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ABSTRACT"

The gamma radiation from the fragments of the thermal neutron
fission of 235U has been investigated, and the preliminary data are
presented here with suggestions for further lines of research and some
possible interpretations of the data. The data have direct bearing on
the fission process and the mode of fragment de~exitation. The param-
eters measured are the radiation decay curve for the time interval
0-7x 10710 sec after fission, the photon yield, the total gamma. -
ray energy yvield, and the average photon energy. The last three

quantities are measured as a function of the fragment mass.

Printed and distributed in October 1969.
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INTRODUCTION

This investigation proceeds along lines very similar to the one

carried out by Johansson (1) on the fragments of spontaneously fission-
235
U,

which are examined here, are very similar to the fragments from 252’Cf,

the reader is referred to Johansson's work for a more thorough

ing 252¢¢. since the fragments from thermal neutron fission of

discussion of these findings and their physical significance.
Johansson'!s work will be referred to frequently here, and it should

be understood in the following that reference 1 is indicated.

EXPERIMENTAL PROCEDURE

A. Apparatus

The apparatus used in this investigation is described in some
detail in reference 2. Schematic diagrams of the experimental arrange-
ment and the electronics are given in figures 1 and 2. The neutron beam
indicated in figure 1 is taken from the core of the thermal neutron reactor
R-2. The beam is filtered by a cooled quartz single crystal to reduce
the fast neutron and gamma-ray content.

The fissile deposit is supported in the neutron beam on a thin
nickel foil which allows the passage of fission fragments with only a
small loss of fragment energy.

The fragment energies are measured by two opposed, heavy ion
detectors which also serve to supply the fast timing signals required
for the coincidence measurements. The whole assembly is contained
in an evacuated fission chamber.

The fragment mass, used as a parameter in these measurements,
is determined from the fragment energies alone. The determination is
performed "on line' by the circuit indicated in figure 2 as the "Loga-
rithimc Amplifier". This circuit furnishes a pulse which is propor-
tional in height to a function of the fragment mass.

The life time of the emitted gamma-radiation is examined by the
lead collimator indicated in figure 1. The principle employed is the
time-of-flight of the fission fragments. Since these fragments have a
velocity of the order of 1 em/nsec, a considerably better time defini-

tion can be achieved in this manner than by electronic methods.



The gamma-radiation detector is a 5" x 4! Nal (T1) scintillator
placed 40 cm from the fission foil in order to allow a time-of-flight
separation between the fission photons and neutrons. A typical time-
of-flight spectrum is shown in figure 3. The photon peak at C has a
FWHM of 5.5 nsec.

B. Resolution

When reference is made to the fragment mass, it should be
understood that the initial mass is indicated, since it is on this basis
that the initial fragment energies are determined. Moreover, the
initial fragment mass is the physically significant parameter. For a
mass determination using the fragment energies alone, it is a certain
ratio of the final fragment energies which is involved. This calculation
gives rise to an apparent or observed mass. Due to the various energy
losses to which the fragments are subject before and during detection,
it will be seen that a given apparent mass contains a distribution of
initial masses. The most important energy dispersions arise from
neutron evaporation and losses due to the fissile layer thickness. The
resulting mass dispersion is treated in some detail in reference 2,
and it is from the analysis found there that the mass assignments to
the data points are made in this present work. The rms dispersion
of initial fragment masses for each of the data points is indicated by

the horizontal bars in the figures.

C. Measurements

The gamma-ray energy spectra were measured as a function of
the apparent fragment mass using the electronics indicated in figure 2.
The data were accumulated in a 64 x 64 channel matrix of the two
parameter analyser. All events were gated by the time-to-pulse-height
converter to assure that they belonged to the photon peak of the time-
of-flight spectrum (the peak at C in figure 3). In this way, all neutron
events were excluded, and only the random background needed to be
subtracted from the measured data. The collimator setting used for
these measurements corresponded to the time interval of (0.2 - 1.8)

X 10-10 sec after {fission.



