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Hans Haggblom

Abstract

The theoretical part of the fast reactor physics work in Sweden
has mainly been connected with the FRO reactor, The rapori Jescribes
the principal features of this reactor, evaluaftion cf cross sections, czi-
culations of critical masses, reactivity of the air gap and of control rodse
and calculations of neutron generation time and effective beta values,
Carlson codes in spherical and in cylindrical geometry are used to eva~-
luate critical masses and fluxes, In cases when reactivity changes are
calculated, complementary methods are perturbation theory and varia-
tional calculus, The agreement with experiments is in some cases good,
especially the determination of critical mass, but in other cases dis~-
crepanicies are observed, e,g. the activation of U~238 in the reflector

is much larger than the theoretical spectrum predicts,
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1, Introduction

The fast zero~power reactor FRO which in design features re-
sembles the British Vera reactecr became critical in February, 1964,
The only available fuel material is 20 % enriched uranium containing
120 kg of U-235, so that the experiments must be done with small cores
only, The reactor is builf in two halves, each of which consists of a
matrix of vertical tubes of stainless steecl. These tubes are then loaded
with core and reflector materials, During the first year there has been
only one type of loading., The core region has been filled with fuel coated
with a thin layer of teflon, The reflector region has similarly been filled

with copper,

The reactivity of the assembly can be regulated either by varying
the gap width between the two halves of the reactor, or by control rods

which in their inner position have the same composition as the reactor,

A relatively large part of the theoretical work has consisted of
producing cross sections to be used as input data in reactor physics
calculations., The principle for this work has been that all data must
be founded on differential measurements or, when experimental values
are not available, upon calculations using appropriate nuclear models,
In some cases we have used the data given in the book of Yiftah, Okrent
and Moldauer (ref, 1), In other cases we have tried to obtain data from
more recent measurements or by using more advanced theoretical mo-
dels., Also, by producing group cross sections, we have to some'extent

considered the effect of selfshielding in the resonance region,

Our most important reactor physics calculations involve deter~
mination of critical mass and multigroup spectrum, reactivity worth
of control rods and air gai), and determination of neutron lifetime and
effective beta values, For the critical mass calculations, DS4 or TDC
programmes have usually been used., Perturbation theory has been used
for control rod, air gap, neutron lifetime and effective-beta calculations,
For control rod and air gap calculations we have also used the TDC pro-
gramme and for gap calculations a variational method. These calculations

will be described in the following sections,



2e Evaluation of Cross Sections

Two main sets of cross sections have been produced., The first
set was finished in 1963 and consists of two subsets which we shall call
1A and 1B, Subset 1A is the principal one and consists of microscopic
cross sections in 11 energy groups for the following elementss C, F,
Al, Cr, Fe, Ni, Cu, U-235 and U-238 {ref, 2). Some theoretical work
has been performed in connection with the evaluation of these data,
namely calculation of elastic and inelastic cross sections for U-238
and Cu, Elastic cross sections were calculated using the nuclear op-
tical model where spin-orbit coupling was included in the calculations
for copper. The potential functions were of Saxon-Woods” form for
the real part and a combination of Saxon~Woods ” potential and a Gaussian
potential for the imaginary part. Detailed results of these calculations

are given in ref, 3 and 4.

For ensrgies which can excite only a few nuclear levels, com-
pound elastic and inelastic cross sectiouns were obtained by Hauser-
Feshbach calculations, For copper, the spin-orkit potential was accoun-
ted for by a jj~coupling scheme, The differential compound elastic cross
sections were then added to the shape elastic cross sections obtained by
the optical model, Later measurements by A, B, Smith at A, N, L. (ref,
5 and 6) and by Wiedling et al, at AB Atomenergi (ref. 7 and 8) agree
satisfactorily with the theoretical results, Wiedling et al. have extended
the optical model calculations and obtained parameter values which still
betfter agree with the experimental results, These data are not yet all

