The Transistor as Low Level Switch

Anders Lydén

AKTIEBOLAGET ATOMENERGI STOCKHOLM, SWEDEN 1963

THE TRANSISTOR AS LOW LEVEL SWITCH

A Lydén

Summary:

The common collector transistor switch has in the on state with open emitter a certain offset voltage $U_{E K} \approx-\frac{k T}{q B_{N}}$. This expression is derived in a new, more physical way. It is further shown at which emitter current the current amplification factor B_{N} should be measured to get a correct value for the above expression. The collector current I_{K} at zero collector voltage follows the equation $I_{K}=I_{o}\left[\exp \left(\frac{\mathrm{q}_{\mathrm{E}} \mathrm{U}_{\mathrm{E}}}{\mathrm{kT}}\right)-1\right]$ extremely well. Substitution of $I_{E B O}$ and $I_{K B O}$ by I_{o} in'Eber's and Moll's relations consequently improves these equations and the characteristics of the transistor switch can be better determined. At switching on and off transients appear across the switch. The influence of the "spike" at switching off can be described by an current I $_{\text {SPIKE }}$, which is easy to calculate. $I_{\text {SPIKE }}$ is approximately dependent only on the base - emitter depletion layer capacitance and the chopper frequency f_{o}.

Some compensated switches have lower drift than the drift in $U_{E K}$. They may, for example, have a temperature drift <0.2 $\mu V /{ }^{\circ} \mathrm{C}$ and a long time drift $<2 \mu \mathrm{~V} /$ week. Some compensated switches also have $\mathrm{I}_{\text {SPIKE }}<10^{-12} \cdot \mathrm{f}_{\mathrm{o}} \mathrm{A}$. The static offset current in the off state can easily be made $<10^{-12} \mathrm{~A}$.

Printed and distributed in October 1963.

LIST OF CONTENTS

Page

1. Introduction 3
2. Physical derivation of the offset voltage 3
Determination of the I_{E} at which B_{N} should be measured 6
3. Modification of Eber's and Moll's relations 9
4. The static characteristics of the low level switch 14
Determination of the offset voltage and the on resistance 14
Determination of the offset current and the off resistance 18
5. The behaviour of the switch at switching on and off 21
The shape of the spikes. 21
Calculation of the area of the spikes 21
6. Compensated switches 28
The influence of the capacitances of the transformer 29
One-transistor switch with switching-on current to both junctions 30
Two transistors in series 32
Two transistors in parallel 33
Switch transistor with emitter current from the base of another transistor 35
7. Thermoelectric effects in the switch 36
8. Conclusions 37
9. References 38
10. Appendices 39
Figures 43

1. Introduction

In chopper amplifiers and commutators there is a need for elements which can switch small signals. The transistor is useful for this purpose.

The theory of the transistor as a low level switch has been imperfect. A more complete theory is presented in this paper. Several compensated low level switches have earlier been described. Only those which give the switch better characteristics will be analyzed here.

Bright ${ }^{\text {1, 3) }}$ and Kruper ${ }^{2,3)}$ showed the suitability of the transistor as a low level switch and found that the offset voltage $U_{E K}$ in the on state is smallest in the inverted or common collector connection shown in fig. 2.1. Chaplin ${ }^{4)}$ pointed out that it is possible to get sufficiently high off resistance with the drive voltage zero in the off state. This reduces the offset current to a high degree. In this paper it will be shown that the low level transistor switch can be described by an equivalent circuit as shown in fig. 2.2. Here
$\mathrm{S} \quad=$ ideal switch controlled by the drive voltage
$U_{E K}=$ the offset voltage in the on state
$R_{S}=$ the on resistance
I = the offset current in the off state
$R_{o}=$ the off resistance
$I_{\text {SPIKE }}=$ this current describes the influence of the discharge of the base-emitter capacitance at switching off.
2. Physical derivation of the offset voltage.

Several authors have by means of Eber's and Moll's relations 5) derived the following expression for the offset voltage $U_{E K}$ in the inverted connection:

$$
\mathrm{U}_{\mathrm{EK}} \approx-\frac{1}{\Omega \mathrm{~B}_{\mathrm{N}}} \text { for pnp }
$$

and

$$
\mathrm{U}_{\mathrm{EK}} \approx \frac{1}{\Omega \mathrm{~B}_{\mathrm{N}}} \text { for } n \mathrm{pn}
$$

where

$$
\begin{aligned}
\Omega= & \frac{q}{k T} \\
\mathrm{q}= & \text { magnitude of electron charge } \\
\mathrm{k}= & \text { Boltzmann constant } \\
\mathrm{T}= & \text { absolute temperature } \\
\mathrm{B}_{\mathrm{N}}= & \text { large signal current gain in common emitter } \\
& \text { connection }
\end{aligned}
$$

This dexivation has two serious lacks. Firstly it affords no physical understanding of why the offset voltage becomes so small and seems to depend only on B_{N}. Secondly it does not tell at which emitter current B_{N} should be measured in order to get a correct value for (2.1) or (2.2).

Eq. (2.1) will in the sequel be derived in a more directly physical way, which gives a better understanding of the offset voltage.

Assume we have a pnp transistor. Positive currents and voltages are defined in fig. 2.1. A positive voltage U_{K} is suddenly impressed between the collector and the base. The emitter is open. This reduces the electrostatic potential in the pn-junction and the excess hole density P_{BK} in the base at the edge of the depletion layer at the collector junction increases.

$$
p_{B K}=P_{o}\left(e^{\Omega U_{K}}-1\right)
$$

where
$P_{0}=$ the equilibrium hole density in the uniform n-type
base.

For the excess hole density in the base at the emitter side P_{BE} a similar expression holds:

$$
p_{B E}=P_{o}\left(e^{\Omega U_{E}}-1\right)
$$

At the outset $U_{E}=0$ and $p_{B E}=0$. This gives a very heavy gradient in the excess hole density as shown in fig. 2. 3, and a large hole diffusion current flows from the collector to the emitter. This current charges the emitter and U_{E} and $p_{B E}$ will be >0, since the emitter is open. As soom as U_{F} becomes >0 there will be an electron current from the base to the emitter. Equilibrium occurs when this electron current equals the hole current from the collector, because then the total current to the emitter is zero (Curve a, fig. 2.3). Now if we want $U_{E}-U_{K}$ to be small, we see from (2.3) and (2.4) that we shall have $p_{B K}-p_{B E}$ small. This means that the hole current from the collector to the emitter shall be as small as possible, but also that the electron current from the base to the emitter shall be as small as possible.

An expression for $U_{\text {EK }}$ can now be obtained by simple reasoning. Say that we make $U_{K}=0$, but do not change U_{E}. This does not change the base - emitter electron current, because this current is dependent only on U_{E} and not on U_{K}. The base - collector electron current on the other hand changes and becomes 0 . Curve b in fig. 2.3. shows the excess hole distribution in the base. A hole diffusion current flows from the emitter to the collector. This current is B_{N} times as large (by definition of B_{N}) as the base - emitter electron current,
i. e. B_{N} times as large as the hole current we earlier had from the collector to the emitter when $I_{E}=0$. We can describe this by the following expression:

$$
\frac{p_{B K}-p_{B E}}{p_{B E}}=\frac{1}{B_{N}}
$$

Provided that the linear diffusion equation holds.

Eq. (2.3), (2.4) and (2,5) gives:

$$
\begin{align*}
& \frac{p_{B E}}{p_{B K}}=A_{N}=\frac{e^{\Omega U_{E}}-1}{e^{\Omega U_{K}}-1} \approx e^{\Omega\left(U_{E}-U_{K}\right)}=e^{\Omega U_{E K}} \\
& U_{E K} \approx \frac{1}{\Omega} \cdot \ln A_{N}
\end{align*}
$$

Expanding (2.6) in series gives for larger B_{N} :

$$
U_{E K} \approx-\frac{1}{\Omega B_{N}}
$$

The hole density in the base P_{0} was above assumed to be the same everywhere in the base. In a drift transistor this is not the case. In the latter the base is doped much more heavily at the emitter junction than at the collector junction. Appendix A shows that even in this case the base - emitter electron current should be as small as possible in order to get a small offset voltage.

Determination of the I_{E} at which B_{N} should be measured
B_{N} is not a constant and therefore we must determine how it should be measured. The determination above of $U_{E K}$ shows
directly that B_{N} should be measured at $U_{K}=0$ and U_{E} unchanged at the value it acquired with $\mathrm{I}_{\mathrm{E}}=0$ and U_{K} at a given value. Now as a rule we do not know this U_{E}, but we know the base current I_{B} which brings the transistor into the on state. The question to answer is the refore: At which I_{E} should we measure B_{N}, when I_{B} is known, to get a correct value for the equation $U_{E K}=-\frac{1}{\Omega B_{N}}$?

To answer this question we shall use the double-diode equivalent circuit shown in fig. 2.4. This means that the total excess hole density distribution is obtained by superposing two excess hole density distributions shown by curves b and c in fig. 2.4. These distributions cause diffusion currents to flow, and $A_{N} N_{N}$ reaches the collector and $A_{I} I_{I}$ reaches the emitter. Now, if there is negligible "built in "field in the base, $I_{K}\left(U_{E}, O\right)=I_{E}\left(O, U_{K}\right)$ when $U_{E}=U_{K}$, as shown by Ebers and Moll 5$)^{\mathrm{E}}$, and we can write:

$$
\begin{align*}
& A_{N} I_{N}=-I_{0}\left(e^{\Omega U_{E}}-1\right) \\
& A_{I_{I}}=-I_{0}\left(e^{\Omega U_{K}}-1\right)
\end{align*}
$$

Fig. 2.4. gives:

$$
\begin{align*}
& I_{E}=I_{N}-A_{I} I_{I} \\
& I_{K}=I_{I}-A_{N} I_{N}
\end{align*}
$$

Assuming $I_{E}=0$ gives:

$$
I_{N}=A_{I} I_{I}
$$

$$
I_{\mathrm{K}}=-\mathrm{I}_{\mathrm{B}}
$$

and

$$
I_{N}=-\frac{A_{I}}{1-A_{N} A_{I}} I_{B}
$$

If we now make $U_{K}=0$ but do not change U_{E} we see from (2.8) that $A_{N} I_{N}$ does not change, nor I_{N} either if we assume that A_{N} is dependent only on, U_{E} but not on $\mathrm{U}_{\mathrm{K}} \cdot \mathrm{I}_{\mathrm{I}}=0$ because $\mathrm{U}_{\mathrm{K}}=0$. The emitter current I_{E} becomes:

$$
I_{E}^{\prime}=-\frac{A_{I}}{1-A_{N} A_{I}} I_{B}
$$

Normally this equation can be written approximately:

$$
I_{E}{ }^{\prime} \approx-B_{I} I_{B}
$$

Eq. (2.16) tells us at which emitter current B_{N} should be measured when I_{B} is known. Since B_{I} is included in (2.16) we must determine at which collector current B_{I} should be measured. Then we must instead make $U_{E}=0$ but keep U_{K} unchanged. This gives $I_{N}=0$ and the collector current I_{K} becomes:

$$
I_{K}^{\prime}=-\frac{1}{1-A_{N} A_{I}} I_{B}
$$

Normally this equation can be written approximately:

$$
I_{K}^{\prime} \approx-\left(1+B_{I}\right) I_{B}
$$

Eq. (2,18) tells us at which collector current B_{I} should be measured. The equation contains the quantity to be measured and therefore a trial calculation is necessary.

3. Modification of Ebers's and Moll's relations

For further calculations we need equations describing the DC signal behaviour of the transistor. Ebers's and Moll's relations contain four constants which vary with the working point, namely $I_{K B O}$, $I_{E B O}, A_{N}$ and A_{I}. However, it will be shown in this section that the relations can be modified to include only two variable constants, namely A_{N} and A_{I}.

Sah et al. ${ }^{6)}$ have explained why A_{N} and A_{I} vary. Part of the current in a silicon pn junction is due to generation and recombination of carriers in centers in the space charge region. In a forward bias junction this space charge recombination current $I_{r g}$ has a voltage dependence which is:

$$
I_{r g} \cdot \text { constant }=e^{\frac{\Omega U}{M}}-1
$$

where $1 \leq m \leq 2$ (m varies with U).

