

AE-169

UDC 543.53

AE-169

**Concentration of 17 Elements in Subcellular  
Fractions of Beef Heart Tissue Determined  
by Neutron Activation Analysis**

**P. O. Wester**



**AKTIEBOLAGET ATOMENERGI**  
**STOCKHOLM, SWEDEN 1964**



CONCENTRATION OF 17 ELEMENTS IN SUBCELLULAR  
FRACTIONS OF BEEF HEART TISSUE DETERMINED BY  
NEUTRON ACTIVATION ANALYSIS

P. O. Wester

Summary

Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electronmicroscopically.

The following elements are determined: As, Ba, Br, Ca, Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination.

Reproducible and characteristic patterns of distribution are obtained for all elements studied.

## LIST OF CONTENTS

|                             | Page |
|-----------------------------|------|
| Summary                     | 1    |
| Introduction                | 3    |
| Experimental                | 4    |
| Cell fractionation          | 4    |
| Neutron activation analysis | 5    |
| Electron microscopy         | 6    |
| Results                     | 6    |
| Discussion                  | 9    |
| Acknowledgements            | 14   |
| References                  | 16   |

### Introduction

In addition to the bulk elements in mammalian tissues, the presence of a great number of elements in minute quantities, the so-called trace elements, is well documented (4, 5, 15, 16, 20, 21, 25, 43, 44). Only some of these trace elements are proved to be of biological significance (7, 35, 45). They function mainly as catalysts or activators in enzyme systems or other organic complexes. Some two hundred enzyme systems are known to be influenced by trace elements (35). Certain enzymes may be activated by different elements, whereas others - the so-called metalloenzymes - contain particular trace elements as a structural part. Examples of metalloenzymes are ceruloplasmin, cytochrome oxidase, ascorbic acid oxidase, butyryl CoA dehydrogenase and tyrosinase containing Cu, as well as cytochromes, catalase and DNPH cytochrome c reductase containing Fe, and xanthine oxidase containing both Fe and Mo. Several Zn metalloenzymes are known, e. g. carbonic anhydrase, carboxy peptidase, alcohol dehydrogenase, glutamic acid dehydrogenase and lactic dehydrogenase.

Although most trace elements normally occurring in mammalian tissues have no known biological function, several authors consider that many of those now regarded as physiologically inactive will, with great probability, be found to participate in vital biological processes (9, 35, 45). Some authors suggest that one way of obtaining information which may indicate biological significance of trace elements is to gain increasing knowledge of their exact loci and associations within the cell (42, 45). A few investigations of some trace elements in subcellular fractions have also appeared (17, 42). Thus, Thiers and Vallee (42) investigated the concentration of 8 elements (among them 5 trace elements) in subcellular fractions of rat-liver tissue. They found reproducible and characteristic patterns of distribution, which they considered to provide evidence of the functional significance of these elements.

In a previous study (49), I determined the concentration in normal human heart tissue of 24 trace elements, some of which had not been determined earlier in such tissue.

The aim of the present study was to investigate the distribution of these trace elements in subcellular fractions of heart tissue.

### Experimental

#### Cell fractionation

Three cell fractionation experiments were performed (I, II and III in Tables I-VI). Heart muscle tissue from three cows killed a few hours before starting the experiments was used. Pieces were cut from the left ventricle with a glass knife. Fat and connective tissue were removed. The heart muscle pieces were scraped with the glass knife. The muscle pulp obtained was weighed, and transferred to chilled 0.25 M sucrose. Homogenization was performed in a glass tube with a Teflon pestle, using 2 ml of sucrose per g of muscle.

The first two centrifugation steps were performed in an International Model HR-1 centrifuge with head no. 858 and 856, respectively. The homogenate was transferred to 250-ml polyethene bottles. Nuclei, cell debris and erythrocytes were sedimented at 2000 rpm ( $\sim 500$  g) for 10 min. The supernatant was decanted into 50-ml polyethene tubes and recentrifuged at 10,000 rpm ( $\sim 10,000$  g) for 20 min. to give the mitochondrial pellet. The third centrifugation step was performed in a Spinco Model L centrifuge, rotor 40. The supernatant from the second centrifugation step was decanted into 11-ml polyethene tubes, and recentrifuged at 40,000 rpm (105,000 g) for 60 min. to obtain the sarcotubular fraction.

Whole heart tissue and material from the different fractions obtained were transferred to weighed quartz ampoules. The ampoules with content were weighed, dried and sealed as described previously. They were then ready for irradiation with thermal neutrons in an atomic reactor. 3 ml of the supernatant from the third centrifugation step was decanted into a 10-ml polyethene tube, and stored at -20° C until required for neutron activation.

Great care was taken at all stages of the cell fractionation procedure to reduce the risk of contamination. The samples were not allowed to be in contact with other material than cleaned glass or plastic. The aluminium caps of the polyethene tubes used in centrifugation steps two and three were sprayed with plastic lacquer, and rinsed with 6 N HCl and demineralized water. All glass instruments and plastic tubes and bottles were also thoroughly cleaned before use with 6 N HCl and demineralized water. The 0.25 M sucrose solution used was prepared from sucrose crystals (Mallinckrodt) and demineralized water. A 5-ml sample of the sucrose solution was investigated by neutron activation analysis for its content of trace metals.

The amount of sucrose added to the different subcellular fractions was determined, in order to correct the wet weight determinations.

Protein determinations were performed with the Biuret method and sucrose determinations were performed with the primary L-cysteine-sulfuric acid reaction of hexoses (51).

#### Neutron activation analysis

The samples were irradiated together with standards, as previously described (49).

The sealed quartz ampoules were irradiated in the R2-reactor at Studsvik with a thermal neutron flux of  $2 \cdot 10^{13} \text{ n/cm}^2/\text{sec}$ . for

48 - 75 hr. The supernatant and sucrose solution samples were irradiated in the R1-reactor in Stockholm with a thermal flux of  $1.2 \cdot 10^{12}$  n/cm<sup>2</sup>/sec. for 95 hr. A decay interval of 2 or 3 days elapsed before the chemical processing.

Chemical separation was performed with a recently developed ion-exchange technique (31, 32, 33), and combined with subsequent  $\gamma$ -spectrometry.

The  $\gamma$ -spectrometric measurements were carried out with a transistorized 512-channel pulse-height analyzer, attached to a 3" x 3" NaJ (Tl) welltype crystal.

The elements were identified and quantitatively determined as previously described (49).

Chemical recovery corrections were made in accordance with the mean values determined earlier (49, 50).

#### Electron microscopy

Electron-microscopical analysis was performed of the mitochondrial and sarcotubular fractions. The pellets were fixed in a 1 per cent solution of osmium tetroxide according to Zetterqvist (52), dehydrated in a graded alcohol series, and embedded in Epon according to Luft (24). Sections were cut by a LKB Ultrotome ultramicrotome, and inspected in a Hitachi H 5-6 or a Siemens Elmiskop I electron microscope. In some cases, sections were treated with uranyl acetate to increase the contrast of the sections.

#### Results

A comparison between the concentration of 23 trace elements in whole heart tissue from man and from cattle is shown in Table I. The values are given in  $\mu\text{g/g}$  wet tissue. In column 1 are seen the

range and the median values in normal human heart tissue determined in a previous study (49). Column 2 shows the values obtained from two calves, and column 3 those from 3 adult animals. The cattle hearts were found to contain the same elements in similar concentration as the human hearts. Slight differences were, however, present with respect to some elements. Thus, the amount of Cd, Se and Zn was somewhat lower in the cattle hearts than in human heart tissue. One Ag value and one Cs value in beef were below the lower limit of the human range. Although the Ba values in calves were somewhat higher than those in adult animals, all the Ba values in cattle lay within the range of the human values.

The concentration of the trace elements in different subcellular fractions obtained from three cell fractionation experiments is presented in Tables II-IV. Table II lists the elements with known biological function, Table III the elements with suspected biological function, and Table IV those without known biological function. The amounts are given in  $\mu\text{g/g}$  wet tissue, the bracketed values denoting the amounts in  $\mu\text{g/g}$  protein. Correction has been made for the contribution of sucrose to the wet weight.

The protein content as per cent of the wet weight in the different cell fractionation experiments was for whole heart tissue 23.9, 24.6, 23.7, for nuclear and cell residue fraction 21.1, 21.9, 20.8, for mitochondrial fraction 35.7, 35.8, 34.3, for sarcotubular fraction 58.2, 57.9, 58.9, and for supernatant 1.12 and 1.27. The dry weight as per cent of the wet weight was for whole heart tissue 22.5, 20.7, 21.5, for nuclear and cell residue fraction 19.8, 18.1, 16.8, for mitochondrial fraction 23.4, 21.4, 21.7, and for sarcotubular fraction 29.0, 28.2, 27.1.

The distribution of the elements with known biological function showed some noteworthy patterns. The amount of Ca and Cu was very high in the mitochondrial fraction, Cu on a wet weight basis being about 15-20 times as high as in the whole heart tissue. The

sarcotubular fraction had a remarkably high Fe concentration. The distribution of P and Zn was uniform, whereas Co showed a slight increase in the mitochondrial and sarcotubular fractions as compared to whole heart tissue.

