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1. Thin horizontal fluid layers vertically heated

1.1 Bénard's cellular patterns

It was at the turn of the last century that Bénard
[l90d} reported on carefully controlled experiments of con-
vected motions in thin horizontal liquid layers heated from
below. Since his [1900,190%] two papers (based on his Ph.D.
dissertation), Bénard and collaborators devoted an extensive
number of publications to the same subject-seeking in the
phenomena he studied a tentative explanation of a large num-
ber of apparently disparate problems.

Bénard worked with layers thinner than about a
millimeter (aspect ratio of 1/100 and less with error to about
1 ﬁm) lying on a metallic plate which was heated and maintained
at a uniform temperature. Thé upper sﬁrface of the liquid (most-
ly spermaceﬁi of whale that meltsyat 46°C) was free, in contaét
with the ambient air that was at a lower temperature than the
bottom plate, on occasions at 100°C. The detailed development
of the phenomena he observed occurred in two distinct phases,

Firstly, when the vertical temperature drop was
large enough, a random motion of thé fluid resulted, Shortly

thereafter, the first phase of relatively short duration (in-

‘creasing with fluid viscosity from a few seconds up to several

minutes) appeared in which the fluid formed cells of almost
regular shapes. In this phase, the cellular cross-sections
showed nearly regular polygons of four to seven sides. During
the éeéohd stage the cells became equal and regularly spaced

hexagons filling up the plane. Thus, the limit of the second
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phase was a steady regime of prisms with vertical boundaries
and hexagonal cross-sections. The liquid rose in the core of
the cell, moved outward at the top, descended at the outer
periphery and moved inward at the bottom. Incidentally, Bénard
made the circulation visible by pouring in the fluid a few
‘grains of lycopod of abéut 20 um diameter, whose individual
motion he was able to follow in detail. He correctly charac-
terized the spatial periodicity of the phenomenon by defining
its wavelength as the distance between centers of the hexagonal
parallelepipeds.

A number of other important observations were also
made by Bénard, that, unfortunately, most of the workers in
the field (including Lord Rayleigh) have'disreﬁarded. Bénard
attributed an important role in the phenomenon to surface
tension inhomogeneities without, however, elaborating deeper
on this point (B&nard [1901, pp. 92, 134, 135]). He carefully
studied by sophisticated means originally developed by Foucault
in telescope making industry, the free surface deflection apd
~gave guantitative estimates of the maximum vaiues of depression
and elevation from the surface level, He estimated the surface
deflection at maximal 0;5 ﬁm with a 1 mm, deep layer under his
best experimental circumstances,

On the other hand, we rather expect a flattening of
the free surface on increasing cell depth and eventually a
transition to a deflected surface for larger cell gaps with
elevation in the areas of upwelling fluid (see, however, our
discussion in Section 5 beloW); But that depression correlates

to upwellipg fluid flow in surface tension-driven convection
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as noted by Bénard, does not seem to be so well established,
Berg gE_gL.{l966] did find the opposite configuration on re-
peating one of Bénard's experiments using approximately 1 mm-
thick layers of melted wax, and found elevation that occurred
above cell centers,

Another result also described by Bénard is that on
decreasing the thermal gradient the surface deflection is first
drastically reduced, then later disappears very slowly with
the temperature drop. This was achieved by merely letting the
spermaceti layer cool off from 100° down to sclidification
(46°C) . Bénard's thermal gradients were of about a degree per
millimeter. Incidentally, Dauiére[}90]] produced solidified
Bé&nard cellé by quickly cooling a thin'iayer of melted beeswax

undergoing convection. At the same time he also found an analo-

~gous behavior for the convective velocity and the heat flux,

The heat flux was linearly depending on the (linear) velocity
field at a given point. He estimated the angular and linear
convective velocities and the mean periods of circulation of
suspended particles in the fluid,

Bénard heuristically. and correctly attribﬁted the
surface deflection to surface tension tractions: "La tension
superficielle a elle seule, provogue déja une depfession au
centre des cellules et un exces de pression sur les lignes de
falte qui séparent les cuvettes,concaves les unes des autres“
(Bénard {}90%; p; 92; see also é. 134 ). He also‘gave an esti—
mate of minimum curvature radius at both depression at the
cells' center (30 cm., - 50 cm.) and elevation at the cells'

edges (10 cm. - 15 cm.) at 100°C and 1 mm. layer depth.
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Bénard measured carefully the surface area, s, of
the cells, and compared it with the depth of the fluid layer
in a number of experiments.

Lord Rayleigh [lQlé] investigated the dynamical
origin of Bénard's cells. His analysis yielded the fundamental
result thaﬁ a top-heavy fluid layer was stable under the joint
iﬁfluence of viscosity and heat diffusion until the vertical
temperature drop was large enough to overcome these two dissi-
pative and stabilizing mechanisms. Lord Rayleigh found that
the sole parameter determining stability Q;; the temperature
difference made dimensionless by a combination of parameters
that yield what is now known as the Rayleigh number Ra =
_ quTd3A£v.This is also the product of Prandtl number times
Grashof number. Thus, Lord Rayleigh discovered that convec-
tive flow sets in when the rate at which (free) energy is
liberated by the uprising of the hot, less-dense fluid near
the base exceeds thé rate at ﬁhich energy is dissipated by
thermal conduction and viscous damping. This argument was
later taken up to construct a variational principle (see
Section below) that governs the (linear) mathematical
stability p:oblem (for historical remarks and details see
Chandrasekhar [196;], Jeffreys [1956], Pellew and Southwell
[1940] ana sani [1963])

About twenty years after the publication of Lord
Rayleigh's masterly analysis; several writers remarked on
the inadéquacy of Rayleigh's quantitative predictions, on
two relevant counts. Firéﬁiy, Vernotte {}936-&,%] realized

that "en recalculant les anciennes mesures de Bé&nard, on

trouve, dans l'experience effectuge avec une epaisseur de
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spermaceti €gale a 1 mm., qui semble la meilleure au point

de vue thermique, une valeur du nombre de Rayleigh critique,
dont on gque l'ordre de grandeur, mais qui se situe entre 5

et 10" ... instead of 657 as given by Rayleigh (for stress-
free surfaces). As a matter of fact, Low and Brunt 1925 seem
to have been the first to notice that the gradients in Bénard's
experiments were at least tenfold less than required by the
theory of Lord Rayleigh [}91§]. Later, Bénard himself recog-
nized the discrepancy (Bénard {}927, l92a_y.and estimated the

¢ or 1073 o ", though Vernotte's es-

2

ratio at 10~ A
timate is roughly 107°. It is rather unlikely that so large
a discrepancy arises solely from inaccurate boundary condi-~
tions. Yet a serious attack of the probleﬁ had to wait twenty
years longer.

Secondly, the wavelength of the cellular pattern
predicted by Lord Rayleigh was not fitting Bénard's results
so well., Vernotte's arguments didvnot lead, however, to a
more suitable and fertile theory of Bénard convection (see
also Volkovisky [1939]). Though Vernotte [1936a, p. 119] asked
the right question: "A-t'on le droit d'employer le principe
d'Archimede et d'éCriré;hcomme'le fait Lord Rayleigh, les
Eqguations de 1la éonvection?".

It was not until the 1950's that scientists realized
the necessity of incorporating surface-tension stresses in a
dynamical model of Bé&nard convection. This became a necessity

when Block (1956] found Bénard 'cellules' in horizontal layers

- of fluid, when the higher temperature was on the upper side.

A straightforward and illuminating theoretical description of
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surface-tension-driven convection was given in a paper by Pearson
[1958]. Pearson's model did not adequately accomodate all of
Block's findings, as we shall see below. In retrospect, it is
pitiful that Bénard did not explore the role of surface-tension
inhomogeneities that he however recognized as eventually important
in his experiments (see also Volkovisky [1935]). A persistent mis-
interpretation of Bénard's hexagonal cells makes writers even
today illustrate buoyancy-driven convection with some of the
beautiful original pictures of Bénard. .

On the side, we recall that Bénard's experiments
referred to above concern the stability of fluid layers uni-
formly heated from below. Providing a non-uniform temperature
at the bottom one is able to force the appearancé of hexagonal
or any other polygonal patterns. Much more soythan a piece of
poetry or the experimenter's signature could; in principle/ be
convectively constructed! ksee Koschmieder [19751).‘

Another remark that Bénard made and that still re-
mains a puzzling guestion to us is that probably the air layer
on top of the spermaceti was strongly convecting. This was one
of the mechanisms that he advocated for the heat exchange be-
tween the spermaceti and the upper air. Has the convecting air
layer any influence on the hexagonal tesselation? Koschmieder
[l962]-investigated this point. Straightforward and simple cal-
culations, using the scanty data provided by the experimenters,
permit us to think that the air layer on top of the spermaceti
should have always been convecting. Bénard convection with a
two-liquid layer heated from above or below would probably help

clarify the issue.
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Further experiments on Bé&nard surface tension-
driven convection had been conducted by Terada [l92§],
Volkovisky [1939], Block (1956] , Koschmieder £l966,l967J and
others. Volkovisky and Terada worked with fluid layers flow-
ing horizontally with a controlled preimposed horizontal velo-
city. Their results reinforce the picture already presented
by Bénard and we shall not discuss them here. Block was the
first to point out that Bénard's cell can be obtained by

cooling a layer from below. Block was also able to suppress

convection by adding tensioactive agents to the upper surface
of the layer. Koschmieder was the first to remark that two bi-
furcations do contend to finally show up the second one. For
in a finite box, the form of the boundaries impdse a transient
primary flow before the hexagonal tesselation develops at the
steady state. Whether or not the primary phenomenoh is an exam-

ple of inverted bifurcation is something that remains open.

A These facts.tpgether with the output from experi-
ments conducted by astronauts on board the Apollo XIV and Apollo
XVII spaceships where gravity was 10_6_g on Earth (see Grodzka
and Bannister [1972,1975]) unambiguously manifest that gravity
was rather playing a minor role, if any, in most of Bé&nard's
original experiments. Surface tension-driven convection can be
considered as a specific phenomenon qualitatively different
from buoyancy-driven flows..Theories that support this view
have been developed first by Pearson [1958] and laﬁer, and
more realistically; by Sternling and Scriven’[l959], Scriven

and Sternling [119644) , Smith {196-6], ; Bentwich {197:1} . There is
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also the work of Nield [1964], who described the convective
flows when surface tension and buoyancy are operating in the
fluid layer. We shall describe Nield's predictions further
below.

Lastly, we note that a standard Newtonian and
Boussinesquian liguid layer, say of silicone o0il, heated from
below and constrained between two horizontal conducting plates
accomodates patterns of rolls at and beyond a certain critical
temperature difference. That agrees nicely with Rayleigh's
predictions (as later improved upon by ma;§'authors; see for
details Chandrasekhar‘[l96l]:or the monograph of Velarde and
Pomeau‘(i975]).The particular orientation of these rolls is
stropgly influenced by the lateral geometry bf the coﬁtainer.
However, non-Newtonian and/or non-Boussinesguian fluid layers
may not follow the same pattern. Symmetry-breaking mechanisms
such as a kinematic viscosity stroﬁgly dependent on temperature
or different b.c. at the horizontal plate boundaries may force
a pattern-formation of its own. The hexagonal cell pattern un-
der an alr surface developed on a pattern of rolls. These tran-
sient circular rolls reflect the unavoidable existence of a
lateral wall. Recent experiments. by Hoard gE_ii.'(i970)r with
a rather peculiar aromatic hydrocarbon (Aroclor 1248) which has
a viscosity varying exponentially with temperature, support
this conjecture., No definite theoretical explanation exists,
however, to account for all findings of Hoard EE_Ei' though
theories seem to point in the right direction since the pioneer-

ing work of Palm [lQGé]:(see Segel and Stuart (196%), Palm and

¢iann‘[i9643:” .. Joseph [lQ?i].and Velarde.[l976,l977n.
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1.2 Rayleigh's convection: an heuristic approach

The problem that‘concerns us here is the stability
of a horizontal (standard) liquid layer heated from below in
the presence of gravity. According to Lord Rayleigh, above a
critical temperature difference the system falls away from un-
stable equilibrium and it may do so in several principal modes,
in each of which the departure at time t may be assumed to be
proportianal to the small displacement of velocity supposedly
present initially, and to an exponential factor ect, where ¢ is
positive. If ihe initial disturbances are small endugh, that
mode (or modes) of falling away will become predominant for
which ¢ is a maximum. When it becomes difficult to prove the
maximum‘growth of a mode, the criterion of (experimental) reali-
zability is rather: the unstable mode that .develops belongs to
the minimum value of the external constraint, namely the mode
corresponding to the smallest temperature difference. Both cri-
teria are expeéfed to provide the same answer.

Let us consider a bubble of hot fluid, of radius R,
and which according to Archimedes' law moves upward with a
constant velocity V in aAfluid layer where a constant linear
temperature gradient is maintained. An heuristic,énd appealing
argument will show that, if the mean temperature gradient is
large enough, then the upward buoyancy force on the bubble
may overcome the drag force due to the viscosity of the fluid
(actually it could be also proved that the downwards motion of
a gglé_bubble may become unstable). This viscous drag force on
the uprising bubble is in a first approximation (defined here

by the condition VR/vA<<.1; this corresponds to low Reynolds
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number,see section below) of oxrder -nRV. With nn we denote thé
shear viscosity of the liquid and v is its kinematic viscosity

(v = n/ep, where p is density). On the other hand, the buoyancy
force arises from the instantaneous difference between the fluid
density and temperature in the bubble and its local neighborhood.
The relaxation time of the bubble's temperature fluctuation, as
due to heat diffusivity is T i R2/K, where ¢ denotes the thermo-
metric conductivity_(also calied thermal diffusivity). This means
that at a given instant of time, t, the temperature within the
bubble is about that of its surroundings at an earlier instant of

time, t - T; so that at time t the temperature difference T be-

tween the bubble and the fluid is §T = | grad TYV§-= | grad T VR2A<,

: 3 -5
b = pas TR g =pgR g

which yields an Archimedean buoyancy force F
[grad T V/k. Here o ='% (3p/9T). Thus, the motionless steady state
approaches unstabie equilibrium when this buoyancy force slightly
overcomes the viscous drag. The actual ratio of buoyancy to drag
obviously increases with the size of the bubble; so that insta-
bility eventually begins for bubbles of maximum éize, of say

height d, compatible with the boundaries of the container. Thus,

at the unstable equlllbrlum position we have IFbi% Rn{V{ .or else

KV
cannot however claim any quantitative value of the critical tem-

- Ra 2> 0(1), with Ra = ad<jgrad T)g. With this rough estimate we

perature drop for the onset of convection. We merely single out
which dimensionless combination of parameters is to be of relevant
use in the mathematical stability analysis that will be given below.
This result was indeed achieved by Lord Rayleigh (lqu . Remarkable
enough it appears that for liquids of vanishing viscosity all modes

of disturbance ought to be unstable,even when we include the con-

duction of heat during the disturbance. Roughly speaking, it



suffices a vanishing small vertical temperature gradient to yielé
natural convective flows in compressible ideal ligquid horizontal
layers when the higher temperature is below.

Furthermore, the heuristic argument developed above
also shows that if the thermometric conductivity vanishes there is
always convective instability when heating a fluid layer from be-
low; but if k and v are finite and large enough, a motionless
steady state can be maintained for (not too large) vertical tem-

perature differences, although a higher temperature is underneath.

The argument easily carries over to (non-Newtonian)

power law fluids, and yields an important consequence. In a power

avym
oY
and m are two material parameters; V and the coordinate y are taken

law the stress-strain relation is given by a law w( where o
transverse to each other. Thus, we have a viscous drag of order
wRZ(V/R)m. Then the unstable equilibrium condition is sz(V/R)m b

deSnggrad T|/k. From which it follows
4 - 34+m .
o VTR g4 Tl e ) 0 4

The Newtonian fluid layer, namely the case m =:l, and w =V,
yields back Raé %.O(l). It thus appears as a case where the onset
of convection doés_not explicitly. depend on the (experimentally
uncontrollable) initial disturbances.

In our heuristic argument developed above, we have
disregarded compressibility effects. It is instructive, however,
to discuss the physical relevance of such effects as they play
an important réle in atmospheric circulation and the convective

motions in the deep ocean.



- I.12 -

Suppose now that the bubble is adiabatically isol;ted

by a membrane impervious to matter, but which may freely expand

if the pressure of the surrounding fluid is decreased. The £fluid,
for simplicity, is assumed inviscid. Let p(z) denote the density

at the bubble's center at height z, and at a temperature T. Sup-
pose that an external weak-enough force is applied so as to slowly
raise the bubble to a new height z + pz'witﬁout, however, appre-
ciably disturbing its neighborhood. Such a slow motion is taken
adiabatic, and moreoveg,‘isentropic. The bubble's adiabatic ex-

pansion will change its density to

9(2-\—5-‘:& §6a)+7(, §d/? y(&)—-x goggff (1)

where use has been made of the adiabatic compressibility Xg =

1,9p

Also, we have introduced the corresponding hydrostatic pressure

a derivative taken at constant entropy (or heat flux).

variation ép = -pgdz. Accordingly, the Archimedean buoyancy force
per unit mass acting on the bubble at the new height is equal to
the local volume of the bubble times the {(mean) local density
of the surrounding fluid, called B. Thus, the net Archimedean

uprising force per unit mass is
‘ [)O(E*gﬁ) f(;,}.é‘z)]—- & [§£§)+X ?3']52 (2)

This equation determines the magnitude of the external force
which is required in order to maintain the bubble in equilibrium
at the new height z + §z. Removal of such an external force yields

an accelerated motion of the bubble, whose time evolution is
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~governed by Newton's law

dF [9f

4 19 _ °f = )
%!'_k.zg% :.‘%";"%—54‘/%8?% S?’—:f‘% V2 % )admfa d (3)

in which (aE/az)adiab denotes the (mean) adiabatic gradient. This

Eg. (3) describes a vibrating motion of angular frequency N, where

2_ _a T 2F (O |
h) - §?~ %}; — (ﬁrE“ZLAQ&L-j] | (4)

The quantity N is called the Brunt-Vais813 frequency (or the
buoyancy frequency) in meteorology and oceanpgraphy.AIt corres-
ponds to the natural frequency of oscillation of a vertical column
of fluid given a small displacement from its initial equilibrium
position. The corresponding periods 2I/N are typically of a few
minutes in the atmosphere up to many hours in the deep ocean,

Notice that if the fluid is (almost) incompressible
and the density gradients afe linear then the Brunt-Vaisild fre-
guency is a constant. As in a resting, isothermal fluid column
ther= can be acoustic (or high-frequency) waves and gravity
(or.low—frequenCY) waves the quantity N yields a separation be-
tween these two classes of wave motion in the fluid.

The Bfunt—vaisala frequency in a f£luid medium gives
an indication of‘static‘stability. Real values of N mean stable,
zero frequencies mean neutrally stable; and negative values of NZ,
namely imaginary values of the'Brunt—Vaisglg constant would imply
| instability; If we move the bubble upwards a small distance,

then in a stable stratified medium it would be too heavy, so it
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would sink down, and if there were no friction it would overshoot,

‘and then it would be too light, and it would oscillate with fre-

gquency N.

Stability for an incompressible fluid layer reduces
according to definition (4) to the condition %%‘< 0. Thus, an in-
compressible inviscid (or ideal) fluid layer is unstable if its
stratification is mechanically unstable., This intuitive statement
is far from true in real fluid layers where cross~transport pheno-
mena may be operating (see for instance Velarde and Schechter !}975)).
The condition of instability for a compressible inviscid £luid,
namely thaﬁ N2 be negative, is called in Astrophysics the Schwarz-
child criterion.