While the voltage dependence of the hole diffusion current I_{d} and the electron diffusion current I_{d}^{\prime} through the junction is

$$
I_{d} \cdot \text { constant }=I_{d}^{\prime} \cdot \text { constant }=e^{\Omega U_{-}}
$$

A_{N} can be written

$$
A_{N}=v_{N} \cdot \gamma_{n}
$$

where

$$
\begin{aligned}
& \vartheta_{N}=\text { the forward transport efficiency } \\
& \gamma_{N}=\text { the emitter efficiency }
\end{aligned}
$$

γ_{N} can be calculated from the following expression:

$$
\gamma_{N}=\frac{I_{d} \operatorname{coth} \frac{W_{B}}{L_{B}}}{I_{d} \operatorname{coth} \frac{W_{B}}{L_{B}}+I_{d}^{\prime}+I_{r g}}
$$

where I_{d} and I_{d} are the injected currents into the base and the emitter region, respectively, when these regions are thought to extend toward infinity. The base is thin, however, and the collector functions as a diffusion sink and increases the diffusion current component to $I_{d}^{\prime \prime}=I_{d} \cdot \operatorname{coth} \frac{W_{B}}{L_{B}} \cdot W_{B}$ is the base layer width and L_{B} the minority carrier diffusion ${ }^{\text {Pength }}$ in the base. At small forward bias $I_{d} \ll I_{r g}$ and 3.3 can be written:

$$
A_{N}=\vartheta_{N} \frac{\frac{I_{d}^{\prime \prime}}{I_{r g}}}{1+\frac{I_{d}^{\prime \prime}}{I_{r g}}}
$$

If we assume $\vartheta_{N}=1$ we get:

$$
B_{N}=\frac{I_{d}^{\prime \prime}}{I_{r g}}
$$

Eq. (3.1), (3.2) and (3.5) give:

$$
\begin{gathered}
\mathrm{B}_{\mathrm{N}} \cdot \text { constant }=\frac{e^{\Omega \mathrm{U}}}{e^{\frac{U}{m}}}=e^{\Omega \mathrm{U}\left(1-\frac{1}{\mathrm{~m}}\right)} \\
\mathrm{B}_{\mathrm{N}}=\text { constant } \cdot I_{\mathrm{d}}^{\prime \prime}
\end{gathered}
$$

But $I_{d}^{\prime \prime}=I_{k}$ because $\vartheta_{N}=1$

This gives:

$$
\mathrm{B}_{\mathrm{N}}=\text { constant } \cdot \mathrm{I}_{\mathrm{k}}^{2}
$$

where $a=1-\frac{1}{m} \quad 0 \leq a \leq 0.5$

Alloy and Mesa silicon transistors have at small forward bias $I_{r g} \gg I_{d}{ }^{\prime \prime} . S a h{ }^{7}$ has pointed out that for these transistors the space charge recombination is mainly localized to the surface. This gives low B_{N} at low I_{E}. Planar and planar epitaxial silicon transistors have oxide-protected pn junctions and therefore much lower $I_{r g}$ which gives fairly high B_{N} at low I_{E}. This is illustrated by diagrams 3.1 and 3.2 which show I_{E} and $I_{K}=f\left(U_{E}\right)$ at $U_{K}=0$ for the alloy silicon transistor 2 N 1676 and the planar silicon transistor $2 \mathrm{~N} 1613 . I_{\mathrm{K}}=\vartheta_{N} \cdot I_{d}^{\prime \prime}$ and $I_{E}=I_{d}^{\prime \prime}+I_{d}^{\prime}+I_{r g}$. At $U_{E}=430 \mathrm{mV}$ in diagram $3.1 \mathrm{~A}_{\mathrm{N}} \approx 0.5$, that is $I_{r g} \approx I_{d}^{\prime \prime}$ since ${\underset{U}{U}}_{N}^{N} \approx 1$. When ${\underset{\sim}{E}}^{U_{E}}<430 \mathrm{mV}, I_{r g}$ is largest and proportional to $\exp \left(\frac{\Omega \mathrm{U}_{\mathrm{E}}}{\mathrm{m}}\right)$ where $\mathrm{m} \approx 1,7.2 \mathrm{~N} 1613 \mathrm{has}$ a much lower space charge recombination and already at $U_{E}=200 \mathrm{mV} A_{N} \approx 0.5$. In this case $m \approx 1.3$.

Sah ${ }^{7)} \frac{I_{\mathrm{K}}}{\text { is proportional to } \exp \left(\Omega \mathrm{U}_{\mathrm{E}}\right) \text { both for } 2 \mathrm{~N} 1676 \text { and } 2 \mathrm{~N} 16 \uparrow 3 .}$ the curve is exactly given by Ω. This means that (2.8), (2.9) holds very well. All types of transistor give this result. At negative U_{E}, I_{o} also is a constant. I_{0} and Ω are consequently constants which do not vary with U_{E} and U_{K}. It is evidently desirable to modify Ebers's and Moll's relations to include I_{o}. These relations can be writter in explicit form (pnp):

$$
I_{E}=-\frac{I_{E B O}}{1-A_{N} A_{I}}\left(e^{\Omega U_{E}}-1\right)+\frac{A_{I} I_{K B O}}{1-A_{N} A_{I}}\left(e^{\Omega U_{K}}-1\right)
$$

$$
I_{K}=\frac{A_{N} I_{E B O}}{1-A_{N} A_{I}}\left(e^{\Omega U_{E}}-1\right)-\frac{I_{K B O}}{1-A_{N} A_{I}}\left(e^{\Omega U_{K}}-1\right)
$$

$$
A_{N} I_{E B O}=A_{I} I_{K B O}
$$

When $U_{K}=0, I_{K}$ becomes:

$$
I_{K}=\frac{A_{N} I_{E B O}}{1-A_{N} A_{I}}\left(e^{\Omega U_{E}}-1\right)
$$

Eq. (2.8) and (2.11) give:

$$
I_{K}=I_{o}\left(e^{\Omega U_{E}}-1\right)
$$

Eq. (3.10) and (3.11) give:

$$
I_{o}=\frac{A_{N}}{1-A_{N} A_{I}} I_{E B O}
$$

$\mathrm{U}_{\mathrm{E}}=0$ gives correspondingly:

$$
I_{0}=\frac{A_{I}}{1-A_{N} A_{I}} \cdot I_{K B O}
$$

Eq. (3.7) and (3.8) can be written:

$$
\begin{align*}
& \frac{I_{E}}{I_{o}}=-\frac{1}{A_{N}}\left(e^{\Omega U_{E}}-1\right)+e^{\Omega U_{K}}-1 \\
& \frac{I_{K}}{I_{o}}=e^{\Omega U_{E}}-1-\frac{1}{A_{I}}\left(e^{\Omega U_{K}}=1\right)
\end{align*}
$$

In (3.14) and (3.15) A_{N} and A_{I} are the only constants which vary with I_{E} and I_{K}.

Also at negative U_{E} and U_{K} the generation of carriers from the centers in the space charge region has a great influence. In silicon transistors most of $I_{E B O}$ and $I_{K B O}$ is due to this generation. The generation current is proportional to the width of the transition region. This width is voltage-dependent and therefore $I_{E B O}$ and $I_{K B O}$ will vary also at negative U_{E} and U_{K} respectively. A_{N} at $U_{E} \leq 0$ and A_{I} at $\mathrm{U}_{\mathrm{K}} \leq 0$ is normally ≤ 0.1 for silicon transistors. This means that

$$
\begin{aligned}
& I_{E B O} \approx \frac{I_{o}}{A_{N}} \text { when } U_{E} \leq 0 \\
& I_{K B O} \approx \frac{I_{o}}{A_{I}} \text { when } U_{K} \leq 0
\end{aligned}
$$

These equations show how directly $\mathrm{I}_{\mathrm{EBO}}$ and $\mathrm{I}_{\mathrm{KBO}}$ depend on. A_{N} and A_{I} respectively.

Sah ${ }^{7}$ has shown that I_{o} can be calculated from the following expression:

$$
I_{o}=A_{E} q n_{i}^{2} \frac{D_{B}}{N_{B} W_{B}}
$$

where $\quad A_{E}=$ the emitter area
$n_{i}=$ density of electron or hole in an intrisic specimen
$D_{B}=$ the diffusion constant for minority carriers in the base
$N_{B}=$ the density of doping impurities in the base
$W_{B}=$ the base layer width

This expression shows that I_{0} depends on quantities which have fairly little spread, particularly for diffused transistors, The spread in I_{0} is therefore little and much less than that in $I_{E B O}$ and $I_{K B O}$.
4. The static characteristics of the low level switch

In this section the static characteristics of the switch will be determined by means of Ebers's and Moll's modified relations (3.14) (3.15). Formulas for the quantities in the equivalent circuit of fig. 2.2 will be given.

Determination of the offset voltage and the on resistance
Assume the transistor is in the inverted connection as shown by fig. 2.1. In the on state U_{E} and U_{K} are $\gg \frac{1}{\Omega} \cdot$ Eq. (3.14) and (3.15) can in this case be written approximately:

$$
\frac{I_{E}}{I_{0}}=-\frac{1}{A_{N}} e^{\Omega U_{E}}+e^{\Omega U_{K}}
$$

$$
\frac{I_{K}}{I_{0}}=e^{\Omega U_{E}}-\frac{1}{A_{I}} e^{\Omega U_{K}}
$$

These equations give

$$
\Omega\left(U_{E}-U_{K}\right)=\ln A_{N} \frac{I_{K}+\frac{1}{A_{I}} \cdot I_{E}}{I_{K}+A_{N} I_{E}}
$$

and

$$
U_{E}-U_{K}=\frac{1}{\Omega} \ln A_{N}+\frac{1}{\Omega} \ln \frac{1-\frac{I_{E}}{I_{B}} \cdot \frac{1}{B_{I}}}{1+\frac{I_{E}}{I_{B}} \cdot \frac{1}{1+B_{N}}}
$$

$I_{E}=0$ gives

$$
\left(U_{E}-U_{K}\right)_{I_{E}}=0=U_{E K}=\frac{1}{\Omega} \ln A_{N}
$$

4.2

When $I_{E} \ll I_{B}$ we get by expansion of (4.2):

$$
U_{E}-U_{K}=U_{E K}-\frac{I_{E}}{\Omega I_{B}}\left(\frac{1}{B_{I}}+\frac{1}{1+B_{N}}\right)
$$

This can be written:

$$
U_{E}-U_{K} \approx U_{E K}+R_{S} \cdot I_{E}
$$

where R_{S} is the on resistance.

$$
R_{S}=\frac{1}{\Omega\left|I_{B}\right|}\left(\frac{1}{B_{I}}+\frac{1}{1+B_{N}}\right)
$$

Eq. (4.3) is in accordance with the equivalent circuit given in fig. 2.2. In (4.4) B_{N} and B_{I} should be measured at I_{E} and I_{K} given by (2.16) and (2.18) respectively.

Experimental measurements

Several measurements were made to test the above formulas for the offset voltage $U_{E K}$ and the on resistance R_{S}. The offset voltage of seventeen OC 44 was measured at $U_{K}=0.15 \mathrm{~V} . \mathrm{B}_{\mathrm{N}}$ was measured at $U_{E}=0.15 \mathrm{~V}$ and $U_{K}=0$, in accordance with the conclusions in section 2. In diagram 4. 1 the different values of $U_{E K}$ are plotted against the respective values of $\frac{1}{\mathrm{~B}_{\mathrm{N}}}$. A mean straight line is drawn through the points. The inclination of the line is in perfect agreement vith the theoretical value $\frac{1}{\Omega}=25.6 \mathrm{mV}$ given by (2.7).
$U_{E K}$ was also measured as a function of I_{B} for some different types of transistors. These measurements are presented in diagrams 4. 2 and 4.3. B_{N} and B_{I} for these transistors were measured, respectively, at U_{K} and $U_{E}=0$, and at different values of I_{E} and I_{K}. See diagrams 4.4 and 4.5. By means of these diagrams and (2.6), (2.15) and (2.17), $U_{E K}=f\left(I_{B}\right)$ was determined. These calculated curves are plotted
for comparison in diagrams 4.2 and 4.3. There is good agreement except for higher values of I_{B}. $U_{E K}$ increases strongly with decreasing I_{B} for the alloy transistors OC 202 and $2 N 1676$ on account of the rapid fall off of B_{N} and B_{I} at low I_{E} and I_{K} respectively. These decreases are much less for the planar transistors 2N 1613 and $2 N 2432$ and therefore $U_{E K}$ in these cases does not increase so much at decreasing I_{B}.

