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Calculation of the geometric buckling for reactors of various shapes

Introduction

According to the one group neutron diffusion theoryi) the geometric
buckling, B;, for a reactor is defined as the lowest eigenvalue of the equa-
tion

vig+B%@ =0
with the boundary condition that the neutron flux, @, is zero on the effective
boundaries of the reactor. (In the following the above equation is referred
to as the ''reactor equation',) The geometric buckling is easily calculated
for reactors of certain simple shapes, for instance parallelepipeds, spheres

and circular cylinders. In the general case, however, only approximate

solutions can be obtained,

On the other hand there is also a possibility to measure geometric
bucklings in a model experiment using the pulsed neutron source techniquez)
as the rate of decay of the neutron density in a small geometry in part is
determined by the geometric buckling, This possibility has up to now not
been used much, but it should be a valuable complement when calculations

are difficult,

With exception of a short review in the Reactor Ha.ndbook3) no syste-
matic study has been made of the different reactor shapes which can be
treated theoretically in a simple way, Therefore in this paper such.an in-

vestigation is accomplished,

Separation possibilities

A necessary condition for obtaining an analytic solution to the reactor
equation is that the equation is separable in the coordinate system to be
used, and this system is in general determined by the boundary conditions,
According to Eisenhart4) there are eleven orthogonal coordinate systems in
which the three-dimensional Schrddinger equation is separable, and in these
the reactor equation can therefore also be separated, These eleven systems
will be studied in detail here, and for completeness even the most wellknown

cases are included.



1, Cartesian coordinates

Coordinate surfaces! Planes,

The reactor equation:

2

2 2 2

a¢+a¢+a¢+B2¢=0

952 2
X oy 9z

We put
B(x,y,2) = X(x)Y(y)Z(z)

and obtain the equations

2
9-—-2}5+ %X = 0
dx

2
41+ =0
dy

2

—T+ YZZ =0
dz

where o, B, and Y are separation constants and

2 2

o + BZ+ YZ = B
Solutions:

X = A1 cos ax t A2 sin ax
a,s.o,

Special case: Parallelepiped with the sides a, b, and c.

Fundamental solution:

@ = Acosz—’icosﬂcosﬁ
a b c

2 2 1 1 1
B = r°( =+ -+
g <a2 b2 ?)



2, Spherical coordinates

Coordinates: X = r sin ¥ cOS @ 0Sr <o
=rsinJ'sinq) 0 <Y<
z = rcos W 0So S27
Coordinate surfaces: x2+y2+ 2% = 1% (spheres)
x2+y2 - tgzﬁ' {cones)
y = xtgo (planes)

The reactor equation:

12 (228, (920,
r- Or Jr r sin'&" 819' 5> r  sin

2
0°g 2
+B°¢ = 0
21} aq)z

We put
¢(r;\}‘)¢) = R(r)T(M)F(9)

and obtain the equations

7 (P ) (7R )R

14 mm}-l-) (ﬂ(ﬂu)- :$>T=0

sind” d\} sin“w

where £ and m are separation constants (£ is not necessarily an integer).

Solutions:

A1 A

R -\-/—;" J£+1/2 (Br)+—-‘[_-? J—ﬂ-—‘l/z (BI‘)

T = C,P

1 I; (cos B) + CZQZD (cos 8)

F

1]

Dicosm(p+Dzsinmcp

Special cases:

Sghere with radius a, Fundamental solution:

- -

_ A Mr
¢ = —Sln—;
2 _ w?
B = -—2-
g a



Fundamental solution

Ayr
G =% 3y (P (c0s0) B

where }sﬂ is the first zero of ‘I£+1/Z'

2?’ =8y, (cos 0, is the first zero of Pﬁ)' Fundamental solution:

A
¢’=¢;I:J-z-i/z(Ba)Jz+1/2(Br)'Jz+1/2(3a)J-£-1/2(3r)] Py (cos V')
2 _ .2
B, = B

where 3 is determined by

T p-172(B2)Tpuq/2(B0) = Tpuy/p(B)T 4 4/, (BE)
Part of a spherical sector limited by r = a, V= an (cos e?’ is the
first zero of Pzn) and @ = p TE—)— Fundamental solution!