published and are not included in our cross section sets,

The Hauser-¥eshbach calculations were performed for U-238 bé-
low 1,0 MeV and for Cu below 1,75 MeV., Above 1,35 MeV for U-238
and above 1,75 MeV for copper, the inelastic scattering matrix was
obtained by means of the statistical model, For U-238, the discrete
level formalism is rather arbitrarily extrapolated to the region 1,0 ~
1«35 MeV,. This was done by introducing two hypothetical levels at
1. 0 and 1,2 MeV and by a graphical extrapolation of the calculated par-
tial cross sections so that the total inelastic cross section smoothly con-
nects the theoretical curve up to 1 MeV with the experimental values

above 1,35 MeV,



For the other elements, ref, 1 and 9 were the most important sources
of information, with the exception that the number of neutrons per fission,
v, for U-235 is obtained from more recent measurements, In cases when -
the starting point was differential data, group cross sections were ob-
tained by averaging with an earlier calculated, approximative spectrum,
The first calculations of critical mass and spectrum for FRO were per-
formed using the 11-group cross sections given in ANL-5800 (1958) and
the group structure from these calculations was refained in the set 1A,

Set 1B, which contains 6 groups, was obtaiuned from set 1A by averaging,
using the calculated 11-group spectrum. It is only tabulated in the form
of macroscopic cross sections for the FRO assemblies | and 2, the com-

positions of which are given in Table 9.

The cross section set 1 was used until the middie of 1963. After
that, new differential data have been evaluated or been moulded into an
applicable form, Data tabulated point-by-point exist for the following ele-
ments: hydrogen, deuterium, beryllium, boron, carbon, oxygen, fluorine,
sodium, aluminium, silicon, calcium, chromium, manganese, iron, nickel,
copper, zirkonium, lead, U-235, U-238, Pu-239. The number of energy
points was so chosen that the resonances are included whenever data are
available and when these resonances do not cause the number of points
to exceed about 500, This maximum number is determined by the limited
memory space in the machine which has tc handle the data and generate
group cross sections, For U-238, the resonances are averaged by using
the British programme Eric 2 (ref, 10) so that the data here do not con-
tain differential cross sections but group cross sections for very narrow
groups and for a specific, very dilute, composition, ¥For U-Z35, some
resonances are considered in a pointwise description but the data extend
only down to 100 eV. For the other materials, the data are given from
thermal energy to 10 MeV or in some cases to 18 MeV, For each ele~

ment there is a corresponding tape with punched data,

The differential data have been evaluated in co-operation with
the Institution for General Physics at AB Atomenergi. This institution
has compiled the data for hydrogen, deuterium, beryllium, boron, car-

bon, oxygen, sodium, aluminium, silicon, calcium, manganese, zirco-



nium and lead, K. Jirlow has compiled the data for Pu-239 and has evalua-

ted a part of the data for U-238, A reference to the sources from which the

data for the rest of the elements were obtained is given below, We use the

following symbols for the material constantss

"o (E) = total cross section at energy E.

crel(E) = elastic cross section at energy E.

o‘c(E) = capture cross section at energy E,

crin(E) = inelastic cross section at energy E,

o Zn(E) = cross section for the (n, 2n) reaction at energy E,

Y

8= ‘—E = neutron temperature for inelastic scattering at energy E,
Only the constant a is given in the data, The same constant
is also introduced to describe the secondary neutron energy
distribution of the (n, 2n) process.,

Te 1(E) = cross section for inelastic scattering at energy E associated
with excitation of the nuclear energy level €.

v(E) = average number of fission neutrons caused by a fission at
energy E,

trf(E) = fission cross section at energy X,

f& (E) = 1%h Legendre coefficient for the differential elastic cross
section, d o, (t), at energy E. These coefficients are then
defined by the expression

[+2)
2% + 1
2w dey =0,y e B (™
£=0

A computer programme, LECOCROSS (ref, 11), was developed to

obtain the f, ¢s from d T (1) at 11 values of the angular variable p.

L

O‘C(E) does not occur on the data tape but is in some cases used to

give u'el(E) when the other cross sections are known.

The elements for which data are evaluated in connection with work

on FR-0 ares



A, Fluorine

- e e b o .

The fluorine cross sections are compiled from the following

sources;

o'T(E) from ref, 12.
d o‘el(E, p) from ref. 13 and 14,

o'e(E), o‘in(E) and o 1(E) from ref, 12 and 15,

Above 3.1 MeV, a statistical energy distribution of inelastically
scattered neutrons is assumed, The constant a, giving the neutron tem-

perature, is calculated from the approximative formula (ref, 16):

2
B
a——4—~ (2)

B 0,62 VA (3)
where A = mass number,

b. Chromium

The sources of information are:

o*T(E), o‘el(E), O'in(E) and f, from ref. 17,

1

O 1(E) from ref. 18,

a from ref, 19.