Calculated and measured values of R_{S} are presented in diagrams 4. 6 and 4.7. The agreement is good. The relative deviation is approximately constant. It is probably due to space charge layer widening, which causes B_{I} to be a little higher at $U_{E}=0$ than at $U_{E}>0$. For $2 N 1676$ the difference is so great that it has displaced the calculated $U_{E K}$ to the left. This is because too high values of B_{I} have been used in the calculation of $U_{E K}$.

The offset voltage at larger I_{B--}

When $I_{B}>0.1-I m A$ the measured value of $U_{E K}$ becomes greater than the calculated value. This is partly due to the collector bulk resistance r_{c} which gives a contribution to $U_{E K}$ which is $=r_{c} \cdot I_{B}$. Therefore r_{c} ought to be small. Furthermore B_{I} ought to be >1. High frequency diffused transistors very often have very low B_{I} due to carrier lifetime reduction in the base (0.01 at 1 mA for example). This gives indirectly a rather high $U_{E K}$, since (2.16) shows that - if I_{B} is of normal magnitude $-B_{N}$ should be measured at a very low I_{E}, which gives rather low B_{N}. If I_{B} is increased to get a higher B_{N} the voltage $I_{C} I_{B}$ will not be negligible.

There are other causes of the deviation. For example when $p_{B E}$ is not $\ll N_{B}$, the linear diffusion equation is not valid; hence (2.5) is not valid, nor consequently (2.6) either. Webster ${ }^{8}$) has shown that when $p_{B E} \approx \tilde{N}_{B}$ and $p_{B K}=0$ a field is created in the base which helps the holes to flow towards the collector. This gives a rise in B_{N} which is not present when $p_{B K} * p_{B E} \approx N_{B}$. The measured B_{N} will be too high and (2.7) will give too low values of $U_{E K}$.

The variation in UEK

In a chopper amplifier the drift is mainly due to the variation of $U_{E K}$. Variations which are caused by fluctuations of the temperature can be determined by differentiation of (2.7).

$$
\frac{d U_{E K}}{d T}=U_{E K}\left[\frac{1}{T}-\frac{1}{B_{N}} \cdot \frac{d B_{N}}{d T}\right]
$$

$\mathrm{d}^{B_{N}}$ must be determined with a certain change in $I^{\prime}{ }_{E}$. This we get by differentiation of (2.16).

$$
d I_{E}^{\prime}=-I_{B} \cdot d B_{I}
$$

$\mathrm{d} \mathrm{B}_{\mathrm{I}}$ must be determined with a certain change in $\mathrm{I}^{\prime} \mathrm{K}^{\prime}$. This we get by differentiation of (2.18).

$$
\mathrm{dI}^{\prime}{ }_{K}=I_{B} \cdot d B_{I}
$$

This equation contains the quantity to be measured and a trial calculation is necessary. For 2N 1613, 2N 2432 and 2 N 1676 , $\frac{\mathrm{d}_{\mathrm{N}}}{\mathrm{B}_{\mathrm{N}} \mathrm{dT}} \approx 5 \cdot 10^{-3} /{ }^{\mathrm{o}_{\mathrm{K}}}$ at $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$ according to data sheets. This gives:

$$
\frac{\mathrm{d} U_{E K}}{\mathrm{dT}} \approx-U_{E K} \cdot 2 \cdot 10^{-3} \mathrm{~V} /{ }^{\circ} \mathrm{K}
$$

Sometimes it is possible to find an I_{B} which gives $\frac{d U_{E K}}{d T}=0$. As a rule this I_{B} is so high that (2.7) is not valid.

Even if the temperature is constant there will be a drift in $U_{E K}$ due to the variation of B_{N} with time. This variation seems to be less for transistors with getter in the case than for transistors with silicon
grease-filled cases ${ }^{11)}$. Planar transistors probably have better long time stability of B_{N} than other types of transistors. For example $2 \mathrm{~N} 1613^{12)}$ seems to have $\frac{\mathrm{d}_{\mathrm{N}} \mathrm{N}}{\mathrm{B}_{\mathrm{N}}}<2 \%$ during 3000 hours.

Determination of the offset cuxrent and the off resistance
In the off state the transistor is equal to an off resistance R_{o} in parallel with a current generator I (the leakage current) as shown in fig. 2.2.

Normally a transistor is brought into the off state by large reverse bias on the junctions. When the signal to be switched is small ($<0.3 \mathrm{~V}$), this is not necessary. Silicon transistors have sufficiently large R_{o} even when the reverse voltage is 0 . This gives no offset current and the smallest possible spike at switching off and on.

The offset current at large reverse voltage

The circuit assumed is shown in fig. 4.1. Here $U_{K}=-E$, $E \gg \frac{1}{\Omega}$ and $R_{L} \quad\left|I_{E}\right| \ll\left|U_{K}\right| \cdot(3.14)$ gives:

$$
\begin{align*}
& \frac{I_{E}}{I_{o}}=\frac{1}{A_{N}}-1=\frac{1}{B_{N}} \\
& I_{E}=-I=\frac{I_{o}}{B_{N}}
\end{align*}
$$

The offset current at small reverse voltage
A typical circuit for this case is shown in fig. 4.2. Here $\left|U_{K}\right| \ll \frac{1}{\Omega}$ and $\left|U_{K}-U_{E}\right| \ll\left|U_{K}\right|$.

Expansion of (3.14) gives:

$$
\begin{align*}
& \frac{I_{E}}{I_{0}}=-\frac{1}{A_{N}} \cdot \Omega U_{E}+\Omega U_{K}=-\Omega U_{K} \cdot \frac{1}{B_{N}} \\
& I_{E}=-I=-\Omega U_{K} \cdot \frac{I_{o}}{B_{N}}
\end{align*}
$$

The leakage current I is hence reduced by the factor $\left|\Omega U_{K}\right|$. If, for example, the leakage current of D_{1} is $10^{-9} \mathrm{~A}$ and $R_{1}=25 \mathrm{k} \Omega$ we get $\left|\Omega U_{K}\right|=10^{-3}$.

The off resistance

This is lowest when the reverse voltage is 0 . Here $\left|U_{K}\right|$ and $\left|U_{E}\right|$ $\ll \frac{1}{\Omega} .(3.14),(3.15)$ and fig. 4.2 give:

$$
\begin{align*}
& \frac{I_{E}}{I_{o}}=-\frac{1}{A_{N}} \cdot \Omega U_{E}+\Omega U_{K} \\
& \frac{I_{K}}{I_{o}}=\Omega U_{E}-\frac{1}{A_{I}} \Omega U_{K} \\
& R_{1} \cdot I_{B}=U_{K}
\end{align*}
$$

These equations give:

$$
R_{o}=\frac{U_{E}-U_{K}}{I_{E}}=\frac{1}{\Omega\left|I_{o}\right|} \cdot \frac{1+B_{N}\left(\frac{1}{R_{1}{ }^{\Omega}\left|I_{0}\right|}+\frac{1}{B_{I}}\right.}{1+\frac{B_{N}}{A_{N}}\left(\frac{1}{R_{1} \Omega_{1} I_{0}}+\frac{1}{B_{I}}\right)}
$$

As a rule $\mathrm{B}_{\mathrm{N}}\left(\frac{1}{\left.\mathrm{R}_{1}{ }^{\Omega}\right|_{\mathrm{o}} \mid}+\frac{1}{\mathrm{~B}_{\mathrm{I}}}\right) \gg 1$, which gives:

$$
R_{0}=\frac{A_{N}}{\Omega\left|I_{0}\right|}
$$

This result is given directly by (4.9) if we assume $U_{K}=0$.

Measurements

Table 4.1 shows some measured values of I at the reverse voltage $=-1 \mathrm{~V}$ for some different transistors. The product $\left|R_{L} I\right|$ shows that only 2 N 1613 is suitable for switching off in this way when $R_{L} \geq 100 \mathrm{~K} \Omega$.

Table 4.1. Leakage current at large reverse voltage

No	2N 1613	2N 1676	OC 4.4
Type	Planar silicon	Alloy silicon	Alloy germanium
I A	$-2 \cdot 10^{-12}$	$6 \cdot 10^{-10}$	10^{-7}
$\mathrm{R}_{\mathrm{L}} \mathrm{I} \mu \mathrm{V} \quad \mathrm{R}_{\mathrm{L}}=100 \mathrm{l}$ /	-0.2	60	10000

Table 4.2 shows some calculated and measured values of R_{o} for the same transistors as in table 4.1. B_{N} and I_{o} for 2 N 1676 and 2 N 1613 were estimated from diagrams 3.1 and 3.2 (at $U_{E}=30 \mathrm{mV}$). B_{N} and I_{0} for $O C 44$ were directly measured.

Table 4.2. Measured and calculated values of R o

No	2 N 1613	2 N 1676	$O C 44$
$I_{o} A$	$6 \cdot 10^{-14}$	$-1.2 \cdot 10^{-13}$	-10^{-6}
$\mathrm{~B}_{\mathrm{N}}$	0.15	$1.5 \cdot 10^{-3}$	10
R_{o} calculated	$63 \mathrm{kM} \Omega$	$310 \mathrm{M} \Omega$	$25 \mathrm{k} \Omega$
R_{o} measured	$50 \mathrm{kM} \Omega$	$330 \mathrm{M} \Omega$	$25 \mathrm{k} \Omega$

5. The behaviour of the switch at switching on and off

The shape of the spikes
Fig. 5. 1 shows the circuit assumed and the voltage response U over R_{L}. The spikes are mainly due to the base-emitter depletionlayer capacitance $C_{T E}$. (Silicon alloy transistors have high $U_{E K}$ at low I_{B}. This gives a contribution to the spikes. However, these spikes are very short if the drive voltage has a good square form.) If R_{B} is very small the amplitude of the spike U_{1} at switching off becomes:

$$
\mathrm{U}_{1} \approx \frac{\mathrm{C}_{\mathrm{TE}}}{\mathrm{C}_{\mathrm{TE}}+\mathrm{C}_{\mathrm{L}}} \cdot \mathrm{U}_{\mathrm{E}}
$$

The spike then decreases with a time constant τ_{1} which is:

$$
\tau_{1} \approx R_{L}\left(C_{T E}+C_{L}\right)
$$

If R_{B} is not small, the amplitude and the time constant also depend on the base-collector depletion-layer capacitance $C_{T K}$ and R_{B} / R_{L}. Generally the spike becomes lower but broader. The spike at switching on is very short, especially if f_{α} is high. Diagram 5.1 shows the shape of the spikes for 2 N 1613 with different values of R_{B} and R_{L}. The diagram shows that the spike at switching on is almost independent of R_{L}.

However, an analysis of the shape of the spikes is as a rule of minor interest. In most applications it is, instead, the area of the spikes which is of interest. This can be easily calculated by examining how the different charges in the transistor are supplied and removed.

Calculation of the area of the spikes

Switching off
The switch is assumed to be in the on state. In the base there is an excess hole charge Q_{B}. Further the charge Q_{C} of $C_{T E}$ is:

$$
Q_{C}=U_{E} \cdot C_{T E}
$$

At switching off the holes begin to diffuse out of the base. During the first part of the process the pn junctions are low resistive, and the currents are mainly determined by outer resistances. Q_{B} passes mainly out through the collector junction. A negligibly small part of Q_{B} passes through the emitter junction because R_{L} makes this a high resistive path. C_{TE} discharges mainly through the emitter junction. This is illustrated in diagram 5.2 where u_{E} and u for 2 N 2432 are shown as function of time at switching off. When time $t \leq 3 \mu \mathrm{~s}, \mathrm{u}_{\mathrm{E}}$ decreases approximately linearly with time from 630 mV to about 500 mV . The excess hole density in the base hence decreases about 2 decades during this time, and therefore when $t=3 \mu s$ only a very small part of Q_{B} is left in the base. How this little part discharges is of no importance. Further, for $t \leq 3 \mu \mathrm{~s}, \mathrm{u} \& 0$, i.e. the current through $\mathrm{R}_{\mathrm{L}} \neq 0$. C_{TE} on the other hand at $\mathrm{t}=3 \mu \mathrm{~s}$, has most of its charge left. When $t>3 \mu s$ the junctions are high resistive and $C_{T E}$ discharges mainly through $R_{L}+R_{B}$. This is also shown in diagram 5.2.