Alternative expressions to (4) can be obtained by
straightforward use of elementary thermodynamic relations. Let us
consider the equation of state p = p(T,p). Thus

AT
*"‘“'ZTJ){"““X’“’ f%X oﬁ

> (5)

where Xep é % (=} is the isothermal compressibility. Thus we have
— 2
2 0T X-X) 5T+?_‘_2I
Nz%oz——-i-j’g, T (6)
0% C’F
The Brunt-Vgisgla-frequency vanishes when the fluid (mean) tempera-

ture gradient is

2: 35 (XT ~ 7(5) = - 3;;?(— (7;

In such a case our bubble's and the surrounding fluid's density

and pressure are equal. Therefore, the adiabatic temperature change
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of the bubble, say T, is equal to %% §z, and using (7) we get

o

The quantity T + E§Q<XT~XS) is called the potential temperature in

oT = *%(XT-XJ:'%;I ot S[T-&-i_{?ég;)@]:o(s)

atmospheric convection analysis. We see that in the absence of dis-
sipation and heat transfer this potential temperature is conserved.
Notice that according to (8) the bubble's temperature is conserved.
in slow motions, when (XTfXS) is small, namely‘when the speed of

sound in the fluid medium is very large. The velocity of sound in a

fluid is equal to
a Y2 ""/2. ' .
c= 7‘)_%)5 = (f I5) » ' (9)

Hence, for a slow adiabatic process -
2
0F V/ 2 .
S = — g ~ /C (10)

Thus, the condition V «<c amounts to a situation with
small density contrasts ¢§p/p. <<1. This“corresponds to the Boussinesg-
Oberbeck approximation.

fhere remains the discussion of the stability cri-
terion for a viscous compressible fluid layer. We shall then bridge
the gap between our two previous and disconnected reasonings. At
the same'time; a more transparent interpretation of the Rayleigh
number; as well as of the Brunt—vaisglg constant will come out.

When a dissipative transport process is introduced,

it usually yields a characteristic relaxation time or say a character-

istic frequency. Let viscosity and heat transport be the two dissi-~
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pative processes operating in our fluid layer. Let us disregard
compressibility effects at present, for simplicity. We have
found above that stability is governed by the condition (note

that here 2% is negative when the heating is from below)

Ka - — o{%x’w ‘D,T/:’)E' 4 (11)

Eg. (11) can be written in terms of the Brunt-Valsala constant,

2.4._.
N, namely Ra =;~NK§ . Thus, condition (ll) is equivalent to

— f\) %\j/aﬁ (12)

for a viscous heat dissipating incompressible fluid layer

2,

heated from below. Notice that the introduction of dissipa-
tive dynamic mechanisms provides a lower bound value to the
characteristic Brunt-viis&l% constant of the layer. One is
tempted to state that dissipation rather plays a stabilizing
role when a fluid layer tends to be destabilizéd by an ex-
ternal (thermal) constraint. Examples exist, however, that
show Qiscous damping playing a dual role botﬁ stabilizing and
destabilizing depending on certain conditions of operation
(see for instance Lin [?967, pP. 4?), and Yih [196%3). If now,
and according to our previous arguments we recall that incor-
porating compressibility merely amounts to readjusting the
actual thermal (temperature or density) gradient in situ to
its excess over the adiabatic wvalue, the stability criterion

for a viscous and compressible fluid layer is given by the
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same criterion (l1l). One needs only to replace %% by the cor-
responding factor appearing in the Brunt-vVaisali frequency, Eq.
(6). This was the suggestion of Jeffreys [}93d). Lastly, it
remains to discuss whether the upwelling fluid at the cells'

centers provokes, in predominantly buoyancy-driven convection,

a surelevation of an open surface to air.
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2. Thermohydrodynamic description and the Boussinesg-

Oberbeck approximation

2.1 The evolution eguations

The governing equations of Newtonian fluid flow
are the transport balance equations and the two equations
of state (mechanic and caloric) which represent the field
theoretic description of a continuum where we shall assume
that the Gibbs local-equilibrium assumption-holds (see for
instance Prigogine (1949], Nicolis, Wallenborn and Velarde
[1969)). As a matter of fact, we shall also restrict our
consideratioﬁ here to the simplest realistic continuum: a
standard Newtonian fluid. We are interested in the -combined
interplay of the basic fundamental eguations of mass trans-
port, momentum (or vorticity) transport (also called fluid
flow) and energy transport (or heat). There is a straight-
forward analogy between all the three balance equations if
one chooses the physical quantities and the (approximate)
linear phenomenological laws in the proper manner. We shall,
however, not dwell on this basic though rather academic ques-
tion and shall merely repréduce the equations as derived for
instance in the textbook of Landau and Llfshltz (iBS%) see
also Bird, Stewart and Lightfoot [1960)) For the time being
we shall also restrict our consideration to single-component
fluids. The first equation is the equation of continuity and

expresses the (global) conservation of matter,

\/ O or alternative Olf \
tj’+ 5’ lternatively Ig’*“’f’wv (1)
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in which p and V denote respectively density and velocity.
Next we express Newton's fundamental law as set for a con-

tinuum by Euler
9'5__\11«. + f \/P?_YC = f F B? + 5___5:}'
o 0¥, OX; K, @

rate of increase rate of momentum external source rate of momentt

of (linear) mo- gained per unit of momentum or gained per unit
mentum per unit volume by convec- body force per volume by trac-
volume, namely tion; inertia unit volume tions; pressure
the local accel- terms and viscous fo
eration ces

Here Fi' p and Ok denote external force, pressure and stress

tensor.

We shall approximate the stress~strain relation by

*
the Navier-~Stokes model( )

n. _ 2 g‘ ) ;;S‘ (QVL

s——

”K“ﬁ)(bxk v 3k ‘ax oxg ¥

in which n'and ¢z denote respectively shear and bulk viscosity.

Thus, if n and ¢ are takeﬁ as constants, a compact form to (2) is
g%% _,.f\/.%ra,&\/:-:fF—%m&fw?dX"%@V*‘ .
. H
(5w ) grok vV

(*). Every time that two indices are repeated the summation con-
vection is used. Elastic stress refers to the material's re-
sponse to volume changes but it is to be noted that there are

two kinds of viscous stresses: those generated by the material

to oppose volume changes and the stresses generated by the ma-
terial to oppose changes of shape. Real fluids. with a non-vanish-
ing bulk viscosity exhibit both viscous and elastic behaviour
under isotropic pressure,
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There are authors who instead of using ¢ to define a bulk
viscosity coefficient, use A = { - 2n/3. Cross-differentiating
Eq. (4) in a convenient way, namely taking the curl of v in the
absence of external férces or with gradient forces, the pres-
sure fiéld can be made to disappear and defining the vorticity

= rotv = curl v, we get
: A v ,

:?-"thmtc\/hw)*‘v"&"?f“”i“w (5)

in which the kinematic viscosity, v, appears as the coefficient

- of vorticity diffusion.

The (internal) energy balance is

AN 3__@___@&; iR fa-—\—/‘;+ Q (s

rate of gain of heat flow or viscous heating energy generatin
(internal) ener- energy in- due to surface by internally di
gy including crease by con- +tractions tributed sources
convective con- duction : or chemical pro-
tributions cesses, etc....

In Eg. (6) e, g and Q denote respectively internal energy den-
sity, heat current and internal heat source>within the fluid
layer.

We shall restrict ourselves here to Fourier's heat

law
| ﬂﬂ":'\?fw—r (7y

in which k is the coefficient of heat conductivity that we take

constant,
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The energy balance or heat equation can also be

expressed in terms of the (local) entropy density, s,

08 - .
T4t = pT(5e + Vramds) = -dirg e Tigea Vo

Thus, entropy is a conserved quantity in the absence of vis-
cosity, heat flow and internal sources. A more convenient and
familiar equation comes with the use of the temperature field.
After some elementary manipglétions, a general heat eguation

follows from Eg. (8),
CVGQT-’:-T( )gxxv\f;-mi-o*:%@\/i—y@
7 v); kil

Alternative forms of the l.h.s. of (9) are

(9)

i

_pe, 4T T g
)oTAS PCy 4L fx a% f%i“}r‘"{rdk (10)

where o and Xqp are respectively the volumetric expansion coef-
ficient and the isothermal compressibility, and S is the spe-
cific heat at constant volume.

From Eg. (9) a number of useful and more familiar
approximations follow. In the absence of internal sources and
with no viscous heating, and using Fourier's law (7) holding k.
constant, we have:

(i) for an ideal gas

pe 4T AT _ \Q,m%mﬂ_,fm—v

(11)

dp _ =
el = 0 and Sy <cp

SQCF%’)}-: ‘Q/aU»r-WT a2y

(1i) for an incompressible fluid,
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(iii) for a guasiincompressible fluid or a f£luid at constant
pressure namely a fluid with s = s(T) or p = p(T) and %% = 0,
we have

M% - p o I f gV grdT= kabin yod T

(12)

The thermometric conductivity or coefficient of heat diffu-
sivity is « =,k/pcp whose dimensions are the same as those of

the kinematic viscosity, v.

2.2 . The Boussinesg-Oberbeck model applicable to a thin layer

of fluid

The essential feature of the thermohydrodynamic
description just_given above is that the density, velocity and
temperature fields are interdependent. Indeed, even though
the fluid velocity may be due entirely (like in Rayleigh-
Bénard convection) to the action of buoyancy (Archemedian)
forces arising from density Variations, this density distri-
bution aé well as the temperature field, is modified as soon
as the fluid moves. Note that energy is first transported by
conduction, described by the r.h.s. of Eq. (9), which induces
the velocity disturbance through the buoyancy mechanism. The
1atter is accounted for the first term in the r.h.s. of Eq.

(4) where F is taken constant and p varies with temperature.

The extent of this coupling is affected by the Prandtl number,
and for instance in liquids with small Prandtl number, like _
the liguid me;als, thé thermal conduction proceeds rapidly and

the velocity also develops quickly. These facts together with

 non-linearity of the inertia terms suffice to generate an
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(almost) intractable differential problem. Besides, all para-
meters like n, k, ... are at least functions of the relevant
thermodynamic independent variables, say P and T. A number

of people have tried to reduce the mathematical complexity of
the problem to the mos£ extreme though relevant and useful
simplification. The simplest model in the literature carries
the name of Boussinesqg though a number of authors had used it
long before Boussinesq. We now merely state the heuristic ar-
~gumentation that drastically applied yields the Boussinesg-
Oberbeck model: (i) The system will consist of a thin hori-
zontal fluid layer heated from below between two rigid élates
or a fluid layer between a rigid plate and an upper surface
open to ambient air. In an experimental situation at least two
different length scales are invoived: the vertical depth of
the fluid and its lateral extent, called respectivély d and L.

We shall consider (d/L)..¢< 1. d/L defines an aspect-ratio.The

only external mechanical force to be considered is gravity

and it will be assumed that the acceleration of gravity (g)

is constant throughout the layer and is directed vertically
downwards. (ii) Variations in density are assumed to be brought
about only by moderate heating (the isothermal compressibility
is ignored) and are taken into account only in the buoyancy
term of the Navier-Stokes equations. This implies that any
convective Velocity.is much smaller than the speed of sound

in the f£luid, and that any accelerations in the fluid are much
less than g. Thus, density differences are considered to be
much smaller than the mean density. Thus, the effects of

compressibility and of adiabatic temperature gradient are



- I.24 -

disregarded. This assumption is easily justified in standard
Rayleigh~Bé&nard experiments, since the expected pressure con-
tribution to the variation of density is about two orders of

magnitude smaller than that due to the temperature field.

(*)

Roughly, the density variation is of order of magnitude

pXng The ratio of the gressure effect to the temperature
XmP

effect is |XTpgd/dAT|%——a—2~ for a AT ~ 10 and d v 1 CGS units.

Thus, for a water layer at room temperature and atmospheric pres-

sure, o v 10%0c71 and ¥ v 1072 atm T A 1of}} CGS units; whereas

for air a Vv lO—3°C—l, Xop n 107% ces units and o 1073 cGS units.

Thus, for a water layer we have an estimate of IXTpgd/uATl n 10—5

whereas for the layer of air it amounts to 10_2. It can safely
be disregarded. (iii) The £luid properties n, k, cp and o are

assumed to be constant and obviously ¢ is disregarded due to

condition (ii) above. On occasion in standard Rayleigh-Bénard

experiments this may be one of the guantitatively less well
founded assumptions. (iv) The rate of heat generation is assumed
to be zero and the irreversible degradation of momentum (energy)

into heat which is described by viscous dissipation is ne-

~glected (Di = 0).

With the above stated approximations the evolution
equations reduce drastically though they still do not yield a
simple problem. The caloric equation of state is approximated

by a truncated Taylor expansion

/f =;f° [:(-' CK(ZTT"TZJEJ (1)

(*) A pressure of 200 atm. is required to increase the density of
water by one per cent; values of the order of one hundred atm. are
also normal for other liquids. And even at the enormous pressures
present in the extreme depths of the ocean the density does not

exceed its surface value by more than five per cent. A flow would

have to have a velocity of about two hundred ms.~ 1 to produce a
pressure rlse of two hundred atm.» : . »
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where Po is some constant reference density at temperature To’
and the volume expansion coefficient o is evaluated at this re-

ference state.

The continuity equation describes a solenoidal field
dur V =0 (2)

The Navier-Stokes equation reduces to

‘ _ T Ve = L gmd b+ Vir red V
%=%V+V~%Mv"“ﬁﬂ? £, ¢ f <3g>

wherevg,=,(0,0,fg) and v =,n/pO. Thus, we consider that the
acceleration due to the buoyancy might be even larger than the
inertial acceleration due to the convective term in the r.h.s.
of (3).

The heat equation is merely

,?-%T-&-V\ ared T =t dirged T "

where a second equation of state ¢ =.cpT has been used, and here
K =,k/cppo. |
For a formal derivation:and details see Pérez -Corddn.

and Velarde ElQ?SJ and Velarde and Pé&rez Cordén Il97€a.
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3. The boundary conditions for a horizontal fluid layer

heated from below

In the previous section, we have presented the
thermohydrodynamic description of the spatial and time evolu-
tion of a fluid layer. We are-dealing with a set of nonlinear
partial differential equations and a discussion of initial con-
ditions as well as boundary conditions naturally follows.

To properly fix the initial conditions in our sta-
bility problem poses a delicate problem. A realistic descrip-
tion of an initial state of the fluid would force us to the
introduction of stochastic initial values. This i1s beyond the
present status of the theory and surely beyond the limited
scope of our paper (see,‘however,-Newell, Lange and Aucoin
5197€}). On the other hand, and at least for the first in-
stability problem that we are considering here, our interest
is restricted to steady state solutions of the time-dependent
problem. This means that we are interested in the asymptotic
behavior, for large intervals of time (t + «) of the thermo-

hydrodynamic equations for given external constraints. Thus,

. we may simply aiSregard the initial value problem here, though

it is to be noted that in nonlinear problems a classification
of the initial conditions may very well yield a classification

of solutions.

3.1 Thermal boundary conditions

Explicit and detailed account of b.c. is indeed a
matter of prime importance. A rigid conducting surface behaves.

in a drastically different way from a free and insulating surface.
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In this subsection, we shall consider only the thermal inter-
action of the fluid layer with its eventual boundary.

We consider a thin fluid layer of depth d constrained
between two horizontal infinitely extended "blocks" of width
h and heat diffusivity Ky For simplicity, both blocks are
taken from the same material and have the samevdimensions.
Note that we are only interested here in small aspect-ratio
configurations for which we can disregard considering lateral
boundary conditions. ;ateraliboundaries st;gpgly influence,
however, the possible horizontal patterns of the convective
flows. This, together with any preimposed flow does indeed
force a pattern of its own, say rolls along a privileged direc-
tion or with axisymmetry according to the configuration adopted
in a particular Rayleigh-~Bé&nard experiment (see Volkovisky {19353,
Soberman E}95§3, Koschmieder €}9671, Stork and Muller £}97§§,
Bergé and Dubois E;Q?{}). Those peculiarities are not, however,
our main concern here as firstly, in small aspect-ratio: configu-
rations we may focus attention to a rather small part of the
container and secondly, it does little good to £ix lateral b.c.
if we are not capable to solve the complete boundary value prob-
lem. It is, however, importaﬁt to note that lateral boundaries
do indeed tend to impose a pattern of their own even in surface
tension~driven convection. In Koschmieder's experiments, there
appear two symmetry breaking mechanisms, one imposed by the
lateral boundaries and the other being surface tension inhomo-
~geneities, the latter being stronger than the former and deciding
the steady stéte convective regime at critical and slightly super-
critical conditions. We shall disregard the presence of lateral

boundaries ¥see Davis{l967,68])~ where a discussion of the most
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simple theoreticai predictions in finite-box problems is pre—zz
sented. . |

Along each conducting block the temperature distri-
 bution is assumed to obey Fourier's law in the steady state.

(%)

We have
2 2?) :
. <D ‘95 (1)
whose formal solution is

D= A wsh(ez)+ Banh (a2) o)

Here the subscript 's' denotes a point in the solid block.
We have assumed sepération of variables (horizontal and vertical)
as a consequenée of symmetry. The separation constant is a2.
First we assume a constant and uniform temperature
along the outer surface of the block, we have GS =<QO at z = h,
where 90 is some controlled value. We may simply take GO =0
and define GS incorporating this controlled value. The same
occurs at z = -h where QS =_91 and by redefining GS we simply
write ?s = Q.
At the interface of contact between the blocks and
the fluid we assume continuity of the temperature distribution

and heat flux. We have, on the one hand GS = @§_ at z = 0. Thus

F
GF(Oﬁdé A. On the other hand, KSDGS =‘<FDGF at z = 0. We
haveK--E D QF = aB = =~a coth (ah) QF at z = 0. If the vertical
s ,

origen of coordinates is taken midway between the blocks, we

(*)With D we denote derivative along the z-axis: D = d/dz.
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(*)

have in dimensionless form
9F = E D 6 (3)
in which ' .

se. tomk (a k)
= —ZE

Bae. = 59-5 ad (4.2)

Similarly, at the lower boundary of the fluid we have

Note that the formal limits Bl< + 0 or BK + « roughly correspond
to the extreme situations KF << KS (a perfectly conducting boun-

dary, e.g. a good metallic plate) and Kp >> K (a perfect in~
sulator). Different values of B delineate possible realistic.
situatidns. It is also of importance to note that h is éon-
sidered finite, Two thick blocks of good conducting material
constraining a thin fluid layer correspond to the simultaneous

limitS'KF/Ks + 0 and h = =, This case has been considered by

Hurle, Jakeman and Pike [1967]. Boundaries of finite heat con-

.................................

L L L R A

(*). To dilstingulsh this parameter B from a similar parameter to

be defined in the next subsection dealing with the mechanical
boundary conditions, we shall denote it here with B . This quan-
tity is called a Biot number or a radiation-like parameter. Strict-
ly speaking at B, + « there is no fluctuation in the heat flux.
Thus, we have a prescribed heat flux condition and this is called

a Robin condition. The subscript 'F' denotes a point in the fluid
itself.
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Jonsson |1964].

| Quantitative, as well as qualitative differences
in behavior are to be expected between the two extreme cases
of highly conducting and insulating boundaries. For in the for-
mer, a fluctuation of temperature carried to the boundary soon
relaxes through the block whereas at an insulating boundary it
is rejected back into the fluid, and a quiescent initial linear
temperature profile is more easily distorted. Thus, a lower
critical temperature difference would lead to the onset of con-
vection. On the other hand, a lowering of éié critical gradient
yields a smaller energy amount liberated by buoyancy and to ac-
comodate convection the fluid rather accomodates convective cells
of large wavelength. Thus, a drastic decrease in wavenumber is
to be expected with insulating boundaries. As a matter of fact,
the wavenumber is vanishipg for an infinitely extended fluid
layer. This case was first considered by UeffreYS't}92€laVanish-
ing of.wavenumber merely means a wavenumber going to zero as

the aspect ratio goes to zero, i.e., as the horizontal dimension

~goes to infinity. For bounded layers the lateral boundaries

should provide a non-zero cut-off corresponding to the lowest
mode compatible with the prescribed lateral b.c.

At the onset of convection, any motion once initiated
can not be maintained, as Jeffreys pointed out,., The initial
linear temperature profile is distorted. At a slightly super-
critical temperature difference, however, the wavenumber accomo-
dated by the fluid layer would not necessarily be vanishing and
convection would be seen; It is to be noted that a straight-

1/4

forward calculation yields a behavior a ~ B” , a singular be-
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havior for small B. Thus, very little heat conductivity at thef
boundaries suffices to eliminate the vanishing of the wavenumber.
This matter needs, however, further elucidation since most if
not all Rayleigh-Bé&nard experiments are not done with insula-
ting boundaries. However, we will not discuss the thermal

boundary layer problem of such case.