Discrete inelastic levels are accounted for from 3.31 MeV

downwards.

ch(E), o‘el(E), o‘in(E) and {, were obtaincd from ref. 17,

o'ei(E) from ref, 12 and 20 and a from ref, 19.

Discrete inelastic levels are accounted for from 2,75 MeV

downwards,
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For O'T(E) we use the data in ref, 12, U'C(E) is forZ 10 keV ob-
tained from ref, 12 and 21. In the resolved resonance region, 0.2 <
E <10 keV, U'C(E) is calculated in the following way. According to one-

level resonance theory we have (ref, 22):

E-E 2

T r o) 41 R
E—-='I—'-.—~+4kR{I-. )+0.‘. (4}

Y Y Y Y

where

X

v c

I = I‘n + PY = total level width,

P\’ = radiative level width.

k = wave number of the neutron,

R = potential scattering radius,

E0 = resonance energy,

If we write

2
o =417 R 5
. (5

and if the cross sections are given in barns and the energies in eV, we

obtaing
o -
= T P
YT T .3 B E ©
T+ 2,48 ¢ 1077 () «/“E‘-"‘&P
Y Y

We have assumed that I‘Y = 0,5 eV for all resonances, .This value
is chosen because, according to ref, 23, a somewhat too small resonance
integral was obtained when I" was taken as 0,4 eV, I‘n and Eo are taken
from ref, 24 and o_ is estimated from the same reference so that a re-

sonable crY is obtained at energies where the interference term is important,



Below the resonance region we have assumed that the capture cross
section obeys the 1/v law, O‘in(E) is obtained from ref, 4 and 12, o_ 1(E)

from ref, 4, f&(E) from ref., 2 and the constant a from ref, 19,

Ref, 17 was used for O'T(E), o'el(E), o'in(E), v(E) and o‘f(E). A fic-
tive series of T 1(E) was constructed for E S 2,0 MeV using the curves
in ref, 1, The fictive levels adopted are in MeV: 0, 035, 0,075, 0, 145,
0,250, 0,325, 0.6, 0,9, 1,25, 1.625 and 1. 865, For higher energies
where the statistical model is used, a was obtained from ref. 19. The
Legendre coefficients were obtained from ref. 13 or were assumed to

be the same as for U-238 {see below),

Of the data for U-238, K. Jirlow, (AB Atomenergi, private com-
munication), has evaluated resonance integrals over narrow energy ranges,
»(E), crf(E) and partly the capture cross sections, The resonance integrals
are given as effective cross sections for the mean energy of the respec-
tive ranges, Outside of the resonance range the data are obtained in the

following way.

O'T(E), O'f(E) and . zn(E) from ref, 17,

O'C(E) from ref, 25 in the region 1-20 keV, otherwise from ref, 12, We
have also used data from ref, 25 up to 100 keV, but reactor physics

calculations will then give worse agreement with experiments,

crin(E) for E > 1.35 MeV from ref. 17. For E £ 1,35 MeV from ref. 2
and 26.

o, 1(E) and f&(E) from ref, 2 and 26,

The statistical model for inelastic scattering is applied above

1.35 MeV. The constant a is obtained from ref, 19.

¥(E) is described by a linear functions
v=2,42+ 0,14 E
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where E is given in MeV. The constants are approximately the same as

in ref, 27,

From the differential data we obtain group cross sections in the
following way. The neutron spectrum for a given material composition
and for a given geometrical huckling is calculated by a computer code,

NESPECO, which solves the transport equation in B, approximation

using the differential material constants as input da,t]ae The group cross
sections are then obtained by averaging over this spectrum or over an
optional input spectrum. The programme can also calculate better
guesses for the buckling and for the spectrum in an iterative way if

the medium is multiplicative. For a non~multiplicative medium one

can obtain an approximative space~-dependence of the flux by summation
of solutions for a large number of bucklings, The code is described in

ref, 28,

By cross section set 2 we mean a series of group cross sections
calculated by using the NESPECO programme, The number of groups
is 14, 11 and 6,

