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Calculation of the geometric buckling for reactors of various shapes

Introduction

According to the one group neutron diffusion theory ' the geometric

buckling, B , for a reactor is defined as the lowest eigenvalue of the equa-

tion

V 2 0 + B20 = 0

with the boundary condition that the neutron flux, 0, is zero on the effective

boundaries of the reactor. (In the following the above equation is referred

to as the "reactor equation",) The geometric buckling is easily calculated

for reactors of certain simple shapes, for instance parallelepipeds, spheres

and circular cylinders. In the general case, however, only approximate

solutions can be obtained.

On the other hand there is also a possibility to measure geometric

bucklings in a model experiment using the pulsed neutron source technique '

as the rate of decay of the neutron density in a small geometry in part is

determined by the geometric buckling. This possibility has up to now not

been used much, but it should be a valuable complement when calculations

are difficult.

With exception of a short review in the Reactor Handbook ' no syste-

matic study has been made of the different reactor shapes which can be

treated theoretically in a simple way. Therefore in this paper such.an in-

vestigation is accomplished.

Separation possibilities

A necessary condition for obtaining an analytic solution to the reactor

equation is that the equation is separable in the coordinate system to be

used, and this system is in general determined by the boundary conditions.
4)According to Eisenhart ' there are eleven orthogonal coordinate systems in

which the three-dimensional Schrödinger equation is separable, and in these

the reactor equation can therefore also be separated. These eleven systems

will be studied in detail here, and for completeness even the most wellknown

cases are included.



1. Cartesian coordinates

Coordinate surfaces: Planes.

The reactor equation:

9x y

We put

0(x,y,z) = X(x)Y(y)Z(z)

and obtain the equations

d I -t- v2z = o
dz

where a, |3, and "Y are separation constants and

a2 + p2 + V2 = B2

Solutions:

X = A, cos ax V A-, sin öx

a, s. o.

Special case: Parallelepiped with the sides a, b, and c.

Fundamental solution:

TTz0 . 1Tx 1Ty TTz

= A cos — cos -p- cos —

2 _ 2 / 1 1 1



2, Spherical coordinates

Coordinates: x = r sin v cos cp

y = r sin V sin cp

z = r cos v*

2 2 2 2Coordinate surfaces: x +y +z = r
2 ^ 2 2 . 2 «,x +y = z tg V"

y = x tg cp

The reactor equation:

280X 1 9
sxn

1 8

r 2 3r V 3r / r2sin1> 8

We put

0(r,^,cp) = R(r)T(i>)F(cp)

and obtain the equations

_1_ d / 2 dR

r 2 dr V dr

1 _d_

sini/ dv

0 5 r < oo

0 5 ^ <7T

0 5 9 £ 2TT

(spheres)

(cones)

(planes)

r sin J* 9cp

R = 0

m
. 2 f

sin v

T = 0

= 0

- 0
dcp

where £ and m are separation constants (£ is not necessarily an integer).

Solutions:

R = -F

T =

(Br)

(cos 9) + (cos 9)

F = D . cos m cp + sin m cp

Special cases:

Sghere with radius a. Fundamental solution:

A . 77r= — smr a
7T2



Sgherical_sector l imited by v = 9,, (cos Q A is the f i rs t zero of Pa)»

Fundamental solution

e a

where A* is the f i rs t ze ro of

P a r t of a sjsherical sec tor l imited by r = a, r = b , (b < a.), and

v - ®n, (cos Qg is the f i rs t ze ro of P«), Fundamental solution:

where |3 is de termined by

Part_of_a_s_pherical_sector l imited by r = a, j / = 9 m (cos &„ is the

f i rs t ze ro of P m ) and cp = - •=—. Fundamental solution:

A ^ r m <k
0 = ~= J«4.H !•> ("T-) pfi (cos -J*) cos m cp

Vr

fi a 2

where Afl is the f i rs t ze ro of,, is the f i rs t ze ro of Jn,* /2«

In this way solutions for even more complicated shapes can be

obtained.



3. Circular cylinder coordinates

Coord ina tes :

Coordinate surfaces:

X

y

z

X

y

z

= r cos cp

= r sin 9

= z

2 ^ 2 2
+ y = r

= x tg q)

0 £ r < «
0 <-y <2il

(cylinders)

(planes)

(planes)

The reactor equation:

r

We put 0 (r, <p, z) = R(r)F(cp)Z(z)

and obtain the equations

2 d2R

d r

dR
—
dr

2 2 2vo n- v ) R = 0

= 0

= 0

= 0

where ^ , -y* a n < i v a r e separa t ion constants and

Solut ions:

Jv(j3r)R =

F = C . cos v q> + C~ sin vcp

Z = D^ cos yz + D 2 sin ̂ z

Special cases:

Cylinder with radius a and height H. Fundamental solution!