The supernatant was found to have an exceedingly low concentration of all the trace elements studied, with the exception of Br, Rb and Cs. On a protein basis, on the other hand, the figures for most of the elements were higher in the supernatant than in the whole heart tissue.

Among the elements with suspected biological function (Table III), Ba and Mo were obtained in high concentration in both the mitochondrial and the sarcotubular fraction, especially in the latter, whereas these fractions had a reduced content of Br and Rb compared with whole heart tissue. On a protein basis, the distribution of Se was uniform.

Some of the elements without known biological function - e. g. Hg, La and W (Table IV) - were found to occur in very high concentration in the sarcotubular fraction. The concentration of these elements in the mitochondrial fraction was also high. The concentration of Cs was, however, low in both fractions.

The percentage distribution of the elements studied in the different fractions is listed in Table V. Column 1 shows the protein content expressed in per cent. It is seen that the greater part of As, Ba, Ca, Cu, P, Sm and Zn was present in the nuclear and cell residue fraction, whereas Br, Cs, Rb and Se occurred chiefly in the supernatant. Fe, La and Mo showed a slight predominance in the nuclear and cell residue fraction. Hg and W were present to the same extent in the nuclear and cell residue fraction as in the supernatant.

The percentage distribution of some additional elements is given in Table VI, from which it is evident that some contamination had occurred. These elements were therefore omitted from the study. The problem of contamination will be discussed in the following.

### Discussion

One of the great advantages of neutron activation analysis is that the risk of contamination of the samples after irradiation is practically non-existent. In this work, however, the samples were handled before irradiation, which involves serious risks of contamination. Great care was therefore taken to reduce such risks. The samples were cut and scraped with a glass knife and homogenized in a glass tube with a Teflon pestle. This implies that small particles of glass or teflon were a potential source of contamination (41). In the centrifugation steps performed, no metallic object was allowed to be in direct contact with the samples. The aluminium caps of the polyethene tubes were therefore sprayed with plastic lacquer and rinsed. All glass and plastic objects were rinsed with 6 N HCl and demineralized water. Despite the precautions taken, contamination occurred with respect to certain elements, as shown in Table VI. This contamination unquestionably derived to a great extent from the sucrose solution used. The concentration in the sucrose solution of the different elements studied is shown in Table VII.

For comparison, Table VII also shows the concentration of the elements in the whole heart tissue used for cell fractionation. The amounts are given in  $\mu\text{g/g}$  solution and  $\mu\text{g/g}$  wet tissue, respectively. Most of the elements occurred in extremely low concentration in the sucrose solution. However, the concentration of some elements i. e., Ag, Cd, Cr, Sb and Sc, was of the same order of magnitude as in the whole heart tissue, and the probability that the contamination of these elements derived from the sucrose solution

is obvious. In the case of Cr, the amount present in the supernatant was less than in the sucrose solution used, which means that Cr had been added to the different subcellular fractions.

Various sources of error in the radiochemical procedure used have been discussed in earlier papers (49, 50). Nor is it possible to disregard sources of errors in the cell fractionation procedure. The subcellular fractions obtained by differential centrifugation may have been inhomogeneous. The nuclear and cell residue fraction is known to contain erythrocytes and mitochondria, in addition to nuclei and unruptured cells. The mitochondrial and sarcotubular fractions were examined electron microscopically. The homogeneity of these fractions was considered to be satisfactory.

When cytoplasmic pellets are examined in the electron microscope, only a small portion of the entire pellet can be studied at one time. This involves a certain risk of basing the results on a statistically biased sample. In order to minimize this source of error, I attempted to make sections of the mitochondrial and sarcotubular pellet from the upper and middle, as well as the lower strata of the pellets. In no case and at no level of the pellets examined were the contaminations found to predominate over the particulates in question (i. e., mitochondria and sarcotubular fragments respectively).

The investigation of which the present communication only represents a part has primarily focused its interest to condition concerning the human heart. With the present state of knowledge successful cell fractionation seem to be dependent on a rapid access to the tissue sample. Thus, technical considerations made me use beef heart tissue.

Naturally, the trace element concentration obtained in subcellular fractions of heart tissue from cattle is not directly applicable to the conditions in human heart tissue. However, the comparison

between the trace element content of the whole heart tissue from man and from cattle revealed no qualitative differences, and the quantitative differences obtained with respect to some elements were small.

The present grouping of trace elements, i. e., into those with, with suspected and without biological function, is not definite. Some of the elements which today have no known biological function may, in the future, prove to participate in vital processes.

The concentration of the elements in the subcellular fractions is shown in Tables II-IV. Characteristic and reproducible patterns of distribution were obtained for all 17 elements studied. The concentration of each element in the same fraction from different hearts was much the same, whereas the concentration in different fractions from the same heart varied. Thiers and Vallee (42) also reported characteristic and reproducible patterns of distribution of 8 elements in subcellular fractions from rat-liver tissue.

Among the elements with known biological function (Table II), Ca and Cu were highly enriched in the mitochondrial fraction. On a protein basis, Ca was obtained in a concentration about 5 times that in the whole heart tissue, the corresponding figure for Cu being about 10 times.

A high Ca concentration in mitochondria is consistent with other investigations. Thus, Thiers and Vallee (42) found a large amount of Ca in the mitochondrial fraction isolated from rat-liver tissue. Peachey's electron-microscopical observations of rat-kidney mitochondria (30) suggest that the granules normally observed within the mitochondrial matrix have the ability to accumulate divalent cations, e. g. Ca and Ba. The mitochondrial granules of intact cells (whole cells of toad urinary bladder) also had this accumulative ability. It is well known that isolated mitochondria

from kidney, liver and heart are able to accumulate certain elements, among others Ca (1, 2, 3, 12, 14, 23, 26, 37). In the case of Ca, this accumulative ability of rat-kidney mitochondria has been shown to be extremely strong (46).

The large amount of Ca obtained in the mitochondrial fraction was not accompanied by any increase in the concentration of P in this fraction. Slater and Cleland (36) pointed out that most of the phosphate present in mitochondria from rat-heart muscle exists in the form of phospholipid. Strickland and Benson (38) found, in sheep and beef heart muscle, that the phospholipids in general are remarkably similar in different subcellular fractions. The concentration of P obtained in the particulate subcellular fractions in this work was also uniform.

The concentration of Co obtained showed a slight increase in the mitochondrial and sarcotubular fractions. Swendseid et al. (40) investigated the distribution of vitamin B<sub>12</sub> in mouse liver, and found enrichment of B<sub>12</sub> in the mitochondrial fraction. This enrichment was of the same order of magnitude as the increase in Co concentration in the mitochondrial fraction obtained in the present study.

Cu was obtained in the highest concentration in the mitochondrial fraction. Hermann and Kun (17) investigated the distribution of Cu in subcellular fractions of rat-liver tissue, and also found the highest concentration in the mitochondrial fraction. Thiers and Vallee (42), however, who also studied subcellular fractions of rat-liver tissue, found most of the Cu in the supernatant. A high content of Cu in the mitochondrial fraction is consistent with the fact that the Cu enzyme cytochrome oxidase (6, 10, 11, 34, 39) is found to be associated with mitochondria.

Fe was obtained in extremely high concentration in the sarcotubular fraction, with a 30-to-40-fold increase as compared to the

whole heart tissue on a wet weight basis. This high amount of Fe in the sarcotubular fraction is probably due mainly to accumulation of ferritin particles (compare 8, 22).

It has been shown that various Fe metalloenzymes are present in both mitochondrial and microsomal preparations. The iron may be present either as heme iron or non-heme iron. The DPN-cytochrome c reductase of the microsomes is an example on an iron enzyme (10, 11, 18, 19, 39). The various cytochromes (13, 39), which contain heme iron and succinic dehydrogenase (6, 11, 34, 39) e. g., containing non-heme iron, are associated with mitochondria. In the present study, a slight increase in Fe concentration was, in fact, found in the mitochondrial fraction as compared to the whole heart tissue.

No large differences were noted between the concentration of Zn in the different subcellular fractions. On a protein basis, Zn was found in the highest concentration in the supernatant, which is in agreement with the results of Thiers and Vallee (42) in rat-liver tissue. The concentration of Zn in the mitochondrial fraction was also found to be slightly increased as compared to that in the whole heart tissue. This distribution of Zn in beef-heart tissue may be compared to the localization in liver tissue from different animals of certain Zn enzymes, e. g. alcohol dehydrogenase (11, 29) and carbonic anhydrase (11) in supernatant and glutamic dehydrogenase in mitochondria (3, 11).

In the groups of elements with suspected or no known biological function, some different patterns of distribution can be discerned. Ba, Hg, La, Sm and W were found to be greatly and Mo somewhat enriched in both the mitochondrial and the sarcotubular fractions. The concentration of Br, Cs and Rb in these fractions was, on the contrary, strongly reduced as compared to that in the whole heart tissue. On a protein basis, the concentration of As and Se in the mitochondrial fraction and of Se in the sarcotubular fraction was

of the same order of magnitude as in the whole heart tissue, whereas the concentration of As was somewhat reduced in the latter fraction. On a protein basis, the concentration of the elements in these groups was higher in the supernatant than in the whole heart tissue, and as far as As, Br, Cs, Mo, Rb and Se are concerned, the highest concentration was found in the supernatant. In the case of Mo, the high concentration obtained in the supernatant may be compared to the distribution of xanthine oxidase, a Mo metalloenzyme, in rat-liver tissue (11, 47), which was found to occur only in the supernatant.

