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Chapter 1

Introduction

Dispersion forces are effective electromagnetic forces between neutral, unpolarised objects.
In particular, the dispersion force acting between a single atom and macroscopic bodies is
known as the Casimir-Polder (CP) force. Recent progress in experimental techniques has
led to accurate measurements of CP forces and revealed their relevance to applications in
nanotechnology. The experimental results have confirmed some of the theoretical predictions

while posing new questions at the same time.

1.1 Dispersion forces

The prediction of dispersion forces is one of the most prominent achievements of quan-
tum electrodynamics (QED), where they can be regarded as a consequence of quantum
ground-state fluctuations. To obtain an intuitive insight to dispersion forces, consider first
the corresponding classical situation: According to classical electrodynamics, two neutral,
unpolarised objects will not interact with each other in general, even if they are polarisable.
An interaction can only occur if (i) at least one of the objects is polarised or (ii) an elec-
tromagnetic field is applied to at least one of the objects: In the former case the object’s
polarisation will give rise to an electromagnetic field, which can induce a polarisation of the
other polarisable object; in the latter case the applied field induces a polarisation of the
first object, which in turn gives rise to an electromagnetic field acting on the other object.
Both cases lead to an arrangement of polarised objects interacting via an electromagnetic
field, the resulting force being a consequence of the departure from the classical ground state
(unpolarised objects and vanishing electromagnetic field).

In QED, the ground state is given by the objects being in their quantum ground states
and the electromagnetic field being in its vacuum state, where both polarisation and elec-
tromagnetic field vanish on the quantum average. At first glance, one could hence expect
the absence of any interaction between the objects. However, the Heisenberg uncertainty
principle implying the existence of ground-state fluctuations, both (i) a fluctuating polar-
isation and (ii) a fluctuating electromagnetic field will always be present. They give rise
to an interaction and consequently a non-vanishing dispersion force between the objects —
manifesting itself as a pure quantum effect.

Thus, dispersion forces are ever-present effective electromagnetic forces between atoms



Chapter 1. Introduction 2

and/or macroscopic bodies. In particular, we will in the following refer to the atom-atom
[1, 2], atom—body |2, 3] and body-body dispersion forces [4, 5| as van der Waals (vdW), CP
and Casimir forces, respectively.! Naturally, dispersion forces have many important conse-
quences. On a microscopic level, they influence the properties of weakly bound molecules
[6, 7]. A prominent macroscopic signature of dispersion forces is the well-known correction
to the equation of state of an ideal gas, leading to the more general vdW equation of state
[8]. But the signature of dispersion forces is also manifest in the macroscopic properties of
liquids and solids, where inter alia they are crucial for an understanding of the adhesion and
fracture of solids [9]; the phase behaviour of dipolar fluids [10]; the melting of weakly bound
crystals [11]; the anomalies of water [12]; and the magnetic, thermal and optical properties
of solid oxygen [13].

The influence of dispersion forces becomes even more pronounced in the presence of in-
terfaces between different phases and /or media. Dispersion interactions drive the adsorption
of inert gas atoms to solid surfaces [14, 15|, influence the wetting properties of liquids on
such surfaces |15, 16| and lead to the phenomenon of capillarity [17]. The mutual dispersion
attractions of colloidal particles suspended in a liquid [18] influence the stability of such
suspensions [19]; unless sufficiently balanced by repulsive forces, they lead to a clustering of
the particles, commonly known as flocculation [20].

The abovementioned relevance of dispersion forces to material sciences and physical
chemistry being rather obvious, it is perhaps more surprising to note that they also play
a role in astrophysics and biology. Thus, dispersion forces initiate the preplanetary dust
aggregation leading to the formation of planets around a star [21]. Furthermore, they are
crucial for an understanding of the properties of proteins [22|, the interaction of molecules
with cell membranes [8, 23, 24|, and the cell adhesion driven by mutual cell-membrane
interactions [8, 23, 25]. Recently, dispersion forces have been found to be responsible for the

remarkable abilities of some gecko [26] and spider species [27] to climb smooth, dry surfaces.

1.2 The Casimir—Polder force

In this work, the CP force between a single neutral atom or molecule? and neutral mag-

netoelectric® bodies is studied. The focus will be on the pure vacuum CP force, i.e., the

!Note that alternative naming conventions are common in the literature. So, the notions vdW /CP force
are often used to distinguish between different separations (small/large) instead of nature (atom/body)
of the interacting objects. Furthermore, the term vdW force is often thought to even include body—body
forces.

2For brevity, we will only speak of atoms in the following.

3The term electric is used where no explicit distinction is made between metals (conductors) and di-
electrics (insulators). Likewise, the notion magnetoelectric is used to refer to metals or dielectrics possessing
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electromagnetic field will in general be understood to be in its ground state. Furthermore,
we assume that the atom-body separation is sufficiently large to ensure that the atom
is adequately characterised as an electric dipole, while the body can be described by its
macroscopic magnetoelectric properties; and that repulsive exchange forces |28| due to the
overlap between the electronic wave functions of the atom and the bodies can be neglected.
Interactions due to non-vanishing net charges, permanent electric dipole moments, magneti-
sability, quadrupole (or higher multipole) polarisabilities of the atom and those resulting
from non-local or anisotropic magnetoelectric properties of the bodies will be ignored. A
generalisation of the theory to include such effects is in most cases possible by supplementing

the results with additive corrections.

1.2.1 Experiments

The simplest way to measure a force between a microscopic object and a macroscopic body
is by performing a scattering experiment. Consequently, first evidence for CP forces was
found in a series of experiments where the deflexion of a beam of ground-state atoms passing
near metal and dielectric cylinders was observed, showing the existence of an attractive CP
force proportional to 1/z* for sufficiently small atom-body separations z [29]. Following
a similar idea, the deflexion of atoms passing between two metal plates was monitored
by measuring atom flux losses due to the sticking of atoms to the plates, where a strong
enhancement of the CP interaction for excited atoms* was observed [30], and it was shown
that the ground-state force becomes proportional to 1/z° for large z [31, 32].°

More detailed studies of the CP force are possible by introducing a controllable compen-
sating force, e.g., by using an evanescent-wave mirror [35]. Here, total reflexion of a laser
beam inside a dielectric leads to an exponentially decaying electric field at its exterior. An
atom placed in the vicinity of the body will interact with the evanescent field, leading to
the required compensating force, sign and magnitude of which can be controlled by vary-
ing laser frequency and intensity. Following this idea, CP forces have been measured by
monitoring the reflexion of ground-state atoms incident on evanescent-wave mirrors [36, 37].
Alternatively, compensating forces for CP force measurements can be provided by the mag-
netic fields created by magnetic films, with the strength being controlled by varying the film
thickness [37]. An even more controlled access to CP forces can be obtained by studying
the motion of atoms trapped in a known trapping potential which is then deformed by the

atoms’ CP interaction with a nearby body. Observation of the resulting change in the atomic

non-trivial magnetic properties.
4Unless otherwise stated, the term refers to atoms in excited energy eigenstates.
SFor further reading, cf. the reviews [33, 34].
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motion leads to very accurate measurements which was demonstrated using an excited ion
trapped in a standing electromagnetic wave [38|; and gases of ground-state atoms confined
in a magnetic trap [39] or an optical lattice [40]. In the latter experiment, a temperature
dependence of the force has been observed.

Effects due to the wave nature of atomic motion become relevant for small centre-of-mass
momentum, such that the atomic de Broglie wave length is sufficiently large. In this case,
quantum reflexion of atoms from an attractive CP potential® may occur [41]. Quantum
reflexion of atoms which are incident on the surface of dielectric bodies, was observed in
various experiments [42] and by recording the reflectivities at different (normal) momenta,
a detailed measurement of the CP potential was achieved for ground-state [43] as well as
excited atoms [44]. Another prominent wave phenomenon that can be exploited for the
measurement of the CP potential is the diffraction of an atomic wave which is incident on
a periodic array of parallel slits (commonly referred to as a transmission grating). When
passing through the slits, the atomic wave acquires phase shifts due to the CP interaction,
which influence the interference pattern forming behind the slits. By comparing the exper-
imental observations with theoretical simulations, the CP potential of ground-state [45, 46|
as well as excited atoms [47] with dielectrics, has been measured.

Spectroscopic measurements provide a powerful indirect method for studying the CP
interaction [34]. Here, the fact is exploited that the CP potential of an atom prepared in a
certain energy eigenstate can be identified with the position-dependent shift of the respective
atomic energy level [2]. Spectroscopic measurements of atomic transition frequencies thus
provide information on the difference between the CP potentials of an atom, for instance,
in excited and ground states. The transition-frequency shifts being usually dominated by
the excited-state contribution, spectroscopy thus yields good estimates of the CP potentials
of excited atoms. This has been demonstrated in experiments measuring the CP potentials
of excited atoms inside planar [32, 48, 49] and spherical metallic cavities [50] or near a
dielectric half space [51] and of an excited ion near a metal plate [52]. In this context,
selective reflexion spectroscopy of atomic gases has proven to be a particularly powerful
method [53]. It is based on the fact that the reflexion of a laser beam incident on a gas cell
is modified due to the laser-induced polarisation of the gas atoms, which in turn is strongly
influenced by the CP interaction of the atoms with the walls of the cell. By comparing
measured reflectivity spectra with theoretically computed ones, very accurate information

on the CP interaction of atoms with dielectric plates has been obtained [54],” including

6Note that the CP force is commonly regarded as a conservative force, with the resective potential being
referred to as the CP potential.

"Note that the CP interaction with metallic plates is much more difficult to observe via selective reflexion
spectroscopy [55].
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the potentials of atoms in very short-lived excited states, which are difficult to study by
scattering methods. As a major achievement, the method has shown that CP forces on
excited atoms can be repulsive [56]. Recently, spectroscopic methods have been used to
observe the motion of an atom placed within a cavity under the influence of the force due
to strong, resonant coupling with a single cavity mode [49, 57|. It has been shown that for
a suitably prepared state of the atom—field system, the atom is attracted to the antinodes

of the mode.

1.2.2 Applications

Based on the methods described in the previous section, CP forces can nowadays be studied
with an unprecedented accuracy — high precision measurements even place limits on non-
standard gravitational forces on small length scales [39]. As a consequence, the focus of
research has slightly shifted from the mere detection of CP forces towards controlling or
even using them. Casimir—Polder forces often have a disturbing effect when atom traps
are operated near surfaces. In particular, they can diminish the depth of magneto-optical
traps, thereby imposing limits upon the near-surface operation of such traps [58]. Traps
that are based on evanescent waves [59] or miniaturised charge and current-carrying wires
[60] necessarily operate in the near-surface regime, so that CP forces cannot be avoided.
On the other hand, it has been demonstrated that the CP forces arising for strong atom—
field coupling can be used to construct single-photon based atom traps [57]. The disturbing
influence of CP forces needs to be taken into account when constructing wire |60, 61| and/or
evanescent-wave based elements for atom guiding [62], where the latter have been shown to
provide a tool for controlled atom deposition on surfaces [63].

CP forces are indispensable in atom optics [64] where mirrors and beam splitters for
atomic matter waves are realised, based on the CP potentials of flat surfaces and trans-
mission gratings, respectively. Using several transmission gratings, a Mach—Zehnder in-
terferometer for atoms has been realised [46]. Flat quantum reflective mirrors have been
demonstrated to provide a one-dimensional focussing mechanism when the CP potential
is combined with gravitational forces in an appropriate way [65]. In addition, by locally
enhancing the reflectivity of such mirrors via a Fresnel reflexion structure [66], a reflective
double-slit type interferometer [67] as well as more complex reflexion holograms for atomic
matter waves have been realised [68]. By using evanescent waves, one can enhance and
control the reflectivity of atomic mirrors [69]. As recently predicted, the quantum reflexion
of ultracold gases at dielectric surfaces can (by means of the interference of incident and

reflected matter waves) give rise to interesting phenomena, such as the excitation of solitons
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and vortex structures [70].®

Further impact on the application of CP forces has been made by the recent proposal |72]
and subsequent fabrication 73] of materials with tailored magnetodielectric properties, also
known as metamaterials. Metamaterials displaying simultaneous negative permittivity and
permeability in some frequency range, allow for the existence of travelling electromagnetic
waves whose electric-field, magnetic-field and wave vector, form a left-handed triad,’ leading
to a number of unusual effects 75, SB3, SB4]|. It is yet an open question whether left-handed
properties can lead to new phenomena in the context of CP forces and to what extent
metamaterials can be exploited to tailor the shape and sign of these forces. An interesting
behaviour of dispersion forces may also occur in conjunction with soft-magnetic alloys, such

as permalloy or Mumetal [76] which are in a state of extremely high permeability [77].

1.2.3 Theory

As already mentioned, CP forces arise from quantum zero-point fluctuations, namely the
fluctuating charge and current distributions of the interacting objects and the vacuum fluc-
tuations of the (transverse) electromagnetic field. If the atom—body separation is smaller
than the wave lengths of the relevant field fluctuations, then the latter can be disregarded,
allowing for a simplified treatment of dispersion forces. In this non-retarded regime, dis-
persion forces are dominated by the Coulomb interaction of fluctuating charge densities.
Within a leading-order multipole expansion, this interaction may further be approximated
by a dipole-dipole interaction. Such an approach was first employed by Lennard-Jones |3|
who studied the CP interaction of a ground-state atom with a perfectly conducting plate.
For this idealised problem, the Coulomb potential can be described by the atomic electric
dipole moment interacting with its image in the plate. Taking the ground-state expecta-
tion value of the dipole-image interaction, Lennard-Jones obtained an attractive 1/z* CP
force. In subsequent works it was shown that the CP potential found for a perfect conduc-
tor has to be regarded as an upper bound to the result found for real metals [78] which is
approached in the limits of rapid response and high density of the free metal electrons [79].
The image dipole method has been extended to include quadrupole [80] as well as higher
multipole moments [81, 82] of the atom, leading to additional attractive force components
which fall off more strongly with increasing atom-body separation. Furthermore, it has

been applied to the interaction of ground-state atoms with semi-infinite metal half spaces

8For a theoretical analysis of interference phenomena within the context of ultracold gases, cf. also
Refs. [71].

9For this reason materials with such properties are commonly referred to as left-handed materials. As
proposed very recently, left-handed media might alternatively be realised by using a gas of atoms exhibiting
suitable electric and magnetic dipole transitions [74].
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[83] and non-dispersive dielectric multilayer plates [84| and can even be generalised to study
the CP potential of a ground-state [85] or excited atom [86] near a dispersive and absorbing
dielectric half space. In the latter case, resonant force components arise that exhibit the
same 1/2* distance dependence as the ground-state potential, but whose sign and magnitude
delicately depend on the relative positions of the atomic and medium resonances.

In spite of its success and appealing simplicity, the image dipole method suffers from
three main problems: Firstly, it predicts an infinitely strong potential in the limit z— 0 (in
contradiction with the finite binding energies of atoms on surfaces); secondly, the properties
of the body are either strongly idealised (as in the case of the perfect conductor) or described
in terms of quantities that are difficult to obtain by both theoretical and experimental means
(as in early attempts to treat real metals in a more realistic way [78, 79]); and thirdly, it
only applies to a very limited class of simple body shapes. It was found that these problems
could be overcome by describing the atom and the body on an equal footing in terms of their
charge densities and expressing the resulting interaction potential in terms of electrostatic
linear response functions of the two systems.'® This was first demonstrated for a ground-
state atom interacting with a realistic electric half space exhibiting a non-local response
[87] (cf. also Ref. [88]). The approach was shown to lead to a finite value of the interaction
potential in the limit z — 0 [81, 89, 90] (cf. also Ref. [91]). For sufficiently large values of z,
the force on an atom in front of a half space can be given by an asymptotic power series in
1/2[81, 87,90, 92] with the leading-order 1/z* term being given in terms of the atomic dipole
polarisability and the local electric permittivity of the half space. Next-order corrections
are due to the atomic quadrupole polarisability on the one hand and the leading-order non-
local response of the half space on the other hand. The response-function approach has
been used to determine the (ground-state) force on an ion [93] and a permanently polarised
atom [94] in front of a metal half space as well as that on an anisotropic molecule in front
of an electric half space [95]. Extensions include the interaction of an excited atom with
an electric [96] and birefringent dielectric half space [97], effects due to a constant external
magnetic field [98], and friction forces exerted on moving atoms [99]. One major strength of
the linear-response formalism is the fact that it can easily be applied to various geometries
where the interaction of ground-state atoms with perfectly conducting [100], electric [100]
and non-local metal spheres [101]; electric [102] and non-local metal cylinders [103]; and
perfectly conducting planar [104] and non-local metallic spherical cavities [105], has been
studied.

Even though electrostatic methods have been developed into a sophisticated theory cov-

10Tn contrast to the quantities appearing in the abovementioned early attempts, the two response functions
are directly accessible to measurements.
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ering various aspects of CP forces, they can only render approximate results valid in the
non-retarded regime. For atom-body separations that are comparable to, or even larger
than the relevant atomic and medium wave lengths, the interaction is no longer governed
by the Coulomb potential alone and the transverse degrees of freedom of the electromag-
netic field need to be included. Such a nonrelativistic QED description was first given by
Casimir and Polder 2|, who reconsidered the interaction of a ground-state atom with a
perfectly conducting plate. Central ingredient to their approach is the quantisation of the
electromagnetic field in terms of normal modes, which are the solutions to the free-space
wave equation for the electromagnetic field obeying the idealised boundary conditions im-
posed by the perfect conductor. As demonstrated by Casimir and Polder the interaction
of the atom with the quantised electromagnetic field, leads to a position-dependent shift
of the atom’s ground-state energy which is identified as the CP potential. Calculating this
energy shift within leading-order perturbation theory, they were able to show that in the
non-retarded regime their result reduces to the 1/z* force found by Lennard-Jones, while in
the opposite retarded regime (the atom-plate separation being much larger than the wave
lengths of the relevant field fluctuations so that retardation effects due to the finite speed
of electromagnetic waves play a major role), the force is proportional to 1/2°. The results
of Casimir and Polder have been rederived [106, 107] and extended'! where atoms carry-
ing permanent electric dipole moments [108] or being magnetisable [109, 110] have been
considered, the influence of relativistic effects [111] and current fluctuations [112] has been
studied, and fluctuations of the force have been calculated [113]. It was found that the
retarded ground-state force at finite temperature decreases more slowly (oc 1/z%) than in
the zero-temperature limit as soon as the atom—plate separation exceeds the thermal wave
length [114, 115] and that the force on an excited atom exhibits an oscillatory behaviour
in the retarded regime [116, 117, 118, 119] — making the influence of transverse electro-
magnetic waves on the interaction even more explicit than in the case of a ground-state
atom. Furthermore, the theory has been extended beyond the case of a single plate: Forces
on ground-state atoms inside perfectly conducting parabolic cavities [120] and on ground-
state [121] and excited atoms [108, 122] placed within perfectly conducting planar cavities,
have been determined by using perturbation theory in conjunction with the normal modes
associated with these geometries.

In this context, it should be noted that perturbative techniques may fail when an excited
atom near-resonantly interacts with a single mode of a cavity. Instead, the arising strong

atom-field coupling may be treated within the Jaynes-Cummings model [123] where the

UFor a review, cf. Refs. [33, 34].
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attention is restricted to the interaction of a two-level atom with the cavity mode. Within
this model, the eigenstates of the system — commonly known as dressed states — can be found
in a non-perturbative way, with the associated eigenenergies being interpreted as the CP
potential in straightforward generalisation of the perturbative case [119, 124|. It turns out
that, depending on the dressed state the system is prepared in, the atom may be attracted
to or repelled from the nodes of the cavity mode.

Returning to the discussion of the perturbative force, it can be noted that a major
development of the normal-mode approach consisted in the extension to bodies with more
realistic material properties. To this end, the normal-mode concept had to be generalised by
allowing for the more general boundary conditions imposed by these bodies. The interaction
of a ground-state atom with a metal half space was addressed by considering the boundary
conditions given by the behaviour of the free metal electrons [125], revealing that the result
of Casimir and Polder has to be regarded as an upper limit to the CP potentials created
by real metals. For (magneto)electric bodies, the appropriate boundary conditions for the
normal modes follow from the well-known conditions of continuity of the macroscopic elec-
tromagnetic field. The resulting normal-mode expansions for the QED field have been used
to derive the ground-state CP potentials of atoms near electric [126], magnetoelectric half
spaces [127]; inside planar electric cavities [128, 129]; as well as the CP potentials of excited
atoms near an electric half space [130] or multilayer system [131]; and inside a spherical
electric cavity [132].

Normal-mode QED has thus shown to render an exact approach to the problem of the
CP interaction that extends the electrostatic results beyond the non-retarded limit. The
method, however, suffers from two major limitations: It is not applicable in the presence
of absorbing bodies, and the extension to bodies of various shapes is extremely cumber-
some even for relatively simple geometries. Particularly in view of the second limitation,
linear-response theory'? was used to develop an approach that does not rely on an ex-
plicit field quantisation and can hence render geometry-independent results: Making use of
the fluctuation—dissipation theorem, the perturbative interaction energy of the atom and the
QED field could be reformulated in terms of the linear response functions of the two systems
— the atomic polarisability on the one hand and the Green tensor for the electromagnetic
field on the other [133, 134, 135, 136, 137, 138]'. The obtained result can hence be applied
to bodies of various shapes and materials in a straightforward way by using the appropriate

Green tensor. This was demonstrated by calculating the CP interaction of a ground-state

12Note that the method is a natural extension of the linear-response techniques employed within the
context of electrostatic theory.

I3For an alternative, semiclassical approach based on finding the eigenenergies of the classical electromag-
netic field interacting with a harmonic-oscillator atom, see Ref. [139].
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atom with a multitude of bodies such as: Perfectly conducting plates [133, 135, 138]; electric
[32, 134, 135, 138, 140] and magnetoelectric half spaces [141|; metal half spaces exhibiting
non-local properties [137, 142] and/or surface roughness [137] or being covered by a thin
overlayer [143]; perfectly conducting [144] and dielectric spheres [140, 145, 146|; dielectric
cylinders [140, 147, 148|; perfectly conducting and electric planar cavities [149]; dielectric
spherical [150], cylindrical [148] and perfectly conducting wedge-shaped cavities [146|. The
linear-response result for the CP potential being based on the fluctuation—dissipation the-
orem (which is only valid in equilibrium situations), cannot be directly applied to excited
atoms. An extension to excited atoms was developed by starting again from the perturbative
expression for the atom-field coupling energy, but only expressing the field contribution in
terms of the respective response function. In this way, CP forces on excited atoms in front
of perfectly conducting plates and dielectric half spaces [151, 152] with the latter exhibiting
birefringence [153| or surface roughness [154], has been derived. In further extensions of
the QED-based linear-response approach the influence of finite temperature [155, 156, 157],
anisotropic atomic polarisabilities [158]|, and non-vanishing atomic velocities [156] on the
force, was investigated.

The approaches to the CP interaction of an atom with a body presented so far have been
based on an essentially macroscopic description of the body. In contrast, a number of mi-
croscopic models have also been developed, where the body is being thought of as composed
of a collection of atoms. Such an approach was first used for studying the interaction of a
ground-state atom with a dielectric half space [159]. Modelling both single and body atoms
by harmonic oscillators interacting via the free-space QED field, an exact expression for the
total CP force on the single atom due to its vdW interactions with the half-space atoms
could be derived, which was shown to be equivalent to the respective result obtained from
macroscopic theories. These considerations, which may be regarded as a substantiation of
the macroscopic approaches, were later extended to dielectric bodies of arbitrary shape [160]
and beyond the harmonic oscillator model [107, 161]. Further extensions include excited
atoms [162] or even excited bodies [163].

While in microscopic approaches the CP force between an atom and a body is derived
from interatomic vdW forces, one can also go to the other (macroscopic) extreme and infer
the atom—body force from the Casimir force between two bodies. This was first demonstrated
for a planar geometry by starting from the Casimir force between two dielectric half spaces
and assuming one of the half spaces to be filled with a dilute gas of atoms [5, 164]. In
this case, the force on the respective half space can be written as a volume integral over

the CP forces exerted on the gas atoms by the second half space, so the latter can be
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deduced from the former in a straightforward way. The method was also applied to the
finite-temperature case [165], and by taking advantage of the fact that solutions for the
Casimir force are readily available for a wide class of geometries, the CP interaction of
ground-state atoms with various bodies, such as rough [166] or anisotropic electric [167],
(isotropic) magnetoelectric half spaces [168]; electric spheres [169]; spherical cavities [169]

and cylinders [167, 169]; and cylindrical cavities [169] was obtained.

1.3 Motivation and outline

Owing to the recent progress in high-precision measurements of CP forces and in view of
modern applications in nano physics, the current work aims at formulating a unified theory
of CP forces. Since concepts of macroscopic electrodynamics remain valid even on micro
and nano scales, involved microscopic treatments can be avoided in virtually all cases of
interest. As outlined above, a number of macroscopic approaches to the CP force have
been developed (rendering results that are valid provided that all atom-body separations
are large with respect to the typical length scales associated with the internal, microscopic
structure of the bodies), with each method having its intrinsic advantages and limitations.

Time-independent, perturbative calculations based on normal-mode QED give an exact
Hamiltonian approach to the CP force; however, applications to various problems have
shown that the method is not very flexible, because the geometry of the present bodies
must be taken into account at a very early stage of the calculation. Normal-mode techniques
fail in the presence of absorbing bodies and have not yet been fully developed for bodies
possessing magnetic properties. Furthermore, leading-order perturbation theory cannot
account for the influence of the finite shifts and widths of atomic transitions on the force;
and a static description completely disregards the dynamics of the CP force to be expected
for excited atoms, in particular the phenomena expected to occur for strong atom-field
coupling.

Methods based on linear-response theory overcome some of these problems by rendering
general results that have been demonstrated to be easily applicable to various geometries.
The price paid for the increased practicability is the fact that the theory is not based on an
explicit quantisation scheme and is thus less rigorous. Unless founded on the corresponding
normal-mode results, it has to be regarded as a semi-phenomenological theory, which is based
on the fluctuation—dissipation theorem as a central assumption. This holds particularly for
its applicability in the presence of absorbing or magnetic bodies, where no normal-mode

QED foundation is available. Since the theory effectively remains in the perturbative realm,



Chapter 1. Introduction 12

the abovementioned questions regarding the role of finite line shifts and widths remain
unanswered; and the static, equilibrium approach is not able to address dynamical aspects
like the phenomenon of strong coupling.

These deficiencies shall be overcome in the current work by developing a unified (macro-
scopic) theory of the CP force that incorporates the benefits of both normal-mode QED and
linear-response theory approaches. Prominent results that have been obtained by various
means will thus be founded and extended within a common framework that is sufficiently
general to allow for a discussion of entirely new aspects of the CP force. In particular, the

theory is required to

e apply to bodies with both electric and magnetic properties,

e account for both dispersion and material absorption,

e render general results that can easily applied to various geometries,

e allow for including local-field effects,

e be able to address the relation between the CP force and microscopic vdW forces,
e explicitly reveal the influence of atomic line shifts and widths,

e allow for a dynamical description,

e be applicable for both weak and strong atom—field coupling.

As a starting point for achieving these goals, a Hamiltonian-based, geometry-independent
quantisation for the electromagnetic field in the presence of dispersing and absorbing mag-
netodielectric bodies will be presented in chapter 2. Within the context of this work, the
existing macroscopic QED in linear, causal dielectrics [170] has been extended to magneto-
electric bodies [SB1, SB3, SB4| in order to provide for a sufficiently general basis. As shown,
the interaction of the body-assisted electromagnetic field with atoms can be introduced in
straightforward generalisation of procedures commonly used in the context of normal-mode
QED, where both minimal and multipolar coupling schemes are elaborated [SB6].

In chapter 3, macroscopic QED is used to investigate the static aspects of the CP force on
an atom prepared in an arbitrary energy eigenstate. It is shown that Casimir and Polder’s
pioneering concept of deriving the CP from the atom-field coupling energy [2| can be used
within the context of macroscopic QED, leading to very general expressions for the CP
potential of an atom in the presence of an arbitrary arrangement of magnetoelectric bodies
[SB1, SB5, SB6, SB7, SB8|. Formulae of this kind, which for electric bodies have been
obtained previously on the basis of linear response theory, are thus derived for the first time
by means of an exact quantisation scheme that explicitly allows for dispersing and absorbing
magnetoelectric bodies. It is shown that minimal and multipolar coupling schemes lead to

formally equivalent expressions [SB6]. Macroscopic theories of the CP potential typically
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being only valid for atoms situated in free-space regions, we extend our results to atoms
embedded in a body [SB15| by including local-field effects via the real-cavity model [SB11]. A
useful approximation scheme for calculating the CP potentials of atoms placed near weakly
magnetodielectric bodies is developed by means of the Born expansion [SB1, SB10|. In
particular, the Born expansion is used together with the Clausius-Mosotti law to illustrate
the microscopic origin of the CP potential [SB10, SB13|. As a side result, the derivation
renders general formulae for the vdW interaction of two or more atoms in the presence
of magnetoelectric bodies [SB1, SB10, SB12, SB13, SB14|, which are consistent with the
prominent results for atoms situated in free space. Next, we illustrate the application of
the general formulae for the CP force to specific arrangements of bodies. In particular, we
consider ground-state atoms placed within planar multilayer systems [SB1, SB7, SB8, SB9|,
generalising known results for atoms interacting with a perfectly conducting plate, semi-
infinite half space, plate of finite thickness, and planar cavity to the magnetoelectric case.
Finally, the results obtained for the various scenarios are summarised and supplemented
with further examples [SB5, SB10, SB13| to give a comparison of dispersion forces between
various polarisable and magnetisable ground-state objects.