Lastly, it should be mentioned the case of an open
surface to air or to another fluid. From the thermal point of
view, the exchange like in the case of a rigid block, demands
consideration of exchange of energy through radiation, con-
duction and convection. The three phenomena can altogether be
accounted for by a Robin condition that merely reduces to Eqg.
(4) with a generalized parameter B that takes into account the

specific characteristics of the two fluids at the interface,

3.2 Mechanical boundary conditions and surface deflection

As we'ha§e discussed in the latter part of the
previous éubsection, the boundaries of the fluid layer under
consideration may not be rigid metallic, plastic or crystal
plates. Instead, they miqht be taken to be other £luid layers
of a combination of rigid plates and surfaces open to ambient
air as in Bénard's original experiments. In this iétter case,
we also have the option of whether or not to consider surface
tension effects.

For large aspect ratio fluid layers, surface ten-
sion stresses should not be of prime importance énd instead
the dynamics is expected to be governed by buoyancy effects.

Whether in a particular experiment one or the other mechanism



- I1.32 -

is dominating is an interesting question, since for surface
tension-driven convection the up-welling areas of the fluid

seems to correspond to the hotter points of the surface and

it is then depressed. The opposite may be the case with buoyancy-
driven convection in fluid layers open to air: the surface above
hotter points is then elevated. We shall come back to this prob-
lem further below in this section.

The most extreme cases to be considered are rigid
plates and stress~free boundaries. We shall now give a detailed
description of both cases and the intermediate situation.

To make things simple, we consider a fluid layer Fl
sandwiched between two other iden;ical fluid sublayers'Fz. As
before, v denotes the kinematic viscosity and the subscript

refers to each kind of fluid. Let Vi(i = 1,2) be the flow

velocity in layer Fi(i ,l—2)vin steady state.

Every fluid éublayer is dynamically controlled by
the Navier-Stokes equation and the incompressibility condition,
For simplicity, we shall disregard at present any thermal in-
fluence of the boundaries and the temperature is assumed uni-
form throughout the fluid sublayers. For the upper sublayer
we have

V, i grond Va - gt =

(1)

QLQG‘ \G‘ = 0

(2)

Here Vs =.(U2,V2,W2) and w, accounts for the pressure contri-
bution. For simplicity we shall restrict consideration to a

second problem and take U, = 0. At the rigid boundary z = h
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we have Vz(h) =‘W2(h) = (0, whereas at the fluid-fluid inter-

face there is continuity of the flow and momentum flux,

V\Jl(o\ = W,L(O) = 0 (3.a)

(3.b)

, DV, (o) = vy DYy (2) .

Symmetry allows separation of variables like in the thermal
case discussed in the previous subsection. We may consider a
two~dimensional problem and take quantities independent of one

of the spatial coordinates, say X. We have

\!2.. (Y,2) = Vy (2)sin &Y

(4.a)
\/\/2 (y,2) = \r\)2(2) o ay

(4.b)
b (7,2) = 0y (%) 22

(4.¢)

that must satisfy Egs. (1), (2) and the b.c. Thus we have .

2
2.
CDZ"“‘) \/1_—..-.-.0 5)



- I1.34 -

together with the explicit functions

\’1(&)3 A W-‘Q\ ox +RBeuh az +(z wghar +Dzguhaz

: N %mﬁqg (6.a)
WQ_G%):;—- A fonhaz — Buwshar —-Céswka-z—,. - )

B T NEE |
"D(%“"’L'“% 5%—- (6.b)

in which &, B, C and D are constants yet to be specified.
From b.c. (3.a) we conclude that B = C/a. We also have VZ(O) =

Vl(O) = A, From (3.b) and (3.c) it follows that

Vq .

and finally

\/1(0)‘: B, DV o) =2C | (8) |

in which -
B o ém(uk)-zd; |
2Ty Sulkz(ouk)-a}k (9)

Thus, we find a similarity to the thermal b.c. The sublayers

F2 can be made arbitrarily thin and in the extreme case they

might be reduced to boundary layers in which case a slightly
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revised version of our argument holds.

Note that b.c. (9) refers to the horizontal flow
field velocity and that at a strictly rigid plate we have
B, =0, i.e. v, =20 everywhere. We shall now discuss the b.c.
to be imposed on the vertical component of the flow field
Wl(zf at z = 0.

To characterize the b.c. eventually satisfied by
the vertical component of the flow field, we consider first
the two extreme cases most often described in the literature..
1 =‘Wl = 0 everywhere on
the surface boundary. Thus, the continuity equation demands

(?W;_/gz,) =0 | (10)

and this corresponds to Bv = 0 as discussed above. The oppo-

For a rigid plate, we shall have U

site éase corresponds to a léxgi surface without any stress

on it. The vanishing of tﬁe horizontal components of the stress
tensor means the vanishing of the viscous part of it. This con-
dition and the fact that Wl vanishes everywhere on the surface

demands'that 
7 2_) _ ,
(a N’if /32 = 0 . (11)

and this case corresponds ﬁo Bv = ?cANOte that considering the
surface to be level amounts tofneglectipg all deformation ef-

fects; namely_grgvity waves and/or capillary ripples. We shall
discuss the deformation effects a little further below. A

surface may be level and yet the fluid is able to support
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stress on it. For if the fluid surface is considered open to
ambient air, surface tension inhompgeneities do generate sur;
face tractions. Any non-uniform temperature (or concentration)
distribution at the interface suffices to generate surface
tension inhomogeneities. Usually surface tension decreases
with increasing temperature. Consider the surfaée tension £
to be a function of‘temperature alone (and thus an implicit
function of horizontal coordinates). At a perturbed state we
have

(12)

S—g :.:.—-UOQ

where 8 denotes the temperature fluctuation at a given point
and —&)represents the slope ofgl evaluated at a given mean
temperature on the plane. The balance of forces on a fluid
element in the steady state that encloses a piece of the

interface yields in the first order épproximation,
? 5? 2V
i ’7 1> (13)

On differentiating and making use of the incompressibility

condition with‘A2 = 32/3x2 + az/ay2 we get
- ? W | | '
Az JEF= =7 et (14)

and finally

? W =03A2_9 | (15)
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Except for scaling factors, w/n is the Marangoni number, -

When the restriction of a plane free surface is

relaxed, the surface tension tractions and deformation in the

~gravitational field relax through capillary waves as well as

~gravity waves. As we have indicated above, to consider a level

surface with surface tension stresses on it amounts to a vanish-
ing "Crispation number". This means assuming an infinite surface
tension. An importan;uﬁatter is to ascertain the role played

by flexibility and resistance to deformation of the surface in
determining stability. This matter is not as simple as it
might be thought of a priori. It turns out that incorporating
surface tension effects into the Rayleigh problem yields cor-
rections to the rigid or stress-free b.c. problem that are’of
same order as such non—Boussineéquian effects like'n = n(T) or
k =,k(T); as first emphasized by Davis and Segel E;96§j; We
have also neglected surface viscosity effects that are also

of second order.

Finally it remains to ascertain whether the upwelling
fluid flow provokes a local depression or elevation of an open
surface and if there is any gqualitative difference between sur-
face tension-driven flows and buoyancy conttolled convection.
Bénard and Volkovisky found that hotter areas, i.e., areas of
upwelling fluid flow, are depressed. However, Berg, Acrivos and
Boudiart 1}9653 repeatipg Bénard's experiments with 1 mm.~thick
melted wax found an opposite strﬁcture. Since Bénard's experi-.

ments were done with melted spermaceti and Berg et al. used
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melted wax, non-Boussinesquian and/or non-Newtonian effects
might have caused the discrepancy. The only theoretical cal-
culations actuelly available refer to Newtonian liquids.

Jeffreys D9513 discusses a fluid layer with a
stress-free upper interface and Scriven and Sternling tl96f§l :
use a very simple model of the interface. In this latter case,
the critical wavenumber is vanishing and the direction of flow
under depressed areas is determined by the inequality (sinh a)2 %
a? (see also Smith EiQGé]); o

Theoretically, the deflection of the surface can
be inferred, in the simplest case, by estimating the fluctua-

tion of vertical stress. Up to a first approximation this is
Sp— 20 L

. /P ; “7 D3
and is a function of the horizontal coordinates. Here o6p refers
to the pressure fluctuation as given by the Navier-Stokes equa-
tions. As the vertical velocity vanishes everywhere at the
boundary %§1< 0 with the‘upwelling £luid. Thus, —ang >,Q,
and this term tends te'elevate the surface in bquancy-driven
convection whereas Scriven and Sternling [}96%]‘(see also
Hershey E193§]) conclude to the contrary structure in surface.
tension-driven flows. What we can safely say is that this matter -
demands.further experimental research before an unambiguous
result is obtained. And, if it turns out that the qualitative
behavior is indeed opposite for the two driving mechanisms,
there must exist a critical depth to delineate the predominancy
of one over the other.

We shall not discuss here the problem of lateral

boundaries for we are considering the gross phenomena that
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already happen at very low aspect ratios, as originally con-

sidered by Rayleigh [1916].
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4. A perturbative approach to the nonlinear fields

4,1 Landau-Hopf scheme

Following the analysis initiated by Lord Rayleigh,
the motionless conductive state is not stable above somé cri-
tical temperature gradient and a convective regime appears.

In the following, we shall try to explain how to understand
the phenomena that occur in this convective state‘when the
Rayleigh number iﬁc;eases'gradually beyond the critical value.
In the vicinity of the bifurcation (and it turns out that this
vicinity is quite large!) perturbation methods may be used.
When one goes far away from the bifurcation, other methods of
investigation must be used which require either extensive
numerical computations or drastic-simplifications. Perhaps a
"simplicity" is reached ip the limit‘ofvan infinite Rayleigh
ﬁumber; i;e;, in a fully turbulent convective state. However,
this is not certain at the present time.

In thiS‘section we study just the supercritical
range where presumably perturbation methods are useful. Later
on we shall discuss steady state transitions (i.e., the changes
from a time-independent structure to another'steady structure).

The perturbative scheme to be used here follows an
approach originally due to Landau'[}94@].and Hopf E}942,l94§1r
The analysis goes as follows (see for recent mathematical de-
veloéments Joseph I}97€3). Let A be the amplitude of a fluctua-
tion that becomes unstable when some physical parameter passes
a cer@ain critical value; Le; ¢ be this parameter which, in
the Rayleigh-Bénard case, may be taken as the difference be-

tween the actual value of the Rayleigh number, say Ra, and



- I.41 -

the critical one, Ra . Thus, in the vicinity of the bifurca-~ ;
tion, it is natural to assume an equation of evolution for A

in the form

A:AT (1)

When ¢ < 0 (i.e., Ra < Rac) the fluctuation is damped out

and, when ¢ > 0 this fluctuation grows exponentially. In

this case, when A rggchés overly large values, one may no
longer assume the validity of the linear equation of the motion.
This is obviously true in the convection case, as the Oberbeck-
Boussinesqg equations are non-linear. Then, it is natural to

add non-linear terms on the right hand side of (1) to account
for finite amplitude fluctuations, The nature of these non-
linear terms is limited by the syﬁmetries of the system. Let

us assuﬁe, for the moment, that the convection pattern is

such that, bylreversing all the fluid velocities, an equivalent
pattern is obtained (in a rectangular box with an even number
of rolls, the equivalent pattern is given by mirror symmetry).
Thus, the inclus%on of non-linear terms in (1) must respect

the symmetry A & (-A), and only odd powers of A ought to

be included on the right hand side of (1). Thus, we have
0 3 (4
A::AG‘—F{A +ﬁA ' (2)

Let us assume first that y < 0., For o just slightly
larger than 0, a stable steady solution of (2) exists which in

expanded form is:
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A x \F—:%;“F [_’1 + gz “‘”'] - (3)1.

as 0 approaches zero form above. This case represents a "nor-
mal bifurcation'. Suppose that, on the other hand, y is posi-
tive; then one has an “in&erted bifurcation", If C is just
slightly above 0, the‘state A =0 (i.e., the motionless state)
is unstable, and another stable state exists which does not

reduce to A = 0 at ¢ = 0. If B > 0 (and neglecting the high-

\

er order terms on the right-hand side of (2)), the amplitude
of this new state is + B/y ato = 0. This inverted bifurcation
is discussed in more detail in the following subsection. But
let us point out that the expansion (3) is meaningful only
near ¢ = 0,and that a iimited expansion of the right-hand

side of (2) cannot really be all accurate to describe finite
amplitude fluctuations, as.in the case of inverted bifurcation.
The Leray-Schauder topological dégree theory, yields a power-
ful method for studying the bifurcation above a critical point,
withOu; requiring explicit details as with,vfor example, (2).
It leads to definite statements about the existence and num-
ber of bifurcating solutions, the.gldbal properties of these

solutions and their stability (see Sattinger [19BYei

The Landau-Hopf theory applies to the standard
Rayleigh-Bé&nard problem. It yields accurate guantitative pre-
dictions near the onset of convection. In this case we have

a "normal bifurcation".
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The perturbative approach proceeds in two direc-
tions: first, one seeks by expansion the steady solution of
the hydrodynamic egquations near the onset of copvection.

Then one studies their stability in the frame of this per-
turbation analysis. The search of the steady solution by ex-
pansion involves a number of non-trivial points; we shall re-

port about that in some detail,

4,2 Thermal fluctuations and the onset of convection

Concluding our discussion of the onset of convec-
tion, let us emphasize again that the perturbation approach
is meaningful only if the parameter y in the Eq. 4.1 (2)

(or the eguivalent guantity derived from the perturbative
soluﬁion of the fluid equations) is negative. It turns out
that this is actually true in the standard ﬁayleigh—Bénard
case of a Boussinesqguian fluid layer. However, it is'possi-
ble thaﬁ inverted bifurcations occur in other types of con-
vection experiments on surface-tension-driven instabilities
(i.e., the original Bénard experiment; for instance). In
this latter case, Koschmieder 'D.96’a observed a change of
structure at the onset of convection: an instability with a
roll structure develops first, and then changes spontaneously
(i.e., without any change in the external conditions) into

a hexagonal structure; This denotes probably an inverted bi-

furcation: the rolls are marginally stable at the onset and

~grow spontaneously, moving toward a steady convection state

with a finite amplitude and a hexagonal structure.
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Another possibility of inverted bifurcation exists,’
if the symmetry A «3(-34) is broken in such a way that a term
of order a? may be inserted in the Landau equation:

¢ 2 43
A":EA-{—E,A‘FYA (1)

Just before the onset of convection the fluctuations
of the fluid velocity look more or less as those of a ball in
a very flat valley and a number of authors (Graham I}97§1,
Haken I;97§])_have e%amined if, in this si%uation, the thermo-~
dynamic fluctuations could be seen at a macroscopic level,
Unfortunately, their order of magnitude leaves little hope
for measuring ﬁhese macroscopic fluctuations. Consider a velo-
city fluctuation with a scale of orxder £ Q‘l cm., in a fluid

of mass density p ',p"‘l‘g/cm3 at 300°K. The»order of magnitude

of this velocity fluctuation is

z'k&T’ ’/LA, 2 _
‘\d ~ f@3 z 2.9 x 10 »fxcuSec

in which kB is Boltzmann's constant,.

Let us briefly estimate how these fluctuations are
enhanced close to the Rayleigh bifurcation. They obey a Langevin

equation

\./+)\/::)CUC) | (2)



- 1.44 -

The linear damping factor A vanishes at R =_Rc, ané
when the amplitude of the fluctuations becomes too large, they
are limited by non-linear phenomena, as accounted for by the
BA3 term in the Landau equation (1). Thus, it is natural to
expect that for R close to Rc, the fluctuations ofVV are de-

scribed by the non-linea? Langevin equation
\‘l+}o E’i-—ﬁa/gc)%"@/\é)zj\/’-{i(ﬁ (3)

where‘ko is the damping rate of the velocity fluctuations in
the absence of any temperature gradient (i.e., at R = 0). The
noise source f(t) takes its origin in the molecular fluc-
tuations, and is unaffected (at least to a first order approxi-
mation) by the macroscopic temperature gradient; accordingly,
it is a random stationary gaussian function with a white spec-
t;um. We have written the egquation (2) in order to make ap-
pear a characteristic velocity Vos which is reached in the

convection state at R = 2R if one neglects the thermal fluc-

cf
tuations in this state. As already seen Vc is typically of
order 100 ﬁm/sec.

As shown for instance by Stratonovich [}963,196?}
ﬁhe probability distribution of the fluctuations of the solu-

tions of a one-dimensional Langevin equation of the general

form

\./..—{—c?(\/)'-;-‘-. ‘FU’:) | | (4‘)
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where £(t) is a stationary gaussian white noise is

| v |
p(V) = z‘“mf -)350 b (w)du (5)

where B is related to f by the fluctuation-dissipation theorem

<-§ UC)-FHT‘)> — 732: S(t-t') (6)

and Z is a normalization factor.

- In. the present case this gives

'/{o(v 2" &‘«F{lvz Oﬁ”)* ]

When R becomes very close to R_s the dominant contribution
in P(V) arises from.the term V4/8V§Vc/ which means that the
fluctuations of u have (in the region R % Rc) an upper bound of

order
’ 1/2

Wz, V.) = 054 PM"

thch'is somewhat smaller than the smallest measureable fluid
velocity. Furthermore, in order to lie in this domain of "non-
linear fluctuations" one should be very close to Rc’ so the

fluctuation of V reaches this limit amplitude when

Ao fufe s Wy w2908

It may be noted further that, very close to R.s DO
term like the one represented by s'Az should become important,
although one may expect that, owing to the breaking of symme-

tries by non-Boussinesquian effects and/or lateral boundary



effects, these terms are present anywhere. It is also rele- f
Avant to point out that in this extreme vicinity of the cri-
tical point, the typical evolution times may increase very
much, and this critical "slowing down" might be a source of
~great experimental diffidulties, as it is in many cases.
These thermal fluctuations do not seem to be a
promising phenomeﬁon for experimental studies, nor have they

anything to do with the actually available experimental data.
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5., Convective flows in realigtic situations: Quantitative

results

A concrete application of the Landau-~Hopf approach
to the Bénard-Rayleigh pfoblem is due to Gor'kov [}957].and
Malkus and Veronis I}QS%]. They.inQestigated the case of an
infinite horizontal layer with free upper and lower surfaces
and two special cases of 3d convection pattern, with rec-

tangular and hexagonal cells. Later oh, Schl&ter, Lortz and

Busse I}96§]<extended this method by considering an arbitrary
3d flow with either rigid or free boundary conditions. We

shall follow approximately their analysis of the steady state.
The gtarting point is the set of the non-linear dimepsionless

Boussinesg~Oberbeck equations for the steady state(*)
dar V = t7.5V =0 {l.a)
Poav +Pek-vp=(VV)V .

Ab +RW= (V.v) & (1.c)

where P is the Prandtl number and R the Rayleigh number. By '
eliminatién of the pressure and of the horizontal components
of the velocity, one gets a sixth-order differential equation

for -the. Vertlcal veloc1ty W

(*). Egs. (1) are obtained u51ng the scales:_x/d for velocity,
Bd/Ra, for temperature, d2/k. for time and K2/d2 for pressure.

This choice, is dictated by our interest in comparing with Schlluter
et al. E196§J A dencotes the Laplacian opgrator: A= div grad, and y i
the 3-component vector (& —378xaz, ) —a2/ayaz, 62——A2) and A, de-
denotes the two-dimension3l horizontil Laplacian, To simplify no-

tation we shall indistinctly use R and Ra to denote the Rayleigh
number,
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(BoRaW = 5-¢ +0,8)
L =WV v 3
4=WVWE

il

The equation which ;elates & to W is
9 -1
AW+Al9=P EQ (5)
[

Near the onset of stability the rolls can be con-
sidered as exactly bidimensional, at least for containers
with horizontal dimensions much larger than their height. We
shall consider a system of parallel rolls with axis ox, take
U = 0 and all the variables independent of the x-~coordinate.

