

have
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in which a , b are complex numbers. As u, must be real, andm' m 1

(8,0) in which the star denotes the com-

plex conjúgate, we have a = .(-)ma with m-^-l, . . ., t t and

a real.

(ii) Second-order approximation

Equatxng second-order powers in (8) and (9) we get

(13.a)

(13.b)

with 3 n

(13.c)

and u r = .(X1,Y1) .
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Secular terms in (13) are eliminated with the use of

Fredholm1s alternative, namely the following orthogonality con-

dition is imposed,

•=. o

(14)

with m = -t , ..., t . We now use the relation

'yw

Hir

Y , m = ¿
M

ooo
(15)

in which the Wigner "3j" coefficients. have been introduced (4)

Thus, (14) yields
ñ fí

. II

(16.a)
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with m" ,= 0, 1, ..., I , and

t l 6- b )

_ D C (16.c)

TÚ

System (16) together _with condition a = .(-_). a (m = 1,...tZ)

yields (2-6. + 1 ) equations with (2-6. + 2 ) unknowns: (a« , a „

...r a» , A,). On the other hand, Fredholm's alternative yields

(2& + 1 ) equations with (2¿ + 2 ) unknowns: (b » ^ ,,.,b» , 3i1)

i=--v&

(17)

with m" = -Z , ..., Z .

It is to be noted that when the null-eigenvalue of

L(y ) is not simple the equations relating a t b ,A, and X,c . ' in iti -L * •*•

are not linear, and at A bifurcatión of several branches is
c

possible (see below for further details).

We have now the following alternative: Either
lc ¿c lo '(i) Z is even with (n n n, ) ^ .0 and the equations (16) and .

(17) have a non trivial solution, or
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I I I
(ii) I .is odd, with (n

C
 n° n°) = 0 and the solution of (16),

(17) yields A, = X-, = 0. In this latter case, we ought to go

to higher orders once the equations (13) are solved. They re-

duce here to

(18.a)

(18.b)

With the use of (15) we get

*e J L V.C-)

'/í

(ut'L)Y
L even, and L <u

0 0 0

(19.a)

o o o

(19.b)
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with L even, in which

AL)= — ^

(19.d)

(ii i) Third-order approximation •

As for. ¿ octo, we have A, = X, =0 the equations to

this order are

o
( 2 0 . b )
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with

(20.c)

and

A \

2

V Y.
• * /

(20.d)

Using Fredholm's alternative in (20.a), we get (2£ Q + 1) equa-

tions with (2£-c + 2) unknowns;

=

: (a 0 t . . • i &i t A 2 ^ '
A C

4-TT

(21.a)

L
o o o

With '!>• even^ and-

and

= O

c m.
a . . • f X'Q '

-D)+ (21.b)
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Using again Fredholm1s alternative in (20.b) we get {2¿ + 1)
c

equation, with (21 +2) unknowns: (b „ , ..., b „ , X ),

2<U L - c

mm

L
2 a

(22)

t

with L even, and m"' = -Z , ... t L '.

2.3. Further discussion of a particular case

We shall illustrate here the salient differences.be-

tween the spherical problem treated above and the one-dimen-

sional case, For the sake of simplicity, we

take L - .1. As t is odd, we have A, = X-, = 0, and thus, to

obtain A» and X2 we make use of (21) and (22). To get A- from

(21) f we have

(1.a)

(l.b)
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with a_, = -a,, and

(l.c)

tsj= O - (l.d)

in which W(L) and G have already been defined.

There are two solutions to (1).

(i (2.a)

with corresponding branches

= +

V,(o)

and
w) ('

— rn-e.

(2.b)

(3.a)

with .corresponding branches



= ± 3(A-Ac)

ÍTX A',

(3.b)

It is to be noted that solution (2) has no 0-dependence.

On the other hand, solution (3) depends on a parameter 6 to be

determined from initial conditions: thus, (3) defines a one-

parameter family of solutions.

Stability of the bifurcated branches is related to A-,

and this guantity is given by the following equations

Ci 4. ct>)^
(4.a)

(4.b)

.é)

a "-•

(4.a)
= O
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in which M, N, and G are as above.

With solution (2), we have the following alternative:

Either

b W + ^ + ° (5-a)

or

: ) / ^ (5.b)

- b =.0

(2\
Thus, if X- > 0r there appears a positive eigenvalue of

2
L(Y) + M(y*u) in the e -approxxmation, and the branch (2) is

(2)
unstable. If, however, X v '. < 0, we cannot establish stability
as \~ yields a vanishing eigenvalue to L(y) + M(yru) i n

2
the e -approximation. Thus, higher order terms are needed to

assess the stability properly.
(2)

We note that sgn ^2 sgn(A2), and the following

relations hold

<O
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Thus, solution (2) is unstable when it appears subcritical

(A > A ), whereas if supercritical (A < A ) its stability isc c

decided in at least the e -approximation, and so on. We

shall not carry further, however, our analysis here.