Chapter 4 is devoted to the dynamical aspects of the CP force which have never been
addressed so far. The starting point is the time-dependent operator Lorentz force which
is deduced from the Heisenberg equation for the centre-of-mass motion of the atom. The
calculation renders general formulae for the force expressed in terms of the atomic and
field variables [SB1, SB6, SB7, SB8|. After explicitly verifying that minimal and multipolar
coupling lead to identical results [SB6|, the attention is restricted to the multipolar coupling
scheme for simplicity. While our approach can be used to study radiation forces on atoms
under quite general conditions, the CP force is given by the particular case of the body-
assisted field initially being prepared in its ground state; explicit expressions can be obtained
by solving the atom—field dynamics. For weak atom—field coupling, this may be done by
means of the Markov approximation, and it is found that the CP force may be written as
a linear superposition of force components which are weigthed by the respective internal
atomic density matrix elements [SB1, SB6, SB7, SB8|. The force components are influenced
by the body-induced shifting and broadening of atomic transitions; this is studied in more
detail by considering the example of an atom placed near a half space. The strong atom-field
coupling that may occur when an excited atom interacts with a narrow quasi-mode of the
body-assisted field, is more adequately addressed by solving the strongly coupled dynamics
of a single atomic transition and the quasi-mode in an exact way. It is found that the

resonant part of the CP force undergoes Rabi oscillations, the amplitude and mean value
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of which delicately depends on the initial state of the atom-field system [SB1, SB16]. As
demonstrated, the results for the system being initially prepared in a quasi-stationary state,
agree in some approximation with the findings of the well-known dressed-state approach
[SB16|.

The main results of this work are summarised in chapter 5, where remaining open ques-
tions and possible extensions are also addressed — some of them being subject to ongoing

research.



Chapter 2

QED in linear magnetoelectrics

In this chapter, as a general basis, a quantisation scheme for the macroscopic electromag-
netic field in the presence of magnetoelectric bodies is given, with special emphasis on the
interaction of the field with single atoms. The macroscopic QED outlined in the following
has been developed by extending existing quantisation schemes for purely electric bodies
[170] to the magnetoelectric case [SB1, SB3, SB4]. It may be regarded as the generalisation

of the well-known normal-mode QED to the case of dispersing and absorbing bodies.

2.1 Medium-assisted electromagnetic field

A good starting point for the quantisation of the (macroscopic) electromagnetic field in
the presence of magnetoelectric media is given by the Maxwell equations. For the field

components in the frequency domain,
Or) :/ dw O(r,w) + e, (2.1)
0

these equations, in the absence of free charges and currents, are given by [SB1, SB3, SB4|

V-B(r,w) =0, (2.2)
V-D(r,w) =0, (2.3)
V xE(r,w) —iwB(r,w) = 0, (2.4)
V xH(r,w)+iwD(r ,w) = 0 (2.5)

together with

(ko = pg'). Here, E and B denote electric field and (magnetic) induction field, D and
H refer to (electric) displacement field and magnetic field, and P and M are the medium
polarisation and magnetisation, respectively. In particular, it is assumed that the response

of the media is linear, isotropic and local, in which case the constitutive relations read

P(r,w) = gle(r,w) — 1 E(r,w) + Py(r,w), (2.8)
M(r,w) = ko[l — k(r,w)]|B(r,w) + My(r,w) (2.9)

15
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[5(r,w)=p(r,w)], with e(r,w) and u(r,w) denoting the (relative) electric permittivity!
and magnetic permeability of the media, respectively. Both quantities are complex-valued
functions that vary with space and frequency, with the Kramers-Kronig relations being
satisfied in accordance with causality [171]. Since the media are absorbing [Ime(r,w) >0
and Im p(r,w) > 0], noise polarisation Py and noise magnetisation My have been included,
which are unavoidably associated with electric and magnetic losses.

Note that the theory presented so far is completely analogous to classical electrodynamics
in the presence of dispersing and absorbing media. An explicit quantisation is accomplished
by solving the set of equations (2.2)—(2.9) in terms of the fundamental degrees of freedom
and imposing suitable commutation relations. Substituting Egs. (2.6)—(2.9) into Eq. (2.5)
and making use of Eq. (2.4), one may verify that the electric field obeys a Helmholtz equation

w? A A
Vxi(r,w)Vx ——e(r,w)| E(r,w) = iwpeg (1, w), (2.10)

c2

the source term of which is given by the noise current density
iN('r,w) = —iwPy(r,w) + V x My(r,w). (2.11)
Note that noise current density and noise charge density
py(r,w) = =V -Py(r,w) (2.12)
fulfil the continuity equation
—iwpy (r,w) + V-j (r,w) = 0. (2.13)

Upon introducing the (classical) Green tensor which is defined by the equation
w2 / /
V xk(r,w)V x —C—Qs(r,w)] G(r,r'\w)=0(r—1r")l (2.14)
(1, unit tensor) together with the boundary condition G(r,r’,w)— 0 for |[r — r’| — oo, the

solution to Eq. (2.10) can be given in the form

~

E(r,w)= iwm)/d?’r’ G(’r,’r’,w)-iN('r’,w). (2.15)

It should be pointed out that the Green tensor is uniquely defined by Eq. (2.14) provided
that the strict inequalities Im (7, w) >0 and Im p(7r,w) >0 hold. Note that it is an analytic

INote that both metals and dielectrics can be described in terms of their permittivity, where it is
commonly assumed that the permittivity of a dielectric is analytic in the whole upper half of the complex
frequency plane, whereas that of a metal exhibits a single pole at w =0 [171].
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function of w in the upper complex half plane and has the following useful properties [170,

SB3|:

G (r,r,w)=G(r,r, —w*), (2.16)
G(r,r' w)= G (r' rw), (2.17)
/d3s {Im k(s,w) [G(’r, S, w) X ﬁ] [ Vex G*(s,7",w)]

+ i—Z Ime(s,w) G(r, s,w)-G*(s, r',w)} =ImG(r,r,w) (2.18)

(AiTj =Aj; V introduces differentiation to the left).

Having thus expressed the electric field in terms of noise polarisation and noise magneti-
sation, (explicit) quantisation can be performed by relating these quantities to the dynamical
variables f.(r,w) and f.(r,w) (A, X € {e,m}) of the system (which consists of the electro-
magnetic field and the magnetoelectric matter, including the dissipative system responsible

for absorption), as follows [SB1, SB3, SB4|:

Py(r,w) = i,/?lmg(r,w) fo(r,w), (2.19)

My (r,w) = \/—%Im kP, w) Fin(r,w) = \/ h Tmp(r,w) fulr.w),  (2.20)

" mHo (@)

with fi(r,w) and fl(r,w) being attributed to the collective Bosonic excitations of the

system,
[Fulrw), frs(r')] =0 = [ firw), fl,07 ), (2:21)
[ Frar,w), fl (' w’)} = Syl 0(r — )8 (w — ). (2.22)

By substituting Egs. (2.19) and (2.20) into Eq. (2.15) together with Eq. (2.11) and recalling

Eq. (2.1), the medium-assisted electric field may be expressed in terms of the dynamical

variables,
E(r) = / dw E(r,w) + H.c.
0
= Z /d3r'/ dw G (r, 7", w)- fi(r',w) + H.e. (2.23)
A=e,m 0
with
/ : w2 h 12 /
G.(r,r"\w)= = W—Eolme(r,w) G(r,r'\w), (2.24)

G, 7 w) =i \/—ﬂ Im k(r', w) [V x G(r', 7,w)] " (2.25)

C TTEQ
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Note that the integral relation (2.18) implies

h,
Z /d3s G(r,s,w) -Gy (7, 8,w) = O 2T G(r,v" w). (2.26)
A=e,m &
Expressions of all other relevant fields in terms of the dynamical variables follow from this
result by virtue of the Maxwell equations in frequency space together with the constitutive

relations. Thus, Eq. (2.4) leads to

B(r)=>_ /dgr'/ooo%VXGA(T,T’,w)-ﬁ(r',w)+H.C. (2.27)

A=e,m

while D, H, P and M can be found from Egs. (2.6)-(2.9), (2.19) and (2.20). Commutation
relations for the fields can be deduced from the commutation relations of the dynamical
variables f)\(r,w) and f;(r,w) in a straightforward way [SB3|. In particular, it may be
shown that electric field and induction field obey the well-known equal-time commutation

relations (App. A.1)

[Ei(r),Ej(r')] —0= [Bi(r),éj(r') , (2.28)

(r), Bj(r')] = —ihey e nOp0(r — 7). (2.29)

[ —
&3>
<
—

The ground state |{0}) of the medium-assisted electromagnetic field is defined by

Hilr,o) {0}y =0 YA rw (2.30)
and the Hilbert space can be spanned by Fock states obtained in the usual way by repeated
application of the creation operators fi('r, w) to this ground state. Obviously, the electric

field (2.23) is vanishing on its vacuum average,

(B(r)) = ({0} E(r)[{0}) = 0, (2.31)

while it exhibits non-zero fluctuations (App. A.1)

T

— dww? tr[Im G(r, r,w)]
T Jo

(2.32)

([AE(r)]’) = ({0} E*(r)[{0}) — ({0} E(r)[{0})* =

which are determined by the imaginary part of the Green tensor — in consistence with the
fluctuation—dissipation theorem [172].
It is an almost trivial consequence of the presented quantisation procedure that upon

choosing the Hamiltonian of the medium-assisted field to be

Hp= > /d%/ooo dw hw fl(r, w)- fi(r,w), (2.33)

A=e,m



Chapter 2. QED in linear magnetoelectrics 19

the Heisenberg equation of motion

O =ik [H , O} (2.34)

generates the correct time-dependence for the fields, such that the Maxwell equations

V-B(r) =0, (2.35)
V-D(r) =0, (2.36)
Vv xE(r) +B(r) = 0, (2.37)
VxH(r) -D(r) =0 (2.38)

are fulfilled (App. A.2).
In view of the treatment of atom—field interactions, it is useful to introduce scalar and

vector potentials for the electric and induction fields,
E(r) = —Va(r) —A(r), (2.39)
B(r) = VxA(r). (2.40)

In Coulomb gauge, V-A('r) =0, the first and second terms on the right hand side of Eq. (2.39)

are equal to the longitudinal (||) and transverse (L) parts of the electric field where

a!b(r) = /d3r'5”(“(’r —7')-a(r') (2.41)
with
1
sl(r)=-vvVv (—) ) ot (r) = d6(r)1 = 68l(r) (2.42)
dmr
for an arbitrary vector field a(r); hence Egs. (2.23), (2.33) and (2.34) imply that
Vo(r) = — Z /d3r’/ dw 1G(r, 7, w)- fir(r',w) + Hec., (2.43)
A=e,m 0
A(r) = Z /d3r'/ (,i—wLG,\(r,r',w)f)\(r’,w) + H.c. (2.44)
A=e,m 0 1w
where

LTI (o ) = /d?’s/dgs’é”u)(r —8)-T(s,8)-6IH(s" —7) (2.45)

for an arbitrary tensor field T (7,r’). Introducing the canonically conjugated momentum

associated with the vector potential according to

~

II(r) = —co B (r), (2.46)

one can easily verify the canonical equal-time commutation relations (App. A.1)

~ ~

[Ailr), A;(r1)] = 0 = [T1i(r), T15(r7)|. (2.47)

[Al-(r), ﬁj(r')] — ihd} (r — 7). (2.48)



Chapter 2. QED in linear magnetoelectrics 20

We conclude the section with some remarks concerning the validity of the quantisation
scheme outlined above. It should be stressed that Ime(r,w) >0 and Im u(r,w) > 0 are
assumed to hold everywhere. Even in almost empty regions or regions where absorption is
very small and can be neglected in practice, the imaginary parts of the permittivity and
permeability must not be set equal to zero in the integrands of expressions of the type (2.23).
To allow for empty-space regions, the limits Ime(r,w) — 0 and Im u(r,w) — 0 may be per-
formed a posteriori, i.e., after taking the desired expectation values and having carried out
all spatial integrals. In this sense the theory provides the quantised electromagnetic field
in the presence of an arbitrary arrangement of linear, causal magnetoelectric bodies charac-
terised by their permittivities and permeabilities, where Ime(r,w) >0 and Im p(r,w) > 0.
The quantisation scheme (cf. also similar treatments treatments [173]) is in full agreement
with the results of (quasi-)microscopic models of dielectric matter, where the polarisation is
modelled by harmonic-oscillator fields and damping is accounted for by introducing a bath

of additional harmonic oscillators [174].

2.2 Atom-field interactions

A neutral atom or a molecule A (briefly referred to as atom in the following) may be
characterised as a system of particles a € A with charges ¢, (D ,c4 9o = 0), masses mq,
positions 7, and canonically conjugated momenta p,, where the standard commutation
relations [176]

[fm-,'f*gj] = [pm,pﬁj} =0, ['f*ai,pﬁj} = 1hdap0;; (2.49)

hold. The nonrelativistic Hamiltonian governing the dynamics of the atom reads [176]

A 1 . .
Hy= Po +§/d37’pA(r)goA(r) (2.50)
with

pa(r) = qad(r — Fa), (2.51)

a€cA

pa(r) = /dgr' 7,@;(’#) = Z B C— (2.52)

dreglr — 1| = Ameg|r — 74

denoting the charge density and scalar potential associated with the atom, respectively.

Obviously, they obey the Poisson equation
Apa(r) = —25 ' palr); (2.53)

and the continuity equation
pa(r) +V-3a(r) =0 (2.54)
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holds, with the atomic current density being given by

Galr) =" ‘-’Ea [éaa(r Fo) + O(r — )ra] (2.55)

a€cA

It may be useful to introduce centre-of-mass and relative coordinates

. Ma 2 . .
Ty = Z — Tq, To ="Toq—Ta (2.56)
acA ma
(ma =Y ,c4Ma) with the appropriate associated momenta being [175]

~ ~ S mey
Pa = E Do p pa - pA (257)
a€cA

such that the commutation relations

|:72AZ'77A,Aji| = [pAiuﬁAj] = 07 |:7§Ai7ij:| = 177/52_]7 (258)

E ES ES . m .
[Taiarﬁj} = [paiupﬁ]} =0, ['Faz',pﬁj] =1ih (5aﬁ - m—j> 0ij = 1hdapdij, (2.59)
Fais P3| = [Pass D] = [Fais g = 7 | = 0. (2.60)

follow from Egs. (2.49), where the approximation in Eq. (2.59) is valid for electrons. Com-
bining Egs. (2.50) and (2.57), the atomic Hamiltonian may be written in the form

R ~9 =2 1
f,=Pa Ny Pa +§/d3'r/3A( Jpalr) = pA +ZE i) (n (2.61)

with F, and |n) denoting the eigenenergies and eigenstates of the internal Hamiltonian.
Further atomic quantities of interest are the atomic polarisation and magnetisation
Z qa'ra/ d05 'r — Ty — ara) (2.62)

aEA

M(r) an/ d00[5(T—TA—UTQ)TQXTQ—raXraé(r—rA—ara)} (2.63)

acA

and the electric and magnetic dipole moments of the atom,

1 = Z Qa%oz = Z qa’f.om (264)

acA a€A

A QQg el L
m = Z?raxra, (2.65)

acA
where the second equality in Eq. (2.64) holds for a neutral atom. As a direct consequence of
the definitions, the atomic charge and current densities for a neutral atom can be expressed
in terms of the atomic polarisation and magnetisation:
pa(r) = =V-Py(r), (2.66)
ja(r) = Pu(r) + V x Ma(r) + jro(r), (2.67)
Gro(r) = Vx| Pa(r) <y — 4 x P ()] (2.68)
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where jpo(r) is the Rontgen current [175, 176] which is due to the centre-of-mass motion of

the atom. Equations (2.53) and (2.66) imply that
Voa(r) =g Bi(r). (2.69)

Finally, note that using the atomic Hamiltonian (2.61) together with the commutation

relations (2.59) and the definition (2.57), one can easily verify the useful relation

Z o m\pa\n = iWnndmn (2.70)

aEA

with Wy = (Ep—E,)/h and dyy, = (m|d|n) which in turn implies the well-known sum rule

FL Z Wkn nkdkn + dkn nk Z qa (271)

ozeA
2.2.1 Minimal coupling

Having established the separate Hamiltonians of the body-assisted field and the atom, we
next consider the atom-field interaction. According to the minimal coupling scheme (cf.,
e.g., Ref. [176]), this may be done by making the replacement p, — P, — ¢ A(74) in the
atomic Hamiltonian, summing Hyp and H,4 and adding the Coulomb interaction of the atom

with the body-assisted field, leading to [SB1, SB3, SB4, SB6|

H= Z/d3/ dw hw fi(r, w) fArw—FZ

A=e,m ozeA

[ — GaA(Fy)

1 R ~ R R ~ ~ ~
+ 5 /d?’r,oA('r)gpA(r) + /dgr pa(r)p(r) = Hp + Hy + Hap (2.72)

where Hy and H, are given by Egs. (2.33) and (2.50), respectively, and the atom-field
interaction reads
& _ Al Q_CV ~ A qa 2
Hap =) qaf(a) - o Do AlTa) + D o oM. A%( (2.73)
acA acA acA
[note that the scalar product of p, and A(7,) commutes in Coulomb gauge].

It is a straightforward exercise to verify that this Hamiltonian generates the correct

equations of motion. Thus the total fields in the presence of the atom,

A A

E(r)=E(r)—Vpar), B(r)=B(r), (2.74)
D(r) = D(r) —oVa(r),  H(r)=H(r), (2.75)
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obey the Maxwell equations (App. A.2)

V-B(r) =0, (2.76)
V-D(r) = pa(r), (2.77)

V xE(r)+B(r) =0, (2.78)
VX H(r) — D(r) = jalr), (2.79)

while the motion of the charged particles is governed by the Newton equations (App. A.2)
Mata = @€ (ra) + 4o Fax Blra) = B(ra) x74] (2.80)

with

Fo = [Bo — 62 A7) (2.81)
In most cases of practical interest one may assume that the atom is small compared to
the wave length of the relevant electromagnetic field. It is then useful to employ centre-
of-mass and relative coordinates (2.56), and apply the long wave-length approximation by
performing a leading-order expansion of the interaction Hamiltonian (2.73) in terms of the

relative particle coordinates, which for a neutral atom results in
Hup = —d-El(7y) — q—“ﬁaA(rﬁA) + Z ﬁ A%(7y). (2.82)

m

acAd ¢

Note that the last term of the interaction Hamiltonian has become independent of the
relative particle coordinates, hence it does not affect the internal state of the atom. When
considering processes caused by resonant transitions between different internal states of the

atom, it may therefore be neglected.

2.2.2 Multipolar coupling

An equivalent description of the atom—field dynamics that is widely used, is the multipolar
coupling scheme. The multipolar-coupling Hamiltonian can be obtained from the minimal

coupling form by means of a Power—Zienau—Woolley transformation [177]
O' =UO0U" with U = exp [% / d’r PA(T).A(T)}. (2.83)
The transformed variables can be calculated with the aid of the operator identity
S0e 5 = 0 + [S O} +2 [S [S OH +o (2.84)

In particular, from Egs. (2.21), (2.22) and (2.44) it follows that

~ ~

fir,w) = filr,w) + hi /d3r’ Pl(r)-GL(r,r,w), (2.85)

)
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where the expansions of the fields in terms of the fundamental variables remain valid after
the transformation, i.e., Egs. (2.23), (2.27), (2.43) and (2.44) hold with primed operators
instead of unprimed ones. Similarly, the definitions of derived atomic quantities, Eqgs. (2.51),
(2.52), (2.55)-(2.57) and (2.62)—(2.65), remain valid with primed operators. Explicit expres-
sions of the transformed variables in terms of the untransformed ones are given in App. B,
they may be summarised by noting that the Power—Zienau-Woolley transformation affects
the canonically conjugated momenta II(r) and p, while leaving A(r) and #, unchanged.
From the unitarity of the transformation (together with the fact that all equal-time com-
mutators are c-numbers) it follows that the transformed variables obey the same equal-time
commutation relations as the unprimed ones.

Expressing the Hamiltonian (2.72) in terms of the transformed variables, we obtain the

multipolar Hamiltonian, which for a neutral atom reads (App. B) [SB1, SB6]

H= Z/dg/dwhwarwarerZ { /d3 ()xB’(r)2

A=e,m
1 ~ ~ ~ o N N
T A (I / &r Pl(r)-B'(r) = Bl + [, + By (2.86)

250

H =) /d3 / dw hw £} (7, w)- fi(r, w), (2.87)

A=e,m
: Py | 1 : P Py 1 :
H, = 4+ [ &BrPP(r) = + © 4 | &ErPP(r
4 ey 2m,  2gg () = 2my ey 2m,  2eg A (r)

A/2

= + ZE’ n)( (2.88)

ZmA

—_— 1 ~ N ~ ~ ~ N
M (r) = Z /0 do o [§(r—7)—oT, )T, XD, — Do xT,d(r—ry—o7,)], (2.90)

qugrﬁ/ dood(r — 7y — cr%’ﬁ)

ﬁeA
+mem;  Pi(r) (2.91)

1
E.(r)= qa%’a/ doob(r — 7y — o7,
0

have been introduced. Note that in contrast to the physical magnetisation M, as given
by Eq. (2.63), M, is defined in terms of the canonically conjugated momenta rather than

the velocities, as is required in a Hamiltonian formalism. The Hamiltonian (2.86) is the
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generalisation of the multipolar Hamiltonian obtained earlier for moving atoms in free
space [175, 178, 179] to the case where dispersing and absorbing magnetoelectric bodies
are present. Note that the derivation of the multipolar coupling scheme presented in this
section can easily be extended to the case of two or more atoms [SB12].

One major advantage of the multipolar coupling scheme is the fact that it allows for a
systematic expansion in terms of the electric and magnetic multipole moments of the atom.
Thus in the long wave-length approximation, by retaining only the leading-order terms in

the relative coordinates, the multipolar-coupling Hamiltonian simplifies to

N PN A A q2 o A 2
iy = ~d- /(7)) — - BI(7%) + Y 2 4 B'(7)]
acA @

[q%' xB’(@g)]Q 49
@ SmA

+ my'p,-d xB'(#) (2.92)

where

-y o 2, 24
m = E X P 2.93
2mg, "a @ ( )

a€A

is again different from 1, recall Eq. (2.65). The first two terms on the right hand side
of Eq. (2.92) represent electric and magnetic dipole interactions, respectively; the next
two terms describe the (generalised) diamagnetic interaction; and the term on the second
line is the Rontgen interaction due to the centre-of-mass motion. For nonmagnetic atoms,

Eq. (2.92) reduces to the electric-dipole form
Hyp = —d-E'(#}) +m'ply-d < B'(7}). (2.94)

At the end of this section, let us compare the minimal and multipolar coupling schemes.
As the total Hamiltonian is the same in both formalisms, the eigenenergies of the total
system and the equations of motion for the physical variables are the same in both schemes.
However, the separation of the total Hamiltonian into a (body-assisted) field part, an atomic
part and an interaction part is different in the two schemes, as can be seen by comparing

Egs. (2.72) and Eq. (2.86). Hence, the ground state |{0'}) of H,

Ao =0 Yirw, (2.95)
is different from that of Hy, Eq. (2.30); and similarly the eigenstates |n') of H’, are different
from the eigenstates |n) of H, [note that the uncoupled eigenstates are not simply related to
each other via the Power—Zienau-Woolley transformation|. When accounting for the atom—
field interaction only in a perturbative way, two different approximations to the same exact
eigenenergy of the coupled system may thus occur in general, none of them being physically

more relevant than the other. The second main difference between the two formalisms is
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the different relation of the canonically conjugated momenta to the physical variables. In
the minimal coupling scheme, physical and canonical particle momenta differ by the term

4o A(#,) |recall Eq. (2.81)], whereas in the multipolar formalism we have (App. B)
MaTo = Mot = P, + / BrE,(r) x B(r). (2.96)

While the field E in the minimal coupling scheme is the physical body-assisted electric field
appearing in the Maxwell equations [recall Egs. (2.74)-(2.79)], the field E’ in the multipolar
coupling scheme has the physical meaning of a displacement field with respect to the atomic
polarisation (App. B),

E'(r) = E(r) + ;' P (). (2.97)
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Static Casimir—Polder potential

In this chapter, a static, perturbative theory of the CP force is developed by combining
the formalism of macroscopic QED with Casimir and Polder’s famous concept [2] according
to which the force on an atom in an energy eigenstate may be derived from the position-
dependent part of the atom—field coupling energy — the CP potential. Perturbative cal-
culations performed within both minimal and multipolar coupling schemes are shown to
lead to general expressions for the potential of an atom in the presence of an arbitrary
environment of bodies [SB1, SB5, SB6, SB7, SB8|, thus confirming and extending similar
linear-response results within the framework of an exact quantization scheme. Endowed
with this general basis, we discuss some aspects of the CP force for the first time (such as
local-field effects [SB15] and approximative Born-expansion methods [SB1, SB10]) and elab-
orate others beyond previously discussed special cases (such as the microscopic origin of the
force [SB10, SB13]). Finally, applications to ground-state atoms interacting with specific
arrangements of bodies are given, where the potentials of atoms interacting with various
multilayer systems are worked out in detail [SB1, SB7, SB8, SB9| and further examples are
briefly stated [SB5, SB10, SB13].

Let us start from the Hamiltonian of the atom-field system which according to the

minimal coupling scheme and in electric dipole approximation, can be written in the form

~2
~ 2 ~ ~
H= + g Ey|k)(k|+ Hr + H 3.1
2mA - k| >< | F AF) ( )

recall Eq. (2.72) together with Eq. (2.61). It is assumed that the atom is initially prepared in
its internal-energy eigenstate |n) while the body-assisted field is in its ground state [{0}). We
apply the Born-Oppenheimer approximation by assuming that the fast internal (electronic)
motion effectively decouples from the slow centre-of-mass motion. The internal motion can
thus be integrated out by calculating the internal eigenenergies for given values of 74 and

P4, leading to an effective Hamiltonian for the centre-of-mass motion,

]52
A | E,+ AE,, (3.2)

Hos =
ff 2mA

where AF,, is the energy shift due to the atom-field coupling H 4, which for sufficiently
weak atom-field coupling may be calculated by leading-order perturbation theory. Equa-

tion (2.82) shows that AE, is independent of p4, so that we may write
AE, = AYE, + AVE, (74), (3.3)

27
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where the coupling energy has been separated into a constant part and a 74-dependent
part. Note that the constant part A®E, is the well-known (free-space) Lamb shift (cf.,
e.g., Ref. [107]).

By means of the commutation relations (2.58), the effective Hamiltonian generates the

following equations of motion for the centre-of-mass coordinate:

Mty = ih™! []:Ieﬂ"a mAfA} =Pa, (3.4)
F,.(74) = maty = ih~! [ﬁeff7mA7%‘A:| = =V U, (74) (3-5)

where
Un(74) = AVE, (7)) (3.6)

is the CP potential. Note that a completely analogous derivation holds when working within
the multipolar coupling scheme, where in addition one has to note that the p’;-dependent
part of H',;,, Eq. (2.94), gives rise to contributions of the order of v/c (v: centre-of-mass
speed), which can be neglected for nonrelativistic centre-of-mass motion.

The potential and force expressions in Eq. (3.5) can be used in two ways. First, they
are the starting point for a full quantum treatment of the centre-of-mass motion (cf., e.g.,
the analysis of quantum reflexion presented in Ref. [41]). Second, they also appear in the c-
number equations of motion that follow for effectively classical centre-of-mass motion. Since
there is no need to distinguish between the operator and c-number results, the operator hat
can be dropped. In the following, we calculate the CP potential (3.6) on the basis of

leading-order perturbation theory.

3.1 Minimal coupling

In the minimal coupling scheme, the interaction Hamiltonian (2.82) consists of three terms,
the first two being linear in the field variables (so that they have no diagonal matrix ele-
ments and contribute only within second-order perturbation theory) and the last one being
quadratic in the field variables (contributing already within first order perturbation theory).

The leading-order perturbative energy shift is hence given by
AE, = AFE, + A E, (3.7)
where

ALE, = (0] ({0} Y 5= A%(ra)|{0}) ) (3.8)

acA a
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and

1
AE, ——;—LZ Z /d?’rP/ s

k A=em

<m0} ~d- Bl ra) = Y 2 B Al a(rw) 0] (39

a€cA

(P, principal part; |1,(r,w)) = fi(r,w)[{0})). Recalling definition (2.44), making use of
the commutation relations (2.21) and (2.22) and applying the integral relation (2.26), the

first-order contribution is found to be

h,
= % Z 2mo{/ dw tr[Im G (ra, 74, w)]. (3.10)

aEA

With aid of the sum rule (2.71), this result can be rewritten as
= @Zwkn/ dwdnk-ImLGL(rA,rA,w)-dkn (311)
T 0

where we have exploited the symmetry of the Green tensor (2.17). Similarly, by invoking
definitions (2.23) and (2.44) and making use of the commutation relations (2.21) and (2.22)
as well as the identity (2.70), the matrix elements in Eq. (3.9) are found to be

(W0} —d-B ()| 1(r, @) ) = —do G (s, ), (312)
({0} = 3 2 B A(r) 1)) = Ly Ga(ra ). (313

a€cA

so the second-order contribution reads

MOZP/

» k-Im{—wQHG”(rA,rA,w) + Wipw [” Gl (ry,ra,w)
kn

+J_G”<TA7TA7W)} - wlanGl<TA7TA7w)}'dkn (314)

where we have again used the integral relation (2.26). Adding Eqs. (3.11) and (3.14) and
using the identity G =+ G* +1 Gl +1G* +IG/, one obtains

MOZ /

di-Im {wknw [G(ra,ra,w) — | Gl(r4, ra, w)]
Wkn

w2I|G”(rA,rA,w)}-dkn. (3.15)
According to Eq. (3.6), the CP potential is the position-dependent part of the energy
shift. This part can be extracted from Eq. (3.15) by decomposing the Green tensor into the

bulk Green tensor G and the scattering Green tensor G () that accounts for the spatial

variation of the permittivity and permeability,

G(r,r' w)=GY(r v w)+ GV (r r w), (3.16)
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where it is assumed that the atom is situated in a free-space region so that macroscopic QED
applies. The translationally invariant bulk Green tensor leads to the position-independent,
free-space Lamb shift A()F, which is not of interest here. The scattering Green tensor
gives rise to the CP potential U, (). Upon making the replacement G — GV, writing Im z
=(z — 2%)/(2i) and recalling Eq. (2.16), Eq. (3.15) hence implies

= 2/“;—; ; d,i- [P /OOO dow {wknw[G(l)(rA, T4, W) — ”G(l)”(m, rA,w)]

Wgn + W

WinW [G(l) (14, T4, w)

uﬂGmemm@}—P/
0
_ ”G(l)”(rA,rA,w)] + wQHG(l)”(’rA,’PA,w)}] ‘. (3.17)

This equation can be greatly simplified by using contour-integral techniques. G ) (T4, T4, W)
is an analytic function in the upper half of the complex frequency plane including the real
axis (apart from a possible pole at w =0). We may therefore apply Cauchy’s theorem and
replace the principal-value integral over the positive (negative) real half axis by a contour
integral along the positive imaginary half axis (introducing the purely imaginary coordinate

w=i¢); and along an infinitely small and an infinitely large quarter circle in the first (second)
quadrant of the complex frequency plane; plus, in the case that w,; >0, a contour integral
along an infinitesimally small half circle around w = w,;, (w = —wyy) in the first (second)
quadrant of the complex frequency plane. The asymptotic behaviour of the Green tensor in
the limit of small and large |w| (cf. Ref. [SB3|) is such that the integrals along the quarter
circles vanish, so we finally arrive at [SB1, SB5, SB6]

Un(ra) = Uy (ra) + Uy (ra), (3.18)
where
or :uO wkng .
U Z/ Ca e Wy, + €2 dop- G (74, 74,16) - di (3.19)

is the off-resonant part of the CP potential and
Ur(ra) = —p0 Y O(wni)wipdnr-Re GM (14, 14, wip) - i (3.20)
k

[©(2): unit step function| is the resonant part arising from the residua at the poles. By

introducing the polarisability tensor of the atom in lowest-order perturbation theory [180],

o (w) = lim Z{ + (3.21)

e—0 Wi — W — 1€ Wy +w + i€ |’

the off-resonant part may be written in the more compact form

UX(ra) = %/0 d¢ Etr[a,(i€)- G (’I“A,’I“A,lf)} (3.22)
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In particular for an atom in a spherically symmetric state, we have

2 | dnk | QWkn

2 _ 9
«—0 3h "~ Wiy — W lwe

I (3.23)

and the two parts of the potential simplify to

hug [ : .
U (ra) = 70 /0 dé 0, (i€) tr GV (r4, 74, i6), (3.24)
U(ry) = —% > O(wnn)wildar|* tr[Re G (14, 74, i) (3.25)
k

Equation (3.18) [together with Eqs. (3.20) and (3.22)| gives the CP potential of a sin-
gle atom prepared in an arbitrary energy eigenstate |n) in the presence of an arbitrary
arrangement of linear bodies. These equations are the natural extension of the (geometry-
dependent) QED results derived on the basis of the familiar normal-mode formalism which
ignores material absorption; they may be regarded as the foundation of similar results ob-
tained on the basis of linear-response theory [152]." Moreover, they do not only apply to
arbitrary electric bodies, but they present the first general expression for the CP potential
that explicitly allows for the presence of magnetoelectric matter such as left-handed mate-
rial, for which standard quantisation concepts run into difficulties. Note that all information
about the electric and magnetic properties of the matter is contained in the scattering Green
tensor, while the atomic properties enter via the atomic polarisability (for the off-resonant
contribution to the CP potential) and the transition frequencies and dipole matrix elements
(for the resonant part), respectively.