Therefore, V is related to W by the continuity equatibn:

[ _
%\/-@-,ﬁ_w—o

We shall consider only the simplifying case of an infinite

(6)

Prandtl number fluid, which is highly realistic in many ex-
periments. This amounts to neglecting the non-linearity arising
from | (V.V)V| with respect to |(V.V)6|. It is also convenient

to introduce a field g such that
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W= — 4,9 o

The governing equation for g is in the limit P » o:
(K-r4,)% =+
2 (8)

The temperature and fluid velocity are related to g and to

the stream function y = ~Q by:

. 2-
W= 47 = -:_%-%- (9.2)

V = 3%393— = ?«/792-
B=04"%

(9.b)

(9.¢)

Wé know that at R =_Rc, tpgether wi;h the proper b.c., a non=-
vanishing solution.existsvfor (A3 - RAZ) = 0. It follows from
the linearized Boussinesq equations that in the neighbourhood

of R, the -time~dependent fluctuations behave like exp{a(R—Rc)t}
Qith‘g S 0. This is about the expected behaviour with the Landau
equation which after linearization describes fluctuations that
behave likélgxp(gt). For a steady'forCE-field as we have con-
sidered here, the velocity growth rate is initially zero, but
later it is expected to ihcrease at a rate dependent on the

Prandtl number. Non-linear terms in the Landau equation limit

the growth of the amplitude fluctuations, and it turns out that
1/2

at o = 0 this amplitude is of order o . Thus, it appears
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natural to seek solutions of (8) in the form:

§ _ 2%0)*’ c? };Cz)_&_ " | | o

and similar expressions for VvV, W and 8. The basic assumption
is that>for R slightly above Rc the motions will develop only
small amplitude: € is assumed small., In convection p;oblems

it is usually assumed that R is set, an experimenter's figure
Say. However, it is not known in advance which value of R will
produce a parﬁicular amplitude. Rather we ﬁay say that ¢ is
~given and we try to find the R required to produce it as a

function of g,

¥ ‘
%‘:—‘ K¢+§,€, + 8 R+ (11

Note that up to second order terms and according to the argu-

ﬁentsxdevelOped above, we should have € = (R - Rc)l/z;

Substituting these expansions into (8), a sequence

of linear inhomogeneous equations is generated:

eﬁ L‘Fn] =0° (12.a)
() ORERO N
oC[%m] 47— R NS

1o A% T Rt
¢ pet

(12.b)

i



~gets the unknown parameter R
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where the linear opérator Lis
3
Lz A=K A, | (13)

and e | o
/ev(.w) = Z‘ ( v ((’)' V) 6 ( ,f) .
=1 |

From the existence theorems of solutions at each order, one

(n) by requirigévthat the right-

hand side be orthogonal to the solutions of the adjoint homo-

~geneous equation: .

LL8=0 ;L=LF

with corresponding b.c. on 6.

‘ | The small parameter & can be determined as a func-
tion of the relevant quantity, i.e., |R - Rc[, if the procedure
is ended after a given number of iteration steps. Note that to
the first order the amplitude of the motion which is identified
with € remains unknown. i

- Before solving the 2nd order equation for 9(2), the

(1)

parameter R must be determined from the solubility condition:

<'e/(2.) 9(4)> _ &U)< WCU 9(4)> — 0 4 . .

where by definition:

o Qﬂ/a. +/r | |
»<)C‘}> = on dy dr jf(y,%)?(“},ﬁ (17)

0 fVL
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24%7/a being the horizontal wavenumber, and the fluid layer being be-
tween the planes z = ~1/2 and z = +1/2, We can easily verify that all

guantities of the form:

(%{,CV-V)§> (18)

vanish, provided the functions ¢ and &' satisfy the boundary condi-

tions and have the same horizontal dependence. This is the case for
ey p (2) 4y ) )
BTy = ¢ 8V (VERT)e S =0 19)

Since:

oUW g

g(1) (*)

must vanish.

(*) It is of interest to note that this argument is no longer valid if
the plane-form is made of more than one wavenumber. In this case(b(l)
h(Z&'may vanish owing to the (z)<>(-z) symmetry, that leaves 6 (1) in-
variant and changes the sign of n(2) Again this argument breaks down
when the latter symmetry does not exist, as it is the case, for in-
stance, with a rigid boundary at the bottom and a stress-free boundary
at the top (Busse {Z962,l96 ) or if non-Boussinesquian effects are
to be considered (Palm &_960 ). In all of these cases, the non-vanish-
ing of R(1) is realized for an hexagonal pattern only (for an infinite
horizontal planform at least). This comes from guite general arguments
and could explain what happens in some of Bé&nard-like experlments For
we first note that the above defined scalar preduct is no longer valid
in the case of an arbltrary horlzontal planform and must be replaced
with

chgy =t j mj A%}(x 2)9.(%,%)

in which X is a two- dlmenSLOnal vector, and S the_surface of the layer.
If this iT infinite, one has just to set lim . L1/S .dx instead of
l/SJ‘dx. The quantity rR(1) depends on the third power of the first or-
der Solutions. Let us assume that 1t involves only a finite number of

S TR 59,2 = 2 3 ey g (k)

each one of the a_.'s haVLng the same length whlch }s defined by the
linear theory at —R . Thus, the expression of Rr{ is of the form:

R(t) ,&M .SS ~[Z R(:;mea"x w‘JCH )“”Cﬂ“l X.'_).(_m]

where R(l) is obtained summl g over z, In the limit S'wwthe integratior
over X vgnlshes, except 1if a +a. +a =0, As the three vectors a,,a. and
a, have the same length, thid c%n only be realized if these vectars
f%om a regular triad which yields a hexagonal pattern. In the case of
a two-dimensional roll, the horizontal integral that defines r(1) may
not be vanishing due to lateral boundary conditions which break the

invariance under translation, The situation where R(1) @iffers from

zero is more complicated from the point of view of the stability of
blfurcatlng solutlons - . . . ) i T
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To find the second-order approximation, we look for

a particular solution of Eg. (12.b) with R(l) = 0, The inhomo-
(2)

~geneous term h is made of two parts: a y-independent term

and a texrm . proportional to cos(2ay) to which we will refer

as the second harmonic,

*
Values of r(2) are given in Table 5.1( ). R(z) is

obtained from the solubility condition of the third-order ap-

proximation in Eg. (15). For Bv = o (free b.c.,) we recover

: 2
the result of Malkus and Veronis (R‘2) = 2 ac4 = 135.2) and
for Bv' = 0 (rigid boundaries), we find the result of Schluter

et al. (r?) = 1014.6).

Bergé and Dubois 11976:]' have recently made accurate
measurements of the fluid velocity close to the onset of con-
vection. In order to compare their results with the results of
the e-expansion, it is necessary to use the parameter Z =

(g—-— -~ 1l). V, W and & expand like:

C ve § VY LTy

, ~ ( ) (21.a)
~lf Ty T W <
- s W '+2
VV"' (21.b)
9. “”/LT(‘) + g:"r(z)
- (21.c)

(*) When R(z)’ > 0 as it is the case here, then from R = R+ EZR(Z

it follows that to order 5:2;5:2}: ('R-Rc‘) /R(z) which is valid only if
R*R_. If it turns out that r{?) < 0, there is an indication of sub
critical instability (or inverted bifurcation). To conclusively

asséss the existence or not of such metastable states, a more ri-
~gorous and complete technique is to be uséd, like, way, the energy

method (Joseph 'D.97§1) .
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(l): V(Z), W(l), ... are functions

The quantities V
of z which depend on Bv and BK. For the numerical comparison
with experimental data, it is convenient to take the maximum of

these functions of z, that we shall call V(l), V(z) .»., In the

max max’
case B, = B = 0, the dimensionless numerical value of maxima are:
(1) _ ~(2) _ S _ F(2) 2
] max = 11.82, Wmax 5,0.2279, Viax = 11.67, Viax = 0.2603,
(1) _ (2,0)_ (2,2)_
T o 945 6, Tpor = 459.1, Tmax 50.37] -
Here, T(Z’O) accounts for a y~independent contribution, whereas
T(2,2) belongs to the second harmonic,

For the ensemble of conditions:

‘ -3
2 Ay

chosen to reproduce data of Bergé and Dubois [iS?iJvthe corres-

-1

ponding values of the dimensional velocities are:

™0 -t oy -
%me 435‘?‘\”‘ amd E‘vwm: 433,“06

The comparison with experimental values, 140 + 10 ﬁm/s and
132 + 4 ﬁm/syrespectivelyr_Shows.good agreement.
‘With the same values of the physical parameters, the

theoretical result for the second harmonic is

~e) - -l 2 L) -
%\/MX = 2.9 pusT auwd T W ,.e.é,ms

These figures, though of the same order of magnitude

7(2)

- as those measured by Bergé and Dubois (V =5+ 0.3 um/s), are

smaller than the experimental values.
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We must point out that for each order there is a
_ - A’
relation between the maxima of V and W, illustrating the con-

servation of flux in a roll:
2o/7v(v Y/?'

Vio,z)dz =) W’(y, ) ’l? | (22)

A rough estimate of each integral allows us to replace the

previous eguality by:

Va4 ) ~
W, oz
Ty max T Fo Yy (23)
For instance, in the flrst orxder approx1matlon where- Yo 7%“
- . (l) r\,'ﬂ’ ~(1) ¢
and zg =-1/2, we have V(max) ? a2 W(max) (0,0) locates the

center of a roll and Yo and z, its horlzontal and verﬁical
extent. A

Bergé and Dubois [1976] have also measured a third
harmonic mode in the flow. This comes from the splitting of

the third-order approximation to (15). We have:

3 3,4) —~(33)
() ? “?)‘*’é (g“:r‘) (24)

in whichi¢(3‘l) adds higher-order contribution to the first
harmonic-and’ ¢(3’3) belongs to the third one. Accordingly,
the velocity and temperature fields also split into two mode

contribution

'/\}/(3)—;’\7(311&(&)/ V m (20&1)

A\N/-«“) — N (“}’) W oo;) (30.7/)

(25.a)

(25.b)
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_T(”_' T('B L) (A)/) + T 03-7 (?a\y> (2'.5:.0)

It is to be noted that the solubility condition of the fourth-

order approximation yields R(B) = 0., Furthermore, R(n) =0
whenever n 1is odd.
With Bv ='BK = 0, the maximum amplitude of the velo-

city and temperature are for the third harmonics

~
v3¢3) (nax) = 0.06826 ~
?;(3’3)(max) = 0.1943
r(3¢3) (nax) = 20.87 .

The vertical velocity is three times greater than
the horizontal one, expressing the flux conservation in an
elementary roll,

This corresponds to the dimensional velocity (with

- 5— = c .
R-.. 2R, 3 , 1.14 cm/s):
w33 < .
max ..2.2 pm/S_
(3,3) _ )
WéiXB) is of the same order as W(ZL, and this has been observed

experimentally (Bergé and Dubois, private communication).
The value of R4 is needea to give the amplitude .

and the z-dependence of the guantities (3,1). This has been done.
by sblving the 4th order approximation and thus writing the solu-

bility condition for the 5th order,



Table 5.1 Quantitative predictions for various values of Biot
number in mechanical b.c.:

e\

BV EE = V: W =.6 =.0.

(2) (4) (1) 7(2)
B\) . aC RC R R . Wmax Vmax
0 ~3.116 1707.7 1014.6 849,79 11.82 0.2603
0.05 2.942 1355,9 668.1  347.43 11.74 0.1795
0.1 2.824 1186.0 514.4 149,36 11.64 0.1363
0.5 2.489 843.3 247.6 3.30 11.24 0.0459
1 2.381 761.2-  194.7 - 2.68-- 11.10  0.0250
100 2.223 658.6 135.8 - 4.625 10.88 0.0003

50000 2.221° 657.5 135.2 - 4.626 10.88 0.0

(=)

kAR kkkkhkkkhkhkikk

Table 5.2 Quantitative predictions for various values of Biot
number in thermal b.c.:

BK’ 3z = 6 W=V =20
(2) (4) (1) (2

aCXBK; ............... _._.% ............. Rc R ,,,,, ) R Wmax vmax ‘
o 3,116 1707.7  1014.6 849.79 . 11.82 0.2603
9.5 2.669 1415.1 920.48 241,90 8.65 0.4504
1 2.398 1267.5 699.85 142,02 §.98 0.5092

5 1.629 955.1 198.69 15.24 3.68 0.5383

50 0.803 772.8 13.54 - 0.126 1.54 0.3807
1000 °©  0.300 727.2 0.21 ~gx10~4 0.54 0.1606
50000  0.082 720.5  0.6x107° - 1p~7 0.15 0.0445
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6.  Bifurcation of steady states

When the Rayleigh number increases beyond the
critical value Rc (1707.8 in the standard case), the horizon-
tal dependence of both the velocity field and the temperature
field become more and more anharmonic, although these quanti—
ties remain time independent, Of course, this analysis was based
upon an expansion in the "small™" parameter-e X (R -,Rc)’ and
it is likely that this fails to describe thg phenomena when ¢
becomes too large.

- The experiments have clearly established (see fur-

ther below) that, beyond some value of R, say R the flow be~

tf
comes time dependent., It is also of interest to notice that,

in the steady state when Ra increases from Rc to Rﬁ, Rcé< Ra=< Ry,
the wavelength of the two-dimensional pattern increases and then
thgre is (generally) a transition toward a three-dimensional

steady flow. Let us discuss this matter in some detail,

i) Wavelength increase

Koschmieder and Pallas [}97%3 and Bergé andvDubois
El.'97€|- (see also Beq:gétl97§] .and Dubois E197a). havevshown in
carefully controlled experiments that a number of rolls disap-
pear when thgiRayleigh number increases beyond Rc, That means
unamb;guously-that the wavelength of the convective pattern in-
creases., | |

In.the experiments conducted by Bergé and Dubois
the "boaﬁ" is rectangular shaped, the axis of the rolls being

parallel to the shorter side. Beyond some value of the Rayleigh

Aﬂpumber, say Rl' one of two extreme lateral rolls (i.e., one of
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the rolls closer to the shorter side) disappears completely.
Thus, two states of convection rolls are well defined: the N-

rolls pattern (N integer), which is stable at R, <R and a

l’
(N-1) -rolls state which is stable at Ra & R,. There does not

seem to be any stable intermediate steady state as would be
expected on intuitive grounds. Furthermore, and contrary to
Koschmieder's I}QG%} findings with an (axisymmetric) cylindrical
~geometry, Bergé and Dubois [?97%j,find.an hysteresis in this

transition: when Ra slowly decreases from R., the (N - 1l)-rolls

l-l

state, disappears only when Ra becomes smaller than some R, < R,.

2 1
This finding has some similarity to what Burkhalter and Koschmieder

I}97§] find in the Taylor vortices problem. Is this hysteresis
in the Rayleigh-Bénard problem just a spurious result of the
experimental conditions of'Be:gé and Dubois or a conseguence
of\the'rectangular.geometry? According to Koschmieder (private

communication), the values of Rl and R, are clearly dependent

2
on}geometry. By changing the aspect ratio of the apparatus, say

to make room for more rolls,then Ri as well as Ré would be dif-

1 1 If, on the other hand, the aspect ratio is

made very small, then rolls would be dropped from the pattern

ferent, and R! < R

at very small steps in Rayleigh number. That means, that in the
end, for an infinite layer a sfeady increase of the wavelength
would be observed.

Following a 'principle of minimum complexity, we
may describe the inverted or first-order bifurcation in finite
containers by the following dynamiéal model system with one

degree of freedom:

A=Re-R)A +A3-FAS with Bro
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Let us take A = Ra =~ Rl; the stationary solutions are:

“a)

b)

c)

A<

if/~1/48: A = 0, which is stable, It may be viewed as the

N-rolls state.

if -1/4 B < A < 0: five steady states exist namely A = 0 and

the four roots

. e s
Aeq) _ a\}i-&-"}\l;-wﬁé._ uith £ =45 m=Ed

Here, the states A = 0 and A+l,+l

1 are uns;able. The stable states A+l,+l

—

are linearly stable, but

the states Af}'"

be viewed as the two (N~1)-rolls stable state; there is a

may

pair of such states since they can be obtained from the N-
rolls state by deleting any one of the two extreme lateral

rolls.

If A} 0, three steady states exist: A = 0 which is linearly

iunstable and A+l,+l and A-l;+l’ which are stable. The time

‘evolution of any solution of'Eq. (1) may be obtained at once,

Each stable steady state has its own "domain of attraction”

‘in the plane (Ra,A) starting from a point in the domain of

-attraction of a stable solution, the representative point

moves towards this stable solution along a vertical in the

plane (A,'Rc). One may also notice that in the present case.

that there is a locus of points for which the evolution is

ambiguous. In the terminology of the catastrophy theory

Tﬁhom, 19741, this kind of bifurcation is called Whitney's

-cusp (in French, fronce). The model equation (1) describes

also gquite well one other feature observed in the experimental

time dependence of the bifurcation (Bergé and Dubois, private
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communication). Starting from a situation with N rolls
(A = 0 in our picture and Ra just slightly larger than
Rl), the endvroll disappears in two well défined time
steps: EEEEE a very slow motion (half an hour) EEEE a
rapid destruction followed by a rearrangement of the
convective pattern to accomodate the new (N-1) rolls

steady state (a relaxation time of a few minutes).

Close to Rl’ the instability that drives the system
away from the A = 0 state has a small growth (since this in-
crement vanishes at R =_Rl, assuming some regularity, it
remains small cloée to'Rl). Once A has grown sufficiently,
however, the instability is governed by the non-~linearity and
the non-linear dynamics appear with a finite time constant
(rate) even at R' ?_Rl since it does not suffer any qualita-
tive chapge at Rl.

. | This first order bifurcation has been observed in
Trectangular containers only. Koschmieder and Pallas I}97€].
have also reported that in a circular box the wavelength of
. the concentric annular rolls increases with the increase of
" the Rayleigh number., However, in their case the flow pattern
changes continuously. The axisymmetric central roll disap-
pears progressively when the Raylgigh number is slowly in=-
creased.:Aétually, there is_nothing like the transition ob-
served by Bergé and Dubois I}Q?é]. It is possible that, in
their geometry, the structural change is of first order,
~although the critical numbers R

and R, are very close to

1 2
each other, and that the two structures, namely those corres-

ponding to A = 0 and A are very much alike; which in

+1,+1’
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our picture means that 8 is very large. With the axisymmetric

~geometry the bifurcation cannot be described by a one-degree-

of-freedom system, as there is a single final state which is
the original state without the central roll,

Krishnamurti has also observed a wavelength in-

crease in her experiments, but does not report on any detail

of the phenomenon that we discuss here. Schl&ter, Lortz and
Busse I§96§I and Busse I}96i] have determined the range of
wavenumbers for which- the roll pattern remains stable under
super-critical conditions. They find that rolls are stable
for wavenumbers lying on a finite band that collapses to the
single value of Pellew and Southwell [}94q1.at Ra_. This
finding does not yield, however, a reason for the spectacular
selection of a single wavenumber that shows up in every ex-

periment. In our opinion, to account properly for this fact

we ought to consider the initial value problem disregarded
.ihere. On the one hand, a classification of initial allowable

conditions may very well provide a classification of patterns

to be found at the steady state, i.e., as the asymptotic solu-

tion. On the other hand, we will show in Appendix II that a

simple model (Lorenz I}96§]) may yield either a steady or a
time—depepdent regime depending on the initial condition.

The reader will have noticed that in ﬁhe above dis-
cussion no simple intuitive explanation has been proposed
for the quite general féct of wavelength increase. A striking

feature of this is of geometric nature: in every case, the

‘roll that disappears is a rather "peculiar" one of the con-

vective structure: the central roll in the axisymmetric con-

tainer and the two far extreme lateral ones in a rectangular
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box. We believe that the "hot spot~instability" to be dis-
cussed below might appear first in this roll which causes
its destruction. Again it should be interesting to assess
or dismiss our conjecture by conducting experiments where

"practically" all rolls play identical role, as we have sug-

~gested above.

ii) Eckhaus instability

Though the stability of two-dimensional rolls has
been studied by.a number of authors, we shall describe now
an elegant analysis developed by Eckhaus I}965,l97£] to delin-
eate the range of stability of the primary steady convection
to longitudinal perturbations. Later on (see Section 7.2)
we shall come back to further interesting predictions made
by Clever and Busse I}9f€].