The distribution of trace elements recorded in subcellular fractions from beef heart tissue in the present study has, in the foregoing, often been compared to that of various metalloenzymes in subcellular fractions of tissue from other animals and organs. Differences may, however, exist between different animals and organs as regards the distribution pattern of elements and metalloenzymes, respectively.

The reproducible and characteristic patterns of distribution noted for the elements which I studied may indicate that, in addition to the elements with known biological function, further trace elements may be of biological significance.

#### Acknowledgements

I am greatly indebted to Professor Gunnar Biörck, Head of the Department of Medicine, Karolinska Institutet at Serafimerlasarettet and to Dr. Erik Haeffner, Head of the Chemistry Department, AB Atomenergi, for their active interest in this investigation. I would also like to express my gratitude to Dr. Harry Biström, Assistant Professor at the Department of Medicine, Karolinska Institutet at Serafimerlasarettet, for stimulating and valuable discussions.

I wish to thank Dr. Hans Löw at the Department of Biophysics, Wenner-Gren Institute, for introducing me to the field of subcellular cytology.

For the introduction in the electron-microscopical technique I am indebted to Dr. Björn Afzelius and Miss Birgitta af Burén at the Wenner-Gren Institute.

I am also indebted to Miss Agneta Lindström for skilful technical assistance in the radiochemical separation procedure.

The experimental work was carried out at the Chemical Research Department, AB Atomenergi, Stockholm, and at the Department of Metabolic Research and Biophysics, the Wenner-Gren Institute.

References

1. BARTLEY W and AMOORE J E  
The effects of manganese on the solute content of mitochondria.  
Biochem. J., 70, 718, 1958.
2. BARTLEY W and DAVIES R E  
Active transport of ions by subcellular particles.  
Biochem. J. 57, 37, 1954.
3. BEAUFAY H, BENDALL D S, BAUDHUIN R, WATTIAUX R  
and de DUVE C  
Tissue fractionation studies. 13. Analysis of mitochondrial fractions from rat liver by density-gradient centrifugation.  
Biochem. J. 73, 628, 1959.
4. BUTT E M, NUSBAUM R E, GILMOUR T C and DIDIO S L  
Use of emission spectrograph for study of inorganic elements in human tissue.  
Am. J. Clin. Path. 24, 385, 1954.
5. BUTT E M, NUSBAUM R E, GILMOUR T C and DIDIO S L  
Trace metal patterns in disease states: Hemochromatosis, Bantu Siderosis and iron storage in Laennec's cirrhosis and alcoholism.  
Metal-Binding in Medicine. I. B. Lippincott Comp., Philadelphia 43, 1960.
6. CLELAND K W and SLATER E C  
Respiratory granules of heart muscle.  
Biochem. J. 53, 547, 1953.
7. COMAR C L and BRONNER F  
Mineral Metabolism. Vol. 2. Part B.  
Academic Press, New York, 1962.
8. DALLNER G  
Studies on the structural and enzymic organization of the membranous elements of liver microsomes.  
M. D. Dissertation. Acta Pathol. et Microbiol. Scand. Suppl. 166, 1963.
9. D'ALONZO C A, PELL S and FLEMING A J  
The role and potential role of trace metals in disease.  
J. Occupational Med. 5, 71, 1963.
10. DeDUVE C, PRESSMAN B C, GIANETTO R, WATTIAUX R  
and APPELMANS F  
Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue.  
Biochem. J. 60, 604, 1955.

11. DeDUVE C, WATTIAUX R and BAUDHUIN P  
Distribution of enzymes between subcellular fractions  
in animal tissues.  
Advances in enzymology, Vol. XXIV, 291, 1962.
12. De LUCA H F and ENGSTRÖM G W  
Calcium uptake by rat kidney mitochondria.  
Proc. Nat. Acad. Sc. 47, 1744, 1961.
13. DIANZANI M U and VITI I  
The content and distribution of cytochrome c in the fatty  
liver of rats.  
Biochem. J. 59, 141, 1955.
14. ENGSTRÖM S W and De LUCA H F  
The nature of  $\text{Ca}^{++}$  binding by kidney mitochondria.  
Biochemistry 3, 379, 1964.
15. GRIFFITH G C, BUTT E M and WALKER J  
The inorganic element content of certain human tissues.  
Am. Int. Med. 41, 501, 1954.
16. HARDING-BARLOW I  
Studies on the trace element content of human tissues.  
Ph. D. Dissertation. The University of Capetown, Cape-  
town, South Africa, 1961.
17. HERMANN G E and KUN E  
Intracellular distribution of copper in rat liver and its  
response to hypophysectomy and growth hormone.  
Expr. Cell. Research 22, 257, 1961.
18. HOGEBOOM G H  
Cytochemical studies of mammalian tissues. II. The distri-  
bution of diphosphopyridine nucleotide cytochrome c reduc-  
tase in rat liver fractions.  
J. Biol. Chem. 177, 847, 1949.
19. HOGEBOOM G H and SCHNEIDER W C  
Intracellular distributions of enzymes. VIII. The distribution  
of diphosphopyridine nucleotide cytochrome c reductase in  
normal mouse liver and mouse hepatoma.  
J. Nat. Cancer Institute 10, 983, 1950.
20. KEHOE R A, CHOLAK J and STOREY V  
A spectrochemical study of the normal ranges of concentra-  
tion of certain trace metals in biological materials.  
J. Nutrition 19, 579, 1940.
21. KOCH H J, SMITH E R, SHIMP N F and CONNOR J  
Analysis of trace elements in human tissues. I. Normal  
tissues.  
Cancer 9, 499, 1956.

22. KUFF E L and DALTON A J  
Identification of molecular ferritin in homogenates and sections of rat liver.  
J. Ultrastruct. Res. 1, 62, 1957.
23. LENINGHER A L  
The Mitochondrion.  
W. A. Benjamin Inc., New York, 1964.
24. LUFT J H  
Improvement in epoxy resin embedding methods.  
J. Biophys. Biochem. Cytol. 9, 409, 1961.
25. LUNDEGÅRDH H and BERGSTRAND H  
Spectral-analytical investigations into the content of mineral substances in the liver.  
Nova Acta Reg. Soc. Sci. Upsaliensis. Ser. IV. 12, no 3, 1940.
26. MacFARLANE M G and SPENCER A G  
Changes in the water, sodium and potassium content of rat liver mitochondria during metabolism.  
Biochem. J. 54, 569, 1953.
27. MUSCATELLO U, ANDERSSON-CEDERGREN E and AZZONE G F  
The mechanism of muscle-fiber relaxation adenosine triphosphatase and relaxing activity of the sarcotubular system.  
Biochim. Biophys. Acta 63, 55, 1962.
28. MUSCATELLO U, ANDERSSON-CEDERGREN E, AZZONE G F and von der DECKEN A  
The sarcotubular system of frog skeletal muscle.  
J. Biophys. Biochem. Cytol. 10, 201, 1961.
29. NYBERG A, SCHUBERT J and ÄNGGÅRD L  
On the intracellular distribution of catalase and alcohol dehydrogenase in horse, guinea pig and rat liver tissues.  
Acta Chem. Scand. 7, 1170, 1953.
30. PEACHEY L D  
Electron microscopic observations on the accumulation of divalent cations in intramitochondrial granules.  
J. Cell. Biol. 20, 95, 1964.
31. SAMSAHL K  
A chemical eight group separation method for routine use in gamma spectrometric analysis. I. Ion exchange experiments.  
Aktiebolaget Atomenergi, Stockholm, AE-54, 1961.

32. SAMSAHL K  
A chemical eight group separation method for routine use in gamma spectrometric analysis. II. Detailed analytical schema.  
Aktiebolaget Atomenergi, Stockholm, AE-56, 1961.
33. SAMSAHL K  
Some chemical group separations of radioactive trace elements.  
Aktiebolaget Atomenergi, Stockholm, AE-82, 1962.
34. SCHNEIDER W C  
Intracellular distribution of enzymes. I. The distribution of succinic dehydrogenase, cytochrome oxidase, adenosin-triphosphatase and phosphorous compounds in normal rat tissues.  
J. Biol. Chem. 165, 585, 1946.
35. SCHÜTTE K H  
The biology of the trace elements; Their role in nutrition.  
Crosby Lockwood and Son Ltd., London, 1964.
36. SLATER E C and CLELAND K W  
The effect of calcium on the respiratory and phosphorylative activities of heart muscle sarcosomes.  
Biochem. J. 55, 566, 1953.
37. SPECTOR W G  
Electrolyte flux in isolated mitochondria.  
Proc. Roy. Soc. London, Series B, 141, 268, 1953.
38. STRICKLAND E H and BENSON A A  
Neutron activation paper chromatographic analysis of phosphatides in mammalian cell fractions.  
Arch. Biochem. Biophys. 88, 344, 1960.
39. STRITTMATTER C F and BALL E G  
The intracellular distribution of cytochrome components and of oxidative enzyme activity in rat liver.  
J. Cell. Comp. Physiol. 43, 57, 1954.
40. SWENDSEID M E, BETHELL F H and ACKERMANN W W  
The intracellular distribution of vitamin B<sub>12</sub> and folinic acid in mouse liver.  
J. Biol. Chem. 190, 791, 1951.
41. THIERS R E  
Contamination in trace element analysis and its control.  
Methods of biochemical analysis 5, 273, 1957.
42. THIERS R E and VALLEE B L  
Distribution of metals in subcellular fractions of rat liver.  
J. Biol. Chem. 226, 911, 1957.

