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TRANSIENT TEMPERATURE DISTRIBUTION IN A REACTOR CORE 

WITH CYLINDRICAL FUEL RODS AND COMPRESSIBLE COOLANT

by

Heinz Vollmer

ABSTRACT

Applying linearisation and Laplace transformation the transient 

temperature distribution and weighted temperatures in fuel, canning 

and coolant are calculated analytically in two-dimensional cylindrical 

geometry for constant material properties in fuel and canning. The 

model to be presented includes previous models as special cases and 

has the following novel features: compressibility of the coolant is ac­

counted for. The material properties of the coolant are variable. All 

quantities determining the temperature field are taken into account. It 

is shown that the solution for fuel and canning temperature may be given 

by the aid of 4 basic transfer functions depending on only two variables. 

These functions are calculated for all relevant rod geometries and ma­

terial constants. The integrals involved in transfer functions determin­

ing coolant temperatures are solved for the most part generally by ap­

plication of coordinate and Laplace transformation.

The model was originally developed for use in steam cooled fast 

reactor analysis where the coolant temperature rise and compressibility 

are considerable. It may be applied to other fast or thermal systems 

after suitable simplifications.

Printed and distributed in April 1 968.
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1. INTRODUCTION

The two approaches to the determination of the transient temper - 

ature distribution in a reactor core differ in the solution of the 

relevant partial differential equations. An analytical solution can 

only be obtained after certain physical simplifications have been ac­

cepted. These are discussed below. In non-analytical models the ap­

proximations refer mainly to the mathematical treatment with less 

restrictions on the physics. The solution is achieved by the difference 

technique which essentially implies a division of the core into a num­

ber of subregions. The use of the latter models is advantangeous 

when dealing with large transients where nonlinear effects become 

appreciable. Large computer capacities and the uncertainty as to 

the number of subregions are two of the main disadvantages of non- 

analytical models.

Analytical models seem to be a powerful tool for investigating 

moderate transients and, in addition, may be used to determine the 

number of subregions for the non-analytical models as will be outlined.

It will be shown that only very few physical simplifications are need­

ed for arriving at an analytical solution.

This solution will be given in a general and for the most part 

integral-free form.

The transient temperature anywhere in the core is completely 

determined by the following four independent variables:

- nuclear power

- inlet coolant temperature

- coolant mass flow

- coolant pressure
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All previous analytical models are incomplete in that

- they do not take into account all four variables

- they simplify the geometrical system

- they neglect time and space variance of material properties.

The assumption that power is separable in space and time is

generally used. With the exception of Buffoni and Galati [l ] most 

authors assume a constant radial power distribution in the fuel rod. 

Coolant temperature is assumed either time and space invariant 

[l J, [2 J, or space invariant only L 3 j Storrer [4 J considers both 

space and time dependence. A variation of coolant velocity affects the 

coolant transit through the core which is neglected in most models 

(exception Caldarola et al. [5 ] who investigate the step response), 

and, in addition, the heat transfer coefficient can-coolant which has not 

been treated.

For compressible media the effect of pressure arises which 

has not been investigated.

As to geometrical assumptions the canning has often been neg­

lected > 4, 5 ] or treated as heat resistance [3 ] Kirchenmayer [2 j 
seems to be the only one who treated the influence of the canning in 

cylindrical geometry.

In all quoted references the material properties in fuel and 

coolant are considered to be constant in space and time.

The present model avoids several of the above-mentioned 

shortcomings as may be seen from Table I.



Comparison of assumptions applied in previous models and the present model on the transient core temperature

distribution

Author Radial power 
distribution

Coolant tem­
perature

Coolant ve­
locity

Pressure
Material pro­
perties in 
coolant

Canning Gap

Buffoni, Gala-

tl [1 ] variable constant constant constant constant none none

Kir chenmay- 

er [2 ] constant If If If If included If

Iriarte [3] If spatially
constant

II It If considered as 
heat resist-

considered as 
heat resist-

ance ance

Storrer [4] 11 variable If If If none none

Caldarola et

al. [5] " If step II It none none

Present mod­
el

II If variable variable variable included
considered as 
heat resistance

Table I
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2. TEMPERATURE IN THE FUEL ROD

2. 1 Basic equations

The transient temperature distribution in a fuel rod is deter­

mined by 3 partial differential equations of the form

D i C i

dT.(r, z, t)

dt
X-

d T.(r,z,t) X^ dT^(r, z, t)

dr
dr

+ N.(r, z, t)

i = 1,2, 3 (1)

0, c, X are density, specific heat and heat conductivity, re­

spectively and N(r,z,t) is the specific power (per unit volume). The 

subscripts 1, 2, 3 refer to fuel, gap and canning, respectively, see 

Fig. 1.