A

A A ;

@ = 7_1:J£+1/2 (—a-—) PEn (cos 2) cos m
2 7\£Z

B = ——-

g L2

where ?\ﬁ is the first zero of J£+1/2'

In this way solutions for even more complicated shapes can be
obtained,



3. Circular cylinder coordinates

Coordinates:! X =T CcOos P 0Sr<w
y=rsing 0 <9 27
zZ = Z

Coordinate surfaces: x> + YZ = 2 (cylinders)
y=xtgo (planes)
z (planes)

The reactor equation:
2 2 2
9 +_1_§_g+_12_%8 +——ga +B2¢=0'
or rdr r 99 dz
We put @ (r,9,2) = R(x)F(9)Z(z)

and obtain the equations

r29—1§+r2}'—z+(32r2-v2)R =0
dr dr

2

--—d §+v2F = 0

de

2

-(-i——g-'+y22 = 0

dz

where 8, y, and v are separation constants and
2 2 2

B“+Y" =B

Solutions?
R = A, JV(Br)+A2Yv(Br)
F=C,cosvgp +C,sinvy
Z = D, cos yz+D, sinyz

Special cases!

Cylinder with radius a and height H. Fundamental s»lution?

A
- [¢) Ha
@ = AT, (7)) cos
2
2 7\o TTZ
B 3——2-"+——'2
g a H

where 7\0 is the first zero of Jo.
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Fundamental solution:?

¢ - AT (7\vr) v Tz
= v y cos v cos T
2
2 7\v 'JTZ
B = T+—-2-
g a H

where v = % and 7\v is the first zero of J . Observe that v need not be an
integer as is assumed in the Reactor Handbook3).

For the limiting case a = T we get 7\1/2 = W, which corresponds to a
cylinder with a black absorber in the halfplane ¢ = T,

Part of a cylinder sector limitedby r=a, r=b (b <a), 9 = - a,
Fundamental solution:
_ N
g=A {Yv (Ba) J, (Br) - J, (Ba) Y, (Br) :l cos v © cos 4
2
g2 . g2, I
g HZ

where  is determined by

Y, (Ba) 3, (Bb) = I, (Ba) Y, (8b)



4, Elliptic cylinder coordinates

Coordinates! x = a cosh § cos @ 0 £E<ow
= a sinh § sin @ 0 Sogsan
z =z
xZ 2
Coordinate surfaces: + —L = 1 (elliptic cylinders)
2 2 2 . .2
a“cosh“f a“sinh™§
2
5 X — - ZY = 1 (hyperbolic cylinders)
a cos @ asin ¢
z (planes)

The reactor equation:

! <32¢+32?>+82¢+B2¢=0

az(coshzg - cos 2cp) ag oz 2

We put @ (£,9,2) = X(£)Y(p)Z(z)

and obtain the equations

2
d~—§—{ + (azazcoshzg ~A)X =0
dg

4%y 2.2 2
———7+(7\—a a“cos“ Q)Y = 0
do

2
S 24 8%2 =0

dz

where o, 8 and A are separation constants and

aZ+BZ=BZ

The equations for X and Y lead to Mathieu functions. The case has
been treated by Gast and Bournia.5), who give tables of the buckling as a
function of the ratio (c) between the axes of the ellips. As a suitable

approximation they give

2 7% 5,783 4+c?
B, s t——7*—
g H2 m 2c

where m is the semi-minor axis. The error in the last term is less than
2% if1 £c L2,
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5., Parabolic cylinder coordinates

2
Coordinates: X = u__;_v__ 0Su<w
y=Tuv 0Sv<ow
Z = Z
. 2 2 4 . .
Coordinate surfaces: y =2xv +v (parabolic cylinders)
YZ = -2 xu’ + u? (parabolic cylinders)
z (planes)

The reactor equation:

2 2 2
! 870 , 378N, 2°8 52 . ¢
2 2 2 2

ou 8v o0z

u +v

We put @(u,v,z) = Ulu)V(v)Z(z)
and obtain the equations

where o, B and y are separation constants and

aZ+BZ=B2

In general U and V can not be expressed in known functions. For

the special case of a parabolic cylinder with height H and limited by u2= a,

v2 = a, the symmetry gives Y = 0, Fundamental solution?
2 2
. Au Awv
- - o 0 Tz
@ = Avuv J_1/4 (T) J_1/4 <T> cos 1
2
2 1;2 47\0

B = 4 —
gyt 2

where ?\0 is the first zero of J-i/4'
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6. Rotation paraboloid coordinates