43. TIPTON I H  
The distribution of trace metals in the human body.  
Metal-Binding in Medicine. I. B. Lippincott Comp.,  
Philadelphia, 27, 1960.
44. TIPTON I H and COOK M J  
Trace elements in human tissue. Part 2. Adult subjects  
from the United States.  
Health Physics 9, 103, 1963.
45. UNDERWOOD E J  
Trace elements in human and animal nutrition.  
Second ed. Academic Press Inc., London 1962.
46. VASINGTON F D and MURPHY J V  
Calcium uptake by rat kidney mitochondria and its  
dependence on respiration and phosphorylation.  
J. Biol. Chem. 237, 2670, 1962.
47. VILLELA G G, MITIDIERI E and AFFONSO O R  
Intracellular distribution of xanthine oxidase in rat liver.  
Nature 175, 1087, 1955.
48. WATSON M L  
Staining of tissue sections for electron microscopy with  
heavy metals.  
J. Biophys. Biochem. Cytol. 4, 475, 1958.
49. WESTER P O  
Concentration of 24 trace elements in human heart tissue  
determined by neutron activation analysis.  
Aktiebolaget Atomenergi, Stockholm, AE-146, 1964.
50. WESTER P O, BRUNE D and SAMSAHL K  
Radiochemical recovery studies of a separation scheme  
for 23 elements in biological material.  
Int. J. Appl. Rad. Isot. 15, 59, 1963.
51. WHISTLER R L and WOLFRAM M L  
Methods in carbohydrate chemistry.  
Academic Press Inc., New York, Vol. 1, 488, 1962.
52. ZETTERQUIST H  
The ultrastructural organization of the columnar absorbing  
cells of the mouse jejunum.  
M. D. Dissertation, Karolinska Institutet, Stockholm, 1956.

Table I

|    | Human heart tissue   |           | Heart tissue from calves |           | Heart tissue from adult animals |           |           |
|----|----------------------|-----------|--------------------------|-----------|---------------------------------|-----------|-----------|
|    | Range                | Median    |                          |           | I                               | II        | III       |
| Ag | 0.0006 - 0.025       | 0.0019    | 0.0013                   | 0.00076   | 0.0005                          | 0.0007    | 0.0007    |
| As | 0.00097 - 0.0124     | 0.00236   | -                        | -         | 0.00707                         | 0.00166   | 0.00304   |
| Au | 0.0000084 - 0.000113 | 0.0000338 | 0.0000224                | 0.0000306 | 0.0000854                       | 0.0000309 | 0.0000438 |
| Ba | 0.0067 - 0.047       | 0.020     | 0.027                    | 0.030     | 0.0070                          | 0.0075    | 0.0070    |
| Br | 1.01 - 4.58          | 2.03      | -                        | 2.37      | 3.60                            | 1.09      | 3.29      |
| Ca | 23.6 - 96.4          | 45.6      | 61.1                     | 52.8      | 31.2                            | 34.6      | 34.4      |
| Cd | 0.009 - 0.028        | 0.012     | 0.0009                   | 0.0017    | 0.0044                          | 0.0009    | 0.0005    |
| Ce | 0.0012 - 0.0082      | 0.0016    | -                        | 0.0080    | 0.0034                          | 0.0025    | 0.0037    |
| Co | 0.0009 - 0.0183      | 0.0121    | 0.0073                   | 0.0034    | 0.0085                          | 0.0053    | 0.0059    |
| Cr | 0.0017 - 0.0195      | 0.0062    | 0.0060                   | 0.0059    | 0.0038                          | 0.0017    | 0.0019    |
| Cs | 0.0066 - 0.0216      | 0.0114    | 0.0166                   | 0.0133    | 0.0073                          | 0.0070    | 0.0041    |
| Cu | 1.98 - 5.22          | 3.75      | -                        | -         | 4.12                            | 4.43      | 4.84      |
| Fe | 20.9 - 52.8          | 35.2      | 46.2                     | 39.1      | 37.2                            | 35.8      | 33.1      |
| Hg | 0.000 - 0.0957       | 0.0432    | 0.0029                   | 0.0091    | 0.0149                          | 0.0332    | 0.0609    |
| La | 0.00010 - 0.0029     | 0.00029   | 0.00097                  | 0.00084   | 0.00025                         | 0.00029   | 0.00051   |
| Mo | 0.0257 - 0.127       | 0.0513    | 0.0592                   | 0.0557    | 0.0542                          | 0.0415    | 0.0565    |
| Rb | 1.70 - 5.59          | 2.45      | 3.24                     | 2.13      | 3.11                            | 2.61      | 1.77      |
| Sb | 0.0006 - 0.0036      | 0.0015    | 0.0021                   | 0.0029    | 0.0018                          | 0.0048    | 0.0017    |
| Sc | 0.000003 - 0.000108  |           | -                        | -         | 0.000026                        | 0.000098  | 0.000013  |
| Se | 0.097 - 0.245        | 0.177     | 0.089                    | 0.066     | 0.059                           | 0.047     | 0.058     |
| Sm | 0.0002 - 0.023       | 0.0025    | -                        | -         | 0.0029                          | 0.0019    | 0.0036    |
| W  | 0.00072 - 0.0019     | 0.0012    | -                        | -         | 0.0012                          | 0.0012    | 0.0012    |
| Zn | 18.2 - 32.4          | 25.0      | 19.2                     | 23.3      | 12.8                            | 15.9      | 17.2      |

Trace element concentration in human and beef heart tissue.

Values in  $\mu\text{g/g}$  wet tissue.

Table II

| Element<br>Cell fractionation<br>experiment | Ca             |               |               | Co                  |                     |                       |
|---------------------------------------------|----------------|---------------|---------------|---------------------|---------------------|-----------------------|
|                                             | I              | II            | III           | I                   | II                  | III                   |
| Whole heart<br>tissue                       | 31.2<br>(130)  | 34.6<br>(141) | 34.4<br>(145) | 0.00850<br>(0.0355) | 0.00528<br>(0.0215) | 0.00585<br>(0.0247)   |
| Nuclear and cell<br>residue fraction        | 20.3<br>(96.4) | 22.9<br>(105) | 23.9<br>(115) | 0.00367<br>(0.0174) | 0.00412<br>(0.0188) | 0.00405<br>(0.0195)   |
| Mitochondrial<br>fraction                   | 215<br>(602)   | 242<br>(676)  | 314<br>(915)  | 0.0207<br>(0.0579)  | 0.0163<br>(0.0456)  | 0.0160<br>(0.0468)    |
| Sarcotubular<br>fraction                    | 48.6<br>(83.5) | 66.7<br>(115) | 80.4<br>(137) | 0.0202<br>(0.0347)  | 0.0318<br>(0.0549)  | 0.0347<br>(0.0589)    |
| Supernatant                                 | <2<br>(<170)   |               | <2<br>(<157)  | 0.00205<br>(0.183)  |                     | 0.000072<br>(0.00565) |

| Element<br>Cell fractionation<br>experiment | Cu             |                |                | Fe             |                |                |
|---------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                                             | I              | II             | III            | I              | II             | III            |
| Whole heart<br>tissue                       | 4.12<br>(17.2) | 4.43<br>(18.0) | 4.84<br>(20.4) | 39.2<br>(156)  | 35.8<br>(146)  | 33.1<br>(140)  |
| Nuclear and cell<br>residue fraction        | 3.43<br>(16.3) | 3.55<br>(16.2) | 3.63<br>(17.5) | 18.9<br>(90)   | 17.6<br>(80)   | 16.0<br>(77)   |
| Mitochondrial<br>fraction                   | 82.8<br>(232)  | 65.5<br>(183)  | 91.7<br>(267)  | 79.4<br>(222)  | 76.5<br>(214)  | 68.9<br>(201)  |
| Sarcotubular<br>fraction                    | 18.9<br>(32.4) | 17.2<br>(29.7) |                | 1060<br>(1820) | 1050<br>(1800) | 1310<br>(2230) |
| Supernatant                                 | 0.23<br>(20.5) |                | 0.26<br>(20.4) | 6.9<br>(616)   |                | 7.3<br>(573)   |

| Element<br>Cell fractionation<br>experiment | P              |                |                 | Zn             |                |                |
|---------------------------------------------|----------------|----------------|-----------------|----------------|----------------|----------------|
|                                             | I              | II             | III             | I              | II             | III            |
| Whole heart<br>tissue                       | 2210<br>(9250) | 1920<br>(7790) | 1930<br>(8140)  | 12.8<br>(53.5) | 15.9<br>(64.7) | 17.2<br>(72.6) |
| Nuclear and cell<br>residue fraction        | 1310<br>(6210) | 1280<br>(5850) | 1200<br>(6060)  | 10.2<br>(48.5) | 11.5<br>(52.5) | 13.4<br>(64.4) |
| Mitochondrial<br>fraction                   | 2160<br>(6040) | 2450<br>(6860) | 3480<br>(10200) | 27.2<br>(76.4) | 29.9<br>(83.6) | 35.7<br>(104)  |
| Sarcotubular<br>fraction                    | 1790<br>(3070) | 2570<br>(4430) | 3150<br>(5350)  | 15.3<br>(26.3) | 15.5<br>(26.8) | 23.0<br>(39.1) |
| Supernatant                                 | 317<br>(28300) |                | 186<br>(14600)  | 1.2<br>(107)   |                | 2.0<br>(157)   |

Elements with known biological function. Amounts in  $\mu\text{g/g}$  wet tissue.  
Bracketed figures:  $\mu\text{g/g}$  protein.