The boundary conditions are

dT ^(o, z, t) 

dr = 0 (2)

and

dT.(r, z, t) dTi+1(r,z,t)
------- = Xi+] ----- -—---------- at boundaries. (3)

These equations have to be solved for both local temperatures 

of interest, e. g. hottest temperature in fuel and canning, and aver­

age temperatures as needed for reactivity calculation.

In the further equations we shall employ the heat flux q^, 

and thermal diffusivity n defined as

dT(ri, z, t) 

i 8r
q,(z, t) - - > (4)



(5)
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It is assumed that nuclear power is released in the fuel 

only, and separability may be applied, thus

N(z,t) = N(z)[l + pp- ]

N.(r,z,t) = 0 for i = 2 (6)

0 3

2. 2 Solution

Application of Laplace transformation to eqs. (1) to (4) 

and (6) and use of eq. (5) yields the following result for the local 

fuel temperature (written as deviation from its initial value)

Sq^z. s)

(7)

The 1's are Bessel functions of imaginary arguments since 

the Laplace variables are imaginary. For convenience we define

=
Hi

(8)

Solution of eqs. (1) and (3) for the gap and canning (i =

= 2, 3) reveals that all temperatures may be expressed as a 

function of §N(z, s) and §q^(z, s) with the use of four basic functions



- 8 -

y^^(x, a) 5 I^(x) K^(ax) - K0(x)I0(ax) (9)

y11(x> a) = Ij(x) Kj(ax) " Kj(x) Ix(ax) (10)

ylo(x»a) = ax[IQ(x)K1( ax) + Kq(x) Ix(ax) ] (11)

yol<x'a> 5 2 I^x) (12)

The K"s are Bessel functions, too, x is an imaginary- 

argument, a is real. Omitting details of the calculation (which is 

straightforward) we arrive at

6T1(r, z, s) = ~2 C 6N(z, s) - “ Yol(r ^ » ~) * Sq^z, s)]
X ^0)^ 1 1

(13)

6T3(r,z,s) = ylo(rm3, —) 6T3(r2» z> s)

1 r2
"Y0 (ruj , —) s)

X3 oo' ^3 (14)

If the heat capacity of the gap may be neglected the tem­

perature drop is obtained from

6T3(r2> z, s) = 6T1(r1,z,s)
1

a 13
6q1(z» s)

where q^3 is the proper heat transfer coefficient.

(15)
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(16)

The equation for the heat flux from canning to coolant, ob­

tained from eqs. (4) and (14), reads:

(24)

2. 3 Basic transfer functions

The problem of determining the local temperature anywhere

in the fuel rod has thus been reduced to determining 4 basic functions

(y^)» 5N(z, s) and 6q^(z, s). The y^'s are calculated in Figs.

2 to 5, and may be used for all relevant rod geometries and

materials. Geometry essentially determines the parameter a where 

r3
0 < a < —. Given a specific geometry different material properties 

r2
result in a parallel displacement of the curves along the frequency 

axis.

In many applications the exact transfer functions may be

approximated by simpler terms. When x is small i. e. either for 

low frequencies, small radii or large thermal diffusivity an expan­

sion of the Bessel functions in Eqs. (9) through (12) yields:

yoo(x. a) (1-a) (3-a) (9 a)
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y11(x»a) (l-a)(3-a) , a % 1 (10a)

y1Q(x, a) ^^(l-a)2x2 + 1 , a « 1 (11a)

( i 1 +y°'(x,a)~1+ix2 (12a)

2. 4 Average temperatures

The average fuel and canning temperatures are obtained by

radial and axial integration of eqs. (13) and (14). Defining the total

heat flows 5and heat capacities Ch as

Z4
5q-(s) = ^ 2TTr. 6qi (z. s) dz (18)

2
C 1 5 z4TTr 1 P1 cl (19)

„ _ ,2 2vC3 _ z4^r3 " VZ> P3C3 (20)

the average temperatures become

5T i(s) - c s [5N(s) - 5q:(s) ] (21)

AT^(s) - c s [6q1(s) - 5q3(s)] (22)

This result is expected from physical reasons.
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3. COOLANT TEMPERATURE 

3. 1 Basic equations

The calculation of coolant temperature requires the solution 

of 4 equations relating to the heat transfer from canning to coolant, 

the conservation laws for mass and energy and the equation of state 

of the coolant.