AQr

0 = A J
o <—') COS i f

B - +
g 2 TT2
6 a H

where A,, is the f i r s t ze ro of J .
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Cylinder sector limited by cp = - a. Fundamental solution:

Ayr nz

0 = A J ( ) cos v cp cos -=5-

4
T T 2
H

where v = •=— and A is the first zero of J , Observe that v need not be an

integer as is assumed in the Reactor Handbook .

For the limiting case a - 7T we get A. /^ = 11, which corresponds to a

cylinder with a black absorber in the half plane cp = IT.

Part of a cylinder sector limited by r = a. r = b (b < a), cp = - a.

Fundamental solution:

= A Y y Jv Or) - Jy (|3a) Yy (pr) J cos v cp cos ^-

where /3 is determined by

a)Jy(j3b) = Jv(|3a)Yv03b)



4. Elliptic cylinder coordinates

Coordinates i x = a cosh £ cos cp

y = a sinh | sin cp

z = z

0 < £ <°o
0 < cp < 2 IT

Coordinate su r faces : x y

a cosh £ a sinh
= 1 (elliptic cylinders)

The reac to r equation:

2 2 2 . 2
a cos cp a sin cp

,cp,z) = X(£)Y(cp)Z(Z)

and obtain the equations

^ 2 2 2 ^ -A)X = 0

= 1 (hyperbolic cyl inders)

(planes)

dcp
= 0

= o

where a, |3 and A are separation constants and-

2 2 _ R2

The equations for X and Y lead to Mathieu functions. The case has

been treated by Gast and Bournia , who give tables of the buckling as a

function of the ratio (c) between the axes of the ellips. As a suitable

approximation they give

"2 x 5» 7 8 3 1+c2

2g 2c

where m is the semi-minor axis. The error in the last term is less than

2 % if 1 <c <2.
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5. Parabolic cylinder coordinates

Coordinates: x =
2 2

u - v

y = - uv

z = z

2 2 4
Coordinate surfaces: y = 2 xv + v

y = - 2 xu

z
u

The reactor equation:

u2 + v2 V9u" 8v dz

We put 0(u,v, z) = U(u)V(v)Z(z)

and obtain the equations

0 5u < oo

0 <v < oo

(parabolic cylinder»)

(parabolic cylinders)

(planes)

du

AM ? ?
=-% + {Bv+y)v
dv

= 0

= o

dz

where a, fi and \ are separation constants and

In general U and V can not be expressed in known functions. For
2

the special case of a parabolic cylinder with height H and limited by u = a,

v = a, the symmetry gives Y = 0. Fundamental solution:

0 = A N/U!V J_1/4 J - l /4

'v
O Hz

B2 =
g H~ a

where A is the first zero of J . / . .
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6. Rotation paraboloid coordinates

Coordinates: X = UV COS Cp

y = u v s i n cp

1 , 2 2,
z = T (u - v )

2 2 2 4
C o o r d i n a t e s u r f a c e s : x + y = 2 z v + v

2 X 2 , 2 , 4
x + y = - L z u + u

y = x t g cp

The reactor equation:

90V 1 91 f 1 3 /
U

O <u < oo

0 <v <oo

0 $ cp < 2n

(rotation paraboloids)

(rotation paraboloids)

(planes)

We put 0(u,v,cp) = U(u)V(v)F(cp)
and obtain the equations

d U , d U i / n 2 4 1 2 2v _T .
u — j + u — + ( B U + Y U - v ) U = 0

2 d2U—
du du

2 d2V . d V x / D Z 4v — j + v — + ( B v -
dv dv

2 2, „ .
- v ) V = 0

= 0

where "V and v are separation constants.