Table III

| Element<br>Cell fractionation<br>experiment | Ba                 |                   |                    | Br             |                |                |
|---------------------------------------------|--------------------|-------------------|--------------------|----------------|----------------|----------------|
|                                             | I                  | II                | III                | I              | II             | III            |
| Whole heart<br>tissue                       | 0.0070<br>(0.029)  | 0.0075<br>(0.031) | 0.0070<br>(0.030)  | 3.60<br>(15.1) | 1.09<br>(4.43) | 3.29<br>(13.9) |
| Nuclear and cell<br>residue fraction        | 0.0049<br>(0.023)  | 0.0056<br>(0.026) | 0.0045<br>(0.022)  | 1.08<br>(5.1)  | 0.24<br>(1.1)  | 1.25<br>(6.0)  |
| Mitochondrial<br>fraction                   | 0.042<br>(0.12)    | 0.050<br>(0.14)   | 0.053<br>(0.16)    | 0.35<br>(0.98) | 0.06<br>(0.17) | 0.35<br>(1.02) |
| Sarcotubular<br>fraction                    | 0.18<br>(0.31)     | 0.13<br>(0.22)    | 0.095<br>(0.16)    | 1.01<br>(1.74) | 0.17<br>(0.29) | 0.64<br>(1.09) |
| Supernatant                                 | <0.001<br>(<0.089) |                   | <0.001<br>(<0.079) | 1.01<br>(90.2) |                | 0.98<br>(77.2) |

| Element<br>Cell fractionation<br>experiment | Mo                |                   |                   | Rb             |                |                |
|---------------------------------------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|
|                                             | I                 | II                | III               | I              | II             | III            |
| Whole heart<br>tissue                       | 0.0542<br>(0.227) | 0.0415<br>(0.169) | 0.0565<br>(0.238) | 3.11<br>(13.0) | 2.61<br>(10.6) | 1.77<br>(7.5)  |
| Nuclear and cell<br>residue fraction        | 0.0276<br>(0.131) | 0.0195<br>(0.089) | 0.0283<br>(0.136) | 1.22<br>(5.80) | 1.04<br>(4.75) | 0.66<br>(3.17) |
| Mitochondrial<br>fraction                   | 0.123<br>(0.343)  | 0.125<br>(0.350)  | 0.179<br>(0.521)  | 0.15<br>(0.42) | 0.05<br>(0.14) | 0.14<br>(0.41) |
| Sarcotubular<br>fraction                    | 0.470<br>(0.808)  | 0.247<br>(0.427)  |                   | 0.25<br>(0.43) | 0.21<br>(0.36) | 0.20<br>(0.34) |
| Supernatant                                 | 0.0099<br>(0.884) |                   |                   | 0.72<br>(64.3) |                | 0.47<br>(36.9) |

| Element<br>Cell fractionation<br>experiment | Se               |                  |                  |
|---------------------------------------------|------------------|------------------|------------------|
|                                             | I                | II               | III              |
| Whole heart<br>tissue                       | 0.059<br>(0.247) | 0.047<br>(0.191) | 0.058<br>(0.245) |
| Nuclear and cell<br>residue fraction        | 0.024<br>(0.114) | 0.023<br>(0.105) | 0.025<br>(0.105) |
| Mitochondrial<br>fraction                   | 0.084<br>(0.235) | 0.048<br>(0.134) | 0.085<br>(0.249) |
| Sarcotubular<br>fraction                    | 0.233<br>(0.400) | 0.159<br>(0.274) | 0.123<br>(0.209) |
| Supernatant                                 | 0.014<br>(1.25)  |                  |                  |

Elements with suspected biological function. Amounts in  $\mu\text{g/g}$  wet tissue.  
Bracketed figures:  $\mu\text{g/g}$  protein.

Table IV

| Element<br>Cell fractionation<br>experiment | As                   |                      |                     | Cs                 |                    |                    |
|---------------------------------------------|----------------------|----------------------|---------------------|--------------------|--------------------|--------------------|
|                                             | I                    | II                   | III                 | I                  | II                 | III                |
| Whole heart<br>tissue                       |                      | 0.00166<br>(0.00675) | 0.00304<br>(0.0128) | 0.0073<br>(0.0305) | 0.0070<br>(0.0285) | 0.0041<br>(0.0173) |
| Nuclear and cell<br>residue fraction        | 0.00275<br>(0.0131)  | 0.00133<br>(0.00608) | 0.00208<br>(0.0100) | 0.0029<br>(0.0181) | 0.0023<br>(0.0105) | 0.0014<br>(0.0067) |
| Mitochondrial<br>fraction                   | 0.00843<br>(0.0236)  | 0.00276<br>(0.00771) | 0.00657<br>(0.0192) | 0.0027<br>(0.0076) | 0.0008<br>(0.0022) | 0.0007<br>(0.0020) |
| Sarcotubular<br>fraction                    | 0.00106<br>(0.00182) | 0.00108<br>(0.00186) |                     | 0.0130<br>(0.0223) | 0.0031<br>(0.0054) | 0.0014<br>(0.0024) |
| Supernatant                                 |                      |                      | 0.00054<br>(0.042)  | 0.0019<br>(0.167)  |                    | 0.0012<br>(0.0942) |

| Element<br>Cell fractionation<br>experiment | Hg                 |                   |                   | La                  |                      |                      |
|---------------------------------------------|--------------------|-------------------|-------------------|---------------------|----------------------|----------------------|
|                                             | I                  | II                | III               | I                   | II                   | III                  |
| Whole heart<br>tissue                       | 0.0149<br>(0.0623) | 0.0332<br>(0.135) | 0.0609<br>(0.257) | 0.00044<br>(0.0018) | 0.00029<br>(0.0012)  | 0.00051<br>(0.0022)  |
| Nuclear and cell<br>residue fraction        | 0.0071<br>(0.0337) |                   | 0.0294<br>(0.141) | 0.00023<br>(0.0011) | 0.00019<br>(0.00087) | 0.00028<br>(0.0014)  |
| Mitochondrial<br>fraction                   | 0.0902<br>(0.252)  | 0.206<br>(0.577)  | 0.239<br>(0.696)  | 0.0030<br>(0.0083)  | 0.0028<br>(0.0077)   | 0.0043<br>(0.012)    |
| Sarcotubular<br>fraction                    | 0.315<br>(0.541)   | 0.548<br>(0.946)  | 0.476<br>(0.808)  | 0.011<br>(0.019)    | 0.0057<br>(0.0098)   | 0.030<br>(0.051)     |
| Supernatant                                 | 0.0031<br>(0.277)  |                   | 0.0155<br>(1.22)  |                     |                      | ~0.00008<br>(~0.006) |

| Element<br>Cell fractionation<br>experiment | Sm                 |                    |                   | W                  |                    |                    |
|---------------------------------------------|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|
|                                             | I                  | II                 | III               | I                  | II                 | III                |
| Whole heart<br>tissue                       | 0.0029<br>(0.012)  | 0.0019<br>(0.0077) | 0.0036<br>(0.015) | 0.0018<br>(0.0075) | 0.0015<br>(0.0061) | 0.0022<br>(0.0093) |
| Nuclear and cell<br>residue fraction        | 0.0015<br>(0.0070) | 0.0011<br>(0.0051) | 0.0023<br>(0.011) |                    | 0.0007<br>(0.0032) | 0.0010<br>(0.0048) |
| Mitochondrial<br>fraction                   | 0.014<br>(0.039)   | 0.010<br>(0.029)   | 0.025<br>(0.072)  | 0.020<br>(0.056)   | 0.034<br>(0.095)   | 0.018<br>(0.051)   |
| Sarcotubular<br>fraction                    | 0.045<br>(0.077)   | 0.020<br>(0.034)   | 0.098<br>(0.17)   | 0.20<br>(0.34)     | 0.045<br>(0.083)   | 0.34<br>(0.58)     |
| Supernatant                                 | 0.00034<br>(0.021) |                    |                   |                    |                    | 0.0005<br>(0.039)  |

Elements without known biological function. Amounts in  $\mu\text{g/g}$  wet weight.  
Bracketed figures:  $\mu\text{g/g}$  protein.

