J. E. N. 568

"LOLA SYSTEM : A CODE BLOK FOR NODAL PWR SIMULATION" PART. I - SIMULA-3 CODE.

por

J.M. ARAGONES

C. AHNERT

J. GOMEZ SANTAMARIA

I. RODRIGUEZ OLABARRIA

JUNTA DE ENERGIA NUCLEAR

MADRID, 1985

CLASIFICACION INIS Y DESCRIPTORES

E21 S CODES COMPUTER CALCULATIONS THREE-DIMENSIONAL CALCULATIONS BURNUP REACTIVITY COEFFICIENTS ALBEDO PWR TYPE REACTORS SIMULATORS - Jac

ŝ

Toda correspondencia en relación con este trabajo debe dirigirse al Servicio de Documentación Biblioteca y Publicaciones, Junta de Energía Nuclear, Ciudad Universitaria, Madrid-3, ESPAÑA.

Las solicitudes de ejemplares deben dirigirse a este mismo Servicio.

Los descriptores se han seleccionado del Thesauro del INIS para describir las materias que contiene este informe con vistas a su recuperación. Para más detalles con súltese el informe IAEA-INIS-12 (INIS: Manual de Indización) y IAEA-INIS-13 (INIS: Thesauro) publicado por el Organismo Internacional de Energía Atómica.

Se autoriza la reproducción de los resúmenes analíticos que aparecen en esta publicación.

Este trabajo se ha recibido para su impresión en Diciembre-de 1.984.

. Depósito legal nº M-12136-1985

I.S.B.N. 84-505-1326-x

COMPUTER CODE ABSTRACT

LOLA SYSTEM

J.M. ARAGONÉS

UNIVERSIDAD POLITECNICA DE MADRID CASTELLANA, 80; MADRID - ESPAÑA

C. AHNERT JUNTA DE ENERGIA NUCLEAR AVDA. COMPLUTENSE, MADRID - ESPAÑA

J. GOMEZ SANTAMAŘIA AND I. RODRIGUEZ OLABARRIA IBERDUERO AVDA. DE AMERICA, 32, MADRID -ESPAÑA

This code has been included in the coordinated Research Programme (CRP) on "Codes Adaptable to Small and Medium Size Computers Available in developing countries for In-Core Fuel Management" of the International Atomic Energy Agency.

1. Program, Name and Title:

LOLA System, a code block for Nodal PWR simulation.

2. Problem solved:

The LOLA System is a part of the JEN-UPM code package for PWR fuel management, scope or design calculations. It is a code package for core burnup calculations using nodal theory based on a FLARE type code. The LOLA System includes four modules; the first one (MELON-3) generates the constants of the K_{∞} and M^2 correlations to be input into SIMULA-3. It needs the K_{∞} and M^2 fuel assembly values at different conditions of moderator temperature, Boron concentration, burnup, etc., which are provided by MARIA fuel assembly calculations.

The main module (SIMULA-3) is the core burnup calculations code in three dimensions and one group of energy, it normally uses a geometrical representation of one node per fuel assembly or per quarter of fuel assembly. It has included a thermal hydraulic feed-back on flow and voids and criticality searches on Boron concentration and control rods insertion.

The CONCON code makes the calculation of the albedoes, transport factors, K_{∞} and M^2 correction factors to be input into SIMULA-3. The calculation is made in the XY transversal plane. The CONAXI code is similar to CONCON, but in the axial direction.

3. Method of solution:

MELON-3 makes a mean squares fit of K_{∞} and M^2 values at different conditions in order to determine the constants of the feedback correlations.

SIMULA-3 uses a modified 1-group nodal theory, with a new transport kernel that provides the same node interface leakages than a fine mesh diffusion calculation.

CONCON and CONAXI determine the transport and correction factors, as well as the albedoes, to be input into SIMULA-3; by a method of leakages equivalence to the detailed diffusion calculation of CARMEN or VENTURE, these factors include also the heterogeneity effects inside the node.

4. Restrictions:

No. of X,Y,Z nodes $\leq 15 \times 15 \times 17$ No. of material types ≤ 15 No. of fuel assembly types ≤ 15

5. Unusual features of the system:

SIMULA-3 uses as input data the interface units generated by the other modules, with the correlation constants, the transport factors, the albedoes and the K_{∞} and M^2 correction factors.

6. Relationship to other programs:

MARIA System generates the K_{∞} and M^2 values at different conditions to be input into MELON-3.

CARMEN System provides the detailed fine-mesh fluxes and the cross sections by zone to be input into CONCON and CONAXI codes.

7. Other programming, restrictions or operating information:

None.

8. Computer and language.

UNIVAC-1100 and CYBER-835. FORTRAN - V. 9. Typical Running Time.

The module with a more relevant running time is the SIMULA-3, with about 90 cpu seconds per burnup step in the UNIVAC-1100/80 or in the CYBER-835.

10. Operating System.

UNIVAC-1100, EXEC 8; CYBER-835, NOS 2.1

11. Machine requirements

18K works for the code source and about 38Kwords for the data.

12. Availability.

Available through the OECD-NEA Data Bank, Saclay, France.

13. Status.

Production.

14. References:

- 1.- J.M. Aragonés, C. Ahnert, J. Gómez Santamaría and I. Rodríguez Olabarría, "LOLA System, a code block for nodal PWR simulation". 1^a parte JEN-568, 2^a parte JEN-571 (1984).
- 2.- J.M. Aragonés, C. Ahnert, "MARIA System, a code block for PWR fuel assembly calculations". JEN-543 (1983).
- 3.- C. Ahnert, J.M. Aragonés. "CARMEN System, a code block for neutronic PWR calculation by diffusion theory with space dependent feedback effects". JEN-515 (1982).

INDEX

Pag.

INTRODUCTION			
1.	SIMUI	LA-3 CODE	3
	1.1.	Methods and procedures	4
		1.1.1. Physical Model	4
		1.1.1.1. Source or power iteration	4
		1.1.1.2. Void or moderator density iteration	17
		1.1.1.3. Critical Searches	20
		1.1.1.4. Fuel Burnup	22
		1.1.2. k_{∞} and M^2 calculations	22
		1.1.3.Geometry	27
		1.1.4.Transient Xenon Calculation	31
	1.2.	Input Data	34
		1.2.1. Input Data Format and description	34
	1.3.	Sample Problem	58
	1.4.	Output	- 58
		1.4.1. Printed Output	58
		1.4.2. Tapes Output	62
	1.5.	Program Characteristics	63
		1.5.1. I/O Unit requirements	63
		1.5.2. Restrictions on the complexity of the problem	63
		1.5.3. Program Structure	64
		1.5.4. Machinectime requirements and core storage	68
		1.5.5. Error Stops	68
		1.5.6. Restart Options	69

- i -

•. ..

		Pag.
2.	REFERENCES	71
	LISTING 1 - SIMULA-3 Input Data and Printed Output for a Sample Problem	72

1. INTRODUCTION.

The LOLA System is a part of the JEN-UPM code package, for PWR fuel management, scope or design calculations. It is also a code package for core burnup calculations using the nodal theory. The CARMEN [1] and MARIA [2] Systems complete the whole JEN-UPM package.

The MARIA System is the fuel assembly calculations block, and the CARMEN System is the core burnup calculations block by diffusion theory. The LOLA System is based on a FLARE type [3] nodal code, three dimensional and one energy group, this is the SIMULA-3 code. The SIMULA-3 code may use the geometrical representation of one node per fuel assembly or one node per quarter of fuel assembly.

The LOLA System also includes the MELON-3, CONCON and CONAXI codes (Figure 1). MELON-3 makes the generation of the constants of the k_{∞} and M^2 correlations to be input into SIMULA-3. It needs as input data the k_{∞} and M^2 fuel assembly values at different conditions of moderator temperature, Boron concentration, burnup, etc.

The fuel assembly calculations for PWR are made by the MARIA System.

The CONCON code makes the calculation of the albedoes, transport factors, k_{∞} and M^2 correction factors to be input into SIMULA-3. These parameters are obtained in an explicit way, by a method that preserves the same leakage values in the nodal calculation by SIMULA-3, than in the reference calculation by diffusion theory with CARMEN. The calculation is made in the XY transversal plane.

CONAXI is quite similar to CONCON, but in the axial direction. The four codes are connected by interface units, those connections jointly with the connections to MARIA and CARMEN Systems can be seen in figure 1.

FIGURE 1 – LOLA SYSTEM

- 2 -

1. SIMULA-3 Code.

SIMULA-3 principally determines the region-dependent power (nodal power) distribution for a reactor core with three dimensional (XYZ) geometry. The model is based on a modification to a one-group diffusion theory in which only the average parameters, infinite multiplication factor (k_m) and migration area (M^2) , of each region are involved, The leakages from one region are treated by the "transport kernel", which is a function of the migration area and the node size. The lateral and axial reflectors are replaced by the albedo factor at the core surface, so that only the regions within the active fueled region are considered.

This code allows three dimensional core calculations under reasonable computer times, and provides the spatial distributions of moderator density, neutron source and exposure including the equilibrium Xenon influence, and by option, it is able to determine the temporal evolution of I-135 and Xe-135, the critical soluble poison concentration or control rod position, and permits the refueling and shuffling of the fuel elements at any time in core life.

The original code [4] has beem extended with many new options and procedures, which have been developed specially for PWR applications; accordingly the criterium adopted was to eliminate the options of the old version which were not of use in the PWR procedures and applications. It is possible to use one node per fuel assembly, or one node per quarter of fuel assembly; but is recommended to use the second one for PWR calculations.

The complete calculation, which is iterative in nature, consists of essentially four levels of iteration. The four levels are as follows:

- a) Source or power iteration.
- b) Void or moderator density iteration.
- c) Critical searches.
- d) Fuel burnup.

In the following paragraph the procedures used at each level of iteration will be described.

1.1. Methods and procedures.

1.1.1. Physical Model.

1.1.1.1. Source or Power iteration.

 $S_{\hat{\chi}}$ the rate of production of fission energy neutrons at node $\hat{\chi}$, is given by

$$\lambda S_{g} = k_{\infty g} A_{g} \tag{1}$$

where

 A_l is the absorption rate at node l.

 λ is the eigenvalue.

As defined by Equation (1) k_{∞} is identical to the usually defined k_{∞} only when the spectrum at node ℓ is identical to that which would be present in an infinite array of nodes identical to ℓ . With nodal spacing large compared to the thermal diffusion lenght, L, and large compared to the neutron age from significant resonance capture energies to thermal energies, equation (1) is reasonably well satisfied with k_{∞} equal to the usually defined k_{∞} calculated for an individual cell identical to the volume associated with the node ℓ . This approximation is assumed in the Nodal calculation and is not unlike similar assumptions made whenever discrete geometries are replaced by homogenized cells in diffusion theory calculations.

The absorption rate at node ℓ is written in terms of

- 4 -

absorption probabilities as

$$A_{\ell} = \sum_{m} S_{m} W_{m\ell} + S_{\ell} W_{\ell\ell}$$
(2)

where

 $W_{m\ell}$ is the probability that a neutron born at node m is ultimately absorbed at node ℓ .

Combining the above two equations one obtains

$$\lambda S_{\ell} = k_{\infty \ell} \sum_{m} S_{m} W_{m \ell} + k_{\infty \ell} S_{\ell} W_{\ell \ell}$$
$$\frac{k_{\infty \ell}}{2} \sum_{m} S_{m} W_{m \ell}$$

$$S_{\underline{\lambda}} = \frac{\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} S_{m} W_{ml}}{1 - \frac{k_{\infty \lambda}}{\lambda} W_{\lambda \lambda}}$$
(3)

the assumption is made that $W_{m\ell}$ is finite only for nearest neighbor nodes so that the summation in (2) and (3) is taken only over the six adjacent nodes. To account for leakage from nodes at the core boundary, the quantity n_{ℓ} is introduced. n_{ℓ} is the number of missing neighbor nodes and is equal to zero for interior nodes. In each direction in which the neighbor node is missing, there will be leakage at a rate determined by the boundary condition. The boundary condition at each node is expressed by an albedo, α , for each direction in which there is a missing neighbor. In each direction, α may vary from 0 for no reflection of neutrons to 1 for complete reflection. The nodal albedo α_{ℓ} is taken as the sum of the albedoes in all directions in which there is a missing neighbor, Thus for a given node α_{ℓ} may vary from 0 up to n_{ℓ} . If there were no reflection of neutrons, α_{ℓ} would be 0 and the nodal leakage would be given by

$$L_{\ell} = S_{\ell} W_{\ell m} n_{\ell}$$

A positive value for α_{ℓ} can be considered equivalent to a reduction in n_{ℓ} so that the leakage in general is given by

$$L_{\ell} = S_{\ell} W_{\ell m} (n_{\ell} - \alpha_{\ell})$$
⁽⁴⁾

The leakage probability is then

$$\frac{L_{\ell}}{S_{\ell}} = W_{\ell m} (n_{\ell} - \alpha_{\ell})$$
⁽⁵⁾

All neutrons which do not escape from their node of birth are eventually absorbed there so that the nodal self-absorption probability $W_{2,2}$ is the nodal non leakage probability which can be written as one minus the probability for absorption at neighboring nodes minus the probability of leakage:

$$W_{ll} = 1 - (6 - n_l) W_{lm} - (n_l - \alpha_l) W_{lm} =$$

= 1 - (6 - \alpha_l) W_{lm} (6)

Substituting equation (6) into equation (3) results in

$$S_{\ell} = \frac{\frac{k_{\infty\ell}}{\lambda} \Sigma_{\infty}^{2} S_{m} W_{m\ell}}{1 - \frac{k_{\infty\ell}}{\lambda} \left[1 - (6 - \alpha_{\ell}) W_{\ell m}\right]}$$
(7)

where the prime indicates summation over six adjacent nodes. A more general form of equation (7) has been coded for the possibility of W_{lm} having different values in the horizontal and vertical directions in the form

$$S_{\ell} = \frac{\frac{k_{\infty\ell}}{\lambda} \left[\sum_{m}^{V} S_{m} W_{m\ell}^{V} + \sum_{m}^{h} S_{m} W_{m\ell}^{h} \right]}{1 - \frac{k_{\infty\ell}}{\lambda} \left[1 - (2 - \alpha_{\ell}^{V}) W_{\ell m}^{V} - (4 - \alpha_{\ell}^{h}) W_{\ell m}^{h} \right]}$$
(8)

where the superscripts refer to vertical and horizontal values.

In the steady state the summation over the entire reactor of the absorption at each node (from eq. 1) and the leakage at each node (from eq. 4) must equal the summation of the source at each node (eq. 7 or 8):

$$\sum_{\ell} S_{\ell} = \sum \frac{S_{\ell}^{\Lambda}}{K_{\infty \ell}} + \sum S_{\ell} W_{\ell m} (n_{\ell} - \alpha_{\ell})$$
(9)

where n_{ℓ} and α_{ℓ} are zero at all internal nodes so that the second term on the right gives a contribution only at boundary nodes. Solving (9) for λ gives

$$\lambda = \frac{\sum_{l} S_{l} - \sum_{l} S_{l} W_{lm} (n_{l} - \alpha_{l})}{\sum_{l} \frac{S_{l}}{k_{\infty l}}}$$
(10)

Equation (3) and (10) are solved iteratively starting from an initial guess for the source at each node and λ .

The source interation loop is described in Figure 2.

In the following parragraph the transport kernel expressions and the source iteration equations will be described.

a) Transport kernels.

The transport kernel W_{lm} represents the probability that a neutron born at node l is absorbed at node m. Using one dimensional diffusion theory in a uniform infinite medium one can calculate the probability of a neutron born uniformly in a slab of thickness r to be absorbed in an adjacent slab of thickness r.

- 7 -

Designating the region with a source with subscript 1, and without a source with subscript 2, the general solution for the flux in the two regions is given by

$$\Phi_1 = A_1 e^{\frac{x}{L}} + B_1 e^{-\frac{x}{L}} + \frac{S}{2_a}$$
$$\Phi_2 = A_2 e^{\frac{x}{L}} + B_2 e^{-\frac{x}{L}}$$

The boundary condition that the flux is symmetric about x=0 (current = 0) requires that $A_1=B_1$. The boundary condition that $\Phi_2 \rightarrow 0$ as x $\rightarrow \infty$, requires that $A_2=0$. Equating the net currents in the two regions at x=r/2 results in

$$B_2 = -A_1 | e^{\frac{2}{L}} - 1 |$$

Equating the fluxes in the two regions at x=r/2 allows one to evaluate A_1 and B_2 . The solution for Φ_2 is

3r/2

(11)

$$W_{ij} = \frac{absorptions in region j}{source in region i} = \frac{\int_{a}^{a} \tilde{c}_{a} \tilde{c}_{2}(x) dx}{r/2}$$
$$= \frac{S\left[\frac{e^{\frac{T}{L}} - 1}{\frac{r}{2L}}\right](-L) \left[e^{-\frac{x}{L}}\right]^{3r/2}}{Sr}$$
$$W_{ij} = \frac{L}{2r} \left[1 - 2e^{-\frac{r}{L}} + e^{-\frac{2r}{L}}\right]$$

The W_{ij} value versus $\beta = L/r$ exhibits a broad maximum near $\beta = 0.8$. For small values of β , large r, W_{ij} is small because the probability that a neutron escapes from its region of birth is small. For large values of β , small r, W_{ij} is small because the probability of an escaping neutron being captured in an adjacent slab of the same thickness decreases as the thickness decreases. In this case more neutrons are absorbed further away from their point of origin and interactions beyond the mearest neighbors would be important. For small values of β (i.e., values of r > L) the first term in equation (11) provides a good approximation to W_{ij} .

For the case in which the mesh spacing is small compared with the migration length M, ordinary diffusion theory would be expected to apply. For k_{∞} and M^2 constant, the difference form of the one group, one dimensional diffusion equation is

$$\Phi_{i+1} - 2\Phi_{i} + \Phi_{i-1} + \left(\frac{k_{\infty} - 1}{M^{2}}\right) h^{2}\Phi_{i} = 0$$
(12)

Solving for Φ , yields

$$\Phi_{i} = \frac{1}{2 - \left(\frac{k_{\infty} - 1}{M^{2}}\right) h^{2}} |\Phi_{i+1} + \Phi_{i-1}|$$
(13)

Assuming S_i is proportional to Φ_i , equation (13) with $\lambda=1$ leads to the following form for Φ_i :

$$\Phi_{i} = \frac{k_{\infty i}}{1 - k_{\infty i} W_{ii}} \left[\Phi_{i+1} \dots W_{i+1,i} + \Phi_{i-1} W_{i-1,i} \right]$$
(14)

For the case in which \boldsymbol{k}_{∞} and \boldsymbol{M}^2 are constant

$$W_{i+1,i} = W_{i-1,i} = W_{i,\frac{1}{2}+1} = W_{i,i-1} = W_{ij}$$

and equation (14) can be written

$$\Phi_{i} = \frac{k_{\infty i} W_{ij}}{1 - k_{\infty i} W_{ii}} \left[\Phi_{i+1} + \Phi_{i-1} \right]$$
(15)

For the one dimensional situation $W_{ii} = 1-2W_{ij}$ and comparison of equations (13) and (15) results in the following form for W_{ij} .

$$W_{i,j} = \frac{M^2}{h^2 k_{\infty i}}$$
(16)

This W_{ij} is no longer simply interpretable as an absorption probability but should be looked upon as the form required for W_{ij} in order that the nodal equations (14, 3 or 10) reduce to be equivalent to a one group diffusion theory model. For mesh spacing small compared with M, the one group diffusion theory solution would be expected to be more accurate than a solution based on equation (11) neglecting interactions beyond the nearest neighbors. In the code a general form for W_{ij} has been provided to allow the user to chose the model which best fits his situation. Thus equation (16) has been combined with the first term of equation (11) using a "mixing" factor g and defining

$$W_{ij} = (1-g) \frac{\sqrt{M_i^2}}{2r_{ij}} + g \frac{M_i^2}{r_{ij}^2}$$
(17)

In this equation the dependence of W_{ij} on $k_{\infty i}$ (equation 16) has been suppressed for the sake of arriving at a simpler kernel. For g=0, equation (17) reduces to the first term of equation (11) whereas for g=1 equation (17) reduces to equation (16) with $k_{\infty i}$ =1.

It can be seen that with W defined by equation (17) there is no assurance that

$$W_{ii} \equiv 1 - \sum_{j=1}^{N} W_{ij} \ge 0$$

For equal W_{ij} at six adjacent nodes this would require

which can not be obtained for any value of g when $\beta > 0.4$.

From a physical standpoint there is no necessity for W_{ii} to be positive when using the second interpretation of the kernel (eq. 16) i.e., with g=1 in eq. (17). In any case a negative value for W_{ii} will not lead to unphysical results (i.e., negative values of S_{2}) as can be seen from equation (3). However with g=0 and interpreting W_{ij} as an absorption probability, negative values are unrealistic and therefore an alternate form for the kernel (<u>Second type</u>) has been derived which forces W_{ii} to be ≥ 0 . In this alternate kernel it is assumed that W_{ij} has the form

$$W_{ii} = 1 - e^{-\gamma^2 (a^2/M^2)}$$
(18)

where γ is an arbitrary constant, and a is the radius of a sphere with equivalent mean chord length.