Let us discuss our result, starting with the resonant part of the CP potential, which is
only present for excited atoms where it dominates over the off-resonant part, in general. The
resonant part may be attributed to real energy-conserving processes of the atom making
a transition to a lower level while emitting one photon (E, = Ejy + hw), can partly be

understood in classical terms. To see this, consider a classical oscillating dipole
d(t) = 27Y2d et + C.c. (3.26)

placed at r4 within an arbitrary arrangement of magnetoelectric bodies (where the nor-
malisation has been chosen such that the long-time average of the dipole moment is d?(t)
= |da|?). The dipole gives rise to an electric field which is reflected at the surface of the

bodies. Writing the current density associated with the dipole in the form

G(r t) = d)d(r — ra) = 27 iwgdge“ ' o(r — r4) + Cec., (3.27)

!Note that results of the form (3.22) for ground-state atoms have been derived by means of various
methods, including linear-response theory [133, 135, 138, 141], a QED path-integral approach [136], semi-
classical considerations [139] and a perturbative calculation based on macroscopic QED very similar to that
presented here [181].
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Egs. (2.15) and (3.16) imply that this reflected field is given by
EW(r t) = 2720wt GV* (r, 14, wa)-dg + C.c. (3.28)

The interaction energy of the classical dipole in its own (reflected) field is hence on the

long-time average given by

W(ra,t) = —2d(t)- ED(ry, t) = —1powida-Re GW (14, 14, wa)-d, (3.29)

2 2

which is one half the corresponding (quantum) terms contributing to the resonant part of
the CP potential, Eq. (3.20). This can be understood from the fact that the other half of
the resonant CP interaction is due to fluctuations of the electromagnetic field, which are of
course absent in the classical theory [118].

The off-resonant part of the CP potential (3.19) is a pure quantum effect that has no
classical analogue. By applying contour-integral techniques in a similar way as presented
below Eq. (3.17), it can be written in the form

Ty [T
™ Jo

Ur(ra) = dw w2tr{1m [an(w)-G(l)(rA, T4, w)] } (3.30)

As shown in Ref. [157|, this expression allows for a simple physical interpretation of the
off-resonant CP force as being due to correlations of the fluctuating electromagnetic field
with the corresponding induced electric dipole of the atomic system plus the correlations of
the fluctuating electric dipole with its induced electric field.

In order to discuss the relative influence of the three terms in the interaction Hamilto-
nian (2.82), it is useful to consider the asymptotic behaviour of the CP potential for large
and small atom—body separations. In the retarded limit, where all atom—body separations
are large with respect to the characteristic wave lengths associated with the atom and the
magnetoelectric medium constituting the bodies, the off-resonant part of the CP potential
reduces to (App. D.1)

U ) = 2 | (0): [ 6 Gl i) (331
0

™

where G, is defined by
2
{V X k(r,0)V x — w_2 e(r, 0)} G ero(r, 7, w) =0(r — 1)1, (3.32)
C
and the resonant part approximates to

U;('I"A) = —Mo Z @(wnk)wikdnkRe J_(;(1)L ('I"A, Ta, wnk) dkn (333)
k
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In the opposite, non-retarded limit where all atom—-body separations are small with respect
to the characteristic atomic and medium wave lengths, the two parts of the CP potential

can be given as (App. D.1)

U2 (ry) = 20 / g €2 |, (1€)-1G V(a7 i6)| (3.34)
2r Jo
and
Un(ra) = —po Y O(wn)wipdnr-Rel GV (ry, rs, ) - din. (3.35)
k

The relevance of the three terms in the interaction Hamiltonian (2.82) in the retarded and
non-retarded limits can now be inferred by recalling Eqgs. (3.7)-(3.14). The p- A interaction
dominates the CP potential in the retarded limit where the contributions from the other
two interaction terms are either exactly cancelled by some parts of the ﬁ-A contribution (as
is the case for the off-resonant part of the CP potential, cf. App. D.1) or become negligible
(as is obviously true for the resonant part of the CP potential, which only depends on purely
transverse fields in this limit). On the contrary, the d-E! interaction dominates the potential
in the non-retarded limit where all relevant fields are purely longitudinal. Recall that this

term is the long wave-length form of the electrostatic Coulomb interaction

[A{Coulomb = /dSTﬁA(T)Sb(r)? (336)

which is why the non-retarded limit is also known as the electrostatic limit. In cases where
only the non-retarded CP potential is of interest, calculations can be simplified considerably
by restricting the attention to ﬁc()ulomb from the very beginning (recall Sec. 1.2.3). The role
of the A? interaction is somewhat more subtle. Since it does not give rise to denominators
wWin+w, cf. Eq. (3.11), this term does not contribute to the resonant part of the CP potential,
as expected (cf. the remark at the end of Sec. 2.2.1). Its contribution to the off-resonant
part of the potential is negligible in the non-retarded limit while gaining importance for
larger atom-body separations (as stated above, in the retarded limit it is exactly cancelled
by a part of the ﬁ~A contribution). Note that our results regarding the relative influence
of the interaction terms generalise the findings obtained earlier for the particular case of an
atom interacting with a perfectly conducting half space |34, 116, 118, 119|.

Finally, let us comment on the potential influence of left-handed material properties on
the CP potential (recall Sec. 1.2.2). The off-resonant CP potential (3.22) is not sensitive
to left-handed material properties, because it is expressed in terms of the always positive
values of the permittivity and the permeability at imaginary frequencies. On the contrary,
the resonant CP potential (3.20) present for excited atoms may exhibit unusual features if

the bodies are left-handed at one of the resonant transition frequencies.
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3.2 Multipolar coupling

The multipolar-coupling Hamiltonian (2.94) consists of two terms which are both linear in
the field variables. As already mentioned [recall the discussion below Eq. (3.6)], the contri-
butions from the second term can be neglected for nonrelativistic centre-of-mass motion, so
that the leading-order energy shift is given by

AE! = \E! = Z > /d?w?/

k A=em

(W|({0}] —d'- B (1) | 1} (r, ) ||

(3.37)
where |14 (r,w)) = fi (r,w)|{0'}) and !, = (E!, — E')/h. Using Eq. (2.23) and applying

the commutation relations (2.21) and (2.22), the matrix elements are found to be
(W' [({0} —d'-E' ()| 15(r, w))[K') = ~d - Ga(ra, 7, ) (3-38)

where d. = (m/|d'|n’). Substitution of this result into Eq. (3.37) and use of the integral
relation (2.26) leads to

g
AE%Z—%ZP/O R T G, ) (3.39)
k kn

We now apply the same procedure as in Sec. 3.1. Discarding the free-space Lamb shift
contributions contained in Eq. (3.39) by replacing the Green tensor with its scattering part
and transforming the frequency integral to imaginary frequencies using contour integral
techniques, we arrive at [SB1, SB6, SB7, SB§|

UT,L(T'A) = Uﬁr,('f‘A) + U;L/(’I“A) (340)
where
or/ o h[ﬁo >~ 2
Uli(ra) = 5= [ d€¢ tr[e,(i€)- G (ra, 74, i6)], (3.41)
0
Ui (ra) = =0 Y Owhy)wimdyy-Re GV (ra, 7, wnp) -, (3.42)
k
and
1 I ! !
o () :lim—Z{ i + ,d’md"’f — 1. (3.43)
e—0 - w,m—w—le Wy, +w+1e

Comparing this with the minimal-coupling result, Eq. (3.18) together with Egs. (3.20)
and (3.22), we see that the results are formally the same, but with unperturbed transition
frequencies and dipole matrix elements being determined by the atomic Hamiltonians (2.88)
and (2.61) in the two cases. Within leading-order perturbation theory, minimal and mul-

tipolar coupling schemes thus lead to formally equivalent approximations to the same true
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CP potential. Rather remarkably, within the multipolar coupling scheme the entire CP po-
tential is obtained from a single d'-E' interaction term, which incorporates the interaction
of the atom with both longitudinal and transverse degrees of freedom of the body-assisted
electromagnetic field. Owing to the resulting greater simplicity of the calculation, the mul-
tipolar coupling scheme is almost exclusively used when studying involved problems like

higher-order perturbation theory [SB12, SB13| or dynamical calculations (chapter 4).

3.3 Local-field correction

As noted at the beginning of Sec. 1.2, a theory of the CP force based on macroscopic QED
is valid provided that the overlap between the electronic wave functions of the atom and
the body is negligible. In particular, this implies that the atom must be situated in some
free-space region, i.e., e(r4,w) =1, pu(rs,w)=1. When the atom is placed inside a body, the
macroscopic electromagnetic field differs from the local field experienced by the atom. This
local-field correction can be accounted for by means of the real-cavity model [182], as shall
be demonstrated in the following.

According to the real-cavity model, one assumes the atom to be situated at the centre of
a spherical free-space cavity of radius R.,, inside the host body. As a result, the permittivity

g(r,w) and permeability u(r,w) describing the body must be replaced with

1 if |7 — 74| < Reay,
5loc(’raw)7uloc(’raw) - (344)

e(r,w), u(r,w) if |r —ra| > Reay.
The cavity radius R.,, is a model parameter representing an average distance from the
guest atom to the nearest neighbouring atoms constituting the host body. Note that the

real-cavity model is applicable provided that the unperturbed host body is homogeneous in

the region where the atom is situated,
E(r,w) = 5(7”,4,(4}), :u(’raw) = M(rAaw) for |’l" - TA| < (1 + n)Rcava (345)

with 7 being some small positive number. In particular, this condition implies that the
atom must not be situated on any body surface.

The local-field corrected CP potential can be obtained from Egs. (3.20) and (3.22) by
using the scattering part of the Green tensor Gi..(7,7’,w) which is defined by Eq. (2.14)
with &10c(7, w), foc(T, w) instead of e(r, w), pu(r,w). We assume the cavity radius to be small

with respect to the relevant atomic and medium wave lengths, so that one may employ the
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expansion (App. C) [SB11, SB15]

3ea-l) & 9% (bua—1)—3e4a—1] ¢
G\ _ Y A
IOC(TA’ a w) 6mec | 2e4+1 w3R§av 5(28,4 + 1)2 wWhReay
983/2”%2 364 2 "
NIEC T G |
+1{<26A+ e ]}’* (25A n 1) G (r4,74,0) + O(wReav/c) (3.46)

where £4 = e4(w) = e(ra,w) and pa = pa(w) = p(ra,w). Note that according to condi-
tion (3.45) the term in curly brackets does not give rise to a force, so it will be discarded in
the following.

Substituting G\ into Eq. (3.22), we find that the off-resonant part of the CP potential

loc

of an atom situated inside a body is given by [SB15]

h > 9 3 i 2 . 1 .
Uyi(ra) = %/0 dé ¢ [%} tr[an(lf)-G( )(rA,rA,1§)]. (3.47)

Comparison with Eq. (3.22) reveals that the local-field correction enhances the ¢-dependent
contributions to the potential, the factor in square brackets always being greater than unity
|ea(i€) > 1]. Since the integrand in Eq. (3.47) may have different signs for different values

of &, the total U (r4) may be enhanced or reduced, in general. In the retarded limit where

2 o0
712/;0 {2;?352 1} tr {an(o)’/o dé €2 GLL)o (T, 4, iﬁ)} (3.48)

[recall Eq. (3.31)], the local-field effects always lead to an enhancement of U"(r4) by a

Up(ra) =

simple factor.
Similarly, after substituting Eq. (3.46) into Eq. (3.20), the local-field corrected resonant
part of the CP potential reads
35A (Wnk) :| ?
U(ry) = — O(wnp)wipdo Re ] | e | G (ra, 14, i) i (3.49
n(T4) Mozk: (Wnk)wyrnk {[2€A(wnk)+1 (T4, 74, W) ¢ di (3.49)
In the limit of negligible absorption [Ime 4 = 0], one has

3¢ a(wn,
U (T4) :—MOZ@Wnk nk[ A(©n)

2

di-Re GW (14, 74, wit) - dien, 3.50
s ) e GO ) s (350
so the contributions assomated with the different transitions w,; are modified by simple

factors due to the influence of the local-field effects. From
|: 3e A

2e A+ 1
we see that enhancement or reduction may occur, depending on the values of € 4(wy)-

Equations (3.47) and (3.49) extend the free-space results (3.22) and (3.22) for the CP

? 1
<l < _§<5A<1 (3.51)

potential to the case of of an atom embedded in a body, hereby fully accounting for local-
field effects. It is worth noting that the local-field correction depends only on the electric,
and not on the magnetic properties of the host body. This can be understood from the fact
that the local-field effects are due to the influence of the neighbouring body atoms on the

guest atom, with this influence being dominated by the electrostatic Coulomb interaction.
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3.4 Born expansion

In order to apply the general expressions for the CP potential as given by Egs. (3.18), (3.20)
and (3.22) to a specific arrangement of magnetoelectric bodies, the appropriate Green tensor
must be obtained by solving the differential equation (2.14) for given functions &(7,w)
and pu(r,w). For many arrangements displaying a high degree of symmetry, e.g., planar,
spherical, or cylindrical multilayer systems, the respective Green tensor is available in closed
form [183|. For geometries only slightly deviating from such high symmetry, the Born
expansion of the Green tensor can be used to develop a systematic approximation to the
CP potential, as shall be outlined in the following.

Suppose that for a specific geometry of interest, the permittivity and (inverse) perme-

ability can be decomposed as
e(r,w) =2(r,w) + x(r,w), k(r,w) =k(r,w) — ((r,w) (3.52)

where the Green tensor G(r,r',w) corresponding to the (background) bodies described by
g(r,w) and R(r,w) =1 '(r,w) is known,
2

[V XFE(r,w)V x — w_2 E(r,w)] G(r,r',w)=46(r—r)l (3.53)

¢
and y(7,w) and ((7,w) describe some (small) corrections. In this case, the full Green tensor
is given by the Dyson equation [SB1]
_ w2 _
G(r,r'\w)=G(r,r',w)+ — /d3s G(r,s,w) x(s,w)G(s, 7" w)
¢
— /dgsg(r,s,w) x%s-g(s,w)vsx G(s,r’,w), (3.54)

as can be easily verified by substitution into the differential equation (2.14) and use of
Egs. (3.52) and (3.53). By iterating the Dyson equation, one can obtain an expansion of
G in powers of x and ¢, which is known as the Born expansion (App. D.1). In particular,
if the correction is sufficiently small, |x(7,w)|, |((7,w)| < 1, then a good approximation to

the Green tensor is given by the linear Born expansion

G(r,r',w)=G(r,r ,w)+AG(r,r w), (3.55)
2

AG(r,7r'\w) = /dgs {ucj—2 x(s8,w)G(r,s,w)-G(s, 1" W)

—((s,w) [G(fr, S,w) % %s} . [VS xG(s, 7, w)] } (3.56)

Use of the Born expansion leads to approximate expressions for the CP potential, where

we restrict our attention to the ground-state potential U(rs) = Uy(ra) in the following.
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Substituting Eqgs. (3.55) and (3.56) into Eq. (3.18) [together with Eqs. (3.24) and (3.25)],
one finds that to linear order in y and (, the CP potential of an isotropic ground-state atom

reads [SB1, SB10]

U(’I“A) = U(T‘A) + AU('I"A) (357)
where
Ulry) = Z—’f / dé 2a(if)tr GW (ry, 14, i) (3.58)
0

with a(w) = ag(w) is the potential associated with the background bodies (v, w), fi(r, w);

and

AU(r) = =12 [ s [ agaio){ S s [Gras.i6) Gl rie)
e @u[ (74, 5,i) X V, -V, x G(s, rA,lg)]} (3.59)

is the contribution of the perturbation described by x(7,w) and {(r,w). The linear Born
expansion can hence be used to approximate the potential in scenarios where a basic arrange-
ment of magnetoelectric bodies for which the Green tensor is known is weakly disturbed,
e.g., by additional bodies, inhomogeneities,? or surface roughness. The quality of the ap-
proximation can be systematically enhanced by including higher-order terms of the Born
expansion (which can be found in App. D.1 or Ref. [SB10]).

The Born expansion, in particular, can be used to evaluate the ground-state CP potential
of an atom in the case where only weakly magnetodielectric bodies are present so that we
may let £(r,w) =1, fi(r,w) = 1.2 In this case, the background Green tensor appearing in

Egs. (3.57)-(3.59) is simply the free-space Green tensor (see, e.g., Ref. [170])

iwp/c
Val / o /
G(r,r"\w) = Gheo(r,r',w) = in [I + (w) VV} ;
= —5(c/w)?3(p)l + Hieo(r, 7', w) (3.60)
with
, - clelwrle CdwprwpNZ |, 3lwp rwp?
Hieo(r, 7', 0) =  dmw?p? {{1 c ( c ) }I {3 c ( c ) ey (361)
(p=7r—7'; p=|p|; e,=p/p) and the CP potential reduces to
U(’I"A) = AU(TA) (362)

2The example of a ground-state atom interacting with a semi-infinite half space containing an inhomo-
geneous magnetodielectric is studied in Ref. [SB10].

3Recall from Eq. (3.52) that under these assumptions Y =& — 1 is nothing but the well-known electric
susceptibility and within linear order, ( >~ — 1 coincides with the magnetic susceptibility.
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Substituting Egs. (3.60) and (3.61) into Eq. (3.59), one easily finds that weakly dielectric
bodies give rise to a potential [SB10]

- | d’s [ dcationisgleln s, o)

32m3eg J |ra— 8|S

g(x) = 2e7%*(3 + 6z + 52% + 22° + ) (3.64)

which is simply a volume integral over attractive central forces, as is seen from
r/c 4ar
ECE
r

TS

[e7(9 + 18z + 162” + 82° + 32" + 2°)] (3.65)

z=¢tr/c’
In particular, the force is additive in the sense that forces due to two or more weakly
dielectric bodies can be simply added in order to obtain the total force. This is only true
within linear order in y; inclusion of higher orders in y leads to a breakdown of additivity,
as illustrated in App. D.2. Equation (3.63) can be further simplified for asymptotically
large or small atom-body separations. In the retarded (long-distance) limit, i.e., for 7y,
> ¢/Wmin ("min: Mminimum distance of the atom to any of the bodies; wp,: minimum of all
relevant atomic and medium resonance frequencies), the factor e~2¢/™=3l/¢ contained in g(z)
effectively limits the ¢-integral in Eq. (3.63) to a range where £ < ¢/rmin < Wmin, S0 that we
may put a(if) ~a(0), x(s,i§) ~x(s,0), resulting in

hea(0) 5. Xx(s,0) /OO 23hca(0) / 5. Xx(s,0)
S d d = — d : :
Ulra) 32m3eq / ° |ra — 8|7 Jo 9(w) 64m3eq ° |ra — s|” (3.66)

Note that the retarded limit corresponds to the limit ¢ — 0 in the sense that ¢ < ryinWmin-

In the non-retarded (short-distance) limit, i.e., for rp.c < ¢/Wnax ("max: Maximum distance
of the atom to any body part; wy.: maximum of all relevant atomic and medium resonance
frequencies), the functions a(i¢) and x(s, i§) effectively limit the {-integral in Eq. (3.63) to
a range where © =¢&|ry — 8|/¢ < WmaxTmax/c < 1, so the approximation g(z)~¢(0) =6 leads
to

U(ra) =

e [ 2 2 [ acationso) (3.67)

The non-retarded limit corresponds to the limit ¢ — oo in the sense that ¢>> 7 aWmax-
In order to find the CP potential associated with weakly magnetic bodies, we first recall

Eq. (3.60) and calculate

iwp/c
V X Geo(r, 7', 0) = — e (1 — %)epxl for r # 1/, (3.68)
iwp/c :
Giree(T, 7", W) XV = prz (1 - %) Ixe, forr#r, (3.69)
which upon substitution into Eq. (3 59) results in
i) = g [ 2 [T aegatec(s. gt — s/ (3.70)
3273 | |ra — s|4 ’

h(z) = 2 **(1 + 2z + 2?), (3.71)
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where we have used the identity tr [epx I x ep} = —2. As seen from
h(&r/c) ar o o, 2 3
V[ o = —F[e 244z + 32"+ )]x:&/c, (3.72)

the CP force associated with weakly magnetic bodies is hence a volume integral over re-
pulsive central forces, in contrast to the force created by weakly dielectric bodies.* The
retarded /non-retarded limits of Eq. (3.70) can be obtained in close analogy to the dielectric
case. In the retarded limit, the approximations a(i¢) ~«/(0), ((s,i§) ~((s,0) can be made,
hence we have

U(ra) = fica(0) /d35 M /000 dr 2*h(z) = Thea(0) /d35 M (3.73)

3273y |ra — s|” 64m3e |ra — s|”

In the non-retarded limit, one may set h(x) ~ h(0) =2, resulting in

hyio
U = it [ [T aceaiesis.i (374

Comparing Egs. (3.66) and (3.67) with Egs. (3.73) and (3.74), we note that to leading
order, the CP-potential contributions from volume elements possessing dielectric or magnetic
properties differ not only in their sign, but they also exhibit different asymptotic distance
laws. In the retarded limit, the contributions from magnetic volume elements show the same
r’-dependence as the dielectric-region contributions, but are weaker by factor of 7/23. In
the non-retarded limit, on the contrary, even the asymptotic power laws are different, the
r%-potential due to dielectric volume elements being much stronger than the r-potential
created by magnetic volume elements for small distances.

To study the influence of material absorption on the ground-state CP potential, we model

X(r,w) and ((r,w) by the single-resonance Drude-Lorentz forms

- o (r) o) o (7)
= G- e Y T - )

(3.75)

where wp., wp,, are the electric and magnetic plasma frequencies of the medium, wr., wr,
are the transverse electric and magnetic resonance frequencies and ., 7, are the absorption

parameters. We have

o £t (r)
o, X = T e e < (3.76)
9 rie) = — Ewp (1)
o ) = T et e (3.77)

so that Eqgs. (3.63) and (3.70) show that an increase of electric or magnetic absorption leads
to a decrease of the potential components associated with weakly dielectric or magnetic bod-

ies, with the effect becoming small for large atom—body separations (where only small values

4This difference will be made plausible in Sec. 3.6.1 by means of a simple physical model.
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of ¢ contribute). The reduction can be understood by recalling that the ground-state CP
potential may be regarded as being due to the fluctuating electromagnetic field inducing an
electric dipole of the atomic system and the fluctuating electric dipole moment, inducing an
electric field |cf. the remarks below Eq. (3.30)]. Material absorption has the effect of reducing
the induced electric field and hence weakening the second source of the CP potential. Note
that our conclusions about the role of absorption naturally generalise to multi-resonance

media; furthermore, they remain valid for bodies with stronger magnetoelectric properties.

3.5 Microscopic origin

In our description of the CP interaction between a ground-state atom and a macroscopic
body, the atom and body properties enter in fundamentally different ways. Whereas the
atom is a microscopic, point-like object at position r4 characterised by its polarisability
a(w), the bodies are described by their macroscopic permittivity £(r,w) and permeability
p(r,w) which are assumed to be smoothly varying functions of r. It is therefore quite natural
to address the microscopic origin of the CP potential by investigating how the macroscopic-
QED result can be related to a theory of the CP interaction where both atom and bodies
are treated in a microscopic way.

Let us focus our attention on a ground-state atom A interacting with a single dielectric
body occupying a volume V' and being characterised by a susceptibility x(r,w), where we
allow for an arbitrary background of additional magnetoelectric bodies described by (7, w)
and fi(r,w). Making use of the Born expansion introduced in the previous section 3.4, one
can show that the CP potential associated with the dielectric body of interest can be written

in the form (App. D.1)3

U(ra) = Y AgU(r), (3.78)
K=1
— 1)y [ 17 N .
AgU(rs) = <2727M0 H/Vd?’SJX(SJ,lf)] /0 dg &5 P ay(if)
xtr[G(ra, 81,1€)-G(81, 82,1) - -GSk, T, if)] (3.79)

[recall Eq. (3.53)]. We now assume that the dielectric body consists of polarisable atoms
of various species B having polarisabilities ap(w) and number densities np(r). The gap

between the macroscopic and microscopic descriptions of the body can then be bridged by

SNote that the polarisability of atom A has been denoted by a4 (w) to distinguish it from that of the
body atoms to be introduced in the following.
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means of the Clausius—Mosotti law [171]

g0 Ypns(r)ap(w)

M) = TS heracte)

Note that since x(7,w) is the Fourier transform of a linear response function, it must satisfy

(3.80)

the condition x(r,0) > x(7,i§) > 0 for £ > 0, which implies that the inequality
1
— > np(r)ap(0) <1 (3.81)
B

must hold.
Substituting Eq. (3.80) into Eq. (3.79) and taking into account that the unperturbed

Green tensor can be decomposed as
G(r, 7" \w) = —1(c/w)*é(p)l + H(r, 7', w) (3.82)

|cf. Eq. (3.60)], one may write

K
AU(ra) = > ALU(ra), (3.83)
L=1
where
L
Y5, "B,(87)q" (87,i) o
ALU(ry) = /d% L , / d¢
" ! mzo;,:mzo H Vv Jl_ (3€0)~ ECJ”CJ( 7)ac, (1) | Jo
1+...+n=K—-L
e < Vs p, (T, 81, 81,3€) (3.84)
with

Vagoa,(re,....ry) = / A&V, a,(ry, ... 1y,18)
0

_1\J-1p,,J foo — -
:M/ d¢ €7 aua, (16)- - -aa, (1)tr [H(r1,79,18)- - -H(ry, 71, i€)]  (3.85)

2m 0

denotes the sum of all L-atom terms that are of order K in y; and each power of the factor

r,if) = —(320) "' Y pmp(r)as(i€)
q( 75) 1_(350) chc( )Oéc(if)

is due to the integration of one delta function. Summing Eq. (3.82) over K and rearranging

(3.86)

the double sum

S O AU(ra) =YY ARU(ra) = A'U(ra), (3.87)

we find

ALU(TA) _ H/d3SJ1_(380)ZBI ng,(s) qu sJ,1§]/Oood£

ZC; nC}(SJ ac, 16

XVABl...BL<7'A7 S1,...,8L, lf)

[ L
- 11 / s, 3 s, (5)
=17V By

‘/:4B1...BL (’rAa S1,.- 4, SL)7 (388)
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where we have performed the geometric sums
D q'(r,i) =1——> np(r)ag(i€) (3.89)

by means of Eq. (3.86) and recalled Eq. (3.85). Note that convergence of the geometric
sums requires |¢(r,i€)| < 1, which by means of Eq. (3.81) is equivalent to

— > np(r)ap(0) < 1. (3.90)
B

As a last step, we require all many-atom terms to be fully symmetrised with respect to

the positions of the atoms. To achieve this, we introduce the symmetrisation operator

Sf(ry,...,ry) = Z f( TTI(1) 5 77°H(J)) (3.91)
(2 —day) J
MeP(J)
where P(.J) denotes the permutation group of the numbers 1, ..., J. As a trivial consequence

of the cyclic property of the trace as well as the symmetry of the Green tensor, (2.17) together
with Eq. (3.82), one easily finds that

tr|H(ry, 7o, w)- - ~ﬁ(m,r1,w)] =tr [ﬁ(’l"ﬂ(l),’r‘n(g), w)- - -H(rme, rn(l),w)] (3.92)

if I1 is either a cyclic permutation or the reverse of a cyclic permutation. With f(ry,..., 7))
being given by the left hand side of Eq. (3.92), the sum on the right hand side of Eq. (3.91)
contains classes of (2 —d).J terms that give the same result. By forming a set P(.J) & P(J)
containing exactly one representative of each class, the sum can thus be simplified, leading

to

Str[H(ri, ra,w)- - -H(ry, r,w)] = Z tr[H(rna), T, w)- - -H(rnwy, roay,w)]. - (3.93)

TeP(J)
Symmetrisation of the many-atom terms in Eq. (3.88) can now easily be achieved by intro-
ducing the factor 1/L! and summing over all L! possible ways of renaming the variables s
and Bj;. This generates the representative of each class in Eq. (3.93) exactly twice (only
once for J=L+1=2) so that [SB1, SB10, SB13]

U(T‘A L' [H/d33J ZnBJ SJ
L=1

UABI By, (’I"A, S1,..., ) (394)

with

Us, ay(T1,...,7N)

_1\N-1 N e’} B
:ﬁTh)l;o/o d§£2NaA1(i§) capy (16)Str | H(ry, 7,18)- - -H(rn, 71,i€) | (3.95)
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being the N-atom vdW potential in the presence of arbitrary magnetoelectric bodies char-
acterised by (7, w) and (7, w).