Table V

| Element<br>Cell fractionation<br>experiment | Protein |      |      | As |      |     | Ba  |     |     | Br   |      |      |
|---------------------------------------------|---------|------|------|----|------|-----|-----|-----|-----|------|------|------|
|                                             | I       | II   | III  | I  | II   | III | I   | II  | III | I    | II   | III  |
| Nuclear and cell<br>residue fraction        | 88      | 89   | 88   |    | 80   | 69  | 70  | 74  | 65  | 30   | 26   | 38   |
| Mitochondrial<br>fraction                   | 0.4     | 0.6  | 0.8  |    | 0.6  | 1.3 | 1.6 | 2.6 | 4   | 0.03 | 0.02 | 0.06 |
| Sarcotubular<br>fraction                    | 0.19    | 0.16 | 0.14 |    | 0.07 |     | 1.9 | 1.2 | 0.8 | 0.02 | 0.01 | 0.01 |
| Supernatant                                 | 10.9    |      | 10.9 |    | 36   | <33 |     | <28 | 65  |      | 60   |      |

| Element<br>Cell fractionation<br>experiment | Ca  |     |     | Co  |     |     | Cs  |      |      | Cu  |     |     |
|---------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|-----|-----|-----|
|                                             | I   | II  | III | I   | II  | III | I   | II   | III  | I   | II  | III |
| Nuclear and cell<br>residue fraction        | 65  | 67  | 70  | 43  | 77  | 69  | 39  | 33   | 34   | 83  | 80  | 75  |
| Mitochondrial<br>fraction                   | 1.8 | 2.7 | 5.3 | 0.6 | 1.2 | 1.6 | 0.1 | 0.05 | 0.09 | 5.3 | 5.8 | 11  |
| Sarcotubular<br>fraction                    | 0.1 | 0.1 | 0.1 | 0.2 | 0.4 | 0.3 | 0.1 | 0.03 | 0.02 | 0.4 | 0.3 |     |
| Supernatant                                 | <15 |     | <12 | 56  |     | 25  | 60  |      | 59   | 13  |     | 11  |

| Element<br>Cell fractionation<br>experiment | Fe  |     |     | Hg  |     |     | La  |     |     | Mo  |     |     |
|---------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                                             | I   | II  | III |
| Nuclear and cell<br>residue fraction        | 51  | 49  | 48  | 48  |     | 48  | 53  | 64  | 55  | 51  | 47  | 50  |
| Mitochondrial<br>fraction                   | 0.6 | 0.8 | 1.2 | 1.6 | 2.4 | 2.3 | 1.7 | 3.6 | 2.1 | 0.6 | 1.2 | 1.9 |
| Sarcotubular<br>fraction                    | 2.2 | 2.0 | 2.3 | 1.6 | 1.2 | 0.5 | 2.0 | 1.6 | 3.3 | 0.7 | 0.4 |     |
| Supernatant                                 | 43  |     | 45  | 48  |     | 51  |     |     | ~34 | 42  |     |     |

| Element<br>Cell fractionation<br>experiment | P    |      |      | Rb    |       |       | Se  |     |     | Sm  |      |     |
|---------------------------------------------|------|------|------|-------|-------|-------|-----|-----|-----|-----|------|-----|
|                                             | I    | II   | III  | I     | II    | III   | I   | II  | III | I   | II   | III |
| Nuclear and cell<br>residue fraction        | 59   | 66   | 62   | 39    | 40    | 37    | 45  | 49  | 43  | 68  | 70   | 73  |
| Mitochondrial<br>fraction                   | 0.3  | 0.5  | 1.0  | 0.01  | 0.008 | 0.05  | 0.4 | 0.4 | 0.8 | 0.1 | 0.2  | 0.4 |
| Sarcotubular<br>fraction                    | 0.06 | 0.09 | 0.09 | 0.006 | 0.006 | 0.007 | 0.3 | 0.2 | 0.1 | 0.1 | 0.07 | 0.2 |
| Supernatant                                 | 33   |      | 30   | 53    |       | 54    | 55  |     |     | 28  |      |     |

| Element<br>Cell fractionation<br>experiment | W   |     |     | Zn   |      |      |
|---------------------------------------------|-----|-----|-----|------|------|------|
|                                             | I   | II  | III | I    | II   | III  |
| Nuclear and cell<br>residue fraction        |     | 46  | 44  | 80   | 72   | 78   |
| Mitochondrial<br>fraction                   | 2.9 | 8.6 | 4.8 | 0.6  | 0.7  | 1.2  |
| Sarcotubular<br>fraction                    | 8.5 | 2.1 | 9.1 | 0.09 | 0.07 | 0.07 |
| Supernatant                                 |     |     | 47  | 17   |      | 21   |

Table VI

| Element<br>Cell fractionation<br>experiment | Ag |    |      | Au   |      |      | Cd   |      |      | Ce   |      |      |
|---------------------------------------------|----|----|------|------|------|------|------|------|------|------|------|------|
|                                             | I  | II | III  | I    | II   | III  | I    | II   | III  | I    | II   | III  |
| Nuclear and cell<br>residue fraction        | 63 | 94 | 94   | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
| Mitochondrial<br>fraction                   | 6  | 12 | 23   | 1    | 6    | 11   | 1.1  | 6    | 12   | 2.3  | 8    | 4.2  |
| Sarcotubular<br>fraction                    | 6  | 6  | 10   | 4.3  | 4.3  | 11   | 0.6  | 3    | 2.8  | 2.7  | 2.5  | 2.4  |
| Supernatant                                 | 23 |    | >100 | 36   |      |      | 70   |      | >100 | >100 |      |      |

| Element<br>Cell fractionation<br>experiment | Cr   |      |      | Sb   |     |      | Sc   |     |      |
|---------------------------------------------|------|------|------|------|-----|------|------|-----|------|
|                                             | I    | II   | III  | I    | II  | III  | I    | II  | III  |
| Nuclear and cell<br>residue fraction        | >100 | >100 | >100 | 90   | 64  | >100 | >100 | 25  | >100 |
| Mitochondrial<br>fraction                   | 19   | 64   | 59   | 11   | 4   | 15   | 2.7  | 0.6 | 6.4  |
| Sarcotubular<br>fraction                    | 2.7  | 10   | 20   | 3.6  | 1.5 | 11   | 0.9  | 0.2 | 2    |
| Supernatant                                 | 0    |      | 0    | >100 |     | >100 | >100 |     | >100 |

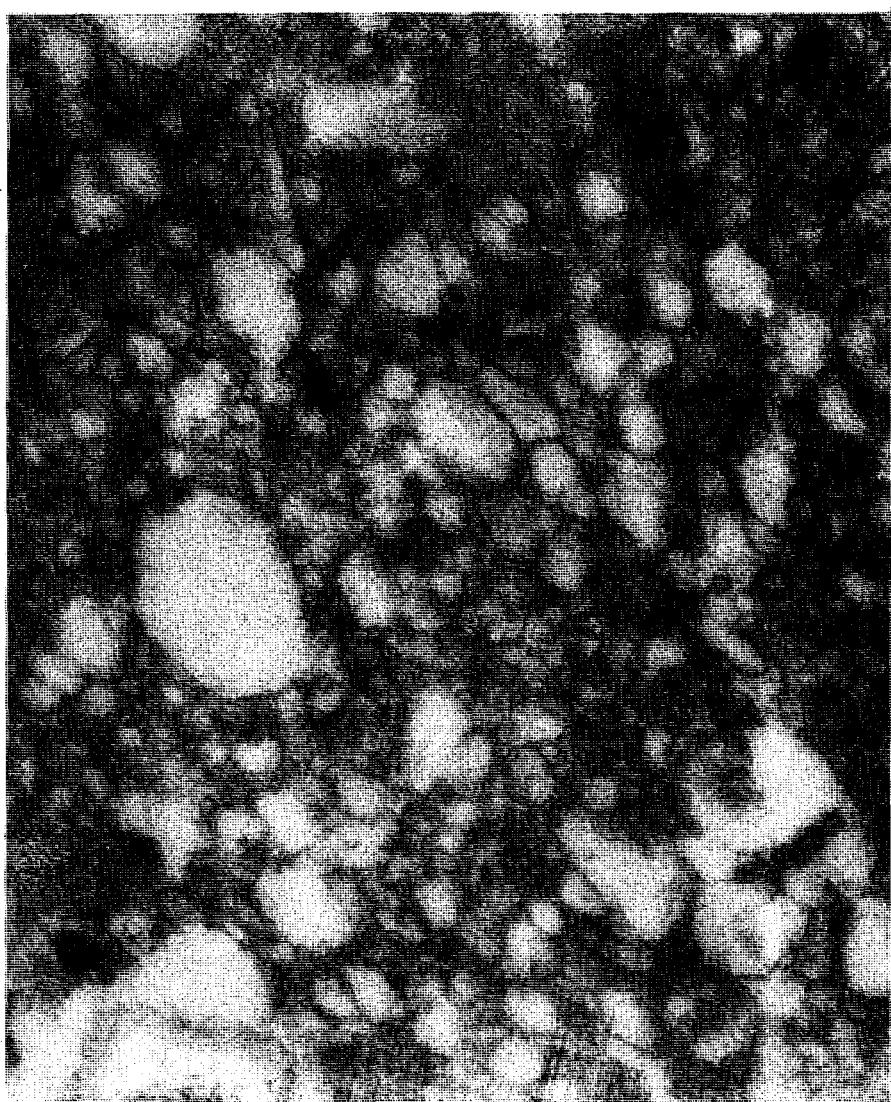
Percentage distribution of some additional elements.