Microscopic and macroscopic group cross sections have been cal-
culated, the former ones for most of the elements for which punched data
are available, using the FR-0 core 1 spectruvm, and in some cases also
using the refl‘ector spectrum, Work is in progress to improve these sets
by using shielded microscopic fuel cross sections which are calculated

for the right composifion and geometry,

Tables 1 ~ 8 show 14~-group cross sections from set Z for chromium,
iron, copper, U-235 and U-238, In the tables the 14 energy groups are

grouped together into cross section groups. The order of these is:

veo, if not equal to zero

Transport cross section, o

Do b
[

tr

Non-elastic cross section, ¢, =0, ~0
ne tr el

*

Total cross section, ¢

T

L*‘el = Gg, g

Removal cross sections from group g to group g5 crg e
2 5

Flastic cross section,

0\914:(,0
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The group cross sections are defined in ref, 28, Two types of
spectra have been used in the averaging for the last three materials.
The difference between the corresponding cross sactions is largest
for copper because the reflector consists to 88 % of this material and

because the copper data include all resolved resonances.,

3. Calculations of critical mass and neutron spectrum

The criticality calculations were performed using the Carlsson
codes DSN and TDC in 84 approximation, Diffusion theory gives re-
sults which deviates from the S4 approximation by the order of 15 %
in critical mass, Two different core compositions and two reflector
compositions have been considered in the calculations for FRO and,
in addition, calculations on four assemblies of ZPR III have been per~
formed to obtain additional possibilities of comparing the results with
experiments, The compositions of the cores and of the reflectors are
given in volume percent in table 9. Assembly 1 consists of core 1

and reflector R1, assembly 2 of core 2 and reflector R1,

Table 10 shows the lower energy boundary and the fraction of
fissions in each energy group for different cross section sets, When
11 and 6 groups are used in cross section set 2, the lowest energy

boundary is the same as for group 14 in the same set, namely 120 eV,

Table 11 shows the calculated critical radii and masses for
different assemblies, Most of the calculations were performed in
spherical geometry using the DSN~-code, The experimental assembly
was first constructed as a cylinder with a diameter-to-height ratio
near to 1, The theoretical form factor was obtained from 6-group
calculations using the same cross section sets in spherical and in
cylindrical geometry, Using set 1 we obtain the form factor o = 0,950,
using set 2 we obtain @ = 0, 934, The experimental value is 0, 9361, The
TDC value of 71,0 kg for the critical mass was obtained for 40 radial
‘and axial divisions and for a convergence ''radius'' of 10"2. For 20 ra~
dial and axial divisions and a convergence radius of 10_3 we obtained

a critical mass of 71,3 kg.
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The experimental critical mass for assembly 1 with 35 cm reflector
is 71,9 kg and is 70, 1 kg for assembly 2, An increase in the reflector thick-
ness from 30 to 35 cm does not give any decrease in the calculated criti-
cal mass, From table 11 we then observe that cross section set 1 gives
better agreement with experiments than set 2 when we only consider FR0
assemblies t and 2. This is, however, not the case when we consider also
the calculations for ZPR III, All the calculations using set 1 give too large
critical masses, in contrast to set 2 and to, e,g., the Yiftah-Ckrent-Mol-
dauer cross sections, The largest positive error is for ZPR 1II/16 for
which the calculated mass is 7,4 % too high., Now assembly 16 is approxi-
mately obtained from assembly 12 by substituting a part of the carbon
content by U-238, This fact indicates that the high critical mass is due to
the U-238 cross sections, For this element the sets 1 and 2 differ mainly
in % in and T - The influence of T is studied by using a cross section set
consisting of the first four groups of set 1 and of the last ten groups of
set 2, The critical radius was then only slightly higher than when using a
pure cross ‘section set 2, From this we draw. the conclusion that the diffe-
rence in capture cross sections which, in the energy range 0.11 - 1,35 MeV,
is about 3 % is the main source of the difference in critical mass. The cap-
ture cross sections are also higher in the data of ref, 17, The error in
the calculation for ZPR III/16 is one reason why we believe that these data
are not better than the BNL-~325 values which we have used, Experimental
data obtained by Smith (ref, 37) also confirm the BNL-325 data. We have
also used the data of ref., 25 up to 100 keV instead of to 20 keV but then the
critical mass of FRO assembly 2 decreased by 3 %. - One possible cause
of the too low critical mass obtained with set 2 lies in the fission cross
section of U-235 which, according to recent British measurements (ref. 25),
is about 5 % lower than the BNL-325 values,