This leads to the result

$$a = \frac{3(\Delta x) (\Delta z)}{2(\Delta x) + 4(\Delta z)}$$

If it is further assumed that

$$\frac{(W_{ij})_{horiz}}{(W_{ij})_{vert}} = \left(\frac{\Delta z}{\Delta x}\right)^n$$

then one obtains,

$$(W_{ij})_{h} = \frac{e^{-\gamma^{2}}(a^{2}/M^{2})}{4 + 2\left(\frac{\Delta x}{\Delta z}\right)^{n}}, \quad \gamma \equiv g_{h}$$
(19)

- 11 -

$$(W_{ij})_{v} = \left(\frac{\Delta x}{\Delta z}\right)^{n} (W_{ij})_{h} \cdot C_{w}, \quad n \equiv g_{v}$$
(20)

 C_w , g_h and g_v input quantities provided by the user

Equations 17, 19 and 20 provide the expressions of the first and second type of transport kernel available in the SIMULA-3 code.

The third type of transport kernel is the following:

$$(W_{ij})_{h} = \frac{g_{h} p_{l}}{4+2\left(\frac{\Delta x}{\Delta z}\right) g_{v}} \qquad (W_{ij})_{v} = g_{v}(W_{ij})_{h} \cdot \frac{\Delta x}{\Delta z} \qquad (21)$$

where p_{η} is the escape probability.

The <u>fourth type</u> is recommended, and it has been developed for this version, following an equivalence principle to the leakages in diffusion theory calculations for particular values of the transport factors.

The expressions are the following

$$(W_{ij})_{h} = \frac{2}{1 \div \frac{\vec{r}_{i}}{\vec{f}_{j}} \frac{M_{i}^{2}}{M_{j}^{2}}} \frac{g^{h} \cdot M_{i}^{2}}{k_{\infty i} \cdot x^{2}}$$
(22)

$$(W_{ij})_{v} = \frac{2}{1+f_{ij}\frac{M_{i}^{2}}{M_{j}^{2}}} \qquad \frac{g^{v} \cdot M_{i}^{2}}{k_{\infty i} \cdot z^{2}}$$

f and f are the "transport factors" and are input data to the code.

Note, that on the vertical direction the ratio $f_{ij} = f_i/f_j$

..

- 12 -

is directly used, because the experience shown that it is practically constant for all the nodes interfaces in this direction.

For the peripherical nodes the transport kernel is

$$W_{i} = \frac{M_{i}^{2}}{k_{\infty i} x^{2}}$$

and the neutron balance in the node ℓ is

$$\sum_{m} (W_{\ell m} \cdot S_{\ell} - W_{m\ell} S_{m}) + n_{\ell} (1 - \alpha_{\ell}) W_{\ell} \cdot S_{\ell} + \frac{S_{\ell}}{k_{\infty \ell}} = \frac{1}{k_{\text{eff}}} \cdot S_{\ell}$$

Note, that for this transport kernel type, the eigenvalue (LAMBDA in the code) is the effective multiplication factor (source/absorption + leakage), while for the previous transport kernel types 1 to 3 the eigenvalue λ is: (source-leakage)/ absorptions, which is equal to the effective multiplication factor if, and only if $\lambda = k_{eff} = 1$.

b) Source iteration equations.

The equations (3) and (10) are solved iteratively to get the source and eigenvalue convergence, using the following expressions.

For a given void loop where the moderator relative density is kept constant, the source iteration continues until the source or eigenvalue converges within a criteria or the number of iterations exceeds the limit.

$$\begin{aligned} \frac{\text{Node-by-node calculation for transport karnels types 1,}}{2 \text{ or 3 (old versions).}} \\ z_{ijk} &= \frac{s_{i-1,j,k}^{h} + s_{i+1,j,k}^{h} + s_{i,j-1,k}^{h} + s_{i,j+1,k}^{h} + s_{i,j,k-1}^{v} + s_{i,j,k+1}^{v}}{\lambda/k \alpha_{ijk} - (1 - 2W_{ijk}^{v} - 4W_{ijk}^{h}) - \alpha_{ijk}^{v} W_{ijk}^{v} - \alpha_{ijk}^{h} W_{ijk}^{h}} \\ z_{ijk} &= s_{ijk} W_{ijk} \end{aligned}$$
(24)
$$s_{ijk} = s_{ijk} W_{ijk} \\ z_{ijk} &= \frac{x_{\alpha_{ijk}} \sum_{i \neq i,j,k}}{\lambda + b_{ijk}} \\ \sum s_{ijk} &= \frac{1}{2} v_{ij} z_{ijk} \qquad \text{TOTAL SOURCE} \\ s_{L} &= \sum v_{ij} z_{ijk} Z_{ijk} \\ s_{K} &= \sum \left\{ v_{ij} z_{ijk} / k_{x_{ijk}} \right\} \\ v_{ij} &= \text{relative nodal area} = \frac{1}{1/2} \quad \text{normal node} \\ v_{ij} &= \text{relative nodal area} = \frac{1}{1/4} \quad \text{central node on two} \\ symmetry axes \\ \lambda &= \frac{S_{T} - S_{L}}{S_{K}} \end{aligned}$$

Line by line axial calculation for transport kernel type 4 (SIMULA-3).

The succesive line elimination-substitution method is used ower the axial lines, with source overrelation (SLOR), for a factor $\beta = 1.7$, and about 8 source iterations per void iteration.

For a source convergence of 10^{-5} , this method requires only about

..

1/10 of the number of iterations needed with the point-Jacobi method, and less than 1/2 of those needed with the Gauss-Seidel or Chabyshev source acceleration.

b.2) Source acceleration

There are different types of source acceleration.

 $\Gamma_{\rm NS}$ = Source acceleration factor at Nth iteration.

(1) Point Jacobi (IACCEL=0)

$$S_{ijk}^{*} = Z_{ijk}$$

$$\overline{S}_{ijk} = S_{ijk}$$

$$S_{ijk} = \overline{S}_{ijk} + (1 + \overline{T}_{NS}) \left[\frac{N}{S_{T}} - S_{ijk} - \overline{S}_{ijk} \right]$$
(25)

$$S_{N} = v_{ij} S_{ijk}$$
new $S_{ijk} = \frac{N}{S_{L}} S_{ijk}$
where $N = K \sum v_{ij}$

$$S_{n}^{n} = \frac{N}{2} z^{n} + \Gamma = \left| \frac{N}{2} z^{n} - \frac{N}{2} S_{ijk}^{n-1} \right|$$

$$s_{ijk}^{n} = \frac{N}{S_{T}} z_{ijk}^{n} + \Gamma_{NS} \left| \frac{N}{S_{T}} z_{ijk}^{n} - \frac{N}{S_{N}} s_{ijk}^{n-1} \right|$$
$$s_{N}^{N} = \overline{z}_{c} - \Gamma_{S} (\overline{z} - S^{\circ})$$

(2) Source over relaxation (IACCEL= -1)

$$\overline{S}_{ijk} = S_{ijk}$$

$$S_{ijk} = Z_{ijk} + F_{NS}(Z_{ijk} - \overline{S}_{ijk})$$
(26)

$$S_{N} = \sum v_{ij} S_{ijk}$$
new
$$S_{ijk} = \frac{N}{S_{N}} S_{ijk}$$

$$S_{ijk}^{n} = z_{ijk}^{n} + \Gamma_{NS} \left(z_{ijk}^{n} - \frac{N}{S_{N}} S_{ijk}^{n-1} \right)$$

$$S^{N} = z + \Gamma_{S} (z-S^{\circ})$$

(3) Gauss-Seidel (IACCEL = +1)

$$\overline{S}_{ijk}^{*} = S_{ijk}$$

$$S_{ijk} = Z_{ijk}$$

$$\overline{S}_{ijk} = \frac{N}{S_{T}} S_{ijk}$$

$$S_{ijk} = \overline{S}_{ijk} + \Gamma_{N_{S}} \left(\overline{S}_{ijk} - \overline{S}_{ijk}^{*} \right)$$
(27)

 $S_{N} = \sum v_{ij}S_{ijk}$ new $S_{ijk} = \frac{N}{S_{N}}S_{ijk}$ $S_{ijk}^{n} = \frac{N}{S_{T}}z_{ijk}^{n} + \Gamma_{NS}\left(\frac{N}{S_{T}}z_{ijk}^{n} - S_{ijk}^{n-1}\right)$ $S_{ijk}^{N} = \overline{z} + \Gamma_{S}(\overline{z} - S^{\circ})$

- 16 -

1.1.1.2. Void or moderator density iteration.

The average steam volume fraction in the moderator is calculated on the basis of a fit of steam volume fraction versus quality. The quality at each node is calculated in the following way,

$$Q_{ijk} = \left(\frac{1}{KF_{ij}}\right) \left| \begin{array}{c} \frac{1}{k} \\ \sum \\ k = 1 \end{array}\right|^{p} p_{ijk} - \frac{P_{ijk}}{2} \left| \left(Q_{ex} - Q_{0}\right) + Q_{0} \right|^{p} \right|^{p}$$

where K = total number of axial nodes in the problem

$$F_{ij}^{i}$$
 = ratio of flow in channel ij to average channel
 Q_{0} = inlet quality, $-\Delta h_{s}/h_{fg}$ (Δh_{s} = subcooling of
inlet coolant) $\Delta h_{s}/h_{fg}$ (Δh_{s} = subcooling of
 Q_{ex} = exit quality, ($Q_{ex} - Q_{0} = 3.413 \times 10^{6} P_{th}/W.h_{fg}$)
 P_{th} = thermal power, MWt
 W = coolant flow, lb/hr
 h_{fg} = enthalpy of evaporation, Btu/lb = C₇
 P_{ijk} = relative power at node $ijk=(S_{ijk}).(multiplier)$

Void fraction calculation

Once the quality of the steam is obtained from Equation (28), void fraction (χ_{ijk}) is estimated from the following equation which represents the experimentally observed correlation between voids and quality (Q_{ijk}) :

$$\chi_{ijk} = C_1 + C_2 Q_{ijk} + C_3 Q_{ijk}^2 - C_4 \exp\left(\frac{C_5 - Q_{ijk}}{C_6}\right) : Q_{ijk} > C_5$$
(29)
$$\chi_{ijk} = 0 : Q_{ijk} < C_5 \text{ or } C_6 \le 0$$

This expression permits sub-cooled voids by proper choice of the parameter C_5 and gives reasonably good agreement with experimental data throughout the range of interest.

The relative moderator density has been approximated by

$$U_{ijk} = 1 - \chi_{ijk} \left(1 - \frac{\partial_{q}}{\partial_{f}} \right)$$
(30)

Several assumptions have been made in the void iteration and they are:

- The flow rates and qualities are based on within-channel values, and therefore the nuclear parameters should be fit to in-channel moderator density.
- (2) The total heat output is assumed to go into the in-channel coolant.
- (3) The average void fraction at a node has been assumed to be equal to the void fraction of the average quality at that node.

The nuclear and thermal-hydraulic parameters are closely related, and the final solution of SIMULA represents the dynamic coupling of these parameters. Equations showing the interdependence of nuclear and thermal-hydraulic parameters and methods used to calculate various parameters are shown in the next section.

Nodal Power calculation.

The relationship between nodal power and source is

$$P_{ijk} = S_{ijk} (B_{24} + B_{25} E + B_{26} E^2)$$
(31)

Equation (31) is used to account for the difference between relative nodal source (number of neutrons produced) and relative nodal power (heat generated) due to change in the relative ratios of fissile nuclides as a function of fuel burnup. S_{ijk} is normalized to core average of unity prior to calculation of P_{ijk}, and P_{ijk} is also normalized to core average of unity after the calculation by Equation (31).

Budle Relative Flow Rate versus Relative Power.

 $F_{ij}^{i} = F_{ij} \left| 1 + FP_{ij} (\overline{P}_{ij} - 1) \right| Z_{3}$ (32) where $F_{ij}^{i} =$ bundle relative flow $F_{ij} =$ relative channel flow (input data card type 6A) $FP_{ij} =$ power dependent flow factor (input data card type 6B) $\overline{P}_{ij} = \frac{1}{K} \sum_{k=1}^{K} P_{ijk}$ $Z_{8} =$ normalization factor

The normalization factor, Z_8 , is calculated internally by the code to maintain the average relative flow at unity.

1.1.1.3. Critical Searches.

Other loop of external iteration to the source-moderator density iteration, is a critical search, the possibilities available are for the moment: the control rod position or soluble poison concentration searches.

The corresponding iteration loop is in the Figure 2

a) Critical Control Rod Position Search

Individual control rod position which are initially given as input data are moved uniformly by a fixed distance, first by the initial guess (RINC) and then by the amount obtained by linear interpolation or extrapolation of the last two results, until the eigenvalue (λ) converges to the desired value (λ_0) within a criterion specified by DXLC. The interation will be terminated if the problem does not converge within the maximum allowable number of iterations given by NCMAX.

The control rods, which are initially "fully in" or "fully out", are not moved during the search iteration, and when any or some of the rods which were partly in the core initially become fully inserted or fully withdrawn during the search iteration, the case cannot be completed and will be terminated. At present, the rod position search option is designed for the full lenght control rods, and therefore, the usefulness for the partlength control rods can not be guaranteed.

b) Critical Soluble Poison Search

The option searches for a uniform soluble poison in the moderator, which provides a desired core reactivity (λ_0) . It works ordinarily for the pressurized water reactor (PWR) types, but since the effect of soluble poison on k_m is a

-. ..

FIGUPE 2

Source iteration Loop

•. ··

- 21 -

.т.

function of the moderator relative density also, it can be used for any reactors with axially varying moderator density.

It must be noted, that the final value of critical poison is expressed in ppm (parts per million of moderator) in the moderator with relative density of unity.

In the search, SIMULA first computes the core λ with the initial guess of poison and then computes the core λ with the initial value plus 20 ppm which is an input. From these two values of λ , the code obtains the third guess of soluble poison by either linear interpolation or extrapolation of two λ 's. And the new guess of poison is used to calculate a new core λ . For each successive iteration, a new value of poison is obtained by linear interpolation or extrapolation of the last two results. This process continues until the convergence criterion (DXLC) is satisfied between λ_0 and the last λ , or the maximum number of iteration (NCMAX) is exceeded.

1.1.1.4. Fuel Burnup

The code proceeds automatically in the cycle burnup calculation, going from one burnup step to the next one, determining at the begiming of each step the burnup by node. It provides complete lifetime analysis of the reactor, and permits refueling and shuffling of the fuel elements at any time in core life.

1.1.2. $k_{_{\!\!\!\!\infty}} \text{ and } M^2$ calculations.

In the neutron balance equation are involved the infinite multiplication factor k_{∞} , and through the transport kernel the migration area M^2 , the nodal values of these parameters should be determined by the code, depending of the local values of the physical and neutronic variables that had any influence on them, The migration area is determined versus the moderator density value, by an internal correlation in the code, whose constants are input data and should be determined previously by fuel assembly calculations at different moderator densities.

The same procedure is used for the k_{∞} determination, best in this case, after the calculation versus the moderator density, some corrections or reactivity worthes are applied to take account the local value of the variables with relevant influence in the final value; those are, the exposure, the power density, the Xenon and Boron concentrations. The changes in reactivity associated to the mentioned variables are also determined by the code through special correlations, whose constants are also input data.

The local k value is determined by the following expression:

$$k_{\infty} = H \left[1 + \left(\frac{\Delta k_{\infty}}{k_{\infty}}\right)_{Xe} + \left(\frac{\Delta k_{\infty}}{k_{\infty}}\right)_{Dop} \right], \left[1 + \left(\frac{\Delta k_{\infty}}{k_{\infty}}\right)_{E} + \left(\frac{\Delta k_{\infty}}{k_{\infty}}\right)_{P} \right].$$

$$\left[1 + \left(\frac{\Delta k_{\infty}}{k_{\infty}}\right)_{B} \right]$$
(33)

where $H = [k^{+} + \{(0.5)(c_{+}) - 0.5\}(k^{+} - k^{-})]XK_{ij}^{i}$

 k^+ , $k^- = k_{\infty}$ versus moderator density, with control and without control. See equations (35).

- c_{+} = the fraction of control. See input card type 1.
- XK' = partial fuel factor (See input cards 8) the CONCON and CONAXI codes may be used to calculated these factors.

To determine the constants of the correlations used by the code, a set of fuel assembly calculations at different conditions should be executed. As the change in reactivity is determined for each isolated variable, the procedure is to run a set of

- 23 -

cases for each variable, changing only one of them, keeping the others at the reference condition. Of course, the variables should take values close to the reference conditions and in the range of the expected local values for the whole core calculation. The recommended way is to adopt the average conditions in the core as the reference conditions.

The correlations used by SIMULA-3 are the following:

- a) M^2 as function of relative moderator density.
- b) k_{∞} as function of relative moderator density
- c) Doppler worth as function of relative power density and moderator density.
- d) Equilibrium Xenon worth as function of relative power density and moderator density.
- e) Boron worth as function of Boron concentration and exposure.
- f) Exposure worth as function of exposure.
- g) Burnable poison.

The moderator density and power density are relative values in respect to the core average moderator density and power density at nominal operating conditions.

On these correlations is possible to see the influence of some "Grossing effects", for instance the power density not only has an influence in the Doppler worth, besides it has also an influence in the Xenon worth. This is the way that has been found as more suitable to represent the actual behaviour.

The correlations used presently by the code are analized in the next parragraphs.

a) Migration area

 $M^{2} (control) = B_{1}(1+B_{2}U+B_{3}U^{2}) XM_{ij}$ (34) $M^{2} (no control) = B_{4}(1+B_{5}U+B_{6}U^{2}) XM_{ij}$ U = relative moderator density. $B_{1} to B_{6} are input data.$ $XM_{ij} = M^2$ correction factor (See input cards 8), they may be determined by CONCON and CONAXI codes.

 M^2 for intermediate control rod positions are linearly interpolated between two values.

b) k versus moderator density.

$$k_{\infty} (\text{control}) = B_7 (1 + B_8 U + B_9 U^2) = K^+$$

$$k_{\infty} (\text{no control}) = B_{10} (1 + B_{11} U + B_{12} U^2) = K^-$$
(35)

 B_7 to B_{12} are input data.

For other rod positions, $k_{_{\rm C\!C}}$ is determined by linear interpolation of two values.

c) Doppler worth.

 $- \left(\frac{\Delta k_{\infty}}{k_{\infty}}\right)_{\text{Dop}} = f_{D}(P) \cdot g_{D}(U)$

$$f_{D}(P) = B_{16}P(1 + B_{42}P)$$
(36)

$$g_{D}(U) = 1 + B_{17}(1-U) \cdot (1+B_{43}U)$$

$$P = \text{relative power density.}$$

$$U = \text{relative moderator density.}$$

$$B_{16}, B_{17}, B_{42} \text{ and } B_{43} \text{ are input data.}$$

d) Equilibrium Xenon worth.

$$- \left(\frac{\Delta k_{\infty}}{k_{\infty}}\right)_{Xe} = f_{X}(P) \cdot g_{X}(E) .$$

$$f_{X}(P) = \frac{B_{14}P (1+B_{13})}{P+B_{13}}$$
(37)

$$g_{X}(E) = 1 + B_{15}E + B_{44}E^{2} + B_{45}E^{3} + B_{46}E^{4}$$
(38)

$$P = \text{relative power density.}$$

$$E = \text{exposure, in 10}^{3} \text{ Mwd/T units}$$

$$B_{13}, B_{14}, B_{15}, B_{44}, B_{45} \text{ and } B_{46} \text{ are input data.}$$

e) Boron worth.

$$- \left(\frac{\Delta k_{\infty}}{k_{\infty}}\right)_{B} = U \cdot f_{B}(B) \cdot g_{B}(E)$$

$$f_{B}(B) = B \cdot \left(B_{29} + B_{30}B + B_{31}B^{2}\right)$$

$$g_{B}(E) = 1 + B_{32}E + B_{33}E^{2} + B_{40}E^{3} + B_{41}E^{4}$$

$$B = \text{boron concentration in ppm.}$$

$$E = \text{exposure, in 10}^{3} \text{ Mwd/T units.}$$

$$B_{29} \text{ to } B_{33}, B_{40} \text{ and } B_{41} \text{ are input data.}$$

$$(39)$$

f) Exposure worth.

$$- \left(\frac{\Delta R_{\infty}}{R_{\infty}}\right)_{E} = B_{13} + B_{20}E + B_{21}E^{2} + B_{22}E^{3} + B_{23}E^{4}$$
(40)

 $E = \exposure$, in 10³ Mwd/T units. B₁₈ and B₂₀ to B₂₃ are input data.

The exposure E, is computed as follows:

$$E_{t} = E_{t-1} + B_{28} \cdot \Delta E \cdot P \cdot Z_{E}$$
 (41)

where t = time step number

 $\Delta E = \exp osure increment, 10^3 Mwd/T.$

 Z_{E} = normalization factor

 B_{28} = is to account for non-uniform fuel loading.

- 26 -
The normalization factor, Z_E , is computed internally by the code to maintain the core average value at ΔE . B_{28} is used to account for non-uniform fuel loading.

g) Burnable poison.

$$-\left(\frac{\Delta k_{\infty}}{k_{\infty}}\right)_{\rm P} = B_{18} \exp\left(-B_{19}E\right) \tag{42}$$

this can be used to include other burnup dependent effects.

1.1.3. Geometry.

The rectangular parallelepiped reactor represented by the XYZ coordinates is subdivided into small regions which are called "nodes" or "nodal regions". A node, whose volume is given by $(\Delta X)^2 (\Delta Z)$, is the fundamental region in all SIMULA calculations, and input and output data are given by nodes. The node numbering used is shown in Figure ³, where Node (1,1,1) is in the far left corner at the bottom. Where it is necessary to specify a particular edge or corner of a node, the following convention is used: the far left-hand corner at the top of each node is given the same index as the node itself.