With solution (3) the alternative is: Either

(i) aX = O ko^O, ^ = ^ - i e (7.a)

or

(7.b)

Again we find a situation encountered in the previous case.

When solution (3) shows subcritical it is unstable but if it

appears supercritical its stability analysis demands higher

order approximations, and so on. Figure 2 displays the various

bifurcations that are possible: three different cases appear

in accordance to the range of valúes of L in either solu-

tion (2) or (3) .

2.4. Bifurcation to a limit cycle

When q, D and D are such that either q > 1 and

Dv > D or Dv > D and q is such that bifurcation of the

steady st>lution (d.2) occurs for purely imaginary eigenvalues

o£ (4.H )/ then there exists a critical valué, A ,
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FIG. 2
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such that the fixed point is asymptotically stable in the range

—• > A > A and unstable at A = A with a branch emanating for

£ = 0. Thus, L(yoi) has purely imaginary eigenvalues + iw

L

with

(2.c)

±
(2.d)

and

~ q

Then the following two conditions of Hopf bifurcation theorem

are satisfied " • :

(i) in the neighborhood of A the eigenvalues of L(y ) are of

the form

(3.a,
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With both X i r X2 real, X1(A£J) = .0 and

(ii) the transversality condition

(Ac) .0,

(3.b)

which leads to bifurcation to a limit cycle at A . We shall con
c

struct this periodic solution in the neighborhood of A by the

Poincaré-Linstedt method.

We shall look for2ir-periodic functions with first time

differential continuous and with continuous spatial second-

differentials on the spherical surface S ;

In the above defined space of functions, we consider the fol-

lowing inner product

dJL X
(4)

for a pair of functions u and u belonging to the space; the star

on quantities denotes complex conjugation.

For later convenience, we change the time variable to

- Oút
(5)
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Thus, u = U(T) obeys the following eguation

IX

We define

with its adjoint

with L (y) given in (2.4). Thus it follows

with

For simplicity we have^ chosen constants such that

(6)

(7.a)

(7.b)

(8.a)

(8.b)

(8.c)

(8.d)
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(8.é)

Note that the transversality condition (3.b) reduces to

in which L1(y ) accounts for the linear differential operator

of L with respect to A (2.7).

We now set

.a)

(10.b)

CÜ0 + TL
© O

-n= { (io.c)

together with corresponding e-expansions for L and N (2.10).

Inserting (10) and (2.10) in (6) and equating same powers in e

we get an hierarchy of equations that we solve up to the first

few orders.

(i) First-order approximation

Equating first powers in e from (6) we get

(11)
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U, is a linear combination of íj; and ty , and on physical

grounds it is taken real only. Thus we have

Note that considering Im^ merely amounts to a displacement

of the time origin and as the system (6) is autonomous it is

irrelevant.

(ii) Secpnd-order approximation

.Eguating now second-order powers in e from (6) we get

To (13) and (11) we apply Fredholm's alternative. This yields

A-, and to..

(14.a)

(14.b)
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Note that the transversality condition (9) demands

that A, and w, be finite. It follows

A* = 0L3| = 0
(14.c)

Thus, u_ is given by the eguation

(15.a)

We now seek solutions to (15.a) in the following form

2 -

orí

(15.b)

in which m, c m^ r n, , n«, £2, t ti~
 a r e a H real constants.

Substitution of (15.b) in (15.a) yields

'/z

(16.a)

(16.b)

-i)
1 +

(16.c)
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(16.d)

(iii) Third-order approximation

Equating third-order powers from (6) we get'

(17)

+
To (17)' Fredholm1s alternative together with the transversality

condition (9) yield

(18.a)

4-3

(18.b)

and so on.

Inversión now of (10 ..a) gives

(19)
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that put into (10 .b) and (lO.c) respectively gives

W
\ (20.a)

and

4-

3/2.

(20.b)

in which all parameters (A ( A r to , u», 6, ti.r ti0, m1 , m» and n)

are the above given functions of q.