Equation (3.94) bridges the gap between the macroscopic and microscopic approaches
to the CP potential. It shows that the CP interaction of a single ground-state atom with
a macroscopic dielectric body is the result of the microscopic N-atom vdW interactions of
the single atom with the atoms contained in the body, provided that the susceptibility is
of Clausius—Mosotti type (3.80) and the convergence condition (3.90) holds. Our derivation
is valid under very general conditions (i.e., for an atom interacting with an inhomogeneous
dielectric body of arbitrary shape containing different atomic species, with additional mag-
netoelectric bodies possibly being present); a relation of the type (3.94) was first derived for
the special case of a homogeneous dielectric half space filled with harmonic-oscillator atoms
[159] and later extended to homogeneous dielectric bodies of arbitrary shapes in free space
[161]. Note that the implication of our calculation can be reversed: When Egs. (3.94) and
(3.95) hold and the convergence condition (3.90) is satisfied, then the electric susceptibility
must necessarily have the Clausius—Mosotti form.

Obviously the applicability of the microscopic picture depends crucially on the validity
of the convergence condition (3.90). To give a physical interpretation, we recall Eq. (3.23)
and apply the order-of-magnitude estimate

as(0) _ 2 AR 2%}

— B ~~
€0 3h€0 - Wro 380ERy

fB=4fBVat (3.96)

where e is the electron charge; ag = h/(agme.c) is the Bohr radius [m., electron mass; ag =
e?/(4meohc), fine-structure constant|; Egr, = h*/(2m.a}) is the Rydberg energy; fz>11is a
factor depending on the atomic species; and V,, =4ma3, /3 is the volume of an atom the size

of a Bohr radius. Furthermore, we write

;ng(r)f]g ~ VJ; (3.97)

(f>1), where Vg, is the volume accessible per atom within the body. Using these estimates,

the convergence condition (3.90) can be reformulated as
Vsp Z g fvatu (398)

which simply states that the atoms must be sufficiently separated within the body, such that
their electronic wave functions do not overlap. This condition can be fulfilled for dielectric,
but not for metal bodies.

As a side effect, our calculation has delivered the general N-atom vdW potential in

the presence of arbitrary magnetoelectric bodies, Eq. (3.95), the derivation being unique
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when requiring the vdW potentials to be fully symmetrised. The result for N =2 has been
confirmed by extending the perturbative calculation given in Sec. 3.2 to the case of two atoms
[SB12, SB13]. For N atoms in free space, H in Eq. (3.95) becomes Hy,., [recall Eq. (3.61)],
leading to agreement with earlier results [184]. An explicit expression for the two-atom
vdW potential in free space can easily be obtained from the results given in Sec. 3.4. From

Egs. (3.63), (3.66) and (3.67) one can infer the well-known Casimir-Polder result [2]

d 6 /OOOdfo‘A(if)O‘B(if)g(fTAB/C) (3.99)

UAB(TAB) = —m

(rap=|ra — rzl), recall Eq. (3.64); it reduces to

23hcaa(0)ap(0)
— 1
Uap(TaB) 612 (3.100)
in the retarded limit (745 > ¢/wmn) and to the London potential [1]
B 3h > : .
UAB(TAB) = —m . dg (XA(I&)OCB(I&) (3101)

in the non-retarded limit (r4p < ¢/wnax). An explicit expression for the free-space three-
atom potential is given in App. D.2 [SB10].

The derivation leading to Eqgs. (3.94) and (3.95) has shown that the use of the correct
Clausius—Mosotti law (3.80) is crucial for deriving general N-atom vdW potentials from the
macroscopic CP potential. On the contrary, the two-atom potential can already be extracted
from the leading contribution AU(74) to the CP potential [recall Eq. (3.59)] by assuming
the bodies to consist of a single atomic species B and using the linearised version of the
Clausius-Mosotti law x(r,w) ~¢e; 'np(r)ag(w) [5, 164, 136, 185]. An analogous statement
which holds for magnetic bodies, can be used to derive the vdW potential of a polarisable
atom A and a magnetisable atom B. We assume that the body described by ( contains a
single species B of atoms having a (sufficiently small) number density np(r) and possessing

a magnetisability Op(w), such that the linearised Clausius—Mosotti law

C(r,w) ~ ponp(r)fe(w) (3.102)

is valid. Equation (3.102) together with Eq. (3.59) implies that the two-atom potential of a
polarisable atom A interacting with a magnetisable atom B in the presence of an arbitrary

arrangement of magnetoelectric bodies is given by [SB1, SB14]

2 poo —
Uss(ra,ma) — —#0 d§£2aA(i§)ﬁB(i§)tr[G(rA,r,ig)xV~VxG(r,rA,i§)]T . (3.103)

27T 0 =TB

As can be seen by combining Eq. (3.70) with Eq. (3.102), this potential reduces to

Upi(ra) — —H0 / " 46 €0 (i) Bp(E)h(Eran/c) (3.104)

— ]
32mris Jo
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|recall Eq. (3.71)] for the special case of two atoms placed in free space, in agreement with
results found earlier [109, 186]. By recalling Egs. (3.73) and (3.74), one finds that the

free-space potential is approximately given by

Thepts 4(0)35(0)
Uap(rap) = 64017r3€0r£BB (3.105)
in the retarded limit and by
A 2 00 ' '
Uap(raB) = 16%/ dé E2a4(i€) B (i€) (3.106)
TTaAp Jo

in the non-retarded limit. In contrast to the case of two polarisable atoms, the vdW potential
of a polarisable atom and a magnetisable one is hence repulsive. While following a 'rj; power
law in the non-retarded limit that is weaker than the corresponding ;% vdW potential of two
polarisable atoms by a factor of 7/23, the vdW potential of a polarisable and a magnetisable
atom exhibits a 7,5 power law in the non-retarded limit that is more weakly diverging than

the asymptotic 'rjg potential of two polarisable atoms.

3.6 Applications: Planar systems

The general expressions for the ground-state CP potential® obtained in Secs. 3.1-3.4 are
valid for atoms placed within arbitrary arrangements of magnetoelectric bodies. For specific
geometries, more explicit expressions can be obtained by substitution of the appropriate
Green tensors and one can then investigate how the respective CP potentials depend on the
atomic position and on the medium and geometry parameters. This will be illustrated in the
following by applying the general theory to atoms placed within planar multilayer systems.”
Note that many geometries studied both theoretically and in experiments belong to this class
of systems, examples including idealised model situations like perfectly reflecting plates or
semi-infinite half spaces; more realistic cases like plates of finite thickness; and even complex
structures like planar cavities.

We first consider the general case of an atom placed inside the gap (of width [) between
two planar magnetoelectric multilayer stacks (Fig. 3.1). The left/right stacks are labelled
by =+, they consist of ny homogeneous slabs of permittivity 5ji (w), permeability ujﬁ (w) and
thickness dj[ (j=1,...,ny), where d,fi =o00. The z axis is chosen perpendicular to the slab

interfaces, extending from z=0 to z=1[. The scattering part of the Green tensor for r and

r’ inside the gap is given by [183]

GV (r,r,if) = / d*qe GV g, 2, 2, i€) (3.107)

6The CP force for atoms initially prepared in an excited state will be discussed in chapter 4.
"Examples of other geometries can be found in Refs. [SB5, SB13] and [SB10] where atoms interacting
with magnetoelectic spheres and rings are studied, respectively.
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Figure 3.1: An atom within a planar multilayer system is schematically shown.

(g L e.), where

(1) T+6 + _+—b(z—2") — =, b(z—2")
G (q,z7,i) = [eoeoe +e e e }

87T2b
o=s,p
1 /
+ - [e:e;r;e_b(z+z) + e efrfe Wbtz )} } (3.108)
Here,
e =e,xe., ef =2 (ige, £ be,) (3.109)

P 3
(¢=|q|, e,=¢q/q) are the polarisation vectors for s- and p-polarised waves propagating in the

positive and negative z-directions; r; and r} are the generalised coefficients for reflexion at

the left /right multilayer stack which are the solutions r; =r%, (¢ = uf=1) of the recursive

relations®
s = 15(0,1) (Mi“bi ~ )+ Gl b )e J“?“é'[m, (3.110)
(LEbE + 5 + (i b — bt e PrmbigE
Ty = 1pi(0,16) = (53207 = &5 0) + (5l + <50 )e 2b§1d§1@+1 (3.111)
(5]'i+1bj[ + Ejib]iﬂ) + (e ﬁlbi ]ib]iﬂ) 2bj+1dj+17=pij+1

2

2
bfzb;%q,ig):J%q(i@ujmmq?, b= blg.i) = b (0.16) = /55 + @2 (3112)

is the imaginary part of the z-component of the wave vector in the respective slab; and the

coefficients D, are defined by

Dy = D,(q,i€) =1 —r rie . (3.113)

8Note that instead of calculating the reflexion coefficients by means of the recurrence relations, one can
determine them via appropriate reflectivity measurements (cf., e.g., Ref. [187]).
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To calculate the CP potential, we substitute Eq. (3.107) together with Eq. (3.108) into
Eq. (3.24), thereby omitting position-independent terms. Evaluating the trace with the aid
of the relations

+_ _* _ + _+ _ + _ q¢*c?
e =e;-ef =1, e, e, =1, e, -ef =—1—-2-— (3.114)

S §2
which directly follow from Eqgs. (3.109) and (3.112), we realise that the resulting integrand of

“ h

e

the g-integral only depends on ¢. Thus after introducing polar coordinates in the ¢,g,-plane,

we can easily perform the angular integration, leading to [SB1, SB8, SB9|

oot [ [t -+ 45)3

o rf PAENT,
4 o 2b(i-2a) [_s (1 ) R )_} . (3.115)
D, §& ) D,

Equation (3.115) together with Eqgs. (3.110)—(3.113) gives the CP potential of a ground-
state atom placed between two arbitrary magnetoelectric multilayer stacks in terms of the
atomic polarisability and the generalised reflexion coefficients of the stacks. Note that the
CP potential only depends on z4, in agreement with the symmetry of the planar multilayer
system. If the atom is placed near a single multilayer stack, say the right stack is absent,

Eq. (3.115) simplifies to (r, =7)

U(za) = % /OOO d¢ £2a(i€) /OOO dq % e 2 [rs — <1 +2 %)rp} . (3.116)

3.6.1 Perfectly reflecting plate

Let us first consider the idealised example of an atom positioned in front of a perfectly
reflecting plate, where |r,|=1. We begin with the case r;=—1, r, =1, which corresponds to
the limit of a perfectly conducting plate (£, —0), as can be seen from Egs. (3.110)—(3.112).
Changing the integration variables in Eq. (3.116) according to

/ dg/ dqge_QbZA...H/ de [ dpe = (3.117)
0 0 b 0 €/c

[recall Eq. (3.112)] and carrying out the b-integral, we obtain the attractive CP potential
[SB1, SBY|
§2a

19 fZZA

Ulza) = = c c?

h - /Ooodfa(if) —25ZA/C[1+2 (3.118)

1672025
in agreement with the famous result found by Casimir and Polder [2|. In the retarded limit
(24> ¢/wWmin), the E-integral is effectively limited to a region where the approximation a(i€)

~ «(0) is valid, and an evaluation of the {-integral results in

3hea(0)
32m2egzy

U(ZA) = — (3.119)
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(2) . (b)

Figure 3.2: The image dipole construction for an (a) electric (b) magnetic dipole in front of
a perfectly conducting plate, is shown.

In the non-retarded limit (24 < ¢/wmax), the factor a(i€) limits the ¢-integral in Eq. (3.118)
to a range where we may approximately set e %%4/¢ ~ 1 and neglect the second and third
terms in the square brackets to recover the result of Lennard-Jones [3],

0|d2|0>
U = 12
(24) = 487?5023 Z|  487e, 23 (3.120)

where we have recalled Eq. (3.23).
In contrast, if the plate is infinitely permeable (1 — 00), Egs. (3.110)—(3.112) lead to
rs=1, r,=—1 and Eq. (3.116) yields the repulsive CP potential [SB1, SBY]

U(za) = L/m d¢ a(ig)e%=ale 1+2€ 4 2522124 (3.121)
AT 16m2e025, c 2 '
which reduces to
3hca(0)
U = —= .122
(24) 32m2ez (3.122)
and -
(0[d?]0)
= 3.123
Ulza) 487eg 2 ( )

in the retarded and non-retarded limits, respectively.

The different signs of the non-retarded CP potentials associated with plates possessing
perfect electric/magnetic properties can be understood from an image-dipole model. To see
this, recall that the non-retarded CP potential is entirely due to the Coulomb interaction
of the atom with the plate, which in turn can be modelled by the interaction of the atomic
dipole moment with its image in the plate, cf., e.g., Ref. [3]. The image of an electric
dipole moment d= (cix, ciy, ciz) situated at a distance z4 from a perfectly conducting plate,
is constructed by a reflection at the xy-plane, together with an interchange of positive and
negative charges; it is given by d*= (—a?x, —dy, JZ), cf. Fig 3.2(a). The average interaction
energy of the dipole and its image is hence given by [171]

A. N B 5 5 72 2 72
(0ld-d* —3d.dz|0) _ (0]d" +dZ|0)  {0]d”|0) , (3.124)

1
U = _ ——
(2) 2 4meg(2z4)3 64meg2? 48megzd
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reproducing to the attractive potential (3.120), where the factor 1/2 accounts for the fact
that the second dipole is induced by the first one and we have assumed isotropy of the atom,
(0[d2|0) = (1/3){0]d?|0).

The interaction of a polarisable atom with an infinitely permeable plate is equivalent
to the interaction of a magnetisable one with a perfectly conducting plate by virtue of a
duality transformation. We hence consider a magnetic dipole m = (1, 1, m,) in front of
a perfect conductor. Since the magnetic dipole moment behaves like a pseudo-vector under
reflexion, its image is given by m* = (1, m,,, —m.), cf. Fig 3.2(b). The interaction energy

of the magnetic dipole and its image reads

L (Ofri-riv* — Brin.iz]0) _ (0]ri?|0) (3.125)
2 dmeg(224)° A8menzy | .

U(ZA) =

which by means of a duality transformation, leads to the repulsive CP potential of a polar-
isable atom in front of an infinitely permeable plate (3.123). The different signs of the CP
potential associated with electric/magnetic bodies can thus be understood from the different

reflexion behaviour of electric and magnetic dipole moments.

3.6.2 Half space

To study the influence of the medium properties on the CP potential under more realistic
conditions, we next consider an atom in front of a semi-infinite magnetoelectric half space
of permittivity £(w) = €] (w) and permeability pu(w) = pi (w). Substituting the reflexion
coefficients (3.110) and (3.111) into Eq. (3.116), we find [b; = b, recall Eq. (3.112)] [SB1,
SB7, SB8, SBY|

h o0 o0
Uea) = g3 | deeatie) [ agf e

82
p(i)b — by 2\ e(i6)b — by
. Lﬁ(if)lwbl - <1+2 £2 )5(i§)b+b1

which agrees with the result derived in Ref. [141] within the frame of linear-response theory

], (3.126)

and reduces to the well-known Lifshitz formula [5] for the case of a purely electric half space.
To find the asymptotic behaviour of Eq. (3.126) in the retarded limit (24 > ¢/wmin), we

introduce the new integration variable v =cb/¢ and transform the integral according to

/ df/ dqge_QbZA...H/ dv/ d§§e_2”§zf“/c..., (3.127)
0 0 b 1 0 ¢

where b; changes to

b = % Ve(i€)pu(ig) — 1+ v2. (3.128)
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It is then seen that in the retarded limit, the factor e2¥¢?4/¢ effectively limits the ¢-integral
to a range where the approximations a/(i) ~«a/(0), €(i§) ~£(0), p(i&) ~ 1(0) apply, hence the

&-integration can be carried out, resulting in

U(z) = % (3.129)
__3hea(0) [ S22 1 e(0)v — 1/e(0)u(0) — 1 + 02
o, / ‘ k ) £(0)0 + /2(0)u(0) — 1+
1 p(0)v — V/E(0)u(0) —T 42 (3130)
vt p(0) + /2(0)1(0) — 1+ v?

The nonretarded limit [n(0)z4 < ¢/wmax With n(0)=+/(0)u(0) |, is conveniently treated by
using the integration variables (¢, b), recall Eq. (3.117), where b; becomes

by = \/i—z [e(i€)p(i&) — 1] +b2. (3.131)

For n(0)z4 < ¢/wnax, the factors a(if), (i)b — by and p(i§)b — by limit the &-integral in
Eq. (3.126) to a range where (£24/¢)/e(i€)u(i€) — 1 < (wmaxza/c)n(0) < 1. One may hence
apply a Taylor expansion by retaining only the leading-order terms in &/=(i€)u(i€) — 1/(cb),
which correspond to the leading-order terms in £z41/c(i€)u(i€) — 1/c. Again discarding

higher-order terms in £z,4/c, this results in

U(za) = C; + ﬁ’ (3.132)
ZA A
h e(i§) —1
C3 = 1671'26 / dfO&( ) W > O, (3133)
_ hpo e(i) =1  pig) -1  2e(if)[e(i)p(i§) — 1]
=g [ deato ST Tt S e 2% (13

Let us discuss these results. Equations (3.129) and (3.130) show that in the retarded
limit, the CP potential is attractive/repulsive for a purely electric/magnetic half space. As

the coefficient C; monotonously decreases with increasing £(0) and monotonously increases

with 1(0),
804 804

<0, —
0e(0) o (0)
the borderline between the attractive and repulsive potentials is given by a unique curve

in the £(0)u(0)-plane, which is defined by Cy =0, Eq. (3.130); this borderline is displayed

> 0, (3.135)

in Fig. 3.3 on the basis of numerical calculations. In the limits of weak and strong magne-
todielectric properties, analytic expressions for the borderline can be obtained. For weak

magnetodielectric properties, i.e., x(0) =¢(0)—1 < 1 and ¢(0) = x(0) —1 < 1, the linear
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Figure 3.3: The borderline between attractive and repulsive retarded CP potentials of an
atom in front of a magnetodielectric half space, is displayed.

expansions
O JEORO) T R 1 1] 1
e(0)v + /e(0)u(0) — 1T +02 lZ 4@2} X(0) = 15 ¢00) (3.136)
p(0)v — \/E(O),LL(O) — 1+ 02 1 11
p(0) + /e (Ou(0) — L+02  40? x(0)+ [2 41,2} ¢(0) (3.137)
lead to
Ci= _671000;52020 23 x(0) = 7¢(0)]. (3.138)

For strong magnetodielectric properties, i.e., £(0) > 1 and p(0) > 1, we may approximately

set

Ve(0)u(0) — 1+ 02 =~ /e(0)(0) (3.139)

because large values of v are effectively suppressed in the integral in Eq. (3.130), thus

3hca(0) 2 2 4
Cy=— —ZIm(1+2)+ = + = In(1+Z
1= TG, | MU g g 4 2)
L_1 7 +27% - 27°1 1+1 (3.140)
————— — n — .
Z 3 Z

where Z = \/W is the static impedance of the half space. Setting C;=0in Eq. (3.140),
it follows that Z=2.26. In conclusion, one can say that in the retarded limit a repulsive CP
potential can be realised if the static magnetic properties are stronger than the static electric
properties, ((0)/x(0) >23/7=3.29 for weak magnetodielectric properties and (0)/(0) >

2.262 =5.11 for strong magnetoelectric properties.
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Figure 3.4: The CP potential of a ground-state two-level atom in front of a magnetodielectric
half space is shown as a function of the atom—plate separation for different values of 1(0)

(wPe/wlo =0.75, wTe/wlo =1.03, me/Wlo =1, ’Ye/wlo = ’Ym/ww = 0-001)-

In the non-retarded limit, not only the sign, but also the leading power law of the
asymptotic CP potential is affected by the relative strengths of the electric and magnetic
properties [C3 > 0 dominant (and C; > 0) for a purely electric half space, while C3 =0
and C; > 0 for a purely magnetic half space, cf. Egs. (3.132)—(3.134)]. For a genuinely
magnetoelectric half space, the attractive 1/z% term due to the electric medium properties
will always dominate for sufficiently small distances. Hence in cases where the long-distance
potential is repulsive due to sufficiently strong magnetic properties, the competing influence
of the electric/magnetic medium properties can lead to the formation of a potential barrier
at intermediate distances. This is illustrated in Fig. 3.4, where the CP potential of a two-
level atom in front of a magnetoelectric half space is displayed, which has been numerically
calculated from Eq. (3.126) together with Eqs. (3.23) and (3.112). Here, the single-resonance

Drude-Lorentz model has been used for ¢(w) and p(w),

2 2

W W
=1 Pe =1 Pm 3.141
e(w) + 2w iy p(w) + W iy ( )
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recall Eq. (3.75). The figure shows that the potential is attractive for small 1(0), as expected.
For increasing values of 14(0), a potential barrier begins to form at intermediate distances
which is shifted to smaller distances and increases in height as the value of 1(0) is further
increased. A more detailed discussion of the dependence of the barrier characteristics on

the medium parameters can be found in Refs. [SB8, SB9].

3.6.3 Plate of finite thickness

The half-space model studied in the previous section was based on the idealising assumption
of an infinitely thick plate. To be more realistic and at the same time investigate under
which conditions the semi-infinite half space is a good model, we now consider an atom in
front of a magnetoelectric plate of finite thickness d = dj, permittivity ¢(w) = €] (w) and
permeability p(w)=pu; (w) [the space behind the plate is assumed to be empty, so that €5 (w)
= 115 (w) =1]. Substituting the reflexion coefficients (3.110) and (3.111) into Eq. (3.116), we
derive (b =0b;) [SB1, SB8, SB9|
h, o0 o0 2(i6)b* — b?] tanh(b d
U(za) = sl /0 d¢ Ea(i€) /0 dg % eQbZA{QM(jg)[ljzl(f)[MQ(if)z]Q + b%% tlarfh(bld)

82
¢’c [£2(i&)b?* — bf] tanh(byd)
_ (1 + 2 &2 ) 2e(i&)bby + [52(1022 + 2] tanh(b1d) }, (3.142)

which reduces to the result given in Ref. [128] for a purely electric plate.

It is obvious that the integration in Eq. (3.142) is effectively limited by the factor e=2*4
to a circular region where b<<1/(2z4). For an asymptotically thick plate, d>>z4, the estimate
bid>bd~d/(2z4)>1 |recall Eq. (3.112)] is approximately valid within (the major part of)
the effective range of integration. One may hence make the approximation tanh(b;d) ~ 1,
leading back to the half-space result (3.126) which demonstrates that the semi-infinite half
space is a good model provided that d>> z4.

On the contrary, in the limit of an asymptotically thin plate, n(0)d < z4, we find that
the inequalities byd < /e(i€)p(i€) bd < \/2(0)11(0) bd <n(0)d/(224) < 1 hold in the effective
region of integration and one may hence perform a linear expansion of the integrand in
Eq. (3.142) in terms of b;d, resulting in [SB1, SB8, SB9|

_ h[ﬁod OO : > q _ bz a ”2(1§)b2 _b%
) =" [ deatio) [ ag Lo [IEOEES0

>\ e2(i6)v* — b2
_ (1+2 52) 25T } (3.143)

Following the steps described above Egs. (3.129) and (3.132), respectively, it can be
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Figure 3.5: The CP potential of a ground-state two-level atom in front of a magnetodielectric
plate is shown as a function of the atom—plate separation for different values of the plate

thickness d [1(0) = 5; whereas all other parameters are the same as in Fig. 3.4].

shown that in the retarded limit (z4 > ¢/wmin), Eq. (3.143) reduces to

D
Ulza) = —=, (3.144)
ZA
h d [14%(0) — 200) -1
Dy — ca(0) e*(0) =9  6p7(0) (3.145)
16072¢ (0) 1(0)
while in the non-retarded limit [n(0)z4 < ¢/wmax|, it can be approximated by
D D
Uza) = —— + —2, (3.146)
A *A
3hd [ £2(i€) — 1
Dy=—— dé a(i)—=— >0 3.147
1= o | dcatin == >0 (3.147)

fiohd /°° 2 o)) -1 g2 — 1 2[e(i)p(iE) — 1]
Dy = d€ E7a(i€ . + - + : >0. 3.148
= SR NG TS (6) (3149)
Comparing the retarded and non-retarded CP potentials of an asymptotically thin plate
with those of an infinitely thick plate, Eqgs. (3.129) and (3.132), we observe a close simi-

larity. It is therefore natural to expect the formation of a repulsive potential barrier for
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plates of finite thickness, provided that the magnetic properties are sufficiently strong. This
is confirmed in Fig. 3.5 where the CP potentials of a two-level atom placed in front of
plates of various thicknesses are shown which have been obtained by numerical evaluation
of Eq. (3.142) [together with Eqgs. (3.23), (3.112) and (3.141)]. It is seen that the qualitative
behaviour of the CP potential is independent of the plate thickness; all curves in Fig. 3.5
feature a potential barrier at some intermediate distance. However, the barrier height reacts
very sensitively as the plate thickness is varied. For a thin plate the barrier is very low; it
raises with increasing thickness of the plate, reaches a maximal height for some intermediate
thickness and then lowers slowly towards the asymptotic half space value as the thickness

is further increased. A more detailed discussion can be found in Refs. [SB9, SBS|.

3.6.4 Planar cavity

As a simple model for a planar cavity, consider a free-space region enclosed by two identical
magnetodielectric half spaces of permittivity e(w) = £} (w) and permeability p(w) = uf(w)
which are separated by a distance l.° From Eq. (3.115) together with Eqgs. (3.110)(3.113)
it follows that the CP potential of a ground-state atom placed within the planar cavity is
given by (b, = b¥) [SB1, SBS, SBY|

B o0 00 i£)b—b
Ulza) = 53 /0 dé £a(i¢) /0 e [Di %ESH 3

@\ 1 e(i&)b— by
_ (1+2 o )D_ps(if)b+b1]' (3.149)

In general, this potential is not the sum of two separate half-space potentials (3.126). The

difference is due to the effect of multiple reflexions between the half spaces, which gives rise

to the denominators

e}

1 1 — b+ —BI\T
o T Z(roe rte ) , (3.150)
g g g n=0

recall Eq. (3.113).

Examples of the CP potentials of an atom in a magnetodielectric, purely electric and
purely magnetic cavity are given in Fig. 3.6, which have been obtained by numerical in-
tegration of Eq. (3.149), together with Egs. (3.23), (3.112) and (3.113). For the chosen
parameters, multiple reflexions within the cavity do not play a role (i.e., D, ~ 1 in the

effective range of integration),'® so the cavity potentials reduce to sums of two half-space

9Note that purely electric planar cavities have been modelled with various degrees of detail, e.g., by two
perfectly conducting plates [104, 115, 121, 122, 149], two electric half spaces [149], or even two electric plates
of finite thickness [128, 129].

0For an example where multiple reflexions must be taken into account, see Ref. [SB9].
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Figure 3.6: The CP potential of a ground-state two-level atom within an (a) magnetodielec-
tric [1(0) = b; whereas all other parameters are the same as in Fig. 3.4], (b) purely electric
[£(w) =1, other parameters as in (a)], (c) purely magnetic [e(w) =1, other parameters as in
(a)] cavity of width | =15¢/wyg is shown as a function of the position of the atom.

potentials. Hence the attractive/repulsive potentials associated with each of two purely
electric/magnetic half spaces combine to an infinite potential wall /well at the centre of the
cavity, while a potential well of finite depth can be realised within the cavity in the case of

two genuinely magnetodielectric plates of sufficiently strong magnetic properties.

3.7 Comparison of dispersion forces

The results of this chapter have revealed that the dispersion forces between various polar-
isable/magnetisable ground-state objects exhibit a lot of common features; this point will
be further elaborated in the following. Table 3.1 summarises the asymptotic retarded and
non-retarded dispersion forces that have been found for a ground-state polarisable atom
interacting with another ground-state polarisable/magnetisable atom [Eqgs. (3.100), (3.101),
(3.105) and (3.106)], an electric/magnetic small sphere [SB5, SB13]|, thin ring [SB10], thin
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Table 3.1: Signs and asymptotic power laws for the dispersion forces between (a) two atoms,
(b) an atom and a small sphere, (c) an atom and a thin ring, (d) an atom and a thin plate,
(e) an atom and a semi-infinite half space and (f) two semi-infinite half spaces. In the table,
e/m stands for polarisable/magnetisable objects and the signs & denote repulsive/attractive
forces.

plate |Egs. (3.144) and (3.146)| and semi-infinite half space |Egs. (3.129) and (3.132)]. In
addition, the dispersion force between two semi-infinite half spaces is given [188|.
Comparing the dispersion forces between objects of different shapes and sizes, it is seen
that the signs are always the same, while the leading inverse powers are the same or changed
by some global power when moving from one row of the table to another. This can be
understood by assuming that the leading inverse power is determined by the contribution
to the force which results from the two-atom interaction [row (a)] by pairwise summation.
Obviously, integration of two-atom forces over the (finite) volumes of a small sphere (b) or
a thin ring (c) does not change the respective power law, while integration over an infinite
volume lowers the leading inverse power according to the number of infinite dimensions. So,
the leading inverse powers are lowered by two and three for the interaction of an atom with

a thin plate of infinite lateral extension (d) and a half space (e), respectively. The power
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laws for the force between two half spaces (f) can then be obtained from the atom-half-
space force (e) by integrating over the three infinite dimensions, where integration over z
lowers the leading inverse powers by one, while the trivial integrations over x and y yield
an infinite force, i.e., a finite force per unit area. It follows from the table that many-atom
interactions do not change the leading power laws resulting from the summation of pairwise
interactions, but only modify the proportionality factors.