-Restricting our consideration to a small enough
pe;ghbourhood of critical Rayleigh number, let y(k,R) be
the linear growth rate of a perturbation with wavenumber E
at Rayleigh number R. Thus, neutral stability at R =,Rc and
k =~kc demands Y(kc,Rc) = 0, and that for R < R, the per-
tufbation be damped. (Rayleigh [}9l§j,.Pellew and Southwell‘
1}9493, Joseph 1}9653). For slightly super-critical condi-

tions, we expect the following approximate description to hold
| 2
Pl =4 [2 R - (ke

in which ay > 0, and A > 0 are some unknown, though constant

parameters. The absence of linear terms in (k - kc) in Eg. (2)
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comes ‘from the necessary damping of all modes below the criti-
cal Rayleigh number. Above Rc' however, there is a band of

expected unstable perturbations with horizontal wave number
‘ R-Rg

T A

‘The actual growth of these unstable modes is limited by non-

»

belonging to the open set (kc ~ Dgr kc + Ao) with Ag =
linear.effects, so that a finite amplitude convective regime
is eventually reached.

Let A(X,t) be an expected temperature fluctuation

at the onset of convection. It can be expanded in Fourier

components as follows:
| ijX ’
A(X,{:) = JZ‘: Akj‘ © (3)

with A_, =.A;. According to the symmetries of the non-linear
Boussinesg-Oberbeck description of a f£luid layer heated from

.below, and under similar boundary conditions on fop and bot-

5tom, the system is invariant under translations and has also

the mirror symméﬁry (52}5T,Z)&9(—5Z,~5T,—Z); Z=0 defines the

:mid—plane of the contained. Thus, abo&e Rc the simplest non-

:linear Lahdau-Hopf equation (see Section 4)that describes

the time evolﬁtion of a Fouriei mode bf the temperature per-

turbation is

Ak.: do [A.?;"Az’} Ah“FO Z;_'—:.:. Akj Ak’L AILM (4)

kjlk@+kpﬁ=k

For simplicity, and without any real loss of generality, we

take g, real and k-independent. Note that we are restricting'
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consideration to horizontal wavenumbers in a single direction.
Otherwise, BO would depend on the angles between different
wavenumbers.

In the case of a:single wavenumber, Eq. (4) reduces to
* - -~ 2
Abt %o [Ao"Ah.] Ab." 3/3" | A‘Q\ Ae (5)

The factor 3 in front of Bo accounts for the three possible
ﬂ’km = k and

k., +k, + k_ = k.
J mo

ya
A steady solution of (5) is

N NN
\Aa‘ = /L3F° ]

(6) -

' provided g = > 0 and A_ > |A,]. That 8 > 0 follows from the
o 7 . o " 17k (o} :

absence of subcritical instabilities (Joseph [}96{]).
The stability of (6) to infinitesimal perturbations

of wavenumber k + g (g # 0) is governed by Egq. (5)

) Au—qy =O{i¢+q,-

in which §A already represents a perturbation on (6), and

* 2
- -2,{‘0> gAk,-k?'_ 3/39 XAE'J— A'a(?.a)

bka f,qotﬁg'f (k'fkc)%]. We also have the coupled equation of

o, o o2
XAt_i = (¥, L) Ay e SAMATZ .0

Exponentially growing solutions of (7) with time constant u yield
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al; ;(Xw-?' ”w)}[f'%—{ wﬂ)]‘?f: (8)

In which, as usual, the time constant p determines stability.
Solution (6) is stable if‘given any d, Q is negative (or at
:least has negative real part). One of the two solutions of (8)
has an extremum ﬁ = 0 at g = 0. Note that the occurrence of
this neutrally staﬁle soluﬁion at g = 0 is an obvious conse-
quence of the translation invariance of the equations of mo-
tion. Close to this extremal point, we may neglect q4 with

respect to q2 and q2 with respect to Ai and AZ

X Thus, Eg. (8)

becomes

F?:— éltLYTE'_k Q,OQ,??‘(XQU-— Q,leb0<o) =0 (9}

' A
AS Yy - 280, = at A =i»*g ¢ the range of stability of the
_ . 3 A Y

;olution of Eq. (4) iS‘the open set (Kc - -%,'Ke‘+-~§#a This

resulﬁ is particularly interesting as it delineates the range °
of non-linear stability of the steady roll pattern to longi-

tudinal perturbations with no need, however, to appeal to any
explicit calculations of such non-linear contributions as the

B, term inm (4). This result of Eckhaus [‘1965,1971{ points in

- the right eﬁperimental direction as discussed in the previous

subsection, More general two-dimensional perturbations in the
neighbourhood of R, have been considered by Schluter et al,

S

{l96§7 but we shall turn now to the problem of transition to

three-dimensionality.
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iii) Transition to a three-dimensional still steady convection

Let us now turn our attention to another problem also

belonging to the supercritical regime: the transition from

predominantly two-dimensional convection to a three-dimensional
convective pattern. This non-linear regime called "bimodal
convection" by Busse and Whitehead [}97{] has been explored
experimentally by Krishnamurti 1}97@1, Koschmieder and Pallas
1}97%] and Be:gé and Dubois Il97€j, and has been studied theo-
retically by Busse 1197_2:] . o

‘At a Rayleigh number depending on the Prandtl number,
a secondary set of rolls appears with an axis orthogonal to
the axis of the rolls of the first bifurcation. The'wavelength
of the transverse rolls is approximately half the wavelength
of the primary pattern. According to Krishnamurti there is
hysteresis in the formation of this three-~dimensional structure.
ﬁowever, recent experiments conducted by Bergé and Dubois I}97§]
lndicate a continuous transition as the first bifurcation is,
except that the.groﬁth rate of the new structure of the velo-
city field is much slower than at the primary onset of pre-
dominantly two-dimensional convection., (Needless to note that
convection is always three—dimensioﬁal with a real experiment
in a finite box!). Owing to such a slow growth, it is rather
tricky to ﬁéasu£e accurately the secondary critical Rayleigh
humber associated with "bimodal convection". Busse'I}96i].has
shown by computer analysis-that for infinite Pfandtl number
fluids, the two—dimensional roll planform for an unbounded
layer becomes linearly unstable whenever Ra is larger than

22,600 + 100. Actually, Busse has defined a domain of "linear"



- I.67 -

stability in the plane (Ra, a) bounded by Rac and 22,600 re-
spectively from below and above. As a matter of fact, Kosch-
mieder and Pallas I;97{j find a well developed three-dimensional
pattern at Ra %VS Rac g 13,660. A very similar figure has
recently been found by‘Bergé and Dubois (private communication)
using a rectangular container. These results contrast with the
reported figure of 22,000 by Busse and Whitehead I}97£].

This super-~critical instability may be considered
respénsible for the‘pccurrence of three-dimensional convection.
Busse has noted that,in every case, tﬁe second instability”
comes first for perturbations with a wavevector orthogonal to
the primary one. Furthermore, the wavelength of the perturba-
tion is also found 5y Busse to be noticeably smaller than the
wavelength of the primary flow: a result in gualitative agree-
ment with the experimental findings.

Lastly, following Clever and Busse I}97§], we may
understand aspects of the secondary instability as follows.

Let us assume first that the primary flow is absent. At a

~given super~critical Rayleigh number there is, among all the

énstable cohvective patterns, a horizontal wavenumber with
the highest growth rate which woula tend to appear first. The
primary flow stabilizes this secondary flow, but with an
efficiency which is minimum when the two flows are orthogonal.
This supports that the secondary flow is orthogonal to the
primary one and has a wavenumber close to thgt‘corresponding

to a maximum growth rate in the absence of primary flow.
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7. Time~dependent phenomena and transition to turbulence

7.1 Relaxation oscillations

A number of experiments have shown that the con-
vection flow becomes time-dependent when the Rayleigh number
increases beyond é certain critical value. This unsteadiness
may be due either to instabilities taking place inside the
convecfion cell or to relaxation oscillation arising from the -
coupling between the heating system and the- £luid. Of course;
only the first kind of phenomenon is of intrinsic interest,
as it does not depend on'any particular experimental arrange-
ment and reflects basic properties of the fluid equations,
However, the occurrence of relaxation oscillations may lead
to misunderstandings in the interpretation of experiments and
we-shall briefly explain how they may be triggered.

. Congider an invertedfbifurcation. At R ='Rl or
éligh#ly above, the parameter A (which may be viewed as the
convection velocity, for instance) changes its value from

% = 0 to ano;her one, say i.Al. At the same time, the net heat
flux through the cell changes from say ¢O,in the state A = 0,
to g, in the state t A,. Suppose now that heat is supplied at
a consﬁant.rate; or that owing to the presence of poorly con-
ducting boundaries, it may vary only very slowly. Thus, heat

is taken by the convective flow in the state + A, in a time

1
shorter than the scale of supply from boundary. Thus, the

Rayleigh number may decrease from R, to Ry, and if £lux in

1
the + A, state is larger than ¢0‘it overshoots the + A, state

At this stage,

and falls égain in the A = 0 state with R < R2.
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due to the constant heat supply, the Rayleigh number starts;

~again to increase from R, to R, where the A = 0 state again

2 1
becomes unstable, jumps to Al, and so on. This explains the
basic phenomenon by which relaxation oscillation may take

place in a fluid heated at a constant power. Using a perturba-

tion expansion around the critical number, Busse [}96i] has
obtained a system of equations describing these relaxation
oscillations. Description of the gross features of the pheno-
menon will permit us to emphasize the differences between
normal and inverteé-bifurcation. In the géirit of the Landau

approach, let us consider first an equation of motion for

A that describes an inverted bifurcation:
’ 3 14
° \
z& — E—f% -+ #\ - F;\ “n%&\ ﬁ Ve (1)

The parameter ¢ describes approximately the tem-
. perature difference across the cell, This is proportional

" to R - R,, where R; is the critical Rayleigh number at which

the state A = 0 becomes linearly unstable.(*) This tempera-
" ture difference is maintained by a constant external source,
say S; and it tends to be lowered by the convective motion.
Let p bé the typical rate of evolution of €y then a model

equation for the time dependence of g is:

] g \
2_}./5“3_;/*(5._\@& ) with k0 (2)

(*). The state A = 0 does not need to be the motionless steady
state; the whole discussion applies to an inverted bifurcation
that can emerge from any steady state, convective or not,
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The system (1) - (2) has A = 0 as a steady solution.
This solution is stable for S <« 0 and unstable for S > 0.

Another steady state may exist, which is given by the solution of
L* | 2'( — - -— .

The linear stability of this steady state is studied
by considering a perturbation like 5Ae0t. The characteristic

equation for g is

T Cf'[,uv +L+S +2A C{—?—h)].;.z;x(H/?A)—-c

if k 5.1/2, the perturbation grows in an oscillatory way when
fk+ 48 + 2A2(l—2k) becomes negative. They are two critical

values of § if 1 » Agﬁ:

‘g-k _ ﬁt 2.&-—4 <i( T M[-’ q/gfk

- n

(5)

the unstable region being S_ < S < S,

The upper bound of this unstable region, S , can be

!
positive, for instance if k is large enough., This means that,
in a rangé of values of 5, ﬁ, k and.g, no stable steady solution
exists.

It may be readily shown that no solution can go to

infinity: consider the guantity K = ¢¢ + AA, when ¢ and A tend

to infinity: From (1) and (2),

‘kx,rie(k‘l}Ai—A-
0 ] B0 e

uP ‘/}A
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As A4 becomes negligible in front of a® as A increases, this
shows that K becomes cértainly negative if ¢ and A are too
large. This proves that, beyond some large circle in the plane
{e,A), the motion is always directed inwards; thus, according_
to general theorems on thé continuous vector fields on a plane,
this shows that ﬁhe motion of the point (g,A) tends to a limit
cycle at least in the range of values of S for which no stable
fixed point exists.

Concluding, we note that if steady oscillations (or
perhaps even more complicated time dependent phenoﬁena!)
occur in a convection experiment where the heat flux is kept
fixed, no definite stétements should be made before a careful
analysis rules out possible relaxation oscillations. This ob-
servatioﬁ might help to élarify a recent dispute concerning
oscillations in a two—component Bénard problem, in which the
Soret effect is involyed (see Hurle and Jakeman [}975], Platten

[1975] and Caldwell [1974,1975]).

7.2 The unsteady flow and the transition to turbulence

Let us turn now to unsteadiness due to instabilities
taking place in the fluid itself., The experimental investiga-
tion concgfning this point is not fully satisfactory. A number
of authors (Deardorff and Willis T1965], Rossby [1969], Hurle
E96_6], Krishnamurti 2.97:9]., Busse and Whitehead 119721:( ‘
Ahlers 119751) have observed that beyond a certain Rayleigh
number; say Rt; the convéction flow is no longer steady. We
shall not go into a detailed analysis of these experiments,

but merely indicate a number of guestions that we think have
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not yet. received a sensible answer and demand further clari-

fication:

i) How does Rt depend on the Prandtl number? Krishnamur£i§T19751<

claims that at P % 50, R, reaches an almost constant value.

t
This disagrees with the findings of Busse and Whitehead I}Q7§].
There seems to be a serious experimental difficulty, as the
first occurrence of a time-dependent flow is associated with
regions of strong inhomogeneities in the convection pattern;
which are caused maihly by experimental imiérfections. Further-
more, it is not at all clear whether the bifurcation at R_ is

t
of the normal or inverted type, i.e., whether the time-dependent

part of the flow has or hasn't a vanishing amplitude at Ry.
ii) Does a periodic (or eventually a multiperiodic stage) pre-
cede a more complicated (or turbulept) stage? A number of au-
thors have reported the occurrence of oscillation close to Rt;
however, the coherence time of these osciilations is still un~
known; This is'unfortunate, since as explained below, there

is a sharp distinction from the theoretical point of view be-
éween periodic motions with an infinite coheiencé time and
aperiodic»motions with a finite coherence time. And it turns
out that, even in this latter case, the motion may very well
look péribdic, although it is not. Ahlers [@97@] has measured
the total heat flux in a convection experiment conducted with
ligquid helium. He has found that there was a quite well-defined

jump from a steady flow to an unsteady one with irregular time

dependence. But this does not imply that the flow has jumped
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at the same time from a steady pattern to an unsteady one,
since Koschmieder and Pallas I}97§] have shown that well-
defined transitions in the convective pattern might have

no measurable influence on the heat flow. The white noise
spectrum described by Ahlers I}97€1.may very well be due to
ﬁhe appearance of 'thermals' (or small regions of hot/cold
fluid) in the layer. They originate in the two thermal boundary
layers close to each rigid horizontal boundary where the tem-
perature gradient experiences the greatest deformation under
the extreme conditions observed in the turbulent regime in
Ahleré' case. The sporadic and random 'thermals' move rapidly
througﬁout the cell carryiﬁg a finite amount .of (heat) energy

to be released at the opposite plate., Can this be the origin

of the shot-noise in certain time-~dependent thermoconvective

phenomena? (This remark was suggested by J. M, Normand; see
also Rossby T}96§1. The thermal boundary layer problem clearly
demands a theoretical analysis, but this has not been done 0

far).

iii) What is the basic mechanism of unsteadiness? 2As far as
we know, there are different suggestions which we shall dis-

cuss below.

iv) 1Is it'éggsible to describe, with reasonable accuracy,
the bifurcation toward an unsteady convection by keeping a
finite (and hOpefully; not too large) number of degrees of
freedom? In other.words; does the unsteady flow involve fluc-
tuations with an arbitrary large band of wavenumbers?

To explain the basic mechanism of unsteadiness

there are several theories that we shall describe now (see



for a more detailed account, Velarde and Pomeau I}97j1). The
first explanation of the onset of oscillations in Rayleigh
convection seems to be that of Rossby I?QG?]. It is an adap-~
tation of the large Rayleigh number theory developed by Howard
I;96%]:and.goes as follows. Let us assume that, at some instant
of time, say t = 0, convection has made the temperature field
almost uniform throughout the layer, with however the obvious
exception of two thin boundary layers near the'horizontal plates.

Near the horizontal plates conduction is the basic mechanism

of heat transport. Let Tl be the "uniform" temperature dis-
tribution and T2 be the temperature at the bottom plate. We

take T, » T The diffusive boundary layer that develops neaxr

2 1° _
each plate has a thickness §(tc) &»d/Pel/z’&.(Ktc)l/zj in which
tc’denotes some characteristic time interval. The temperature
- T

drop across the boundary layer is T and if Tl does not

2 1
vary in an appreciable way it would in turn become unstable
Wﬁen (T2 - Tl)gd53(tc)/Ky exceeds some critical Rayleigh number,
so that convection develoﬁs in the boundary layer itself., This
yields an "explosive" instability as convection tends to in-
crease the«thickness‘of the layer which in turn increases

the growth rate. Then a "bubble" or "thermal" of temperature

T

5 pngreéseS‘in a convective fluid of mean temperature Tl'

motion would in turn destroy the boundary layer setting the
fluid back to the initial configuration. The mean period f of
this oscillation is approximately the time delay needed to

build a new unstable boundary layer,_and‘it is given by

.
| (‘%’t) bCTQ,',‘Td_> ~ AL (1)
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from which we have

~2/3
¢~ (To-Ta) (2)

The power dependence given by Eqg. (2) fits gqguite well with the
results of Rossby [}96€]. Rossby's theory has not as yet been
proven invalid, it uses rather general arguments and it is
not really known whether a given unsteady convective pattern
fits Rossby's theory or no;. Measurements-close to the upper
and lower boundaries should be very useful.

Another mechanism to secondary instability wa§
suggested by Welander £;96ij. Consider a temperature fluctua-

tion (or "hot spot") which is convected by the flow. To a_

first approximation we may assume that this hot spot rotates
Within the roll with a mean pericd that is approximately pro-
portional to the convective time delay imposed by the velocity
Field. Welander noticed an accelerating mechanism for this
periodic motion. His reasoning goes as follows. A hot spot
moves upwards faster than the average flow, and downwards
slower. As it is cooled in its rising motion, the cooling
stage may become less efficient than the warming one, and
there is a tendency for this hot spot to become hotter and
hotter as it keeps on each rotation a boost which is not
balanced during the cooling stage. Of course, this mechanism
has to struggle against heat and vorticity diffusion.

Let us however come back to the known experimental
faéts; In the high Prandtl number limit, Krishnamurti has
Aobserved oscillations of the convection pattern which she

attributes to the instability described by Welander. On



- I1.76 -

the other hand, Willis and Deardorff I}97§] see no important'
aifference between the unsteady patterns at low (air, ¢ = .71)
and large (silicon oil, ¢ = 57) Prandtl number. Furthermore, .
they have studied the temperature fluctuations at low Prandtl
number and shown that the oscillations are almost independent
on depth, which is in sharp disagreement with the Welander pic-
ture. The more recent measurement of Busse and Whitehead 1;97%]
results are essentially in qualitative agreement with those

of Willis and Deardorff: with large Prandtl number they ob-
serve'first an oscillatory instability whose general struc-
ture closely resembles the one of the low Prandtl number case.
They also observed that, when the amplitude of the oscillations
exceeded some level, a transition to a much more irregular
phenomenon, which they call "spoke pattern”, took place.

Except for the mea%urements of the temperature field
in the convection cell made by Willis and Deardorff, and various
measurements of the time period, there are actually no quanti-
iative data available about the structure of the periodic flow,
so that it is not clear yet whether the oscillations predicted
#y'Welander have been seen or not. However, recent results of
Clever and Busse E;97€[.are of interest. In their stability
study of an infinite away from two-dimensional parallel rolls
to infinitesimal time~dependent peiturbations at super-critical
Rayleigh numbers. They have predicted a number of instabilities,
two of which we shall now briefly describe., These are called

the zig-zag instability and the oscillatory instability. Both

have equal spacial periodicity to the primary roll pattern and

along the latter's axis (say x). In addition, they also have a
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non-vanishing wavenumber component, b, along a perpendiculaf
direction (say y) to the primary structure. The growth rate
and periodicity, b, of the zig-zag mode tends to the shorten-
ing of the effective rolls wavelength and thus merely repre-
sents a small shift of the roil pattern in the y-direction.