Coordinates: = uv cos 9 0Su<ow
= uv 8in @ 0 Sv<w
z=%—(u2-v2) 0S¢ <27
. 2, 2 2. 4 . .
Coordinate surfaces: x +y =2zv +v (rotation paraboloids)
<%+ YZ = —2z0f 4t (rotation paraboloids)
y=xtgo (planes)

The reactor equationt

—z*i—ifé:—u( +27:9':;< _g> (7*&2)22—?}+BZ¢=°

u t+v
We put @ (u,v,9) = U(u)V(v)F(o)
and obtain the equations

2

uz——idU+ dU+(B 4+yu2-—v2)U=O
du du

2a%v , _av 24 2 2

vViESs 4v=—+ (B - w -y V=0
dv dv

2

g—g—‘+v2F=0

do

where Y and v are separation constants.

The equations for U and V can not in general be solved in known
functions, For the special case of a reactor limited by the surfaces

u2 = a, v2 = a, symmetry gives Y= 0, and v is also = 0. Fundamental

%ouz %ovz
9= a3, ()% (%)
o a o a

solution:

where ?\o is the first zero of Jo.



12

7. Prolate spheroidal coordinates

Coordinates: x:a\/gz—i\/i-nzcoscp 1 L€ <w
y:a\/gz—i\H«nasincp -1 £n 1
z=aéfn 0 o <27

2+ 2 ZZ

Coordinate surfaces: XZ Zy t—>—s=1 (prolate spheroids)
a“(£"-1) a%t
x +y z__ 4 (hyperboloids of

2,227 two sheets)
a”(1-n") a™
y = xtgo (planes)

The reactor equation:

9 [@2_1)895} 9 ((1 le)agszJr £2_n° azp+Bza2(gz X
9 YA o 2 2 2 - -
% %l T4 (E%-1)(1n") 8

We put @(£,n,9) = J(E)S(n)F (o)
and obtain the equations

- 2

d [,.2 .\ dJ 2,2

x| ¢ -1)&-]-(A—hg +C;“1)J= 0
2.

a [, 2 ds 22 m°

an | - &+ ta-nty )8 o

2,

d‘2f+m2F:O

de

where h = Ba, and m and A are separation constants, The solutions are

6),

according to Stratton et al,

je_ 40, = (%)T Z‘ a_(h/mb)j_, _(ht)

!
Sl = )4 (b/m) P (n)

m+n
n

F(p) = Cycosm@+C, sinm g



13

Here jn+m is a spherical Bessel function defined as

i (=) = \/ZT"; Tr1/24%)

m
Pm+n
tions are made over even or odd integers n. a_ and d are tabulated in ref, 6

are associated Legendre functions, m and £ integers, and the summa-

for different values of h, m and £.

Special case: Prolate spheroid with semi-major axis M1 =at

- - v -

o

and semi-minor axis M, = a ‘/éoz -4, The excentricity e is then 1/§O and

the ratio of the axes

C_M1~ go
= 5 = i
2 \}goz-i

In this case m = § = 0, and we therefore have to determine the first zero
x _ of
o
!

jego (h€) = » a_(n/00)j_(ht)

5

For different values of h = Ba, x, = hgo has been computed numerically
by use of tables of the expansion coefficients ’ and tables of spherical

Bessel functions7). Table 1 gives the zeros X, obtained for all tabulated
values of h, and also the excentricity, the axis ratio, and Bg §=x2 -hz.

We see that for h = 0, that is a sphere, BgMg = 7T2. For h —> o the

spheroid approaches the shape of an infinite circular cylinder and

BzMg —> (2.4048)° as expected. x)
A good approximation for axis ratios, c, close to unity is
n2y2 - T, 2541
g 2 3 CZ

x) The numerical calculations were performed by Mr., A, Rentze,.
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8. Oblate spheroidal coordinates

Coordinates: x=b \/§2+1 \/ 1-112 cos 058 < w
y=b\/§2+1\/1—nzsincp -1 < £1
z=bfn 0 <o =27

Coordinate surfaces?

x2+ 2 ZZ

> g’ t—>—s =1 (oblate spheroids)
b (E"+1) bE

x2+y2 _ 22 -1 (hyperboloids of
bz(i—nz) bZnZ one sheet)

y = xtgQ (planes)

The reactor equation:

2 2 2
%[<§2+1)%?]+§—n[<1-n2>3—‘?]+( £ in 28 %% (E%mY) = o

3 2 Z
T EH1)(1) B
We put @(£,7,9) = J(E)S(M)F()
and obtain the equations
d .2, 47 ] 2,2 m’
e g |-(a-ef-F )1 -0
£7+1
ii—-(i- Z)d—S_+ A+gl Z—i S=0
dn [V M dn &En " 2)7 T
n
2
d—}z'? + mZF =0
do

where g = Bb, and m and A are separation constants,

We see that these equations are very similar to those obtained for
the prolate spheroidal coordinates. In fact, we get the oblate case from

the prolate by the transformations

£ —> -if
a —> ib
h—ig

With the same notations as in the prolate case the solutions to the

6),

equations can therefore be written
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2 2 !
je, g lig, ~it) = (%) D e lig/mb)i,  (g)
n

!
S g (ig,m) = § 1g/m17/)Pn+m (n)

n

F(p) = Cycosmo +C, sinmo

- - -~ .-

and semi-minor axis M2 s b§ The ratio of the axes is thus
oMy ,/gozu
MZ go

and the excentricity e is 1/\f §(2)+ i, As in the preceding' case the buckling

is obtained from the first zero X, of the function

1
jeo, (ig, -ig) = ;, a_ (ig/0o) j (gt)

n

For different values of g = Bb X, = géo has been computed numeric-~
ally by use of tables of the expansion coefficients6 and tables of the

épherical Bessel functions7). In table 2 the zeros x, are listed for all

given g-values, and also the excentricity, the axis ratio, and B;Mg 2
We see that for g = 0 we get the buckling for a sphere, B;Mg TIZ. For

h —> «© the spheroid approaches the shape of an infinite slab and

2.2 _ wl x)
Bg M2 —> 4~ as expected™’,

A good approximation for axis ratios, c, close to unity is

p2y2 . Mo cot2
g 2~ 3 o2

x) The numerical calculations were performed by Mr. A, Rentze,
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9. General ellipsoidal coordinates
2 2 2
Coordinates: x2 = (3 tu)(a tvi(a +w)
2 .2 2 2
(@a”-b")a"-c")
2 (6% u)(b o+ v)(b2+ w)
y = 2 2..2 2
(b"-c")}b"-a")
2 (B V)it w)
=" = >
(c®-a%)(c®-b%)
0 € c? Sy sb? s-wsal
Coordinate surfaces:
XZ 2 z2
>— + % t—>— =1 (ellipsoids)
a™u b +u ¢ +u
x2 yz 2° B (hyperbolaids of
st gt =1 one sheet)
a +v b +v c +v
x° yz 2% N (hyperboloids of
7tz -t =1 two sheets)
a tw b +w ¢ +w WO sheets
The reactor equation:
8 ., 0@ 9 g 9 ¢
(V-W) KU. ga(;‘(u ’a—-a) + (u—-w) KV F)‘_V_(KV a—‘-;) + (u-v) KW W(KW 5—\;}) +
BZ
+ = (u-v)(u-w)(v-w) @ = 0

4

where K = \/(a2+u)(b2+u)(c{'+u) and corresponding for K_and K_.
We put @(u,v,w) = U(u)V(v)W(w)
and obtain the equation

Bzuz

dU) + (‘T + au+B)U

u du

0

kL

u du

and corresponding for V and W, Here o and 3 are separation constants.

These equations belong to a general type of Lamé differential equa-

8)'

tions
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10. Confocal parabolic coordinates

Coordinates: x = %(u+v+w—a-b)

2 2
Coordinate surfaces? EX:E + uz-b = -2x+u (elliptic paraboloid)
Y2 22
Lo - = “2x+ v (hyperbolic paraboloid)
YZ 22
Tt = 2x -w  (elliptic paraboloid)

With the notations L_ = \/(u-a)(u-~b)

L, = v (v-a)(b-v)
LW = \I/—(a—w)(b—\;)

we obtain the reactor equation

(v-w) Lu 'g'J(Lu g—g) + (u-w) LV _aa—J(Lv %g) + (u-v) L, '82\;/ (Lw %‘?ﬁ,) +
2
+ 2 (u-v)(u-w)(v-w) & = 0
We put @(u,v,w) = Uu)V(v)W(w)
and obtain the equation

2 2

u du 4

d

ucTﬁ(L +au+B)U=O

and corresponding for V and W, Here o and 3 are separation constants.