The stability of limit cycle (20) can be assessed by

the knowledge of the Floquet exponents. That is, by the eigen-

values g of. the following eigenvalue equation problem (6)

(21)

in which all operators are as defined above. It follows (6) that

(i) if solution (20) branches supercritical (for A < A ) it is

asymptotically orbitally stable, whereas

(ii) if solution (20) branches subcritical (for A > A ) it is

unstable.
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From (1). we get that q > 1, and from (18.a) follows A_ < 0.

Thus, (20) branches supercritical and we nave stability in at

least a small enough neighborhood of A

It is remarkable that the diffusión constants D , D
A. • X

do not explicitely show up either in. (1) ' or in (20). However,

their influence is implicitely accounted for as (i) their valúes

restrict the range of valúes of q in the linear stability por-

trait of (1.1) for which bifurcation is possible (see Figure 1

and Reference 1); (ii)their presence in (1.1) yields the con-

sequence that the solution (20) does not show any spatial de-

pendence: the motion of points in the surface S has vanishing

phase shifts. Without diffusión the motions will all be inde-

pendent of each other.
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1. The Lorenz model and turbulence

In this part we shall discuss the seemingly sto-

chastic behaviour of a deterministic model proposed by

Lorenz Tl963|. Though it is not expected that Lorenz1 model

accurately represents the onset of turbulence, it has/ how-

ever, a rather intrinsic interest as it may be taken as a

counter example to the usual dogma (and its ensuing folklore)

in the physicists1 community, according to which stochasticity

arises either from the interaction of an infinite number of

degrees of freedom or from an external noise source (usually

chosen gaussian as the randomness is related to an infinite

number of degrees of freedom via the central limit theorem).

It will appear from the analysis of Lorenz1 model that in

systems far away from thermodynamic equilibrium, stochasti-

city or randomness can merely arise from the deterministic

dynamics of a few macroscopic degrees of freedom. We may very

well agree with the reader that a macroscopic degree of free-

dom hides almost on every occasion encountered in physics,

an infinite number of them at a lower and rather more sophis-

ticated level of description.

•The Lorenz' eguations are

Y = -
i = XY - ̂
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It must be clearly recognized that the behaviour of

three-dimensional systems like (1) is not at all as well un-

derstood as the behaviour of systems with two degrees of free-

Som. In the latter case, it is often possible to prove that

a well-defined asymptotic state exists, which may be either a

limit curve or a stable fixed point as discussed in textbooks

on differential equations (see La Salle and Lefshetz 1[196l] or

Coddington and Levinson ^955"p . For aystems such as (1) there

is actually no detailed description of the^geometry of the

attractors. The analysis of the behaviour of (1) uses mainly

the properties of the linearized motion in the vicinity of

points. As shown by Lorenz, for r > rm =
 g(g*b*3). (= iZJ if

a = 10f h - 8/3) these points are: two "convection" points

C, = (+ b(r-l), + b(r-l),r-l) and one "conduction" point

0 = (0,0,0) are .unstable to linear perturbations.

The conduction point (0,0,0) is attractive in two

directions: one direction in the plañe Z = 0, and the axis

oZ and it is repulsive only in one direction of the plañe Z = 0,

The axis oZ is a possible trajectory, as X = Y = 0, Z = Z e

is a solution of (1). This shows that a point starting cióse

to the conduction point is attracted by the plañe of the two

stable directions (or "stable manifold") and repelled along

the unstable directions. Practically, it moves closer and cío-

ser to the unstable line starting from 0. It will move in one

of the directions defined by this line, depending on the half-

space where it started from. In the neighborhood of the origin,

these two half-spaces are separated by the plañe defined by the

two stable directions. Should this separating surface divide
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the whole space like a plañe does, the motion of any point

would remain in one of these half-spaces; but this is not

the case. Let us then look at the vector field generated by

(X,Y) in any horizontal plañe (i.e., at fixed Z) . The plañe

motion of a point corresponding to this field is described

by (1) Z being a fixed parameter. The origin is the fixed

point of this vector field and any motion around it is very

simple, as the equations are linear. For Z < Z = r - 1, the

point (0,0) (actually the vertical axis) is attractive in

one done direction and repulsive in another. For Z < Z < Z1 = Z +
o c c e

• , the point (0,0) is attractive in any direction and

two real trajectories (which are straight lines) go through

the origin. For Z > Z1 , these trajectories are no longer

real and any point converges toward the origin following a

spiralling motion.

This means that below a given height (Z < Z ), a

point is repelled by the axis oZ, but if it goes high enough

it is attracted instead, either by an almost straight or by

a spiralling motion. This will explain that, if during its

trajectory a point moves at high Z it may rotate enough

around the vertical axis and pass on any side of the separa-

ting surface upon descending. Thus, this surface cannot ac-

tually sepárate the trajectories "in the large".