The equations for U and V can not in general be solved in known

functions. For the special case of a reactor limited by the surfaces
2 2

u = a, v = a, symmetry gives V = 0, and v is also = 0. Fundamental
solution:

= A J
O

u V

, 4A

g " 2

where A is the first zero of J .o o
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7. P ro l a t e spheroidal coordinates

Coordinates : x = a v £ - l y l - T i cos 9

y = a

z = a

xZ+ 2

Coordinate surfaces: —=—-J-—

sincp

2 £ 2
a

2 2x + y

a (1-T) ) a

y = x tg cp

The reactor equation:

8 [ / t 2

We put 0(£,r,,cp) = J(e)S(ii)F(cp)
and obtain the equations

1 < £ < 00

-1 5 T) ^ 1

0 5 cp < 2H

(prolate spheroids)

(hyperboloids of
two sheets)

(planes)

= 0

2 2

dcp
= 0

where h = Ba, and m and A are separation constants. The solutions are

according to Stratton et al. .

m

n

S 0(h,r\) = > d (h /m^)P m ^ Mm * LJ
 n m + n

n

F(cp) = C. cos m cp + C? sin m cp
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Here j is a spherical Bessel function defined as

j (x) = pL

P , are associated Legendre functions, m and i integers, and the summa-

tions are made over even or odd integers n. a and d are tabulated in ref, 6
° n n

for different values of h, m and S>.
Special case: Prolate spheroid with semi-major axis M, = a£

2*
£ - 1 . The excentricity e is then l/£ and

the ratio of the axes

c =
y c - 1

o

In this case m = I - 0, and we therefore have to determine the first zero

x of
o

an(h/oo)jn(h£)

n

For different values of h = Ba, x = h^ has been computed numerically
° ° 6)

by use of tables of the expansion coefficients ' and tables of spherical
7)Bessel functions ' . Table 1 gives the zeros x obtained for all tabulated

° 2 2 2 2
values of h, and also the excentricity, the axis ratio, and B M9 = x -h .

2 2 2 ^

We see that for h = 0, that is a sphere, B M2 = 7T . For h —> oo the

spheroid approaches the shape of an infinite circular cylinder and

B2M2 —a> (2.4048)2 as expected. x^
A good approximation for axis ratios, c, close to unity is

_2.,2 7T2 2c2-HB Mo - -=— • 5
g 2 3 2s c

x) The numerical calculations were performed by Mr. A. Rentze.
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8. Oblate spheroidal coordinates

Coordinates: x = b v£ + 1 v 1 -t | cos cp

y = b \ / i +1 v 1-T) sin 9

z = b£n

Coordinate surfaces:

2X 2 2

2 2 2
x + y z

b (1-Ti ) b r\

y = x tg 9

The reactor equation:

— j

We put 0(£,r|,9)
and obtain the equations

dj

= J(e)S(T))F(cp)

A - g
2 t 2 TO

2v dS 2 2

J = 0

=

0 5 £ < oo

0 £ Cp < 27T

(oblate spheroids)

(hyperboloids of
one sheet)

(planes)

= 0

= 0
dcp

where g = Bb, and m and A are separation constants.

We see that these equations are very similar to those obtained for

the prolate spheroidal coordinates. In fact, we get the oblate case from

the prolate by the transformations

a —=• ib

h —> ig

With the same notations as in the prolate case the solutions to the

equations can therefore be written ' :
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m
T

(ig> -i£) = V / ^(w^^J^+^vgs)
n

n

F(cp) = C, cos mcp + C, sin m cp

Special case: Oblate spheroid with semi-major axis M. =

and semi-minor axis M, s b^ . The ratio of the axes is thus

M
c =

M 2

and the excentricity e is l /y £ + 1. As in the preceding case the buckling

is obtained from the first zero x of the function
o

n

For different values of g = Bb x = g£ has been computed numeric-

ally by use of tables of the expansion coefficients ' and tables of the
7)spherical Bessel functions ' . In table 2 the zeros x are listed for all

2 2 2
given g-values, and also the excentricity, the axis ratio, and B M~ = x ,

2 2 2
We see that for g = 0 we get the buckling for a sphere> B M, = H . For

h —> oo the spheroid approaches the shape of an infinite slab and

B2M2 —> ^ j - as expectedx\

A good approximation for axis ratios, c, close to unity is

x) The numerical calculations were performed by Mr. A, Rentze,
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9. General ellipsoidal coordinates

r- A- * 2 (a2+u)(a2+v)(a2+w)
Coordinates: x = * 9

 / v
? JK

 7 *-
a - b )(a - c )

2 _ (b2+u)(b2+v)(b2+w)
y " ,,2 2W, 2 2,(b - c )(b - a )

~ 2
 = (c2+u)(c2+v)(c2+w)

c - a )(c -b )

-u < c2 <-v <b 2 < - < a

Coordinate surfaces:

2 2

2 2 ?
a +u b +u c JH

2 2
_£ + y
2, , 2

+

= 1

= 1
b +v c +v

+
a +w

The reactor equation:

c +w

(ellipsoids)

(hyperbolqids of
one sheet)

(hyperboloids of
two sheets)

(V_W)K | - ( K | ^ )v u o u u o u v dv v

B2

(K

+ -j-(u-v)(u-w)(v-w)0 = 0

/ 2 z" 2~
w h e r e K = \j (a +u)(b +u)(c +u) and c o r r e s p o n d i n g for K and K .