The growth rate of the oscillatory instability, however, does

not vanish with vanishing b. This oscillatory instability
corresponds to a bending of the primary rolls that propagate
in time along the ;pll axis. Nearly perfect agreement between
the theoretically predicted frequency of this oscillatory in-
stability and the experimental findings of Willis and Dear-
dorff '[197@ is claimed by Clever and Busse [1974_3-:] .

Though Welander also gave a model that yielded some
quantitative results, we shall turn now to describe Saltmann's
[}96%] and Lorenz' I§96§] theory of the transition to time-
dependent convection, These works procede Welander's but ac-
.cording to Malkusit}97§] they essentially refer to a similar

phenomenon,
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1. Model equations and stability analysis: one-dimensional

problems

In this part of the 1976}Report we shall discuss
the role of nonliﬁearity, and bifurcation to limit cycle and
nonlinear steady structures in simple reaction-diffusion
systems. We shall, however, restrict ourselves here to iso-
thermal, non-convecting media, leaVing for the 1975 Report .
a detailed discussion of the coupling of convection, and con-
vective instability to non-idothermal reaction-diffusion me-~
chanisms, Nonlinearity may be brought either by spatially
local strong interaction or by non-local processes in kinetic
phenomena., For motivation, the reader is referred to the book
of AriS‘[}97€]; On ﬁhe other hénd, we are also interesﬁed in
understanding the role of binary and ternary collision pro-
cesses in dense media,i.e. bimolecular and trimolecular reactizipj
; The folloWing models of global processes have been
of our interest: We consider two intermediate reactions in
an open container where sﬁrong non-equilibrium reaction takes

place:
(1) | '- /q : \{ (1.a)

¥ +Y—> 2X o

><_§ﬁz;_;; ¥> (1.c)
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To this scheme we associate the foilowing differ-

ential problem in dimensionless form

%X = XY — (_X/H‘%X)”’Dx A X (2.a)

(2.b)

3’;\(:—_ A-XY +D, AY
ot

in which the saturation law is called the first-order Hinshelwood-
Langmuir E@ichaelis—Menteﬁj law. Note that A, P, are products
whose concentration can be externally controlled. g yields

a measure of the strength of the saturation law. X,Y, A de-
note concentrations of the respective reactant that we shall
take positive definite. All reaction constants, besides q,

have been normalized to one (see for details IBAREZ, FAIR&N and

VELARDE [}976.a ). DX’D are respectively the dimensionless

Y
diffusion constants of X and Y and A denotes the Laplacian
operator. We shall consider either fixed concentrations on the

boundary (Dirichlet problem) or fixed fluxes (Neumann problem).

(ii) : : (3.a)
A— Y

B 5 X (3.b)

INHIB. |

r 4 (3.c)

X+ Y > P

to which we associate the following evolution problem in

dimensionless form
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X = B-X f(XY/‘—»WZ)*D*AX (0.

2y 2 A=) HR AT

The symbols have the same meaning as above. For motivation and

details see IBANEZ, FAIREN and VELARDE [1976.1:].

(iidi) - (5.a)

A—-——>Y
YrqX—@+D)X 35059+ trgea] o
X“‘—>P | | (5.¢)

to which we associate the following dimensionless problem

B{: >< \, )( *' [&)( (6.a)

- A - X ‘(-{- D AY (6.b)
’Bf:

Here the cases q = 1 and g = 2 correspond respectively to
binary and ternary collisioﬁ procésses. For motivation and
details see BALSLEV.and DEGN [1975]

Fixed points (i.e., steady solutions) of these mo-
dels areveasily found in the homogeneous case. Once the fixed
points are located we are interested in their stability. We

shall discuss model after model:
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(i) Model (1)

Fixed point (homogeneous)

X, = A/Y,
1-1A

<
i

(7.a)

(7.b)

0.3
A
02 -
0.1
~1_1/1
“qQJ;
O. ] } 1 1 i
.0 5.0 10.0 150 200 , 250
CFIG. 1

Figure 1 describes the linear stability portrait,

Regions I and II correspond to asymptotic sta-

bility of the steady state (XS,YS), with characteristics of

stable node (region I) and stable focus (region II). All
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other regions (III through V) yield instability of the steady:
state,

Regions III and'IV correspond, respectively, to
uUnstable focus and unstable node. Provided the nonlinear so-
lution is bounded, limit cycle behaviour is to be expected
in these two regions. We have located the limit cycle -

_' for g = 2.0 and A = 0,1. It is to be noted ‘
that the limit cycle is orbitally asymptotically stable. For
a'giveh value of g with decreasing A(A < 1l/qg the limit cycle
appears as a Hopf bifurcation-’. at A = 1/gq -~ (l/q)3/2.

Its amplitude viz. the distance separating (Xs‘Ys)' at every
instant of time, from the moving point with same YS) on the
orbit, is a continucus function of A. Region V is such that
Ag > 1, and corresponds to saddle point. We have also studied
the influenée of molecular diffusion of the intermediate reac-
tants, X ana Y. It suffices to add to the r.h.s. a
term DXSZX/BJ:2 and correspondingly to the r.h.s. ' a

term Dy32Y/Br2

. Here D and Dy denote the two molegular dif-
fusivities involved.‘For simplicity we limit ourselves here
éo é one-dimensionalAﬁroblem. The system is thought to be
enclesed in a box of length L(0 < r < L = 1).

.For fixed concentrations (f.c.) or fixed fluxes
(£.£.) onlboundary, the system stiil possesses one homoge-
neous steady solution and the same given above: (xs,ys).
Linear stability analysis . with diffusion yields
the folloWing major results: (i) for Dx>'Dy and £.E£. on

boundaries the regions I and II are unchanged. (ii) For

Dx > Dy and f.c. on boundaries, diffusion tends to play a
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stabilizing role; that is, region II increases at the ex-
pense of region III. (iii) For D, < Dy and £.f. on boundar-
ies, diffusion plays a destabilizipg role. Region III is en-
larged at the expensé of region II., (iv) For Dx < D_ and f.c.
on boundaries,>diffusion acts both as a stabilizing and de-
étabilizing mechanism with not too dramatic a role to be of
interest to us here.

In cases {iii) and iv) instability first arises
from saddle point—type linear eigenvaluesfkm that depend
on non-vanishing wave-numbers (m # 0). It is to be noted

that on demanding which linear normal mode comes with fastest

~growth all we find is that Dy > D if a mode is to grow at

all. Thus to define a critical value of A, Ac, we follow the
prescription given by Segel and Jackscnx[}QZ%J. Ac should belong

3/2 in which the

to the range of A such that Ac $ /g -~ (1/9)
steady homogeneous solution is stable if diffusion is absent;
_\ Furthermore Ac should also be smaller than the
valﬁes_of A which yield a region of asymptotic stability to
;he hompgenedus solution, Thus for A in the range l1/q - (l/q)?’/2 <
A <~Ac the homogeneous solution is unstable. Dissipative struc-~
tures (i.e. asymptotically stable steady inhomogeneous solu-
tions) appear in such region. Two examples are described in
Fig. 2. in'Fig. 2 (bottom) the dissipative structure corres-
ponds to a single mode exci;ation at g = 10.0,D, = 1.0 x 10~4,
Dy = 5.0 x»ldf4, and A = 0.07565. Fig. 2 (top) depicts a dis-
sipative structure when four modes are excited at once. This

cofresponds to A = 0.07365, and all other quantities as above.

The phase difference of 180° between the X and Y distributions,.

corresponds to regions where alternatively the substrate or

the product accumulate.
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05
3: L Xs
S Ys
(6]
s
©
5 7
E Xs WV\_—
g 0-3 B X ) XS
S Ys Ys
002' Y
0‘1 { i i

FIG. 2

{1i) Model (3)

Xo=B-A-
Y = [ ALerg-m"1] /-m)

(8.a)

(8.Db)

Fig. 3 de?icts the linear stability portrait,
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20.0

(a.u)
150

100

IT

I

5.0 100 - 15.0 B 20.0
(a.u.)

0.0

FIG. 3

Regions I and II correspond respectively to stable
focus (I) and stable node (II). Regions III and IV yield in-
;tability of the steady state; Here we have respectively un-
s#able focus (III) and unstable node (IV) with a Poincaré
index (+1) (which is a necessary condition for the appearance
of limit cycle around the sﬁeady state). Region V is of no
interest here as it yields negative or undefined values of
concentrations. On the other hand, it corresponds to saddle
point behavior with a Poincaré index (-i). No limit cycle is
to be expected here. | ‘ |
| In regions III and 1V, theAsystem does satisfj.

the necessary and sufficient conditions for the existence of
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limit cycle (Poincaré-Bendixon theorem in dimension two). As
an illustration, the limit cycle can be drawn : with
the computer for the triplet A = 14.0, B = 20.0 and q = 0.5,
To study the influence of diffusion of the inter-
mediate reactants we simply add to the r.h.s. -. a term
BZX/ar2 and correspondingly to the r.h.s. = - a term
D 3 Y/ar . Here D and D respectively denote the mass dif-

Y

fu51v1ty of X and Y. For 51mpllc1ty we limit consideration
here to a one-dlmenslonal box of length L(0 L rg L = 1),
The new differential system.with either fggéd concentrations
or fixed fluxes still posseses a unique homogeneous steady
solution given by (). Linear stability.of () in (4) to in-

homogeneous perturbations is governed by a wave-dependent

eigenvalue polynomial equation in A‘c.—:. B(k)

@)

’}t "FSKA!: + Ak.":“'o

in which k denotes the inverse of a characteristic length of

the perturbation. In Eq. (), 6k = § +A(kﬁ/L)2(DX + DY) and

A=A+ DR (EEY

;) ALL-4 6-A)] p (B=A)
T ) D ( (B-A)[iﬂrCB-—A)J) *h 144 (B—A)"
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For a given triplet (DX,DY,q), and varying A and
B, we may cross from the asymptdtic stability region of the

steady solution (i.e., ReX, < 0 for all admissible k) to a

X
region of instability. Assuming that in the unstable region,
bifurcation of secondary solutions corresponds to a single

critical wavenumber kc (with all other k #_kcj, and Rel < 0),

k
the following cases are of interest.

i)_xk(k =‘kc) is purely imaginary. With fixed fluxes
(£.£.) on boundaries, bifurcation occurs with a vanishing wave-
number. Thus, diffusion does not play any role. However, with
fixed concentrations (f.c.) on boundaries bifurcation appears
with kc = 1. Here, diffusion plays a stabilizing role.

ii).xg(k =~kc) ié‘real. In this case kc # 0 and dif-
fusion may play a destabilizing role. However, not all values

of the triplet (Dx'Dy'q) yield bifurcation. Bifurcation with

‘Ak,real is only possible provided the following two conditions.

are satisfied,

DY > DX | ' (10 .al)

T, = X o
LleDy ey (DKDY)Q' S0 (10. b)
(Dx'*‘D\/)Z <Dx + D‘()LiL

(it is to be noted that if D

oy
e -—
m——

v < DX or T < 0 there is bifur-

cation to a time-dependent solution fromApurely imaginary

eigenvalues). For f.c. diffusion plays a destabilizing role

in the system whereas for £.f. diffusion plays no role.
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When conditions (jo) are satisfied with >‘k real,
the homogeneous steady solution (%) yields way to an in-
homogeneous 'steady solution., An asymptotically stable in-
homogeneous steady solution is called a dissipative struc-
ture . Computer solution of the nonlinéar system

with diffusion, shows the appearance of dissipative struc-

. -4
tures that we have plotted in F;‘.g.H for the case {DX =10 °,

D, =107, q = 0.5, A = 8.916, B = 11.0 and L - 1.0}.

240F  B=110 Dy=10
2.09k ,
HAVAVAVAVAVAVAVAVIE
2.08

o
2.07 5.5 ] 1.0

{a.ul)
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(iii) Model (5)

Fixed point
A (11.a)

X,
Ys — (4...) (q_>o gr- i;4= 2) | (11.D)

There is also the possibility of an unbounded solution

X({I) =0 | N (12.a)
Y (4) = At + Y (t=0)

The linear portrait of stability around (4{)'is pictorially

(12.b)

described in Fig. 5.

A

3.0k

2.0

A1 t+.

1.0 A Ad=gs1 —2/q

" 1IB
. i : I

_ 1.0 5.0 g 10.0

FIG. 5.
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Regions IA and IB are of local asymptotic stabilitf
of () with characteristics of stable focus (IA) and stable
node (IB) respectively. In region II the steady state is un-
stable with characteristics of unstable focus (IIA), and un-
stable node (IIB) respectively.

According to a theorem proved by Tyson(§9i%, and
Hanusse[?QiZ]there is no possibility of limit cycle for g = 1.

=
This result follows from our computer-aided representation
(Fig. D). For if g« 1, the steady state #l) is stable for all
values of A > 0. The two instability areas (II) described in
Fig. 5 just collapse to a point as g approaches one from above.

On the other hand, the maximum of a4 = (g - 1) N

occurs at g Q 4.59, and A = A, ¥ 1.3. Thus, for A > A,
the steady state (44).15 asymptotically stable for all values
of g > 0.
At A = A_ = (g - l)l/q, there is a Hopf bifurcation
for all g > 1. The following two conditions are satisfied:
(i} the roots - . -~ :xl(A) + iAZ(A) are such that A, (A ) = 0,

AT (a)
Ay \A
and.kz(Ac) # 0, and (ii) the transversa;ity condition —E

A=AC7£
These two conditions ensure the existence of a time-periodic
solution in at least a small neighborhood of Ac‘ If {Xp(t),Yp(t)}
denote the periodic solution of frequency w = w(d), Hopf bi-

furcation theorem yvields that suplxp(T)—X + 0, sup]Yp(r)-—Ys

s |
2m
and w - 'AZ(AC) for TElO,—EI as A Ac'
The stability of {Xp,Yp} is related to the Floguet
exponents . It appears that if the solution exists for
A < Ac it is orbitally asymptotically stable, whereas for

A > Ac, if there is one it is unstable.

The analytical form of this time-periodic solution
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can be obtained by the Poincaré-Linstedt method., We takg

| o
A?:’:AC +%é Am’ ' (13.a)
)
X?:__ XS 4 MZ:_\ Q“Xﬂ (13.b)
. 2 n . (13.¢)
Y =Y, + Zﬂ—; e" Ya

F : o9 M AY (13.4)

UD:)Z(A) + 2> € Ao
| - h=2

It is to be noted that the vanishing value of the new unknown
e yields back the primary solution (44) . substituting ({3) in
(6) and solving up to third order‘givest2 = - % Ac_l(q—l) < 0,
and AP < Ac. Thus, the biﬁurcated solu;ion is orbitally asymp-
totically stable.

That Hopf bifurcation theorem " only ensures the
existence of a periodic solution in a small enough neighborhood
of A it is clear. For we have found that for A < ic with
0.90 < ix < 0.91 and g = 2 the periodic solution'{Xp,Yp}»is no
longer valid, and the systan (6) takes on the unbounded solu~
tion (4%). This behéviour is to be expected asAthere is no “
saturaﬁion law in Eq. (6 ). Nor is there more than the (g + 1)-

molecular step and this is just not enough to stop an unlimited

~growth of the intermediate reactants. The transition is illus-

trated in FL;.G where sup[Xp(T)-Xsi is plotted against A,

Ac = 1 is the point where the steady solution (44) loses sta-

bility, and the system (§) takes on the limit cycle {XP,Yp}.
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We have alsc studied the role of diffusion in (6):
and the results are qualitatively similar to those found in
the two models previously discussed by the present authors.
Thus, we merely give here the relevant features of the phase
diagram shown in Fig;q' . If Dx’Dy denote the respective dif-
fusion coefficients of reactants X and ¥, for fixed fluxes on
the boundary (Neumann problem), there is bifurcation to asymp-
totically stable inhomogeneous steady state for g 3 Q(Q =_2.25
with Dy/Dx = 5). There is bifurcation to E;me-periodic solu-

tion for 1 < q < 0(Q = 2.25 with D_/D_ = 5), No bifurcation

exists for g 1. It is to be noted that with Dy/Dx + o ywe

have Q = 1.
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Nonlinear structures on a sphere

2.1, Fixed point and its stability

In Section II.1 we have considered the stability
of non linear structures (steady states and limit cycle) in
a simﬁle autocatalytic reaction-diffusion scheme involving
the Michaelis~Menten (first—order Hinshelwood-Langmuir) sat-
uration law with restriction, however, to a one-dimensional
problem., We shall consider here the same process as above (for moti-
vation see Aris [}97%}), ~ but in the case of a spheri-

cal surface. In dimensionless differential form, the model is

2 X=Xy - iX + D AX

B -t | l.b
TYZ A——-XY ,DYAY (1.b)

in which X, Y and A denote dimensionless concentration of re-
actants.that we take positive. DX and DY are the respective
dimensionless diffusion coefficients of X and f‘ and g»> 0
yields the relative strength’of the saturation law in (1).
Let us consider the spherical surface, S, defined
by (R, 8; @) respectively radial at fixed R, polar, and azi-

muthal coordinates. In this geometry, the Laplacian operator

takes the form

2

o X8 9
" Sinb be(sm )+ b 3“? e

In the dimensionless form of the problem we have taken R = 1.



The (fixed point) steady homogeneous solution of
(1) is

(2,a)

X, (84) = Af(1-aA)
Y, (8,9) = 4-3A

(2.b)

For later convenience, we displace this solution to the ori-

~gin of coordinates and the system (1) becomes in compact form

%;u =L (y)w+ NGE,w

(3.a)

in which u is the two-dimensional vector u —_(§) and y accounts

for the four parameters involved in the problem ¥y E(A,q,DX,DY).
"L(y) is.the linear operator

] A (4-~q.A)+DXA

j

f G-9A)

' ' (3.b)
%A—ﬂ. A ) _,__A'a__ Sl”{‘ DYA .

and N(y,u) describes the non linear contribution; to (;),
7n-4 n+i pn
XY + 2 © ¢ (1 -48) X
n=2, ' (3.c)

XY
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. The stabiiity of the fixed point in (3) is related

to the eigenvalues, A, of L

L e=12% @

The eigenfunctions of (4) can be expressed in terms of the

eiéenfunctions of the Laplacian. We have

AY, @s9) = -e(h,g) Y, (54)

(5)

in which Yﬁm are spherical harmonics. Thus, the eigenfunctions
¢>i
(_b — Lm
L 8? %
- Um

in which ¢zm (i = 1,2) are complex numbers. .

g are

¥ (14

Y, (8,4%) ®)

The eigenvalue characteristic equation that describes

the stability of the fixed point is -

2

?\LW. - T(X) Q) A .y + DO{, e) =0 (7.a)

with

, -1
T(LQ):%AO—%_A)*AQ“%A) | (7.b)
R 1) (D +Py)
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D@, 0y=A(4-9A) - JZ(E-»i)LD\(%A (1-9.h) -
D, AG4AT |t DD

(7.¢)

For a given triplet of {q,DX,DY} and variable A the
fixed point may become unstable at some critical value, Ac, in

one of the two following ways

(i) ‘At a given Ac there is Yo =_(Ac,q,DX,DYX for which the

eigenvalue ), cross the imaginary axis with non-vanishing

£m
imaginary part. This defines a Ec and we must have

| T(HC)2c> =. O (‘8-3)
D (\(C)Q,C) > O | (8.b)

On the other hand, for all £ # ﬂc it must be

T—(Kc)ﬁ) <‘Q . | (9.a)
D(fc)e) > O (9..b)_v

Thus, the only eigenvalues that bring instability to the fixed
poin; correspond to the critical values Lc’ and all other eigen-
values have negative feal parts., From (8.a) and (9.a) together
with (7.b) we find ﬂc = 0. The only one spherical harmonic that

brings instability belongs to £ = m = 0.
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(ii) The eigenvalues that bring instability are real and cross

the imaginary axis from left to right. Then we must have

T ,t) <0 e
D (\ﬂc )QC—> =0 '. | (10.b)

together with

T(KQ)Q) <0 ‘ | (ll.a)'
D (fc ) Q’> > o (11.b)

for all Z'#,ﬁé. The critical eigenvalue is associated with the

minimum of D in (1ll.b) which is given by

A A Y
f(dst)= P 9Ac(-4A)-D A (1-¢Ac)
'~ 2D, D,

(12.a)

773

(12.b)

D, Ac (§A) +B, 3 AcG-48)=2 [B R A (-4

According to (10.b) and (7.c) it must be £c # 0. Thus, we have
(Zﬂc + 1) eigenfunctions branching at once.at‘ﬂc. Besides, from
(1l.a) and (l2.a) we also obtain the necessary condition DY > Dy

for a non linear structure to bifurcate at AC.
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A few remarks are now pertinent:

(a) If g < 1 and DX > DY the fixed point (2) is asymptotically

stable for all wvalues of A: there is no Ac > 0 that satisfies

(8) and (9) or (10) and (11) for g < 1.