Six different types of core boundaries due to symmetry conditions in the radial (XY) direction are available in SIMULA. These are shown in Figures 4 through 13 and are as follows:

- 1) 1/4 core, reflected at node centerline
- 2) 1/2 core, mirror symmetry, reflected at node centerline
- 3) 1/2 core, mirror symmetry, reflected at node boundary
- 1/2 core, 180° rotational symmetry, reflected at node centerline.

Figure 3 Schematic of Nodal Directions

<u>%Core Symmetry,</u> <u>Node Centerline (ISYM=4)</u>

Figure 6

<u>%Core, Mirror Symmetry,</u> Node Boundary (ISYM=1)

Figure 8 ½Core, 180^o Rotational Symmetry, <u>Node Boundary (ISYM=0)</u>

Figure 10

Figure 11 1/4 Core, 90°Rotational Symmetry Node Boundary (ISYM=6)

1/8 (Core,	Mirro	r Symmetry
Node	Cente	erline	(ISYM=-4)

- 30 -

5) 1/2 core, 180° rotational symmetry, reflected at node boundary.

6) Full core.

7) 1/4 core, mirror symmetry, reflected at node boundary.

8) 1/4 core, 90° rotational symmetry about node boundaries.

9) 1/8 core, mirror symmetry, reflected at node centerlines.

10) 1/8 core, mirror symmetry, reflected at node boundaries.

Calculation of Fuel Border Types.

NBT_{ij} is a border type indicator as shown below: NBT_{ij} = 0, if inner elements (has 4 neighbors) = +, if border elements (neighbor(s) missing) = -, if no fuel element

and is calculated from:

NBT_{ij} =
$$\delta_{ij-1} + 2\delta_{i,j+1} + 4\delta_{i+1,j} + 8\delta_{i-1,j}(1 + 6\delta_m)$$
 (43)
where $\delta_{ij} = 0$, if fuel element in i, j
= 1, otherwise
 $\delta_m = 1$, if mirror symmetry

= 0, if 180° symetry

1.1.4. Transient Xenon Calculation.

The following are some of the types of transient Xe calculations which can be performed using SIMULA

- I-135 and Xe-135 buildup and decay starting from the beginning of life at any power level (fuel burnup cannot be performed parallel to the Xe calculation but the existing spatially non-uniform fuel exposure can be maintained throughout the Xe calculation).
- I-135 and Xe-135 buildup and decay from a given set of I-135 and Xe-135 concentrations and a nodal power distribution

- 31 -

at any power level.

- 3) Change power level (including zero power) from an equilibrium core condition at any power level and exposure distribution, and follow the buildup and decay of I-135 and Xe-135 and the change in power distribution with time. The power level and control rods can be changed at any time step, and the core transients can be followed without terminating the current job.
- Follow the complete operating history of an operating reactor with fuel burnup and then do the I-135 and Xe-135 transient calculations at any power level.

The I-135 and Xe-135 decay and buildup equations are rigurously solved under the assumption of constant neutron flux for a given time step.

$$Xe_{t+\Delta t} = Xe_{t} \exp(-A_{Xe} \cdot \Delta t)$$

$$+ \frac{(y_{I} + y_{Xe}) (S \cdot P \cdot \Phi \Sigma_{f})}{A_{Xe}} [1 - \exp(-A_{Xe} \cdot \Delta t)]$$

$$+ \frac{\lambda_{I}I_{t} - y_{I} \cdot S \cdot P \cdot \Phi \Sigma_{f}}{A_{Xe} - \lambda_{I}} [\exp(-\lambda_{I} \cdot \Delta t) - \exp(-A_{Xe} \cdot \Delta t)]$$

$$(44)$$

$$I_{t+\Delta t} = I_{t} \exp(-\lambda_{I} \cdot \Delta t) + \frac{y_{I} \cdot S \cdot P \cdot \Phi \Sigma_{f}}{\lambda_{I}} [1 - \exp(-\lambda_{I} \cdot \Delta t)]$$
(45)

$$Xe_{equil.} = \frac{(y_{I} + y_{Xe}) (S \cdot P \cdot \Phi \Sigma_{f})}{A_{Xe}}$$
(46)

where
$$\Phi \Sigma_{f} = \frac{(P_{r}) (6.2422 \times 10^{18})}{(k_{f})(TN)(\Delta X)^{2}(\Delta Z)}$$
 (47)

 $P_r = rated$ core power in MW

TN = total number of nodes with fuel

- 32 -

The effect of time - dependent Xenon on ${\bf k}_{_{\infty}}$ is

$$\frac{(\Delta k_{\infty})}{k_{\infty}} \times e_{t} = \left(\frac{\Delta k_{\infty}}{k_{\infty}}\right) \text{ equil. Xe } \left(\frac{Xe_{t}}{Xe_{equil.}}\right)$$
(50)

1.2. Input Data.

All data input cards have the same format except the DIMENSION and TITLE cards, and when ID cards are used as in card 10A. Any characters may be punched in columns 1-10 for user identification. Three 2-column descriptors are punched in columns 11-16. The first descriptor is the card type punched in columns 11-12. The other two descriptors are used for further identification and for running options.

The general data supplied on each data card is punched in free form in columns 17 through 80. The general format is: (2A5,3I2, Free format). Free form requires that each number be separated by one or more spaces or a comma from its neighbors. Thus, no spaces may occur between the characters of a single value. Decimal points are not required unless the value is non-integer. Exponential scaling is optional with or without an E and followed by a signed integer scaling factor. In order to simplify the input, there are two options to avoid the input of unnecessary data

Sn : space or skip n input values.

Rn : repeat the last given input value n more times.

Maximum number of values per card: 70 (including the skipped and repeated values).

If the required data do not fit on a single card, the continuation card should have columns 11 to 16 as the previous card.

In a change case, only the input data that are changed from the previous case should be suplied.

1.2.1. Input data format and description.

The summary of SIMULA-3 input data which are described in this section is given in Table 1 at the end of this section. Arrangement of SIMULA-3 input data cards is shown in Table 2, also at the end of this section. DIMENSION CARD (314) (always required)

and an and the second

Column	Content	Description
3-4 7-8 11-12	ID JD KD	Numbers of nodes used in the $I(X)$, $J(Y)$, and $K(Z)$ directions by all the cases in this job. Any case in the job must have this set of ID, JD, and KD; otherwise, it must be run in another job with different ID, JD, and KD. Maximum KD is 34.
•		This card must be placed before the case data which are described below. The purpose of this card is to specify the number of nodes used by <u>all cases</u> in this job and to check whether the current version is big enough to handle the number of nodes. See Section 1.5.4. for the rela- tion between the size of code and the number of codes.
TITLE CARD	(A1, A4,	15A5) (always required)
1		Case initialization parameter:
	"T"	<pre>= reference (independent) case, input data initialized before input read</pre>
	"D "	<pre>= change (dependent) case, input, data not initialized</pre>
·.		Restart case with a restart file (TAPE 1) must be a dependent case and the first case of a job. The restart tape must contain a case which has the same nodal meshes as the current case. See Section 1.5.1.

2-5 If this space is left blank, no action is taken

"SAVE" The code creates a restart file (TAPE 2) at the end of the case containing the case data. See Section 1.5.1. for tape contents.

6-80 ITITLE Alphanumeric description of the case'

CARD TYPE 1 - Case Control Parameters (1)

11-12 01

13-14

Column	Content	Description
15-16	IBURN (integer)	In this value is 0, the program will calcu- late a source for the exposure distribution up to (but not exceeding) E=E _{max} and go the next case. If IBURN=1 an extra exposure dis- tribution is calculated (but no additional source) before going to the next case.
17-80		FREE FROM DATA:
	(1) E ₈	For fuel exposure calculation: initial ave- rage core exposure in 10 ³ MWD/T.
		For transient Xe calculation: initial time in hr.
	(2) E _{max}	For fuel exposure calculation: final average core exposure in 10^3 MWD/T for which a source is to be calculated.
	·	For transient Xe calculation: final time in hr.
	(3) AE	For fuel exposure calculation: average core exposure increment per step in 10 ³ MWD/T.
		For transient Xe calculation: time increment per step in hr.
		For a change case, if not given, the last value of exposure array from the preceding case is used. However, the cycle "0" expo- sure printed in the heading is E0.Hence the average value of the three dimensional expo- sure array used in the calculation may not be the same as E0. The case is terminated when E0 + n . $\Delta E \ge E_{max}$. E0, E_{max} , and ΔE
		are independent or rr or rth berow.
	(4) AX	Radial ($\Delta X = \Delta Y$) dimension of node in cm; one value represents ΔX and ΔY for all nodes.
	(5) AZ	Axial dimension of node in cm; one value represents AZ for all nodes.
	(6) P _{th}	Actual thermal power of that part of the reactor included in the problem, Mw.
	(7) P _r	Rated thermal power of that part of the reactor included in the problem, Mw.
		P_{th} and P_r must be the values corresponding to the actual geometry given by ISYM in card type 2.
	(8) W ₁ (9) W ₂	These two values determine the total reac- tor coolant flow in lb/hr. Flow = $W_1 + W_2 (P_{th}/P_r)$. One might define $W_1 + W_2$ as the total live

•

••

121

مهاد مصميتين براي البين الألاج والبيين وي

Column	Content	Description
17-80 (Cont'd)		water flow (throught the channels) at rated power and W_2 as the change in flow per fractional change in reactor power.
	(10) h _{s1} (11) h _{s2}	These two values are similar to the two above in that they are used to determine the subcooling of the <u>inlet</u> coolant in Btu/lb. Note that Δh_s is positive, and corresponds to $(h_f - h_{inlet})$, where h_f = enthalpy of saturation h_{inlet} = subcooling of inlet coolant
		$\Delta h_{s} = h_{s1} + h_{s2} (P_{th}/P_{r})$
		Normaly use for PWR applications: $h_{s1} = -h_{inlet}$, $h_{s2} = 0.0$.
	(12) CRNR	CRNR is defined as the number of corner rods which must be inserted around a node to give full control. Suppose that four corner rods are inserted about a node at the sixth level (k=6) to 5.4, 5.1, 3.8, and 6.8, respectively, and that the number of corner rods required is 3 (CRNR = 3.0). Then the fractional control exerted on that node is (0.4 + 0.1 + 0.0 + 1.0)/CRNR = 0.5 and that node is half controlled. See card type 5 for description of control rod positions. A control rod inserted past a node has unity (1.0) effect. If the node is at level k, a control rod inserted to positions between (k-1) and k has fractional effect. A control rod inserted to less than k has no effect.
		CRNR = 0 defines a control rod in the center of each fuel bundle which directly affects only that bundle and provides full control when inserted, that is the case of PWR applin- cations.

•. ..

Column	Content	where rods/node = CRNR and, if CRNR is zero,
17 - 80		$c_t = 2e_{ijk} - 1$
(Conc a)		The case for $c_t=-1$ and $c_t=+1$ represent "no and full control", respectively for the standard convention adopted for SIMULA-3. That is, it is assumed that the control rods are inserted from the bottom of a reactor as in BWR.
	(13) ITAPE	= 0: No errect
		= 1: Use a flat source guess instead of input values from cards or preceding case, or the restart tape (TAPE 2)
	(14) IMAEWR	Option for thermohydraulic correlations:
		= 1.0, for PWR applications.
		-
	(15) IBUG1	Debugging output option (Don't use for a nor- mal run)
		= 0: No effect
		= 1: Additional output at the beginning of each case in the amount specified by IBUG2
		= 2: Additional output for each void iteration in the amount specified by IBUG2 except NBT.
	(16) IBUG2	Debugging output control.
		= 0: Prints NBT and YY arrays
		= 1: Prints NBT, YY and CT arrays
		= 2: Prints above plus WV, WH, D, G, H, S, SRC, and U arrays
		= -1: Overrides IBUG1 and prints the content of the restart tape including E, F, FP, R, RH, XK, EID, and XEN.
	(17) RMAX -	Critical control rod position search parameter:
		= 0: no rod position search.
	• •	<pre># 0: upper limit of control rod position. This is the axial position of control rod at "fully-in" condition (for rods entering from the bottom).</pre>
	(18) RMIN	Valid only when RMAX=0. The lower limit of control rod position. It is the axial position of control rod at "fully out" condition (for rods entering from the bottom as in BWR appli- cations).

- 38 -

Description Content

17-80

Column

Relevant only when RMAX>0. First increment (19) RINC (Cont'd) guess for control rod position search. A positive number means "upward" and a negative number means "downward". If not given, the code assumes +0.5.

> RMAX and RMIN must be given in nodes and fractions of node as in card type 5. For control rod position search (RMAX=0), additional data (XLMBDA, DXLC, and NCMAX) or card type 2 must be provided.

- (20) NOPT Special option parameters:
 - = 0: no special option
 - = 1: transient Xe. calculation starting from zero concentrations of I-135 and Xe-135, or from the existing concentrations carried over from the preceding case.
 - = 2: transient Xe calculation starting from equilibrium concentrations of I-135 and Xe-135.

The transient Xe calculation is performed by each node with Equations (44) through (50) and material constants B34 through B38 on card type 3 are required for this calculation.

= 3: critical soluble poison search. This option is primarily intended for the PWR types. This option requires PPM as the initial guess and it also requires material constants B_{29} through B_{33} , B_{40} , and B_{41}

Equation (39) gives the effect of soluble poison on nodal $k_\infty.$ Additional data (XLMBDA, DXLC, NCMAX) on card type 2 are required for this option.

(21) PPM

If NOPT=3, this value becomes the initial guess for the soluble poison search in ppm of uniform scluble poison. For this purpose PPM must be non-zero. The second guess of the soluble poison is the above value plus 20 ppm. ÷ .

If NOPT=0, this value becomes the uniform soluble poison and its effect on k^{∞} is given also by Equation (42) or (51).

Column	Content	Description
17-80 (Cont'd)		For change cases, if not given, the code sets it to the value of PPM finally used in-the preceding case.
CARD TYPE	$\frac{2}{2}$ - Case Con	ntrol Parameter (2)
11-12	02	•
13-14	KP (integer)	0: If KP=0, then the S, E, EID, and XEN arrays are punched in BCD form (identical to input formats) at the end of final exposure step if IPCH=1. (See 1.4.2.).
		N≠0: If KP=N, the above nodal parameters are punched after every N exposure (or time) steps if IPCH=1. (See 1.4.2.).
		If no burnup or xenon calculation is performed only S arrays will be punched as above; however, both S and E arrays are punched at the end of the Haling (reload option) calculations if KP=0 and IPCH=1 regardless of IHAL.
15-16	IPCH (integer)	1: Punching of nodal data performed as above.
		Punching of nodal power only as above.
		0: No punching of data.
17-80	(1) ISYM	FREE FORM DATA:
		This is a boundary condition indicator. Figu- res 4 through 13 illustrate the following table.
		= 4: 1/4 core, node centerline (Figure 4)
		= 3: 1/2 core, node centerline, mirror symmetry (Figure 5)
		<pre>= 1: 1/2 core, node boundary, mirror symmetry (Figure 6).</pre>
		<pre>= 2: 1/2 core, node centerline, 180° rotational symmetry (Figure 7).</pre>
		= 0: 1/2 core, node boundary, 180° rotational symmetry (Figure 8).
		= -1: Full core (Figure 9).
		= 5: 1/4 core, node boundary, mirror symmetry (Figure 10).
		<pre>= 6: 1/4 core, node boundary, 90° rotational symmetry (Figure 11).</pre>
		= -4:1/8 core,mode centerline, mirror symmetry (Figure 12).
		= -5: 1/8 core boundary, mirror symmetry (Fig. 13).
		Each figure is an X-Y plane, the type of boundary condition is the same for all Z.

•

.

<u>Column</u> <u>Content</u>

Description

- (2) KMAX Number of axial nodes for this case. Maximum allowable KMAX is KD. Minimum KMAX = 2. The following 7 parameters are used for termination of various iteration loops. See Figure 2 for the flow of iteration and the location of each convergence test.
- (3) DELSX Convergence criterion for nodal source convergence.
- (4) NSMAX Maximum number of source iterations per moderator density calculations (U_{ijk}). Two iterations will be run even if NSMAX<2. Use about ⁸, fewer if void dependence is severe, and more if void dependence slight.
- (5) BXLS Eigenvalue convergence criterion within a void loop.
- (6) NUMAX Maximum number of void loops $(U_{ijk} \text{ calculation})$ per exposure or time step. If NUMAX=0, only U_{ijk} and $k_{\infty ijk}$ are recalculated, but S_{ijk} is not so, that input source (or from previous case) will be used in burnup calculation.
- (7) DXLU If λ from the last source iteration of the previous void loop is less than DXLU from the λ of the last source iteration of this void loop, then the void loop is terminated (converged).

 $\left|\lambda_{u} - \lambda_{u-1}\right| \leq \text{DXLU}$

- (8) NCMAX. Maximum number of search (control rod or poison) iterations. It must be greater than 2 if not zero.
- (9) DXLC Eigenvalue convergence criterion for search calculations. The search is terminated when

 $\left|\lambda_{c} - \lambda_{0}\right| < DXLC$

Where c is the search loop count, and λ_0 is the critical λ (XLMBDA). The magnitude of this value depends upon the accuracy of λ_c desired by the user.

Column	Conte	ent	Description
17-80 (cont'd)	(1Ó)	XLMBDA	Initial guess on core eigenvalue $(\lambda_0) > 0$. This is also the value of critical eigenvalue (λ_0) to converge on, for a) power search, b) fuel reload option, c) control rod position search, and d) uniform prison search.
	(11)	DLP	Power search option
			= 0: Normal eigenvalue calculation.
			> 0: Searches for the reactor core power level for an eigenvalue λ_0 and return to the void loop; it will do this until.
			$ \lambda - \lambda_0 \le DLP$ or a maximum of five times.
	/		The estimate of core power is a straight line approximation using an assumed slope for estimating the second value of power and the input value for the first.
	(12)	AV ₁	Vertical albedo for bottom (k=1)
	(13)	AV KMAX	Vertical albedo for top (k=KMAX)
	(14)	not used	
	(15)	XKRNL	= 4: Use the fourth type transport kernel given by Equations (22). This is re- commended.
	(16)	g ^A	Transport kernel maxing parameter for ver- tical (v) and horizontal (h) directions.
	(17)	gh	respectively. See Equations (17), (19), (20), (21) and (22). Set both to 1.0 for XKRNL=4.
	(18)	Cw	Constant for the second type transport kernel. See Equation (20). The code sets this to 1.0, if not provided or entered zero. For XKRNL=4, the horizontal albedoes are multiplied by C _w , it can be used as density factor.

.

(19) not used

•

,

Column	Content	Description
17-80 (cont'd)	(20) IPRT	= 1: prints the input B's.
		= 0: deletes the printing.
	(21) IPRT3	= 1: deletes the 3D printout of E, Xe and I arrays.
		\leq 0: prints all 3D arrays.
		= 2: deletes also the 3D printout of U and H arrays.
		> 3: deletes also the 3D printout of SRC (power).
		> 5: deletes the printing of iteration mo- nitor.
	(22) ICOMP	< -2: prints the assembly average relative powers (2x2 nodes). Useful for 1/4 assembly/node calculations.
		> 2: makes the comparison with powers of reference.
		= 1: calculates the peak power by node, multi- plyng by a power distribution of referen- ce, suplied as input.
		= -1: the same, and then makes the colapsing by assembly (2x2 nodes).
		= 0: not used.
CARD TY	<u> PE 3</u> - Fuel .	Material Constants:
_	· · · · · · · · · · · · · · · · · · ·	-

-		
11-12	03	
13-14		
15-16	т.	The fuel material type (integer).
17-80		FREE FORM DATA:
-	^B jT	Material constants of material type T. T cannot exceed 30. There are 58 constants for each material type and the definitions are given in Section 1.1.2. and below. Subs- crip T is omitted for convenience. These da- ta may be obtained by MELON code executions :(See § 2 of $[7]$)
	B ₁ -B ₆	Used for calculation of neutron migration area See Equations (34).
	B ₇ -B ₁₂	Used for calculation of nodal k_{∞} as a function of relative moderator density (U) and control position. See Equations (35).

- 43 -

Column	Content	Description
17-80 (Cont'd)	B ₁₃ -B ₁₅	Used for calculation of equilibrium Xe effect on nodal k_{∞} . See Equations (37).
	B ₁₆ -B ₁₇	Used for calculation of Doppler effect on no-dal $k_\infty.$ See Equations (36).
	B ₁₈ and B ₂₀ -B ₂₃	Used for calculation of fuel exposure effect on nodal $k_{\varpi}.$ See Equation (40).
	^B 24 ^{-B} 26	Used for conversion from relative nodal source to relative nodal power. See Equation (31).
	^B 27	Set to 0.0 always.
	^B 28	Used for calculation of fuel depletion. See Equation (41).
	B ₂₉ -B ₃₃	Used for calculation of soluble poison effect on nodal $k_\infty.$ See Equations (39)
	B ₃₄ -B ₃₅	Used to calculate effective $(\sigma_a \phi)_{Xe}$ by equation (48).
	<u>–</u> 36	Mev released per fission, kf; if o, the code assumes a value of 200.0.
	B ₃₇	I-135 yield per fission, $\frac{Y}{I}$; if 0, the code assumes a value of 0.062.
	^B 38	Xe-135 direct yield per fission, Y_{Xe} ; if 0, the code assumes a value of 0.002.
	^B 39	$f_{ij} = f_i/f_j$ in $(V_{ij})_h$ expression for XKRNL=4.
		(See Equations (22)). It is the horizontal transport factor, average value by fuel type.
	^B 40 ^{-B} 41	Used for calculation of soluble poison effect on nodal k_{ω} . See Equation (39).
	B ₄₂ -B ₄₃	Used for calculation of Doppler effect on nodal k . See Equations (36).
	B ₄₄ -B ₄₆	Used for calculation of equilibrium Xe effect on nodal $k_{\rm \infty}$. See Equation (38).
	^B 51	$f_{k_{\infty}}$; k_{∞} correction factor, (XK) average value by fuel type in the XY plane. See Equations (33).
	^B 52 ^{-B} 53	Coefficients for linear variation of $f_{k_{\infty}}$ with density and Boron.
	^{.B} 54	f_{M^2} ; M^2 correction factor, average value by fuel type in the XY plane.
	^B 55 ^{-B} 56	Coefficients for linear variations of f_{M^2} with density and Boron.
	^B 57 ^{-B} 58	Coefficients for linear variations of f with density and Boron.