It was, unfortunately, not possi‘ble to continuously monitor the
background radiation for these measurements, and therefore the back-
ground contribution is somewhat uncertain. In order to continuously
monitor the background, additional electronics would have been required.
Based on background determinations taken at intervals during the exper~
imental run, the background was estimated to be about 30% of the total,
and it is for this value that the data were evaluated. The values of 36%
and 10% are felt to represent the extreme possible limits, and the
resulting change in the positions of the data points using these values
for the background contribution is indicated in the figures.

For these measurements, the stability of the apparent mass
spectrum is of great importance, and therefore the system was checked
frequently for spectrum drift. The importance is due to the fact that
all the derived results are normalized to the apparent mass yield, so
that the calculated data points are Yper-fragment" results and thus
are quite sensitive to a relative shift along the fragment mass axis.
This is a particularly vulnerable point for fission fragment studies,
as the mass yield exhibits such large variations, and it is suggested,
therefore, that efforts should be made in the future to eliminate this
potential difficulty by extension of the electronics to incorporate an
additional parameter, so that the "ungated™ mass yield can be taken
up in parallel with the “gated' data.

The decay curve for the total radiation was measured by means
of the adjustable collimator of figure 1. The measurements were made
for the light and heavy fragment groups respectively, but otherwise
the decay was not investigated as a function of the fragment mass.

The total radiation was measured from about 5keV upwards.

The data was accumulated in a one parameter analyser, and it
was the time-of-flight spectrum (figure 3) which was measured as a
function of the collimator setting. An external gate was employed
which examined the fragment energy spectrum from one of the frag-
ment detectors and thereby determined to which of the two groups
the detected fragment belonged. A substantially better time definition

can be achieved in this manner than by considering all fragments in



the same measurement. According to the data of Milton and Fraser (3),
the velocity dispersion (and therefore the time dispersion) for frag-
ments belonging to one of the two mass yield groups is of the order of
5%. However, when all fragments are considered in the same measure-
ment, the velocity dispersion rises to about 20%.

For all measured points on the decay curve except the last point,
i.e., the furthest from the fission foil, the collimator opening was 1
mm. For this last, most distant position, the collimator opening was
2 mm. The corresponding time duration is then ~. 135 and ~ 270 psec
respectively. The time duration is, of course, dependent upon whether
light or heavy fragments are being observed. The effective width of
the collimator is somewhat larger than 1 mm (or 2 mm) due to the
experimental geometry and edge effects of the collimator. The design
of the collimator deserves special attention, as it represents the
limiting factor for good time resolution work. The collimator used
in this work was rather crude and has since been improved upon.
However, for the time regions measured here, the collimator was
satisfactory. Improvements are necessary when one wishes to examine

the fast component of the prompt radiation (see reference 1).
RESULTS

A. Treatment of data

The treatment of the radiation decay data was straight forward.
The background for each of the experimental runs was obtained by
closing the collimator completely and measuring the resultant time-
of-flight spectrum until a statistically significant number of counts
were accumulated. The counts in the photon peak are normalized to
the number of fragments detected, and then the normalized background
is subtracted. The width of the effective time interval is used to deter-
mine the counting rate per fragment. The results of these measure-
ments are shown in figure 4. The dashed line in figure 4 corresponds
to the fast component of the prompt radiation as measured by Jchansson.

Corrections for the resolution width of the collimator were not
attempted, since in the region of interest, i.e., the slow component

of the prompt radiation, the correction is insignificant. In the region



of the fast component, the correctioﬁ depends heavily upon the assumed
mode of decay. The functional form of the decay curve is thereby
changed, but, as discussed by Johansson, the calculated half-life of
the radiation is about the same.

The gamma-ray energy spectra were grouped into mass intervals
of approximately the mass resolution width, since a finer subdivision
of the data cannot yield further information. The energy spectra were
then "unfolded' using the detector responce matrix measured by Berg-
quist (4). This response matrix also takes into account the efficiency
of the scintillator for the various gamma-ray energies. The desired
spectrum parameters were then measured from the resulting photon
spectra. The rms uncertainties in the measured values are indicated
as the vertical bars in figures 5 - 7 and take into account the uncertainty
introduced by the "unfolding' procedure as well as the counting and
background statistics.