Consider now the neighborhood of the other two fixed

points, i.e., the "convection" points C = (j-Vb(r-l) ,ĵ Jb(r-l) ,

r-1) . For r>>,.rT they are attractive in one direction and re-

pulsive in a plañe. (This is a plañe cióse to C, and becomes

more or less curved surface far away, to actually yield the
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unstable manifolds of C and C ). In this plañe, the repul-

sión occurs through a spiralling motion (it corresponds to

two complex conjúgate eigenvalues of the stability matrix).

It is not difficult to understand how a point moves, start-

ing cióse to one of these convection points, say C . It be-

gins to revolve around C by slowly going away and yet point-

ing at the same time toward the unstable manifold of C . when

the spiral has grown enough, it is attracted by the axis oZ

when Z > Z and repelled when Z < Z . when it reaches the
c - c —

height Z1, it rotates around the axis oZ and goes down on the

other side of the separating surface passing through the ori-

gin. As the origin is repulsive in one direction, the point

is "violently" repelled toward the convection point C as

the two unstable orbits. starting from the origin pass cióse

to the convection points (it is likely that they join exactly

these convection points, in which case they would constitute

the so-called heteroclinic orbits of Poincaré). Then the point

begins again to revolve around C , and so on.

This qualitative picture of the 3d motion is simpli-

fied by restricting oneself to the so-called Poincaré trans-

form. Consider the successive intersection of the upward tra-

jectories with the horizontal plañe of the convection point,

i.e., the plañe Z = r - 1. Let (X,,Y.),(X-,Y0),...(X ,Y_) ,...

be these intersections. The Poincaré transform is the law of

correspondence (or 2d mapping) that relates (X ,Y ) to

A first important property of this mapping is that

it contracts the 'volume'. Consider an ensemble of initial



- III. 5 -

* * •

conditions filling a volume V(0) . As |§+ U + |§. = -(a+b+1) ,'

at time t the volume occupied in phase space by the arrival

points is p(t)V(o) with p(t) = exp(-a+b+1)t. As the motion

between two crossings with the plañe Z = r - 1 is more or less

similar for a large class of initial points, the quantity p(T)

defines the contraction factor of the Poincaré mapping, T

being the mean period of the motion: an ensemble of points

lying on a surface of measure a, occupies a surface ap(T)

after one application of the Poincaré transform. This explains

that the attractor of Poincaré transform is a set of zero

measure, since it is stable (by definition) under this trans-

form, which implies that, if it would occupy a surface a , then

(2)

which is satisfied for a = 0 or =° only. The case 0 = ~ is
o • • •* o

disregarded since, as shown by Lorenz, they are regions of

space which are stable by the equations of the motions (what

we actually mean here by "stable" will appear at once). For

that purpose one considers the ellipsoid of equation

(3)

with K » 1 and £ > 0 ..

The scalar product of the velocity of a point (X,Y,Z)

on this ellipsoid with the outward normal to the surface is

at large K (i.e., by neglecting linear terms):
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(4)

2 o \

as X 3cr + Y" ^ 2XY\ba, it is possible to choose B (for in-

stance 3 = 1 ) so that X . n < 0 at large K, so that the ellip-

soid is "stable" as no point can leave it, and the attractor

is inside all the stable ellipsoids constructed in this way.

Following Ruelle ¡1976|, let us cali T+ the curves

which are the intersects of the unstable manifolds of C+ with

the plañe z = r - ly and let X be the intersect of the stable

manifold of the conduction point with the same horizontal plañe.

The picture is approximately given in Fig. 1. Consider now

the successive transform of a point P cióse to C . The first

iterates are attracted by r and repelled along this line, as

r belongs to an unstable manifold of the original equations

(in other terms, at each turn around C , the point diverges

in the direction of the two complex conjúgate unstable eigen-

vectors of C ). This corresponds, approximately/ to the iterates

P. to P. drawn on Fig. 1. In its motion after P¿, we shall

assume that the point jumps high enough to rotate around the

vertical axis x = y = 0, and to go down on the other side of

E, so that the next itérater x.e., P5., is cióse to C+. The

process begins again: the next itérate moves from P_ to E,

jumps to C , and so on.