• ••

- 44 -

and the second second

Column	Content	Description
CARD TY	<u>PE 4A</u> - Radia	l Fuel Assembly Type Array
11-12	04	· ·
13-14		
15-16	I	Row designation (integer)
17-80		FREE FORM DATA:
	NFT	Fuel assembly type in j th position of i th row (Absence of fuel should be indicated by 0). NFT _{ij} cannot exceed LF, but it need not be in a consecutive order.
	_	If ISYM= -4 , -5 the $1/4$ core should be described.

CARD TYPE 4B - Axial Fuel Material Type Array

Column.	Content.	Description
11-12	04	
13-14	1	
15-16	NFT	Fuel Assembly type (integer)
_17-80		FREE FROM DATA:
	Tk	Axially varying <u>fuel material type</u> (non-zero) from K=1 tp KMAX for a given NFT. Start with a new card for each NFT, and enter data for all the NFT's which are specified on card type 4A
		If no Type 4B cards appear in a case, the axial fuel material type for a given I, J location will be set to NFT on card type 4A.
•		Type 4A cards are needed 11 type 4B cards are given.

CARD TYPE 5A - Control Position.

11-12	05				
13-14.			۰. ۲	• •	
15-16	I	Row	designation	(integer).	

Rii

17-80

Description

FREE FORM DATA:

Axial position of control rod tip in nodes and fractions of node; measured from the bottom of core. In this manual it has been assumed that the control rods entered from the bottom as in BWR; because of that in PWR, the B_1 , B_2 , B_3 , B_7 , B_8 and B_9 should be associated with control and B_4 , B_5 , B_6 , B_{10} , B_{11} and B_{12} with no control.

If CRNR on card type 01 is non-zero and positive, care should be taken that the proper values of i, j are used.

 R_{ij} is also used as the initial guess for the critical control rod position search, that is, RMAX \neq 0 on card type 1. RMAX and RMIN on card type 1 must be consistent with the definition of R_{ij} here'

lenght control rod. Type 5A cards are needed

CARD TYPE 5B - Control Length. Description Content Column 11-12 05 01 13 - 14Row designation (integer). I 15-16. FREE FORM DATA: 17 - 80RH ij Length of control rod when the control rods are part-length types. Length of control rod in jth position of the ith row is given. It is not in cm, but in nodes and fractions of node. If RH_=0, the code assumes a full-

if Type 5B cards are given.

CARD TYPE 6A - Fractional Flow.

11-12	06	•
13-14		
15-16	I '	Row designation (integer)
17-80		FREE FORM DATA:
	F _{ij}	Relative flow up each channel (i,j), norma- lized to 1.0. For a Reference Case, this is set to 1.0 by the code before input read.

CARD TYPE	<u>6B</u> - Power	Dependent Flow Factor.
11-12	06	
13-14	01	
15-16	I	Row Designation (integer).
17-80		FREE FORM DATA:
	FP ij	Power dependent flow correction factor for each channel (i,j). See Equation (32). For a Reference Case, this is set to 0.0 by the code before input read. Type 6A cards are

needed if type 5B cards are given.

CARD TYPE 7 - Horizontal Albedo.

Column	Content	Description
11-12	07	
13-14		
_15-16	I	Row designation (integer)
18-75		FREE FORM DATA:
	AH ij	Horizontal albedo of the node at the ij location. The albedo of i, j locations surrounded by fuel is 0.0, of those with one edge on a boundary of symmetry is 1.0, and of those i, j locations with two edges om symmetry boundaries would be 2.0; all four horizontal sides of a node are summed so that there is no distinction between si- des. Albedos for sides other than the above should be chosen so that the results agree with experiment or more sophisticated calcu- lations; this may take some iteration.

specified by Figures 5 through 9 and 11. Instead it should be set to 0.0. The code automatically accounts for the horizontal albedo at the above specified symmetry boundaries.

CARD TYPE 8 - Partial Fuel Factor.

11-12 08

	Column	Content	Description
	13-14	Μ	Input Data Type.
			= 0, XY distribution of the k_{∞} correction factors, to be applied to the B_{51} value.
			<pre>= 1, radial power distribution of reference (XY distribution).</pre>
			= 2, axial power distribution of reference (Z distribution).
			= 3, XY distribucion of the M ² correction factors, to be applied to the B ₅₄ value.
			= 4, XY distribution of the horizontal trans- port factor, to be applied to be B ₃₉ value.
		/	= 5, Z distribution of the vertical transport correction factors.
			All of these distributions may be determined by the CONCON and CONAXI codes. (See § 3 and § 4) of $[7]$.
•	15-16	I	- For $M=0$, 1, 3 and 4: Row designation.
			- For M=2: always I=0.
			- For M=5:
		÷ .	I=1: option for Z distribution of the k_{ϖ} correction factor.
2			I=2: option for Z distribution of the M ² correction factor.
			I=3: option for Z distribution of the transport correction factors.
4. 1	17-80	XX _{ij} or ^{XK} k	Distribution of the previously selected parameter. Increasing the j index or the k index, for XY or Z distributions, respectively. Default values are 1.0.
	CARD TYPE	<u>9</u> - Source	Guess.
	11-12	09	
	13-14	I	Row designation (integer)
	15-16	J	Column designation (integer)

~ ..

- 48 -

- 49 -

Column Content

Description

17-80 FREE FORM DATA:

Source guess: k=1 to KMAX for this i, j. Increment J by 1 for the next set of sources and so on until J=JMAX, then increment I by 1 and do the next set of J's (and their associated k's) until I=IMAX. The values of the source guess are normalized to an average value of 1.0 by the program. For a Reference Case, it is set to the value 1.0 prior to input read.

CARD TYPE 10A - Fuel Labels.

11-12	10	
13-14	I	Row designation (integer)
15-16	_	A4 FORMAT DATA:
17-20	ID _{1,1}	Four alpha-numeric characters. NOTE: This is not free form data. ID is the iden-
21-24	ID _{1,2}	in the problem; use blanks where there is no fuel. If the S_{ijk} , E_{ijk} , V_{ijk} , EID_{ijk} ,
etc.		and XEN _{ijk} are punched (see card type 02). this ID will appear in columns 3-6 of each card.

77-80 ID_{1,16} The purpose of the fuel ID is to facilitate fuel switching and to maintain records of the rearrangement. Normally, Exposure cards (type 10B) will be read in originally for each i,j position with non-zero exposure, followed by the ID cards (type 10A) to label each fuel bundle. In Change Cases thereafter, ID cards for each row in which there is to be a bundle replaced will be ordered to precede the Exposure cards for the new bundles. An ID card for each such row, only, is required, but the label for all bundles in the row must be given.

> After one or more ID cards have been read in, all following exposure cards in each case will be assigned to the i, j position whose label in the ID array is equal to that punched in columns 3-6 of each Exposure card. Thus, an ID card not only changes the labels in the ID array but also forces all succeeding Exposure cards read in this or any following Change Case to be stored by the label in columns 3-6 rather than by the i, j carried in columns 13-14, 15-16 of Exposure cards. If Card 10A's are supplied. Card types 18 and 19 must have labels (ID.) on columns 3 through 6.

CARD TYPE 10B - Exposure.

Column	Content	Description
1-2	Run Number	(Punched output contains IPCH from the preceding case).
3-6	ID _{I,J}	
7-8	T	Fuel Type (overlays type 04 when arranged by ID, and type 10A cards are read in
11-12	10	before type 10B; not needed if there are no label cards). (integer).
13-14	Ţ	Row designation (integer).
15-16	J	Column Designation (integer).
17-80		FREE FORM DATA:
	E ijk	Exposure in 1000 MWD/T in the same manner as the source guess.

Exposure cards read in before any Label card (type 10A) since the last Reference Case Title Card will be stored according to the i,j location punched in columns 13-14, 15-16 of each Exposure card. However, once a Label card has been read in a series of Change cases, all succeeding Exposure cards (in whatever Change case) will be stored in the first i,j position whose label in the ID array equals the label punched in columns 3-6 of that card. Under these circunstances, Exposure cards with a blank label in columns 3-6 will be stored in the first i,j without fuel (probably 1,1 for a full-core problem). Exposure cards with a label which is not found in the ID array will be ignored. This permits Exposure cards which correspond to fuel no longer in the core to remain in the input deck without effect on the calculation.

CARD TYPE 12 - Convergence Acceleration.

Column	Content			Desci	ription	
11-12	12					
13-14						
15-16	IACCEL	Type	cf	source	acceleratio	n

Column	Content	Description
15-16 (Cont'd)		<pre>= -1: Source over-relaxation, Equation (26). It is recommended.</pre>
		= 0: Point Jacobi, Equation (25).
		= +1: Gauss - Seidel, Equation (27).

17-80 FREE FORM DATA:

> - 1<Fn<0 attenuation. 0<Fn<1 acceleration.

CARD TYPE 13 - Moderator Density Coefficients.

11-12 13

13-14

15-16 KED Source iteration debugging print option

= 0: No effect.

= 1: Print 3-dimensional source array after each source calculation.

=-1: Print 2-dimensional (radial) source array after each source calculation.

17-80 FREE FORM DATA:

- 51 -

Column	Content	Description
17-80 (Cont'ā)	C _n	C_1 through C_6 are used to calculate the void fraction (χ_{ijk}) according to Equation (29) these values are determined to fit U vs. enthalpy tables, to get U=1.0 at core average temperature, using the same core average temperature here, than in the k_{∞} and M ² correlations.
		For PWR applications normally use:
	/	$C_{4} = 0.0$ $C_{5} = -10.$ $C_{6} = 1.$ $C_{7} = 1. = h_{fg}$ $C_{14} = 1.=\rho_{f}$ $C_{15} = 0.=\rho_{g}$ $U = 1-\chi=1-C_{1}-C_{2}Q-C_{3}Q^{2} = 2$ $= 1-C_{1}-C_{2}(\Delta h_{s})-C_{3}(-\Delta h_{s})^{2}$ $using h_{s1}=h_{inlet} and$ $h_{s2}=0 (card type 1)$ $+ -\Delta h_{s}=h and$ $U = 1-C_{1}-C_{2}h-C_{3}h^{2}$
		this is the thermohydraulic correlation, to be fitted using the U vs. h. tables, being $U = \frac{\rho(h)}{\rho(h)}$ the ratio between the moderator density corresponding to h and the value correspon- ding to the core average enthalpy or tempe- rature. At hot zero power, $C_2=C_3=0.0$.
•	C ₇	Enthalpy of evaporation (h_{fg}) in Btu/lb. this is used for calculation of Q_{ex} which is used in Equation (28).
	c _s	Set 0.0
	c ₉	Set 0.0
	c ₁₀	= 1: An edit of S is given after each void iteration.
		\neq 1: No effect.
	C ₁₁	<pre>= 1: An edit of S ijk is given after each void iteration. # 1: No effect.</pre>
	C ₁₂	 = 1: An edit of U_{ij} and U_{ijk} is given after each void iteration. ≠ 1: No effect.

-

and the second second

•

·

Column	Content ·	Description
17-80 (cont'd)	C ₁₃	= 1: An edit of H (k _∞) is given after each iter racion. ≠ 1: No effect.
	C ₁₄	= ρ_f : Density of saturated moderator liquid.
	с ₁₅	= c_g : Density of saturated moderator vapor. The units of C_{14} and C_{15} must be the same. These are used to calculate U _{ijk} by Equa- tion (30)

Following card types 18 and 19 are supplied <u>only when a transient</u> <u>calculation with NOPT=1 on card type 1 is indicated and initial value</u> <u>of I-135 and Xe-135 are desired.</u> If given for NOPT \neq 1, the concentrations will not have any effect on nodal k_{∞} .

CARD TYPE 18 - I-135 Concentration.

1-10		Same as type 10B
11-12	18	
13-14	I.	Row designation (integer)
15-16	J	Column designation (integer)
17-80		FREE FORM DATA:
	EID _{ijk}	I-135 concentration in the same arrangement as S_{ijk} on card type 9. The unit of concen- tration is in 10 ¹⁵ atoms/cc, equivalent to 10^{-9} atoms/(barn.cm). These cards are allo- cated to i,j positions exactly the same as Exposure cards (type 10B) in regard to the Label cards (type 10A) and corresponding ID array.

CARD TYPE 19 - Xe-135 Concentration.

1-10 Same as type 10B.

11-12 19

- 53 -

<u>Column</u> 13-14	<u>Content</u> I	Description Row designation (integer)
15-16	J	Column designation (integer)
17-80		FREE FORM DATA:
	XEN ijk	Xe-135 concentration in the same arrangement as EID ijk on Card type 18. All the rules for EID apply to this card.
CARD TYPE	33 (2A5,I2)	- Reorder Card.
11-12	33	Used only to precede additional data which are out of order and not convenient to com- bine into basic deck. Inserted before every card whose type is lower than the preceding card.
CARD TYPE	99 (2A5,I2)	- END CARD - always required.
11-12	99	The last card of each case. This card signals the end of input data for each case.
TERMINAL C	LARD (A1,A4)	- Job Termination-Card.
1	"Ι"	This card signals the end of a given case.
2-5	"LAST"	"LAST" is not a variable name, but it must be punched on column 2-5.
		Input data decks following this card will be processed as the first case, it is as reference (I) or restart (D) cases. This is useful for processing several restarts from the same restart tape 1.

•

~ ..

.

TABLE 1

٠

. :

SUMMARY OF SIMULA-3 CASE INPUT DATA

Card Type				
1/10	Dimension	Card	ID, JD, KD	
	Title	Card	Alphanumeric Description of Case	
1		IBURN	E_{o} , E_{max} , ΔE , ΔX , ΔZ , P_{th} , P_r , W_1 , W_2 , IBUG2, RMAX, RMIN, RINC, NOPT, PPM,	h _{s1} , h _{s2} , CRNR, ITAPE, IMABWR, IBUG1,
2	IPCH	KPCH	ISYM, KMAX, DELSX, NSMAX, DXLS, NUM	AX, DXLU, NCMAX, DXLC, XLMBDA, DLP,
			AV ₁ , AV _{KMAX} , CHI, XKRNL, g _v , g _h , C _w , I	HAL, IPRT, IPRT3, ICOMP.
3		t	Constants for Fuel Type t	B_{11} , $J = 1,54$ or 60
4		I	Radial Fuel Assembly Type by 1,1	$NFT_{11}, j = 1, JMAX$
4	· 1	NFT	Axial Fuel Type by k	T_k , $k = 1$, KMAX
5		I	Control Position by 1, J	\vec{R}_{jj} , $j = 1$, JMAX
5	· í	I	Longth of Control Rod by 1, J	RH_{II} , $I = 1, JMAX$
6		I .	Fractional Flow by 1,1	F_{ii} , $j = 1$, JMAX
6	1	I	Power Dependent Flow Factor by 1, J	FP_{II} , $J = 1, JMAX$
7'		I	Horizontal Albedo by 1, j	AH_{11} , $J = 1$, $JMAX$
8 :		Ĩ	Partial Fuel Factor by 1,1 or k	XK_{11} or XK_{k} , $j = 1$, JMAX or $K = 1$, KMAX
9	I ·	J	Source Guess by 1,1,k	S_{11k} , $k = 1$, KMAX
10	I	0	Fuel Labels by 1, j	ID_{ij} , $j = 1, JMAX$ (A4 Format)
T: 10	I	J	Exposure by 1, J, k	E_{IJk} , $k = 1$, KMAX

TABLE 1 (Cont'd)

••••

2

:

SUMMARY OF SIMULA-3 CASE INPUT DATA

Card Type					
12		IACCEL	Acceleration Factors	Γ_{j} , $j = 1, 16$	
13		KED	Density Coefficients	C_{j} , $j = 1, 15 \text{ or } 17.$	
18	Ĩ	J	I-135 Concentration	$EID_{1jk}, k = 1, KMAX$	। 56
19	I.	l	Xe-135 Concentration	XEN_{ijk} , $k = 1, KMAX$	I
33	·		Overlay card for basic data. Used is out of order and not convenient	l only to precede additional (or overlay) data which to combine (by type) into basic deck.	
99			Precedes TITLE CARD or LAST CAR	D. Signais end of data for this case.	

TABLE 2

SIMULA-3 INPUT DATA DECK SETUP

- 1. DIMENSION CARD (Only one card)
- 2. TITLE CARD of 1st case (It must be a Reference Case; but if a restart tape is available, it can be made a Change case)
- 3. Card types 1 through 33 for 1st case (Required cards only)
- 4. END CARD of 1st case ("99" punch on column 11-12)
- 5. TITLE CARD of 2nd case (Reference or Change Case)
- 6. Card types 1 through 33 for 2nd case (Required cards only)
- 7. END CARD of 2nd case ("99" punch on columns 11-12)
- 8. Repeat 5 through 7 for additional cases
- 9. TERMINAL CARD ("ILAST" on columns 1-5)

NOTE: All the cases in a job must have same nodal meshes (i.e., same I, same J, and same K)

1.3. SAMPLE PROBLEM.

In the listing 1 are the input data for a three dimensional calculation of a quarter core of a PWR burnup cycle. The constants of the correlations (Section 03) were generated by MELON-3 executions, the transport and correction factors (Section 08) and horizontal albedoes (Section 07) by CONCON executions and the vertical albedoes (Card 02) and axial correction factors (Sections 08-2 and -5) by CONAXI calculations.

1.4. SIMULA-3 OUTPUT.

1.4.1. Printed Output.

Listing ¹ is the printed output of the SIMULA execution with the previous sample problem input data.

For each page of the SIMULA output, the first line contains the title of a case and a page number. The page number is reset to "1" whenever a new case. (Reference or Change) is read in. A summary of items in the output of a case is given in Table 3. All the input data for a given job are printed at the beginning as they appear on input cards. Each case input data are again printed before the computed results. The fuel identification and the type of neutron transport kernel and source iteration scheme are also printed next. If the SIMULA special option parameters (NOPT on card type 1) were checked, the type of option is described immediately after the fuel type arrangement. The initial values of source (S_{ijk}), fuel exposure (E_{ijk}), and concentrations of I-135 and Xe-135 (EID_{ijk} and XEN_{ijk}) are printed by channel and by bank (node) only when these are provided by the input data cards.

The printing of 3D distributions and iteration can be deleted through input variable IPRT3 on card 02

The control rod positions (R_{ij}) and control rod lenght (RH_{ij}) are always printed prior to the first void (moderator density) iteration.

Results of each iteration are printed in a summary form. The symbols used for the description of iteration results in the SIMULA output are described in Table 4. Core average, channel, and nodal distributions of source, power, moderator density, and k_{∞} in items 6, 7 and 8 in Table 3 are always printed regardless of the type of a problem. Note that the moderator density is not the absolute but relative density and the source and power are normalized to core averages of 1.0. The values of K are k_{∞} 's given by Equations

(33) to (42).

The nodal concentrations of I-135 (EID) and XE-135 (XEN) are printed only for a transient Xe calculations, and they are expressed in 10^{-9} atoms/(barn-cm) which is equivalent to 10^{15} atoms/cc. The distribution of fuel exposure (E) is printed only for fuel burnup, refueling, and transient Xe calculation options. The unit of fuel exposure is the same as the unit given for E₀, E_{max}, and AE on card type 1 (=1,000 MWD/T).

During the control rod position or soluble poison search calculations, the results given by items, 6, 7, and 8 in Table 3 are not printed until the search is completed. That is, only the iteration data and estimated control rod positions or estimated poison are printed during the search iteration.

Additional debugging output edits of two or three-dimensional arrays are given at various stages of iteration according to input specifications for IBUG1 and IBUG2 on type 1 card, and KED and C_{10} through C_{13} on type 13 card. Use of these options for debugging edits is not recommended for normal production runs.

•. .**.**

TABLE 3

SUMMARY OF SIMULA-3 CASE OUTPUT

1. Input card data.

- 2. Fuel identification and arrangement of fuel material types (NFTID, T, NFT)
- 3. Input source, exposure, I-135, and Xe-135 (S, E, EID, XEN) (if provided).
- 4. Control rod positions and rod lengths (R, RH).
- 5. Source and void (density) iteration data.
- 6. Axial distributions of core average power and moderator density; core peak power, and inlet and outlet steam quality.
- *7. Distribution by channel and by node of power and moderator density (SRC).
- *8. Distribution of k by node (K).

. _

- *9. Distributions of fuel exposure by channel and by node (E) (for fuel burnup or transient Xe calculation only).
- *10. Distribution of I-135 and Xe-135 by node (EID, XEN) (for transient Xe calculation only).