Now to simplify the problem we may imagine that, when the base - emitter resistance $R_{E B}<R_{B}+R_{L}, C_{T E}$ discharges entirely through $R_{E B}$ and, when $R_{E B}>R_{L}+R_{B}, C_{T E}$ discharges entirely through $R_{L}+R_{B} \cdot R_{E B}=R_{L}+R_{B}$ occurs at a certain emitter voltage U_{E}^{\prime} and the charge Q which passes through R_{L} is consequently approximately given by:

$$
Q \approx U_{E}^{\prime} \cdot C_{T E}
$$

In appendix B it is shown that when $\frac{1}{\sqrt{2} I_{K}}<R_{B}$:

$$
\mathrm{R}_{\mathrm{EB}} \approx \frac{1}{\Omega \mathrm{I}_{\mathrm{K}}{ }_{\mathrm{A}} \mathrm{I}}
$$

and when $\frac{1}{\sqrt[\Omega]{I_{K}}}>R_{B}$:

$$
\mathrm{R}_{\mathrm{EB}} \approx \frac{1}{\Omega \mathrm{I}_{\mathrm{K}}}\left(\frac{1}{\mathrm{~B}_{\mathrm{I}}}+\frac{1}{1+\mathrm{B}_{\mathrm{N}}}\right)
$$

Eq. (5.4) is the same expression as that for R_{S}. $R_{E B}$ will vary with I_{K} as shown by fig. 5.2.

The only thing we want to know is when $R_{E B}=R_{B} \mp R_{L}$ and for the sake of simplicity we may imagine that (5.4) holds for all values of $R_{E B}$. This means that we consider $R_{E B}$ to be linearly dependent on $\frac{1}{\mathrm{I}_{\mathrm{K}}}$. In appendix C eq. (8) shows that:

$$
I_{\mathrm{K}}=\text { constant } e^{\Omega U_{E}}
$$

Hence

$$
R_{E B}=\text { constant } e^{-\Omega U_{E}}
$$

To change $R_{E B}$ from R_{S} to $R_{B}+R_{L}$ there must be a change in U_{E} which is:

$$
\Delta \mathrm{U}_{\mathrm{E}}=\frac{1}{\Omega} \ln \frac{\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{I}}}{\mathrm{R}_{\mathrm{S}}}
$$

This gives $U_{E}{ }^{\prime}$:

$$
\mathrm{U}_{\mathrm{E}}^{\prime}=\mathrm{U}_{\mathrm{E}}-\frac{1}{\Omega} \ln \frac{\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{S}}}
$$

In a chopper amplifier Q will cause a current which has the same effect as the offset current I. Therefore it is convenient to define a spike current at switching off, $\mathrm{I}_{\text {SPIKE }}$ (fig. 2. 2):

$$
I_{S P I K E}=\frac{Q}{\frac{T}{2}}=2 f_{o} \cdot Q
$$

where $f_{o}=\frac{1}{T}=$ the chopper frequency

Hence

$$
I_{S P I K E} \not 2 f_{0} \cdot C_{T E} \cdot U_{E}
$$

$I_{\text {SPIKE }}$ flows through R_{L} and causes a voltage $U_{\text {SPOFF }}$.

$$
\mathrm{U}_{\mathrm{SPOFF}}=\mathrm{R}_{\mathrm{L}} \cdot I_{\mathrm{SPIKE}}
$$

$U_{S P O F F}$ and $U_{E K}$ have different signs. However, in a chopperamplifier they appear in different phases and therefore they causes voltages of the same sign at the output of the amplifier.

Switching_on_

The voltage spike at switching on has an area $\phi_{\text {SPON }}$ which as a rule is much smaller than the area of the spike at switching off. $\phi_{\text {SPON }}$ depends on both f_{α} and $C_{T E}$ but is almost independent of R_{L}. It is therefore approximately equivalent to a certain increase in $U_{E K}$. High C_{TE} and low f_{α} give high ϕ_{SPON}. It is convenient to define a voltage $\mathrm{U}_{\mathrm{SPON}}$ which is:

$$
\mathrm{U}_{\mathrm{SPON}}=2 \mathrm{f}_{\mathrm{o}} \cdot \phi_{\mathrm{SPON}}
$$

As a rule $U_{S P O N} \ll U_{E K}$ for $f_{o} \leq 1 \mathrm{kc} / \mathrm{s}$.

Measurements

The theory above contains several approximations. Some different measurements were made to check the theory. The circuit employed is shown in fig. 5.3. U_{EK} (at $\mathrm{I}_{\mathrm{B}}=0.15 \mathrm{~mA}$) was measured with S in position 1 . In position 2 a voltage U_{M} was measured which is:

$$
U_{M}=\frac{U_{E K}}{2}+\frac{U_{S P O F F}}{2}+\frac{U_{S P O N}}{2}
$$

U_{EK} and $\mathrm{U}_{\mathrm{SPON}}$ are negative and $\mathrm{U}_{\mathrm{SPOFF}}$ positive with pnp transistors. If $\mathrm{U}_{\mathrm{SPON}}{ }^{\text {is }}$ assumed to be negligible we get:

$$
U_{S P O F F}=2 U_{M}-U_{E K}
$$

Measurement No. 1

A capacitance C was connected between the base and the emitter of a $2 \mathrm{~N} 2432 . \mathrm{R}_{\mathrm{L}}$ was $100 \mathrm{k} \Omega$. U_{M} was measured and $\mathrm{U}_{\mathrm{SPOFF}} \mathrm{calcu}-$ lated from (5.10). Diagram 5.3 shows $U_{S P O F F}=f(C)$. The curve is a straight line, which is in accordance with (5.8). The curve cuts the C-axis approximately at -2.5 pF , which gives $\mathrm{C}_{\mathrm{TE}} \approx 2.5 \mathrm{pF}$.

Measurement No. 2

$U_{\text {SPOFF }}$ was measured for some transistors with and without a C connected. R_{\perp} was $100 \mathrm{k} \Omega$. Eq. (5.8) and (5.9) give:

$$
\frac{\Delta \mathrm{U}_{\mathrm{SPOFF}}}{\mathrm{U}_{\mathrm{SPOFF}}}=\frac{\mathrm{C}}{\mathrm{C}_{\mathrm{TE}}}
$$

where $\triangle U_{S P O F F}$ is the increase in $U_{\text {SPOFF }}$ owing to C.
C_{TE} was calculated by means of (5.11). Direct measurement of C_{TE} in a capacitor bridge was also done. Table 5.1 shows that good agreement was obtained between these two determinations of C_{TE}.

Table 5.1. Determination of $\mathrm{C}_{\mathrm{TE}}-$

Transistor	C pF	$\mathrm{U}_{\text {SPOFF }}$ mV	$\triangle \mathrm{U}_{\text {SPOFF }}$ mVV	$\mathrm{C}_{\text {TE }} \mathrm{pF}$ calculated from (5.11)	$\mathrm{C}_{\text {TE }} \mathrm{pF}$ measured in bridge
2 N 2432	10	-0.22	-0.78	2.8	2.6
2 N 1613	51	-5.4	-4.0	69	64
OC202	51	2.0	3.3	31	31
2 N 1676	51	1.8	3.8	24	24

Measurement No. 3

$U_{\text {SPOFF }}$ was measured for the same transistors as in measurement No. 2, but with different values of R_{L}. By means of (5.6), (5.8) and (5.9), U SPOFF was calculated for corresponding cases. The result is presented in table 5.2. The deviation between measured and calculated values of $U_{\text {SPOFF }}$ is small with the exception of the values for $R_{L}=10 \mathrm{k} \Omega$. The reason is that in this case $U_{S P O N}$ is not negligibly small. For the sake of comparison the table includes a column for f_{α} which is a measure of $\frac{1}{Q_{B}}$. This shows that high f_{α} does not in itself give small $\mathrm{U}_{\text {SPOFF }}$. 2 N 1613 has the highest f_{α} but still the highest value of $\mathrm{U}_{\text {SPOFF }}$. The fast 2 N 1676 does not give lower $U_{\text {SPOFF }}$ than the slower OC202.

Table 5.2. Determination of $U_{S P O F F}$ with different $R_{L}-$

Transistor	$\begin{aligned} & \mathrm{U}_{\mathrm{E}} \\ & \mathrm{mV} \end{aligned}$	$\begin{gathered} R_{L} \\ k \end{gathered}$	R_{S}	$\begin{aligned} & U_{E}^{\prime} \\ & \mathrm{mV} \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{TE}} \\ \text { measured } \\ \text { in bridge } \\ \mathrm{pF} \end{gathered}$	$\mathrm{U}_{\mathrm{SPOFF}}$ calculated mV	$\mathrm{U}_{\mathrm{SPOFF}}$ measured mV	$\begin{gathered} \mathrm{f}_{\alpha} \\ \mathrm{Mc} / \mathrm{s} \end{gathered}$
2N 2432	640	10	45	455	2.6	-0.024	-0.01	20 (min)
		100		435		-0.23	-0.22	
		900		385		-1.8	-1.6	
2N 1613	530	10	400	400	64	-0.51	-0.34	100 (typ)
		100		380		-4.9	-5.4	
		1000		330		-42	-50	
OC202	550	10	180	400	31	0.25	0.08	3 (typ)
		100		380		2.3	2.0	
		900		330		19	18	
2N 1676	620	10	40	430	24	0.21	0.15	40 (typ)
		100		410		2.0	1.8	
		900		360		16	15	

The drift of I SPIKE $-\ldots$

The temperature drift of $I_{\text {SPIKE }}$ is made up of the variations both in U_{E} and in $C_{T E}$. The latter is smallest and a fairly good estimate of the temperature drift can be obtained by assuming:

$$
\frac{\mathrm{dU}_{E}}{\mathrm{U}_{\mathrm{E}} \mathrm{dt}} \approx \frac{\mathrm{dI}_{\text {SPIKE }}}{\mathrm{I}_{\text {SPIKE }} \cdot \mathrm{dt}}
$$

This assumption gives:

$$
\frac{d I_{\text {SPIKE }}}{d t} \approx-I_{\text {SPIKE }} \cdot 5 \cdot 10^{-3} \mathrm{~A} /{ }^{\circ} \mathrm{C}
$$

Comparison with (4.6) shows that the relative temperature drift in $I_{\text {SPIKE }}$ and $U_{E K}$ is of the same order of magnitude. $\mathrm{dI}_{\text {SPIKE }}$ and $d U_{E K}$ have different signs, but in a chopper amplifier they cause drift voltages of the same sign at the output of the amplifier.

The above analysis shows that the spikes have a great influence at higher $R_{L^{*}}$ Amplitude cutting can, however, reduce $I_{\text {SPIKE }}$ to a high degree. Most appropriate is to choose a transistor with low C_{TE}.

6. Compensated switches

The imperfections of the low level switch can partly be eliminated in different ways. It is desirable to decrease especially UEK and Q. Compensated switches have earlier been presented which cancel $U_{E K}$ by creating a voltage $-U_{E K}$ in series with the switch in the on state. This does not decrease the drift ($d U_{E K}$), but is only a zero displacement and this can be done in a simpler way. Here only such switches as have smaller drift than the variation in $U_{E K}$ will be described and analyzed.

The influence of the capacitances of the transformer

Compensated switches sometimes contain a transformer. This as a rule gives rise to a certain problem, which will be treated separately here. The transformer is in general included in a drive circuit as shown in fig. 6.1 a. If the transformer had no capacitances the voltage u_{3} would be zero. Now this is not the case and therefore $u_{3} \neq 0$. Capacitive transmission directly between the windings can mainly be eliminated by a screen between the windings as shown in fig. 6. 1. a. However, this is not sufficient to get $_{3}=0$. The secondary winding has a certain distributed capacity to earth. This is illustrated by C_{f} in fig. 6.1.b. C_{f} can be replaced by an equivalent capacitor $C_{e}<C_{f}$ connected between earth and one end of the secondary winding as shown in fig. 6.1.c.