It is interesting to note the change in critical mass when we go from
a larger number of groups to a smaller, The general trend seems then to
be that the mass decreases, The difference is due, of course to a wrong
choice of weighting function by averaging. To obtain as small an error as
possible in the eigenvalue, one should use as weighting function the product

of the flux and the adjoint flux (ref, 38). The least satisfactory result is
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obtained using cross section set 1, where a very rough approximation of
the neutron spectrum is used to reduce the 11-group constants to 6~group
constants, In cross section set 2 the same fine-structure spectrum is
used to calculate both the 14-group and the 6-group constants. The dif-

ference in critical masses is then only about 1 %.

Fig. 1 shows the flux per unit lethargy for assembly 2 in the
centre of the core., Fig, 2 shows the corresponding flux in the reflector
at 3 cm from the core boundary. Fig. 3 shows the fluxes in the energy
groups 1, 5, 9 and 13 as functions of the radius, Comparisons with ex-
periments indicate that the core spectrum is calculated with sufficient
accuracy, but the reflactor flux appears to be much softer than the cal-
culations show. We have as vet no explanation of this fact, A complete
description of the experiments and comparisons with theory will be given

by other authors in ref, 39,

Calculations have also been made of the critical mass for diffe-
rent reflector thicknesses of assembly 2. Experiments with different
reflector thicknesses have only been performed in cylindrical geometry
and keeping the bottom and top reflector thicknesses constant, Cor-

responding critical mass calculations will he reported in ref, 39,
A limited amount of natural uranium is available for eventual

use as refiector material, Some calculations have been performed to

find out whether we can obtain a critical system with this reflector,

4, The reactivity worth of the 2ir gap

Air gap calculations are connected with the solution of the trans-
port equation in two dimensions, This was first done by means of per-
turbation theory and variational calculus in one energy group (ref. 29).
The perturbation method developed by Friedman {unpublished paper)
was extended to larger air gaps by the variational method. Only a bare
reactor is considered in these calculations, The results are compared

with those based on diffusion theory and the ''direct leakage calculus"
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developed by Chernick and Kaplan (ref., 30), It is not possible to make
guantitative comparisons with the experiments because of the influence
of the reflector in FR0O. For small air gaps, diffusion theory gives
half as large a reactivity value as the transport theoretical perturbation
method, The experimental values will here approximately {follow the
curve given by diffusion theory, But the reflector will probably decrease
the reactivity worth of the gap, and this may be the sxplanation of why

transport theory seems to fail,

The reactivity worth of the air gap has also been calculated using
the TDC code and 6 energy groups (ref, 31). Here the calculations were
made for the actual reactor, The results of 21l four types of calculations
are given in fig. 4. The TDC calculations give a very low initial reactivity.
The experimental values are preliminary and are therefore not given in
the figure, but the whole curve is below these values. The reason for this

has not yet been explained,

For large air gaps the reactivity was determined experimentally
from the counting rate of neutrons round the periphery of the reactor.

If this rate is n, the multiplication factor, k, is obtained from the formula

B

o]
n= e | (7)

n is related to the multiplication factor for small air gaps. A corre-
sponding theoretical determination of the reactivity was made by calculating

the flux caused by a fixed source for different air gaps (ref. 32).