^{*} For control rod position and soluble poison search problems the various nodal distributions are given only for the final, converged results.

TABLE 4

,**.**

DESCRIPTION OF SYMBOLS

IN NORMAL SIMULA-3 ITERATION RESULTS (See Fig. 2)

Symbols in NUSIM-2 Output	Description
NC	Search calculation iteration count (c)
NU	Void (moderator density) iteration count (u)
NS	Source iteration count (n)
DELTA L S	$\lambda_n - \lambda_{n-1}$
delta l u	$\lambda_{u} = \lambda_{u-1}$
delta l C	$\lambda c - \lambda c - 1$
ACCEL S TOT	Sum of normalized old sources $(S_N \text{ in Section IIB, 18, b})$
MAX REL CHG IN SOURCE	Maximum value of $ \Delta S $ /S and its location ijk
SOURCE TOT	Sum of unnormalized new source (S $_{\rm T}$ in Section IIB.18.a)
LAMBDA	Current value of eigenvalue $(\lambda_{n}, \lambda_{u}, \text{ or } \lambda_{c})$
CONVERGENCE	Convergence indicator: - 1 for $ \lambda_u - SHANK < DXLU$
SHANK	$\frac{\lambda_{u-2} \lambda_{u} - \lambda_{u-1}^{2}}{\lambda_{u-2} + \lambda_{u} - 2\lambda_{u-1}} : 0 \text{ for } \text{SHANK-SHANQ} < DXLU$
SHANQ	$\frac{SHANK_{u-2} \cdot SHANK_{u} - SHANK_{u-1}^{2}}{SHANK_{u-2} + SHANK_{u} - 2 \cdot SHANK_{u-1}}$
DEL LMB	$ \lambda_{u} - SHANK $
DEL SH SQ	SHANK - SHANQI

••

••

1.4.2. Tapes Output.

When the punch card option is specified by tape 2 card, the three dimensional arrays are written in File 7 (TAPE 7) according to the input formats for these arrays. Columns 1 through 16 of punch cards contain the following information:

Co	lumr	1
		-

Content

1-2 IPCH

- 3-6 NFTID (I,J) Fuel label for E, EID and XEN INAME - "SIJK" - for S, "POWR" - for SRC
- 7-8 NFT (I,J) Fuel material type for E, EID and XEN M - Card sequence no. - for S and SRC.
- 9-10 N Card sequence no. for E, EID, and XEN N - Card sequence no. - for S and SRC
- 11-12 L Card type no. "9", "10", "18", "19", etc. - 0 for SRC (power)

13-14 I - value of I (row)

15-16 J - value of J (column)

Columns 18 through 80 contain values of S(I,J,K), SRC(I,J,K), E(I,J,K), EID(I,J,K), or XEN(I,J,K) in a 9F7.3 format starting from K=1. Thus there will be nine values per card, and the required additional cards will contain the same data on columns 1 through 16 except the card sequence number.
1.5. PROGRAM CHARACTERISTICS.

The SIMULA-3 program is written in standard FORTRAN V for UNIVAC 1100 and CYBER-835 and it can be segmented into three overlays. Segment 0 provides the control and flow of the code, segment 1 processes input data and segment 2 computes and edits the computed output. It has about 3.500 sentences.

1.5.1. I/O Unit requirements.

The SIMULA-3 code requires the following files (disk) for its operation:

File	No.	Use
Таре	1	Previously written restart tape containing the variables in all the common blocks.
Tape	2	Newly written restart tape after the exe- cution of the current case
Tape	3	Scratch file for temporary data storage used in subroutine PARTE only in transient Xenon calculations.
Tape	5	Input data file.
Таре	6	Standard output file.
Tape	7	BCD card punch file.

1.5.2. Restrictions on the complexity of the problem.

All arrays in SIMULA-3 are dimensioned through four parameter variables, which can be easily changed for recompilation. These are: Parameter variables and given values

LI = No. of nodes in the X direction <15
LJ = No. of nodes in the Y direction <15
LK = No. of axial nodes <17
LF = No. of material or fuel assembly types <15</pre>

1.5.3. Program Structure.

BRIEF DESCRIPTION OF SIMULA-3 SUBROUTINES.

NAME	DESCRIPTION
MAIN	Main program of SIMULA-3.
CASE	Reads the TITLE card and prints information thereof.
PRNTHD	Prints the case title and page number on the output sheet.
EDTQ	Prints output data including iteration results.
EDT1	Prints the gross or average core data after the ter- mination of iteration and before proceeding to array editing.
EDT3	Prints two and three dimensional arrays.
XEROR	Prints error messages for programmed error stops.

- 64 -

	•
NAME	- DESCRIPTION .
CLEAR	Initializes a floating point data array.
ICLEAR	Initializes a integer data array.
PARTA	Calls RDV1 Checks input data and processes them for computational setup. Edits the processed input arrays.
RDV1	Reads and checks input data cards, and stores the data in appropriate locations. "As read" information is listed card by card. Call NIPS, TAPEIN and TAPOUT. Reads reference power distributions.
NIPS	Converts the free form input data on columns 17 through 80 of a card, from the alphanumeric form to floating point numbers.
TAPEIN	Reads an old (previously created) restart tape (TAPE 1) and prints the identifying information.
TAPOUT	Writes a new restart tape (TAPE 2) and prints the identifying information.
PARTE	Initiates detailed setup for computation. Calls CTCALC, POWER, UCALC and KCALC to calculate nodal arrays, and NODAL4 and CNVI to calculate source terms and to control source and void iterations. Calls RSRCH and POSCH for search of control rods and poison calculations. Calls PCH1 and EDT0, EDT1, EDT3 to punch and print intermediate and fi- nal computed results.
PCH1	Punches three dimensional arrays of source, exposure,

- 65 -

REFUEL

Calculates new exposure arrays and zone average exposures during the reload (Haling) calculation. Tests for convergence of the reload calculation and prints convergence data.

and concentrations of I-135 and Xe-135.

NAME	DESCRIPTION
CTCALC	Converts the input control rod position to control array (c_t) for use in calculation of nodal M ² and k_{∞} .
POWER	Converts nodal relative source to nodal relative power.
UCALC	Computes nodal moderator relative density.
KCALC	Computes nodal k_{∞} .
COFCAL	Computes nodal neutron transport kernels and three dimensional source coefficients D and G.
SOITR	Calculate nodal source terms, eigenvalue, and other source iteration data for a given source loop. Forward - Brekward Solution on axial lines.
CNV1	Calculates additional void convergence data and checks for convergence of void loop.
CALSRC	Similar to SOITR except that this is used for the Chebyshev polynomial source acceleration option.
CHEBY	Applies the Chebyshev polynomial to the acceleration of sources during source iteration.
RSRCH	Determines new control rod positions during the control rod position search and checks the convergence of λ_{c} to λ_{0} . Edits the new control rod positions at each
	search loop.
EX	Computes exp (X).
NODAL ⁴	Source calculation for the transport kernel type 4.
FR	Is a function for interpolation ans extrapolation cal- culations.
POSCH	Determines new poison during the soluble poison search iteration and checks the convergence of $\lambda_{\rm C}$ to $\lambda_{\rm O}$. Edits the new poison concentration at each search loop.

- 66 -

SIMULA-3 Program Linkage

- 67 -

1.5.4. Machine time requirements and core storage.

The running time of a case varies widely depending upon the number of nodes, the type of problem and the convergence criteria for each type of iteration. Generalization of the running time is difficult.

As an example the running time on a CYBER-835 of a $15\times15\times17$ nodes case, 1 burnup step, poison search, NSMAX=8, NUMAX=20, IACCEL=-1, ϵ =5.E-5, and 5.E-7 is about 90 seconds of central processor time.

The required memory for the main common of SIMULA-3 is:

Length of COMMON = 9.LI.LJ.LK + 17.LI.LJ (=38250).

where Li, LJ, LK are the number of nodes in I, J, K directions.

The additional central memory for code and data is 17.2 k-words in the CYBER-835 without segmentation.

1.5.5. Error Stops.

ì

When the nodal meshes specified by the DIMENSION card are out of the range of the maximum allowable nodes by the current version, the SIMULA-3 code will not execute any of the cases in a job.

There are two types of error stops in the code: programmed and unprogrammed. The programmed stops are those resulting from specific input data checks by the code. When a programmed error stop occurs, an error message is printed with the input card type number or an error type number, and the code skips the current case to read the next case. Following programmed error stops are available in SIMULA-3.

Error Message

Cause

ERROR	STOP	OF	TYPE	7	Fuel border type error.
ERROR	STOP	OF	TYPE	8	Fuel border type error.
ERROR	STOP	OF	TYPE	9	Non-positive fuel material numbers

ERROR STOP OF TYPE 10 ERROR STOP OF TYPE 181 FOLLOWING CARDS OUT OF ORDER FORMAT OF VALUE ON CARD NOT ACCEPTABLE IMAX≤1
XLMBDA≤0 (Card type 2)
Non-sequential card number.
Input data format error.

There are additional programmed stops in the control rod position search or soluble poison search calculations. The reason for this type of error is usually printed in the output; however, these stops are different from the above such that all the computed results up to the stop are printed when the error occurs.

1.5.6. Restart Options

.

There are two ways to save the results of the current case for future use. One is to punch in unit 7 (TAPE 7) three dimensional arrays of S, E, EID, XEN in formats identical to their input data formats according to the specifications for KP, IPCH and IHAL on card type 2. These cards can be writen, from any burnup (or Xe transient) step of a case or from any or more than one case of a given job. This unit is combined with other input data and used for restart cases with the same number of nodes. The first case in these restart cards must be an independent case.

The other is to store the current case data on a restart file (TAPE 2) for future use by specifying "SAVE" on columns 2 through 5 of the title card of the current case. The data can be saved from any case of a job on consecutive files of the unit TAPE 2. The saved data include not only the two and three dimensional arrays in the blank main COMMON, but also the remaining data on the labelled COMMONS; hence, the restart file contains much more complete data than the punch cards, requiring not additional input data for the restart case.

The restart file becomes "TAPE 1" in a restart case; and if

- 69 -

specified, a new restart file is created on TAPE 2 instead of TAPE 1. The restart case must be similar to the case on the restart file with respect to the number of nodes and it must be made the first dependent case of a job. Although a new restart file (TAPE 2) can be created from any case of the job as stated earlier, the old (previously generated) restart file can be reached only from the first and dependent case in the input deck or after a "ILAST" card.

2. REFERENCIAS.

- C. AHNERT, J.M. ARAGONES. "CARMEN System. A code block for neutronic PWR Calculation by diffusion theory with space-dependent feedback effects". JEN-515 (1982).
- 2. J.M. ARAGONES, C. AHNERT. "MARIA System. A code block for PWR fuel assembly calculations". JEN-543 (1983).
- D.L. DELP et al. "FLARE, a three-dimensional boiling water reactor simulator". GEAP-4598 (1964).
- Y.S. KIM. "NUTRIX, a digital computer program for three dimensional analysis of time-dependent operating reactor". NUS-657 (1970).
- 5. D.R. VONDY et al. "VENTURE, a code block for Solving multigroup neutronic problems applying the finitedifference diffusion-theory approximation to neutron transport". ORNL-5062 (1975).
- 6. J.M. ARAGONES, C. AHNERT, J.G. SANTAMARIA, I.R. OLABARRIA. "LOLA System; A code block for nodal PWR simulation". PARTE I - SIMULA-3 code. JEN-568 (1984)
- 7. J.M. ARAGONES, C. AHNERT, J.G. SANTAMARIA, I.R. OLABARRIA. "LOLA System: A code block for nodal PWR simulation". PARTE II - MELON-3, CONCON and CONAXI codes. JEN-571 (1984).

jp1/11-84

LISTING 1

SIMULA-3 - Input Data and Printed Output for a Sample Problem. LISTING 1 SINULA-3 INPUT DATA AND PRINTED DUTPUT FOR SAMPLE PROBLEM

0

 PROGRAM SIMULA-3
 VERSION IAEA-CRP (JEN-567)
 J.M.
 ARAGONES
 SEPT
 84

 I = 15
 J = 15
 K = 17
 Hemory used = 38250 common words + 17120 code words = 55370 total words

I SIMULA-3 INPUT DATA BOL-ARO-HEP-EG.XENON ALB-V OF CONAXT

THIS IS AN INDEPENDENT CASE

THE CORRECT TIME IS 16.33.11.

THE CPU TIME USED THUS FAR IS 27.349 SECONDS

ω

91 N U	LA-3	•	21WATY-2 INLAL DATA DATAKA-ULL-EAPVENDU VED-A DL COUMYT		FAUE 4	
			TNOUT CARDS			,
			INFUL CADS			
			CARD TYPE 1 INPUT			
1.	0	0	* 0.0 , 0.0 , 0.0 , 10.7518 , 21.5153 ,	+	1)
ī	Ō	0	★ 2700.0 , 2700.0 , 100.0E+6 , 0.0 , -555.4 , 0.0,0,0,1.0,	•	(3
Ĩ	0	0	6۵ و ۵ و ۵ و ۶۵ و 5 و 5 و 5 و 5 و 5 و 5	.	()
			CARD TYPE 2 INPUT			
2	0	0	+ -5,17,5.0E-6, 6 ,1.0E-7 , 20 ,1.0E-7,10,1.0E-5, 1.00,0	*	i i)
2	0	0	* 1.241 , 1.215 , 0 , 4 , 1.0 ,1.0, 1.0 ,0,1,3,-2	*	•)
~ ~ ~		-				
KU 3	^		$\begin{array}{cccc} \mathbf{U}_{1}\mathbf{U}$	*	(A) - A3	•
3	0	+		± :	184 86	í.
3	~	1			(87 - 89)	í.
3	0	1			(810 - 812)	1
2	ň	1	* _2188725+00 · _2909095-01 · 0.		(813- 815	i i
3	ň	i			(816 - 819)	5
1	ŏ	i		*	(820- 823	1
3	ŏ	i		•	(824- 828	5
3	õ	ī	+ .133506E-03 ,186296E-07 , .196998E-11 ,	• •	(829- 831	j
3	õ	ī	* 0. , 0. , 0. , 0.	, 	(832- 835	1
3	õ	ī	+ 0. , 0. , 0. , .100000E+01	, +	(836- 839	3
3	Ō	ī	* 0. , 0. ,875891E-01,	+	1840- 842	3
3	õ	ĩ	4 0. , 0. , 0. , 0.	, +	(843- 846	3
3	0 .	1	• 0, , 0, , 0, , 0.	, +	(847- 850)
3	0	1	* .100000E+01 , 0. , 0. ,	+	(851- 853	3
3	0	1	+ ,100000E+01 , 0, , 0, , , , ,	+	(854- 856	3
3	0	1	* 0.	*	(857- 858)
3	0	2	* .205354E+03 ,107277E+01 , .357645E+00 ,	+	(81 - 83)
3	0	2	* 0.	*	(84 - 86) .
3	0	2	* ,103543E+01 / .415093E+00 /134013E+00 /	+	(B7 - B9	•
3	0	2	* 0.	*	(B10- B12)
3	0	2	* .326891E+00 , .295948E-01 , 0.	+	(813- 815)
3	0	2	· • • • • • • • • • • • • • • • • • • •	• •	(816- 819)
3	0	2	* 0. , 0. , 0. , 0.	p 🕈	(820- 823)
3	0	2		, +	(824~ 828	}
3	9	2	* ,101154E-03 , -,109487E-07 , .931627E-12 .	+	(829- 831)
3	0	2		• •	(B32- B35)
3	0	2	+ 0. , 0. , 0. , .10000E+01	• •	(836- 839	1
3	0	2	+ 0. , 0. ,8/3497E-01,	•	(840- 842	3
3	0	2		, ,	(843-846	3
3	0	2		* *	(64/~ 850	3
3	0	2		*	(851-853	5
3	0	2		Ţ	1854~ 850	1
3	0	2	$\tau = 0$, $\tau = 0$, $\tau = 1505275401$, 7122115400	-	(857-858	
3	ň	3		-	10/ 01	3
3	ň	2		*	(84 - 86	J .
2	Ň	3		*	187 - 89 -	
3	ň	3	• .636219F+00 . 304489F=01 . 0.	∓	1013_015	J
3	ň	ă			1013-010	(
ă	õ	3			1820- 833	7 \
ā	ō	3			1824- 823	1
-	-	-		- 1	1027- 020	r

5	I	n	U	L	-	Э	

9

÷

3	0	Э	♥ .918523E-04 > -+91	6409E-08 / ·741265E-12 /	+ (829-831)	
3	0	3	+ 0. 	, 0, , 0,	, * (832-835)	
3	0	3	¥ 0. , 0.	, 0. , .100000	E+01 , + (836-839)	
3	0	3	÷ 0. , 0.	,113223E+00 ,	* (840- 842)	
3	0	3	¥ 0. , 0.	, 0. , 0.	, * (843- 846)	
3	0	3	* 0. , 0.	, 0 , , 0 ,	, * (847- 850)	
3	0	3	+ .100000E+01 , 0.	, 0. ,	* (851853)	
3	Õ	à	+ .100000E+01 , 0.	, 0. ,	₽ (854-856)	
3	Ō	3	¥ 0. , , 0.		* (857-858)	
-	•	•	· · ·			
KD		1	RADIAL FUEL ASSEMBLY IC	NFT(I,J) J=1,JMAX		
4	0	ĩ	* 1 3 3 1 1 3 3	1 1 3 3 1 1 2 2	* ()	
4	Ő	2	* 3 1 1 3 3 1 1	3 3 1 1 3 3 2 2	+ ()	
i.	ō	3	* 3 1 1 3 3 1 7	3 3 1 1 3 3 2 2	+ N ()	
Å	ň	Ā	* 1 3 3 1 1 3 3	1 1 3 3 2 2 0 0	+ i }	
	ŏ	5	• 1 3 3 1 1 3 3	1 1 3 3 2 2 0 0	* ()	
	ŏ	6	• 3 1 1 3 3 1 7	3 3 2 2 2 2 0 0	4 4 3	
2	Ň	7	* 3 1 1 3 3 1 1	3 3 2 2 2 2 0 0	* · · · · ·	
1	ň	Â			÷ i i	
	ň	õ	* 1 3 3 1 1 3 2		•	•
	Ň	10	* 1 1 1 3 3 2 1		*	
	~	11	4.2112325			
7	~	12			* / /	
- 7	~	12	+ 1 3 3 2 2 2 3			
7	0	10	* * * * * * * * * * * * * * * * * * * *			
	ů,	19	+ 2 2 2 0 0 0 0			
	U	13	+ 2 2 2 0 0 0 0		Ŧ ()	
•						
-				A1177.53 1-1 (H)Y		
KD	O	I	HORIZONTAL ALBEDO	AH(I,J) J=1,JHAX		
KD 7	0	I 1	HORIZONTAL ALBEDO + .0000 .0000 .0000	XAHL1-L (L.I)HA 000. 0000. 0000. 0000.	O + (ALBRAD)	
KD 7 7	000	I 1 1	HORIZONTAL ALBEDO + .0000 .0000 .0000 + .0000 .0000 .0000	XAHL1-L {L1}HA 000. 0000. 0000. 0000. 0000. 0008. 0000. 0000. 0000.	0 + (ALBRAD) + (ALBRAD)	
KD 7 7 7	000	I 1 2	HORIZONTAL ALBEDO + .0000 .0000 .0000 + .0000 .0000 .0000 + .0000 .0000 .0000	XHL(I) J=1,JHAX 000. 0000. 0000. 0000. 0000. 0008. 0000. 0000. 0000. 0000. 000. 0000. 0000. 0000.	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 7 7 7	0000	I 1 2 2	HORIZONTAL ALBEDO + .0000 .0000 .0000 + .0000 .0000 .0000 + .0000 .0000 .0000 + .0000 .0000 .0000	XH(I)J J-1,JHAX 000. 0000. 0000. 0000. 0000. 0008. 0000. 0000. 0000. 000. 0000. 0000. 0000. 0000.	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD)	
KD 7 7 7 7	00000	I 1 2 2 3	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000 * .0000 .0000 .0000 * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J-1,JHAX 0000 0000 0000 0000 0000 0000 0000 00	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 7 7 7 7 7 7	000000000000000000000000000000000000000	I 1 2 3 3	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J-1,JHAX .0000 .0000 .0000 .0000 .000 .0000 .0000 .0000 .8000 .0000 .0000 .0000 .0000 .000 .0000 .0000 .0000 .8000 .0000 .0000 .0000 .0000 .000 .0000 .0000 .5500 1.5500	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 7 7 7 7 7 7 7	000000000000000000000000000000000000000	I 1 2 2 3 4	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J=1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 7 7 7 7 7 7 7 7		I 1 2 2 3 4 4	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) 0 + (ALBRAD) 0 + (ALBRAD) 0 + (ALBRAD) + (ALBRAD)	
KD 7 7 7 7 7 7 7 7 7		I 1 2 2 3 4 4 5	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 77 77 77 77 77 77		I 1 2 3 4 4 5	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J=1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .6500 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) + (ALBRAD)	
KD 7 7 7 7 7 7 7 7 7 7		I 1 2 3 4 4 5 6	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J=1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000000000000000000000000000000000000000	I 1 2 2 3 4 4 5 5 6 6	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) + (ALBRAD)	
KD 777777777777777777777777777777777777	000000000000000000000000000000000000000	I 1 2 2 3 4 4 5 5 6 6 7	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 777777777777777777777777777777777777	000000000000000000000000000000000000000	I 1 2 2 3 4 4 5 5 6 6 7 7	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J=1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) 0 + + (ALBRAD) 0 + + (ALBRAD) 0 +	
KD 777777777777777777777777777777777777		I 1 2 2 3 4 4 5 5 6 6 7 7 8	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 777777777777777777777777777777777777		I 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J=1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		I 1 2 2 3 4 4 5 5 6 6 7 7 8 8 9	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		I 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 <	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		I 1 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 <	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		I 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,J) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 <	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
, KD 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		I 1 2 2 3 4 4 5 5 6 6 7 7 8 9 9 100 11	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
, KD111111111111111111111111111111111111		I 1 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 11	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 <	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD777777777777777777777777777777777777		I 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 11 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 <	0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD) + (ALBRAD) 0 + (ALBRAD)	
KD777777777777777777777777777777777777		I 1 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 11 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 2 2 3 4 4 5 5 6 6 7 7 7 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	HORIZONTAL ALBEDO * .0000 .0000 .0000 * .0000 .0000 .0000	AH(I,j) J-1,JHAX .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 <	0 + (ALBRAD) 0 + (AL	

- 75

2 I MU	LA-	• \$. s	INULA-	а ти	NUT UAT	A 80	L-ARU-HF		ENDN	CLB-V OF	CONAXI			PAGE	3	n no a na heratori Anna.	,
								INP	PUT CARE) S								
7	0	13		+	.0000	.0000	.0000	.6500	. 8000	.8000	1.6000	.0000		•		t	ALBRAD	•
7	0	13		*	.0000	.0000	.0000	.0000	.0000	.0000	.0000			+		1	ALBRAD)
7	Ō	14		+	.0000	.0000	.5500	.0000	.0000	.0000	.0000	.0000		+		(ALBRAD)
ż	ō	14		*	.0000	.0000	.0000	.0000	.0000	.0000	.0000			*		1	ALBRAD)
ż	õ	15		+	.8000	.8000	1.5500	.0000	.0000	.0000	.0000	.0000		+		i.	ALGRAD)
i	õ	15		+	.0000	.0000	.0000	.0000	.0000	.0000	.0000			+		i	ALBRAD)
KD		I		PA	RTIAL A	FUEL FAI	TUR	хк	(I,J)	J=1, JH	A X							
8	5	1		+	1.0039	0,9991	7 R14	1.0063								1	XK-V)
8	5	2		*	0.9627	1.001	2 R14	0.9750						•		i.	XN-V)
8	5	3		+	1.0258	1.005	5 R13	0.9803						+		i	XF-V)
KD	I	CHEBY			A	CCELERA	TION FA	CTORS						\				
12	0	-1		+	0.7,5	R 6 9								+)		1)
KD	к	KED		•	CO	NSTANTS	(1)											
13	0	0		•	-(0.41	0.74-4	0.10	2-5	0.0	-10.0	1	.0	*		L)
13	0	0		•	1	1.0	1.0	0.	0	0.0	0.0	().0	*		t)
13	0	Ó				0.0	0.0	0.	0	0.0	1.0	(.0	+		i		i
99	õ	ō		*					-					ŧ		i		i
								FUEL	IDENT	TIFICAT	C 0H							

•

;

З

.