The heat flux may be expressed as 

W (t) v
q3(z,-t) = a3^'" W4 'y ^3^3* z,t) “ (23)

where n, v are given exponents, e. g. v = 0.8, n = 1, and a^ is a 

constant. Radial mixing of the coolant is assumed so that T^ is 

only a function of axial position and time.

Linearisation and application of Laplace transformation

yields

8q3(z,s) = n3[6T3(r3,z,s)-6T4(z,s)] +

6W^(s)
(24)

where

* nq3(z, o)

*3 " T3(r3,z,o) - T4(z,o) (25)

*
o?2 is referred to as the dynamic heat transfer coefficient and equals 

the static coefficient for n = 1. When eq. (24) is substituted into
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eq. (17) and the fuel rod temperatures are eliminated, the heat fluxes 

6q^ and 6q^ may be expressed as:

6q1(z» s) = YY3 ^ "T Y1 6N(Z* s) - «3 6T4(z, s) +

6W4(s)
+ vq3(z, o) —^-------j (26)

1 r i r i *
8q,(z. s) = Y~VY~^ 7^ fY5 ~ 6N(z> s) + Yd(-a^ /)Ta(z, s) +4\ u3 o - 4V

6W4(s)
+ vq3(z,o) —------) } (27)

The following transfer functions have been introduced:

Y1 - rjQjCjS ^r2p3C3Syll ^3r3‘ r3 ^ +

•jf*
+ a3yH)(w3r3, —)]

rl r3 * ri r2
Y2 st7y10(m3r2- + “3t7yoo(“3r3- tT*

J L 5 5

riDicis i
Y3^y.i(ri^,l)+--------2—

y4 - yi0(a)3r2' r2^ + 2 rx r^^c^ Ul ^3'3' rqy Lj,ol
r2 r3°3C3

yi i Krv ~r) [yol(r

(28)

(29)

(30)

1) +

+
rlplClS

^13 ] (31)
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2cf
Yr =

*

3 1
5 rjpjCj s

I>1(>
r2\ l r3x

3^3' ?;) y%o^3^' 7;) -

2 r 2 r2
- — )y^(m3r^, —)] (32)

The balance equations read (when omitting the arguments)

dt A4p4 dz (33)

|r[A4P4(h4'p4v4)] = 2nr3<l3 " f?W4h4 (34)

is the cross section of the coolant channel, h and v are the 

specific enthalpy and volume, respectively. Enthalpy is pressure 

and temperature dependent.

dh = C dT + v(i - -g, )p)dp

where c is the specific heat. The dimensionless constant

(35)

— () will be denoted by v 
v 'ST 'p 1 v

Vv = v (sr)p (36)

and may be calculated from the equation of state. For an ideal 

gas vv = 1, for H^O-steam is presented in Fig. 6.

As the pressure drop in the coolant channel is normally 

small (several bars) we may neglect the pressure's space -de­

pendence. Combining eqs. (33) to (36) yields an equation for the 

local transient temperature T^(z, t) which may be linearised, and 

Laplace transformed. When substituting 6q^ from eq. (27) into this

result we arrive at
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^6T4(z,s) + 6T4(z’s)[7T(CS)~
l dc4(z, o) A4p4(z, o)

W
s +

2rrr,_____*3g3 Y4 - _ VZ^N Y5 fiN(s)

c4(z,o)W4r^Y^Y^-c4.W4LY^Y^ N "

n Li vY4 » SW4(z,s)
-( -r^ Y,+Y^) W4 ] + [f2(z) + f3(z)s ] 6P4(s)

(37)
The boundary condition for Eq. (37) is

6T4(o,s) = 6T4.(s) (38)

Eq. (37) contains the following space dependent factors

f^z)
2rrr3q3(z,o)

N c4(z, o) (39)