For a large air gap the reactivity change obtained in these calculations
was larger than any other theoretical value, This indicates that the reacti-
vity defined by Eq. 7 is not necessarily the same as that obtained from the

eigenvalue of the static transport equation.
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54 Control rod calculations

The reactivity worth of the control rods was calculated by ‘wo dif-
ferent methods, namely perturbation theory and 6~group TDC calculations.
The perturbation theory is based on the transport equation and makes use
of a flux obtained from a 1-group P3-ca1culation (ref, 33 and 34), In PN
approximation with an arbitrary number of groups, the perturbation ex-

pression for reactivity is
SR I J¥
= A X A(vZ +AZ , {(1-8 )i . av
v ¢ L, g 2! f)g« 25 Py Vg, o) Vg0l
g g

N

Z (2n+1)§A(E I fng gn(_)np (__)d’v’} - (8)
g

-
-

o}

where the operator Acauses a small change in the operand,

v = average number of fission neutrons,

Xg = fraction of fissions in group g,

= g = fission cross section in group g,

Eg > = removal cross section from group g~ to group g,

Eg = total cross section in group g,

n g = n’th Legendre .coefficient of the elastic cross section in group g,

41+ (r) = n"th Legendre coefficient of the adjoint fiux in group g,

o~
H

S
it

nth Legendre coefficient of the neutron flux in group g,

and

sy ngg(vzf)g,qf;o(;) Yoo o®) AV @
g g

The advantage of P, approximation instead of diffusion theory is,

N
above all, that all coefficiénts are finite also for channels, The gradient



- 16 -

term in diffusion theory is replaced by a sum containing higher Legendre

coefficients of the flux,

In the TDC calculations (ref, 31) cross section set 1 was used in
connection with a geometric division number of 25 in both directions. These
calculations are the most complete ones, but the agreement with experi-
ments is not satisfactory. For cross section set 2 we have usec 0 radial
and axial divisions but only one reactivity change was calculated, namely
the change when the rod is pulled down 20 cm from its inner position. The
corresponding reactivity change was in this case in good agreement with
the experiments, For all TDC calculations the rod must, of course,be

placed in the centre of the reactor,

Fig, 5 shows the results for a central control rod obtained from per-~
turbation calculations and from TDC calculations, The crosses represent
experimental values for a control rod at the radial distance 10 cm from the
axis, These values were multiplied by the factor 1,54, which is the relative
reactivity coefficient for copper in the centre and at the actual radial point,
The calculation using cross section set 2 indicates that good results can be
obtained with the TDC code if the number of geometrical divisions is suffi-
cient, But to arrive at more definite conclusions, more points have to be
calculated and a more systematic investigation must be made of the effect

of the geometrical divisions and of the number of necessary iterations,

The total reactivity of the rod was calculated with good accuracy by
perturbation theory but this may be fortuitous, because the one-group cross
sections give an error in the critical mass of 31 %, The curve in fig. 5
holds for this erroneous critical mass, There are probably two main rea-

sons for the knee in the curve, namely:

1) The theory does not account for the flux deformation. The sharp
reactivity decrease up to d = 30 cm is theoretically caused by inserting re-
flector material in the core as an absorber, The corresponding decrease

in the flux will decrease the negative reactivity effect,
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2) The flux variation over the cross section of the rod is not con-~
sidered in the calculations, Thus, at the centre of the reactor, there is
no contribution from n-values higher than zero to Av/v (see Eq. 8}, and
the derivative of (-p) is negative in this point which corresponds to d= 45
cm in fig, 5., But for non-zero rod cross sections the average over the
cross section of higher lL.egendre moments of the flux is not zero and thus
the derivative of (-pj is at least less negative than calculated, perhaps

always positive for the cross sections in question.

The next step in the perturbation calculations will therefore be
to take account of the variation of the flux over the rod cross section
and to make calculations in more than one energy group, In preparation
for this a new P3 programme in spherical geometry was developed
{ref, 35). This programme eliminates all explicit boundary conditions
by using an integral transform., The PN equations are thus transformed
to a system of integral equations which are solved iteratively, It turns
out that the flux will be calculated with the same order of accuracy as
by Sy calculations within the reactor, also at inner boundaries. This is
probably because v¢ do not need to introduce any '"artificial' boundary
conditions as in diffusion theory and in conventional PN calculations., At
the outer boundary, however, the flux is not equally well described be~
cause of the discontinuous angular dependence at this point, But for a
reflected system this behaviour does not have much effect upon the reac~-
tivity and this quantity is then calculated with the same order of accuracy
as in S 4 calculations, The computation time is, however, comparatively
long but we expect that it can be significantly shortened by further de-

velopments,

6, Calculation of neutron generation time and effective heta values

Two different methods were used to calculate the reactor con-

stants which determine the kinetic behaviour (ref, 36).

