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ABSTRACT

The properties of an incompressible perfect fluid exhibiting Hall 

effect is investigated in the limit of infinite electrical conductivity and 

mobility. The magnetic field strength and the fluid velocity are found 

to obey the equations B = —■ curl V and V = - curl B_ (MKS units) 

where p, a and |j, denote mass density, conductivity and charge carrier 

mobility. Some physical interpretations and applications are given.
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1. INTRODUCTION

The concept of infinite electrical conductivity is very often used 

in magnetohydrodynamic theory. The main reason is of course a reduc­

tion of the complexity in the mathematics but in many cases it actually 

is a very good approximation. It may be noted here that electrical con­

ductivity is that physical property of matter which has the largest known 

range of values.

There are two ways of interpreting infinite conductivity. Usually 

one assumes such a multitude of charge carriers that they form a con­

tinuum and consequently the specific motion of any of them is then dis­

regarded. On the other hand, infinite conductivity can also be achieved 

by a finite number of charge carriers which respond infinitely quickly 

to an electric field. * It will be shown that these two interpretations 

give entirely different descriptions of the magnetohydrodynamic be­

haviour of a perfectly copducting fluid. The reason is that magnetic 

effects on the individual particle motion have to be taken into account 

in the latter case. For electrons in a medium of finite conductivity 

this magnetic influence is known as the Hall effect.

2. ELEMENTARY DERIVATION OF THE HALL EFFECT

In magnetohydrodynamics an extensively used approximation of 

the generalized Ohm's law is given by the equation

j_ = o (E + V x B) (1)

where j_, a and E_ denote the current density, the conductivity and the 

electrostatic field strength respectively. V is the local mass velocity 

of the conducting medium, permeated by a magnetic field B_ which may 

originate from currents in the fluid and/or external sources. For the 

simple case of a slightly ionized gas the conductivity is given by the 

expression

a = e2neT/me (2)

* In the following the treatment is based upon the assumption of a 
long collision time for electrons instead of a very small mass, see 
Eq. (8).
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where e and m denote the electron charge and mass, n is the elec - 

tron density and t is the average time between collisions with gas 

atoms randomizing the velocity of an electron.
It was pointed out by Alfven Ll ] that Eq. (1) together with the 

assumption of perfect, i. e. infinite conductivity leads to the concept 

of "frozen in" magnetic lines of force or, explained more distinctly, 

there will then exist a constancy of magnetic flux through any closed 

contour moving with the mass velocity. The proof as given in prac­

tically all text books on magnetohydrodynamics and plasma physics, 

is obtained by combining the Maxwell equation 

dB
curl E_ = - (3)

with the condition

E_ + V_ x B_ = 0 (4)

Lighthill [6 ] pointed out that such a derivation is not correct for 

a fluid where the charge transport is provided by particles which do 

not move with the mass velocity. For a plasma with the usual elec­

tronic conductivity, i. e. negligible ionic motion * relative to the mass 

motion, Eq, (1) should instead be written

j_ = o (E_ + V,e x Bj (5)

where Visa mean value of the electron velocity. Thus in the limit of —e
very high conductivity the magnetic lines of force tend to move with, 

or be frozen into the electron gas. The mass and electron gas veloci­

ties are related to each other as

Ve = VL+l/(e ne) = V_+V_' (6)

For a highly conducting medium the difference velocity V_’ is usually 

taken to be very small even in the case of large current densities be­

cause of the abundance of available free charge e n^. However, it

* Motion of the ions relative to the neutrals can be accounted for here 
by replacing a and (j, by a(l + v)/(l + v(3^) and p(l-v)/(l + v(3^) respectively 
where v is the ratio of ionic and electronic mobilities, see ref. [4 1.
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should not be inferred that V ' =0 would generally be a reasonable 

approximation. Combining Eqs. (5) and (6) it is found

j_=o(E_ + ^xBj + ^- (j_ x B_) (7)
e

where the relative magnitude compared to unity of the last so-called 

Hall term is determined by the Hall parameter (3 which is the product 

of the electron mobility p and the magnetic field strength,

P = M-B, \i = CT/(ene) = eT/me (8)

(3 is usually interpreted as the average number of Larmor gyrations 

which an electron performs during the time 2ttt. For a magnetic 

field of 1 Wb/m (3 is of the order unity in a noble gas of atmospheric 

particle density and room temperature.

3. THE HYDRO MAGNETIC EQUATIONS

It is assumed that there is no electrical excess charge and that 

all external forces acting on the fluid can be derived from potentials. 

The equation of motion for a perfect fluid then takes the form, (see 

e. g. ref. [5 ]).

SV , 
p + p(V_ • V)V_ = j_ x B_ - grad p + p vAV - grad 0 (9)

where p and p denote mass density and pressure, v is the kinematic 

viscosity and 0 is the potential of the external forces. In the hydro- 

magnetic approximation the generalized Ohm's law is given by the 
equation, (see e.g. ref. [5 ])

j_ = c(E_ + V^x B_) + pj_x B_ - grad pe (10)
e

where p^ is the electron gas pressure. The two basic equations (9) 

and (10) are supplemented by the pertinent Maxwell equations, one 

given by Eq. (3) and the remaining three expressed as

curl B_ = pQj_ (11)

div j_ = 0 (12)



- 6 -

div B = 0 (13)

where is the permeability of free space.