(b) With DX >D there exists Yo =‘(Ac'q’DX’DYX such tnat for

Yl
all g > 1, the fixed point (2) is asymptotically stable for all

A > AC. The fixed point becomes unstable for A < Al with the
eigenvalues_&ob. These eigenvalues have vanishing real parts

at A = Ac. Ac is given by the relation T(yc,0)<=‘0.

(¢) With D, > D, there are two possible bifurcation pictures.

Y X
Either the fixed point becomes unstable for values Ac satisfy-

ing T(YC,O) = 0 with purely imaginary eigenvalues'koo or be-

comes unstable satisfying (12.b) with eigénvalues.A , real

Zcm

and vanishing at Ac.

Figure 1 accounts for the case DY =~5DX'

denotes values for which the fixed point is stable. At AC =

% - ~%:_there is instability and bifurcation to periodic solu-
q.q . . .

tions, and at Ac as given by (12.b) to spatially inhomogeneous

Region I

structures as we shall explain below.

It is to be noted that in case (a) there is only oﬁe
eigenfunc;iqn ¢oo(e,p) at bifurcation; in case (b) the null-
eigenvalué of (4) has (Zﬂc + 1) degeneracy +{with £c # 0) and
this is not a minor difference with respect to the one-dimen-

sional case discussed agbove.
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2. Non linear steady (inhomogeneous) structure and its stability

In the following we shall restrict consideration to
v xr 9 > 0 and A < Ac’ with Ac.given by (12.b),
such that (i) L(y) possesses eigenfunctions belonging to the

vanishing eigenvalue at A,

L-; (I{c_) %iem:: O ;m:—??)-ec-#‘l),,.lﬂc.;).gc (1)

Here ZC is given by (1l2.a) and the corresponding eigenfunction is

4_ ;
b= (Y00 e

<

with .

O (ahf3A 340D L]

We shall seek solutions in the space of complex-valued
functions with continuous second derivatives on the spherical
surface Sz. The follbwing scalar product of functions u and U

belonging to the space is introduced

<u>&"> = (X*}Z + Y*Y) 40 .
L. : A
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in which dQ accounts for the angular integration.

The adjoint.operator Lt of L is
| LA-9A) +D A c1_A——\
T |
L (%)= ‘ (4)
-] \ A
A(1-4A) -Al-3h) by
The eigenfunctions belonging to the vanishing eigenvalue are
+ 4 | - |
43 = ( > \{ (9,‘{) (5.a)
ﬁcfm D ,é;m

. with

D=(l-4 A [qrAc(‘“qrA°)"‘ Dt d°+i)] (52

(1i1) The following transversality condition is satisfied

+ | |
<AP ("ﬂ'),LG&)CF (J).)>7éO (6)
“Qo’m ﬂcfm |
in which L'(y) denotes tﬁe derivative of L with respect to A

L/( ) ‘{-((—-Zq_A) (4.—-1/4)-.2'
)= |

(7)

q . --({ —-q_F\)-Z
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.With the above conventions and restrictions we shall

use the Poincaré-Linstedt method and set

L(y)u+ N8 =0

(8.a)

o "
Ae Ao € A
: o0 n=1
7 — Z:' 6%0(,“, : (8.c)
m=4_ | -

in which € is a new unknown that we shall fix by the solvability
conditions (Fredholm alternative) to be imposed upon (8).

The stability of (8.c) is related to the eigenvalues
of the linearized approximation to (8.a) in the neighborhood

of (8.c). This linearized eigenvalue problem is

L(K) 43 -+ M(K,&)CXD '—'—")‘# (9.a)

in which M, a linear operator, accounts for the derivative of N
with”respect to u.
In accordance to (8), we seek solutions to (9) in the

form
“ A
AP = Z_ € 47 (9.b)
m=0 "

<O

A‘:‘- Z 6“ ')‘% | (9.§)

1=
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We now introduce (8.b), (8.c) and (9.b), (9.c) respectively in

(8.a) and (9.a), and we get |

LW) UF)“‘G‘A L(K)+ | (10.a)
+ @[ Ay, L (1) +3A L(f)}m(e)

| Yy
N(uﬂi)': éZNl(Kc)ul) '*'égNg(Kc)ut,Mz,AL)’*‘ 0(€) (10.b)

M) = €M, (1, 0,) +€ M (F, Bl Ar) +0 (€

(10.c)

We shall equate terms of same power in e both in (8) and (9).

(i) First-order approximation

- The terms in e and ¢ yield

L(KJW =0 (11.a)

L(Kg) 430 =0 (11.b)

Thus, the solutions belong to the kernel of L(Yc). From (1) we

have
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Wy = ZQ Ay (i) ,%w\ (& q) (122.1a)

b = 2: b (&)Y (B

in which a s bm'are complex numbers. As aq must be real, and

Y (8,¢).=_(~)mY*' (6,4) in which the star denotes the com-
*

plex conjugate, we have a =A(-)mam withm=-1, ..., ﬁc‘ and

a, real.

(ii) second-order approximation

Equating second-order powers in (8) and (9) we get

L(‘K‘c) U,L —_ - Aﬁ_ L' (6¢)u’| - NZ(XC )ul)

(13.a)

L0 &, = A L) & —My (L 808 44,

(13.b)

with

KoYy + (4 «;AJBE}X‘Z

Nzwc)u*): X, Y, (13.¢)

YAy X
M4_ (UC)(A(): Yi '+ 25} O g'AC) X'L | L
B - \(4_ "><1

and ul'é'(xl‘yl)'

(13.4)
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~Secular terms in (13) are eliminated with the use of

Fredholm's alternative, namely the’following orthogonality con-

dition is imposed,

A <d ey + <3€;¢ Ny (=0,

with m =‘—£ ¢ vees ﬁcf We now use the relaé}on
£+€' . M
Y (’& \{)Y (9? ) P (=)«
L=\¢-01 M=-L -
¢ )(a.ul)"/zul pl'L
ZQ%J)(Z +1 / |
[ (000)(mm,m)\( (6,¢)
U L;'M
A (15)

in which the Wigner "3j" coefficients have been introduced (4).

Thus, (14) ylelds

A Ga ,.+FZZ C; Q‘(’
el m=-

) e bl &QQ 0
e ) )

(16.a)




- II.30 -

With m" = 'O[ l’ s 0 0y ﬂc’ and

™ (16.b)
c

G = <<;im L (1) S0

3
F= C+(t-3Age - D& 6.)

i E
System (16) together with condition a =.(7)mam(m = l,...,Zc)
yields (2£c + 1) equations with (211c + 2) unknowns: (a£ . a_z .

c+l

ceer @y Al)‘ On the other hand, Fredholm's alternative yields
c .

(2£c + 1) equations with (2£ + 2) unknowns: (b_£ ‘ ...,bﬁ ,_Al),
c c

«Aﬁk --ZFZ:Z_—_(—- ,m}gm, @l +) ’:z

rn-- [ h L¥7T

ey 74 L L
Lty it L o)+ A, (4+CD>L>m..

X B
0 00 m m o=h 1)

m“

With m'—' = -£C' .n .o g £co
It is to be noted that when the null-eigenvalue of
L(Yc) is not simple the equations relating a s bm,Al and A4
are not linear, and at Ac bifurcation of several branches is
possible (see below for further details).
We have now the following alternatlve. Either

L £ £

¢ Oc 0 % # 0 and the equatlons (16) and

(17) have a non trivial solution, or

(i) ﬁ is even with (
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‘ L £ 2
(11) £_.is odd, with (,° o o) = 0 and the solution of (16),
(17) yields Aq =_Al = 0, In this latter case, we bught to go

to higher orders once the equations (13) are solved. They re-

duce here to

L (pyue = — Na (¥, )

M
0O 0O ©

(18.a)
L(%)e = — M, (Ye,) ‘t
I - (18.b)
With tﬁe use of (15) we get
ZQ .L. ﬂc Le V (L)
=2 2 7 V(L))(’)"
L'=O M:-—L mg-f,, m’-.—._e
B , ' . 'Aa'
Yy Qi l@&ﬁ) (2L+L) (QC L. L'); (19.a)

LT

{. L
?\(icm’_M> Y (9,“{’)

LM

Wlth L even, and

C\D -— & Z: Z 7 > \\//;((LB) ) Ay, bm'(")Mx

=0 M=-L m=- m’—-@

Vl?al) (2L+\)}/2. 2.4 L)(ﬁ Q, L) Y (6, (i_g.b)
m M

Y1 °°°
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with L even, in which

£ D, L0 +A g (-3AY +(-gAJ 4R L(L+1)

Y, ()=
\ D, D, [L(LH)—- g uzc.u)] .
V() CrAclaho R C L (L) —
(L=
- P Dy [_L (L’**D—-&(JZC—H)]
-C(\"%Ac)"(\fq—Ac)qg, o

(iii) Third-order approximation -

As forvﬁc odd, we have Ay =_kl = 0 the equations to

this order are

L5 Uy = — Ag L ()t = Ny OF, ) cane

LOT 4, = =R, L G4~ Ma e h ) b -
~M (Kc)u‘)d& + 9P,

(20.b)
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with

N ('KC) b 2-)
(x Mo+ XY +zqr0—ean>< fo-3A0) %

- x, Yz_ Y‘
Y,+200-4A0 X EG-3A) X2 X,

3 (20.c)

and

Ml(ft)ul,“l) = - (20.4)
| e OO X

Using Fredholm s alternatlve in (20.a), we get (2£ + 1) egqua-

+ 2) unknowns (a_z ¢ eeer 8p s AZ)’

C

TS s a2l S A

L=o Mz-L m=-t m=-C m'=—L,

z _
xﬁlge*":v““‘l@i"wcw—ct-arAc)%]x o

(ST ) S =0

60 0

tions w1th (21

A ] B - s _ m*
Wl,th. L eV.en.,_ and‘ m"; - 'Op l( oo s ze.c{ am = ("') a_m( m= .1’ s s 0 f zct

and

‘ \N (L) =X_V9,(L) + CV‘ 0‘)]0 -D) + 24 Q -ngC)g V¢ ) ' (21.b)
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Using again Fredholm's alternative in (20.b) we get (ZZ + 1)

equation, with (ZZC + 2) unknowns: <b—,?_ roeenr £ r A ),

2 L ©
AQJGEmma%—)ec > ) } ) \

L=o f‘i—-L ma~le et mhe_| .
Clﬁc—H)ZCZL-i-'L) ( llm {c L )(ﬂ { L )x -
| H'T[' 0 0 © I — (22)

with L even, and m"‘( = ,-ﬂcr cs ek Eé' _ -*'A (l‘rCD> bmm

2.3. Further discussion of a particular case

We shall illustrate here the salient differences. be-

tween the spherical problem treated above and the one-dimen-

sional case, ' ~For the sake of simplicity, we
take £C = 1, As 'f.c is odd, we have Al = }‘l = 0, and thus, to
obtain A2 and }\2 we make use of (21) and (22). To get A2 from

(21}, we have

ALGQ0+QE(M—§")‘.‘£QO _,‘(M.:;. 3N )_—-:_o

ah (1.a)

Ny N
AQ,G‘QL—*'QIQ“’?'(M—,;;T)*'ZQ?&" | (M +L ):..-
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. _ *
with a_; = ~aq. and

L Wlk=2)
= b WQL:’.O) -+ ‘
M HTt >t | (1.c)

. .
N = (""%Ac‘) q'i (1.4)

in which W(L) and G have already been defined,

There are ’;wo solut_ions to (1),
‘ : |
— —_—n2
(1) &O?J:O) Reay=Ima =0, A,=0a; Az (2.2)

with corresponding branches

I IZ

NCAE i‘[g(-A"Ac)] (4)m9+
4T Al C
V ' (2.b)
A"’Ac 1 1‘0) V| (2) 2 B ' 3,
+( AL )W [(v,.(o)> “'( V,2) (3 w 8-1)| 40 (A-AL)
« Y .
(1) Qgm0 , @ =Mme A :mz/\z_ .

with corresponding branches
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e, = x [ 2 M} ‘(& )s‘ngmwﬂ)—r—

2w A

A—-Ac) 1 0)) Vi@ 2 6?0 s 2 (+8) -
*%'( 27 Vz(ﬁ) v, (2) l;TT (3.b)
2.

L "'))(3005 6 — l):} L o(A- Ac)

V, (2)

It is to be noted that solution (2) has no ¢—dependence.
'On the other hand, solution (3) depends on a parameter § to be
. determined from initial conditions: thus, (3) defines a one-
parameter family of solutions.
Stability of the bifuicated branches is related t?.kzr

and this quantity is given by the following eguations

A, Gb, +3a2b, (M- Tt )-2a0 b (M+ )
—2baga, M-2bq, ,LM—HDA (1+CD)=0
A,Gb ~Ya,a b (M-\- ~)+bag 201)"'

—2b o a (M+ )+ 29 a,b, M-\—)Q_E,CHCD)::.O

(4.a)

(4.b)

AZ, G [0__‘ ""L" b—-; a..‘ql (M +°2';.FE>+2'&..‘0‘0 LoM'?‘ (4.8)

+L_\a3‘(M—§§ﬁ—)szaﬁk,(M-%-zm)—%-
+A2 b‘l<1+CD> —

(4.4)
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in which M, N, and G are as above.

With solution (2), we have the following alternative:

Either

) ~
(1) A, =0 , lpo-—__:o , bi#q ; b_‘,i o (5.a)
oxr

(2) y qN ~D
(ii) Az = f?,o.g‘ (M“m)/a-%' C ) ’ bo#:o) (5.b)
b‘: b =o

Thus, if A (2) > 0, there appears a positive eigenvalue of

2.
L(y) + M(y,u) in the ez—approximation, and the branch (2) 1is
unstable. If, however,_xz(Z)_< 0, we canno£ establish stability

as_%z(l) yields a vanishing eigenvalue to L(y) + M(y,u) in
the 82~approximation. Thus, higher order terms are needed to

assess the stability properly.

, (2)

5 =.sgn(A2), and the following

We note that sgn

relations hold

4 +CD :::CDY-— DX)/DY 79 (6.2

Gﬁ<%m)l_{(§c_>%m> <O (6.1
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Thus, solution (2) is unstable when it appears subcritical
(A > Ac), whereas if supercritical (A < Ac) its stability is
decided in at least the €3~approximation, and so on. We
shall not carry further, however, our analysis here.

With solution (3) the alternative is: Either

(2) 2
(1) Ay =0 5 by 0, by =b_;® (7.a)
or )
qN
(2) (M 4 — 2
(ii) ’Ag, =4 mQ' ‘ 20T . \:)'Q::O,\o‘:‘b_.\‘e (7.b)

Again we figd‘a situation encountered in the previous case.
When solutiﬁn (3) shows subcritical it ié unstable but if it.
appears supercritical its étability analysis demands higher
order approximatioﬁs,‘and so on. Figure 2 displays the various
bifurcations that are possible: three different cases appear
in accofdance to thé range of values of'kz(z) in either solu-

tion (2) or (3).

.4, Bifurcétion to a limit cycle

When q, DX and DY are such that either g > 1 and

D, > D and q is such that bifurcation of the

X or Dy > D

Y Y X
steady sblution (%4.2) occurs for purely imaginary eigenvalues

of (Ai.H ), then there exists a critical value, A,

;\Ci = - R— (1)



unstable

WA R O S— S S——  WEewin WS Wt Smew S Swmuw —— oo—

unstable

S— . — e G- vt S G Oy Sowme  Sew e

Ac

(2)
A 2 <O

(2)
A.zfg(O
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such that the fixed point is asymptotically stable in the range
% > A > A, and unstable at A = A with a branch emanating for

£c = 0, Thus, L(Yc) has purely imaginary eigenvalues + iwo

L (K¢) keo:: + CCOO \?o

(2.a)

L (\66) ij—:-. -CCOO ‘?f (2.b)-‘

with

o — (2.c)

4/2. . | . (2.d)
t= (‘W@—i )

and

Qwﬁo(::a_ "%>/o<?/o, " (2.e)

Then the following two conditions of Hopf bifurcation theorem

are satisfied . :

(i) in the neighborhood of Ac the eigenvalues of L(yc) are of

the form

2, (A £ 02, (A) e



with both'kl,.kz real,hkl(Ac) =0 andvkz(Ac) # 0,

(ii) the transversality condition

22, A)
3 A

:;£: t) (3.b)
A=ho

which leads to bifurcation to a limit cycle at A, We shall con-

struct this periodic solution in the neighborhood of A by the
Poincaré-Linstedt method.

We shall look for2w~periodic functions with first time
differential continuous and with continuous spatial second-

differentials on the spherical surface S 2

U‘(el%o): u (9] ‘101‘2'“) ; U (9, Y, t)= [_X (elqu{r), Y(&Y9, t)],‘

X,{ € C*lo, 27 %,¥ & c’“@)}

In the above defined space of functions, we consider the fol-

lowing inner product

| TC
LU ) u > =1 dv | da [% (9,“?(“) x*(_e,ﬂ(’fc)"' *
: A g +?(6,k?3’) Y (el“f.'\f)]

for a pair of functions u andﬁfbelo.nging to the space; the star -

(4)

on guantities denotes cdmplex conjugation,

For later convenience, we change the time variable to

= %‘___‘wt

- (5)
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Thus, u = u(r) obeys the following equation
w2u= L (})u+Nw
0T
We define
o _ L(
J.(WC) = wo:—b,\d \6‘6)

with its adjoint .

| +
T i)
T (r) = —we & — L (%)
0%
with L+(Y).given in (2.4). Thus i; follows

JTOOY =0 j(b‘c)\{)o*z_—o

*
Tt =e 5 TR =

with A
e

Yo o (e=e)

oo ] e

De—a)
‘P ‘ X Ih X
o - _ -2 L
JTsind \]_-éf_:___}..] e
i V?; ,

For simplicity we have chosen constants such that

(7.

(8

a)

.b).

. a)

.b)

.C)
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. <df/o+> Qeﬁﬂ,}:—. 4

(8.&)

Note that the transversality condition (3.b) reduces to

 Ke <\{):~)L‘Q(c> \%)o> =+ O -

in which L'(yc) accounts for the linear differential operator

of L with respect to A (2.7).

We now set

[t :
Y
A__.__._AC,.FZ_ e A, - (0.a)
| . m=|

> Y.
W = Z € Un (10.b)
= '

2 n
oW = CUO “+ ZZ:: € deL

’ﬂ:’-l o (lO.C)

together with corresponding e-expansions for L and N (2.10).
Inserting (10) and (2.10) in (6) and equating same powers in e

we get an hiérarchy of equations that we solve up to the first

few orders.

(1) First—order approximation

Equating first powers in e from (6) we get

J(PH)w =0

(11)
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*
Uy is a linear combination of wo'and wo ; and on physical

~grounds it is taken real only. Thus we have

ol T

Uuif-"- Re\,‘/o;

: a2,
Vg _l Cos (x—-ot) | %
\/71: — 4L

Note that considering Imwo merely amounts to a displacement

of the time origin and as the system (6) is autonomous it is

irrelevant.