Consider now,. instead of a pointr a set of points

on a surface which is drawn along r between C_ and 2. By

applying the Poincaré transform to this set of.initial points,

one finds that at each turn the points closer to are ejected

toward C , which makes appear a small sheet of arrival points
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Fig. 1. Poincaré's map • generated by the Lorenz model

in the plañe Z = r - 1. C are the 'convection1

points, E is the stable manifold of the conduction

point and T are the unstable manifolds of C .
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cióse to r+. At the next turn, this sheet is stretched along

T and after a few turns, part of it is ejected again toward

C . The Poincaré transform is a deterministic mapping as the

original equations of the motions. This means that the new

sheet appearing cióse to C_ is approximately parallel and at

some distance from the points remaining cióse to T (i.e., the

points which were cióse enough to C at the beginning, so that

after a number of applications of the Poincaré transform, they

have not yet been pulled out of F_) . On the other hand, after

each application of the transform, the área of the ensemble

of points occupied by the sheets is reduced by the contraction

factor p(T). This contraction is mainly due to a thickening

perpendicular to the unstable manifolds r . Thus, if one re-

capitulates the whole process, starting from a one-sheet sys-

tem along r , we now have approximately two parallel sheets

with a length of the same order as the one of the original

sheets.

Consider now the intersect of these sheets by a

line approximately perpendicular to V . Starting from an en-

semble of initial conditions filling a segment on this line,

after a few applications of the Poincaré transform, the central

part of this segment has been deleted. By continuing the process,

we again drop the central part of the remaining segments, and so

on. This. is the way to genérate a Cantor setv ' .

(*.')' A well known Cantor set is obtained by deleting from |o,l| it
central part,i 1/3,2/3 I, then by deleting the central part of the
two remaining segments, i.e., 11/9., 2/9.1 and |7./9,8/9|, and so on.
The Cantor set is what. remains after an infinite number of appli-
cations of this process. To characterize this ensemble, it is use
ful to. write the number between 0,1 on the basis 3 (i.e., by usin
the digitSojO.,1,2 ,only) , then any element of this Cantor set is of
the form . £ a^"* where a. = either 0 or 2. This shows that the
Cantor seé=l is not denumerable, although it has obviously a zei
measure.
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The object obtained from the initial sheet after

an infinite number of applications of the Poincaré transform

is by definition the section of the attractor of the motion

with the plañe Z = r - 1. This explains that the Lorenz at-

tractor is continuous in the direction of the unstable mani-

folds of C and has a Cantor structure along the normal to

this manifold. Let x be a point on the attractor, then a local

system of curvilinear coordinates exists such that if (0,0,0)

defines x then (u,ru ,u_) belongs to the attractor provided

(u,,u9) belongs to some finite interval around (0,0) though

u-, belongs to a Cantor (or Cantor-like) set.

The motion defined by the Lorenz equations has the

property of mixing, which may be considered as a mathematical

versión of the general statements X(t) has an erratic motion

for almost any initial. condition. Starting from two neighbor-

ing pointsf then after some delay, the arrival points become

almost completely uncorrelated namely, shortly after the time

of start the two curves become completely different. The

explanation of this fact is quite simple: at each turn the

point is either ejected toward the other convection point or

remains on the same stable manifold. Thus, starting from two

cióse points P and P'r their distance increases exponentially

along the unstable manifold and after a number of turns one

of these points will be ejected and the other will not, and

the trajectories will become completely different from this

instant on.
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The mixing property is equivalent to the absence

of "long time" correlations or of memory effects, and it may

be restated as follows. Let ^(x) and 0(x) be any two smooth

functions of X = (X,Y,Z), then the time average •

where, by definition

The time correlation functions of the Lorenz egua

tions have indeed this mixing property. Thus, a simple deter

ministic system with a few degrees of freedom may actually

appear as having a random behavior, not originated as the am

plification of some random noise.
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i atractores no periódicos y otros fenómenos no lineales
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¡ En este trabajo se estudian las inestabilidades termoconvectivas de capas fluidas ",
! con especial hincapié en el problema de Rayleigh-Bénard. En la aproximación de
1 Boussinesq-Qberbeck se presentan tanto soluciones estacionarias como dependientes del
i tiempo (tales como las oscilaciones de relajación) y asimismo se discute la transición
¡ a la turbulencia. • •
| También se estudian las soluciones estacionarias, ciclos límites y estructuras espa

cíales inhomogéneas (ordenadas; estructuras disipativas) en sistemas sencillos de
¡ reacción-difusión.
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Por último, se construye el atractor no periódico (o anómalo) que aparece para altos
¡números de Rayleigh en el modelo de Lorenz de ecuaciones de Boussinesq-Oberbeck trun-,

cadas y se discute asimismo el fenómeno de la turbulencia.
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Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the
truncated Boussinesq-OnerDeck model of Lbrenz, is constructed, and a discussion of
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