All dispersion forces in Tab. 3.1 are seen to be attractive for two polarisable objects
and repulsive for a polarisable object interacting with a magnetisable one. It can further
be noted that in the retarded limit the forces decrease more rapidly with increasing dis-
tance than might be expected from considering only the non-retarded limit. Finally, the
table shows that the retarded dispersion forces between polarisable/polarisable and polaris-
able/magnetisable objects follow the same power laws, while in the non-retarded limit the
forces between polarisable and magnetisable objects are weaker than those between polar-
isable objects by two powers in the object separation. This can be understood by regarding
the forces as being due to the electromagnetic field created by the first object interacting
with the second. While the electric and magnetic far fields created by an oscillating elec-
tric dipole display the same distance dependence, the electric near field (which can interact
with a second polarisable object) is stronger than the magnetic near field (which interacts
with a second magnetisable object) by one power in the object separation (giving rise to a

difference of two powers in second-order perturbation theory).



Chapter 4

Dynamical Casimir—Polder force

As shown in the previous chapter, time-independent perturbation theory can be used to
derive general expressions for the CP potential, which are particularly useful for studying a
variety of aspects related to CP forces on ground-state atoms. Nevertheless, the approach
leaves some questions unanswered. Firstly, it is known that atomic transitions are shifted
and broadened due to the presence of a nearby body, while the transitions entering the
perturbative CP potential are unshifted and have a zero line width. Secondly, for atoms
initially prepared in an excited state, spontaneous decay is expected to give rise to a dy-
namics of the CP force which is, of course, beyond the scope of a time-independent theory.
In particular, this holds for the Rabi oscillations expected to occur for strong atom-field
coupling.

To overcome these deficiencies, we will in this chapter present a genuinely dynamical
theory of the CP force. Starting from the operator Lorentz force, we express the CP force
in terms of the atomic and field variables [SB1, SB6, SB7, SB8|. For weak atom-field
coupling, these results are further evaluated by means of the Markov approximation and
the influence of the body-induced shifting and broadening of the atomic transitions on the
force, is studied in detail for the example of an excited atom placed near a half space
[SB1, SB6, SB7, SB8|. For strong atom-field coupling, we restrict our attention to a two-
level atom predominantly interacting with a single quasi-mode of the body-assisted field.
The reduced atom-field dynamics can be solved exactly, yielding explicit expressions for the
resonant strong-coupling CP force [SB1, SB16|, where brief contact is made with the force

obtained by means of the well-known dressed-state approach [SB16].

4.1 Lorentz force

A dynamical theory of the CP force can be developed by first calculating the total Lorentz
force acting on the atom as given by the Heisenberg equations of motion. The general result
for the Lorentz force thus derived, serves as a good basis for calculating the CP force which
is simply the special case of the Lorentz force for the body-assisted electromagnetic field

initially prepared in its ground state.

60
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4.1.1 Minimal coupling

As shown in Sec. 2.2.1, the Lorentz forces acting on the individual charged particles con-
stituting the atom can be given in the form of Eq. (2.80). Summing this equation over all

particles, one obtains
mAv'A;A = Zma%a = F (41)

aEA

[recall Eq. (2.56)], where the Lorentz force acting on the atom is given by

F- Z{qaé(ra) + ‘-’5‘* [7%@ x B(ry) — B(ry) xriaa} } (4.2)

acA
Upon substituting the expressions (2.74) for the total electric and induction fields, using the

fact that internal forces do not contribute to the net force due to pairwise cancellations,

anVgoA )per, = 0, (4.3)

a€cA

and recalling definitions (2.51) and (2.55), one obtains

F= /d | pa(r)E@) + g4(r)x B(r)|. (4.4)

Alternatively, the Lorentz force may be expressed in terms of atomic polarisation and mag-

netisation. This can be achieved by using relations (2.66)—(2.68), leading to

~

F=— / d&3r [V-PA(r)]E(r) v / &r By(r) x B(r)
+ /d% <VX{MA('P) +§[PA(7«)><%A —fi«AxPA(r)] }) xB(r). (4.5)

Using the rule a x (bx¢)=b(a-c) — c(a-b) as well as the identities V Py(r) = —V4 Py(r),
V M, (r)= —V4M4(r) [which are direct consequences of definitions (2.62) and (2.63)], one

can show that
. / &3y [V.PA<T)]E(7~) ~-V, [ / d&3r PA@»).E@)} + / &r Ba(r)x B(r),  (4.6)

/d% <V>< {MA(r) b2 [Batr) < — #ax Pa(r)] }) «B(r)
_ VA{ / @r [NLy(r) + By(r) x4 B(ﬂ} (@.7)

where we have partially integrated and employed Maxwell equations (2.37) and (2.35),
respectively. Substitution of these identities into Eq. (4.5) results in [SB6]

F= VA{/d3T Py(r)-E(r) + / d3r [MA(T) + Py(r) X%A} -B('r)}

+§t Pr Py(r)xB(r). (4.8)



Chapter 4. Dynamical Casimir—Polder force 62

After expanding Eq. (4.8) to leading order in the relative particle coordinates T, one finds

that the Lorentz force in long wave-length approximation is given by

« A A « A N dr. -
F = V3 |d-E(7) + 1iv-B(7a) + dx iy B(ia)| + = [dxB(iy)]. (4.9)

[recall Egs. (2.62)—(2.65)] where

A~ . A~ N «— .
+1dx [(m-VA)B(rﬁA) + B(ﬁA)<VA-ff~A)}, (4.10)
recall Eq. (2.34). For a non-magnetic atom and nonrelativistic centre-of-mass motion, we

may discard the contribution from magnetic interactions as well as the terms proportional
to -4 so that Eqs. (4.9) and (4.10) reduce to [SB6]

P {v [ Br)] + < [dxB(r)] } | (4.11)

4.1.2 Multipolar coupling

Within the framework of the multipolar coupling scheme, the Lorentz force may be cal-
culated in a similar way by summing Eq. (2.96) over all atomic constituents and using

definitions (2.62) and (2.91), leading to
maia = maiy = S =)+ [ & Pi(r)x B () (112)

acA
[recall that #, =74, Eq. (B.2) and hence also #, =1]. Substituting this into the Heisenberg

equation of motion (2.34), one finds
mA';;A = mA'f“f/l = Zma'ﬁl = F/, (413)
acA

where the Lorentz force now assumes the form

N 1T A d A A

F/: 7—171|:H7ﬁf4i| +a/d37’Pf;<T')XB/<T'). (414)
The different contributions to the first term in Eq. (4.14) can be evaluated by recalling

Eq. (2.86) as well as the commutation relations (2.58). Using the identity V;Pj(r) =

—V P}(r), one can show that

%{L/d?’rﬁ,f(r),ﬁg] = i/d?’rv[fz((r)]? —0, (4.15)

280 280

and by employing Eq. (2.91) as well as definitions (2.62) and (2.63), we derive

. 1 R A 2
%[Z e G R AU () ,p'A]

acA @

- VA{ / &3r [Mg(m + P(r) xéA} -B'(r)}. (4.16)
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Substituting Egs. (4.15) and (4.16) into Eq. (4.14), we find that within the multipolar
coupling scheme the Lorentz force reads [SB1, SB6]

= VA{ / &r Pl(r)-E'(r) + / &3r [M;l(r) + PA<T)X%A} .Bf(r)}

d A A
+ 3 d®r Py(r)x B'(r). (4.17)

As is obvious from Egs. (4.1) and (4.13), the expressions found for the Lorentz force in
minimal (4.8) and multipolar coupling schemes must agree: F' = F’. This can be verified

explicitly by using the transformation rules (B.1), (B.3) and (2.97) and noting that
. 2 . 2
v, / d&3r [PAJ‘('P)} _ / d%V[PAi(fr)] —0. (4.18)
In close analogy to the minimal-coupling case, the Lorentz force reduces to

d < B(5)] (4.19)

B = V[ d B/ (5) + 0 B () + d' <y B ()| + =

in the long wave-length approximation and simplifies further to [SB1, SB6, SB7, SB8|
P {V[ci'-E’(r)] + 8 [cifng(r)}} | (4.20)
)
for a non-magnetic atom and nonrelativistic centre-of-mass motion. Equations (4.11) and
(4.20) are a generalisation of the free-space result for the QED Lorentz force [175, 179
to the case of magnetoelectric bodies being present. According to Egs. (2.23) and (2.27),
they express the Lorentz force acting on the atom in terms of the dynamical variables of the
atom-field system in minimal and multipolar coupling, respectively. Explicit expressions for
the time-dependent force can be found by solving the (internal) atomic and field dynamics,
which will be done in the following. For simplicity, we will exclusively work within the
multipolar coupling scheme throughout the remainder of this chapter.!

Let us first address the dynamics of the body-assisted electromagnetic field. In the pres-
ence of an electric-dipole atom with nonrelativistic centre-of-mass motion, the Heisenberg
equations of motion (2.34) for the dynamical field variables are governed by the multipolar
Hamiltonian (2.86) [together with Eqs. (2.87), (2.88) and (2.94)] and by recalling defini-
tions (2.23)—(2.25) and making use of the commutation relations (2.21) and (2.22), one

obtains

frlr,w) =i H, fi(r,w)] = —iwfi(r,w) +ii7d G} (fa, r,w). (4.21)
The formal solution to this equation is given by

f)\(r,w, t) = f)\free('r'7wa t) + f)\source(ra w, t) (422)

!Note that the primes distinguishing the multipolar-coupling variables from the minimal-coupling ones
will be omitted for brevity.
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where
f)\free(ra wa t) = eiiW(titO)fA)\(ra w) (423)
and o
Freowee(r,0,) = / dr o= 0D (r). G2 (), 7, ] (4.24)

to
determine the free and source parts of the electromagnetic field and where ¢, denotes the

initial time. Upon substituting Eqs. (4.22)—(4.24) into Eq. (4.20) together with Eqs. (2.23)
and (2.27), using identity (2.26) and taking the average with respect to the body-assisted

field and the internal state of the atom, one finds that the mean force? is given by

F(t) = Fiee(t) + Fiouree(t), (4.25)

Fra) = Y [ " ao{9d)Gurrt ) it e

A=e,m

1 d

t [<ci(t) x [V x Gy(r,r',w)] fr(r',w)) e’iw(t’m)] } + C.c. (4.26)

=74 (t)
and

Fiource(t) = Figuree(t) + Figntee(t) (4.27)

source source

with the components

1 1/’1’0 o 2 t H t
Fo (1) ={= / dw w / dre wt=7)
™ 0 to

xV{d(t)-Im G[r,74(7), w] .a(T)>} +Cec., (4.28)
TZfA(t)
[e%s} t
Fae) = {2 [Tavw g [are
x{d(t)x (V xIm G[r, #4(7), w]) -d(T»} + C.c. (4.29)
’I‘=’f‘A(t)

being due to the source parts of the electric and the induction fields, respectively. Equa-
tions (4.25)—(4.29) can be used to determine the radiation force on an atom for arbitrary
atomic and field states. The CP force is obtained when the body-assisted field is initially

prepared in its ground state so that the density matrix of the system at initial time reads

o(to) = [{0})({0}[o(to), (4.30)

with & being the density matrix that defines the internal state of the atom. This obviously

implies that Fpe.(t) = 0 so that the CP force is given by

F<t) = Fsource(t)- (431)

2For a discussion of force fluctuations, see Ref. [113].
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4.2 Weak atom—field coupling

According to Eq. (4.31) together with Eqgs. (4.27)—(4.29), an explicit expression for the
dynamical CP force can be obtained by solving the internal dynamics of the atom which
is coupled to the body-assisted electromagnetic field. In this section, we assume that the
atom-field coupling is weak, which is typically the case if the resonances of the field do not
coincide with any of the atomic transitions or if the field spectrum is broad with respect to

the atomic line widths.

4.2.1 Markov approximation

In particular, we are interested in the dipole—dipole correlation function

(d(t)d(r)) szmndmmmn ) Ay (7)) (4.32)

[A = |m) (n], recall Eq. (2.88)] which appears in Eqs. (4.28) and (4.29). For weak atom-
field coupling, the Markov approximation can by used to considerably simplify the calcula-
tion, where in addition we assume that the internal atomic motion is fast with respect to
the centre-of-mass motion, so that the Born—Oppenheimer approximation applies (cf. the
discussion at the beginning of chapter 3).> Provided that the relevant atomic transition
frequencies are well separated from one another so that diagonal and off-diagonal density
matrix elements evolve independently, application of the quantum-regression theorem [189]

leads to (App. E)
<Amn (t)Am/n/ (T>> = 5nm/ <Amn/ (7'>>e{i®mn(r’4)7[Fm(TA)JrF"(TA)}ﬂ}(tiT) (433)

(t>7, m# n). Here,
Omn(T4) = Wimnn + 0w (14) — dwy, (14) (4.34)

are the atomic transition frequencies including the position-dependent energy-level shifts*

dwy (14) Zéw T4), (4.35)

o d
5wk(’l",4) = &’P/ #uﬂdnk-lm G( ('I"A,'I"A,w)'dkn

" h T4) — W

- _“_f; Z O @k (1|02, (14) - Re G [r, 14, Dt (14)] - i

Z/ Wkn ’I“A)g dnk'G(1)<rA7rAai£>'dkn7 (436)

wkn ’rA + 52

3Note that again there is no need to distinguish between the cases of quantum and classical centre-of-mass
motion, so that we drop the operator hat, 74 — 74.

4Note that the free-space Lamb shifts associated with G© [recall Eq. (3.16) and the remarks thereafter]
are thought of as being already included in the frequencies w;,,.- The second equality in Eq. (4.36) is
obtained via the procedure outlined above Eq. (3.18).
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which are due to the interaction of the atom with the body-assisted electromagnetic field,

and similarly,
Fn<rA) = Z FI:L<TA)7 (437)
k

2 - - -
FQ(TA) = % @[wnk(rA)]wzk(rA)dnk -Im G['I"A, Ta, wnk(rA)] dkn (438)

are the position-dependent level widths. Note that due to the appearance of the shifted
frequencies on the right hand side of Eq. (4.36), this equation determines the shift only
implicitly (cf. also Ref. [181]). The effect can be ignored for sufficiently small frequency
shifts, in which case the position-dependent energy shifts hdw,, (74) reduce to those obtained
by leading-order perturbation theory, recall Eqgs. (3.39)—(3.43).

In order to calculate the CP force, we substitute our results (4.32) and (4.33) into
Eq. (4.31) together with Eqgs. (4.27)—(4.29) and evaluate the time integrals with the aid of
the Born-Oppenheimer and Markov approximations by putting r4(7)~74(¢) and (A,.,,(7))
~ e @mn(r)(t=T) (A (1)) and letting the lower integration limit tend to ty — —oo. As a

result, the CP force can be written in the form

F(ra,t) = 0um(t) Foun(ra) (4.39)

where the atomic density matrix elements oy, (t) = (n|6(t)|m) = (A, (t)) solve the intra-

atomic master equation and the associated force components read

Fyn(ra) = Fpp (1) + Foiit(ra), (4.40)

o0 Vd,,.-Im G(l)(r, 'f‘A,w)'dlm}
F (ry) = 10 / dw w? . . A 4 C.c., 4.41
n(74) T Z 0 W — Ong(ra) —i[Tr(ra) + Th(ra)] /2 (4.41)

k
dpi X [V xIm GV (7, 74, w)| - dien,
dal (.74, )] - }T:’“A + C.c.

mag Ta) = @ h Wwa)mn Ta '
4.42

Note that the bulk part G of the Green tensor does not contribute to the force [recall
the discussion below Eq. (3.16)]. By applying the procedure outlined above Eq. (3.18), the
force components F,,,(r4) can be rewritten as [SB1, SB6, SB7, SB§|

Fon(ra) = Frp(ra) + Foi(ra) + Fie® (ra) + Fune*(ra), (4.43)
with the electric/magnetic, off-resonant /resonant force components being given by

—% h df §2Vtr{ [amn(rA, lg) + amn(rAa _16)] ' G(l) (TA’ r, 15)}}

27 Jo T=Ta’

(4.44)

Fy(ra) = o Y Oonk(ra)) . (r4) Vi GV 1,14, Qi (ra)]-din |, + Coc., (4.45)
k

Fri(ra) =
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h, o (:)mn r . ajmn T .
Fzertn) = 2 [Taceaf |2 ol i) - P ol (i)
x [V x G (r, T, i€)] } , (4.46)

Fpi® (ra) = pto ), Ok (14)]Gpan (1) Ly (1)
k
Xy X {V x GV [r, 74, Qi (ra)]-din )+ Coc. (4.47)

=T/

[(tr T); = Tj]. Here, we have introduced the complex atomic transition frequencies

Qnni(T4) = Onk(1a) + [T (122) + Th(74)]/2 (4.48)

and the generalised polarisability tensor

mkdkn dkndmk
O (T4, W + . 4.49
4 h Z [ mnk ’rA _Q:Lmk( A) +w ( )

Under the assumptions made, the temporal evolution of the intra-atomic density matrix

elements entering Eq. (4.39) is governed by the equations (App. E)

Fan(t) = —Tn(ra)oun(t) + Y Tr(ra)ow(t), (4.50)
k
O (1) = li0mn )= L)+ Ln(ma)l/24 =) - (40) - for m # n. (4.51)

Equation (4.39) together with Eqs. (4.34)—(4.38) as well as Eqs. (4.43)—(4.49) determines
the dynamical CP force acting on an atom prepared in an arbitrary initial state o (¢y) and
placed within an arbitrary arrangement of magnetoelectric bodies under the condition of
weak atom-field coupling. It is seen that the force is a superposition of different force compo-
nents F,,,(r4) which are weighted by the respective time-dependent atomic density matrix
elements o,,,(t). As expected, the force is influenced by the body-induced shifts (4.35) and
widths (4.37) of the atomic transitions which sensitively depend on the atomic position.

Let us discuss the general result in more detail, considering first the situation studied
in chapter 3 where an atom is initially prepared in an energy eigenstate |n), i.e., (ty) =
|n)(n|. For times that are short with respect to the relevant decay rate I',,(r4), the CP force

in this case is given by
F(ra,t) ~ F(ra,tg) = Fuu(ra) for (t —to)Tph(ra) < 1. (4.52)

Using the fact that Fh28°" (ry) = Fm2e (1) = 0 [cf. Eqs. (4.46) and (4.47)] and assuming

real dipole matrix elements so that the symmetry of the Green tensor (2.17) allows for
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the replacement VG (r, 14, w)|pep, — %VG(I)(r,r,w)\T:m, the relevant diagonal force

component can be written as
Fon(ra) = Fy(ra) + Fp,(1a), (4.53)

ftto md{@V&ﬂhLmhuJQAkam@u¢4@]GuKnrJQ}Lﬂ%, (4.54)

dr J,
F,,(ra) = % > Ok (1) (12) Vi GV, 7, Qi (v4)] - i
k

E(ra) = —

,+Ce  (455)

T="T

When neglecting the level shifts and widths, Eqgs. (4.52)-(4.55) obviously reduce to the
results found in chapter 3, Eq. (3.5) together with Egs. (3.40)—(3.42). The static perturbative
CP force is hence seen to be an approximation to the dynamical CP force that is valid on
sufficiently short time scales and ignores the influence of shifts and widths. In particular,
these effects introduce an additional position dependence, so that the dynamical CP force
cannot be derived from a potential in the usual way.

Let us return to the temporal evolution of the CP force. When the initial atomic state |n)
is not the ground state, then spontaneous decay as described by the balance equations (4.50)
leads to a populating of the lower lying states |k) (k <n). As time proceeds, the state of
the atom thus evolves into an incoherent superposition of energy eigenstates and the force
is given by a superposition of the respective diagonal force components which are all of the
form of Eq. (4.53) together with Eqs. (4.54) and (4.55). In the long-time limit, the atom

will always decay to its ground state, with the CP force reducing to the ground-state force:
F(’I“A,t—>OO) = FOO(T'A)- (456)

The off-diagonal density matrix elements may become relevant if the atom is initially
prepared in a coherent superposition of energy eigenstates. According to Eq. (4.51), these
matrix elements are transient and they lead to oscillating force components. Recalling
Eqs. (4.43)—(4.47), we see that these force components are due to the influence of both
electric and induction fields; they hence display a vector structure that is entirely different

from the (purely electric) diagonal force components.

4.2.2 Application: Half space

In order to illustrate the effect of the body-induced level shifting and broadening on the
force, let us consider an two-level atom prepared in its upper state which is placed in front
of a dielectric half space of permittivity e(w), where we restrict our attention to the non-
retarded limit [n(0)z4 < ¢/wmax|- Recalling Egs. (3.107)—(3.112), one may easily verify that

the relevant Green tensor for this arrangement reads

(1) C2 8(&)) —1
GV (r,rw)~ ot 2(w) 11 (e.e, +eye, +2e.e,) for |w|z/c < 1. (4.57)
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Figure 4.1: The resonant part of the CP force on a two-level atom in the upper state placed in
front of a dielectric half space is shown as a function of the unperturbed transition frequency
wig (solid line) (wpe/wre =0.75, Ve /wre =0.01, w3 [d3, + (do1-€.)?]/37heoc® =1077, 24/ Are
= 0.0075, At = 2wc/wre). For comparison, the result without shifting and broadening of
the atomic transition (dashed lines) and the separate effects of shifting (dotted lines) and
broadening (dash-dotted lines), are also shown.

After substituting Eq. (4.57) into Eqgs. (4.34)—(4.38), it is found that in the non-retarded

limit, the shift and width of the transition frequency are given by

d%, + (dpi-e.)? |elwip + dw(za)]]? — 1
5 _; s __dy : 4.58
w(za) wi2a) — wo(za) 32mheozy,  |efwio + dw(za)] + 1|27 ( )
2 2
F(24) = Ty (2) = di, + (dgi-e.)* Imefwig+ ow(za)] (4.59)

8mheozd,  |e[wio + dw(za)] + 1)2
where the transition-dipole matrix element has been assumed to be real and the (small)
off-resonant contribution to the frequency shift has been omitted.

With these preparations at hand, let us consider the component of the CP force that is
relevant when the atom is prepared in the upper state, starting with the dominant resonant
contribution. Substituting Eq. (4.57) into Eq. (4.55), one obtains [SB1, SB6, SB7, SB§]

3[d; + (doi-e.)?] |e[Q10(za)]]* — 1 .
327Th€02’j44 |€[9110(ZA)] + 1|2 z

FY,(z4) = Fjy(za)e: = — (4.60)
where, according to Eq. (4.48),

QllO(ZA) = @10(2,4) + IF(ZA)/Q = wio + 5W(ZA) + IF(ZA)/Q (461)
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Figure 4.2: The off-resonant part of the CP force on a two-level atom in the upper state
placed in front of a dielectric half space is shown as a function of the unperturbed transi-
tion frequency (solid line), the parameters being the same as in Fig. 4.1. For comparison,
the result without shifting and broadening of the atomic transition is also shown (dashed
lines). The inset displays the difference between the force with and without consideration of
broadening (solid lines), where the same difference is displayed when the shifting is ignored
(dashed lines).

In particular, when using the single-resonance Drude-Lorentz model (3.141) for the permit-

tivity of the half space, one has

2
wPe

elno(za)] =1+ w3, — 0% (za) — i[T(24) + Ye]@10(24)

for Ves F<ZA) <K Wre, (462)

demonstrating that the absorption parameter 7. of the half-space medium is replaced with
the total absorption parameter, i.e., the sum of 7, and the decay rate I'(z4) of the atom.
Figure 4.1 displays F},(z4) [Eq. (4.60) together with Eqgs. (3.141), (4.58), (4.59) and (4.61)]
as a function of the unperturbed transition frequency wio. It is seen that in the vicinity of
the (surface-plasmon) frequency ws = /w2, +w2_/2, an enhanced force is observed which
is attractive/repulsive for wyg S ws — a result already known from perturbation theory [152].
The figure, however, shows that due to the body-induced level shifting and broadening, the
absolute value of the force can be noticeably reduced. Interestingly, the positions of the

extrema of the force remain nearly unchanged, because level shifting and broadening give
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rise to competing effects that almost cancel.
The off-resonant contribution to the force (4.54) can also be calculated with the aid of

the Green tensor (4.57), where after recalling Eq. (3.23) one finds [SB1, SB6, SB7, SB§]

Fii(z4) = Fi(20)e: =

3[dg, + (dor-e.)?] [*, e(if) —1 wio(24)
32m2heozy /0 & e(i€) +1 @fy(za) + [§ +T(24)/2)

0p(2a) + 62 4+ T2(24) /4 .

Wp(za) + 1€ —T(za)/2)2

One sees that the off-resonant component of the force is only weakly influenced by level

X

(4.63)

broadening [the leading-order dependence being O(I'?)|, which is in agreement with the
physical requirement that the virtual emission and absorption processes governing the off-
resonant component should be only weakly affected by decay-induced broadening. Formally,
the absence of a linear-order term O(I) is due to the fact that the atomic polarisability enters
the off-resonant force components (4.54) only in the combination o, (7 4, 1§) + @, (74, —i&).
The effects of level shifting and broadening are illustrated in Fig. 4.2, where F(z4)
|Egs. (4.63) together with Eqgs. (3.141), (4.58) and (4.59)] is displayed as a function of
the unperturbed transition frequency wig. It is seen that the frequency shifting has the
effect of raising/lowering the force for wiy < ws, whereas the effect of broadening is not
visible in the curves. Only by plotting the difference between the results with and without
broadening, a slight reduction of the force becomes visible in the vicinity of wg, where I' is
largest. Note that our results for the off-resonant CP force hold similarly for an atom in the
lower state, because for a two-level atom we have Fyy(z4) = F§(24) = —F (24).

The results of this section and the preceding Sec. 4.2.1 have well illustrated the validity
limits of the time-independent perturbative approach to the CP force. In Sec. 4.2.1, we have
seen that due to the decay-induced dynamics of the CP force, the static results are valid only
for atoms initially prepared in their ground state (or, for sufficiently short times, also for
atoms in metastable states). The results of this section further stress that the perturbative
result should not be applied to excited atoms in general, because the arising resonant force
components can be strongly affected by level broadening, which is not included in the

perturbative approach.

4.3 Strong atom-field coupling

As seen in the previous section, an initially excited atom that is weakly coupled to the body-
assisted electromagnetic field will undergo irreversible spontaneous decay where the excita-
tion is permanently lost from the atom. Qualitatively different phenomena may arise when

the near-resonant interaction of an atom with a narrow quasi-mode of the body-assisted



Chapter 4. Dynamical Casimir—Polder force 72

electromagnetic field leads to strong atom-field coupling — which is typically realised when
an excited atom is placed within a cavity or another resonator-like geometry. Strong cou-
pling is ususally accompanied by Rabi oscillations, i.e., a periodic exchange of the excitation

between the atom and the field.

4.3.1 Atom-field interaction

The atom—field dynamics for strong coupling cannot be described within the Markov approx-
imation. Instead, one may use the two-level model for the atom and treat the interaction
in rotating-wave approximation [189], since strong coupling typically arises via the resonant
interaction of a single atomic transition with a single quasi-mode of the field. Combining
Eqgs. (2.23)(2.25) and (2.94), one finds that for sufficiently slow centre-of-mass motion, the

interaction Hamiltonian can be written in the form [SB16]
fap=h / dw g(ra, w)a(ra, @) 1)(0] + Hec. (4.64)
0

where the atom—field coupling strength is given by

g(r,w) = \/::—% widyo-Im G(7r,r,w)-do , (4.65)

and a(r,w) and af(r,w) are photon-like annihilation and creation operators, which are

defined according to

. 1 .
a(r,w) = e o) Z /d?’r' dio-G(r, 7", w)- fr(r',w). (4.66)
’ A=e,m
The commutation relations
!/
a(r,w),a(r,w')] =0, a(r,w),al(r', )] = g(r,r',) S(w— o' 4.67
afr.).i(r. ) atrew)alr )] =0T sy e
with
g(r,r' w) = %uﬂdlo-lm G(r,r",w)-dn (4.68)

immediately follow from those of f(r,w) and f](r,w) [Egs. (2.21) and (2.22)] upon using
the identity (2.26). In combination with Eq. (2.95), the definition (4.66) shows that a(r,w)

is indeed an annihilation operator:
a(r,w)|{0}) =0 Vr,w; (4.69)

while a'(r,w) can be used to construct single-excitation states of the body-assisted electro-

magnetic field:
11(r,w)) = a'(r,w)[{0}). (4.70)
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According to Eq. (4.64), the relevant Hilbert space of singly excited atom-field states is
spanned by states of the form |1)|{0}) and |0)|1(74,w)), so it is useful for the following to
determine the action of the total Hamiltonian (2.86) [together with Egs. (2.87), (2.88) and
(4.64)] on these states. Making use of the commutation relations (2.22), (2.21) and (4.67),

one calculates

H[1){0}) = E1|1)[{0}) + h/ooo dw g(ra, w)|0)[1(ra, w)), (4.71)
H|0)[1(ra,w)) = (Bo + hw)|0)[1(r4,w)) + Ag(ra, )| 1) {O}). (4.72)

In the following, we will assume that the part of the field excitation spectrum which may
give rise to strong atom—field coupling can be assigned to a single Lorentzian quasi-mode v
of mid-frequency w, and width 7, /2 < w,:

Vo /4

2
4.
w_wy)2+73/4+g (7,w), (4.73)

g ('I",W) =49 (rawu)(

where the residual part of the field spectrum ¢’?(r,w) is only weakly coupled to the atom.