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

I

\$

ï

•

	, :	SIMULA-	- 3	. ••	.5	S	INU	LA-3		INPU	TDAT	FA	BOL	-ARC)-HF P-	E4.X	ENŐ	N	ALB-	V D	r cu	нах	1				· ·	PAG	Ł	4	••		····							
, ~~															FUEL	TYP	E																							
	: 1	r i	ļ	2	3		4	5	1	6	7	7	8	ç	10) 1	1	12	13		14	15	1	6	17	16	9	19	2	0	21	22	i	23	24					
	•	1 3 4 5 6 7 8 9 10 11 12 11 14 15	13311331122	3 1 3 3 1 1 3 3 1 1 3 3 2 2 2		3 1 1 3 1 1 3 1 1 3 3 2 2	1 3 3 1 1 3 3 1 1 3 3 2 200		1331133113322000	311331133222200	3 1 1 3 3 1 1 3 3 2 2 2 2 0 0	1 3 3 1 1 3 3 1 1 2 2 0 0 0 0		1 3 3 1 1 3 3 1 1 2 2 0 0 0 0	3 1 3 2 2 2 2 0 0 0 0 0 0 0 0	3 1 3 3 2 2 2 2 0 0 0 0 0 0 0			1 3 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				\															
								-																																
	ł	IFT	A) 1	(141)	FUEI	. HA	TER:	IAL	ТҮРІ 1	E 1	1	,		1	1	,	''		,	1	1		,	1																
	·	2	23	2		23	2		2	2	2	2		2 3	23	23	2		2	2	2		2	2																
	. v	RIABLE	S 1	IN IN	PUT	CAR	10 1		-	-				-																										
		A1(1) A1(5) A1(9) A1(13) A1(13) A1(17) A1(21))=) = [= =	(PO)Z FLOW2 ITAPE IMAX PPM		0 + 2 • 1 0 • 0 • 0 • 9 • 0	1515: 0000	30E+ 00E+	01 02	A1 A1 A1 A1 A1	(2) (6) (10) (14) (18) (22)	XP DI PTH SUB(RM II	1AX : 1 1	= 0. = 2. = -5. = 1. = 0.	70000 55400 00000	0E+0 0E+0 0E+0	3 2 0	A1 A1 A1 A1 A1 A1	(3)- (7)- (11)- (15)- (19)- (23)-	DE PR SU IB RI	ATED BC2 UG1 NC		0. 2.70 0. 0. 0.	0000)E+O	3	A1(A1(A1(A1(A1(A	4) 8) 12) 14) 20)	= D = F = C = N	X L DH R IJ B UG D P T	1 = 	1.0 1.0 0. 3.0	7518 0000	80E+ 20E+ 20E+	01 08		ŝ		- 77 -	
0	. AY	RIABLE	S 1	IN IN	vur	ĊAR	0 2																																	
Ţ	1	A2(1) A2(5) A2(9) A2(13) A2(13) A2(17) A2(21)		ISYN DXES DXEC DXEC DXEC DXEC DXES DXES DXES DXES DXES DXES DXES DXES	80 - 14 14 14 14 14	-5.0 1.0 1.0 1.2 1.0 3.0	0000 0000 150 0000	00E+ 00E- 00E- 00E+ 00E+ 00E+	00 07 05 00 00 00	A2 A2 A2 A2 A2 A2	(2) (5) (10) (14) (18) (22)	 KMA) NUN/ XLNE CHI CH CH ICD/ 	(X DA P	- 1. - 2. - 1. - 0. - 1.	70000 00000 00000 00000	0E+0 0E+0 0E+0 0E+0 0E+0 0E+0	1 1 0 0	A2 A2 A2 A2 A2 A2	(3)= (7)= (11)= (15)= (19)=	DE DX DL	LSX LU P		5.00 1.00 0. 4.00 0.	0000 0000 0000	E-0 E-0 E+0	6 7 0	A 2 (A 2 (A 2 (A 2 (A 2 (4) 8) 12) 16) 20)	• N = N = A = I	SMA CMA VB V PRTI	X = X = B =	8.0 1.0 1.2 1.0 1.0	0000 0000 4100 0000	00E+ 00E+ 00E+ 00E+ 00E+	00 01 00 00					
	4	**** S /	:0L (JBLE	201	SON	SE AI	RCH,	I	4171	AL GI	JE SS =	9	00.0	000 P	рм +	***	*			·																			
		:																																				i		

•

78 ----[.207466E+03 .205354E+03 .405180E+03 2-.107244E+01-.107277E+01-.159532E+01 3 .357318E+00 .357645E+00 .712211E+00 7 .99282556+00 .1035436+01 .8433296+00 8 .3428356+00 .4150936+00 .4081476+00 9-.1034576+00-.1340136+00-.1088696+00 3 .218872E+00 .326891E+00 .636219E+00 4 .290909E-01 .295948E-01 .304489E-01 8 .100000E+01 .100000E+01 .100000E+01 9 .133505E-03 .101154E-03 .918523E-04 0-.186296E-07-.109487E-07-.916409E-08 1 .196998E-11 .931627E-12 .741265E-12 10. 0. 0. 2-.875891E-01-.873497E-01-.113223E+00 30. 0. 0. !4 .100000E+01 .100000E+01 .100000E+61 1,100000E+01,100000E+01 0. .138005E-01 500. 0. 0. 0. 51 .100000E+01 .100000E+01 .100000E+01 520. 0. 0. 34 .100000E+01 .100000E+01 .100000E+01 550. 0. 0. • ... • • • • • • ... • • • -000 å ð • ċ • ā õ ō 0 0 ం • ō ð ð d ā 6 .123253E-01 .121284E-01 INPUT CONSTANTS BY FUEL TYPE • • 6 ° ·0 • • • • 0 . • ; • • . 000 • • • ċ ō ō c ó 9 .100000E+01 00. (. 50. 100. 90. 30. 60. 50. 80. 90. 530. 20. 50. 20. :30. 50. 260. 20. 500. 40. 110. 20. θQ. :00 10. 2.0 70. 40. 560. TYPE

	SI	IULA-3		SIMUL	A-3 I	NPUT DA	ATA B	DL-ARO-	HFP-EQ.	XENDN	ALB-V	DF CUNA	1X1		ŶA	6E 2		· · · · · · · · · · · · ·			
\sim	EXI	OSURE	0.000	0				AH(I)	I) BY	CHANN	IEL										
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			
5	1	0)																			
	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	.800					1
·.	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	.600	•				
	3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	• • • • • •	1.550					
	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	• 600 800	0,000	0.000					
•		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	. 800	0.000	0.000					
	. 7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	.650	1.600	0.000	0.000					
	8	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	.650	0.000	0.000	0.000	0.000					
,	9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	.650	1.600	0,000	0.000	0.000	0.000					
	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	.650	0.000	0.000	0.000	0.000	0.000	0.000					
	11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	.650	1.600	0.000	0.000	0.000	0.000	0.000	0.000					
	12	0.000	0.000	0.000	0.000	0.000	0.000	.650	0.000	0.000	0.000	0.000	0.000	0.000	14 15 16 17 000 0.000 .800						
	13	0:000	0.000	0.000	•650	.800	.800	1.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
	15	0.000	0.000	1.580	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
	15			X4330	0.000	0.000	0.000	0.000	0.000	01000	•••••	0.000	0.000	0.000	01000	0.000					
		NOR	NALIZAT	ION FAC	TOR FOR	BUNDLE	FLOW D	ISTRIBU	ITION -	1.0000	000										
		-	DELTA		0.51.74			c		TOT	M AV 00			· c	COURCE	TOT					
	HC NC	N N N2	DELIA	1. 2	DELTA	ĽŪ	DELIAL		ALLEL 3	101	RAX KE	LLING	IN 200K	. C	SUCKLE	101	LANDI				
	1	1 1	01	5428	~.015	428	0154	28 2	2618.523	8083	.7700	52980	7 13	17	2639.307	696	.984:	7204			
	: 1	1 2	.01	2251	~.003	1177	0031	.77 2	2866.68	5757	.75 37	21204	7 13	16	2785.265	739	.9966	2344			
	1	1 3	•00	2526	~.000	650	0006	50 2	2725.524	083	26.6924	1048	7 12	17	2702.249	460	.9993	4988			
	1	1 4	•00	1503	.000	853	.0008	153 2	2709.194	334	2.1061	0534	1 15	1	2692.643	726	1.0000	95931			
	1	1 5	•00	0860	•001	.713	.0017		2700.068	3473	7.3440	38495	1 14	17	2687.275	572	1.0017	1305		1	
	1	1 0	.00	0879	.002	2972 1905	.0020	105 3	(000+004)/70 534	2012	1.541	0129	1 13	1/	2012.000	1490 0.05	1.002	09174		. 1	
	1	1 8	00	0000	.002	893	+0020	107 2	2691.877	1233.	.3024	2287	1 11	17	2612.191	106	1 0020	10228		79	
	•	NOR	MALIZAT	ION FAC	TOR FOR	BUNDLE	E FLOW D	ISTRIBU	JTION .	1.0000	000		* **		20020121	1,10	1.0020	7320			
	1	2 1	00	2046	002	046	.0008	47 2	2655.211	445	.3051	8254	3 15 3	17	2660.889	085	1.0008	4720		I	
<i>c</i> >	1	22	00	0549	002	595	.0002	99 7	2664.603	675	.1788	13352	3 9	17	2666.413	926	1.0002	9858			
0	. 1	23	00	0321	002	916	0000	23 2	2672.303	1592	.1237	12830	3 8	17	2670.943	289	. 9999	7726			
	, <u>1</u>	2 4	00	0210	003	126	0002	33 2	2685.222	2741	.0829	0275	37	17	2678.542	789	. 9997	6704			
	1	25	~.00	0069	003	195	0003	02 2	685.79	169	.06 3 3	9103	3 6 1	17	2678.879	511	.9996	9845			
	1	2 0	.00	0029	003	140	0002	(11 Z 1968 - 2	(0//•11) 0676 671	500	40475 6685	13013	3 6 1	1. / . 1. 71	2013.115	381	.9997	2299			
	i	2 8	.00	0004	003	145	0002	51 2	678.461	124	.0416	2700	1 2	2	2013.393 2676.565	367	. 0001	14931 14866			
	-	ESTINA	TED BOU	NDS ON	LANBDA	UP	PER 1	.02408	583	LOWER	.9696	0237	• -	-	201 11203		• • • • •	1000			
		NOR	MALIZAT	ION FAC	TOR FOR	BUNDLE	FLOW D	ISTRIBL	TICN -	1.0000	000										
	1	3 1	00	0088	000	088	0003	39 2	669.231	640	.0439	1279	1 1	3	2669.136	259	. 9996	6063			
	1 '	3 2	•00	0014	000	074	0003	25 2	665.690	0520	.0319	7372	1 4 1	17	2667.053	306	.9996	7467		•	
	1		.00	0034	000	040	0002	.91 2	:050.018	1305	•0422	()708	1 1	16	2661.716	650	.9991	0895			
	- L : 1	3 4	.00	0030	000	009	0002	01 2 01 2	002.310	010	+030C	10129			2665.065	187	.9997	3939	1		
	i	3 6	00	0002	.000	006			.037.035	1809	.0154	100 10070	2 2	۱ <i>۲</i>	2003+140	825 909	.9997	2004			
	ī	3 7	00	0006	000	001	0002	52 2	662.179	891	.0152	2232	1 3	9	2664.944	171	. 9991	5450 14814			
														- '			• • • • •				

¥

· · · ·

i	\$IM	ULA-	ŧ		\$ I H	UL A3	INPUT	DATA	BOL-	-ARD-HFI	P-EQ.X	ENON	ALB-V	/ DF C	ONAX	Į.			- <u>-</u> - 1	PAGE	6	 Constraint and an and the second se Second second seco	anna, an tha an an an an an
! , N	C 1	NU	NS	DELT	N L S	DEL	TALU	DELT	ALC	ACCI	EL S T	OT	HAX P	REL CH	G IN	SOUR	CE	S	OURC	E TOT		LAHBDA	
:	1 C d n 1	3 VERG	8 ENCE	00	DOOOZ LAMBD	 A .9	000002 9974628	0 Shank	00254	2663 999746	3.4901 Shank	23 50	.015 0.000	522532 000	DEL	1 2 LMB	9 0.(26 000000	65.7 DE	58896 L Sh S	SQ	.99974628 0.000000	
i		52		EU BUU	110N E	N LAMB	DA Eng Run	DIE EIN	1.00 1.10	U 3 7 8 9 9 2 To tantti	1N #	1.000	•991	JÁLECA									
	1	4	1	.00	00018	ACTOR	000018	~.0	00235	266	7.8780	02	.01 6	539043		1 1	9	26	68.3	40001		.99976460	
	ī	4	2	.00	0029		000047	0	00206	266	9.6273	13	.011	49405		i i	8	26	69.3	69008		.99979350	
i	1	4	3	00	0003	•	000044	0	00210	267.	1.0918	194	.007	709176		1 1	16	26	70.2	30526		.99979017	
i	1	4	4	00	2000		000042	0	00212	267)	1.1822	12	.006	510731		1 1	1	26	70.2	83654		.99978819	
i	1	4	5	.00	00002	•	000044	~.0	00210	267	1.5828	140	•00 :	553724		16	9	2.6	70.5	19318		.99979013	
i	1	4	6	•00	80000	•	000051	0	00202	267)	1.7296	55	.00	573938		1 5	9	26	70.6	05679		•99979767	
	1	4	7	.00	0009	•	000060	0	00194	267	1.4301	56	.00	566121		1 4	9	26	70.4	29504		.99980644	
,	1	4	8	•00	80000		000068	0	00186	267	1.0033	197	.00	530265		1 3	9	26	70.1	78469		.99981411	
1	CONV	VERG	ENCE	1	LAMBD	۸.9	9981411	SHANK	•	999749	SHANK	SQ	0.0000	000	DEL	LHB	0.	000000	DE	L SH :	50	0.000000	
,		ES	TINAT	ED BOU	JNDS O	N LAMB	DA	UPPER	1.00	0275301	L	OWER	•998	300796									
i		_	NURM	ALIZA	FION F	ACTOR	FOR BUN	DLE FLU	W DIST	TRIBUTI	UN	1,000	000				~						
,	1	-5	1	00	00005	···•	000005	~•0	00191	2670	0.1015	95	•000	558882		1 2	9	26	04+0	4/44/		.99980942	
I	1	2	2	~.00		~•	000012	-+0	00198	200	9.9714		.000	010019			9	20	64.0	71420		• 99980217	
		2	3	•00	30004	~~ •	000008		00195	200	Y.030/	02	+00+	103141 106363		1 1	4	20	604.3	207144		.999980373	•
;	1	2	7	.00	10002	_•	000000	- 0	00192	200	9.2313	- E 3	.00:	3U3/3/		1 1	¥ o	20	10.4.1	39112		• YYY80787	
÷	1	8	, ,	- 00	00000		0000000		00192	2000	0 • 7 7 7 C 0 • 7 3 1 4	.00	.004	106061		1 1	1	20		42070		***********	
i	4 1	3	7	- 00	20002		0000000	0	00194	200	0.1310	00	+001	143344	•	1 1	1	20	400.0	96171		• 7 7 7 0 0 0 1 0	
	1	5	8	00	10003	_•	000011	0	00177	2000	0.0341	66	001	111126		2 2 1 1	10	20	100 . 1	8726A		• 9 9 9 0 0 3 3 0	
	с U И И Т	, 5 90	ENCE	00	11880	· ·	000014	CHANK CHANK	00200	2003	CU C O + O	50	. 0001	141134 746	061	<u>с</u> э	10	03 000002	1.000	1 61 4	50	499900041	
	CONT	2737 23	TIMAT	รกัดกเ	INDS D	N I AMR	7900041 NA	HPPED	1.00	0086560	SDARN	11160	006	174	DEL	LUD	• •	000002		L 361 .	34	.000037	
,			NORM	41 7741	TON F	ACTOR			U 0151	TRIANTI	าม - เ	1.000	000	371003									
,	1	6	1	00	0014	~.	000014	0	00213	2661	A.1783	42	.001	272614		0 11	2	21	68.5	12672		00678655	
;	î	6	2	00	10003		000017	0	00217	2661	8.1349	153	.003	114428		1 1	10	24	68.4	91149		.00079314	
	ī	6	ä	00	10304		600021	0	00221	266	A. 2617	27	.002	263617		i i	10	26	AA. 5	14722		.00077010	
	ī	6	4	00	00002		000023	~.0	00223	2660	0.5216	84	.001	85085	1	i i	10	26	68.7	18638		.99977717	
	ĩ	6	5	00	0001		000024	0	00224	2660	8.6208	74	.001	64952		i i	11	26	68.7	76985		.99977641	
	1	6.	6	.00	00000		000024	0	00223	2661	8.7461	25	.001	13001	-	i î	11	26	68.8	50662		.99977665	
	1	6	7	.00	0.001		000023	0	00223	2661	8.8483	92	.000	72236		i i	12	26	68.9	10819		.99977741	
	1	6	8	.00	00001		000022	0	00222	2660	9060	02	.000	47250	i	6 7	1	26	68.9	44707		.99977827	
í	ĊONV	/ERG	ENCE	1	LAMBD	٩. ٨	9977827	SHANK		999836	SHANK	SQ	9998	91	DEL	LMB		000058	DE	LSHS	50	.000055	
		ES	TIMAT	EDBOU	INDS O	N LAMB	DA	UPPER	. 99	9997759	L	OWER	.999	48264			•						
			NORM	ALIZAT	TON F	ACTOR	FOR BUN	DLE FLO	W DIST	TRIBUTIC	ЭМ ∎ _	1.000	000										
	1	7	1	.00	8000	•	800000	0	00214	2669	3.3098	48	.001	35380	1	3 1 5	10	26	69.1	82264		.99978585	
	1	7	2	.00	0005	•	000012	~.0	00209	2669	7.3937	46	.000	97862	1	1 1	11	26	69.2	31615		.99979061	
	1	7	3	.00	0002	•	000015	0	00207	2669	9.3498	78	.000	92128	1	1 1	11	26	69.2	05811		.99979308	
	1	7	4	•00	00001	4	000016	0	00206	2669	9.2508	60	.000)74352		22	11	26	69.1	47565		.99979431	

,

:

SINULA-3	SINU	JLA-3 INPUT	DATA BOL-	ARD-HFP-EQ.XENON	ALB-V OF CONAXI	PAGE 7	THE PLANE AND A THE PLANE AND A THE	
NC NU NS	DELTA L S	DELTA L U	DELTA L C	ACCEL S TOT	MAX REL CHG IN SOURCE	SOURCE TOT	LANBDA	
1 7 5	.000001	.000017	000205	2669.231738	.00074701 1 1 11	2669,136317	.99979490	
1 7 6	.000000	.000017	000205	2669.202137	.00070393 1 1 11	2669.118904	.99979515	
1 7 7	.000000	.000017	~.000205	2669.156709	.00052592 1 1 11	2669.092102	.99979517	
1 7 8	000000	.000017	000205	2669.124810	.00041216 1 1 11	2669.073418	.99979511	
CONVERGENCE	1 LAMBDA	.99979511	SHANK .99	99788 SHANK SQ	.999816 DEL LHB .	000007 DEL SH SQ	.000029	
ESTIHA	TED BOUNDS ON	LAHBDA	UPPER 1.000	03669 LOWER	•99966552			-
1 8 1	- 000003	000003	000208	2668.935132	.00060675 3 15 9	2668-961842	. 99979247	
1 8 2	000003	~.000006	000211	2668.884814	.00033011 2 15 2	2668.932243	.99978949	
1 8 3	000001	000007	~.000212	2668-898321	.00027515 1 15 1	2668.940189	.99978842	
1 5 4	000001	000007	000212	2668.923154	.00023376 1 14 1	2668.954796	.99976789	
1 8 9	000000	000007		2668.916136	.00022630 1 2 10	2668.950668	.99978765	
1 8 6	000000	000008	000213	2668.911196	.00024870 1 1 10	2668.947762	.99978748	
1 8 7	-,000000	000008	000213	2668.920590	.00021288 1 1 10	2668.953288	.99970737	
1 8 8	-,000000	000008	000213	2668.928882	.00019401 2 2 10	2668.958166	.99978729	
CONVERGENCE	O LAMBDA	.99978729	SHANK .99	99790 SHANK SQ	.999790 DEL IMB .	000002 DEL SH SQ	.000000	
ESTIMA	TED BOUNDS OF	LAMBDA	UPPER .999	986805 LOWER	.99967812			
NOR	HALIZATION FA	ACTOR FOR BUNG	DLE FLOW DISTR	RIBUTION - 1.000	000			
1 9 1	.000001	.000001	000212	2668.991768	.00030107 3 15 16	2668.995158	.99978807	
1 9 2	.000001	.000002	000211	2669.007037	.00015887 2 15 17	2669.004139	.99978941	
1 9 3	.000000	.000002	000210	2669.004485	.00011953 1 15 1	2669.002638	.99978979	
1 9 4	.000000	.000003	000210	2669.005024	.00010340 1 14 1	2669.002955	.99978996	
1 9 5	.000000	.000003	000210	2669.013784	.00007882 1 13 1	2869.008108	.99979002	
1 9 6	.000000	.000003	000210	2669.023979	.00006699 3 4 9	2669.014106	.99979008	
1 9 7	.000000	*000003	000210	2669.027222	.00006643 1 4 9	2669.016013	.99979014	
1 4 0	.000000	.000003	000210	2009.028497	.00006695 2 2 9	2669.016763	.99979019	
LUNVERGENCE		1 1 1 M 0 D 1 7 9 9 9 9 9 9 9 1 9 1 9 1 9 1 9 1 9 1 9		19789 SHANK SU	• 499789 DEL LMB •	DODOOT DEF 2H 20	• 000000	1
ESTINA NOR	MALIZATION FA	LANDUA ACTOR FOR BUND	DE FLOW DISYR	702037 LUNCK	***********			·
1 10 1	000000	000000	000210	2669.017057	.00013219 3 15 16	2669.010036	.99978985	· 0
1 10 2	000000	000001	000211	2669.019280	.00009156 1 1 11	2669.011341	.99978942	r -
1 10 3	000000	000001	000211	2669.018558	.00007105 1 1 11	2669.010917	.99978932	· · · · · · · · · · · · · · · · · · ·
1 10 4	000000	000001	000211	2669.013529	.00005416 1 1 11	2669.007958	.99978928	
1 10 5	.000000	000001	000211	2669.008371	.00004277 1 1 12	2669.004924	.99978928	
1 10 6	000000	000001	000211	2669.001509	.00002714 1 12 17	2669.000888	.99978928	
1 10 7	000000	000001	000211	2668.996723	.00002145 1 11 17	2668.998073	.99978927	
1 10 8	000000	000001	000211	2668.993707	.00001686 1 10 17	2668.996298	.99978925	
CONVERGENCE	O LAHBDA	.99978925	SHANK .99	19789 SHANK SQ	.999789 DEL LMB .	DOODOO DEL SH SQ	.000000	
ESITUR Nud	IEU BUURUS UN	I LANGUA (Cînr Fiir Anni	UPPEK 1999	TRUTTON = 1.000	•39911991 •999			
1 11 1	.000000	.000000	000211	2668.988065	.00004176 3 15 16	2668.992979	.99978916	
1								
;								1

. -

	51	HULA	-3	SIMU	A-3 INPUT	DATA BOL-A	RO-HFP-EQ.XENON	ALB-V OF CONAXI	PAGE 8	
	NC	ŅU	NS	DELTA L S	DELTA L U	DELTA L C	ACCEL S TOT	MAX REL CHG IN SOUR	CE SOURCE TOT	LAMBDA
	1	i ı	2	.000000	. 000000	000211	2668.983060	.00004170 1 1	9 2668.990035	.99978942
	ĩ	īī	3	.000000	.000000	000211	2668.984112	.00003639 1 1	9 2668,990654	.99978944
8	ī	īï	Ă	.000000	.000000	000211	2668.987663	.00002943 1 1	9 2668.992743	.99978944
	ī	11	9	000000	.000000	000211	2668.989858	.00002762 1 1	9 2668,994034	.99978943
е 	ī	īī	6	000000	.000000	000211	2668.992991	.00002248 1 1	10 2668.995877	.99978942
1	ī	11	7	000000	.000000	000211	2668.996095	.00001476 1 1	10 2668.997703	.99978942
	ī	ĨĨ	8	000000	.000000	000211	2668.998263	.00001007 1 1	9 2668,998978	.99978941
3	Ē	NVER	GENCE	-1 LAMBDA	.99978941	SHANK .99	9789 SHANK SQ	.999789 DEL LMB	.000000 DEL SH SQ	.000000
		E	STINA	TED BOUNDS ON	LAMBDA	UPPER .999	79235 LOVER	.99978302		

1 8 2

1

****** INITIAL POISON GUESS B80.0000 PPN CRITICAL K-EFF = 1.00000 ******

🔬 I ++++ BORON 💌 900.0000 PPM K-EFF* ,999789

3

) ;

3 . .

5

,

1.

5 1 3

b

++++ FOLLOWING ARE NEW POISON AND CORRESPONDING RESULTS ++++ ++++PDISON- 880.0000 PPM ++++

NORMALIZATION FACTOR FOR BUNDLE FLOW DISTRIBUTION - 1.000000

<u>)</u> .	SI	HULA-	- 3	SIMUL	A-3 INPUT D	ATA BOL-A	RO-HFP~EQ.XENON	ALB-V OF CO	IXAN		PAGE 9	м « « « « « « « « « « « « « « « « « « «
	NC	NU	NS	DELTA L S	DELTA L U	DELTA L C	ACCEL S TOT	MAX REL CHG	G IN SOUR	E	SOURCE TOT	LAHBDA
1	'n	1	1	.001583	.001583	.001583	2692.149678	.02402504	7 13	1 2	2682.617458	1.00158326
1	ាំ	ī	2	.000027	.001610	.001610	2672.939018	.01514778	7 13	1 2	2671.317070	1.00161042
;	i	ĩ	-	.000114	.001725	.001725	2672.378686	.00462670	9 11	1 7	2670.987462	1.00172458
i	i	ĩ	- T	.000024	.001748	.001748	2670.667380	.00298332	7 11	.7 :	2669,980812	1.00174835
	ī	ĩ	5	-000007	.001755	.001755	2669.948509	.00243364	1 14	.7 2	2669.557947	1.00175514
	ī	i	6	~.000000	.001755	.001755	2669.375998	.00202185	1 13	.7 2	2669.221175	1.00175505
i.	i	ĩ	7	-000003	.001758	.001758	2669.382447	.00168040	67	1 7	2669.224969	1.00175790
	ĩ	ī	8	.000000	.001758	.001758	2669.531881	.00161959	57	1 2	2669.312871	1.00175814
	-	-	NOR	ALIZATION FAC	TOR FOR BUNDL	E FLOW DISTR	IBUTION - 1.000	000				
1	1	2	1	600007	000007	.001751	2669.442312	.00129720	9 11	3 2	2669.260184	1.00175066
ż	i	2	2	000001	000008	.001750	2669.308481	.00113179	4 6	1 2	2669.181459	1.00174992
1	î	2	3	.000002	000006	.001752	2669.322967	.00102990	36	1 \3	2669.189980	1.00175196
÷	i	5	Ā	.000001	000005	.001753	2669.398994	.00098453	3 5	i ì	2669.234702	1.00175306
1	î	2	÷.	000001	000006	.001752	2669.343319	.00090693	3 4	ĩ	2669.201952	1.00175185
	ī	2	6	000000	000007	.001751	2669.248773	.00084290	3 3	i i	2669-146337	1.00175144
	i	2	7	.000001	000006	.001752	2669.239480	.00081205	2 3	ī	2669.140871	1.00175232
	i	2	Å	.000000	000005	.001753	2669.254770	.00087272	1 3	i i	2669.149855	1.00175276
'	•	Ē	TTHAT	TED BOUNDS ON	LAMBDA U	PPER 1.002	26853 LOWER	1.00151908		,		
			NOR	ANTITATION FAC	TOR FOR RUNDI	F FLOW DISTR	TAUTION - 1.000	000				
	1	4	1	~.000002		.001751	2669-006191	.00083139	1 2	1 2	2669.003642	1.00175120
	î	ž	2	000003	000004	.001748	2668.998825	.00092252	i . i	ī	2668.999304	1.00174829
i	î	3	3	000000		.001748	2668.923591	.00041122	1 1	1	2668.055054	1.00174792
	i	1	1	.000000	000005	.001748	2668.735839	.00050015	îî	1 2	2668.844611	1.00174805
	î	7	5	.600000	000004	.001748	2668-847066	.00030431	2 5	2	2668.010030	1.00174829
	i	3	6	.000000		.001768	2468.809697	.00032095	1 5	ĩ	2668.888057	1.00174832
;	î	3	7	000000		-001748	2468.841759	.00033075	2 3	1	2668 006017	1 00174032
;	î	2	Å	- 000000		.001748	2668 860017	00031747	1 2	1	2668 018187	1 00174030
ī	Č.	IVEBC	ENCE	1 1 4 4 4 5 4	1.00174820	SHANK 1.00	1726 SHANK SO	0.000000		0 0000	10 00 4710107 10 000 4710107	0.000174029
			TINA		LAMANA H	PPE0 1.001		1 00157780	DEL LID	0.0000	JU DEL JII JU	0.000000
		F 2	NUDI	4A1 1741100 FAC	TOP FOP AHND!	E EINU DISTO	TRUTTON = 1.000	1100131100				
	1		1	.000002	-000007	.001760	2468.067703	.00026372	1 2	2		1 00174002
	î		2	000002	.000002	001751	2666 071286	00030312	1 1	1	2610.701033	1.00176134
	1	1	2	.000001	.000003	.001752	2668 001858	00030450		1 1	2000 900 200	1.00175130
	1	7	1	000000	.000003	001752	2460 014771	-00027572	1 1	1 1	1000 . 443204	1,00176157
,	1	7	7	- 000000	*000003	001752	2440 028149	1100101011		1 4	COCY.UU9003	1.001/2120
	÷.	7	4	000000	.000003	001751	2004-02324	+00012092	1 1		C009+019000	1.001/5146
1	+	2	2		+000003	.001751	2009-043/14	.00007814	2 2	2 4	2009.023749	1.001/5141
	Ţ	7	r 0	000000	.000003	.001751	2009.040379 2440 046549	.00007980	2 4	2	CODA "051510	1.00175140
	1	11/600	ENCE		• 0 0 0 0 0 3	*001/91 •001/91	17KA CUINV CA	*00008100	2 3	2 00000	CODA . 050 CH 20	1.001/5140
	LUN	175RU 50	TYMA		1.001/2140 ···	307ANK 1.00	20164 LOUCO	1 0017050	DEL LAB	0.00000	10 DEL 24 20	0.00000
		E 2	NITICA I	IEV DUUNUS UN Akityation ein	LANDUA U	FFER 1.001 E ELOU DICTO	1011101 - 1 000 1011101 - 1 000	1.00110041				
	,	*	1	ALICATION PAU	TUK FUK BUNULI	C LEON DISIN	100110N # 1+000	000		.		
	+	5	1	- 000000		.001751	2004.040214	.00015087	2 2	3 0	20042053040	1.00175098
	1		2	- 000000		+001721	2009.040237	.00010216	1 1	3	009.028386	1.00175061
	4	/ J	3			•001/51	2009.041202	.00010417	1 1	1 4	(004.024272	1.00175056

• · · ·

•

0

:

75

٦,

,

і 83 1

•

۰.

٠

1	21	NU	LA-	3		SIMU	ILA-3	INPUT	DATA	BOL-	AR D-HFP-	EQ.XENI	UN A	LB-¥ UI	- CUN	AXI			PAGE	10	d
1	ŅC	N	u I	NS	DELTA	LS	DELT	A L U	DELTA	LC	ACCEL	s tot	н	AX REL	CHG	IŅS	OUR	CE S	SOURCE TOT		LAMBDA
i	1	1	5 .	4	.000	000	00	00001	.00	1751	2669.	027526		.000123	314	1	1	1 20	69.016192		1.00175056
1	1	1	5	5	.000	000	00	00001	.00	1751	2669.	019310		.000107	785	1	1	1 20	69.011359)	1.00175060
1	1		5	6	•000	000	00	00001	.00	1751	2669.	008499		.00008	108	1	1	1 20	569.005000	•	1.00175062
!	1		5	7	.000	000	00	00001	.00	1751	2669.	001163		.000057	713	1	1	1 20	69.000684		1.00175063
÷	1		5	8	.000	000	00	00001	.00	1751	2668.	996749		.000038	362	1	1	1 20	568.998088		1.00175063
1	Ca	NVI	ERG	ENCE	0 L.	AMBDA	1.00	175063	SHANK	1.0	01751 S	HANK S	a 1.	001751	D	ELL	MB	.000000) DEL SH	59	.000000
1			ES	TINAT	ED BOUN	DS ON	I LANBDI	Α	UPPER	1.00	177894	LOW	ER 1	.001726	525						
, 1				NORM	ALIZATI	DN FA	ICTOR FI	DR BUN	DLE FLOV	DIST	RIBUTION	• 1.0	000000			_	_				
1	1	•	5	1	~.000	000	00	00000	.00	1750	2668.	973511		.000064	121	2	2	17 20	68.984418		1.00175038
,	1		Ь	2	000	000	~.00	00000	.00	1750	2668.	967947		.000073	121	1	1	17 20	68.981145		1.00175032
•	1		5	3	000	000	00	00000	•00	1750	2668.	970925		+000066	510	1	1	17 20	228.485841		1.00175029
ł	1		5	4	060	000	~.00	00000	.00	1750	2668.	977988		.000048	309	1	1	17 20	568.987052		1.00175029
t	1	9	5	5	000	000	00	00000	•00	1750	2668.	981198		+000043	100	1	1	5 20	60.900940		1.00175028
•	, i	9	5	6	~.0000	000	00	00000	.00	1750	2008.	982378		.000047	220	, i	1	2 20	008.991399		1.00175028
,	1		р •	1	000	000	00	00000	.00	1750	2008.	40440K		.000033	3/4	1	1	1 20	00.4444043 44 004003	•	1.00175020
	1			0	+0000		00	00000		1120	2000.	114114 CA	• •	.000020	503	.	1	1 20) UCI CU)0914434347	6.0	1.001/2020
	ιu	ri ¥ 1	CKU:	ENLE 11441		8716UA		12020	311A11A	1 00	176711	IARA DI		601730	10	r. i	пo	.000000	J DEL SH	34	•000000
			6.3		EU BUUNI	03 UN	1 LANDUA 18700 87	- 10 RHN	NIE EINU		919111 91911110N	- 1	CK 1	+001136	DY I						
	1	-	,	1	.0004	000	. O		.00	1751	2669.	000005	000000	.000021	920	7	12	15 2/	569.005820		1.00175051
	1	-	,	2	. 0000	000		10000	.00	1751	2669.	012778		.000020	120	· ·	1	16 20	KQ. 007617		1.00175063
	i		,	à	.0000	000	.00	10000	.00	1751	2669.	011802		.0000030	201	1	1	17 2/	569.001911		1.00175066
	i	-	,	4	-000	000	.00	10000	.00	1751	2669.	009574		.000023	244	1	i	17 2/	69.005632	,	1.00175067
÷	ĩ	-	,	5	~ . 000	000	.00	00000	.00	1751	2669.	009020		.000022	210	ī	î	16 20	59.005306		1.00175066
•	ī	-	7	6	000	000		00000	.00	1751	2669.	008253		.000020	153	ī	ī	17 20	69.004855		1.00175066
ì	ī		,	7	000	000	. 0(00000	.00	1751	2669.	006560		.00001	558	ĩ	ī	17 20	569.003859)	1.00175066
1	ĩ		7	Å	000	000	.00	0000	.00	1751	2669.	005197		.000012	200	ī	i	17 20	69.003057		1.00175066
	Ē	NVE	ĒRGI	ENCE	1 L	AMBDA	1.001	75066	SHANK	1.0	01750 S	HANK SI	0 1.	001750	0	ELL	MB	.000000	DEL SH	50	.000000
			ES.	TIHAT	EDBOUND	DS ON	LAMBD		UPPER	1.00	175712	LOW	ER 1	.001747	712			•••••		-	•••••
				NORM	ALIZATI	DN FA	CTOR FO	OR BUN	DLE FLOW	DIST	RIBUTION	. 1.1	000000								
	1	6	3	1	0000	000	00	00000	.00	1751	2668.	998676	•	.000013	349	3	15	13 20	68.999221		1.00175058
	1	E	3	2	0000	000	-+00	00000	•00	1751	2668.	997295		.000007	147	5	5	16 26	68.998409)	1.00175050
	1	E	•	3	000	000	00	00000	.00	1750	2668.	997399		.000000	573	4	5	17 20	568.998470)	1.00175049
	1	6	3	4	000	000	00	00000	.00	1750	2668.	997653		.000000	578	4	4	16 20	68.998619)	1.00175048
	1	8	3	5	.0000	000	00	0000	•00	1750	2668.	997374		.000000	538	3	4	17 20	648.998455	i	1.00175049
с	1	ŧ	3	6	.000	000	00	00000	.00	1750	2668.	997078		.000000	584	1	1	16 20	68.998281		1.00175049
	1	6	3	7	.0000	000	00	0000	•00	1750	2668.	997351		.000000	534	1	4	17 20	68.998442	1	1.00175049
	1	6	3	8	.0000	000	~.0(00000	•00	1750	2668.	997661		.000000	514	2	2	16 26	68.998624		1.00175049
	CO	HVE	ERGI	ENCE	-1 L/	AMBDA	1.001	75049	SHANK	1.0	01751 S	HANK SO	a 1.	001751	0	EL L	HB	.000000	DEL SH	\$4	.000000
			E S1	TIMAT	ED BOUND	ор ок	LAMBDA	L .	UPPER	1.00	175210	LOWE	ER 1	.001747	106						