Assume now that the drive voltage is a square wave like u_{1} in fig. 6.2. The secondary voltage u_{2} has a certain tilt of the top and certain rise and fall times. Mostly $\mathrm{C}_{e} \mathrm{R}_{3}>$ rise and fall times of u_{2}. The spikes in u_{3} the refore are almost of the same size as the steps in u_{2}. Between the steps $\mathrm{C}_{e} \mathrm{R}_{3}$ functions as a differentiator and the tilt of the top of u_{2} causes a constant current I_{3} to flow through R_{3}.

$$
I_{3}=C_{e} \cdot \frac{d u_{2}}{d t} \Rightarrow C_{e} \cdot \frac{s \cdot U_{2}}{T} \cdot 2
$$

where s is the percentage tilt of the top of u_{2}.

Suppose that $C=20 \mathrm{pF} . \mathrm{T}=1 \mathrm{~ms} . \mathrm{p}=0.05$ and $\mathrm{U}_{2}=5 \mathrm{~V}$. This gives $I_{3}=10^{-8}$ A and there will be a voltage $U_{3}=1 \mathrm{mV}$ across R_{3} if $R_{3}=100 \mathrm{k} \Omega . R_{3}$ is often equal to R_{L}. U_{3} will therefore appear across the switch in the off state and 1 mV will be much to great to be tolerated. The spikes in u_{3} might also be intolerably large. The term $\frac{\mathrm{s} \cdot \mathrm{C}_{e}}{\mathrm{~T}}$ is hard to make $<10^{-9}$ without special arrangements and U_{2} must be $>0.5 \mathrm{~V}$. Therefore it is difficult to get $\mathrm{I}_{3}<10^{-9} \mathrm{~A}$.

One-transistor switch with switching on current to both junctions 9)
By supplying drive current to both base and emitter in the on state as shown in fig. 6.3 a , it is possible to get the compensated offset voltage $U_{S}=0$. The currents can be calculated from (4.1):

$$
1=A_{N} \frac{1+\frac{1}{A_{I}} \cdot \frac{I_{E}}{I_{K}}}{1+A_{N} \cdot \frac{I_{E}}{I_{K}}}
$$

which gives:

$$
\frac{\mathrm{I}_{\mathrm{E}}}{\mathrm{I}_{\mathrm{K}}}=\frac{\mathrm{B}_{\mathrm{I}}}{\mathrm{~B}_{\mathrm{N}}}=k
$$

By expansion of (4.1) we get:

$$
\Omega U_{S}=A_{N} \frac{1+\frac{k}{A_{I}}}{1+A_{N} \cdot k}-1
$$

Analyzing how U_{s} changes when A_{N} and A_{I} change gives a good picture of how great the drift will be. Differentiation of 6.4 gives:

$$
d\left(\Omega U_{s}\right)=\frac{k \cdot d \frac{1}{A_{I}}}{\frac{1}{A_{N}}+k}-\frac{\left(1+\frac{k}{A_{I}}\right) d \frac{1}{A_{N}}}{\left(\frac{1}{A_{N}}+k\right)^{2}}
$$

Eq. (6.2) and (6.5) give:

$$
d\left(\Omega U_{s}\right)=\frac{A_{N}}{1+k \cdot A_{N}}\left(k d \frac{1}{B_{I}}-d \frac{1}{B_{N}}\right)
$$

because $d \frac{1}{\mathrm{~A}_{N}}=\mathrm{d} \frac{1}{\mathrm{~B}_{\mathrm{N}}}$ and $\mathrm{d} \frac{1}{\mathrm{~A}_{\mathrm{I}}}=\mathrm{d} \frac{1}{\mathrm{~B}_{\mathrm{I}}}$
$A_{N} \approx 1$. For symmetrical transistors $k \approx 1$. Eq. (6.3) and (6.6) give:

$$
d U_{s} \approx-\frac{U_{E K}}{2}\left(\frac{d B_{N}}{B_{N}}-\frac{d B_{I}}{B_{I}}\right)
$$

where $U_{E K}=-\frac{1}{\Omega B_{N}}$

Symmetrical transistors have as a rule

$$
\frac{d B_{N}}{B_{N} \cdot d_{t}} \approx \frac{d B_{I}}{B_{I} \cdot d_{t}}
$$

and therefore they are very suitable to switch in this way. If only B_{N} but not B_{I} changes, $d U_{S}$ will be:

$$
d U_{s} \approx-\frac{U_{E K}}{2} \cdot \frac{d B_{N}}{B_{N}}
$$

For unsymmetrical transistors $k \ll 1$. Eq. (6.6) becomes:

$$
d U_{s} \approx-U_{E K}\left(\frac{d B_{N}}{B_{N}}-\frac{d B_{I}}{B_{I}}\right)
$$

In this case it generally happens that

$$
\frac{d B_{N}}{B_{N} d t}>\frac{d B_{I}}{B_{I} d t}
$$

2N 2432 have for example:

$$
\frac{\mathrm{dB}_{\mathrm{N}}}{\mathrm{~B}_{\mathrm{N}} \mathrm{dt}} \approx 3 \cdot \frac{\mathrm{~dB}_{\mathrm{I}}}{\mathrm{~B}_{\mathrm{I}} \cdot \mathrm{dt}}
$$

Unsymmetrical transistors are therefore not suitable to switch in this way.

If only B_{N} but not B_{I} changes, d_{U} will be:

$$
\mathrm{d}_{\mathrm{s}} \approx-\mathrm{U}_{\mathrm{EK}} \cdot \frac{\mathrm{~d} \mathrm{~B}_{\mathrm{N}}}{\mathrm{~B}_{\mathrm{N}}}
$$

This expression is also valid for the uncompensated switch.

The circuit in fig. 6.3 gives no elimination of the spikes. The capacity of the secondary winding causes a voltage across R_{L} as described above.

Two transistors in series ${ }^{2}$)

Fig. 6.4 shows some examples of how this switch can be realized. (All quantities will in the sequel be indexed 1 or 2 showing that they belong to transistor No. 1 or No. 2). If $\mathrm{B}_{\mathrm{N} 1} \approx \mathrm{~B}_{\mathrm{N} 2}$ and they change, a certain d_{s} will arise, which is:

$$
\begin{align*}
& d U_{s}=-U_{E K}\left(\frac{d B_{N 1}}{B_{N 1}}-\frac{d B_{N 2}}{B_{N 2}}\right) \\
& d U_{s}=0 \text { if } \frac{d B_{N 1}}{B_{N 1}}=\frac{d B_{N 2}}{B_{N 2}}
\end{align*}
$$

Circuit a is the one usually described. The bases are directly connected in circuit b. This gives $U_{K 1}=U_{K 2}$, but not necessarily $I_{B 1}=I_{B 2}$. As a rule $I_{01}=I_{02}$ and then the excess hole densities in the bases are equal. This gives the best chances of $B_{N 1}$ being equal to $B_{N 2}$, and hence the best matching. Circuit b can be realized very conveniently with a newly presented transistor which has two emitters. This is shown in circuit c. In circuit d there is no transformer, but the switch must be followed by a A.C. differential amplifier. The switch drives a current $\frac{U_{E K 1}}{R_{L 1}}$ through the source in the on state. This has in general no significance. The spikes are subtracted in the differential amplifier if $C_{T E 1}=C_{T E 2}$ and $R_{L 1}=R_{L 2}$.

If terminal No. 2 in circuits a, b or c is earthed, a certain charge current to C_{f} goes through $R_{I_{2}}$. Furthermore the spikes will not eliminate each other owing to the capacitances of the transformer.

Two transistors in parallel 10)

This switch can be realized in two ways as shown in fig. 6. 5. In this case the transistors in the on state drive a current through each other, so $U_{S}=0$. If one terminal of the switch in fig. 6.5.a is earthed, charge current to C_{f} will give a certain voltage across $R_{I_{~}}$ 。 The circuit with complementary transistors in fig. 6.5.b contains no transformer, which is a great advantage. In this circuit the spikes, too, are eliminated if $C_{T E 1}=C_{T E 2}$.

In appendix C it is shown that $\mathrm{U}_{\mathrm{S}}=0$ when:

$$
\frac{I_{B 2}}{I_{B 1}}=\frac{1+\frac{{ }_{B}{ }_{N 2}}{B_{I 2}}}{1+\frac{B_{N 1}}{B_{I 1}}}
$$

It is further shown that:

if $\quad B_{N 1}=B_{N 2}, \quad B_{I 1}=B_{I 2}$ and $\frac{I_{B 2}}{I_{B 1}}=1$.
$d U_{S}=0$ if $\frac{\mathrm{dB}_{\mathrm{N} 1}}{\mathrm{~B}_{\mathrm{N} 1}}=\frac{\mathrm{dB}_{\mathrm{N} 2}}{\mathrm{~B}_{\mathrm{N} 2}}$, which also was the case in the circuit in fig. 6.4, but $d U_{S}=0$ also if $\frac{d B_{N}}{B_{N}}=\frac{d B I}{B_{I}}$, which offen happens in symmetrical transistors. The factor $2\left(1+\frac{B_{I}}{B_{N}}\right) \approx 2$ for unsymmetrical transistors and ≈ 4 for symmetrical. Consequently this circuit ought to have, at the most, only half as great a drift as the circuit in fig. 6. 4. To test this the drift of 5 pairs of OC 44 (unsymmetrical alloy germanium) during 7 days was measured. The transistors in each pair were in the on state and connected in series or parallel depending on the position of a switch. (Between the measurements the transistors were always connected in series.) $d U_{s}=f($ time $)$ is presented in diagram 6. 1 , which shows that $d U_{s}$ for all pairs is smallest in parallel connection.

For chopper applications suitable complementary planar transistors are now available (for example 2 N 2466 and 2 N 2593). Perfect complementary transistors are in principle impossible to obtain. (Holes and electrons have different mobilities.) In this case, however, only B_{N}, B_{I} and $C_{T E}$ need to be similar. Unfortunately there does not yet seems to be any suitable complementary symmetrical silicon transistors on the market. However, symmetrical epitaxial transistors will probably be available in the future.

Switch transistor with emitter current from the base of another

transistor

In section 2 it was shown that the base - emitter electron current demands a hole current from the collector to the emitter of the same magnitude in order to get $I_{E}=0$. This caused $U_{E K} \neq 0$. Therefore if the current from the base of another transistor is supplied to the emitter it is possible to get $U_{s}=0$. This can be done as shown in fig. 6.6. a. If the transistors have the same I_{o} and $B_{N}, U_{S}=0$ if $U_{E 1}=U_{E 2}$, i.e. $U_{K 1}=U_{E 2}=E$. If $B_{N 1}$ and $B_{N 2}$ change, $d U_{S}$ will be:

$$
d U_{s}=-U_{E K}\left(\frac{d B_{N 1}}{B_{N 1}}-\frac{d B_{N 2}}{B_{N 2}}\right)
$$

The spikes will eliminate each other if $C_{T E 1}=C_{T E 2}$.

The voltages E demand a relatively complicated drive circuit. The circuit in fig. 6.6.b is a more simple solution, which is useful for unsymmetrical transistors. It is shown in appendix D that $d U_{S}$ in this case will be:

$$
d U_{S} \approx-U_{E K}\left(\frac{\mathrm{~dB}_{\mathrm{N} 1}}{\mathrm{~B}_{\mathrm{N} 1}}-\frac{\mathrm{dB}_{\mathrm{N} 2}}{\mathrm{~B}_{\mathrm{N} 2}}-\frac{\mathrm{dB}_{I 1}}{\mathrm{~B}_{\mathrm{I} 1}}\right)
$$

The change in $B_{I 1}$ consequently gives a certain increase of the drift. However, $\frac{\mathrm{dB}_{I 1}}{\mathrm{~B}_{\mathrm{I} 1}}$ is as a rule relatively small. The temperature change in $B_{I 1}$ can be cancelled out if $I_{E 2}$ increases a little with temperature. Such an increase can be achieved by making use of the decrease of $\mathrm{U}_{\mathrm{E} 2}$ with temperature. This is about $2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. $\mathrm{If}^{\mathrm{dB}} \frac{\mathrm{dB}_{\mathrm{I} 1}}{\mathrm{~B}_{\mathrm{I} 1}}=2 \cdot 10^{-3} /{ }^{\circ} \mathrm{C}$ (typical value for 2 N 2432 at $I_{K}=1 \mathrm{~mA}$) the drift will be cancelled out if $E_{2} \approx 1.8 \mathrm{~V}$ and $\mathrm{E}_{1} \gg \mathrm{U}_{\mathrm{K} 1^{\circ}}$

The switch in fig. 6.6.b is attractive because it includes no transformer, and does not require B_{N}-matched transistors. Only $\frac{d B_{N 1}}{B_{N 1}}=\frac{d B_{N 2}}{B_{N 2}}$ is desirable.