The single-excitation state associated with the quasi-mode v may be introduced as

_ [T dw NG
=3 [ e i ) (@74

it is normalised to unity, as can be easily verified by recalling Eq. (4.70) [together with
Eqgs. (4.65), (4.67) and (4.68)] and noting that

> dw 21
— 2L form,/2 < w,. 4.75
/0 (W—w)?2+2/4 v oT /2K w (4.75)

4.3.2 Rabi dynamics

With the preparations of the previous section, we can now study the CP force for strong
atom-field coupling. Starting again from the Lorentz force (4.20), the dynamical CP force
for the atom—field system being in state [1)(t)) can be written as

Firat) = {wov[dBm] s} + {5 [woldxsmlve] )

= F°l(ry, t) + F™8(ry, 1) (4.76)

=T/

where we work again within the Born-Oppenheimer approximation and where the force has
been separated into its electric and magnetic parts. Since the treatment of electric and
magnetic parts of the force is completely analogous, we will only present the calculation
of the electric part in detail while the magnetic part is derived in App. F. Upon using
Eqgs. (2.23) and (4.66), we may write

F(ry,t) = — /OOO dw (W (1) [Vg(r,w)a(r,w)1){0]],_, [¥(t)) + C.c. (4.77)
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for a two-level atom treated within rotating-wave approximation. We assume that the
system is initially prepared in a superposition (i) of excited atom with ground-state field

and (ii) ground-state atom with (singly) excited quasi-mode:
[¥(tg)) = 10) = cos@|1)|{0}) +sin@|0)|1,), €€ [0,n]; (4.78)
hence [¢)(t)) can be given in the form

(6)) = b (B {0}) + / " dw do(w, H]0)]1(ra, ) (4.79)

with initial conditions

Y sin 6

21 (W —w)? +2/4
recall Eq. (4.74). Substituting Eq. (4.79) into Eq. (4.77), recalling definition (4.70) and

Y1(to) = cos b, Yo(w, to) = (4.80)

using the commutation relations (4.67), we obtain

[Vg(r, T4, w)]
g(’rAa w)

F(ri 1) = —h / " dw P=rA e ()b (w, 1) + Coc. (4.81)
0

In order to proceed, we must solve the Schrodinger equation

(1) = A0, (482)

which by virtue of Eqs. (4.71) and (4.72) is equivalent to the system of equations
n(®) = =B /R)n(®) =i [ dw g, ol ), (4.83)
Jo(,) = —1(Eo/h+ w)o(w,£) — ig(ra, )t (1), (4.84)

Equation (4.84) together with the initial condition (4.80) is formally solved by

Eo/ﬁri’w)(tfto)

"Lpo(w, t) =

T sin ¢ eii( . /t —i(Eo/h+w)(t—T)
— —ig(7ra,w dre 5o (7). (4.85)
2m \/(w —w,)? +72/4 ( ) to

Using this result, the force (4.81) can be expressed entirely in terms of v (t):
Fl(r, 1) = —mhly /()] [V g, 1a,0,)],_ sim el 103 /20-0 e 1

00 t
+ih/ dw [Vg(r,rA,w)LrA/ dr e Fo/Mr) =) e (1)a), (1) 4+ Clc. (4.86)
0 to

with Qr(r4) = \/ 277,9%(r4,w,) denoting the vacuum Rabi frequency. Note that the first
term of Eq. (4.86) has been obtained by using the single-resonance form (4.73) of the field
spectrum ¢?(r,w) [hereby neglecting the residual field continuum ¢"*(r,w)| and an analo-

eous relation for g(r, r’, w) and by evaluating the frequency integral by means of the relation
g [Y g g

o0 e lwr o0r .
dw = D emwrmwlel/2 for 4 /2 < W, 4.87
[ oty Wl (4:87)
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In complete analogy, by substituting Eq. (4.85) into Eq. (4.83), one obtains
Un (t) = —i(Ey/h)ys (t) — %iQR(rA) sin @ el 71 (Fo/htwn )=y /2)(tto)

o0 t
—/ dwgz(rA,w)/ dr e 1(Bo/At)E=T)es (7). (4.88)
0

to
Using Eq. (4.73) and treating the (weakly coupled) residual field spectrum ¢’?(r, w) according
to the Markov approximation, one can then show that (App. E)

¢1 (t) — e[—iEl/ﬁ—i(Sw’I('r‘A)—F’I(TA)/Z](t—to)¢1(t)7 (489)
where ¢, () is the solution to the differential equation
t) + {1A(ra) + [y — T1(ra)]/2} 01 () + § Q& (ra)én (1) = (4.90)

together with the initial conditions

¢1 (to) = COS (9, gbl(to) = —% iQR(’I"A) sin 6. (491)
Here,
d10 -Im G(l) ('I"A, Ta, w) 'd01 Q%{('I"A) A('I"A)
0 77 — + 4.92
“r(ra) / Wio(ra) —w 4 A(ra) +72/4 (492)
and
200 ¢ -, 2 - QR (1a) Vv
[(ra) = 70 [%0("71)] do-Im G ["“A, "“Aawi(J("“A)] “dyp — R4 A2(14) + 2 /4 (4.93)

are the shift’ and width of the upper level associated with the residual field continuum;
G10(1a)=[F\ (1) — Eo] / hi= W', +0w, (14) is the respective shifted atomic transition frequency;
and A(ry) = w, — &y(ra) is the (shifted) resonator-atom detuning. Writing the general

solution to the second-order differential equation (4.90) in the form
G1(t) = cy (1)) e ()= (ma)(i=to), (4.94)

we find that

Qi(ra) = —5{iA(ra) + [ —T'(ra)]/2} F %\/{iA(7°A)+[%—1“1("?1)]/2}2 — Qf(ra) (4.95)

where the initial conditions (4.91) imply
Q+(14) cos 0 + 3iQg(14) sin 0
Qx(ra) — Qx(ra)

5Note that the free-space Lamb shift contribution to the level shift has again been absorbed in the bare
transition frequency wig by making the replacement G +— G M,

cx(ra) = (4.96)
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After substitution of Eqgs. (4.89) and (4.94), the electric part of the CP force, Eq. (4.86),
takes the explicit form [SB16]

F(ra,t) = =mhly, /Qr(ra)] [Vy(r,7a,0,)],_, sinfq(ra,t —to)

+ h/ dw [Vyg(r, ra,w)] _ s(ra,w,t —to) + C.c. (4.97)
0

where

g(ra, t) = T~ DuAT ) /21 [Ci(r L)X o ()2 ()t (4.98)

and
‘2 el T (ra)+Q7L (ra)+Q24 (ra)lt _ o{il@] (ra)—w] T (ra) /2+Q7 (ra)}t
w — Wyg(ra) + 11 (ra) /2 — iQ4 (14)
el T+ (ra)+Q-(ra)lt _ o{il@10(ra)—w]-T7(14)/2+9Q7 (ra) }t
w — uNJiO(’I"A) + 1F’1 ('I"A)/Q —10_ ('I"A)
el (ra)+Q (ra)+Q4 (ra)lt _ {i[@1o(ra)—w]—T1(ra)/2+Q7 (ra)}t
w—hy(ra) + 11 (ra) /2 — 124 (74)
) el (ra)+9Q% (ra)+Q-(ra)]t _ {i[019(ra)—w]-T"1(ra)/24Q7 (ra)}t
| o Bl(ra) + I () 2 — 0 (r2)
have been defined. As shown in App. F, the respective magnetic part of the force is given
by

S(TAv W, t) = ‘CJr(rA)

—+ Ci(TA)C_ ('I"A)

+ L (ra)cs(ra)

+ fe(ra)

(4.99)

1low, Y, . d
Fmag('r'A, t) = 5;(702/) d10 X [V x Im G('r, T4, wy) 'd01j|'r':’l‘A sin 6 E Q(TA, t— t())
. o q
_ o dwwdipx |VxIm G(r,rq,w)-do1|. = — s(ra,w,t —ty) +C.c. (4.100
™ Jo r=ra dt

Equations (4.97) and (4.100) determine the (resonant part of the) dynamical CP force on a
two-level atom for arbitrary strength of the atom-field coupling, with the system initially
being prepared in state |6), Eq. (4.78). In the following, we consider the two limiting cases
of weak and strong atom-field coupling.

Weak atom—field coupling is realised if the quasi-mode v is very broad, 7, > 2Qg(74),
or far detuned from the atomic transition frequency, |A(r4)|>> 2Q%(74)/7,- In both cases,
the first term under the square root in Eq. (4.95) is much larger than the second one and a
Taylor expansion yields

—iA(ra) = [y — T (ra)]/2
Qelma) =V i0k(ra)  A(ra) %) (4.101)
4 AP(ra)+73/4 8  Aru)+rp/4
For the system initially being prepared in the state |1)|{0}) [i.e., § =0, recall Eq. (4.78)],

the coefficients (4.96) approximate to c;(r4) =0, c_(r4) =1, so Eq. (4.89) [together with
Eq. (4.94)] reduces to

wl (t) — e[—iEl/ﬁ,—i&u/l(TA)—FE(TA)/Q-&-Qf(’I‘A)}(t—to) — e[—iEl/ﬁ,—i&ul(’I‘A)—Fl(TA)/Q](t—to)' (4102)
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Here, dwi(7r4) and T'i(r4) are the shift (4.35) and width (4.37) of the upper level associ-
ated with the total field spectrum (4.73), including both the quasi-mode v and the residual
continuum. Note that the absence of the lower-level shift is due to the rotating-wave approx-
imation. In order to find the CP force in the weak-coupling limit, we substitute Eq. (4.102)
into Eq. (4.86). Evaluating the time integral in the spirit of the Markov approximation by
putting |1 (7)]* — [¢1(t)]? and letting the lower integration limit tend to —oo, one arrives
at [SB1, SB16]

F(ry,t) = F(ry,t) = e 0 By (1)) (4.103)

where

Fii(ra) = Ho /OO dw w? [Vdio-Im GV (r, 74, w)-don]
™ Jo w — (:)10(’)",4) — 1F1(7°A)/2

~ Monl()(rA) {le() . G(l) [’)", T4, Qll()(TA)] ~d01}T:rA —+ C.c. (4104)

=" 4 C.c.

with Qy10(ra) = @10(ra) +11(74)/2. Note that the magnetic part of the force does not
contribute under the conditions considered, F™(r4,t)=0 (App. F). As expected, we have
thus recovered the (two-level case of the) result (4.39) derived in Sec. 4.2, by assuming that
the body-assisted field is initially prepared in its ground state and the atom-field coupling
is sufficiently weak. In addition, the calculation has explicitly shown that weak—atom field
coupling is realised (and the Markov approximation is applicable) if all atomic transitions
are sufficiently far detuned from the field resonances, or if those (quasi-)modes of the field
which interact near-resonantly with the atom are sufficiently broad, recall the two conditions
above Eq. (4.101).

Next, we consider the case of strong atom-field coupling, which is realised if the quasi-
mode v is both sufficiently narrow, v, < 2Qg(r4) and near-resonant with the atomic tran-
sition, |A(ra)] < 2Q%(74)/7,. In this case, the real part of the square root in Eq. (4.95)

becomes negligible, so that we have
Qi('f‘A) = —% iA(TA)—l-[’}/V—F/l(TA)]/Q} F % iQ('I"A), (4105)

with

Qra) = \/Q%{(T'A) + A%(ry) — [%—F’l(rA)]Q/éL (4.106)
being the shifted Rabi frequency; and the coefficients (4.96) reduce to

{Qra) F A(ra) £i[v, =T (ra)]/2} cosb n Qr(7r4)sind
QQ(’I"A) 2Q("°A) .

ct(ry) = (4.107)
Substituting these results into Eq. (4.89) [together with Eq. (4.94)], one obtains

U1 (t) — o (ra)(t—t0)/2 |:C+(T'A)eiiE'F(rA)(titO)/hC, (TA)e*iE—(TA)(t*to)/ﬁ (4.108)
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where

L, Q% (r y .,
v(ra) = % B Ré(z - A2 (m)7+ 75/4 + 1 [wlo("“A)}Qdm'Im G [1a, 74, @(7a)] -d1o

/2 for |[A(ra)| <€ v,/2,
LY Al </ -
Li(ra)/2 for 7,/2 < |A(ra)] < 292 (74) /7,

is the total damping rate [which has been found by using Eq. (4.93)] and
Ei(’l"A) = %[EO + E1 + héwi(’rA) + hwy] + % FLQ('I"A) (4110)

are the (approximate) eigenenergies of the system, with

77/ le-Im G(l)(TA7TA7w)'d01 +QQR(7°A) A(TA)

)
“i(ra) Dio(ra) —w 4 A2(ry) +2/4

_ QR (ra)A(ra) /vy for [A(ra)] < 7,/2, (4.111)

B (1) for /2 < |A(r4)] < 204 (r4)/7

being the level shift associated with the residual field spectrum [recall Eq. (4.92)]. To
find the electric part of the CP force for strong coupling, we substitute Eq. (4.105) into
Eqgs. (4.97)-(4.99) and evaluate the frequency integral by means of Eq. (4.73), where we
neglect the contribution from the residual field continuum ¢?(r,w). Using relations that

are analogous to Eqgs. (4.75) and (4.87), one finds [SB16]
ey to) | e ()P ¢ (ra) ey ()T
A(ra) = Qra) =il — Ti(ra)] /2

le_(14)]? + & (1a)c_ (r4)e2ra)(tto0)
A(ra) + Qra) — i[y, — T (ra)] /2

where the respective magnetic part of the force is given in App. F. To make the spatial

Fel<’l"A, f}) = —

why, [Vg(r, T, w,,)] +C.c. (4.112)

=T/

and temporal dependence of the force more explicit, we discuss some special cases in the
following.

Again, we first consider the case of the system initially being prepared in state |1)[{0})
(i.e., # =0), where the coefficients (4.107) in Eq. (4.112) assume a simpler form. For real
dipole matrix elements, the symmetry property (2.17) implies that Vg(r, 74, w,)|p=p, is
real; in addition, one may make the replacement

wy(rrwy) 20
wy, —w+1v,/2 h

since we have assumed that the interaction is dominated by the single quasi-mode v, recall

2d10 G('r,r/,w)dm, (4113)

Eq. (4.73). Following these steps, the electric force (4.112) can be written in the form
[SB1, SB16]

F 1y, t) = 2e77)0) 6in2 Q1)) (t — t0) /2]C(14) Fi1(74), (4.114)
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where Fy1(r4) is given by Eq. (4.104) with Q},,(r4)=®]y(74)+1"(r4)/2 in place of Qq19(74)
and the factor C'(r4) reads

A*(ra) — [y =T (1a)/2]%/4

CUa) = Rotma) — o Ty (ra) /224 + ()
Wl A
Ay A< s
A2(r,) 2 '
A2<TA)+SZR<TA) for v, /2 <|A(ra)| K2Q%(T4) /70

A principal difference between the weak and strong-coupling CP forces is the fact that for
strong coupling the magnetic part of force (4.100) does not vanish, in general [see also
Eq. (4.124) below|. Even the electric part of the CP force, however, differs from the weak-
coupling force (4.103) [together with Eq. (4.104)] in several respects. Firstly, the shift
and width of the excited atomic level relevant for determining Fj;(r4) are now only those
associated with the residual field continuum, in contrast to the full shift and width appearing
in the weak-coupling force. Secondly, the strength of the strong-coupling force is modified
with respect to the weak-coupling result by the factor C(74). Thirdly, and most strikingly,
the dynamics of the force is not given by an exponential decay, but by damped oscillations
with a (shifted) Rabi frequency €(r4) and a damping rate y(rs). Note that only the
magnitude and not the sign of the force, is oscillating. As seen from Eq. (4.109), the
damping is dominated by irreversible decay of the field excitation for small detuning, while
irreversible spontaneous decay of the atomic excitation is the dominant loss mechanism for
larger detuning, where in both limits the losses are characterised by one half the respective
damping rates, 7, and I'i(74), respectively. This can easily be understood from the fact
that in the strong coupling limit the states affected by these losses, |0)|1,) and |1)|{0}), are
both occupied to one half on average.

We now return to the case of an arbitrary initial state |f), Eq. (4.78) and assume that
v, < 2Qg(14), which is often true for strong atom—field coupling. In this case, terms of the

form [y, — I'j(r4)]/2 can be neglected, hence the shifted Rabi frequency (4.106) reduces to

Qra) = /D () + A2(ra) (4.116)
In the same approximation, the coefficients (4.107) can be written as
¢y (ra) = cos[0.(ra)] cos[d — O.(ra)], c_(rq) = —sin[0.(ra)]sin[f — O.(r4)]  (4.117)
where we have introduced the coupling angle 6.(r4) via

tan[20.(r4)] = —Qr(ra)/A(ra), 6O.(r4) € (0,7/2) (4.118)
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and used the identities [190]

1 cos(a)  for a € (0,7/2), 1
——= ——— =sin(a) for a € (0,7).
1+ tan*() —cos(a) for a € (7/2,7), 1+ cot*(a)

(4.119)

Accordingly, after using the additional relations

Q
R(T'A) _ cot QC('I"A) (4.120)
A(ra) £ Q(ra) —tan0.(r4)

|which follow from Eqs. (4.116), (4.118) and (4.119)], the electric part of the CP force (4.112)
simplifies to [SB16]

Fel(’rA, t) = e~ (ra)(t—to) (cos{Q[Q—HC(rA)]} + cot[20.(r4)] Sin{Q[Q—QC('PA)]}

% cos[Q(ra) (t — to)])F+(rA) (4.121)

with

: (4.122)

=T/

) = ~LAV O} (r) + A%(ry)

where we have assumed real dipole matrix elements, so that the symmetry property of the

Green tensor (2.17), together with definitions (4.65) and (4.68) implies

7T’7qu('n Ta, wu)|'r:rA == Tr’YVg(’rAa wu)VA g(rA7 wl/) - % Q (TA)VA QR(TA)

B Q ’l"A V\/QQ +A2(TA)}
B 2sin[26,.(r4)]

TSTA(4.123)

Equations (4.121) and (4.122) can be used to study the electric part of the dynamical
resonant force on an atom placed within an arbitrary resonator under the conditions of
sufficiently strong atom—field coupling [so that the inequalities above Egs. (4.105) and (4.116)
hold|, with the system initially being prepared in state |0), Eq. (4.78). Whereas the spatial
dependence of the force strongly depends on the particular geometry of the system [which
enters via the Green tensor, recall Eq. (4.65)], the temporal behaviour is quite generic and
can be investigated regardless of the specific resonator in which the atom is placed. From
Eq. (4.121), one sees that the force is always exponentially damped with a damping rate
v(r4) and that it contains a non-oscillating part and a component that oscillates with the
shifted Rabi frequency Q(r4). The relative strengths of the constant and oscillating parts
depend on both the coupling angle .(r4) and the inital state of the system |f). This is
illustrated in Fig. 4.3, where the time dependence of the force is displayed for various initial
states |0) and fixed coupling angle 260.(r4) = 37/8. We first observe that the curves may

be grouped in pairs of curves differing only by their sign; each of these pairs corresponds to
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(b2) (a)
7 (iw)% (by)
(a4)

(as) (by)

Fel(ra,t)-Fy(ra)/F3(ra)

Q(TA)t

Figure 4.3: The time dependence of the electric part of the resonant CP force for strong
atom—field coupling is displayed for different values of 0, i.e., 20 = 20.(r4) (a1), 20.(ra)+m/2
(a2), 20.(ra)+7 (ag), 20.(r4)+37/2 (a4),0 (by), /2 (ba), 7 (bs), 37/2 (b,), with parameters
20.(rs) = 37/8 and y(r4) =0.05Q(r4). The angles 26 for the various curves are indicated
in the small polar diagram.

values of # which differ by 2A0 =x. The existence of such pairs is an obvious consequence
of Eq. (4.121). The figure further reveals that there are two extremes of behaviour; while
for the initial states with 20 = 260.(74), 26.(r4)+ 7, the force shows no oscillations and is
purely exponentially damped as a function of time [curves (a;) and (a3)|, the initial states
20 = 20.(ra)+7/2, 20.(ra)+37/2 lead to oscillations of maximal amplitude around a zero
mean value [curves (ay) and (a4)|. For other values of 0, the temporal behaviour of the force
is a combination of oscillating and non-oscillating components |curves (b;)—(bs)|. Note that
in particular for 26 =0 which corresponds to the initial state |1)|{0}), oscillating and non-
oscillating parts combine in such a way that the sign of the force remains invariant for all
times [curve (by)] — in agreement with Eq. (4.114).

As shown in App. F, the magnetic part of the resonant CP force for strong atom—field
coupling can be given as

sin{2[0—0.(r4)] }
sin[20.(74)]

Fs (g, 1) = e (ra)(t=to) cos[Q(ra)(t — to)]

X Mowy’)/,,dlo X [V X G(l) (’l", T4, wy) 'd()l} (4124)

r=ry’

Comparing this with the electric part (4.121), we see that the magnetic part has a different

vector structure. Its order of magnitude is roughly €(74)/w, times that of the electric
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part of the force, indicating that it might become relevant in the context of the recently
considered superstrong coupling regime [191] (where Q(7r4)/w, might be comparable to, or
even greater then unity).® In contrast to the electric part, F™®(ry,t) is always purely
oscillating around a zero mean value. In particular, it vanishes for those initial states

|0=0.(r4)) and |#=0.(r4)+7/2) for which the electric part of the force is non-oscillating.

4.3.3 Dressed states

The results of the previous section have shown that for certain initial states |0 = 0.(r4))
and |0 =0.(ra)+7/2), the strong-coupling CP force is quasi-stationary with the only time
dependence being exponential damping due to irreversible losses of the excitation from the
strongly coupled system of atom and quasi-mode. By neglecting these losses, one may
develop an intuitive static approach to the force which is valid on time scales that are short
with respect to the typical inverse loss rate v~ !(r4). As demonstrated in the following, the
states |0 =0.(r4)) and |0 =0.(r4)+7/2), commonly known as dressed states, turn out to
be the approximate eigenstates of the system, and the CP force can be derived from the
position-dependent part of the associated eigenenergies — in straightforward generalisation
of the approach employed in chapter 3.

We start by returning to Eq. (4.71) which in conjunction with Eq. (4.73) states that an
initially excited atom is coupled to a single quasi-mode v plus a continuum of additional field
excitations. As seen in the previous section, the coupling to the residual field continuum
leads to irreversible spontaneous decay and a (small) shift of the atomic transition frequency.
For sufficiently short times, we may neglect both effects by discarding the residual field

continuum so that Eq. (4.71) can be written in the form
A0} = B0} + hy/m 2 g(ra, ) 0)]1), (4.125)

recall definition (4.74). Similarly, we neglect the coupling of the quasi-mode v to the residual

field continuum by combining Eqgs. (4.71) and (4.74) and neglecting the width ~,,
H10)[1,) = (o + w, ) |0)|1) + A/ /2 g(72a, 0,)[1)[{0}). (4.126)

As seen in the previous section, 7, is associated with damping of the quasi-mode so that
Eq. (4.126) may again be justified for sufficiently short times. We have thus constructed a
reduced, two-dimensional Hilbert space (spanned by the states |1)|{0}) and |0)|1,)) which

is invariant under H within the approximations made. On this subspace, H obviously takes

6Note, however, that the scenario considered in Ref. [191] involves quite a large number of atoms.
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the Jaynes-Cummings form [123]

h
Hyp = B Iy + 5

O QR(T‘A)

o) 2 (4.127)

(I: two-dimensional unit matrix) where A =w, — wyq is the (unshifted) resonator-atom

detuning. Straightforward diagonalisation of H yields the two eigenenergies
Ey = 3(Eo+Ei+hw,) £ 5 AQ(ra)  with Q(ra) = \/ Q& (14) + A2 (4.128)
and the corresponding eigenstates (the dressed states)

) = |0=0c(14)) = cos[bc(ra)] [1)[{0}) + sin[fc(r4)] [0}]10), (4.129)

|0=0c(ra)+7/2) = —sin[fc(ra)] [1)[{0}) + cos[be(ra)] [0)[1,)

where the (unshifted) coupling angle 0.(74) is given by
tan[20.(ra)] = —Qr(ra)/A, 0.(ra) € (0,7/2) (4.130)

and where the identities (4.119) have been used.

In generalisation of the perturbative approach employed in chapter 3, we now identify
the CP potential with the position-dependent part of the atom-field coupling energy, recall
Eqgs. (3.5) and (3.6). From Eq. (4.128), we hence conclude that for the system being prepared
in state |[+) or |—), respectively, the CP potential is given by [SB16]

Ur(ra) = £ hQ(ry) (4.131)
and the associated CP force reads
Fi('l"A) = —VAUi(’I"A). (4132)

We have thus obtained the strong-coupling CP force in a very simple way by finding the
eigenstates (dressed states) and eigenenergies of the two-dimensional Hamiltonian (4.127).
Comparison with Eqgs. (4.121) and (4.122) confirms that the dynamical CP force indeed
reduces to the static result (4.132) when the system is initially prepared in one of the
dressed states; and if one neglects losses [y(r4) — 0] as well as the frequency shift associated
with the residual field continuum [dw](r4) — 0 and hence A(r4)— A]. Note that the dressed-
state approach has first been applied to an atom placed within an idealised standing-wave
resonator [119, 124].

By means of the dressed-state picture, an intuitive insight to the spatial dependence of

the strong-coupling CP force can be given as follows: One first recalls that according to
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Eq. (2.32) together with Egs. (4.65), (4.73) and (4.75), the vacuum fluctuations associated
with the quasi-mode v are given by hugy,w?Im[tr G(r,7,w,)] o Qr(r). One then sees
that for a system in state |+), the atom is repelled from regions of high vacuum fluctuations
(i.e., the antinodes of the quasi-mode) while for a system in state |—), the atom is attracted

towards regions of high vacuum fluctuations.



Chapter 5

Summary and outlook

In this work, macroscopic quantum electrodynamics (QED) in linear media has been em-
ployed to develop a unified theory of the Casimir—Polder (CP) force experienced by a single
atom when placed within an arbitrary environment of dispersing and absorbing magneto-
electric bodies. The theory has been demonstrated to cover a broad variety of aspects,
including inter alia the dependence of the force on the atomic and body properties; its
modification due to local-field effects; its microscopic orgin; and its dynamical behaviour for
both weak and strong atom-field coupling.

To provide for a sufficiently general framework, we have first extended an existing quan-
tisation scheme for the electromagnetic field in the presence of linearly responding electric
bodies to the magnetoelectric case, proceeding in the following steps: One starts from the
macroscopic Maxwell equations in the presence of dispersing and absorbing magnetoelectric
media, including the noise polarisation and magnetisation associated with the absorptive
medium properties. These equations are solved by expressing the electromagnetic field
in terms of the noise sources with the aid of the classical Green tensor. Explicit quanti-
sation is then performed by relating the noise terms to the Bosonic dynamical variables
of the system, whose dynamics in the absence of free charges or currents is determined
by a harmonic-oscillator Hamiltonian. Finally, atom-field interactions are introduced in a
canonical way according to the minimal or multipolar coupling schemes. As verified, the
macroscopic QED hence obtained fulfills all necessary requirements of an exact quantum
theory for the electromagnetic field; in particular, the field obeys the correct equal-time
commutation relations and the Heisenberg equations of motion generate the Maxwell equa-
tions for the body-assisted field as well as the Newton equations for the charged particles
constituting the atom. Note that while the response of the present bodies has been assumed
to be linear, local and isotropic, the formalism can be extended to account for anisotropic,
non-local and even non-linear medium properties. In addition, it is an almost trivial step
to include the interaction of more than one atom with the body-assisted field.

Based on the presented macroscopic QED, a theory of CP forces has been developed
in two major stages. In the first stage, we have chosen a static approach to the CP force
by employing the well-known idea of identifying the CP potential of an atom in an energy
eigenstate with the position-dependent atom-field coupling energy. Calculating this poten-

tial within leading-order perturbation theory, we have obtained general formulae which are
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valid for atoms in energy eigestates that are placed within arbitrary environments of magne-
toelectric bodies. For ground-state atoms, the CP potential is a purely off-resonant, integral
effect that can be expressed in terms of the atomic polarisability and the scattering Green
tensor associated with the bodies, both taken at imaginary frequencies. For excited atoms,
resonant potential components occur which are associated with possible transitions to lower
atomic levels and depend of the respective atomic transition frequencies and dipole matrix
elements on the one hand and the real part of the scattering Green tensor on the other hand.
Note that all information on the position, shape and magnetoelectric properties of the bod-
ies is contained in the Green tensor. We have explicitly verified the formal equivalence of
minimal and multipolar coupling schemes. Our general formulae are the natural generali-
sation of the (geometry-dependent) normal-mode results; in addition, our calculation may
be regarded as the justification of similar findings obtained on the basis of linear-response
theory. Note in this context that the fluctuation—dissipation theorem which is a central as-
sumption of linear-response theory, is explicitly valid in our quantisation scheme. By using
more general realisations of macroscopic QED, one could extend our results to the case of
anisotropic or non-local response of the bodies where non-local properties are expected to
play an important role when atoms are placed in the close vicinity of metal bodies. The
influence of finite field temperature could be included by replacing ground-state by thermal
averages at the beginning of the perturbative calculations. Such an extension may become
imperative in the near future in view of the improved experimental sensitivity. Furthermore,
finite temperature is known to lead to interesting effects in non-equilibrium situations of
different bodies being held at different temperatures — a scenario that is well-accessible by
means of our approach.

The perturbative results have been used to discuss a variety of issues that have never
been addressed so far. By employing the real-cavity model to account for local-field effects,
we have extended the range of applicability of our theory to atoms embedded in bodies. It
has been found that the local-field effects manifest themselves via a frequency-dependent
factor, which exclusively depends on the electric properties of the atom’s local environment.
In addition, we have made use of the Born expansion of the Green tensor to develop an
approximation scheme for calculating CP potentials of atoms placed near weakly magne-
todielectric bodies. Such potentials have been shown to be obtainable from volume integrals
over central forces which are repulsive/attractive for dielectric/magnetic bodies. The mi-
croscopic origin of the CP potential has been illuminated by combining the Born expansion
with the Clausius-Mosotti law, leading to a proof that under very general conditions the

CP interaction of a single ground-state atom with a dielectric body is due to its van der
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Waals (vdW) interactions with the body atoms. The body-assisted N-atom vdW potentials
occuring in this relation are a generalisation of the well-known free-space potentials.

The use of the general formulae for the static CP potential has been illustrated by ap-
plying them to ground-state atoms interacting with a variety of planar systems, extending
prominent results for purely electric systems to the magnetoelectric case. It has been found
that an infinitely permeable plate gives rise to a CP potential that is exactly opposite to
the well-known attractive potential associated with a perfectly conducting plate, where the
different sign can be understood from the opposite reflexion behaviours of electric and mag-
netic dipoles. For more realistic medium properties, the situation becomes more involved. It
turns out that the attractive potential components associated with the permittivity always
dominate for asymptotically small atom-plate separations, while sufficiently large perme-
abilities can lead to the formation of a repulsive potential wall at some intermediate distance.
For a planar cavity, a trapping potential well may thus be realised. Note that the possible
repulsive CP forces associated with magnetic bodies which have been predicted for the first
time within the context of the current work, have not yet been verified experimentally. A
promising setup for their observation would be quantum reflexion of atoms from surfaces
of Mumetal where a theoretical understanding of the scattering process requires the cal-
culation of atomic reflexion amplitudes from the potentials presented here. Repulsive CP
force components would open interesting possibilities of reducing or even eliminating the
disturbing effect of CP forces in modern applications.