The first method involved the use of DS4 calculations to obtain

some reactivity values needed, The effective beta values were calculated
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by introducing an equivalent removal cross section of the following form:

o () (.
zﬁ,g»g’" §: %,g’ BY (‘zij) (10)
i, j g ‘

Eq. (10) describes a removal of neutrons from group g, where a
fission occurs in material j, to group g°, where some delayed neutrons
appear., These belong to the delayed neutron group iz 'fi . is the relative
number of neutrons coming into energy group g” and Bi(j) is the delayed

neutron fraction in the ith group caused by fission in material j.

First we calculate the critical radius obtained when the delayed
neutrons are introduced in the transport equation by the aid of Eq. (10).
Then we add to Z . the contribution of a particular §, . times a

dg—>g i ]

suitable factor n and calculate the corresponding reactivity change, p.

The effective beta value is then

o) -2 (11)

The results of these calculations are given in table 12. In this case,

as for all calculations in this section, cross section set 1 was used,

The neutron generation time is calculated from the reactivity change,
P s caused by introducing a term in the transport equation corresponding to

the exponential decay constant, T. The generation time, A, is thens

AszT (_12).

Table 13 shows the resuits for T = 10-5 and 5 x IO"7 seconds,

The second method we have used for calculating ﬁgj) and A is that

eff
of perturbation theory, The neufron flux and the adjoint flux were then com-
puted using a programme for diffusion theory. Several different kinds of

perturbations were used to investigate the effect of the deformed flux. The
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largest reactivity change was 0,013 and the difference between the re-
sults for the different cores is very small. A representative number for

the neutron generation time is:

A=5.4x10"%¢

Corresponding representative values for ﬁi('j)eff are given in table 14,
From tables 12 - 14 we conclude that calculation of effective beta values
by the first method gives results which differ appreciably from those ob-~-
tained by the second method. For U-238 the first method gives the highest
values, while for U-235 the difference between the results has the opposite
sign, The reason for the large discrepancies may be that the first method
uses 84 calculations and the second diffusion calculations, or that large
errors are introduced in the first method because the reactivity is the dif-

ference between two nearly equal numbers,

The generation times calculated by the different methods are more
equal for small reactivity changes. The value calculated by the DS, method
for 8,66 % reactivity increase cannot be compared with the perturb”a,tion cal~
culations, But comparing A for small p-values with the corresponding ex~
perimental results, the calculated value is too small, indicating that the

flux is too hard.

Te General conclusions

As could be expected from resulis at other laboratories, the critical
mass of such a small system as FRO can be calculated with acceptable
accuracy using several different cross section sets. But we thought it worth
while to develop a cross section set of our own because the inaccuracies in
the data are then better known, The changes made by us in the differential
data to obtain better agreement with experiments concerning integral data
are then limited to ranges where such changes are plausible. For instance,
we do not believe in the motivation for significant changes in T below

1 MeV or O'C above 30 keV for U-238,
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For copper no complete data were available, Therefore the copper
cross sections are the most uncertain ones, and this may be the expla-
nation why the calculation of an "average flux'" in the reflector does not
agree with experiments, This average flux is defined by activation raeasure-
ments using foils of U-238, The weighting function has then a high value in
the low energy region and this is why we conclude that the flux in the re-
flector is softer than calculated, The too low neutron generation time also
tells us that the calculated flux is too hard but in this case we do not know
where in the reactor the error is localized. Some, but not all, experiments,
however, indicate that the spectrum is calculated with much better accuracy
in the core, And it remains still to find out whether copper cross sections
can be evaluated which give both the right critical mass and the right spectrum.
For instance, an improvement in the values of e in the 'region 0.1 - 10 keV
caused an appreciable increase in the flux in this region, but at the same time
the critical mass decreased by 3 % and the influence on the average flux was

very small,

The accuracies of the calculational methods are also to some extent
unknown., The error in the cylindrical form factor is an indication of an
error either in the DS4 or the TDC calculations, It would be of value to com-

pute the critical masses by other corresponding codes for comparison,

TDC calculations are generally very time-~consuming and should there-
fore be avoided when many calculations are needed for solving one problem,
e. g. if we want reactivity values as a function of a continuously varying pa-

rameter, In many such cases it is possible to use perturbation theory.
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Table 7
U=238 lh-group cross sections

averaged over FRQO core 1 spectrum
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U-233 liegroup eress sections
averaged over FRO reflector spectrum
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Table 9