A chopper amplifier with this circuit as input chopper was constructed. The drift of this amplifier is < $2 \mu \mathrm{~V} /$ week at room temperature.

7. Thermoelectric effects in the switch

Thermoelectric voltages may appear in the switch. Temperature differences within the transistor are not so easily created. Therefore the thermoelectric voltages in the junctions cancel each other to a high degree. Temperature differences between the transistor leads arise far more easily, and therefore the thermoelectric power between the leads and copper is of great importance. The leads consist of a copper alloy which in some cases has a rather high thermoelectric power in relation to copper. Fig. 7.1 gives $\mathrm{U}_{\mathrm{L}}=0$ in the off state and $\mathrm{U}_{\mathrm{L}}=\mathrm{U}_{\mathrm{EK}}+\mathrm{e}_{1}-e_{2}$ in the on state, where e_{1} and e_{2} are the thermoelectric voltages in the soldered joints. A temperature difference between the emitter and collector leads is hence equivalent to a change in $U_{E K}$.

The thermoelectric power between copper and the leads was measured for some different transistors. The result is presented in table 7.1, which shows that transistors with metal case have leads with rather high thermoelectric power. Obviously it is very important to have a uniform temperature around the switch.

Table 7.1. Magnitude of thermoelectric power between copper and some different transistor leads

Transistor	OC 45	2N 1308	OC 202	2N 1613	2N 1676	2N 2432
Magnitude of thermoelectric power $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	4.4	18	3.1	14	14	15

8. Conclusions

A switch transistor for small signals ought to have the following properties:

1. High B_{N} (also at low I_{E})
2. B_{I} ought to be >1
3. Small r_{c}
4. Small I_{o}
5. Small CTE
6. In general f_{α} only needs to be $>$ a few Mc / s

Planar epitaxial silicon transistors with small emitter area meet these requirements best.

The static and dynamic characteristics of the transistor switch can well be calculated by the theory given in this paper.

Some compensated switches have lower drift than the uncompensated switch. The two-transistor-in-parallel connection (fig. 6.5) has the lowest drift.

9. References

1. BRIGHT RL

Junction Transistors Used as Switches
Trans. AIEE, C-E 17, p 111-21, March, 1955
2. KRUPER AP

Switching Transistors Used as Substitute for Mechanical Low-Level Choppers
Trans. AIEE, C-E 17, p 141-144, March, 1955
3. BRIGHT R L and KRUPER AP

Transistor Choppers for Stable DC Amplifier
Electronics, 28, p 135-7, April, 1955
4. CHAPLIN G B B and OWENS AR

Some Transistor Input Stages for High-Gain DC Amplifiers Proc. I. E.E., Vol 105B, p 249-57, July, 1957
5. EBERS J J and MOLL J L

Large-Signal Behaviour of Junction Transistors
Proc. IRE, Vol 42, p 1761-72, Dec., 1954
6. SAH C T, NOYCE R N and SCHOCKLY W

Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics
Proc. IRE, Vol 45, p 1228-43, Sept., 1957
7. SAF C T

Effect of Surface Recombination and Channel on P-N Junction and Transistor Characteristics
IRE Trans. PGED, Vol ED-9, p 94-108, Jan. 1962
8. WEBSTER W M

On the Variation of Junction Transistor Current Amplification Factor with Emitter Current
Proc. IRE, Vol 42, p 914-20, June, 1954
9. SCHIDT H

A Bridge-Balanced Transistor Chopper
Semiconductor Products, Vol 5, No. 1, p 23-28, Jan., 1962
10. BUSH G B

Transistors as Switches
CF-2353, APL/JHU, Silver Spring, March 11, 1955
11. ÖVERBY S

Felfrekvens och datastabilitet hos transistorer Elektronik, No. 2, p 56-60, 1962
12. HAMLIN W O

Fan-out
Fairchild Semiconductor, Bulletin No. 111, Aug., 1962.

Appendix A

The offset voltage at variable doping in the base

At variable doping in the base P_{o} will be a function of position. The one-dimensional case, i. e. $P_{0}=P_{o}(x)(x$ is defined in fig. 2.3), will be treated here. The hole density in the base at the emitter junction $P_{B E}$ is:

$$
\begin{equation*}
P_{B E}=P_{o E} e^{\Omega U_{E}} \tag{1}
\end{equation*}
$$

where $P_{o E}$ is the equilibrium hole density in the base at the emitter junction.

The hole density in the base at the collector junction $P_{B K}$ is:

$$
\begin{equation*}
P_{B K}=P_{o K} e^{\Omega U_{K}} \tag{2}
\end{equation*}
$$

where $P_{o K}$ is the equilibrium hole density in the base at the collector junction.

The electrostatic potential ψ in the base will vary with x, and $P_{0}(x)$ can be written:

$$
\begin{equation*}
P_{o}(x)=n_{i} \cdot e^{\Omega[\varphi-\psi(x)]} \tag{3}
\end{equation*}
$$

where the Fermi level φ is independent of x . When excess holes appear, the hole density $P(x)$ can be written:

$$
\begin{equation*}
P(x)=n_{i} \cdot e^{\Omega\left[\varphi_{p}-\psi(x)\right]} \tag{4}
\end{equation*}
$$

where φ_{p} is the quasi-Fermi level for the holes.

An electrostatic field E is created in the base. The hole current density J_{p} is:

$$
\begin{equation*}
J_{p}=q \cdot \mu_{p} \cdot P \cdot E-q \cdot D_{p} \cdot \frac{d P}{d x} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu_{p}=\text { the mobility of the holes } \\
& D_{p}=\text { the diffusion constant for holes }
\end{aligned}
$$

It is convenient to assume $J_{p}=0$ and then examine which value $U_{E K}$ acquires.

Eq. (5) gives:

$$
\begin{equation*}
\mu_{p} \cdot P \cdot E-D_{p} \cdot \frac{d P}{d x}=0 \tag{6}
\end{equation*}
$$

Further:

$$
\begin{align*}
& E=-\frac{d \psi}{d x} \tag{7}\\
& D_{p}=\frac{\mu_{p}}{\Omega} \tag{8}
\end{align*}
$$

Eq. (6), (7) and (8) give:

$$
\begin{aligned}
& -\mu_{p} \cdot P \cdot \frac{d \psi}{d x}-\frac{\mu_{p}}{\Omega} \cdot P \cdot \Omega \cdot \frac{d}{d x}\left(\varphi_{p}-\psi\right)=0 \\
& \frac{d \varphi_{p}}{d x}=0
\end{aligned}
$$

$$
\because \varphi_{p}=\text { constant }
$$

Eq. (3), (4) and (9) give:

$$
\frac{P(x)}{P_{o}(x)}=n_{i} \quad e^{\Omega\left(\varphi_{p}-\varphi\right)}=\text { constant }
$$

Hence the relative increase in P is the same everywhere in the base. From (1) and (2) it follows that $U_{E}=U_{K}$, i.e. $U_{E K}=0$.

Therefore when I_{p} is small, $U_{E K}$ will also be small, and consequently the base - emitter electron current should be small in order to get a small $U_{E K}$.

Appendix B

Derivation of $R_{E B}$
It is assumed that the following expression holds for the collector current:

$$
\mathrm{E}=\mathrm{U}_{\mathrm{K}}+\mathrm{I}_{\mathrm{K}} \cdot \mathrm{R}_{\mathrm{B}}
$$

Further, (3.14) and (3.15) can be written approximately:

$$
\begin{align*}
& \frac{I_{E}}{I_{0}}=-\frac{1}{A_{N}} \cdot e^{\Omega U_{E}}+e^{\Omega U_{K}} \tag{2}\\
& \frac{I_{K}}{I_{0}}=e^{\Omega U_{E}}-\frac{1}{A_{I}} e^{\Omega U_{K}} \tag{3}
\end{align*}
$$

Differentiation of (2) and (3) gives:

$$
\begin{equation*}
\frac{d I_{E}}{I_{o}}=-\frac{1}{A_{N}} \Omega \cdot e^{\Omega U_{E}} d U_{E}+\Omega e^{\Omega U_{K}} d U_{K} \tag{4}
\end{equation*}
$$

$$
\frac{\mathrm{dI}_{\mathrm{K}}}{\mathrm{I}_{\mathrm{o}}}=\Omega \cdot \mathrm{e}^{\Omega \mathrm{U}_{\mathrm{E}}} \mathrm{dU}_{\mathrm{E}}-\frac{1}{A_{\mathrm{I}}} \Omega \cdot \mathrm{e}^{\Omega \mathrm{U}_{\mathrm{K}}} \cdot \mathrm{dU}_{\mathrm{K}}
$$

Eq. (4) and (5) give:

$$
\begin{equation*}
\frac{d I_{E}}{I_{0}}+A_{I} \frac{d I_{K}}{I_{0}}=\Omega e^{\Omega U_{E}}\left(A_{I}-\frac{1}{A_{N}}\right) d U_{E} \tag{6}
\end{equation*}
$$

Assuming $I_{E}=0$, (2) gives:

$$
\begin{equation*}
\frac{1}{A_{N}} e^{\Omega U_{E}}=e^{\Omega U_{K}} \tag{7}
\end{equation*}
$$

Eq. (3) and (7) give:

$$
\begin{equation*}
\frac{I_{K}}{I_{o}}=\frac{1}{A_{I}} \cdot e^{\Omega U_{E}}\left(A_{I}-\frac{1}{A_{N}}\right) \tag{8}
\end{equation*}
$$

Eq. (6) and (8) give:

$$
\begin{equation*}
\mathrm{dI}_{E}+\mathrm{A}_{\mathrm{I}} \mathrm{dI} \mathrm{I}_{\mathrm{K}}=\Omega \mathrm{A}_{\mathrm{I}} \mathrm{I}_{\mathrm{K}} \mathrm{dU}_{\mathrm{E}} \tag{9}
\end{equation*}
$$

Differentiation of (1) gives:

$$
\begin{equation*}
0=\mathrm{d} \mathrm{U}_{\mathrm{K}}+\mathrm{R}_{\mathrm{B}} \cdot \mathrm{dI}_{\mathrm{K}} \tag{10}
\end{equation*}
$$

Eq. (4), (5), (7) and (8) also give:

$$
\mathrm{A}_{\mathrm{N}} \mathrm{dI}_{\mathrm{E}}+\mathrm{dI}_{\mathrm{K}}=\Omega \mathrm{I}_{\mathrm{K}} \cdot \mathrm{dU}_{\mathrm{K}}
$$

Eq. (10) and (11) give:

$$
\begin{equation*}
0=A_{N} d I_{E}+d I_{K}+R_{B} \Omega I_{K} d I_{K} \tag{12}
\end{equation*}
$$

Eq. (9) and (12) give:

$$
\begin{equation*}
1-\frac{A_{N} A_{I}}{1+R_{B}{ }^{\Omega} I_{K}}=\Omega A_{I} I_{K} \frac{d U_{E}}{d I_{E}} \tag{13}
\end{equation*}
$$

When $\frac{1}{\Omega \mathrm{I}_{\mathrm{K}}} \ll \mathrm{R}_{\mathrm{B}^{\prime}}$ (13) gives:

$$
\begin{equation*}
\frac{d U_{E}}{\mathrm{dI}_{E}}=R_{E B}=\frac{1}{\Omega A_{I} I_{K}} \tag{14}
\end{equation*}
$$

When $\frac{1}{\Omega I_{K}} \gg R_{B}$, (13) gives:

$$
\begin{equation*}
\frac{d U_{E}}{d I_{E}}=R_{E B}=\frac{1}{\Omega I_{K}}\left(\frac{1}{A_{I}}-A_{N}\right) \tag{15}
\end{equation*}
$$

Appendix C

Derivation of dU for the switch in fig. 6.5
From (4.1) we have for transistor No. 1: $\left(\mathrm{U}_{\mathrm{S}} \ll \frac{1}{\Omega}\right)$:

$$
\Omega U_{s}=\frac{1-\frac{1}{B_{I 1}} \cdot \frac{I_{E 1}}{I_{B 1}}}{\frac{1}{{ }^{A_{N 1}}}+\frac{1}{{ }^{B_{N 1}}} \cdot \frac{I_{E 1}}{I_{B 1}}}-1
$$

And for transistor No. 2 :

$$
\begin{equation*}
-\Omega \mathrm{U}_{\mathrm{s}}=\frac{1-\frac{1}{\mathrm{~B}_{\mathrm{I} 2}} \cdot \frac{\mathrm{I}_{\mathrm{E} 2}}{\mathrm{I}_{\mathrm{B} 2}}}{\frac{1}{\mathrm{~A}_{\mathrm{N} 2}}+\frac{1}{\mathrm{~B}_{\mathrm{N} 2}} \cdot \frac{\mathrm{I}_{\mathrm{E} 2}}{\mathrm{I}_{\mathrm{B} 2}}}-1 \tag{2}
\end{equation*}
$$

Fig. 6. 5 shows that:

$$
\begin{equation*}
I_{E 1}=I_{E 2} \tag{3}
\end{equation*}
$$

$I_{B 1}$ and $I_{B 2}$ are presumed to be constant.