A comparison of dispersion forces between objects of different natures and shapes has
revealed a lot of common features. In particular, forces between two polarisable objects
are attractive while those between polarisable and magnetisable objects, are repulsive. Fur-
thermore, for asymptotically small /large object separations, the distance dependence of the
force is given by simple asymptotic power laws. As these observations are essentially due to
the common microscopic origin of all dispersion forces, one might heuristically extend them
beyond the specific examples considered; however, it would be more satisfying to prove their
validity on basis of general properties of the Green tensor.

In the second major stage of developing a theory of the CP force, the dynamics of the
force has been addressed for the first time. Abandoning the potential approach, the calcula-
tions were based on the operator Lorentz force appearing in the Heisenberg equations for the
atomic centre-of-mass motion. It has been found that the Lorentz force in electric-dipole ap-
proximation can be expressed in a simple way in terms of the body-assisted electromagnetic
field and the electric dipole moment of the atom, with minimal and multipolar coupling

schemes leading to identical results. The CP force then follows by taking expectation values



Chapter 5. Summary and outlook 88

with respect to the field (initially prepared in its ground state) and the internal atomic
state. To obtain explicit expressions for the time-dependent CP force, the coupled atom—
field dynamics must be solved where we have distinguished between the cases of weak and
strong atom-field coupling.

For weak atom-field coupling, we have used the Markov approximation to show that
the CP force can be written as a superposition of force components that are weighted by
the respective internal atomic density-matrix elements. For an atom initially prepared in
an energy eigenstate, only the diagonal density matrix elements come into play, whose
dynamics is governed by spontaneous decay to the lower energy levels. The initial excited-
state force thus decays to the ground-state one in an intuitive way. The spatial structure
of the associated force components is a generalisation of the perturbative result, where now
the relevant atomic transitions exhibit a body-assisted shifting and broadening. Due to the
introduced additional position dependence, the CP force cannot be written as a potential
force in the usual way. The off-diagonal density-matrix elements become relevant when the
atom is initially prepared in a coherent superposition of energy eigenstates in which case,
oscillating force components appear which display an entirely new vector structure. By
considering the example of an atom placed in the vicinity of a dielectric half space that is
initially prepared in an excited energy eigenstate, we have shown that the dominant resonant
force components can be noticeably reduced by the combined effect of level shifting and
broadening, while the off-resonant components are only weakly effected by the broadening.
In particular, it was found that the level broadening combines with the material damping
constant to a new total absorption coefficient. In future, it would be interesting to investigate
in detail the spatial and temporal dependence of the weak-coupling force on excited atoms
placed within more complex geometries.

The strong atom-field coupling that may arise if an initially excited atom is placed
in a resonator-like environment, is due to the near-resonant interaction of a single atomic
transition with a narrow quasi-mode of the electromagnetic field — a phenomenon that can
best be studied by employing the model of a two-level atom predominantly interacting with
this mode and working within the rotating-wave approximation. By separating the field
spectrum into a strongly coupled Lorentzian mode and a weakly coupled residual continuum,
we have obtained a detailed picture of the strongly coupled dynamics that arises when the
atom-mode system initially carries a single excitation. It has been seen that the residual
field continuum gives rise to shifts and broadenings of the atomic transition in close analogy
to the weak-coupling case, while the resonant exchange of energy between the atom and

the mode manifests in (damped) Rabi oscillations. Here, the amplitude and mean value of
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the oscillating force delicately depends on the initial distribution of the excitation between
the atom and the mode. For certain initial states the force does not oscillate, and it has
been shown that these quasi-stationary states correspond to the well-known dressed states.
The associated CP force at initial time reduces to the dressed-state result for the CP force,
when the influence of the residual field spectrum is neglected; so the atom is attracted to,
or repelled from the nodes of the resonator mode, depending on the chosen dressed state. A
detailed analysis of the spatial structure of the strong-coupling force acting on atoms placed
within specific resonators would be an important task for future investigations.

In conclusion, the developed unified theory of CP forces is at the very edge of both
requirements and possibilities associated with current experimental techniques; hence it
forms a solid basis for addressing a wide range of questions that arise in the context of
modern applications such as atomic manipulation and control. In particular, the predictions
of our macroscopic theory apply as long as atom—body separations remain sufficiently large
with respect to the typical length scales associated with the microscopic structure of the
bodies. In addition to the possible further investigations and extensions mentioned above,
directions of future research could include studying the CP interaction of excited atoms
with bodies exhibiting left-handed properties or adapting the theory to scenarios such as
evanescent-wave mirrors, where an interplay of the CP force with interactions due to excited

fields needs to be taken into account.
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Appendix A

Commutators and equations of motion

In this appendix, the commutators and equations of motion stated in chapter 2 are derived.
After calculating the relevant field commutators, the results are used to obtain the equations
of motion for both the body-assisted field and the charged particles interacting with this
field.

A.1 Calculation of some field commutators

All field commutators given in Sec. 2.1 can be derived from the commutators of E and A.
Use of definition (2.23) together with the basic commutations relations (2.21) and (2.22)

leads to

[Ei(r,w),Ej(r/,w/)] —0= [Ej(r,w),zj.(r',w')}, (A.1)

A~ ~

B,(r,w), £, )|

)

 hpow?

Im Gj(r, 7", w)d(w —w') = — [Ej(r,w),Ej(r’, w’)] (A.2)

T
where we have used identity (2.26) in order to derive Eq. (A.2) and where the right hand
side equalities follow via
A NS
[OT,PT} - —[O,P} . (A.3)
Similarly, by using definition (2.44), we find

[Ai(r,w),flj(r/,w/)] — 0= [Aj(r,@,gj(r',w')], (A.4)

[Ai(r,w), A}(rgw/)} _ % -G (r, 7, w)6(w — o) = — [Aj(r,w), Aj('r/,w/)], (A.5)

recall Eq. (2.45). The commutation relations (2.28) and (2.47) immediately follow from
these results upon expressing the fields in terms of their frequency components according
to Eq. (2.1) and recalling definitions (2.40) and (2.46).

The non-trivial commutator of E and A can be found by combining Eqs. (2.21)(2.23),
(2.26), (2.44) and (A.3), yielding

[Ei(r,w),Aj(’r/,u/)] —0= [Ej(r,w),A;(r’,u/)], (A.6)
[Ei(r,w>,A}(r',wf)] - ;foig Im G5 (r, v, w)d(w — ') = [Ej(r,@,;j(r',w')} (A7)

for the frequency components, so application of Eq. (2.1) results in

[Ei(r), Aj(r')] _ 2ih / T o % m GL(r,r'\w). (A.8)

o Jo c?

102



Appendix A. Commutators and equations of motion 103

In order to evaluate the frequency integral, we write Im z = (z — 2*)/(2i) and make use of

Eq. (2.16), leading to

2
c 00

/ dwglmGL(r,r’,w):—%P/ dw%Gl(r,r’,w)
0 _ c
1 s s

w? 1 w? |
= — lim d¢— G~ (r,r",w) — - lim d¢ — G~(r,r'w) (A.9)
¢ ¢

lwl—0 /o wl—00 S
(P: principal value). The second line in Eq. (A.9) was obtained by transforming the principal
value integral into an integral along an infinitely small half circle around the origin plus an
integral along an infinitely large half circle via contour integral techniques (where we have
introduced polar coordinates w = |w|e'?, dw=iwd¢), which is always possible since the Green
tensor is analytic in the upper half of the complex frequency plane [170, SB3]. The integral
along the small half circle vanishes since [SB3]
2 2

lim G'(r,r',w) = lim l LG(r,r',w) =10 (A.10)

lw|—0 2 |w|—0 2

whereas the integral along the large half circle can be calculated by means of [SB3|

2

Jim 2 G(r,r,w) = —8(r — 1), (A.11)
w|—o0 C
hence
/ dw%lm G (r,r' w)= / dw%lmlG(r,r’,w) = g&L(r — 7). (A.12)
0 0

Substitution of this result into Eq. (A.8) leads to

[Ei(r), flj(r')} = iheg o (r — 1) (A.13)

ij

which upon recalling definitions Eq. (2.40) and (2.46), respectively, results in the commu-
tation relations (2.29) and (2.48). Furthermore, the vacuum fluctuations of the electric
field (2.32) immediately follow from the commutator (A.2) together with Eq. (2.1) upon
noting that E(r,w)|{0}) = 0.

Next, we derive some commutation relations that are needed for the evaluation of the
Heisenberg equations of motion in App. A.2. Using definitions (2.43) and (2.44), recalling
that D(r) is given according to Egs. (2.6), (2.8), (2.19) and (2.23) and employing the basic
commutation relations (2.21) and (2.22) as well as identity (2.26), one finds that

[Qi(r,w),Aj(r',w')} —0= [Q}(nw),A;(r’,wf)], (A.14)
{Qi(r,w),gj(r',w')} - f—; Tm [2(r, ) G- (r, 7, )] (w — ')

= [Q}L(r,w),Aj(’r/,w/)], (A.15)



Appendix A. Commutators and equations of motion 104

[A(r,w),@(r',w')] —0-= [Aw,w),g(r',w')}, (A.16)
[A(r,w),g(r',w')] - ;?0“‘;2 / mLGl(r, s, w)-dsd(w — ')

- [AT(r,w), g(r',wf)], (A.17)
[Q(r,w),@(r',w')] —0-= [Qw,w),g(r',w')}, (A.18)
[Q(r,w),g(r',w')] - —%2 TT Im[2(r, )G (r, 5,w)]-ds (w — ')

_ [Qw,w),g(r',w')] (A.19)

Upon using Eq. (2.1), Egs. (A.18) and (A.19) imply that

[b(r),ga(r')} —0, (A.20)

while we proceed with Eqgs. (A.14)-(A.17) in a similar way as given below Eq. (A.8). Using

the properties £*(r,w) =¢(r, —w*) and lim|,|_o e(r,w) =1, we find
[DZ(T) = —P/ dw e(r,w)G(r, 7, w) = ihdg; (r — '), (A.21)

[A(r), @(r')} = —77 C)()dw = /TT/ LGl(r,s,w)-ds=0 (A.22)

TTEQ

where the last equality follows from Eq. (A.11) and the property

/d3s ot(r—s)dl(s—r)=0. (A.23)

A.2 Derivation of Maxwell and Newton equations

We first demonstrate the validity of the Maxwell equations in the absence of free charges
and currents as given in Sec. 2.1. As seen from Eq. (2.40) and Eq. (2.5), respectively, both
B(r) and D(r) can be written as the curl of a vector field, so Maxwell equations (2.35) and
(2.36) are trivially fulfilled. The dynamic Maxwell equations (2.37) and (2.38) follow from
Hamiltonian (2.33) which according the commutation relations (2.21) and (2.22) generates

the Heisenberg equation of motion

A

Falr,w) =i ! [HF f,\(r,w)} — —iwfr(r,w). (A.24)
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Together with Egs. (2.1), (2.4) and (2.5), this implies
B(r) =in™! [ﬁF,B(T)] = — /OOO dwiwB(r,w) + H.c.
= — /00 dw Vx E(r,w)+He. = -V xE(r), (A.25)
0
D(r) =in* [ﬁp,f)(fr)] = — /OOO dwiwD(r,w) + H.c.
= / TV x H(r,w)+He = VxH(r). (A.26)
0

Next, we turn to the Maxwell equations in the presence of an atom (Sec. 2.2.1). Maxwell
equation (2.76) follows trivially from the corresponding Eq. (2.35) via Eq. (2.74), while
Eq. (2.75) shows that Eq. (2.36) together with Eq. (2.53) implies Maxwell equation (2.77).
Similarly, the dynamic Maxwell equation (2.78) follows from the corresponding Eq. (2.37)
because the atom does not contribute, Vx V@4 (r)= 0. The only non-trivial change with
respect to the Maxwell equations in the absence of free charges and currents, occurs in the

second dynamical Maxwell equation (2.79). Combining Eqs. (2.34) and (2.75), we now have

D(r) =ih ' [Hp, D(r)] +ih ™ [Hap, D(r)] —ih ™ [Ha, 20V Pa(r)] =ik [Har, eV @a(r)].
(A.27)
Recalling the interaction Hamiltonian (2.73), the commutation relations (A.20) and (A.21)
imply that
ih ! [Hap, D)) = =Y 2 [po — g A(#0)] -6 (r — #0) = —4 A28
ih™! [Har, D(r)] = [Po = @ A(a)] 07 (r = Pa) = —u(r) (A.28)
acAd @
where we have used Egs. (2.55) and (2.81). With the atomic Hamiltonian being given by
Eq. (2.50), use of definition (2.52) as well as the commutation relations (2.49), results in

—ih ! [Ha,e0Va(r)] = =) {ﬂ-all(r — 7o) + 68l (r — 7,)- Pa : (A.29)

2my, 2my,

where we have employed Eq. (2.42); and similarly, with the interaction Hamiltonian (2.73)

one may obtain

—ih~ [HAF,étOVgoA Z G A o) 0l(r —7,), (A.30)
ozeA
so that
—ip [FIA,&tOngA(r)] - ih_l[ﬁAF,étOngA(r)] = —jx(r). (A.31)

Substituting Eqs. (A.26), (A.28) and (A.31) into Eq. (A.27) and recalling Eq. (2.75), one
arrives at Maxwell equation (2.79).
The Newton equation is verified by considering the Heisenberg equations of motion for

the charged particles. Hence, by using Eqgs. (2.50) and (2.73) together with the commutation
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relations (2.49), the Heisenberg equations of motion (2.34) for the particle coordinates take

the form of Eq. (2.81) which leads to

MaTo = 107" [Ha, o) + i [Hap, Pa) — ih" [Hr, quA(Fa)] — 107" [Ha, g A(Fa)]
—in! [[:IAFv QaA(ﬁa)] - (A32)

Using definitions (2.50) and (2.73) as well as the commutation relations (2.49), one may

easily find
ih ' [Ha, Do) = —0.VPa(Pa), (A.33)
ih_l [IA{AFaﬁa] - an”('f'a) + o I:VA(,’Q&)] ,75.0” (A34)
i a4 A (7)) =~ {po- [VA(F)] + [VAG)] " pa}, (A35)
2
—ih [Hap, goA(70)] = % A(7,)- [VA(F,)] (A.36)

where we have employed Egs. (2.43) and (2.81) in order to derive Eq. (A.34) and where
Eq. (A.36) is based on Eq. (A.22). Equations (A.34)-(A.36) can be combined by using
Eq. (2.81) as well as the rule ax(bxc)=b(a-c) — ¢(a-b) and recalling Eq. (2.40), leading to

1 [VAF)] 70— 2 {po [VAG)] + [VAF)] Do} + L A7) [VA(r.)]

mea Mg

- ‘-’5‘* [é«axB(rf&) — B(#) xéa]. (A.37)

The remaining third term on the right hand side of Eq. (A.32) follows trivially from (A.24)
[recall Eq. (2.44)], yielding

—ih [ Hi, ¢uA(Pa)] = @B+ (fa). (A.38)

Substituting Eqs. (A.33)—(A.38) into Eq. (A.32) and recalling the definitions (2.74), we
finally arrive at Eq. (2.80).



Appendix B

Power—Zienau—Woolley transformation

In this appendix, the Power—Zienau—Woolley transformation is used to derive the multipolar
Hamiltonian (2.86) given in Sec. 2.2.2. We first calculate the transformed variables. From
Eqgs. (2.83) and (2.84) one can conclude that the following quantities remain unchanged,
because they commute with both 7, [and hence with Py, recall Eq. (2.62)] and A [recall
Eqgs. (2.40), (2.47) and (A.22)]:

A~ A ~ ~

B'(r)=B(r), A(r)=A(r), §(r)=¢(r), (B.1)

'f'; = Ta, ﬁ%(r) = ﬁA<r)> @A(T') = ¢A<r>7 "“ix = T4, %oz = %047 (BQ)
Pi(r)=Py(r), Mj(r)=DMu(r), OL(r)=0,r), E,(r)=Eq(r). (B.3)

The transformed electric field can be found by combining Eqs. (2.83) and (2.84) and re-
calling the commutation relation (A.13), resulting in Eq. (2.97). Similarly, upon recalling
definition (2.62), the commutation relations (2.58)—(2.60) lead to

= Po — Z%(aﬁ——)/ do A(#4 + o7)

0

BeEA
/d37,z Q,@/ do |:0-5a,8 + (1 - U) ma} A('f'> ($5V)(5(T’ — ’f'A — O'%Ig)
ma
BeA
mea ~ EN S/ A
/d3r2q5/ do [aéaﬁ +(1—o0) mJé(r . — 0'7’5) T3 x B(T)
BeA
— P — quA(7,) — / &r 2, (r) x B(r) (B.A)

where we have used the rule ax(bxec)=b(a-c) —c(a-b) and where the last equality follows by
partially integrating with respect to ¢ and exploiting the fact that the atom is neutral, with
E, being defined as in Eq. (2.91). Note that upon using Egs. (2.34) and (2.86), Eq. (B.4)
leads to Eq. (2.96).

With these preparations at hand, the minimal-coupling Hamiltonian (2.72) can be ex-
pressed in terms of the transformed variables. Upon recalling definition (2.23) and the

identities (2.26) and (A.12), the transformation rule (2.85) implies

Z/d3/ dw hwf(r, w)- falr,w) = Z/d3/ dw hw £} (r, w)- falr, w)

A=e,m A=e,m

- / &r P (r)- B (r) + —— / d%[ﬁﬁ(ﬂ]i (B.5)

280
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and similarly Egs. (B.1) and (B.2) result in

5 [ Eroameam = o= [ @[l (B.6)
[ pare == [ @ Blw)Br) (B.7)

where we have used the identity (2.53), partially integrated, and recalled Egs. (2.43) and
(2.69). Substituting Eqgs. (B.4)—(B.7) into Eq. (2.72) and noting that integrals over mixed
scalar products of longitudinal and transverse vector fields vanish, we arrive at the multipo-

lar-coupling Hamiltonian (2.86).



Appendix C

Green tensor for the real-cavity model

In this appendix, we present a proof of Eq. (3.46) (given in Sec. 3.3) which relates the
scattering Green tensors Gfgg(rA,rA,w) and G(l)(rA,rA,w) for an atom placed inside a
host body with and without taking into account the local-field correction by means of
the real-cavity model. We begin with the case of an atom embedded in a homogeneous host
body in which case the permittivities ),.(7, w), (7, w) and permeabilities fioc (7, w), p(r, w)
belonging to Gioc(T4, T4, w) and G(ra, r4,w) are illustrated in Figs. C.1(a) and (b).

We first recall from Egs. (2.15) and (3.16) that Gl(ig(m,m,w) determines the electric
field originated by a source at 4 that reaches the same point r4 after being scattered at
the surfaces of inhomogeneity. In the following, we distinguish three classes of scattering
processes where class (i) includes only (multiple) scattering at the inner surface of the cavity;
class (ii) subsumes processes involving transmission to the outside of the cavity, (multiple)
reflexion at the body surface and retransmission into the cavity (without scattering at the
cavity surface from the outside); and class (iii) accounts for all remaining processes (where
backscattering at the cavity surface from the outside occurs at least once). Simple examples
of processes belonging to the three classes are sketched in Fig. C.1(a).

Processes of type (i) do not depend on the outer boundaries of the host body, so they

can be characterised by considering the simplified arrangement

1 if |7 — 74| < Reay,
Ecav(T,w) = (C.1)

ealw) if |r —7ra| > Reay
of a cavity embedded in an infinitely extended homogeneous body as depicted in Fig. C.1(c).
All class (i) processes are hence contained in the corresponding scattering Green tensor G g)v,
which reads [192, SB3, SB15]
w [3ea—1) ¢ 9 (5ua—1)—3e4—1] ¢
6me | 2ea+1 W3RZ,, 5(2e4 + 1)? W Rcay
G
(QEA + 1)2

Next, we determine the contribution from class (ii) processes which involve transmission

Gg)v(TAa T4, w) -

~1| }1+ Otwhansa). (€2

to the cavity exterior. In an infinitely extended body, the field transmitted to a point r
outside the cavity would be given by G, (7,74, w) [Fig. C.1(c)]- It can be shown that

[SB11, SB15]
36,4

— e 11 Gine(7,74,w) + O(WRay /) (C.3)

GC&V<T7 T4, w)
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(a) (b)

Figure C.1: Schematic illustration of the permittivities and permeabilities corresponding
to (a) Gioc(Ta,Ta,w), (b) G(r4,74,w), (¢) Geay(Ta, 74, w) and (d) Gine(ra, 74, w); the dot
indicates the position of the guest atom r4. Examples of scattering processes of types (i),
(ii) and (iii) are also sketched.

where Giy¢(T, 74, w) is the Green tensor for an infinitely extended homogeneous body without
the cavity, ey, f(7r,w) =ca(w) as depicted in Fig. C.1(d). In other words, the electric field
transmitted through the cavity surface to a point outside the cavity is equal to the field that
would be transmitted to the same point in the absence of the cavity, multiplied by a global

factor. By means of the general symmetry property (2.17), we also have

3
Gew (T4, 7,0) = %jﬁ Gin(Ta,7,w0) + O(WRcay /), (C.4)

i.e., the electric field transmitted through the cavity surface from an arbitrary point outside
the cavity is also equal to the corresponding result in the absence of the cavity, multiplied
by the same factor. For a finite body, the electric field transmitted to the exterior of the
cavity will be (multiply) reflected from the body’s outer surface and retransmitted into the
cavity, eventually giving rise to a field at r4. Without the cavity, processes of this kind are
taken into account by replacing the infinite-body Green tensor Gj, [Fig. C.1(d)] with its
finite-body counterpart G [Fig. C.1(b)]. Combining this observation with Eqgs. (C.3) and
(C.4) and taking advantage of the linearity of the differential equation (2.14), we conclude
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that the contribution from the class (ii) processes can be described by

2
S G (ry, 14, w) + O(WRe /). (C.5)
2e4+1

Finally, we consider processes of type (iii), which involve at least one scattering event at

the cavity surface from the outside. Single scattering at the cavity surface can be charac-

terised by G\

cav

that [192, SB11, SB15]

(r,r",w) [Fig. C.1(c)| with both = and 7’ outside the cavity. One can show

GL).(r, 7, w) = O[(WRear/0)*] (C.6)

so that the contribution of the class (iii) processes is of order O[(wR../c)?] and hence
negligible for sufficiently small R.,,. Combining this with Egs. (C.2) and (C.5), we arrive
at Eq. (3.46).

The arguments given above can be extended to inhomogeneous bodies in a straightfor-
ward way. If the condition (3.45) is satisfied, one can divide such a body into a more or less
small homogeneous part containing the cavity plus an inhomogeneous rest. Equations (C.3),
(C.4) and (C.6) then still describe the propagation of the electric field inside the homoge-
neous part of the body and the effect of the inhomogeneous part can be taken into account
by the scattering at the (fictitious) surface dividing the two parts. Consequently, we again

find that Eq. (3.46) holds.



Appendix D

Born expansion of the Green tensor

First, the Born expansion of the Green tensor is given to arbitrary order in x and ¢ (see
Sec. 3.4) and the result is used to derive general forms of the CP potential in retarded and
non-retarded limits given in Sec. 3.1. Thereafter, we will provide explicit expressions for
the contributions to the ground-state CP potential that are quadratic in x and infer the

free-space three-atom vdW potential from these contributions.

D.1 Expansion to arbitrary order

Provided that Egs. (3.52) and (3.53) hold, one can make iterative use of the Dyson equa-
tion (3.54) to derive the Born expansion of the Green tensor [SB1, SB10]

G(r,7"\w)=G(r,r w)+ Z AgG(r,r' w) (D.1)
K=1

where

H/d s fr, (85, )]

J=1

X G())\l ('I", S, w)- G)\l)\Q(Sl, 8o, w)- . -G)\Ko(SK, 'I"/, w) (D2)

AgG(r,r w) = [
.. )\K e,m

denotes the contribution that is of order K in yx, ¢ and the definitions

fe(r,w) =x(r,w),  fm(r,w) =—((r,w) (D-3)

and
Goo(r, 7, w) = G(r, 7, w) % Goolr, 7, w) = Zf(r,r',w), (D.4)
Gom(r,1,w) = G(r,r",w)x V', Goolr,r,w) = VX G(r, 7, w), (D.5)
G..(r,r,w) = %E(r,’r',w)%, G, ):;E(r,r’,w)xV', (D.6)
Gre(r, 7, w) = VxG(r,r, w) %, Gom(r, 7 W)= Vxﬁ(r,r’,w)x%’, (D.7)

have been introduced. In particular, within linear order in y, ¢, Egs. (D.1)—(D.7) reduce to
Eqgs. (3.55) and (3.56).
The full Born expansion can be used to derive the general retarded and non-retarded

limits of the CP potential presented at the end of Sec. 3.1. To that end, we set (7, w)
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=1+ x(r,w) and k(r,w) =1 — {(r,w) so that (r,w) =1, f(r,w) =1, recall Eq. (3.52),
and consequently the unperturbed Green tensor G entering the Born expansion is just the
free-space Green tensor Gge.. After substituting Egs. (D.1) and (D.2) into Eq. (3.20), the

resonant part of the CP potential can be written in the form

U (14) ZAKU (T4), (D.8)

K
AgUr(rs) = —,qu@ (Wnk) nkdnk Z Re{ H/d3sJ f,\‘,(sJ,wnk)]
J=1

Al A =e,m
‘Gox, (T4, 81, wnk) - -Gago(Sk, T4, wnk)}'dim, (D.9)

where we have used the fact that Gfree(r,r’,w) = 0, recall Eq. (3.16). As a preparation,
note that the free-space Green tensor (3.60) may be decomposed into its longitudinal and

transverse components according to [170]

||G|| (,r, r )__l55< )I_i<l—3ee) (DlO)
free\TH T, W) = 3 2 P 47rw2p3 0€p)s .
C2 wp wp 2
LGflree('r'7 rlvw) - 47Tw2p3 ([I 3€p6p] — |:1 — T — (7) :|[

3 2 .
—{3— =L (<) }epep}ewp/C), (D.11)
C C

implying that

Gioo(r, 7' W) ~ IG!

free

(r,r,w) for |w|p/c < 1, (D.12)

Giee(T, 7, W) = TG (r, 7, w) for wp/c>> 1 (w real). (D.13)

The asymptotic expressions (3.33) and (3.35) for the resonant part of the CP potential
follow immediately. In the retarded limit, we have ry;, > ¢/wmin (Fmin, minimum distance of
the atom to any of the bodies; w,i,, minimum of all relevant atomic and medium resonance
frequencies) so that according to Eq. (D.13), the first factor Goy, (74, S1,wnx) and the last
factor G,.o(Sk,Ta,wni) appearing in each term of Eq. (D.9) become purely transverse,
leading to Eq. (3.33) after recalling Eq. (2.45). Simlarly, Eq. (D.12) shows that in the
non-retarded limit, where r,.« < ¢/wWmax (Tmax, maximum distance of the atom to any body
part; Wmax, maximum of all relevant atomic and medium resonance frequencies), the factors
Goy, (T4, 81, wnk) and G, 0(Sk, T4, wnk) become purely longitudinal, implying Eq. (3.35).

Next, we consider the off-resonant CP potential (3.22) which by means of the Born
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expansion (D.1) [together with Eq. (D.2)] can be written in the form [SB10]

U (ra) = > AU (ra), (D.14)
K=1

K e
3 : 2
H/d SJfAJ(SJalf)]/O dg &

2T
J=1

Al Ag=em

AgU (ra) = it >, [
xtr[ou, (i€)- Gox, (T4, $1,18)- - -G rgo(SK, Ta, 1E)]. (D.15)

In the non-retarded limit, the functions ., (i) and fy, (s, &) effectively limit the £-integral
to a range where {|ry — s1|/c, §|sk — Tal/¢ < WmaxTmax/¢ K 1, so that the first and last
factors of each term (D.15) become purely longitudinal by virtue of Eq. (D.12), leading
to the asymptotic form (3.34) of the off-resonant CP potential. In the retarded limit, the
condition &|ray — s1|/c,&|sk — Ta|/c < 1 is violated for the major part of the ¢-integral. As
seen from Egs. (D.10) and (D.11), the contribution from | G|f|]ree is then entirely cancelled by a

similar term in L G~

ireo (implying that the contribution from the d-E-interaction is cancelled

by a part of the p- A-contribution in this limit) and the &-integral over the remaining terms
is restricted by the factors e€lra—sil/c and e—€lsx—ral/c 14 g range where & < ¢/7rmin < Whin,

so that one may put

a, (i) ~ an(0),  fa,(85,18) = fx,(55,0) (D.16)

which upon recalling Eq. (D.3) leads to the retarded limit of the off-resonant CP potential,
Egs. (3.31) and (3.32). In this limit, the contribution from the A% interaction reads

@Zwkn/ € dup-" G L)y (14,74, 1) -diy; (D.17)
T 0

it is completely cancelled by the p- A-contribution

o > £ L)L :
? ;wkn/o‘ dg (—1 + W) dnk; Gzero (’l"A, Ta, lg)dkn (D18)

D.2 Contributions quadratic in y

The limits of validity of the linear Born expansion to the ground-state potential can best
be probed by considering the second-order corrections, where for the sake of simplicity,
we restrict our attention to the case of purely dielectric bodies. In this case, the quadratic
correction AsU(74), as given by Eq. (D.15) together with Egs. (D.3)—(D.7), can be separated

into a single-point term and a two-point term,

AsU(ra) = AJU(14) + ASU(14) (D.19)
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where the single-point term

8(r) = g [ T [ agatencs. (el — ol (D.20)

which arises from the J-function in Eq. (3.60), can be obtained from the linear contribu-

tion (3.63) by making the replacement
1
X(r,w) — ~3 Yi(r,w). (D.21)
Its asymptotic retarded and non-retarded forms can hence be obtained by applying the same
replacement to Eqgs. (3.66) and (3.67), respectively.
Recalling Eq. (3.61), the two-point term is derived to be [SB10]

/ d?sy x(s1,i¢) / d®sa x(82,1€) / " acafie) 24287)
0

a3ﬁ373

AJU () = (D-22)

12874,

where
g(&, o, B, ) = e SlatBtn/e [3 <%)a(%)a(%> —
(PR MM L
+ a(%)b(%)b(%y) (es-e,)? + b(%)a(%)b %V) (ey-€q)”

WD) enterentese]. 29

with the definitions

a(z) =14z + 22, b(r) =3+ 3z + 2%, (D.24)
and

a=ry— S, a=|a, e, = ajaq, (D.25)

B=s1—sy, [B=IB, es=pB/5, (D.26)

Y =82 —Ta, v =1l e, =/ (D.27)

having been introduced. Note that the two-point contribution to the CP potential is a
double spatial integral, the integrand of which can be attractive or repulsive, depending on
the angles in the triangle formed by the vectors a;, B and «. Obviously, the double spatial
integral leads to a breakdown of the additivity of CP forces so that within quadratic (or
higher) order in y, the force due to two or more bodies, is not simply the sum of the forces
due to the individual bodies.