In the following we will make the strongly simplifying assumption 

that both the electron density and mobility are constant and therefore, 

by Eq. (8), also the conductivity. Further, the fluid is taken to be in­

compressible implying

div V =0 (14)

The second term of Eq. (9) is rewritten by the use of the vector identity 

(V_ • V)V = grad V2/2 - V_ x curl V_ (1 5)

Applying the operator curl to Eqs. (9) and (10) it is then found

p (curl V_) - p curl (V_ x curl V_) = — curl [(curl B_) x B_] +

+ pvA(curl V) (9a)

- — AB = - a -Jj=- + a curl (V_ x B_) + curl [(curl B_) x B ]
^o ^o

(10a)

4. ESTIMATION OF THE RELATIVE MAGNITUDES OF 

THE TERMS IN THE BASIC EQUATIONS

Let L and Vq denote a length and a velocity characteristic for a 

situation where the equations (9a) and (10a) are expected to apply. The 

vector operators and the time can then be written in dimensionless form

curl* = L curl, A* = L A, t* = tV^/L, (16)

and the two variables V_ and B_ are preferably normalized with respect 
to the velocity Vq and the Alfven wave velocity = B/(p,Qp)^2 in the 

following way

i = VA0* rA = B/(V^0P)1/2
(17)
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The two basic equations then become

(curl* v) - curl* (v x curl* v) = curl* [(curl* v^) x ] +

+ A* (curl* v) (9b)

- Rm A*^A = - CUrl* +

+ R * curl* [(curl* v^) x ] (1 Ob)

Three dimensionless numbers appear here. Two of them are familiar, 

the Reynolds number '

R =V L/v, e o'*

and the magnetic Reynolds number

Rm = LA OV L o o

The third one seems to have been given little attention. It may be 

called the Hall effect interaction parameter

R = l2 (^,1/2 

U v P y L ene(> (18)

It is well known that- a pronounced magnetohydrodynamic behav­

iour of a conducting fluid requires both Rg and R^ to be large, i, e. 

the viscous effects should be small and the fluid motion should be 

strongly affected by the magnetic fields induced by the currents in the 

fluid. In the following we will accordingly assume that terms multi­
plied by R^ and R^ are negligible, however, this does not imply 

that the Hall effect term can also be neglected. By taking the ratio

- PVo/VA <19>

a comparison is obtained between the magnitude of the Hall effect 

term and the magnetic diffusion term, the latter taken here to be neg­

ligible. It is obvious that there can exist conditions when this ratio 

attains a large value, i. e. the Hall effect influence must in general

be taken into consideration even for a highly conducting fluid,
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5. SOLUTIONS TO THE TIME-INDEPENDENT EQUATIONS

It is assumed that there are steady-state conditions, i, e. no ex­

plicit time dependence. Further we take the numbers and to be 

very large. Eqs. (9a) and (10a) then become

p,Qp curl(V_ x curl V_) + curl [(curl B_) x B_] = 0 (9c)

(JLq curl (V_ x Bj + curl [(curl B_) x B_] = 0 (1 0c)

For (j, = 0, i. e. no Hall effect, both equations are satisfied by the 

relation

V_ = B/(piop)1/2 (20)

which expresses typical features of Alfven wave propagation in a dissi­
pationless medium, see ref. [l ]. However, perfect conductivity in a 

fluid with a finite charge carrier density implies perfect mobility and 

hence an infinite Hall effect. Eqs. (9c) and (10c) then have an exact 

solution* as shown in Appendix I

V = - curl B (21)
— CT^o “

= M curl V_ (22)

B_ or V_ can be eliminated in either of these equations and by using Eqs. 

(13) and (14) a pair of Helmholz vector equations is obtained

2 '

CT ^oAB_ = —^ B_ (23)
li, p ■

2CT p,
AV = -jS. V (24)

p. P

Using Eqs, (8) and (11), Eq. (21) can be expressed as

e n^ V_ + j_ = 0 (25)

* The solution B_ = 0, V_ ^ 0 only leads to Eq. (27).



- 9 -

The interpretation of Eq. (25) is simple. Upon a mass motion with ve­

locity V_ that charge en whicji is subject to the Hall effect will experi-
G 2

ence an induced field V_ x B_ and perform a drift motion (V_ x B_) x B /B .

As B_ is perpendicular to V_, Eq. (22), the drift velocity is -V_ and it 

cancels any motion with the mass. On the other hand, that charge which 

is not affected by the magnetic field, i. e. the ions, will follow the fluid 

motion. Seen in the magnetic field frame, to which the electrons are 

tied, there is an ion current density j_ = - e n_V , seen in the mass 

frame there is an electron current density of the same magnitude but 

with reversed direction. If both species of charged particles were sub­

ject to Hall effect Eq, (25) would still be satisfied, but trivially, be­

cause both the current j and the net charge e n^ would vanish.

