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Abstract

We present an introduction to the qualitative theory of nonlinear
control systems, with the main emphasis on controllability properties
of such systems. We introduce the differential geometric language of
vector fields, Lie bracket, distributions, foliations etc. One of the basic
tools is the orbit theorem of Stefan and Sussmann. We analyse the
basic controllability problems and give criteria for complete controlla-
bility, accessibility and related properties, using certain Lie algebras of
vector fields defined by the system. A problem of path approximation
is considered as an application of the developed theory. We illustrate
our considerations with examples of simple systems or systems appear-
ing in applications. The notes start from an elementary level and are
self-contained.
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1 Controllability and Lie bracket

Controllability properties of a control system are properties related to the
following questions. (Q1) Can the system be steered from a given initial
state xg to a given final state 17 (Q2) Can this be done for any pair of
initial and final states? (Q3) How large is the set of points to which the
system can be steered from a given initial state zyo? (Q4) Which trajectories
of the system are realizable and how do we find controls realizing them?

Such questions can be motivated by practical problems and they are
basic for any qualitative study of control systems. Our aim in these lectures
will be to develop tools which will enable us to answer such questions and
to understand qualitative properties of nonlinear control systems. We will
see that for a large class of problems a control system can be represented by
a family of vector fields (dynamical systems). The qualitative properties of
the control system depend on the properties of the vector fields (dynamical
systems) and interactions between them. The basic tool which will enable
us to understand the interactions between different vector fields will be the
Lie bracket.

1.1 Control systems and controllability problems

By a control system we shall mean a system of the form
¥ &= f(z,u),

where z, called state of ¥, takes values in an open subset X of R" (or in a
differentiable manifold X of dimension n) and u, called control, takes values
in a set U. We call X the state space of the system and U the control set.
When the control « is fixed the system equation & = f(z,u) defines a single
dynamical system. Thus, the control system 3 can be viewed as a collection
of dynamical systems parametrized by the control as parameter. We will see
later that this interpretation is fruitful.

Example 1.1 Boat on a lake. Consider a motor boat on a lake. We can
choose some coordinate system in which the lake is identified with a subset X
of IR? and the state of the boat with a point z = (21,z2) € X. The simplest
mathematical model of the motion of the boat is the following control system

T=u
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where the control u = (u,us) is the velocity vector which belongs to the set
U={uecR?: ||Ju| <m}, where ||u| = \/u? + 32 is the norm of v and m is
the maximal possible velocity of the boat.

A different version of the problem is obtained if we consider a motor boat
(or a rowing boat) on a river. Then the set of velocities of the boat F(x)
depends on the current of the river at this point. This means that in our
model we have to change the equation £ = u for

&= f(z) +u,

where the control w is in the set U = {u € IR? : ||u|]| < m} and f(z) denotes
the velocity vector of the current of the river at the point . We could
also keep the equation & = u and choose the control set U(z) = f(z) + U
depending on z (we will usually try to avoid the latter possibility as more
complicated). Clearly, if the set of available velocities F(z) = f(z) + U
contains 0 in its interior then the boat can be steered from any initial position
to any final position if we use enough time.

Example 1.2 Sailing boat. A more interesting system is obtained when
the boat is a sailing boat. Assuming that the wind is stable (of constant
direction and force) we can model the motion of the boat on a lake by the
equation

& = v(0),

where 0 is the angle of the axis of the boat with respect to the wind. The
angle 0 is treated as control and takes values in the set U = (o, 27 — «),
where « is the minimal angle with which the boat can sail against the wind.
The velocity v, as a function of 8, depends on the characteristics of the
boat related to the wind and it usually looks like in Figure 1 (a). An inter-
esting problem for a sailor appears when the target is placed in the “dead
cone” of the boat, when we look at it from the starting point. In that case
sailing consists of a series of tacks chosen in such a way that the target is
reached even if it is placed in the dead cone. In fact, sailing against the
wind can be restricted to using only two values of the control 8 = £0,,,
where 6,,; maximizes the parallel to the wind component of v(#) (directed
against the wind). In this case the system reduces to two dynamical systems
with two available velocities v* = v(0opt) and v~ = v(—04p). By changing
the tacks (Figure 1 (b)) with the time spent for each (left and right) tack
proportional, respectively, to constants Ay and A_ (where Ay +A_ = 1) the
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Figure 1

sailing boat changes its position as it was sailing with the average velocity
Vav = A-|-'U(901’Jt) + A—'U(_Hopt)'

The observation of the above example can be generalized to the following
informal (but intuitively plausible)

Conclusion (principle of convezification). In analysing controllability
properties of systems ¥ we can replace the set of available velocities F(x) =
{f(z,u) : w € U} by its convex hull, the trajectories of the convexified
system can be approximated (in C° topology) by the trajectories of the
original system. In particular, if

0 € int co F(z)

for all z € X, then the system is completely controllable (any state can be
reached from any other state).