Combining (1) and (2) gives:

$$
\frac{I_{B 2}}{I_{B 1}}=\frac{\left(\frac{\Omega U_{s}}{A_{N 1}}+\frac{1}{B_{N 1}}\right)\left(\frac{1}{B_{N 2}}+\frac{1}{B_{I 2}}-\frac{\Omega U_{s}}{B_{N 2}}\right)}{\left(\frac{\Omega U_{s}}{A_{N 2}}+\frac{1}{B_{N 2}}\right)\left(\frac{1}{B_{N 1}}+\frac{1}{B_{I 1}}+\frac{\Omega U_{s}}{B_{N}}\right)}
$$

Neglecting terms with $\mathrm{U}_{\mathrm{s}}^{2}$ (4) gives:
$\frac{I_{B 2}}{I_{B 1}}=\frac{\Omega U_{s}\left(\frac{1}{A_{N 1} B_{N 2}}+\frac{1}{A_{N 1} B_{I 2}}-\frac{1}{B_{N 1} B_{N 2}}\right)+\frac{1}{B_{N 1} B_{N 2}}-\frac{1}{B_{N 1} B_{I 2}}}{-\frac{1}{U_{N}}\left(\frac{1}{A_{N 2}{ }^{B_{N 1}}}+\frac{1}{A_{N 2} B_{I 1}}-\frac{1}{B_{N 1} B_{N 2}}\right)+\frac{1}{B_{N 1} B_{N 2}}-\frac{1}{B_{N 2}{ }^{B}{ }_{I 1}}}$

When $U_{S}=0$ we have:

$$
\begin{equation*}
\frac{I_{B 2}}{\mathrm{I}_{\mathrm{B} 1}}=\frac{1+\frac{\mathrm{B}_{\mathrm{N} 2}}{\mathrm{~B}_{\mathrm{I} 2}}}{1+\frac{\mathrm{B}_{\mathrm{N} 1}}{\mathrm{~B}_{\mathrm{I} 1}}} \tag{6}
\end{equation*}
$$

For the sake of simplicity it is here assumed that $\frac{I_{B 2}}{I_{B 1}}=1$. Differentiation of (5) gives, if $U_{s}=0$:

$$
d \Omega U_{s}=-\frac{\frac{1}{B_{N 1}} d \frac{1}{B_{I 2}}+\frac{1}{B_{I 2}} d \frac{1}{B_{N 1}}-\frac{1}{B_{N 2}} \cdot d \frac{1}{B_{I 1}}-\frac{1}{B_{I 1}} d \frac{1}{B_{N 2}}}{\frac{1}{B_{N 2}{ }^{B_{N 1}}}\left(1+\frac{B_{N 1}}{B_{I 1}}\right)+\frac{1}{B_{N 2}{ }^{B_{N 1}}}\left(1+\frac{N 2}{B_{I 2}}\right)-\frac{2}{B_{N 1}{ }^{B_{N 2}}}}
$$

Eq. (6) and (7) give the approximate expression:

$$
\mathrm{d} \Omega \mathrm{U}_{\mathrm{s}}=\frac{\frac{1}{\mathrm{~B}_{\mathrm{N} 1} \mathrm{~B}_{\mathrm{I} 2}}\left(\frac{\mathrm{~dB}_{I 2}}{\mathrm{~B}_{\mathrm{I} 2}}+\frac{\mathrm{dB}_{\mathrm{N} 1}}{\mathrm{~B}_{\mathrm{N} 1}}\right)-\frac{1}{\mathrm{~B}_{\mathrm{N} 2} \mathrm{~B}_{\mathrm{I} 1}}\left(\frac{\mathrm{~dB}_{\mathrm{I} 1}}{\mathrm{~B}_{\mathrm{I} 1}}+\frac{\mathrm{dB}_{\mathrm{N} 2}}{\mathrm{~B}_{\mathrm{N} 2}}\right)}{\left(1+\frac{\mathrm{B} 1}{\mathrm{~B}_{\mathrm{I} 1}}\right)\left(\frac{1}{\mathrm{~B}_{\mathrm{N} 1}}+\frac{1}{\mathrm{~B}_{\mathrm{N} 2}}\right)}
$$

$$
\text { Assuming } \mathrm{B}_{\mathrm{N} 1}=\mathrm{B}_{\mathrm{N}}, \mathrm{~B}_{\mathrm{I} 1}=\mathrm{B}_{\mathrm{I} 2}=\mathrm{B}_{\mathrm{I}} \text { we have: }
$$

$$
\mathrm{dU}_{s}=-\frac{\mathrm{U}_{\mathrm{EK}}}{2\left(1+\frac{\mathrm{B}_{\mathrm{I}}}{\mathrm{~B}_{\mathrm{N}}}\right)}\left(\frac{\mathrm{dB}_{\mathrm{N} 1}}{\mathrm{~B}_{\mathrm{N} 1}}-\frac{\mathrm{dB}_{\mathrm{I} 1}}{\mathrm{~B}_{\mathrm{I} 1}}+\frac{\mathrm{dB}_{\mathrm{I} 2}}{\mathrm{~B}_{\mathrm{I} 2}}-\frac{\mathrm{dB}_{\mathrm{N} 2}}{\mathrm{~B}_{\mathrm{N} 2}}\right)
$$

Appendix D

Derivation of dU for the switch in fig. 6.6.b
Eq. (4.1) gives for transistor No. $1\left(\mathrm{U}_{\mathrm{s}} \ll \frac{1}{\Omega}\right)$:

$$
\Omega U_{s}=\frac{1-\frac{1}{B_{I 1}} \cdot \frac{I_{E 1}}{I_{B 1}}}{\frac{1}{A_{N 1}}+\frac{1}{B_{N 1}} \cdot \frac{I_{E 1}}{I_{B 1}}}-1
$$

From fig. 6.6.b we have:

$$
I_{\mathrm{E} 1}=-I_{\mathrm{B} 2}=\left(1-A_{\mathrm{N} 2}\right) I_{\mathrm{E} 2}
$$

Combining (1) and (2):

$$
\begin{equation*}
\Omega U_{s}=\frac{1-\frac{1}{B_{I 1}} \cdot \frac{a}{1+B_{N 2}}}{\frac{1}{A_{N 1}}+\frac{1}{B_{N 1}} \cdot \frac{a}{1+B_{N 2}}}-1 \tag{3}
\end{equation*}
$$

where $a=\frac{I_{E 2}}{I_{B 1}}$ is presumed to be constant.

When $\mathrm{U}_{\mathrm{s}}=0$ we have:

$$
\frac{\mathrm{I}_{\mathrm{E} 2}}{\mathrm{I}_{\mathrm{B} 1}}=-\frac{1+\mathrm{B}_{\mathrm{N} 2}}{1+\frac{\mathrm{B}_{\mathrm{N} 1}}{\mathrm{~B}_{\mathrm{I} 1}}}
$$

Differentiating (3) and assuming $\mathrm{U}_{\mathrm{s}}=0$ gives:

$$
d \Omega U_{S}=\frac{-\left(1+\frac{B_{I 1}}{B_{N 1}}\right) \frac{d B_{N 2}}{1+B_{N 2}}+\frac{d B_{N 1}}{B_{N 1}}-\frac{d B_{I 1}}{B_{I 1}}}{B_{N 1}+B_{I 1}+1}
$$

For unsymmetrical transistors (5) can be written approximately:

$$
\begin{equation*}
d U_{s} \approx-U_{E K}\left[\frac{\mathrm{~dB}_{\mathrm{N} 1}}{\mathrm{~B}_{\mathrm{N} 1}}-\frac{d B_{\mathrm{N} 2}}{\mathrm{~B}_{\mathrm{N} 2}}-\frac{\mathrm{dB}_{\mathrm{I} 1}}{\mathrm{~B}_{\mathrm{I} 1}}\right] \tag{6}
\end{equation*}
$$

$A L / E L$

Fig. 2.2. The equivalent circuit of the low level switch.

Fig. 2.3. The excess hole density distribution in the base with open emitter after a positive voltage U_{K} has been impressed between the collector and the base.

Fig. 2.4. The double diode equivalent circuit. This is derived by superposing two excess hole density distributions shown by curves b and c.

Fig. 4.1. The switch in the off state with large reverse voltage.

Fig. 4.2. The switch in the off state with small reverse voltage.

Fig. 5. 1. Spikes appear over the switch at switching on and off.

Fig. 5.2. $\mathrm{R}_{\mathrm{EB}}=\mathrm{f}\left(\mathrm{I}_{\mathrm{K}}\right)$

Fig. 5.3. Gircuit for the measurement of $U_{S P O F F}$

Fig. 6. T. a. Drive circuit with a transformer.
b. There is a distributed capacity C_{F} between the screen and the secondary winding.
c. $C_{F=}$ replaced by an equivalent capacitance C_{e}.

Fig. 6.2. Waveformes in the drive circuit fig. 6.1.a.

6.3. One-transistor switches with switching-on current to both junctions.

d.

Fig. 6.4. Two transistors in series switches.

b.

Fig. 6. 5. Two transistors in parallel switches.

Fig. 6.6. Switch transistor with emitter current from the base of an" other transistor.

Fig. 7.1. Thermoelectric voltages in the switch.

DIAGRAM 5.1.
Switching spikes.
$2 \mathrm{~N} 1613 . \mathrm{I}_{\mathrm{B}}=0,15 \mathrm{~A} . \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF}$.

u mV

DIAGRAM 6.1.

The drift of 5 pairs of OC44 during 7 days.
-- -- - connected in series

LIST OF PUBLISHED AE-REPORTS

1-40. (See the back cover earlier reports.)