Table VII

|    | Sucrose solution | Whole heart tissue    |
|----|------------------|-----------------------|
| Ag | 0.0008           | 0.0005 - 0.0007       |
| As | 0.00019          | 0.00166 - 0.00707     |
| Au | 0.0000034        | 0.0000309 - 0.0000854 |
| Ba | 0.0010           | 0.0070 - 0.0075       |
| Br | 0.0028           | 1.09 - 3.60           |
| Ca | 2                | 31.2 - 34.6           |
| Cd | 0.0009           | 0.0005 - 0.0044       |
| Co | 0.0002           | 0.0053 - 0.0085       |
| Cr | 0.0082           | 0.0017 - 0.0038       |
| Cs | 0.0001           | 0.0041 - 0.0073       |
| Cu | 0.01             | 4.12 - 4.84           |
| Fe | 2.2              | 33.1 - 37.2           |
| Hg | 0.0021           | 0.0149 - 0.0609       |
| La | 0.00004          | 0.00025 - 0.00051     |
| Mo | 0.0094           | 0.0415 - 0.0565       |
| P  | 3.6              | 1920 - 2210           |
| Rb | 0.004            | 1.77 - 3.11           |
| Sb | 0.0007           | 0.0017 - 0.0048       |
| Sc | 0.000010         | 0.000013 - 0.000098   |
| Se | 0.001            | 0.047 - 0.059         |
| W  | 0.00018          | 0.0015 - 0.0022       |
| Zn | 0.25             | 12.8 - 17.2           |

Trace element content of sucrose solution as compared to that of whole heart tissue.




Fig. 1



Electron micrograph of a section of cow heart mitochondria isolated in 0.25 M sucrose. The samples were fixed in 1 per cent osmium tetroxide at pH 7.2 - 7.4, embedded in Epon and examined under a Hitachi H 5-6 microscope. Most mitochondria (M) appear somewhat swollen and rounded-off. Surrounding the mitochondria, some debris can be seen, which may or may not have derived from broken mitochondria. x 20,000.



Fig. 2



Electron micrograph of a section of a cow heart sarcotubular fraction. The samples were fixed and embedded as in Fig. 1, and the section examined under a Siemens Elmiskop I microscope. The predominating component in this fraction is of vesicular nature, and can be compared to the sarcotubular fraction of Muscatello et al. (27, 28). The aggregated small and very dense particles in the lower left corner probably represent ferritin particles.  
x 80,000.





LIST OF PUBLISHED AE-REPORTS

1-90. (See the back cover earlier reports.)

91. The energy variation of the sensitivity of a polyethylene moderated BF<sub>3</sub> proportional counter. By R. Fräki, M. Leimdörfer and S. Malmeskog. 1962. 12 p. Sw. cr. 6:—.

92. The backscattering of gamma radiation from plane concrete walls. By M. Leimdörfer. 1962. 20 p. Sw. cr. 6:—.

93. The backscattering of gamma radiation from spherical concrete walls. By M. Leimdörfer. 1962. 16 p. Sw. cr. 6:—.

94. Multiple scattering of gamma radiation in a spherical concrete wall room. By M. Leimdörfer. 1962. 18 p. Sw. cr. 6:—.

95. The paramagnetism of Mn dissolved in  $\alpha$  and  $\beta$  brasses. By H. P. Myers and R. Westin. 1962. 13 p. Sw. cr. 6:—.

96. Isomorphic substitutions of calcium by strontium in calcium hydroxyapatite. By H. Christensen. 1962. 9 p. Sw. cr. 6:—.

97. A fast time-to-pulse height converter. By O. Aspelund. 1962. 21 p. Sw. cr. 6:—.

98. Neutron streaming in D<sub>2</sub>O pipes. By J. Braun and K. Randén. 1962. 41 p. Sw. cr. 6:—.

99. The effective resonance integral of thorium oxide rods. By J. Weitman. 1962. 41 p. Sw. cr. 6:—.

100. Measurements of burnout conditions for flow of boiling water in vertical annuli. By K. M. Becker and G. Hernborg. 1962. 41 p. Sw. cr. 6:—.

101. Solid angle computations for a circular radiator and a circular detector. By J. Konijn and B. Tollander. 1963. 6 p. Sw. cr. 8:—.

102. A selective neutron detector in the keV region utilizing the  $^{19}\text{F}(\text{n}, \gamma)^{20}\text{F}$  reaction. By J. Konijn. 1963. 21 p. Sw. cr. 8:—.

103. Anion-exchange studies of radioactive trace elements in sulphuric acid solutions. By K. Samsahl. 1963. 12 p. Sw. cr. 8:—.

104. Problems in pressure vessel design and manufacture. By O. Hellström and R. Nilsson. 1963. 44 p. Sw. cr. 8:—.

105. Flame photometric determination of lithium contents down to  $10^{-3}$  ppm in water samples. By G. Jönsson. 1963. 9 p. Sw. cr. 8:—.

106. Measurements of void fractions for flow of boiling heavy water in a vertical round duct. By S. Z. Rouhani and K. M. Becker. 1963. 2nd rev. ed. 32 p. Sw. cr. 8:—.

107. Measurements of convective heat transfer from a horizontal cylinder rotating in a pool of water. K. M. Becker. 1963. 20 p. Sw. cr. 8:—.

108. Two-group analysis of xenon stability in slab geometry by modal expansion. O. Norinder. 1963. 50 p. Sw. cr. 8:—.

109. The properties of CaSO<sub>4</sub>/Mn thermoluminescence dosimeters. B. Bjärngård. 1963. 27 p. Sw. cr. 8:—.

110. Semianalytical and seminumerical calculations of optimum material distributions. By C. I. G. Andersson. 1963. 26 p. Sw. cr. 8:—.

111. The paramagnetism of small amounts of Mn dissolved in Cu-Al and Cu-Ge alloys. By H. P. Myers and R. Westin. 1963. 7 p. Sw. cr. 8:—.

112. Determination of the absolute disintegration rate of Cs<sup>137</sup>-sources by the tracer method. S. Hellström and D. Brune. 1963. 17 p. Sw. cr. 8:—.

113. An analysis of burnout conditions for flow of boiling water in vertical round ducts. By K. M. Becker and P. Persson. 1963. 28 p. Sw. cr. 8:—.

114. Measurements of burnout conditions for flow of boiling water in vertical round ducts (Part 2). By K. M. Becker, et al. 1963. 29 p. Sw. cr. 8:—.

115. Cross section measurements of the  $^{58}\text{Ni}(\text{n}, \text{p})^{59}\text{Co}$  and  $^{29}\text{Si}(\text{n}, \alpha, \gamma)^{26}\text{Mg}$  reactions in the energy range 2.2 to 3.8 MeV. By J. Konijn and A. Lauber. 1963. 30 p. Sw. cr. 8:—.

116. Calculations of total and differential solid angles for a proton recoil solid state detector. By J. Konijn, A. Lauber and B. Tollander. 1963. 31 p. Sw. cr. 8:—.

117. Neutron cross sections for aluminium. By L. Forsberg. 1963. 32 p. Sw. cr. 8:—.

118. Measurements of small exposures of gamma radiation with CaSO<sub>4</sub>/Mn radiothermoluminescence. By B. Bjärngård. 1963. 18 p. Sw. cr. 8:—.

119. Measurement of gamma radioactivity in a group of control subjects from the Stockholm area during 1959-1963. By I. O. Andersson, I. Nilsson and Eckersig. 1963. 19 p. Sw. cr. 8:—.

120. The thermox process. By O. Tjälldin. 1963. 38 p. Sw. cr. 8:—.

121. The transistor as low level switch. By A. Lydén. 1963. 47 p. Sw. cr. 8:—.

122. The planning of a small pilot plant for development work on aqueous reprocessing of nuclear fuels. By T. U. Sjöborg, E. Haefner and Hultgren. 1963. 20 p. Sw. cr. 8:—.

123. The neutron spectrum in a uranium tube. By E. Johansson, E. Jonsson, M. Lindberg and J. Mednis. 1963. 36 p. Sw. cr. 8:—.

124. Simultaneous determination of 30 trace elements in cancerous and non-cancerous human tissue samples with gamma-ray spectrometry. K. Samsahl, D. Brune and P. O. Wester. 1963. 23 p. Sw. cr. 8:—.