In the retarded limit, we apply the approximations «(i¢) ~ a/(0), x(s,if) ~ x(s,0), so
that Eq. (D.22) reduces to

3 817 (8270) o
128%450/(13 /d 3333 /0 d€ (& o, B, 7). (D.28)

A2U (7
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We introduce the notation

o, =a '+ [+~ fori=1,273 (D.29)
and perform the &-integral with the aid of the relation

0 é-)] 3 j'C
de(2) eton/e = 22— D.30
/0 g(C U{H ( )

Exploiting the triangle formula
ay =1—(ea-es)’ — (€5 ;)" — (€,°€a)” +2(eaes)(es-€,) (e, €a) =0 (D.31)

[which is a trivial consequence of Egs. (D.25)-(D.27)| by adding the expression

bag + 22 {[0%(3+9) + (3 + ) +9%(@+ 9)] + 70 (5 + 7 + 5 + o)

+4(0® 4+ 5%)] +12(a°3° + %9 +7°0%) + 12a87(” + 7 +4°)
+52afy[af(a+ B) + By(B +7) + yaly + a)] + 1380374} (D.32)

to Eq. (D.28), the result may be written in the form

hea(0 x(s1,0)x(s2,0)
A2U 327T480/d3 /d3 363 Oé“‘ﬁ‘i")/) [f1< 757’7)—’_]02(7;0575)(6&'6,5)2

+ fao, B,7)(e5:€,)" + f2(B.7, 0) (e €0)” + f3(, B,7)(ea"€5)(€5-€;) (€17 €a)|  (D.33)

where
39 5402 65 2002
fl(av 577) =9— & + 22_ + (31-2 - 0-?73 + ZB ) (D34)
‘71 ‘71 01 01 o1
a? 3%+ 46~(3a® — By 200 3%~?
f2<()é,ﬁ,’}/):3 _2+ ( 3 ) =+ ( 1 ) - 5 5 (D35)
01 01 01 01
390y 1703 7203 750303 200§
=—-1- — ) D.36
f3<Oé, Ba /7) 0_% + O'il)’ + O_il o_ir:] + 0_? ( )

In the non-retarded limit, we may approximate
g(f; «, ﬁ? '7) = g(07 «, /67 ’7) = 3 [1 - 3(60{'6,5’)(6’5"67)(67'6&)] (D37)
[recall Eq. (D.31)], so Eq. (D.22) reduces to

h o0
AJUr) = g [ @i [ s [ dgalEn(eniOn(onic)

1—3(e,- -e.)(e, €q
Ltecelerelere) gy,
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Note that by using the general relation (3.94), the above results can be used to infer
general expressions for the three-atom potential Uspc(rap, "o, Tca) of polarisable ground-

state atoms in free space. Thus, Eq. (D.22) implies that [SB10|

h 0 . ) .o\ 9(&,TaB, TBC, T
UABC<TABar307rCA):MT4€8/O d€ aa(i§)ap(if)ac (i) ( T;:T%:%ACA) (D.39)

[recall EqS (D23) and (D24), where Tij=T; —Tj, Ty = ‘Tij|a €ij = Tij/rij for Z,j = A, B, C]
which is in agreement with the result found in Refs. [184, 193|. Equations (D.33) and (D.38)

show that the three-atom potential simplifies to

ficaea (0)ap(0)ae(0)
16m4edri gricrd (rap+rec+rca

Uapc(TaB, TBC, ToA) = ] [fi(raB, 7BC, TCA)

+ fo(rcasTa, 7o) (€aB-€pc)? + fa(ras, TBo, Toa)(€sceca)® + fa(rBosTCA, TAB)

X (eCA'eAB)2 + fg(TAB, TBC,TOA)(GAB'BBC)(GBC'BCA)(GCA'BAB)] (D-40)

[recall Egs. (D.34)—(D.36) where o; = riz+7%-+ 74, in the retarded limit (defined by
rAB+7rBC+TCA S ¢/wnin) and reduces to the Axilrod—Teller potential [194]

3h[1 — 3(6AB'6BC’)(€BC'6(JA)(GCA'eAB)}
647458@3"’%0"’&

x/ooodfaA(ig)aB(if)ac(i@ (D.41)

Uspc(TaB, T, Toa) =

in the non-retarded limit (where rap+rgc+rca < ¢/Wmax)-



Appendix E
Atom-field dynamics

In this appendix, we address some aspects of the atom-field dynamics which are relevant
for calculating the time-dependent CP force in Secs. 4.2.1 and 4.3.2. Let us begin with the
Heisenberg equations of motion for the operators A,nn which are relevant for finding the
dipole—dipole correlation function (4.32) in Sec. 4.2.1. Using Hamiltonian (2.86) together
with Egs. (2.87), (2.88) and (2.94), one finds that for nonrelativistic centre-of-mass motion®

X 1

Amn - [IA{a Amn] = iWmnlemn + %, ;/(; dw |:(dnk121mk - dkmAkn) 'E(”QAa w)
+ Ef(f4,w)- (dnk/imk - dkm/ikn) . (E1)

Recalling Eq. (2.23) as well as Eqs. (4.22)—(4.24), the frequency components of the electric

field can be written as

E['IQA (t)v w, t] = Efree [”QA(t)v w, t] + Esource ['f'A (t)v w, t] (E2)
with
By [a(t),w, 1] = e 070 3~ / &’ Gyl (1), 7, 0] fr(r,w) (E.3)
A=e,m
. t
E_ .[fa(t),w,t] = W?O w? / dr e w7 Z Im G [#4(t), Pa(T), w]- dyg A (7). (E.4)
to k.l

We substitute Egs. (E.2)—(E.4) into Eq. (E.1). We assume sufficiently slow centre-of-mass

motion and weak-atom field coupling so that the time integral can then be evaluated using

the Born-Oppenheimer and Markov approximations, i.e., by putting 74 (7) ~74(t)— 74 and

(Apn (1)) 2 @7 i@mn(ra) (=) (A (1)) and letting the lower integration limit tend to ¢ty — —oo,
¢ o 1

/_ e ) gl — G ()] P (E.5)

As a result, we obtain

A

Amn — lwmnAmn + 7_11 ; /0 dw [(dnkAmk - dkmAkn) 'Efree(’f.Av w)

+ EL%(’M’ w)- (dnkAmk - dkmAkn)] + Z [dkm'cnl<rA>Akl — dnk'Ckl('rA)Aml
k,l

+ dnk'C;I(TA)Alk — dkm'CZl(rA)Aln] (EG)

!Note that as in Secs. 4.2 and 4.3 we drop the primes identifying the operators in the multipolar scheme;
this will be done throughout this appendix.
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where we have defined

Cron(r) = 22 O, (r4)] @2, (r4) Im G s, m,wnm )-din
h

77/ ImG (T4, T4, w)- dkn. (B.7)

Oni(Ta) —

Taking expectation values of Eq. (E.6), we note that the free fields do not contribute accord-
ing to Eq. (4.30), recall Eq. (2.95). Assuming that the relevant atomic transition frequencies
are well-separated from one another, the resulting differential equations for the off-diagonal
density matrix elements decouple from one another as well as from the diagonal ones. By

using the identities
dnk'Ckn(rA) = iéwﬁ(m) + FZ(’I"A)/Z dknCZn(’rA) = —iéwﬁ(m) + FZ(’I"A)/Z (E8)

[which are a direct consequence of definitions (4.36), (4.38) and (E.7)|, one hence arrives
at Egs. (4.50) and (4.51). Equation (4.33) follows after employing the quantum regression
theorem.

The Markov approximation can also be used to determine the effect of the residual field
continuum in the Schrédinger equation (4.88) which appears in Sec. 4.3.2. Using the steps

outlined above Eq. (E.5), one calculates

[e%¢} t
/ dwg’Q('rA,w)/ dTe_i(EO/h+w)(t_T)'l7Z)1(7—)
0

to

o0 t )
gwl(t)/ dwga(TA,W)/ dr e ilfw—E1(ra)+Eo](t—7)/h
0

—00

— [i6wl(ra) + Th(ra)/2](0) (E)
where we have recalled Eq. (4.73) and introduced Eqs. (4.92) and (4.93). Substituting
Eqgs. (4.73) and (E.9) into Eq. (4.88) and using Eq. (4.87), one finds

Ui(t) = [—iB1/h — i6w)(ra) — Ty (ra) /2] (t) — 3 Q% (14) sin § el 7H(Fo/Atw) = /2l (=to)

t
— 102 (ry) / dr el-iEo/mren) = /A=)y, () (E.10)

to

By writing 1, (¢) in the form of Eq. (4.89), this result is transformed to

$1(t) = —LiQp (1) sin 0 el A E)-bw-Tira))/2}¢—t0)

t
10 (r) [ dre BT ), (B

to

and after differentiating with respect to ¢, we arrive at Eq. (4.90).



Appendix F
Magnetic part of the Casimir—Polder

force

In this appendix, the magnetic part of the CP force that appears in Sec. 4.3.2, is provided.
Upon using Eq. (2.27), F™(ry,t) as defined in Eq. (4.76) can for a two-level atom in

rotating-wave approximation be written in the form

Fs (. f) — {dt 3 /d3 / (O)ldiox [V % Ga(r,7/,0)] - Fr(#,0)[1)(0)

A=e,m

and substitution of Eq. (4.79) for |¢(¢)) results in

Fmag(,r. t) T=TA % [’Lpf <t>w0 (w, t)} + C.c.

(F.2)

™

1,u0 d10>< [VXIH] G('I",'I"A,W)'dol}
/ dww
0 g(’rA,W>

In close analogy to the derivation of Eq. (4.97), we next eliminate vo(w,t) by means of
Eq. (4.85) and make use of the solution (4.89) [together with Eq. (4.94)] for ¢1(t), leading
to Eq. (4.100).

Next, we consider the limiting cases of weak and strong atom-field coupling. The mag-
netic part of the CP force for weak coupling follows from Eq. (F.2) after use of Eqgs. (4.85)
and (4.102). Carrying out the time derivative and evaluating the time integral in the spirit
of the Markov approximation by putting |1 (7)|? — [¢1(t)|> and letting the lower integra-
tion limit tend to —oo, one finds that the magnetic part of the CP force vanishes for weak
atom—field coupling, when the system is initially prepared in the state |1)[{0}).

For strong atom-field coupling, Eq. (4.100) may be simplified by means of Eq. (4.105).
Following the steps outline above Eq. (4.112) and discarding terms of order O[y(r4)/w,],

one obtains

Ci (rA)C+ (T'A)e_iﬂ("'A)(t_tO)
A(T'A) - Q(T‘A) — 1[7}/ — ]‘_Vl (TA)} /2
Cj_(’f‘A)C, ('r'A)eiQ(TA)(t—to)
A(ra) + Qra) — i[v, — Ti(ra)] /2
X powy Y2 (14)d1o X [V xIm G(r, ra, w”)'dm}r:m 4 Ce (F3)

FMeg(py t) = e (ra)(t—to)

which after neglecting terms of the form [y, — I} (r4)]/2 further simplifies to Eq. (4.124).

120



Acknowledgements

I would like to thank the Thiiringer Minsterium fir Wissenschaft und Kunst, the FE.—
W. Kuhlmann-Stiftung and the Deutsche Forschungsgemeinschaft for the financial support
without which this work would not have been possible. Furthermore, I am grateful to the
Wilhelm und FElse Heraeus-Stiftung, the GlaxoSmithKline Stiftung and the organising com-
mittee of the conference QFED, Quantum Vacuum and the Search for New Forces, for fund-
ing in connection with conference visits, and to L. Arntzen, A. V. Chizhov, M. DeKieviet,
F. Haake and S. Scheel, for their kind hospitality in arranging seminar talks.

I am deeply indebted to D.-G. Welsch, who has been an excellent PhD supervisor in
every respect. I would particularly like to thank him for his inspiring ideas, for both stim-
ulating and critical discussions, for his help in retrieving funding and for the broad range
of opportunities he has given me for presenting my results. This work has greatly profited
from the fruitful collaboration with T. Kampf, L. Knoll, H. Safari, A. Sambale, S. Scheel
and M. S. Tomas, where in particular I would like to point out the contribution of Ho Trung
Dung who has been both teacher and close colleague to me. T am grateful to L. Arntzen,
G. Barton, I. V. Bondarev, A. Buchleitner, A. V. Chizhov, M. DeKieviet, A. M. Guzmén,
M.-P. Gorza, F. Haake, E. A. Hinds, R. Jauregui, M. Khanbekyan, A. Lambrecht, G. Morigi,
C. Raabe, L. Rizzuto, L. L. Sdnchez-Soto, Y. Sherkunov, O. P. Sushkov and C. Villarreal
for their stimulating discussions, and to E. Shamonina and S. Linden for providing useful
references. Furthermore, I thank M. Knorr, G. Ritter, O. Sindt, L. Rowan and M. Weif for
valuable help regarding literature-related, organisational and technical issues, and L. Beasly
for proofreading this manuscript.

I am also much obliged to P. Hertel for accompanying my scientific career with his advice.
And finally, I would like to thank my family and in particular my wife for their continuous
support during the challenging work that has lead to this thesis.

121



Zusammenfassung

Casimir—Polder-Krifte zwischen einzelnen Atomen und makroskopischen Korpern sind lang-
reichweitige effektive elektromagnetische Krifte zwischen neutralen, (elektrisch und mag-
netisch) unpolarisierten Objekten, und als solche ein Spezialfall der sogenannten Disper-
sionskrafte. Alle Dispersionskrifte haben ihren gemeinsamen physikalischen Ursprung in
den quantenmechanischen Grundzustandsfluktuationen, die gemaf der Heisenbergschen Un-
schirferelation ein absolutes Verschwinden der Polarisation und Magnetisierung der beteilig-
ten Objekte einerseits sowie des elektromagnetischen Feldes andererseits verhindern und
iiber die Wechselwirkung von Polarisation und Feld letztlich zur besagten Kraft fiihren. Sie
spielen eine wesentliche Rolle in den verschiedensten Feldern, wie z. B. in den Materialwis-
senschaften, in der physikalischen Chemie und in der Biologie. Die Erforschung der Casimir—
Polder-Krifte hat in jiingerer Zeit aufgrund fortgeschrittener Techniken zur Manipulation
und Kontrolle einzelner Atome eine neue und verstirkte Aktualitdt erhalten. In Folge der
resultierenden Prézisionsmessungen von Casimir—Polder-Kréften hat sich die Perspektive
einer gezielten Kontrolle oder sogar Nutzung des Phénomens erdffnet. So muss der Einfluss
von Casimir-Polder-Kriften in modernen Anwendungen der Nanotechnologie wie z. B. der
Konstruktion von atomaren Fallen mit fortschreitender Miniaturisierung zunehmend beriick-
sichtigt werden. Speziell die Rolle magnetischer Korpereigenschaften beim Zustandekommen
Casimir-Polder-Kraft hat durch die kiirzlich gelungene Entwicklung von Metamaterialien
mit kontrollierbaren magnetoelektrischen Eigenschaften zusétzlich an Relevanz gewonnen.

Der Vielzahl an praktisch relevanten Szenarien steht eine ebenso grofe Vielfalt theoreti-
scher Methoden gegeniiber, die in der Vergangenheit entwickelt worden sind und jeweils
ihre eigenen Vor- und Nachteile sowie intrinsischen Giiltigkeitsbereiche mitbringen. Speziell
liefert die Normalmoden-Quantenelektrodynamik einen exakten Zugang, der jedoch den
Nachteil hat, dass jedes neue Szenario eine neue Rechnung erforderlich macht. Demge-
geniiber liefern auf der Theorie der linearen Antwort basierende Zuginge universell an-
wendbare Resultate, deren Giiltigkeit allerdings bislang nur semiphidnomenologisch gezeigt
werden konnte. Der Grofiteil der durchgefiihrten Untersuchungen beschrankt sich zudem auf
eine rein statische Beschreibung der Casimir—Polder-Kriéfte.

Vor diesem Hintergrund ist eine exakte Theorie wiinschenswert, die einen vereinheitlich-
ten Zugang liefert und zugleich den Anforderungen und Maoglichkeiten moderner Expe-
rimente und Anwendungen Rechenschaft tridgt. Im Rahmen der vorliegenden Dissertation
wird eine solche Theorie der Casimir-Polder-Krifte auf einzelne Atome bei Anwesenheit

makroskopischer Korper entwickelt. Ziel sind dabei insbesondere universelle, leicht auf spe-
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zielle Geometrien anwendbare Ergebnisse, welche

e sowohl fiir elektrische als auch fiir magnetische Korper giiltig sind,

die dispersiven und absorptiven Eigenschaften der Kérper angemessen beriicksichtigen,

Lokalfeldeffekte mit einbeziehen,

eine Beziehung zu mikroskopischen van-der-Waals-Kriften herstellen lassen,

e den Einfluss der atomaren Linienbreiten und -verschiebungen transparent machen,

die zeitliche Abhéngigkeit der Kréfte korrekt wiedergeben,

sowohl fiir starke als auch fiir schwache Atom—-Feld-Kopplung anwendbar sind.

Als Grundlage fiir die Untersuchungen wurde im Rahmen der vorliegenden Arbeit eine
makroskopische Quantenelektrodynamik in linearen Elektrika auf den magnetoelektrischen
Fall erweitert. Ausgangspunkt ist eine makroskopische Beschreibung der vorhandenen Kor-
per mittels ihrer elektrischen Permittivitdt und magnetischen Permeabilitit — ein Ansatz,
dessen Giiltigkeitsbereich sich bis hin zu mikroskopischen Atom-Kérper-Abstinden reicht.
Die Feldquantisierung beruht im Wesentlichen auf dem Ldsen einer verallgemeinerten Helm-
holtzgleichung fiir das elektromagnetische Feld im Medium mit Hilfe des Greentensors, unter
Beriicksichtigung der bei absorptiven Medien zwangslidufig auftretenden Rauschterme. Die
Wechselwirkung des quantisierten elektromagnetischen Feldes mit einem einzelnen Atom
wird in kanonischer Weise iiber die minimale oder multipolare Kopplung eingefiihrt. Die so
gewonnene makroskopische Quantenelektrodynamik bei Anwesenheit magnetoelektrischer
Korper erfiillt alle Voraussetzungen an eine exakten Quantentheorie; inbesondere kann
gezeigt werden, dass der Hamiltonoperator des Gesamtsystems die Giiltigkeit der Maxwell-
gleichungen sowie der Newtonschen Bewegungsgleichungen fiir die geladenen Bestandteile
des Atoms impliziert. Die der Einfachheit halber gemachten Voraussetzungen linearer, loka-
ler und isotroper Korpereigenschaften und die Beschrinkung auf ein einzelnes Atom sind
hierbei nicht zwingend, wie durch geeignete Erweiterung des Ansatzes gezeigt werden kann.

Aufbauend auf der bereitgestellten makroskopischen Quantenelektrodynamik erfolgt die
Entwicklung einer Theorie der Casimir—Polder-Kréfte in zwei Teilen. Im ersten Teil werden
die zeitunabhéngigen Aspekte der Kraft beleuchtet. Hierzu wird die Kraft aus dem zugehori-
gen Casimir-Polder-Potential hergeleitet, welches als positionsabhéngiger Teil der Atom—
Feld-Kopplungsenergie gewonnen wird. Durch stérungstheoretische Berechnung dieser Ener-
gie erhidlt man allgemeine Ausdriicke fiir das Casimir—Polder-Potential eines Atoms in einem
Energieeigenzustand bei Anwesenheit einer beliebigen Anordnung magnetoelektrischer Kor-
per. Hierbei gehen die atomspezifischen Eigenschaften iiber die atomaren Dipolmatrixele-

mente und entsprechenden Ubergangsfrequenzen sowie die atomare Polarisierbarkeit ein,
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wohingegen alle Informationen i{iber Form, elektromagnetische Eigenschaften und Anord-
nung der Korper in Gestalt des Greentensors fiir das elektromagnetische Feld zum Aus-
druck kommen. Die erhaltenen Formeln verallgemeinern die in fritheren Arbeiten mittels
Normalmoden-Quantisierung gewonnenen geometrieabhiingigen Ergebnisse auf den Fall be-
liebiger Anordnungen von Koérpern und stellen zugleich die erste exakte Herleitung der
im Rahmen der Theorie der linearen Antwort postulierten Ergebnisse fiir den Fall disper-
siver und absorptiver magnetoelektrischer Kérper dar. Insbesondere wird nachgewiesen, dass
minimale und multipolare Kopplung zu formal dquivalenten Ausdriicken fiihren.

Die storungstheoretischen Ergebnisse bilden den Ausgangspunkt fiir umfangreiche wei-
tergehende Untersuchungen. Erstens wird die Anwendbarkeit der allgemeinen Formeln durch
Beriicksichtigung von Lokalfeldeffekten auf den Fall in einen Kérper eingebetteter Atome
erweitert. Es stellt sich heraus, dass die Lokalfeldkorrektur der Kraft allein von den elek-
trischen Eigenschaften des Kérpers am Ort des Gastatoms abhéngt. Zweitens wird mit Hilfe
einer Bornreihe fiir den Greentensor ein Naherungsverfahren zur Berechnung von Potentialen
fiir schwach magnetodielektrische Korper entwickelt. Insbesondere wird gezeigt, dass sich in
linearer Ndherung die Kraft durch Volumenintegration iiber Zentralkrifte gewinnen lésst,
welche fiir rein dielektrische/magnetische Korper anziehend bzw. abstofend sind. Drittens
wird durch Kombination der Bornreihe mit dem Clausius—Mosotti-Gesetz der mikroskopi-
sche Ursprung der Casimir—Polder-Kraft erortert. Es wird bewiesen, dass sich die Casimir—
Polder Wechselwirkung eines einzelnen Atoms mit einem dielektrischen Korper unter sehr
allgemeinen Bedingungen stets auf seine mikroskopischen van-der-Waals-Wechselwirkungen
mit den Korperatomen zuriickfithren lisst. Die in dieser Beziehung auftretenden N-Atom-
Potentiale sind eine Verallgemeinerung bekannter Freiraumresultate auf den Fall einer be-
liebigen Umgebung magnetoelektrischer Kérper.

Um die Diskussion der statischen Theorie der Casimir—Polder-Kréfte abzurunden, wer-
den anschlieffend die allgemeinen Formeln fiir Grundzustandsatome exemplarisch auf einige
konkrete planare Geometrien angewandt, wodurch bekannte Resultate fiir rein elektrische
Korper auf den magnetoelektrischen Fall erweitert werden. So wird z. B. gezeigt, dass die
Kraft zwischen einem Atom und einer perfekt permeablen Platte genau entgegengesetzt
zu der wohlbekannten anziehenden Kraft zwischen einem Atom und einer perfekt leiten-
den Platte ist — ein Befund, der im Rahmen einer Spiegelladungsmethode mit der unter-
schiedlichen Paritdt elektrischer und magnetischer Dipole anschaulich gemacht wird. Fiir
realistischere Szenarien diktiert ein kompliziertes Wechselspiel von elektrischen und mag-
netischen Koérpereigenschaften das Verhalten der Casimir-Polder-Kraft. Es zeigt sich am

Fall einer Platte, dass die dominanten elektrischen Eigenschaften fiir asymptotisch kleine
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Absténde des Atoms stets zu einem anziehenden Potential fiihren, wohingegen bei hin-
reichend starken magnetischen Eignschaften ein abstofendes Potential bei mittleren Ab-
stdnden beobachtet werden kann. Durch Kombination zweier Platten kann so ein Fallen-
potential zwischen diesen realisiert werden. Man beachte, dass die neuartige Vorhersage
von magnetischen Materialeigenschaften hervorgerufener abstofender Kraftkomponenten
noch ihrer experimentellen Bestidtigung harrt, ein aussichtsreiches Szenario hierfiir wére
die Quantenreflexion langsamer Atome an Platten aus extrem weichmagnetischem Mii-
Metall. Eine anschliefende Gegeniiberstellung der Dispersionskrifte zwischen verschiede-
nen Grundzustandsobjekten legt den Schluss nahe, dass das in den Beispielen gefundene
anziehende und abstofsende Verhalten der Kréfte generisch ist — eine Vermutung, die durch
den oben bereits erwihnten gemeinsamen mikroskopischen Ursprung aller Dispersionskrifte
zusdtzlich untermauert wird.

Im zweiten Teil der Untersuchungen wird erstmals eine dynamische Theorie der Casimir—-
Polder-Kraft entwickelt. Ausgangspunkt hierzu ist die operatorwertige Lorentzkraft auf
das Atom. Wie gezeigt wird, hingt diese in elektrischer Dipolndherung in einfacher Weise
vom elektrischen Dipolmoment des Atoms und dem quantisierten elektromagnetischen Feld
ab, wobei minimale und multipolare Kopplung auf identische Ergebnisse fiihren. Aus dem
gewonnenen allgemeinen Ausdruck fiir quantenelektrodynamische Strahlungskréfte auf Ato-
me ergibt sich insbesondere auch die Casimir—Polder-Kraft als die vom Vakuumfeld hervor-
gerufene Kraft. Explizite Ausdriicke fiir die zeitabhingige Kraft ergeben sich durch Losen
der gekoppelten Atom—Feld-Dynamik; hierbei ist es sinnvoll, die zwei Grenzfille schwacher
und starker Kopplung zu unterscheiden.

Im Fall schwacher Kopplung fiihrt die Markov-Niaherung auf allgemeine Ausdriicke fiir
die zeitabhédngige Casimir-Polder-Kraft auf ein in einem beliebigen Anfangszustand pra-
pariertes Atom. Wie gezeigt wird, lisst sich die Kraft als Uberlagerung von Kraftkompo-
nenten darstellen, die mit den jeweiligen zeitabhéngigen atomaren Dichtematrixelementen
gewichtet sind. Fiir ein anfangs in einem Eigenzustand prapariertes Atom klingt die Kraft in
Folge spontanen Zerfalls zu energetisch tiefer liegenden Zustéinden im Laufe der Zeit ab, so
dass sich fiir hinreichend grofse Zeiten stets die Grundzustandskraft ergibt. Die Abhingigkeit
der einzelnen Kraftkomponenten von Lage und Struktur der Anwesenheit der Korper ist wie
schon in der statischen Theorie durch den Greentensor gegeben. Der wesentliche Unterschied
besteht in der Tatsache, dass die relevanten atomaren Ubergangsfrequenzen aufgrund der
Anwesenheit der Korper eine Verschiebung und Verbreiterung erfahren. Insbesondere lésst
sich in Folge der hierdurch zusitzlich auftretenden Positionsabhéngigkeit die dynamische

Casimir—Polder-Kraft nicht in der iiblichen Art und Weise als Potentialkraft darstellen.
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Aufserdem koénnen Linienverschiebung und -verbreiterung zu einer nicht unerheblichen Ab-
schwichung speziell der resonanten Kraftkomponenten fiihren, die das Verhalten der Kraft
auf angeregte Atome dominieren. Die Ergebnisse stellen somit eine Verallgemeinerung der
statischen Theorie mit teilweise iiberraschenden Ergebnissen dar. Dariiber hinaus eroffnet
sich die Moglichkeit, die Kraft auf Atome zu diskutieren, welche anfangs in koh&renten
Uberlagerungen von mehreren Eigenzustinden pripariert sind. Die entwickelte Theorie sagt
fiir diesen Fall das Auftreten gedampfter, schnell oszillierender Kraftkomponenten voraus,
welche eine interessante neuartige Vektorstruktur aufweisen.

Starke Atom-Feld-Kopplung tritt als wesentliches Merkmal in vielen neueren Experi-
menten auf, in denen angeregte Atome in Resonatoren hoher Giite eingebracht werden. Die
auftretende resonante Wechselwirkung eines atomaren Ubergangs mit einer einzelnen Quasi-
mode des Resonators ldsst sich am besten durch Beschriankung auf ein Zwei-Niveau-Atom
untersuchen. Durch Abspalten der relevanten Quasimode vom iibrigen Feldkontinuum lsst
sich die resonante gekoppelte Atom-Feld-Dynamik exakt 16sen und so die Casimir—Polder-
Kraft fiir starke Kopplung finden. Es zeigt sich, dass der in Folge der starken Kopplung
auftretende reversible Austausch von Energie zwischen Atom und Quasimode zu einem
qualitativ neuen Phénomen fiihrt: Die Casimir-Polder-Kraft weist nun geddmpfte Rabi-
Oszillationen auf, deren Mittelwert und Amplitude von der anfinglichen Aufteilung der
Anregungsenergie auf Atom und Mode abhingen.

Die im Rahmen der vorliegenden Dissertation entwickelte makroskopische Theorie der
Casimir—Polder-Krifte bei Anwesenheit magnetoelektrischer Kérper erfiillt alle Anforderun-
gen, die an eine solche im Hinblick auf die Bediirfnisse und Moglichkeiten moderner Exper-
imente und Anwendungen zu stellen sind — wobei sich der Giiltigkeitsbereich der Theorie
iiber alle Atom—Korper-Abstiande erstreckt, die hinreichend groft gegeniiber der internen
mikroskopischen Struktur der Korper sind. Insbesondere erlaubt sie eine Untersuchung des
Einflusses aller wesentlicher Parameter auf die Kraft, wie z. B. der Form, Anordnung und
Materialbeschaffenheit der Korper sowie der Art und des Anfangszustands des betreffenden
Atoms. Neben der Beantwortung fundamentaler Fragen bietet die Theorie so die Grundlage
fiir eine zukiinftige experimentelle Kontrolle und Manipulation von Casimir-Polder-Kraften.
Die im Rahmen der Arbeit entwickelten Ansdtze und Methoden erlauben dariiber hinaus
eine Vielzahl von Verallgemeinerungen. Hierbei sind als spezielle Beispiele unter anderem
die Erweiterungen auf thermische oder sogar beliebig angeregte elektromagnetische Felder

ZUu nennen.
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