We put 0 ( u , v , w ) = U(u)V(v)W(w)

and obtain the equation

K | _ (K | U
u du v u du =

and corresponding for V and W. Here a and /3 are separation constants.

These equations belong to a general type of Lame differential equa-

tions
8)



10. Confocal parabolic coordinates

Coordinates: x = y

2 _ (u-a)(v-a)(a-w)
y = b -a

2 _ (u-b)(b-v)(b-w)
Z — i'b -a

17

2 z2
Coordinate surfaces: ——+—r- = -2x+u (elliptic paraboloid)

u-a u-b \ r r i
u-a u-b

2 2
y ^

v-a b-v
= -2x+v (hyperbolic paraboloid)

2 rZ
—— + r̂ —a-w b-w = 2x - w (elliptic paraboloid)

With the notations L = \/(u-a)(u-b)
u

L = 4 (v-a) (b-v)

L w = v/(a-w)(b-w)

we obtain the reactor equation

(v-w) L TT— (L,, -ö-r)+ (u-w) L -g—x ' u o u U 9 u v v 9 v v
(u-v) L tr ^— L

R 2
^ - ( u - v ) ( u - w ) ( v - w ) 0 = 0

We put 0(u,v, w) = U(u)V(v)W(w)

and obtain the equation

2 2
T d / . dU\ , /B u ,L j — (L -T—} + (—-.— +u d u u du 4 U = 0

and corresponding for V and W. Here a and |3 are separation constants.

The equation can also be written

(u-a)(u-b)
2

d U
—2
du

a+b\ dU
~2~) du"

2 2u

The solution can not be expressed in known functions.

Special case: If a = b = 0 we get two rotation paraboloids with foci

in the origin. The equation is then the same as in the previously treated

case of rotation paraboloids.



11, Spherical - conical coordinates

Coordinates: x = u dn (v,k) sn(w,k')

y = u sn (v, k) dn(w,k' )

z = u en (v,k) cn(w, k1)

where sn, dn and en are olliptic functions,

2 2 2 2
Coordinate surfaces: x +y +z = u (spheres)

2, 2 2 2
-%± g + —£ = 0 (cones)
dn (v,k) sn (v,k) en (v,k)

2 o ? o

- 0 (cones)
2 2 2

sn (w,k') dn (w,k') en (w,k')
The reac tor equation:

3 , 2 6QJx , 1
3 I T ( U Iu^^ + . 2 27 TV, | , 2 2, , , , L 2 ' 2k en (v,k) + kf en ( w , k ' j ' 9v ow

= 0

We put 0(u,v,w) = U(u)V(v)W(w)

and obtain

^-J - rök
2cn2(v,k) + ̂  l v = 0

dv I J

d2W

dw
- ak'2cn2(w,k')-j3 W = 0

where a and £ are separation constants. The solution to the first equation is

A. A?
U = - 1 J v (Bu)+- |Y v (Bu)

V u y u

where v = -j \/1 - Aa.

For the case a - 0 we obtain the spherical case treated before with

usual spherical coordinates.

The last two equations can be transformed to Lame differential
8)equations ,
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Table 1. Prolate spheroids.

Values of x , excentricity, axis ratiOj and buckling

for h-values from 0 to 8.

0

0

0

0

0

0

0

0

0

0

1

1

1

i

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

h

.1

.2

.3

p 4

.5

.6

.7

.8

.9

.0

.2

.4

.6

.8

.0

.2

.4

.6

.8

.0

.2

.4

.6

.8

.0

.2

,4

,6

.8

,0

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

4.

4.

4,

4.

4,

4.

4.

5.

5.

5.

5,

5.