125. Measurement of the slowing-down and thermalization time of neutrons in water. By E. Möller and N. G. Sjöstrand. 1963. 42 p. Sw. cr. 8:—.

126. Report on the personnel dosimetry at AB Atomenergi during 1962. By K-A. Edvardsson and S. Hagsgård. 1963. 12 p. Sw. cr. 8:—.

127. A gas target with a tritium gas handling system. By B. Holmqvist and T. Wiedling. 1963. 12 p. Sw. cr. 8:—.

128. Optimization in activation analysis by means of epithermal neutrons. Determination of molybdenum in steel. By D. Brune and K. Jirlaw. 1963. 11 p. Sw. cr. 8:—.

129. The P<sub>1</sub>-approximation for the distribution of neutrons from a pulsed source in hydrogen. By A. Claesson. 1963. 18 p. Sw. cr. 8:—.

130. Dislocation arrangements in deformed and neutron irradiated zirconium and zircaloy-2. By R. B. Roy. 1963. 18 p. Sw. cr. 8:—.

131. Measurements of hydrodynamic instabilities, flow oscillations and burnout in a natural circulation loop. By K. M. Becker, R. P. Mathisen, O. Eklind and B. Norman. 1964. 21 p. Sw. cr. 8:—.

132. A neutron rem counter. By I. O. Andersson and J. Braun. 1964. 14 p. Sw. cr. 8:—.

133. Studies of water by scattering of slow neutrons. By K. Sköld, E. Pilcher and K. E. Larsson. 1964. 17 p. Sw. cr. 8:—.

134. The amounts of As, Au, Br, Cu, Fe, Mo, Se, and Zn in normal and uraemic human whole blood. A comparison by means of neutron activation analysis. By D. Brune, K. Samsahl and P. O. Wester. 1964. 10 p. Sw. cr. 8:—.

135. A Monte Carlo method for the analysis of gamma radiation transport from distributed sources in laminated shields. By M. Leimdörfer. 1964. 28 p. Sw. cr. 8:—.

136. Ejection of uranium atoms from UO<sub>2</sub> by fission fragments. By G. Nilsson. 1964. 38 p. Sw. cr. 8:—.

137. Personnel neutron monitoring at AB Atomenergi. By S. Hagsgård and C-O. Widell. 1964. 11 p. Sw. cr. 8:—.

138. Radiation induced precipitation in iron. By B. Solly. 1964. 8 p. Sw. cr. 8:—.

139. Angular distributions of neutrons from (p, n)-reactions in some mirror nuclei. By L. G. Strömberg, T. Wiedling and B. Holmqvist. 1964. 28 p. Sw. cr. 8:—.

140. An extended Greuling-Goertzel approximation with a P<sub>n</sub>-approximation in the angular dependence. By R. Håkansson. 1964. 21 p. Sw. cr. 8:—.

141. Heat transfer and pressure drop with rough surfaces, a literature survey. By A. Bhattacharyya. 1964. 78 p. Sw. cr. 8:—.

142. Radiolysis of aqueous benzene solutions. By H. Christensen. 1964. 40 p. Sw. cr. 8:—.

143. Cross section measurements for some elements suited as thermal spectrum indicators: Cd, Sm, Gd and Lu. By E. Sokolowski, H. Pekarek and E. Jonsson. 1964. 27 p. Sw. cr. 8:—.

144. A direction sensitive fast neutron monitor. By B. Antolkovic, B. Holmqvist and T. Wiedling. 1964. 14 p. Sw. cr. 8:—.

145. A user's manual for the NRM shield design method. By L. Hjärne. 1964. 107 p. Sw. cr. 10:—.

146. Concentration of 24 trace elements in human heart tissue determined by neutron activation analysis. By P. O. Wester. 1964. 33 p. Sw. cr. 8:—.

147. Report on the personnel Dosimetry at AB Atomenergi during 1963. By K-A. Edvardsson and S. Hagsgård. 1964. 16 p. Sw. cr. 8:—.

148. A calculation of the angular moments of the kernel for a monatomic gas scatterer. By R. Håkansson. 1964. 16 p. Sw. cr. 8:—.

149. An anion-exchange method for the separation of P-32 activity in neutron-irradiated biological material. By K. Samsahl. 1964. 10 p. Sw. cr. 8:—.

150. Inelastic neutron scattering cross sections of Cu<sup>65</sup> and Cu<sup>65</sup> in the energy region 0.7 to 1.4 MeV. By B. Holmqvist and T. Wiedling. 1964. 30 p. Sw. cr. 8:—.

151. Determination of magnesium in needle biopsy samples of muscle tissue by means of neutron activation analysis. By D. Brune and H. E. Sjöberg. 1964. 8 p. Sw. cr. 8:—.

152. Absolute E1 transition probabilities in the deformed nuclei Yb<sup>177</sup> and Hf<sup>179</sup>. By Sven G. Malmeskog. 1964. 21 p. Sw. cr. 8:—.

153. Measurements of burnout conditions for flow of boiling water in vertical 3-rod and 7-rod clusters. By K. M. Becker, G. Hernborg and J. E. Flinta. 1964. 54 p. Sw. cr. 8:—.

154. Integral parameters of the thermal neutron scattering law. By S. N. Purohit. 1964. 48 p. Sw. cr. 8:—.

155. Tests of neutron spectrum calculations with the help of foil measurements in a D<sub>2</sub>O and in an H<sub>2</sub>O-moderated reactor, and in reactor shields of concrete and iron. By R. Nilsson and E. Aalto. 1964. 23 p. Sw. cr. 8:—.

156. Hydrodynamic instability and dynamic burnout in natural circulation two-phase flow. An experimental and theoretical study. By K. M. Becker, S. Jahnberg, I. Haga, P. T. Hansson and R. P. Mathisen. 1964. 41 p. Sw. cr. 8:—.

157. Measurements of neutron and gamma attenuation in massive laminated shields of concrete and a study of the accuracy of some methods of calculation. By E. Aalto and R. Nilsson. 1964. 110 p. Sw. cr. 10:—.

158. A study of the angular distributions of neutrons from the Be<sup>9</sup>(p, n)B<sup>9</sup> reaction at low proton energies. By B. Antolkovic, B. Holmqvist and T. Wiedling. 1964. 19 p. Sw. cr. 8:—.

159. A simple apparatus for fast ion exchange separations. By K. Samsahl. 1964. 15 p. Sw. cr. 8:—.

160. Measurements of the Fe<sup>54</sup>(n, p)Mn<sup>54</sup> reaction cross section in the neutron energy range 2.3-3.8 MeV. By A. Lauber and S. Malmeskog. 1964. 13 p. Sw. cr. 8:—.

161. Comparisons of measured and calculated neutron fluxes in laminated iron and heavy water. By E. Aalto. 1964. 15 p. Sw. cr. 8:—.

162. A needle-type p-i-n junction semiconductor detector for in-vivo measurement of beta tracer activity. By A. Lauber and B. Rosencrantz. 1964. 12 p. Sw. cr. 8:—.

163. Flame spectro photometric determination of strontium in water and biological material. By G. Jönsson. 1964. 12 p. Sw. cr. 8:—.

164. The solution of a velocity-dependent slowing-down problem using case's eigenfunction expansion. By A. Claesson. 1964. 16 p. Sw. cr. 8:—.

165. Measurements of the effects of spacers on the burnout conditions for flow of boiling water in a vertical annulus and a vertical 7-rod cluster. By K. M. Becker and G. Hernborg. 1964. 15 p. Sw. cr. 8:—.

166. The transmission of thermal and fast neutrons in air filled annular ducts through slabs of iron and heavy water. By J. Nilsson and R. Sandlin. 1964. 33 p. Sw. cr. 8:—.

167. The radio-thermoluminescence of CaSO<sub>4</sub>: Sm and its use in dosimetry. By B. Bjärngård. 1964. 31 p. Sw. cr. 8:—.

168. A fast radiochemical method for the determination of some essential trace elements in biology and medicine. By K. Samsahl. 1964. 12 p. Sw. cr. 8:—.

169. Concentration of 17 elements in subcellular fractions of beef heart tissue determined by neutron activation analysis. By P. O. Wester. 1964. 29 p. Sw. cr. 8:—.

Förteckning över publicerade AES-rapporter

1. Analys medelst gamma-spektrometri. Av D. Brune. 1961. 10 s. Kr 6:—.
2. Besträlningsförändringar och neutratoratmosfär i reaktortrycktankar — några synpunkter. Av M. Grounes. 1962. 33 s. Kr 6:—.
3. Studium av sträckgränsen i mjukt stål. Av G. Östberg och R. Altermo. 1963. 17 s. Kr 6:—.
4. Teknisk upphandling inom reaktorområdet. Av Erik Jonson. 1963. 64 s. Kr. 8:—.
5. Agesta Kraftvärmeverk. Sammanställning av tekniska data, beskrivningar m.m. för reaktordelen. Av B. Lilliehöök. 1964. 336 s. Kr. 15:—.

Additional copies available at the library of AB Atomenergi, Studsvik, Nyköping, Sweden. Transparent microcards of the reports are obtainable through the International Documentation Center, Tumba, Sweden.