Since the event counting rate was so low, the resulting photon
energy spectra reveal only the broadest type of structure. However,
several general parameters may be measured from these spectra and

these are given in figures 5 - 7.

B. Discussion

Since the fragment mass yield is rather strongly peaked at A = 96, 140,
one would normally expect the decay curves of figure 4 to correspond to
the radiation emitted from these two, rather narrow, fragment mass
intervals. This may indeed by the case; however, we cannot assume
with certainty that it is so until an investigation of the decay as a
function of the fragment mass is carried out. Very little is known
about the origin of this slow component, since most measurements to

date have been concerned with the characteristics of the total radiation



from all fragments. The fact that this more detailed information is not
available seriously inhibits any detailed interpretation of the gamma-
ray energy spectra measured in this interval.

Johansson (1) has shown that the total gamma-ray energy vield
for the fast component of the prompt radiation has the "saw-tooth!'
form of the neutron yield curve. However, in his treatment of the
delayed component (.50 nsec), given in reference 6, the radiation
yield is very different from the "saw-tooth' form. The results of
his analysis indicate the existance of stably deformed nuclei in the
light mass peak and confirms their existance for mass numbers greater
than ~ 148. Therefore, in this slow component of the prompt radiation,
one may expect to see a deviation in the radiation yield curve from the
'saw-tooth' form of the fast component. A slight indication that this
is so is given by the fact that the total photon yield for the heavy
fragment group is somewhat less than the yield for the light fragment
group, as indicated by figure 4. The half-life of this slow component
is measured tobe~1.5x 10_] 0 sec.

Since the gamma-ray energy spectra were measured for the time
interval (0.2 - 1.8) x ]0-']0 sec after fission, we can see from figure 4
that these measurements contain approximately equal amounts of the
fast and slow components of the prompt radiation. An analysis of this
data will have to take into account the properties of both components.

Johansson (1, 5) has interpreted the gamma-radiation to consist
mainly of vibrational transitions. The energy spectra measured here
also exhibit the characteristics of vibrational transitions in that a
pronounced 'bump' is seen at about 700 - 800 keV. This bump is felt
to arise from a vibrational cascade in which all members of the
transition would have equal energies in the harmonic potential approx-
imation. Johansson (1) also saw this bump at 700 keV, but the high
energy tail of his spectra was less pronounced than for these measure-
ments. The slow component is therefore thought to consist mainly of
the relatively fast (10_” sec) vibrational cascade, with the important
difference that the first member of the cascade is rather slow, and the

measured half-life of the slow component thus corresponds to this first



transition. The first member of the cascade would therefore be a rather
low energy transition which is consistent with the findings of Dési et al.
(6) who reported a half-life between ]0_9
in the range 25 keV to 100 keV.

Examination of figures 5 and 6 reveals a tendency for deviation

and ]0_] 0 sec for the radiation

from the ''saw-tooth' form of the fragment excitation curve in the
mass region A = 85 to 90. It is well known that in this region, begin-~
ning from A = 90 and proceeding downwards toward the magic fragment
A = 82, the fragments get progressively more "magic'. That is, the
deformation parameter makes a sharp increase in this region corre-
sponding to an increased ''stiffness'' or resistance to deformation.
Johansson (5) found that the magic nucleus 1325, exhibited delayed
radiation with a half-life of the order of 50 nsec. This was inter-
preted as being due to a compression of the upper levels of the
vibrational cascade. If we assume that the departure seen in figures
5 and 6 is due to the slow component, then it is also reasonable to
assume that the delay in this case arises from a similar compression
of the upper levels of the vibrational cascade. However, this inter -
pretation must be considered to be rather preliminary.