"^7^)&B4(z'°)Gv4(z'°) - 0]

A4^4(Z'Q)

Y ) - c4(z,o)W4

(40)

(41)

3. 2 Solution

Eq. (37) is a linear first order differential equation which 

may be solved readily. Defining the square bracket on the left hand 

side of eq. (37) as a>

ct(z, s)
c4(z, o)

dc4(z,o) A p (z, o)
+ --------- s +

dz W

^TTr 3^3 r 1 Y4

'V7z7°)7I VA (42)



then the solution bf eqs. (37) and (38) reads

§T(z, s) =

-0-

z

x exp Q J CT(z, s) dz^)dz J (43)

Eq. (43) determines the temperature field quite generally. The 

only assumptions involved refer to the constant material properties 

in the fuel rod and the spatial invariance of pressure. Basically 

4 different transfer functions have to be calculated which determine 

the influence of inlet coolant temperature, power, flow and pressure 

on the local temperature.

3. 3 Basic transfer functions

The integrations involved in the above-mentioned transfer 

functions can not be performed in a closed form for all geometries

and operating conditions that may apply to a coolant channel.

Integral-free transfer functions are obtained, however, if
*

the space dependence of ay may be neglected. We shall further 

assume that

CT(z, s) h ct1(z) + 0"2(z) a3(s) (44)

which does not imply a severe loss of generality since the last

two terms in eq. (42) are both separable. Then the transfer functions
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involved in eq. (43) have the following form

Y = exp(- J [ ctj(z) + cr2(z) • o^(s) ] dz^)/f(z) exp(\f [a^z) +

+ a2(z) o2(s) dz^)dz (45)

We now define

Z s f a1 (z) dz 
0

(46 a)

C ~ J G (z) dz (46 b)

transfer the coordinate system by eq. (46 b) and denote the

function
£(z) Z(z)

>(z) in the new system as F( Q

F(£) =

[ z( C) ]exp(z(’z(C)]')

c2\A C)]
Then eq. (40) reads

(47)

Y = e -Z e"C(J3 J‘ F(C )egtCT3dCf ]
(48)

[6]
Applying the same technique as the author used previously L J the ■ 

bracket on the right hand side of eq. (48) may be expressed in terms of 

Laplace transforms of the function F.
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Consider C and crg as variables in "time" and Laplace 

domain, respectively, and denote the corresponding Laplace trans­

formation by L ^ j- then Y may be shown to read:

Y = e
-Z l{f(C-C’)} - L{F(- CT) } e j (49)

It is stressed that Laplace transformation has been applied 

for two different purposes. The t, s transformation rendered possible 

the solution of partial differential equations wheras the £f , trans­

formation facilitated the solution of transfer functions (already 

given in the s domain). By the latter the integrations involved in 

eqs. (43), (45) are carried out for all sorts of spatial distributions 

of nuclear power, specific heat and density. The main assumption 

that lead to this general solution was the spatial invariance of the 

heat transfer coefficient.

Applying the result developed above for the various f. "s in 

eq. (43) yields

6 T(z,s) = N
=41^4

Y6(z, s)|~
N V

'l v Y4 y5W4(s)

"3 Y2+?3 W, +

+ [y?(z, s) + s Yg(z, s) 8P4(s) + Yg(z, s) §T4-(s)
(50)

where

Y5+i(z,s) = e"Z f L{F/C-CT)} - L{ F.(- C’)}e“CT3C]

i = 1,2, 3 (51)

Y9(z, s) = e-Z"^°’3 (52)



Note that the transfer functions in eqs. (51) and (52) depend on z

and s through Z, £, and cr^, respectively.

If the flow perturbations are slow with respect to the coolant 

transit time through the core the space dependence of 5 W(z, s) may 

be neglected, which is assumed in eq. (50).

3. 4 Weighted coolant temperature 

Apart from local temperatures (where the core exit tempera­

ture is of major interest) weighted temperatures are needed to de­

termine the reactor behaviour. These are calculated from

g(z) ST(z, s) dz (53)
4 0

As a special case, g(z) = 1 yields the average temperature. The 

most general solution is obtained by inserting eq. (43) into eq. (53). 