Composition of the core and reflector zones in

Material Identification
Core Refliector
1 and 2 3- Rt | &me
c 29.32
CF, 0.206 0.206
Cr 1.18 1.18 1.18 1.61
Fe 4,84 }.8Y% 4. 84 6.0k
Ni 0.523 0.523 0.523 0.85
Cu ' - 88.0
U=-235 17.59 11,70 ' 0.43
U-238 | 70,13 | 46.78 60.57
Table 10

Lower energy boundary, E

L

for different cross section sets.

volume percent.

, and fraction of fissions, ¥, in each group

Group 1k groups, set 2 | 11 groups, set 1 6 groups, set 1
NG.e . E B E
L X L X L X
MeV MeV MeV
1 2.25 0.338 2,25 0.338 1.35 0.5Tk
2 1,35 0.236 1.35 0.236 0.5 0.294
3 0.825 0.178 0.825 0.178 0.18 0.099
L 0.5 0.116 0.5 0.116 0.067 0.025
5 0.3 0.066 0.3 0.066 0.0091 0.008
6 0.18 0.033 0.18 0.033 0.001 0
T 0.11 0,017 0.11 0.017
8 0,067 0,008 0.067 0.008
9 0.025 0.006 0.025 0.006
10 0.0091 0,002 0.0091 0.002
11 0.0055 | © 0.001 | ©
12 0.0021 0
13 0,0005 0
1k 0.00012} ©




Teble 11

Results of criticé;

nags caleulstions for different assamblies,

Date Number Ceonetry Core Reflector Error in %
P . . . . ne °
| o ety | e | e | ek | gk ot eals
1 5 Cyle, H/D=1,0 1 15.24 73.8 RL 30 1.2
1 1 Spherical 2 17.25 T1.3 51 30 1.7
1 11 Spherical 2 17.33 72.3 RL 2k
1 11 |Spherical ‘2 1754 T3.7 R1 20
i 11 Spherical 2 17.82 78.7 Rl 15
1 11 Spherical 2 18,68 90.6 Rl 10
1 11 |Spherical 2. 20,59 1214 Rl 5 _
1 6 |Soherical | 2 17,15 70,1 R1 30 0.0
io2 §  |Cyl.y H/D=0.996| 1 15,07 71.0 R1 30 - 2.7
1 11 Spherical 2 19.69 - 106.1 n2 15
1 i1 |Spherieal 2 119,78 107.5 R2 13,9
2 i . |Sgherical 2 16,39 6750 R1 30 - bl
1B 6 8rhewvical 2 15,0k 6643 RL 30 - 5.3
g 1 1 Suharical 3 22,79 109.6 a1 ok
B % Spherical '3 22,75 102,2 R1 30
R it Srherioal ZER»iEIi?@ 25,78 157.9 A 30 k.6
% 3 1578 1TI/12 20,890 L 2.0 30 3.1
P 30Ty 21630 A 3 To
§ - 24,02 1T A A 30 - 3.9
|, —_—




Table 12

Effective bets values for FRO/2 , obtained by DSh calculations.
The superscript (28 or 25) refers to U~-238 and U~235, respectively.

Neutron generation time, A, for FRO/2 , obtained by Dsh'calculations.

t and p are the corresponding persistent period and reactivity.

i 5(28) x10” L(25) x10®
i,eff i,eff

1 0.46 1.55

2 5,48 9.76

3 5.29 8,61

h 12,67 18.73

5 7.35 5,87

6 2,45 1.19

Table 13

Effective beta values for FRO/2 , obtained by the use of diffusion
theory and perturbastion theory.

T 0 Ax 108
S 2]
1x 107 0.005) 5.43
5 x 10”7 0.0866 4,33
Table 1k

i Bgza) 10" B(_25) xloh
1,eff i,eff

1 0,357 1,86

2 3.54 9.99

3 L.,19 8.86

b 10.15 19.k%

5 5.82 6.03

6 1.95 1.23
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