BORON WORTH = -9.805 PCM/PPM INVERSE BORON WORTH - -101.98 PPM/PER CENT

**** BORON - 880.0000 PPM K-EFF- 1.001750

**** FOLLOWING ARE NEW POISON AND CORRESPONDING RESULTS **** ****Poison= 897.8523 ppn ****

NORMALIZATION FACTOR FOR BUNDLE FLOW DISTRIBUTION = 1.000000

	SIN	ULA	-3	SINU	LA-3 INPUT D	ATA BUL-A	KU-HFP-E4.XENUN	ALB-V UP CUNAXI	PAGE 11	a an
N		NU	NS	DELTA L S	DELTA L U	DELTA L C	ACCEL S TOT	HAX REL CHG IN SOUR	CE SOURCE TOT	LAMBDA
i ı	L	1	1	.000001	.000001	.000001	2668.652918	.00200819 7 13	17 2668.795834	1.00000109
1	i i	1	2	000007	000006	000006	2668.774655	.00113069 3 9	1 2668.867444	.99999440
1	í –	Ĩ	3	.000000	000005	000005	2668.069849	.00039603 4 8	1 2668.923441	.99999486
1	ĺ.	1	4	+000002	000003	000003	2668.764157	.00097110 1 1	1 2668.861269	.99999679
. 1	Ī	1	5	000000	000004	000004	2668.741359	.00079631 5 5	1 2668.847858	.99999650
1 1	1	ī	6	~.000002	000005	~.000005	2668.940420	.00063268 1 7	1 2668.964953	.99999499
· 1	ĩ	ī	7	000000	000005	000005	2668.959807	.00058613 2 2	1 2668.976357	.99999468
1	ĺ.	ī	8	.000000	000005	000005	2668.837555	.00069831 1 1	1 2668.904444	.99999517
•	•	-	NIR	MALIZATION FAC	TOR FOR BUNDL	E FLOW DISTR	IBUTION - 1.000	000		
1		2	1	.000004	.000004	000000	2668.974166	.00094250 7 13	16 2668.984804	.999999956
1		,	2	.000001	.000005	.000000	2669.050752	.00037700 6 13	17 2669.029854	1.00000029
1	•	2	à	-000000	.000005	.000001	2669.037762	.00029938 2 2	1 2669.022213	1.00000058
1		5	ĩ	.000000	1000006	.000001	2668.954902	.00035635 1 1	1 2668.973472	1.00000072
1		5	ŝ	.000000	.000006	.000001	2668.956938	.00034310 1 1	1 2658.974669	1.00000081
1		2	6	.000000	.000006	-000001	2669.006675	.00014703 7 8	17 2669.003926	1.00000085
1		5	7		.000006	.000001	2669.015840	.00013067 1 5	17 2669.009318	1.00000084
	-	2	8	000000	.000006	.000001	2669-014161	.00012706 2 3	17 2669.008330	1.00000083
	•		STINA	TED BOUNDS ON	JANADA II	PPER 1.000	08445 LOVER	.99993077		
			มักค	NALIZATION FAC	TOR FOR BUNDI	E FINN NISTR	TAUTION - 1.000	000		
1		3	1	000001	000001	_000000	2669-034872	.00013647 6 6	1 2669-020513	1.00000030
		2	2	.000000	000001	.000000	2669.045717	.00012726 1 1	17 2669.026892	1.00000033
1	•	2	2		000001	.000000	2669.043506	.00011072 1 1	17 2669.025592	1.00000027
	i	2		000000	000001	.000000	2669.039098	.00010956 4 5	1 2669.022990	1.00000027
1		3	ĸ	- 000000	- 000001	.000000	2660 035056		1 2660 021151	1.00000023
	L 1	2			- 000001	4000000	26646 036409		1 2440 016534	1 00000023
		3	7	4000000	- 000001	•0000000	2609+020400	-00010022 I D		1.00000023
	L 1	3	4	•000000	000001	.000000	2007.01/015			1.00000024
	• Лы		CENCE	1 1 4 4 9 7 4	1 0000001	5111 NA 1 00				1.00000029
•	. 01	IV CR	CTTM1	TED BOUNDS ON	1.0000023	DDCD 3 000	0000 JIANK JQ		0.000000 DEL 3H 34	0.000000
,		E -		KALTTATION CA	CANDUA U	E EINU NICID	100240 LUWER	• • • • • • • • • • • • • • • • • • • •		
· •			1	- 000001	000001	E FLUW DIJIN	2449 070644		17 2440 (197090	00000051
4		.	1	- 000001	- 000001	- 000000	2666.979366	.00013413 1 3	17 2000.401400	********
1	•	7	2	- 000000	- 000001	- 000001	1000.000000			+99999933
1	L.	7	3	000000	000001		2008.900808		17 2008.988711	.99999926
1	•	7			000001	000001	2008-403401	.000000000 1 1	17 2008.990330	.99999926
1			2	•000000	000001	000001	2000.984/34	.0000/906 1 1	17 2008.991032	.99999927
	L	7	0	•000000	000001	000001	2000+90504/	.00006231 1 1	17 2008-991075	.99999927
		9	1	•000000	000001	000001	2000.980380		17 2668.993168	.99999928
	- 0.4	1	O CENCE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-+000001	UUUUU1	2008.440000	.00002951 1 1	1/ 2658.994412	+99999928
ι	un,	10 E K I	STIMA'		• • • • • • • • • • • • • • • • • • • •	DE0 1 000	DUDZ SHANK SQ		0.000000 DFF 2H 20	0.000000
		C .	NU81	FED DUUNDS UN Mai 17ayını fai	TUB EUS BUNDI	FFEK 1.000	ΤΡΊΤΙΟΝ Η Ι ΌΟΟ ΠΤΡΑΤ ΓΠΜΕΚ	**************************************		
ı		5	1	.00000	.000000	~ .000000	2760 000 - 11010 2760 00725	000 c c caaroooo	2 2460 000000	00000050
1	•	5	2	.000000	.000000	000000	2669.000343			• • • • • • • • • • • • • • • • • • • •
1			1	.000000	.000000		2440 001181		2 2009.000413	• 4444440
4	• •		3	•••••••	.000000		5004*001101	.00004076 I I	T 7004+000043	• 44444463

 \dot{O}

\$

:

ထ ပာ I

1

1	SIMU	11.4+:	3		SINU	ILA-3 INPUT	DATA	BOL-ARO-HF	P-EQ.XENDN	ACB-V UP C	UNAXI	PAGE 12	
;	NC N	IU I	NS	DELTA	LS	DELTA L U	DELTA	L C ACC	EL S TOT	MAX REL CH	G IN SOURCE	SOURCE TOT	LAMBDA
i	1	5	4	.000	000	.000000	000	0000 266	9.001487	.00002787	1 1 1	2669.000875	.99999963
i	1	5	5	000	000	.000000	000	0000 266	9.002049	.00002749	1 2 16	2669.001205	.99999962
i.	1 .	5	6	000	000	.000000	000	0000 266	9.002750	.00002824	1 1 17	2669.001618	.99999961
ś	1	5	7	000	000	.000000	000	0000 266	9.002632	.00002431	1 1 17	2669.001548	.99999961
Í	1	5	8	000	000	.000000	000	0000 266	9.002350	.00002083	1 3 17	2669.001383	.99999960
1	COHV	ERGI	ENCE	1 L	ANBDA	.99999960	SHANK	1.000000	SHANK SQ	1.000001	DEL LHB	.000000 DEL SH SQ	.000001
1		EST	TIMATE	D BOUN	OS ON	I LAHBDA	UPPER	1.00001331	LOWER	.99999197			
ì			NORMA	LIZATI	ON FA	CTOR FOR BUN	DLE FLOW	DISTRIBUTI	ON - 1.000	0000	•		
i	1	6	1	.000	000	.000000	~.000	0000 266	9.003889	.00001811	1 1 16	2669.002288	.99999969
i	ĩ	6	2	000	000	.000000	000	0000 266	9.002601	.00001352	1 1 17	2669,001530	.99999966
ł	1	6	3	.000	000	.000000	000	0000 266	9.002301	.00000903	1 1 17	2669.001353	. 999999966
1	ī	6	4	- 000	000	.000000	000	0000 266	9.001595	.00000698	4 5 17	2669.000938	44990999
\$	ī	ě.	ġ.	- 000	000	.000000	000	0000 266	9.001028	.00000684	3 5 16	2669.000605	. 99999967
1	ī	Ă	6	. 000	000	.000000	000	0000 266	9.000463	.00000729	1 1 2	2669.000272	.00000047
4	1	Ň	7	.000	000	.000000		0000 266	9.000124	.00000664	2 4 17	2669.000073	.00000067
	ĩ	6	A	.000	000	.000000	000	0000 266	A.000012	.00000683	2 2 17	2668.000073	. 00000067
	ĈONV	ERGE	ENCE	-1 · L	AHBDA	.99999967	SHANK	1.000000	SHANK SQ	1.000000		.000000 DEL SH SQ	.000000
		EST	TINATE	DBOUN	DS ON	I LAMBDA	UPPER	1.00000334	LOVER	.99999492	Set true		

**** ABOVE IS CRITICAL POISON **** 897.8523 PPM

٦

<u>(</u>)

4

1

NORMALIZATION FACTOR FOR BUNDLE FLOW DISTRIBUTION - 1.000000

' ¥	SINULA-3		SIMUL	A-3 I	NPUT DA	TA B	OL-ARO-	HFP-EQ.	XENON	ALB-V	OF CONA	XI		PA	GE 13		
	4 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -			00100										0	UAL TTY		
Ĵ,	THERMAL 2700,0000	RE 1.	LATIVE	- FUNCK	PEAK .00753	I J 6 10	K 7	P (K)	LEVEL		U(K)	55	INLET 5.4000	64	EXIT 7.5502	
. :				-		- • •		.28	880	17	•	93503					
Ø.	114 A							. 54	610	16	•	93817					
ŧ	1					•		.76	134	15	•	94311					
••	1							. 92	613	14	•	94944					
13	1							1.03	119	13	•	95681					
1	1							1.14	607	12	•	96492					
•*.								1.21	793	11	•	97357					
								1.27	145	10	٠	98258					
'								1.30	888	9	•	99181					
Э								1.33	016	8	1.	00115					
1 9	- 							1.33	2/3	1	1.	01045					
	1							1.31	***	6	1.	02022					•
16	8							1.22	032	2	1.0	02833					
.119	1							1.12	913	•	1.	03019					
	r 1							•90 73	200	3	1 c 1	04034					
1	l							. 28	312	2	1.	04934					
- n	1							• 30	315	•	1.	05301					
								AVG	s		٨	VG H	A V	G K	KE	FF	
3	1.							1.0000	000			27906	1.035	4768		997	
11									~~~		• • •	2,700		1100	• • • • • •		
	AVERAGE HODE		ENSTRY	15	.99279												
3				••	•••••												
;	EXPOSURE	0.000	0				P(1,J)	B¥	CHANN	EL							
3 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	6.00																
۹.	1. 1.260	1.117	1.112	1.254	1.243	1.081	1.061	1.174	1.135	-956	. 895	. 930	. 844	.827	. 534		
,	2 1.417	1.264	1.260	1,104	1.094	1.225	1.205	1.037	1.003	1.084	1.015	.816	.707	.744	. 472		
	3 1.112	1.260	1.256	1.100	1.091	1.223	1.205	1.040	1.008	1.092	1.023	.813	.655	.583	. 336		
₽;	4 16894	1.104	1.100	1.242	1.233	1.076	1.061	1.182	1.155	.983	.923	1.062	.775	0.000	0.000		
*	5 1.243	1.094	1.091	1.233	1.225	1.070	1.058	1.184	1.169	1.014	.949	1.064	.717	0.000	0.000		
	6 1.081	1.225	1.223	1.076	1.070	1.203	1.190	1.039	1.040	1.347	1.247	1.012	.633	0.000	0.000		
9	7 1.061	1.205	1.205	1.061	1.058	1.190	1.172	1.013	1.003	1.287	1.122	.782	.442	0.000	0.000		
	8 1.174	1.037	1.040	1.182	1.184	1.039	1.013	1.098	1.045	1.098	.025	0.000	0.000	0.000	0.000		
	9 1.135	1.003	1.008	1.155	1.169	1.040	1.003	1.045	.902	.787	. 503	0.000	0.000	0.000	0.000		
	10 .956	1.084	1.092	.983	1.014	1.347	1.287	1.098	,787	0.000	0.000	0.000	0.000	0.000	0.000		
	11 .895	1.015	1.023	.923	.949	1.247	1.122	.825	.503	0.000	0.000	0.000	0.000	0.000	0.000		
	12 .930	.816	.813	1.062	1.064	1.012	.782	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	13 .844	.707	.655	.775	.717	.633	.442	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	14 .827	.744	. 583	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	15 .534	•472	• 336	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	,																

ASSEMBLY AVERAGE RELATIVE POWERS

*

\$

1 2 Э 4 5 6 7 8 1 1.26933 1.11437 1.24815 1.07131 1.15448 .92530 .88702 .68059

 1
 1.26933
 1.11437
 1.24815
 1.07131
 1.15448
 .92530
 .88702
 .68059

 2
 1.11437
 1.25993
 1.09728
 1.21445
 1.02199
 1.05353
 .74755
 .53373

 3
 1.24815
 1.09728
 1.21445
 1.02199
 1.05353
 .74755
 .53373

 3
 1.24815
 1.09728
 1.2326
 1.06628
 1.17223
 .96706
 .90448
 0.00000

 4
 1.07131
 1.21445
 1.06628
 1.17223
 .96705
 .71730
 0.00000

 5
 1.15448
 1.02199
 1.17223
 1.02347
 1.02236
 .80348
 0.00000
 0.00000

 6
 .92530
 1.05353
 .96706
 1.25075
 .80348
 0.00000
 0.00000
 0.00000

 7
 .68702
 .74755
 .90448
 .71730
 0.00000
 0.00000
 0.00000
 0.00000

 8
 .68059
 .53373
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000

1 ω 7

I.	\$ I I	NULA-3		SIMUL	A-3 1	INPUT DA	ÍÁ E	DL-ARD-	HFP-EQ.	XENON	ALB-V	OF CONA	XI		PA	GE 14		a.e
:	EX	POSURE	0.000	0				U(1,j)	Β̈́Υ	CHANN	EL							
,		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	(0)														* ***		
1	1	.976	•986	•986	.977	.976	.988	.989	.982	.984	•996	1.000	.998	1.003	1.004	1.022		
÷	2	•986	.976	•976	.987	.987	.979	.980	.991	.993	•988	• 992	1.005	1.012	1.009	1.026		
	3	•986	•976	.977	, 987	.987	.979	.980	.991	.993	.987	• 992	1,005	1,015	1.019	1.034		
ł	4	•977	.987	.987	.978	.978	.988	.989	.981	.983	•994	• 998	•989	1.007	0.000	0.000		
1	5	.978	.987	.987	.978	.979	.989	.989	.981	.982	.992	. 996	.988	1.011	0.000	0.000		
£	6	.986	.979	.979	.988	.989	.980	.981	.990	.990	.969	.976	.992	1.016	0.000	0.000		
	7	.989	.980	.980	.989	.989	.981	.982	.992	.992	.973	.984	1.006	1.028	0.000	0.000		
•	Å	.982	.991	.991	.981	.981	.990	.992	.986	.990	.986	1.004	0.000	0.000	0.000	0.000		
1	å	. 084	.003	. 093	.083	. 982	.990	. 992	.990	. 999	1.006	1-024	0.000	0.000	0.000	0.000		
	10	.004	.088	087	400	. 002	. 9 6 9	. 973	. 986	1.006	0.000	0.000	0.000	0.000	0.000	0.000		
	11	1 000	4700	002	000	006	076	4 4 0	1 004	1.024	0.000	0.000	0.000	0.000	0.000	0.000		
		1.000	1 005	1 005	• 7 70	1770	• 7 1 0	1 004	1.004	1.001	0.000	0.000	0.000	0.000	6 300	0.000		
1		• 990	1.005	1.005	• 40 4	• 700		1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
1	13	1.003	1.012	1.015	1.007	1.011	1.010	1.028	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000		
1	14	1.004	1.009	1.019	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
. J	15	1.022	1.026	1.034	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

ILAST

THIS RUN HAS BEEN COMPLETED

THE CORRECT TIME IS 16.35.32.

THE CPU TIME USED THUS FAR IS 118.644 SECONDS

J.E.N. 568

Junta de Energía Nuclear. División de Cálculo y Modelos. Madrid.

"LOLA SYSTEM : A code block for nodal PWR simulation". Part. I - Simula-3 Code.

ARAGONES, J.M.; AHNERT, C.; GOMEZ, J.; RODRIGUEZ, I.(1985) 88 pp. 13 figs. 4 refs. Description of the theory and user's manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called 'LOLA SYSTEM.

SINULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory.

INIS CLASSIFICATION AND DESCRIPTORS: E21. S Codes. Computer Calculations. Three-Dimensional Calculations. Burnup. Reactivity Coefficients. Albedo. PWR Type Reactors. Simulators.

J.E.N. 568

Junta de Energía Nuclear. División de Cálculo y Modelos. Madrid.

"LOLA SYSTEM : A code block for nodal PWR simulation". Part. I - Simula-3 Code.

ARAGONES, J.M.; AHNERT, C.; GOMEZ, J.; RODRIGUEZ, I.(1985) 88 pp. 13 figs. 4 refs. Description of the theory and user's manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM.

SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory.

INIS CLASSIFICATION AND DESCRIPTORS: E21. S Codes. Computer Calculations. Three-Dimensional Calculations. Burnup. Reactivity Coefficients. Albedo. PWR Type Reactors. Simulators.

J.E.N. 568

Junta de Energía Nuclear. División de Cálculo y Modelos. Madrid.

"LOLA SYSTEM: A code block for nodal PWR simulation". Part. I - Simula-3 Code.

ARAGONES, J.M.; AHNERT, C.; GOMEZ, J.; RODRIGUEZ, I.(1985) 88 pp. 13 figs. 4 refs. Description of the theory and user's manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called

LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal

theory, with interface leakages equivalent to the diffusion theory.

INIS CLASSIFICATION AND DESCRIPTORS: E21. S Codes. Computer Calculations. Three-Dimensional Calculations. Burnup. Reactivity Coefficients. Albedo. PWR Type Reactors. Simulators.

J.E.N. 568

Junta de Energía Nuclear. División de Cálculo y Modelos. Madrid.

"LOLA SYSTEM: A code block for nodal PWR simulation". Part. I - Simula-3 Code.

ARAGONES, J.M.; AHNERT, C.; GOMEZ, J.; RODRIGUEZ, I.(1985) 88 pp. 13 figs. 4 refs. Description of the theory and user's manual of the SIMULA-3 code, which

is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM.

SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory.

INIS CLASSIFICATION AND DESCRIPTORS: E21. S Codes. Computer Calculations. Three-Dimensional Calculations. Burnup. Reactivity Coefficients. Albedo. PWR Type Reactors. Simulators.

 A second s		
		•
		ŧ
		1
		1 1
		i
		1
		l
1 1		\$ \$
i de la companya de la		
		1 1 L
	***************************************	1
		i
J.E.N. 568	J.E.N, 568	1
 Junta de Energía Nuclear. División de Cálculo y Modelos. Madrid. 	Junta de Energla Nuclear. División de Cálculo y Modelos. Madrid.	1
		1
"Sistema LOLA: Un sistema de códigos para si-	"Sistema LOLA: Un sistema de códigos para si-	1
mulación nodal de reactores PWR Código SIMULA"	mulación nodal de reactores PWR. Código SIMULA"	1 · · ·
	I AUTROFON HOURT DE LEGODOLED LINK, COULJO DINOM	1
ARAGONES, J.H. (AHNERT, C.) GOMEZ, J. (RODRIGUEZ, T. (1985) 88 pp. 13 figs 4 refs	ARACONES, I.M., ANNERT, C., GOMEZ, J., RODRIGUEZ, J. (1985) A8 mp 13 figs 4 refs	i j
Descripción de la teoría y manual de usuario del código SIMULA-3, que	Descripción de la teoría y manual de usuario del código SIMULA-3, que	1
forma parte del sistema de cálculo del núcleo por teoría nodal en un grupo llamado LOLA SYSTEM.	forma parte del sistema de cálculo del núcleo por teoría nodal en un grupo	1
SIMULA-3 es el modelo básico del sistema de cálculo; y utiliza una teo-	SIMULA-3 es el modelo básico del sistema de cálculo; y utiliza una teo-	1
ría nodal modificada para conseguir unas fugas equivalentes a las de teo-	ría nodal modificada para conseguir unas fugas equivalentes a las de teo-	E .
		• •
CLASIFICACION INIS Y DESCRIPTORES: E21. S Codes. Computer Calculations. Three-Dimensional Calculations. Burnup. Reactivity Coefficients. Albedo.	CLASIFICACION INIS Y DESCRIPTORES: E21. S Codes. Computer Calculations. Three-Dimensional Calculations, Burnup, Reactivity Coefficients, Albedo.	1
PWR Type Reactors. Simulators.	PWR Type Reactors. Simulators.	1
		t
		1
		J 1
		1
J.E.N. 568	J.E.N. 568	1 1
Junta de Energía Nuclear. División de Cálculo y Modelos. Madrid.	Junta de Energía Nuclear. División de Cálculo y Modelos. Madrid.	1
"Sistema LOLA: Un sistema de códigos para si-	"Sistema LOLA: Un sistema de códigos para si-	1
mulación nodal de reactores DWD Código SIMULA"	I mulación nodal de reactores PWP Código SIMULA"	1
mulación noual de reactores PWR, coulgo Simola,	mulación noual de leaccoles Pwr. courgo simona .	1
ARACONES, J. M. & ANNERT, C., GOMEZ, J., RODRIGUEZ, T. (1985) 88 mg 13 figs 4 refs	ARAGONES, J.M. & AHNERT, C. & GOMEZ, J. & RODRTGUEZ, T. (1985) 88 m 13 figs 4 refe	•
Descripción de la teoría y manual de usuario del código SIMULA-3, que	Descripción de la teoría y manual de usuario del código SIMULA-3, que	1
forma parte del sistema de cálculo del núcleo por teoría nodal en un grupo llamado LOLA SYSTEM.	forma parte del sistema de calculo del núcleo por teoría nodal en un grupo llamado LOLA SYSTEM.	• •
SIMULA-3 es el modelo básico del sistema de cálculo; y utiliza una teo-	SIMULA-3 es el modelo básico del sistema de cálculo; y utiliza una teo-	1
ria nodal modificada para conseguir unas fugas equivalentes a las de teo-	ria nodai modificada para conseguir unas fugas equivalentes a las de teo- ría de la difusión.	1 1
	CLASTETCACTON THIS & DESCRIPTION P.C. E21 C C-2-2 COMPANY C-1	4
 CLASIFICACION INIS Y DESCRIPTORES: E21. S Codes. Computer Calculations. Three-Dimensional Calculations. Burnup. Reactivity Coefficients. Albedo. 	Three-Dimensional Calculations. Burnup. Reactivity Coefficients. Albedo.	1 · · ·
PWR Type Reactors. Simulators.	PWR Type Reactors. Simulators.	1
		i
		1
	i i i i i i i i i i i i i i i i i i i	• •
		1