The\equation can also be written

2 2
212’.‘2)%% (B2 +au+p)U = 0

2
(u-a)(u-b) i-_%’ + (u-

The solution can not be expressed in known functions,

Special case: If a = b = 0 we get two rotation paraboloids with foci
in the origin. The equation is then the same as in the previously treated

case of rotation paraboloids,



11, Spherical - conical coordinates

Coordinates: X

N
1

u dn{v,k)sn{w,k')
u sn (v,k)dn (w,k!)

u cn (v, k) en(w, k')

K2+ k' = 1

where sn, dn and cn are eolliptic functions,

2

Coordinate surfaces: x>+ y2+z = u (spheres)

ZkZ 2 zZ
% - + =0 (cones)
2 2 2

dn“(v,k) sn“(v,k) cn“(v,k)

2 5 2 2
!

- Zx + kz Y + ZZ = 0 (cones)

sn“(w,k') dn"(w,k!) cn”(w,k!)

The reactor equation:

28 1

2
(0™ 5£) +

We put @ (u,v,w) = Ulu)V(v)W(w)

and obtain

H@E(“Z%ug)“ (Bzu2+o:)U = 0
a’v 2 2

— - {ak cn (v,k)+[3:,V =
dv

2w

[N
[\

dw
where @ and 3 are separation constants,
A A

U = —} Jv(Bu) +———2Yv(Bu)
vu Vu

where v =%—\Ii—4a.

v,k)+k'zcn2(w,k') [BVZ dw

— - [ak' chz(w,k’)-B ]W

2°g + 2°g ] + BYulg = 0

2

0

=0

The solution to the first equation is

For the case @ = 0 we obtain the spherical case treated before with

usual spherical coordinates,

The last two equations can be transformed to Lamé differential

8)

equations /,



19

References

1)

2)

Glasstone~Edlund, The elements of nuclear reactor theory, VanNostrand,
New York (1952)

von Dardel & Sjostrand, Neutron diffusion measurements with pulsed
neutron sources, Progress in Nuclear Energy Ser. 1, Vol. 2 (in press)

Reactor Handbook, Physics, USAEC & McGraw Hill, New York (1955)

Eisenhart, Phys.Rev, 45, 427 (1934), See also Morse & Feschbach,
Methods of theoretical physics, McGraw-Hill, New York (1953)

Gast & Bournia, Nucleonics 14:4, 109 (1956)

Stratton et al., Spheroidal Wave Functions, MIT and Wiley, New York
(1956)

Tables of Spherical Bessel Functions, Columbia University Press,
New York (1947)

Kamke, Differentialgleichungen, Ldsungsmethoden und Lésungen,
Chelsea, New York (1948)

NGS/EB/62ex
17.10.57



Table 1. Prolate spheroids.

Values of X excentricity, axis ratio, and buckling

for h-values from 0 to 8.

1 My 2.2
h X, e = g; c= KT; th&z
0 3,14159 0 1.0000 9. 8696
0.1 3.14265 0.031820 1.0005 9.8662
0.2 3,14584 0.063576 1.0020 9,8563
0.3 3.15116 0.095203 1.0046 9.8398
0,4 3.15861 0.126638 1,0081 9.8168
0.5 3.16822 0,157817 1.0127 9.7876
C.6 3,17999 0.188680 1,0183 9.7523
0.7 3.19396 0.219164 1.0249 9.7114
0.8 3.21013 0.,249211 1.0326 9.6649
0.9 3,22852 0, 278766 1.0413 9.6133
1.0 3.24917 0.307771 1.0510 9.5571
1,2 3.29729 0.363935 1.,0736 9,4321
i.4 3,35462 0,417335 1.1004 9.2935
i,6 3.42125 0,467665 1.1343 9. 1449
1.8 3.49718 0.514700 1.1664 8,9903
2.0 3.58231 0.558299 1,2053 8.8329
2,2 3.67642 0.598408 41,2481 8.6761
2.4 3.77919 0.635057 1,2946 8.5222
2,6 3.89021 0.668344 1.3444 8.3736
2,8 4,00897 0.698434 1.3973 8.2319
3.0 4, 13493 0,725526 1,4531 8,0977
3.2 4,26752 0.749850 1.5115 7.9717
3.4 4,40615 0,771649 1,5722 7.8541
3.6 4,55027 0.791162 1.6351 77,7449
3.8 4.69933 0.808626 1,6997 7,6437
4,0 4, 85285 0,824258 1.7661 7,5501
4,2 5.01036 0.838260 1.8340 7.4637
4.4 5.417145 0.850825 1,9031 7.3839
4,6 5.33574 0,862111 1,9735 7.3101
4,8 5,50290 0.872267 2,0449 7.2419
5,0 5.67264 0.881424 2,1172 7,1788