41. Calculation of the flux in a square lattice cell and a comparison with measurements. By G. Apelqvist. 1961. Sw. cr. 6:--
42. Heterogeneous calculation of e. By A. Jonsson. 1961. Sw. cr. 6:-.
43. Comparison between calculated and measured crossectionchanges in natural uranium irradiated in NRX. By P. E. Ahlström. 1961. Sw. cr. 6:--
44. Hand monitor for simultaneous measurement of alpha and beta contamination. By 1. O. Andersson, J. Braun and B. Söderlund. 2nd rev. ed. 1961. 11 p. Sw. cr. 6:-.
45. Measurement of radioactivity in the human body, By I. O. Andersson and I. Nilsson. 1961. 16 p. Sw. cr. 6:-
46. The magnetisation of MnB and its variation with temperature. By N . Lundquist and H. P. Myers. 1960. 19 p. Sw. cr. 6:-
47. An experimental study of the scattering of slow neutrons from $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$. By K. E. Larsson, S. Holmryd and K. Otnes. 1960.29 p. Sw. cr. 6:-
48. The resonance integral of thorium metal rods. By E. Hellstrand and J. Weitman. 1961. $32 \mathrm{p} . \mathrm{Sw}$. cr. 6:-
49. Pressure tube and pressure vessels reactors; certain comparisons. By P. H. Margen, P. E. Ahlsfröm and B. Pershagen. 1961. 42 p. Sw. cr. 6:-.
50. Phase transformations in a uranium-zirconium alloy containing 2 weight per cent zirconium. By G. Lagerberg. 1961. 39 p. Sw. cr. 6:-.
51. Activation analysis of aluminium. By D. Brune. 1961.8 p. Sw. cr. 6:-
52. Thermo-fechnical data for $D_{2} O$. By E. Axblom. 1961. 14 p. Sw .cr. 6:--
53. Neutron damage in steels containing small amounts of boron. By H. P. Myers. 1961. 23 p. Sw. cr. 6:-.
54. A chemical eight group separation method for routine use in gamma spectrometric analysis. I. Ion exchange experiments. By K. Samsahl. spectrometric analysis.
$1961.13 \mathrm{p} . \mathrm{Sw} . \mathrm{cr} .6:-$
55. The Swedish zero power reactor RO. By Olof Landergárd, Kai Cavallin and Georg Jonsson. 1961.31 p. Sw. cr. 6:-.
56. A chemical eight group separation method for routine use in gamma specirometric analysis. II. Detailed analytical schema. By K. Samsahl. 18 p. 1961. Sw. cr. 6:-
57. Heterogeneous two-group diffusion theory for a finite cylindrical reactor. By Alf Jonsson and Göran Näslund. 1961. 20 p. Sw. cr. 6:-.
58. Q-values for (n, p) and (n, α) reactions. By J. Konijn. 1961. 29 p. Sw. cr. 6:-
59. Studies of the effective fotal and resonance absorption cross section for zircaloy 2 and zirconium. By E. Hellstrand, G. Lindahl and G. Lundgren. 1961.26 p. Sw. cr. 6:-.
60. Defermination of elements in normal and leukemic human whole blood by neutron activation analysis. By D. Brune, B. Frykberg, K. Samsahl and P. O. Wester. 1961, 16 p. Sw. cr. 6:-.
61. Comparative and absoluie measurements of 11 inorgonic constituents of 38 humon tooth samples with gamma-ray spectrometry. By K. Samsahl and R. Söremark. 19 p. 1961 . Sw. cr. 6:--
62. A Monte Cario sampling technique for multi-phonon pracesses. By Thure Högberg. 10 p. 1961 . Sw. cr. 6:-
63. Numerical infegration of the transport equation for infinite homogeneous media. By Rune Hákansson. 1962. 15 p. Sw. cr. 6:-
64. Modified Sucksmith balances for ferromagnetic and paramagnetic measurements. By N. Lundquist and H. P. Myers. 1962.9 p. Sw. cr. 6:-.
65. Irradiation effects in strain aged pressure vessel steel. By M. Grounes and H. P. Myers. 1962. 8 p. Sw. cr. 6:-.
66. Critical and exponential experiments on 19-rod clusters (R33-fuel) in heavy water. By R. Perssan, C-E. Wikdahl and Z. Zadwórski. 1962. 34 p. Sw. cr. 6:-.
67. On the calibration and accuracy of the Guinier camera for the determination of interplanar spacings. By M. Müller. 1962. 21 p. Sw. cr. 6:-
68. Quantitative determination of pole figures with a texture goniometer by the reflection method. By M. Möller. 1962. 16 p. Sw, cr. 6:--
69. An experimental study of pressure gradients for flow of boiling water in a vertical round duct, Part I. By K. M. Becker, G. Hernborg and M. Bode. 1962. 46 p. Sw. cr. 6:-
70. An experimental study of pressure gradients for flow of boiling water in a vertical round duct, Part 11. By K.M. Becker, G. Hernborg and M. Bode. a vertical round duct, Pa
1962.32 p. Sw. cr. 6:-.
71. The space-, time- ond energy-distribution of neutrons from a pulsed plane source. By A. Claesson. 1962. 16 p. Sw. cr. 6:-
72. One-group perturbation theory applied to substitution measurements with void. By R. Persson. 1962. 21 p. Sw. cr. 6:-.
73. Conversion factors. By A. Ambernison and S-E. Larsson. 1962. 15 p. Sw. cr. 10:-.
74. Burnout conditions for flow of boiling water in vertical rad clusters. By Kurt M. Becker. 1962. 44 p. Sw. cr. 6:-.
75. Two-group current-equivalent parameters far control rod cells. Autocode programme CRCC. By O. Norinder and K. Nyman. 1962. 18 p. Sw. cr. 6:-
76. On the electronic structure of MnB . By N . Lundquist. 1962. 16 p . Sw. cr 6:-
77. The resonance absorption of uranium metal and oxide. By E. Hellstrand and G. Lundgren. 1962. 17 p. Sw. cr. 6:-
 Konijn and S. Malmskog. 1962. 34 'p. Sw. cr. 6:--
78. Progress report for period ending December 1961. Department for Reactor Physics. 1962. 53 p. Sw. cr. 6:-
79. Investigation of the 800 keV peak in the gamma spectrum of Swedish Laplanders. By 1. O. Andersson, I. Nilsson and K. Eckerstig. 1962. 8 D .
80. The resonance integral of niobium. By E. Hellstrand and G. Lundgren. 1962. 14 p. Sw. cr. 6:-.
81. Some chemical group separations of radioactive trace elements. By K . Samsahl. 1962. 18 p. Sw. cr. 6:-.
82. Void measurement by the (γ, n) reaclions. By S. Z. Rouhani. 1962. 17. p. Sw. er. 6:-
83. Investigation of the pulse height distribution of boron trifluoride proportional counters. By I. O. Andersson and S. Malmskog. 1962. 16 p. Sw. cr. 6:-
84. An experimental study of pressure gradients for flow of boiling water in vertical round ducts. (Part 3). By K. M. Becker, G. Hernborg and M. Bode. 1962. 29 p. Sw. cr. 6:-.
85. An experimental study of pressure gradients for flow of boiling water in vertical round ducts. (Part 4). By K. M. Becker, G. Hernborg and M. Bode. 1962.19 p. Sw. cr. 6:--
86. Measurements of burnout conditions for flow of boiling water in vertical round ducts. By K. M. Becker. 1962. 38 p. Sw. cr. 6:--
87. Cross sections for neutron inelastic scattering and ($n, 2 n$) processes. By M. Leimdörfer, E. Bock and L. Arkeryd. 1962. 225 p. Sw. cr. 10:-.
88. On the solution of the neutron transport equation. By S. Depken. 1962. 43 p. Sw. cr. 6:-
89. Swedish studies on irradiation effects in structural materials. By M. Grounes and H. P. Myers. 1962. 11 p. Sw. cr. 6:-
90. The energy variation of the sensitivity of a polyethylene moderated BF_{3} proportional counter. By R. Fräki, M. Leimdörfer and S. Malmskog. 1962. 12 p. Sw. cr. 6:-
91. The backscattering of gamma radiation from plane concrete walls. By M. Leimdörfer. 1962. 20 p . Sw. cr. 6:-.
92. The backscattering of gamma radiotion from spherical concrete walls. By M. Leimdörfer. 1962. 16 p. Sw. cr. 6:-
93. Multiple scattering of gamma radiation in a spherical concrete wall room. By M. Leimdörfer. 1962. 18 p. Sw. cr. 6:-.
94. The paramagnetism of Mn dissolved in α and β brasses. By H. P. Myers and R. Westin. 1962. 13 p. Sw. cr. 6:-
95. Isomorphic substitutions of calcium by stronfium in calcium hydroxyapatite. By H. Christensen. 1962. 9 p. Sw. cr. 6:-.
96. A fast time-to-pulse height converter. By O. Aspelund. 1962. 21 p. Sw. cr 6:-
97. Neutron streaming in $\mathrm{D}_{2} \mathrm{O}$ pipes. By J. Braun and K. Randén. 1962 41 p. Sw. cr. 6:-.
98. The effective resonance integral of thorium oxide rads. By J. Weitman. 1962. 41 p. Sw. cr. 6:-.
99. Measurements of burnout conditions for flaw of boilira water in verlical annuli. By K. M. Becker and G. Hernborg. 1962. 47 p. Sw. cr. 6 :-.
100. Solid angle computations for a circular radiator and a circular detector. By J. Kionijn and B. Tollander. 1963. 6 p. Sw. Cr. 8:-
101. A selective neutron detector in the keV region utilizing the ${ }^{19} \mathrm{~F}(\mathrm{n}, \gamma)^{20 \mathrm{~F}}$ reaction. By J. Konijn. 1963. 21 p. Sw. cr. 8:-
102. Anion-exchange studies of radioactive troce elements in sulphuric acid solutions. By K. Samsahl. 1963. 12 p. Sw. cr. 8:-.
103. Problems in pressure vessel design and manufacture. By O. Hellström and R. Nilson. 1963. 44 p. Sw. cr. 8:-
104. Flame photometric determination of lithium contents down to $10-3 \mathrm{ppm}$ in water samples. By G. Jönsson. 1963.9 p. Sw. cr. 8:-
105. Measurements of void fractions for flow of boiling heavy water in a yertical round duci. By S. Z. Rouhani and K. M. Becker. 196332 p. Sw . cr. 8:-.
106. Measurements of canvective heat transfer from a horizontal cylinder rotating in a pool of water. K. M. Becker, 1963. 20 p. Sw. cr. 8:-
107. Two-group analysis of xenon stability in slab geometry by modal expansion. O. Norinder. 1963.50 p. Sw. cr. 8:-.
108. The properties of $\mathrm{CaSO}_{4}: \mathrm{Mn}$ thermoluminescence dosimeters. B. Bjärngard. 1963. 27 p. Sw. cr. 8:-.
109. Semianalytical and seminumerical calculatians of optimum materia distributions. By C. I. G. Andersson. 196326 p. Sw. cr. 8:-
110. The paramagnetism of small amounts of $M n$ dissolved in Cu -Al and Cu-Ge alloys. By H. P. Myers and R. Westin. 1963.7 p. Sw. cr. 8:-.
111. Determination of the absolute disintegration rate of $\mathrm{Cs}^{1 / 7}$-sources by the fracer method. S. Hellsträm and D. Brune. 1963. 17 p. Sw. cr. 8:-
112. An analysis of burnout conditions for flow of bailing water in yertica round ducis. By K. M. Becker and P. Persson. 1963. 28 p. Sw. cr. 8:-.
113. Measurements of burnaut conditions for flow of boiling water in vertica round ducts (Part 2). By K. M. Becker, et al. 1963.29 p. Sw. cr. $8:$ -
114. Cross section measurements of the ${ }^{59} \mathrm{Ni}(n, p)^{88} \mathrm{Co}$ and ${ }^{29} \mathrm{Si}(\mathrm{n}, \alpha)^{26} \mathrm{Mg}$ reactions in the energy range 2.2 to 3.8 MeV . By J. Konijn and A. Lauber 1963. 30 p. Sw. cr. 8:-
115. Calculations of total and differential solid angles for a proton recoil solid state detecor. By J. Koniin, A. Lauber and B. Tollander. 1963. 31 p. Sw, cr. 8:-
116. Neutron cross sectians for aluminium. By L. Forsberg. 1963. 32 p. Sw. cr. 8:-.
117. Measurements of small exposures of gamma radiation with $\mathrm{CaSO}_{4}: \mathrm{Mn}$ radiothermoluminescence. By B. Bjärngard. 1963. 18 p. Sw. cr. 8:-.
118. Measurement of gamma radioactivity in a group of control subjects from the Stockhoim area during 1959-1963. By 10 Andersson, I Nilsson and Eckerstig. 1963. 19 p. Sw. cr. 8:-
119. The thermox process. By O. Tịalldin. 1963. Sw. cr. 8:-.
120. The transistor as low level switch. By A. Lydén. 1963. Sw. cr. 8:-

Förteckning över publicerade AES-rapporter

1. Analys medelst gamma-spektrometri. Av D. Brune. 1961. 10 s. Kr 6:-.
2. Besträlningsförändringar och neutronatmosfär i reaktortrycktankar nágra synpunkter. Av M. Grounes. 1962. 33 s . Kr 6:-
3. Studium ay sträckgränsen i mjukt stål. G. Óstberg, R. Attermo. 1963.

Additional copies ovailable at the library of AB Atomenergi, Studsvik, Nykōping, Sweden. Transport microcards of the reports are obtainable thraugh the International Documentation Center, Tumba, Sweden.