X
o

14159

14265

14584

15116

15861

16822

17999

19396

21013

22852

24917

29729

35462

42125

49718

58231

67642

77919

89021

00897

13493

26752

40615

55027

69933

85285

01036

17145

33574

50290

67264

1
e ^

0

0.031820

0.063576

0.095203

0. 126638

0. 157817

0. 188680

0.219164

0.249211

0.278766

0.307771

0.363935

0.417335

0.467665

0.514700

0.558299

0.598408

0.635057

0.668344

0.698434

0.725526

0.749850

0.771649

0.791162

0.808626

0.824258

0.838260

0.850825

0.862111

0. 872267

0.881424

M l
C " M 2

1.0000

1.0005

1.0020

1.0046

1.0081

1.0127

1.0183

1.0249

1.0326

1.0413

1.0510

1.0736

1.1004

1.1313

1.1664

1.2053

1,2481

1.2946

1.3444

1.3973

1,4531

1.5115

1.5722

1.6351

1.6997

1.7661

1.8340

1.9031

1.9735

2.0449

2.1172

g 2

9.8696

9.8662

9.8563

9.8398

9.8168

9.7876

9.7523

9.7114

9.6649

9.6133

9.5571

9.4321

9.2935

9.1449

8.9903

3.8329

8.6761

8.5222

8.3736

8.2319

8.0977

7.9717

7.8541

7.7449

7.6437

7,5501

7.4637

7.3839

7.3101

7.2419

7.1788
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h

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

00

X

o

5.84469

6.01882

6.19482

6.37251

6.55173

6.73234

6.91420

7.09721

7.28127

7.46628

7.65216

7.83886

8.02627

8.21440

8.40313

00

1

*'-*;

0.889696

0.897186

0.903981

0.910159

0.915789

0.920928

0.925631

0.929943

0.933903

0.937549

0.940911

0.944015

0.946891

0.949552

0.952026

1.0000

M l

2.1903

2.2642

2.3388

2.4140

2.4896

2.5659

2.6426

2.7197

2.7969

2.8747

2.9529

3.0310

3.1098

3.1887

3.2679

oo

7.1204

7.0662

7.0158

6.9689

6.9252

6.8844

6.8462

6.8104

6.7769

6.7453

6.7156

6.6877

6.6610

6.6364

6.6126

5.7831
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Table 2. Oblate spheroids.

Values of x , excentricity, axis ratio, and buckling

for g-values from 0 to 8.

g

0

0.1

0.2

0,3

0.4

0.5

0.6

0.7

0.8

0,9
1.0

1.2

1.4

1.6

1.8

2.0

2,2

2,4

2.6

2.8

3.0

3.2

3.4

3.6

3,8

4.0

4.2

4,4

4.6

4.8

5,0

xo

3,14159

3.14053

3.13735

3.13206

3.12466

3.11517

3.10362

3.09002

3.07440

3,05682

3.03730

2,99272

2,94122

2.88358

2.82077

2.75402

2.68475

2.61452

2.54493

2.47744

2.41324

2.35321

2.29785

2.24732

2.20154

2.16026

2.12312

2.08971

2.05965

2.03254

2.00805

e

0

0.031826

0.063619

0,095347

0.126978

0,158477

0.189808

0.220938

0.251828

0,282436

0.312726

0,372169

0,429789

0.485183

0.537932

0.587610

0'. 633822

0.676238

0.714633

0.748929

0.779186

0.805620

0.828528

0.848284

0.865276

0.879881

0,892453

0.903301

0.912689

0.920845

0,927961

M l

1.0000

1.0005

1.0020

1.0046

1,0082

1.0128

1.0185

1,0253

1.0333

1.0424

1.0528

1.0774

1.1075

1.1436

1,1863

1.2359

1.2929

1.3574

1.4296

1.5091

1.5954

1.6880

1.7859

1.8884

1.9948

2.1044

2.2166

2.3310

2.4470

2.5646

2.6833

9.8696

9.8629

9.8430

9.8098

9.7635

9.7043

9.6325

9.5482

9.4519

9.3442

9.2252

8,9564

8.6508

8.3150

7.9567

7.5846

7.2079

6.8357

6,4767

6.1377

5.8237

5.5376

5.2801

5.0505

4.8468

4.6667

4.5076

4.3669

4.2422

4.1312

4.0323



Table 2, cont.
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g

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

00

xo

1.98585

1.96568

1.94728

1.93046

1.91503

1.90084

1.88774

1,87561

1,86437

1.85391

1.84416

1.83506

1.82653

1.81853

1.81101

1.57080

e

0.934194

0.939679

0.944525

0.948824

0.952653

0.956075

0,959147

0.961912

0.964409

0.966672

0.968728

0.970601

0.972313

0.973881

0.975321

1.0000

|

M l
C - M 2

2.8030

2.9235

3.0447

3.1665

3.2888

3.4116

3.5347

3.6582

3.7819

3.9060

4.0303

4.1547

4.2794

4.4042

4.5292

00

3.9436

3.8639

3.7919

3.7267

3.6673

3.6132

3.5636

3.5179

3.4759

3.4370

3.4009

3.3674

3.3362

3.3071

3.2798

2.4674
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