Eq. (22) proves that the magnetic field is purely inductive and 

arises from rotational mass motion. Multiplying Eq. (22) vectorially 

with V_ and applying the identity Eq. (15) it is found

p(v * V)v_ = p grad X - ^ (V_ x B_) (26)

The last term is recognized as the Lorentz force j_ x B_ when Eq. (21) 

is substituted in it. A comparison between Eq. (26) and the non-vis - 

cous and time-independent form of the equation of motion, Eq. (9), 

then shows

pV^/2 + p + 0 = constant (27)

i. e. the purely hydrodynamic Bernoulli's equation for a flow line 

applies. This may have been expected from Eq. (25) which proves 

that the Lorentz force has no component along V_.

6. HALL EFFECT IN A ROTATING BODY

There has been much speculation on whether the rotation of a 

massive body will in general give rise to a magnetic moment propor­

tional to the angular momentum, see e.g. ref. [2 J. Eq. (22) suggests 

that Hall effect could cause this, however, Eqs. (21) and (22) cannot be 

exactly satisfied simultaneously for the case of a rigid rotating body. 

Instead the velocity distribution has to be found from Eq. (24) and the 

associated boundary conditions. We take spherical coordinates 

r, cp, 6 and assume rotational symmetry
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v. = v^r, 0)$ . (28)

The solution of Eq. (24) is given in Appendix II, here it is only- 

noted that the angular momentum

Ma = 2pi , I = rr J J V^(r, 9)r^ sin^9 drd9 (29)

will be proportional to the magnetic moment .

Mm (30)

This result can be explained in the following way: The electrons 

are tied to the magnetic field and the ions to the material. A mass ro­

tation gives rise to an ion ring current system which in turn creates 

the magnetic field. Such a dynamo mechanism is not in conflict with 
the famous Cowling [3 ] disproof of a steady and rotationally symmet­

ric dynamo because Hall currents were not considered there.

The Hall effect in large astronomical bodies is probably all too 

weak to explain their magnetic fields by the present mechanism 

(T G Cowling, private communication).

7. SUMMARY AND CONCLUSIONS

It has been shown that infinite conductivity can be given two in­

terpretations, both of which, of course, must be regarded as condi­

tions in the very limit for an actual conducting fluid. The classical 

one assumes a continuum of charge carriers and it leads to well-known 

concepts like e. g. "frozen in" magnetic lines of force. On the other 

hand, infinite conductivity can also be achieved by an infinite mobility 

of a finite number of charge carriers. The magnetic effects on the 

individual charge carrier must in that case be taken into account. The 

equations for mass motion and charge transport then give a definite 

and entirely different mathematical description, Eqs. (21) and (22), 

of such a fluid. The borderline between the classical and the present 

case is given when the ratio Eq. (19) is of the order unity which es­

sentially requires a pronounced Hall effect. Both under laboratory 

and astrophysical conditions this ratio can easily exceed unity very 

much and thus favour the description as given here.
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APPENDIX I

Insertion of Eq. (21) in Eq. (10c) immediately proves it to be a 

solution. For the remaining three combinations of Eqs. (21) and (22) 

with Eqs. (9c) and (10c) the solutions are obtained by using one of the 

equations
2a |i

curl curl B_ + —B_ = 0 (23a)
U P

2CT |j,
curl curl V_ + —— = ® (24a)

\i p •

which are simple consequences of applying the operator curl to the 

solution pair Eqs. (9c) and (10c). E.g. Eq. (9c) combined with Eq.

(21) gives

2
curl [(curl B_) x (,p>~"~ curl curl B_ + B_) ] = 0

a po
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APPENDIX II

In the rotationally symmetric case Eq. (24) has only a cp-compo­

nent

Z" dr r

1 3 (r^)+V
r . 0r sin 8

d
Fe

dv .
(sin6W^) - -7-^- V

r sin '6 %

2 ^ ^o
= a Vm‘ a = -T­

Y M- P
(31)

Separation of variables, separation constant k , gives

= rP(r)sin8Q(9)

Q" + 3 cot8 Q' + k2Q = 0

(32)

(33)

P" + 7 P* - (a2 + ^)P = 0
r

(34)

Eq. (33) is transformed as

(s2 -1 )Q"(s) + 4sQf - k2Q = 0, s = cos6 (35)

and it has Gegenbauer polynomials as the general solution. If

= 0 for r = 0, Eq. (34) is satisfied by hyperbolic Bessel functions

P = r 2/2 J (i a r), i = (-1 )*^2, = 9/4 + k^
(36)

If V (Rq, 8) = R^w^ sin8, i. e. there is a rigidly rotating spherical 

shell at r = R^, the solution becomes

k2= 0, Q = 1, V^= R2/2 (i a Rjr^^J^^i a r) sin8 (37)

and for aR^ = R >> 1 (see Eq. (18)) the velocity distribution is simply 

the same as that in a rigid body

V = r (u sin6 cp o (38)
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