If the assumptions employed in the derivation of eq. (50) apply, the 

solution to eq. (53) is

+ rY?(s) + sYg(s)]6p^(s) + Y^(s)6T^.(s) (54)

where the transfer functions Y are defined as

z
4

4 0
4 (55)

Here, too, the coordinate transformation to £ is suitable, 

see eq. (46 b), and in analogy to the function F, eq. (47) we define
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Gfr) - g[z(C)]exp(^- Z[z(C)fj 

" az[z(C)j

With the use of eqs. (51) and (52), eq. (55) reads

h
Y5+i(s) =^-J G (0 [L{F.(C-C')}-L{r.(-C)}x

'ctoC n
x e J d £,, i = 1,2,3 (57)

Yq (s)=~f G(Qe dC (58)

' 4 0

£ is the upper limit of integration corresponding to core exit.

These transfer functions are of the same form as those de­

rived previously [6 ] for the weighted temperature of an incompress­

ible coolant where the temperature dependence of the material pro­

perties was neglected. The previous solution thus applies directly 

to eqs. (57) and (58). As result it is found that Y^(s) may be given in 

an integral-free form which reads:

Y9(s) = ~[l{g(C* )} - L {g(C4+ £')} e ] (59)

Since L^F^(- £ *)| in eq. (57) does not depend on £ eq. (57) may 

be written as

c4
^5+i(s)=i~{ G(C)L{F.(£-£r)}dC - Yg(s) l{f.(-£ r)} (60)

The remaining integral in eq. (60) cannot be solved in general with­

out some knowledge on the functions G or F^. Its further treatment is 

dealt with elsewhere [6 ].
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4. APPLICATION

The results for local and weighted core temperatures given 

above were included in a more extensive model for a steam cooled 

fast reactor plant [7 1 To save computer capacity without exceed­

ing the desired accuracy the accurate transfer functions Y^, i = 1, . . , 9 

were calculated and approximated by convenient expressions of the form

(1 + Tj^s) (1 + t^s) . . .

Yf ^ A^ (i + t^s) (l + r^s) . . .

Having specified the frequency range of interest (up to 

20 c/sec), and accuracy (2 db in the gains) the time constants may 

easily be determined graphically or by the aid of a specially developed 

computer programme. A maximum of 2 time constants in the denominator 

and one in the numerator proved to be sufficient to achieve the quoted ac­

curacy in this special case. Moreover, apart from differences in the A^ 's, 

a common function applied to all Y^, i = 6,7,8. This is an essential 

capacity saving and renders possible the calculation of the dynamic 

behaviour of steam cooled fast reactor plant on an analogue computer 

(utilising the accuracy of the digital computer).

For low frequencies (s -+0) the approximations given in 

eq. (61) include essentially only one time constant In this case 

it may be shown that the distributed model yields results which are 

of the same form as those from the lumped model. The validity or 

accuracy of a lumped model may thus be directly assessed by comparison 

of the accurate and lumped model.

In non-analytical models a lumped model is applied to each 

subregion. The number of those regions is essentially equal to the 

number of time constants in eq. (61) if the non-analytical model is
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to give the same accuracy as the analytical model in the desired 

frequency range. This fact provides a means of estimating the num­

ber of subregions and determining the proper time constants.
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NOMENCLATURE

area

constant 

heat capacity- 

specific heat

space dependent function, see eq„ (47)

space dependent function, see eqs. (39) - (41)

space dependent function, see eq„ (56)

weighting function

specific enthalpy

Bessel function

Bessel function

power

exponent, see eq. (23) 

pressure •

heat flux 

radius

Laplace variable

temperature

time

specific volume 

mass flow 

transfer function 

height

heat transfer coefficient 

dynamic heat transfer coefficient
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5 = denotes deviation from steady state

Z, Q = defined by eq. (46)

h = thermal diffusivity

X = heat conductivity

v = exponent, see eq. (23)

vv = defined by eq. (36)

p = density

a = defined by eq. (42)

T = time constant .

(D = defined by eq. (8)

Subscripts 1,2, 3, 4 refer to fuel, gap, canning and coolant, 

respectively, see Fig. 1.

The specification of local, average, time or Laplace trans­

formed variables is achieved by the proper use of arguments: 

Example:

Tj(r, z,t) = local fuel temperature

Tj(z,s) = Laplace transform of radial average fuel temper­

ature

T i = steady state average fuel temperature
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