(ii) Second-order approximation

.Equating how second-order powers in € from (6) we get
2w+ Ay L Ny (X, )
T (Yot == 2 Wik A LW+ Na (o) s

To (13) and (ll) we apply Fredholm's alternative. This yields

Al and wl

Re < k*ch".) NZ (Kc )(M) >
AL =-
Re <7 L' (F) Wi

(l4.a)

1= —TIm <y Ny (¥, 00—

(14.b)

—A, Im < “Y: , ! (THwD>
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Note that the transversality condition (9) demands

‘ that Al and Wy be finite. It follows

A4=(L)g'=-‘0

Thus, u, is given by the equation

j(b'c)uz—': Nz (Vca‘“)

We now seek solutions to (15.a) in the following form
my 2 (2T + 2y ) + My

\L*)_: N

M, wd (2T+z) + V2

in which Mie My Nyp Doy Q

Substitution of (15.b) in (15.a) yields

m, = 4 [1 q - 44. z ?gr\{" ]

3(Vq — 1)

y ?—‘Hﬁ;

, 040, 4T
bm Vg ~1

COS—Q-j_ =
9 49+ 9 __jzxf_sf 2

W\Q,. = — 4+
3(Vg ~4) u{g -1)

1e Qz‘are all real constants.

(14.

(15,

(15

(16.

(16

(16

a)

.b)

.b)

.C)



CbS_—QZ = - C;‘/BMQ_Q‘Z},;—L) | (16.4)

(1ii) Third-order approximation

Equating‘third~order powers from (6) we get

T U= ~ oy, Wi+ Ay LU+
+ Ng(b’b)ul,uz)»AL)

To (l7)‘Fredholm's alternative together with the transversality

(17}

condition (9) yield

A :—'(\/_é-:‘ +‘) - (18.a)

?(g - Vg

- r‘**g‘f@?“ (-2 (g3

Wy = : : ~ ,
IO I 6iz-v)
N ~ (18.Db)
and so on.
Inversion now of (1l0.a) gives
3/
A-Ac '/2'_1. o A—-A )
6‘ =1 ("““;"‘) ; C “ (19)

A



that put into (10.b) and (1l0.c) respectively gives

A-Ac Y2, (3 w €

uw(9,9,8) = X[~ il +
/\2. - sgg;_ (oS (bbt”‘ D()
q- (20.a)
ang 03 (ReE+ ) 40y 3/2,

and

(20.b)

in which all parameters (Ac, AZ’ Wyr W

57 6f Ql,_ﬂz, my s m2>and n)

are the above given functions of q.
The stability of limit cycle (20) can be assessed by

the knowledge of the Floguet exponents., That is, by the eigen-

values B of the following eigenvalue equation problem (6)

w .‘Z%‘c&{) - L(bﬂ)kf — M (\6') u("&))(f:f;\f (21)

in which éll operators are as defiped above., It follows (6) that
(i) 1if solution (20) branches suéeréritical (for A < Ac) it is'
asymptotically orbitally stable, whereas

(ii) if solution (20) branches subcritical (for A > A ) it is

unstable,.
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From (1) we get that g > 1, and from (18.a) follows A, < 0.

2
Thus, (20) branches supercritical and we have stability in at

least a small enough neighborhood of A,

x Py
do not explicitely show up either in (1) or in (20). However,

It is remarkable that the diffusion constants D

their influence is implicitely accounted for as (i) their values
restrict the range of values of g in the linear stability por-
trait of (1.1) for which bifurcation is possible (see Figure 1
and Reference 1); (i%)their presence in (l.;) yields the con-
sequence that the solution (20) does not show any spatial de~
pendence: thé motion of points }n the surface S has vanishing
phase shifis. Without diffusion the motions will all be inde—

pendent of each other,
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1. The Lorenz model and turbulence

In this part we shall discuss the seemingly sto-

chastic behaviour of a deterministic model proposed by

Lorenz I}96§:. Though it is not expected that Lorenz' model
accurately represents the onset of turbulence, it has, how-
ever, a rather intrinsic interest as it may be taken as a
counter example to the usual dogma (and its eﬁsuing folklore)
in the physicists' community, according to which stochasticity
arises either from the interaction of an infinite number of
degrees of freedom or from an external noise source (usually
chosen gaussian as the randomness is related to an infinite
number of degrees 6f freedoﬁ via the central limit theorem).
It will appear from the analysis of Lorenz' model that in
systems far away from thermodynamic equilibrium, stochasti-
city or randomness can merely arise from the deterministic
dynamics of a few macroscopic degrees of freedom. We may very
well agree with the reader that a macroscopic degree of free-
dom hides almost on every occasion encountered in physics,

an infinite number of ﬁhem at a lower and rather more sophis-—
ticated level of descriéiion. |

The Lorenz' equations are
X=a(Y-2)

$ o X2 ar XY R,
é—‘—" X\("‘b% (1.c)

(1.a)
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It must be clearly recognized that the behaviour of

three~-dimensional systems like (1) is not at all as well un-

derstood as the behaviour of systems with two degrees of free-
dom. In the latter case, it is often possible to prove that

a well-defined asymptotic state exists, which may be either a
limit curve or a stable fixed point as discussed in textbooks
on differential equations (see La Sallé and Lefshetz 1}9621 or
Coddington and Levinson I}QSST). For aystems such as (l) there
is actqally no‘detailed description of the geometry of the
attractors. The analysis of the behaviour of (1) uses mainly
the properties of the linearized motion in the vicinity of

. olgtbt3) 470

T —p-T —~ (= 715 1if

points., As shown by Lorenz, for r » r

"g = 10, b = 8/3) these points are: two "convection" points

C+ = (£ b(r-1), + b(xr-1),r-1) and one "conduction" point .
O—;.(0,0,0) are uns;able to linear perturbations.

The conduction point (0,0,0) is attractive in two
directions: one direction in the plane Z = 0, and the axis
oZ and it is repulsive only in one direction of the plane Z = 0.
The axis o0Z is a possible trajectory, as X =Y = 0, 2 =,Zoe_bt
is a solution of (l). This shows that a point starting close
to the conduction point is attracted by the plane of the two
stable directions (or "stable manifold") and repelled along
the unstable directioné. Practically, it moves closer and clo-
ser to the unstable line starting from 0. It will move in one
of the directions defined by this line, depending on the half-
space where it started from. In the neighborhood of the origin,

these two half-spaces are separated by the plane defined by the

two stable directions. Should this separating surface divide
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the whole space like a plane does, the motion of any point
would remain in one of these half-spaces; but this is not
the case. Let us then look at the vector field generated by
(i,i) in any horizontal plane (i.e., at fixed Z). The plane
motion of a point corresponding to this field is described
by (1) Z being a fixed parameter. The origin is the fixed
point of this vector field and any motién around it is very
simple, as the equations are lineai. For Z < ZC = r - 1, the
point (0,0) (actually the vertical axis) is attractive in
one direction and ;epulsivé in another, For ZC <2< Z'c =~Zc +
ﬁEi%liA, the point (0,0) is attractive in any direction and
two real trajectories (which are straight lines) go through
the origin., For 2 ?_Z'c, these trajectories are no longer
real and any point converges toward the origin following a
spiralling motion.

This means that below a given height (2 < Zc), a
point is repelled by the axis oZ, but if it goes bigh enough
it is-atfracted instead, either by an almosﬁ straight or by
a spiralling motion. This will explain that, if during its
trajectory a point moves at high Z it may rotate enough
around the vertical axis aﬁd pass on any side of the separa-
ting surface upon descending. Thus, this surface cannot ac~-
tually separate the trajectories "in the large”.

Consider now the neighborhood of the‘other two fixed
points; i.e., the "convection" points C+l=.(i b(r-l),ijST;:ET,
r-1). For'r§>,rT they are attractive in—gne direction and re~
pulsive in a plane. (This is a plane close to C, and becomes

more or less curved surface far away, to actually yield the
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unstable manifolds of C+ and C_). In this plane, the repul-
sion occurs through a spiralling motion (it corresponds to
two complex conjugate eigenvalues of the stability matrix).
It is not difficult to understand how a point moves, start-

ing close to one of these convection points, say C+.‘It be~

~gins to revolve around C+ by slowly going away and yet point-

ing at the same time toward the unstable manifold of C,. When
the spiral has grown enough, it is attracted by the ang 0Z
when z > 7 and repelled when Z < Z.. When it reaches the
height Zé,,it rotates around the axis o072 and_éoes down on the

other side of the separating surface passing through the ori-

~gin. As the origin is repulsive.in one direction, the point

is "violently" repelled toward the convection point C_ as
thewtwo Unstagle orbits,starting from the origin pass close

to the con&gction points (it is likely that they join exactly
these convection points, in which case they would constitute
the so—called hetéroclinic orbits of Pbincaré). Then the point
begins again to revolve around C_, and so on,

This gualitative picture of the 3d‘ﬁotion is simpli-
fied by restricting oneself to the so-called Poincaré trans-
form. Consider the successive intersection of the upward tra-
jectories with the horizontal plane of the convection point,

i.e., the plane 2 = r - 1, Let (Xl,Y '(X2'Y2)”"(Xn’Yﬁ)"“

l)
be these intersections. The Poincaré transform is the law of
correspondence (or 24 mapping) that relates (Xn,Yn) to
(xn—l‘Yn—l)'

' A first important property of this mapping is that

it contracts the *volume'. Consider an ensemhle of initial
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3%, o1, 3L
0X oY 9%
at time t the volume occupied in phase space by the arrival

conditions £illing a volume v(0). As =Ae(c+b+l),“
points is p{(t)V(o) with p(t) = exp(-o+b+l)t, As the motion
between two crossings with the plane Z = r - 1 is more or less
similar for a large class of initial points, the gquantity p(T)
defines the contraction factor of the Poincaré& mapping, T
being the mean period of the motion: an ensemble of points
lying on a surface of measure o, occupies a surface op(T)
after one application of the Poincaré transform. This explains
that the attractor of Poincaré transformJis a set of zero

measure, since it is stable (by definition) under this trans-

form, which implies that, if it would occupy a surface Go’ then
S’CT.) G- - 6; (2)

which is satisfied for o, =,0.5r © only. The case g, = is
disregarded since, as shown by Lorenz, they are regions of
space which are stable by the equations of the motions (what
we actually mean here by "stable" will appear at once)., For

that purpose one considers the ellipsoid of equation
| 2 2 2 K
FX —\—Y + (Z‘-—Y‘-—O’) ey (3)

with K »>> 1 and g > 0.
The scalar product of the velocity of a point (X,Y,Z)
on this ellipsoid with the outward normal to the surface is

‘at large K (i.e., by neglecting linear terms):
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as Xx°Bo + Y% }FZXY{E;, it is possible to choose B (for in-
stance 8 = 1) so that E,',E < 0 at large K, so that the ellip-
soid is "stable" as no point can leave it, and the attractor
is inside all the stable ellipsoids constructed in this way.
Following Ruelle 1}9751, let us call r, the cuxrves

.

which are the intersects of the unstable manifolds of C, with
the plane z = r - 1, and let I be the intersect of the ;Eable
ﬁaﬁifold of the conduction point with the same horizontal plane.
The picture is approximately given in Fig. 1. Consider now

the successive transform of a point P, close to C_. The first

1
iterates are attracted by I'_ and repelled along this line, as
I' belongs to an unstable manifold of the original equations
(in other'terms, at each turn around C_, the point diverges
in the direction of the twb complex conjugate unstable eigen-
vectors of C_). Thié'corresponds, approximately, to the iterates
P, to P, drawn on Fig. l..In its motion after P,, we shall
assume that the poin# jumps high enough to rotate around the
Vertical axis x = y = 0, and to go down on the other side of
Z; sclthat the'néxt iterate, i.e., PS, is close to C+{ The
proceSsvbggins again: the nex§ iterate moves from P5 to %,
jumps to C_, and so on. |

Consider now, instead of a point, a set of points
on a surface which is drawn along I'_ between C_ and Z. By
applying the Poincaré& transform to this set of initial points,

one finds that at each turn the points closer to are ejected

toward C+, which makes appear a small sheet of arrival points



Fig. 1.

- III.7 -

Poincaré's maﬁ» - generated by the Lorenz model

in the plane 2 = r -~ 1, C+ are the 'convection'

points, I is the stable manifold of the conduction

point and T, are the unstable manifolds of C_.

— —
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close to F+. At the next turn, this sheet is stretched alongf
r, and after a few turns, part of it is ejected again toward
C_. The Poincaré transform is a deterministic mapping as the
original equations of the motions. This means that the new
sheet appearing close to C_ is approximately parallel and at
some distance from the points remaining close to P_ (i.e., the
points which were close enough to C_ at the beginning, so that
after a number of applications of the Poincaré transform, they
have not yet‘been Qulled out of I' )., On thg other hand, after
each application of the transform, the area of the ensemble
of points occupied by the sheets is reduced by the contraction
factor p(T). This cbntraction is mainly due to a thickening
perpendicular to the unstable manifolds F+. Thus, if one re-
capitulétes the whole process, starting f:ém a one-sheet sys-
tem along I'_, we now have approximately two parallel sheets
with a length of the same order as the one of the original
sheets.

Consider now the intersect of these sheets by a
line approximately perpendicular to I'_. Startipq from an en-
semble of initial conditions filling a segment on this line,
after a few applications of the Poincaré transform, the central
part of this segment has been deleted. By continuing the process,
we again érop thé central part of the remaining segments, and so

*
on. This is the way to generate a Cantor set( ).

(*¥*) A well known Cantor set is obtained by deleting from lO,l[ it
central part, 1/3,2/3T, then by deleting the central part of the
two remaining segments, i.e., ]l/9,2/9f and A7/9,8/9., and so on.
The Cantor set is what remains after an infinite n er of appli-
cations of this process. To characterize this ensemble, it is use
ful to write the number between 0,1 on the basis 3 (i.e., by usip
the digitsg0,1,2 only), then any element of this Cantor set is of
the form 1 _a.3”t where a, = either 0 or 2. This shows that the
Cantor set=l “is not denumerable, although it has obviously a zex
measure. .
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The object obtained from the initial sheet after
an infinite number of applications of the Poincaré transform
is by definition the section of the attractor of the motion
with the plane Z = r - 1. This explains that the Lorenz at-
tractor is continuous in the direction of the unstable mani-
folds of C, and has a Cantor structure along the normal to
this manif;ld. Let x be a point on the attractor, then a local
system of curvilinear coordinates exists such that if (0,0,0)
defines X ﬁhen (ul,uZ,u3)vbelongs to the attractor provided
(ul,uz) belongs to some finite interval around (0,0) though
uj belongs to a Cantor (or Cantor-like) set,

AThe motion defined by the Lorenz eguations has the
property of mixing, which may be considered as a ﬁathematical
version of.the_general statement: X(t) has an erratic motion
for almost any initial condition. Starting from two neighbor-
ing points, then after some delay, the arrival points become
almost completely uncorrelated namely, shortly after the time
of start the two curves become completely different., The
explanation of this fact is quite simple: at each turn the
point is either ejected toward the other convection point or
remains on the same stable manifoid. Thus, starting from two
close pointé,Po and Pé,,their distancé increases exponentially
along the unstable manifold and after a number of turns one
of these points'will be ejected and the other will not, and
the trajectories will become completely different from this

instant on.
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The mixing property is equivalent to the absence
of "long time" correlations or of memory effects, and it may
be restated as follows. Let yY(x) and g(xXx) be any two smooth
functions of X = (X,Y,Z), then the time average -

'<x¥[é(@] C%;[ﬁ(% ,{.'\5)] >€"‘? <L\/><A(7> )

5 0o

where, by definition

~
w B4 D]
<Loxwly=dim T FLx® .
T °
The time correlation functions of the Lorenz egua-
tions have indeed this mixing property. Thus, a simple deter-
ministic system with a few degrees of freedom may actually

appear as having a random behavior, not originated as the am-

plification of some random noise.
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cadas y se discute asimismo @1 fendmeno de la turbulencia. :cadas y se discule asimismo el fendmeno de la turbulencia.

B e M e e M R e e e e e n e e e e e SR AR ma M WA e B e e S e A b e Gm e e AR e e e e We B A A e e e e e e

i
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Chemical reaction kinetics. Landau fluctuations, Hydrodynamics. Nonlinear problems. ' Chemical reaction kinetics, Landau fluctuations. Hydrodynamics. Nonlinear prablems.
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""Instabilities in fluid layers and in reaction-diffusion
systems: Steady states, time- -periodic solutions, non-
periodic attractors, and related convective and otherwi-
se non-linear phenomena''.

GARCIA VELARDE, M. (1977) 144 pp. 9 figs. 105 refs.

Thermoconvective instabilities in horizontal fluid layers are dlscussed with
emphasis on the Rayleigh-Bénard model problem. Steady-solulions and time~dependent
phenomena (relaxation oscillations and transition to turbulence) are studied within
the nonlinear Boussinesq~Oberbeck approximation.

" Homogeneous steady solutions, 1imit cycles, and inhomogencous (ordered) spatial |
structures are also-studied in simple redction-diffusion systems. ‘

Lastly, the non-periodic attractor that appears at large Rayleigh numbers in tha '
truncated Boussinesq-Oberveck modet of Lorenz, is constructed, and a d1scusswn of
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. Thermoconvective instabilities in horizontal fluid layers are discussed with
emphasis on the Rayleigh-Bénard mode) problem. Steady solutions and time-dependent
phenomena (relaxation oscillations and transition to turbulence) are studied within
the nonlinear Boussinesq-Oberbeck approximation.

Homogeneous steady solutions, fimit cycles, and inhomogeneous (ordered) spatial
structures are alse stuaiea n simple reaction-diffusion systems.

Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the
truncated Boussinesq~Oberbeck model of Lorenz, is constructed, and a discussion of
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"Instabilities in fluid layers and in reaction-diffusion
systems: Steady states, time- ~periodic solutions, non-
periodic attractors, and related convectlve and otherw1-
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"Instabilities in fluid layers and in reaction-diffusion
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periodic attractors, and related convective and otherwi-
se non-linear phenomena'',
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Ther\;noconvechve instabilities in horizontal fluid layers are discussed with
emphasis on the Rayleigh-Bénard model problem. Steady solutions and time=dependent
phenomena (relaxation oscillations and transition to turbulence) are studied within
the nonlinear Boussinesq-Oberbeck approximation.

Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial
structures are also studied in simple reaction-diffusion systems. -
Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the
truncated Boussinesg-Oberbeck model of Lorenz, is constructed, and a discussion of

se non-linear phenomena'’, -
GARCIA VELARDE, M. (1877) 144 pp. 9 figs. 105 refs. -
Thermoconvective instabilities in horizontal fluid layers are discussed with
emphasis on the Rayleigh-Bénard model problem. Steady solutions and time-dependent
phenomena (relaxation vscillations and transition to turbulence) are studied within
the nonlinear Boussinesq-Oberbeck approximation. ‘
Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial
structures are also studied in simple reaction-diffusion systems.
Lastly, the non-periodic attractor thal appears at large Rayleigh numbers in the
truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of
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turbulent behavior is given, iurbu1ent.behavior is given.

INIS CLASSIFICATION AND DESCRIPTORS: Al4, A1, Convective instabilities. Lyapunov
method. Chemical reaction kinetics. Landay fluctuations. Hydrodynamics. Nonlinear
problems, )

[ .
IN1S CLASSIFICATION AND DESCRIPTORS: Al4. K11, Convective instabilities. Lyapunov .
method. Chemical reaction kinetics. Landau fluctuations. Hydrodynamics. Nenlinear
problens.
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turbulent behavior is given. turbulent behavior is given.

lN!S CLASSIFICATION AND DESCRIPTORS: A14,A11, Convective instabilities. Lyapunov
method, Chemical reaction kinetics. Landau fluctuations. Hydrodynamics. Nonlinear
problems.

INIS CLASSIFICATION AND DESCRIPTORS: A14.A11. Convective instabilities. Lyapunov
method. Chemical reaction kinetics. landav fluctuations. Hydrodynamics. Nonlinear
problems. '
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