In the mass interval approaching the magic fragment A = 128
from above, the yield curves show no tendency to increase. We may
therefore assume that the relative gamma-ray energy yield for the
fragment, A = 128, is quite low both for the fast and the slow com-
ponents of the prompt radiation. Furthermore, the relative yield of
the delayed radiation was reported by Johansson (5) to be rather low.
Thus, if this fragment exhibits delayed radiation, it is limited to a
region around 10 nsec or regions greater than 100 nsec. It is also
noteworhty to observe that the neutron yield for this fragment, as
reported by Terrell (7), is zero. (Terrell' s results for the neutron

yield are plotted as the curve in figure 5).
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The systematics of the energy of the first 2+ level in even-even
nuclei show a pronounced upswing in the region of magic nuclei. Such
an upswing in the average photon energy for the region approaching
A =128 is shown in figure 7. The same upswing in the average photon
energy for masses approaching the magic fragment A = 82 is not ob-
served. However, it is interesting to note that the average center -of-
mass neutron kinetic energy, measured for Cf fragments by Bowman
et al. (8), shows a very similar mass dependence to that of the average
photon energy seen in figure 7.

The radiation from these otherwise quite similar magic fragments,
A = 82, 128, is therefore seen to exhibit pronounced differences. These
differences can yield information concerning the conditions at scission
and the level structure for these two fragments. The conditions at
scission are not quite the same in the two cases, in that the sister
fragment to A = 82 is known to have a stable ground state deformation,
whereas the sister fragment to A = 128 probably does not. Otherwise,
it is generally assumed that these two magic fragments receive
approximately the same amount of initial excitation energy. If this
is indeed true, one should expect to find a delayed component of the
gamma-radiation for the fragment A = 128. )

The relatively high yield and increase in the average photon
energy in the mass region A > 140 gives further evidence for the high
initial spin of the fragments, as discussed by Johansson (1). The
fragments in this region are deformed, and if one assumes a statis-
tical distribution of quasi-particle levels, the variation seen in
figure 7 should not occur. That such a variation is seen gives evi-
dence not only to the interpretation of high initial fragment spin
(~ 10 %) but also indicates that the spin increases with increasing

fragment excitation. (See reference | for a more complete discussion.)
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In the mass region A = 105 to 110, the fragments become progres-
sively softer to deformation. This can be seen from the deformation
parameters as given, for example, by Terrell (9). Indeed, Johansson
(5) has reported a region of stable deformation for fragments with
A = 110. The relatively high gamma-ray energy yield and the tendency
for an increase in the average photon energy at A = 105 seen in figures
6 and 7 can therefore be given the same interpretation as above, i.e.,
it is due to easily deformed fragments with high initial spin.

It is interesting to note, in passing, that the total gamma-radiation
decay measured during a certain time interval after fission has a
measured half-life comparable with the interval of measurement. This
effect is mainly experimental in that components with appreciably
faster or slower decay rates will have a correspondingly low intensity
in the region considered. However, the existance of these decay rates
is noteworthy and reflects the properties of high lying states in fission
fragments, i.e., neutron-rich nuclei; but before we can hope to obtain
further knowledge from this information, a systematic study of this

decay rate as a function of the fragment mass must be performed.
CONCLUSIONS

The results presented here indicate the potential usefulness of
such a study in determining the properties of nuclei far off the line
of nuclear stability. In particular, we have stressed the ability of
this method to determine the conditions at scission. Especially
interesting is the behaviour seen in the vicinity of the magic frag-
ments A = 82 and 128. It is hoped that these preliminary results will
stimulate a further investigation in this region.

The gamma-radiation seen in this work is consistent with the
interpretation of vibrational, quadropole transitions as postulated by
Johansson (1). It may be assumed then that vibrational cascades play

a predominant role in fission fragment gamma-ray de-excitation.
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FIGURE CAPTIONS
Figure 1 Schematic diagrar'n of the experimental arrangement.
Figure 2 Block diagram of the electronic circuits.
Figure 3 A representative radiation time-of-flight spectrum.

Figure 4 Radiation decay curve for the slow component of the prompt

radiation. The fast component is indicated by the broken line.

Figure 5 Gamma-ray photon yield. The solid curve is the neutron

vield as reported by Terrell (7).
Figure 6 Total gamma-ray energy yield

Figure 7 Average gamma-ray photon energy.
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