Table 1, cont,.
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h X, e::éL- c==E£1 4B;hﬁg
o 2
5.2 5.84469 0.889696 2.1903 7.1204
5.4 6,01882 0.897186 2,2642 7,0662
5.6 6.19482 0.903981 2,3388 7,0158
5.8 6.37251 0.910159 2,4140 6.9689
6.0 6.55173 0.915789 2,4896 6,9252
6.2 6.73234 0.920928 2.5659 6,8844
6.4 6.91420 0.925631 2,6426 6,8462
6.6 7.09721 0,929943 2. 7197 6.8104
6.8 7.28127 0.933903 2,7969 6,7769
7.0 7.46628 0.937549 2,8747 6,7453
7.2 7.65216 0.940911 2.9529 6., 7156
7.4 7.83886 0.944015 3.0310 6,6877
7.6 8,02627 0.946891 3.1098 6,6610
7.8 8, 21440 0.949552 3.1887 6.6364
8.0 8.40313 0.952026 3,2679 6.6126
) 0 1. 0000 0 5,7831
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Table 2,

Oblate spheroids,

for g~values from 0 to 8,

Values of X excentricity, axis ratio, and buckling

M
g X, e c = m—-i— B;Mg
0 3, 14159 0 1.0000 9.8696
0.1 3,14053 0.031826 1,0005 9.8629
0.2 3, 13735 0.063619 1.0020 9, 8430
0.3 3, 13206 0.095347 1,0046 9,8098
0.4 3, 12466 0.126978 1,0082 9.7635
0.5 3,11547 0.158477 1,0128 9.7043
0.6 3,10362 0. 189808 1.0185 9,6325
0.7 3,09002 0.220938 1,0253 9. 5482
0.8 3, 07440 0.251828 1,0333 9.4519
0.9 3, 05682 0.282436 1.0424 9.3442
1,0 3,03730 0.312726 1,0528 9,2252
1,2 2,99272 0.372169 1,0774 8. 9564
1,4 2.94122 0.429789 1,1075 8.6508
1,6 2.88358 0.485183 1, 1436 8.3150
1,8 2,82077 0.537932 1,1863 7.9567
2,0 2, 75402 0.587610 1.2359 7.5846
2.2 2.68475 0.633822 1,2929 7.2079
2.4 2.61452 0.676238 1,3574 6.8357
2.6 2.54493 0.714633 1,4296 6,4767
2,8 2.47744 0.748929 1,5091 6.1377
3,0 2.41324 0. 779186 1.5954 5,8237
3,2 2.35324 0.805620 1, 6880 5.5376
3,4 2,29785 0.828528 1,7859 5,2801
3.6 2,24732 0.848284 1.8884 5,0505
3.8 2.20154 0.865276 1.9948 4,8468
4,0 2. 16026 0.879884 2.1044 4,6667
4.2 2.12312 0.892453 2.2166 4,5076
4,4 2,08971 0.903304 2.3310 4,3669
4.6 2.05965 0.912689 2.4470 4,2422
4.8 2.03254 0.920845 2.5646 4,1312
5,0 2, 00805 0.927961 2.6833 4,0323




Table 2, cont,

M

g X, e cz:hd; B;hd%
5.2 1,98585 0.934194 2.8030 3.9436
5.4 1.96568 0.939679 2,9235 3.8639
5.6 1,94728 0.944525 3.0447 3.7919
5.8 1.93046 0.948824 3.1665 3.7267
6.0 1.91503 0.952653 3.2888 3.6673
6.2 1,90084 0,956075 3.4116 3.6132
6.4 1,88774 0.959147 3.5347 3.5636
6.6 1.87561 0.961912 3.6582 3.5179
6.8 1, 86437 0. 964409 3,7819 3.4759
7.0 1.85391 0.966672 3.9060 3.4370
7.2 1.84416 0.968728 4.0303 3.4009
7.4 1.83506 0,970601 4,1547 3.3674
7.6 1,82653 0.972313 4,2794 3.3362
7.8 1.81853 0.,973881 4.4042 3.3071
8.0 1.81101 0.975321 4,5292 3.2798
00 1.57080 1,0000 0 2,4674
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Price Sw. cr. 3:—

Additional copies available at the library of
AB ATOMENERGI
Stockholm - Sweden

Affarstryck, Stockholm, Sweden.