Example 1.3 Car parking 1. Suppose we would like to unpark our car
blocked by two other cars parked on the side of the street (Figure 2 (a)).
The simplest but not always applicable strategy is to use a series of moves
that gradually turn the car until it points to the free part of the street
(Figure 2 (b)).

We use the following mathematical model of our problem. We let z;
and zo denote the Kuclidean coordinates of the geometric center of the back
axle of the car and ¢ will denote the angle between the axis of the car
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and the x;-axis. We assume that the street is parallel to the zi-axis. It is
enough to consider movements with two extreme positions of the steering
wheel. If we assume that the car moves with a constant angular velocity
+b then the velocity of the center of the rear axle moves along a circle (at
each position of the steering wheel). The kinematic movements of the car
in coordinates ¢ = (z1,%1,¢) can be described by the following two vector
fields on R? x (—m,7) C R?

f = (rcos$,rsing,b)T, g= (rcosg¢,rsing, —b)T,

where 7 is a constant. Our strategy is to use a series of short moves (with
equal length) where we interchange moving forwards with the leftmost po-
sition of the steering wheel (the vector field f) and moving backwards with
the rightmost position of the steering wheel (the vector field —g). Intu-
itively, the overall movement should be approximately described by the
vector which is a linear combination of the vectors f and —g. We have
(1/2)f — (1/2)g = (0,0,b) which suggests that our series of movements can
be approximated by a pure turn.

K;_ x2 xz

\
t
| o S D@E:l;xq I P
(a) (b) (c)

Figure 2

We shall later show that our approximation is justified by a suitable
mathematical result (Proposition 1.8). The above strategy cannot be used
if the cars are approximately rectangular and the blocking cars are parked
very close to our car (then their geometry will not allow for the turn of our
car). In this case we have to use a more sophisticated strategy (Example
1.10) based on the notion of Lie bracket of vector fields. This strategy allows,
approximately, to drive our car almost parallel in the direction perpendicular
to the street (Figure 2 (c)).

In fact, we shall be able to show later the following much stronger con-
trollability property of the car. “Given ¢ > 0 and any compact curve in the



Geometric Nonlinear Control 115

state space X = {(z1,z9,$) € R? x S'}, there exist admissible moves of the
car which approximately follow the curve. More precisely, they bring it from
the initial position of the curve to the final position of the curve and the car
is never at a distance (in the state space) larger than e from the curve.”

1.2 Vector fields and flows

Let X denote an open subset of R", possibly equal to IR" (the reader familiar
with the theory of differentiable manifolds may assume from the beginning
that X is a manifold). We denote by T}, X the space of tangent vectors to X
at the point p. In the case where X is an open subset of IR" one can identify
Tp,X with R™ (this identification depends on the coordinate system).

A wvector field on X is a mapping

Xop— flp) € Tp,X

which assigns a tangent vector at p to any point p in X (Figure 3). An
analogous mapping defined on an open subset of X, only, will be called
partial vector field. In a given system of coordinates f can be expressed as
a column vector

f = (fh"'afn)Ta

stands for transposition. We say that f is of class C*¥ if its com-
ponents are of class Ck.

(13 9%
where “T

—a
./'.\‘
—

7”7
“
e

Figure 3

We shall usually assume that the vector fields considered here are of
class C*°. The space of such vector fields forms a linear space (with natural,
pointwise operations of summation and multiplication by numbers) denoted
by V(X).

For any vector field (or partial vector field) f we can write the differential
equation

z = f(x).
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From theorems on existence of solutions of ordinary differential equations it
follows that, if f is of class C*¥ and k > 1, then for any initial point p in the
domain of f there is an open interval I containing zero and a differentiable
curve t — z(t) = y(p),t € I, which satisfies the above equation and z(0) =
Yo(p) = p. If f is of class C*°, then from elementary properties of differential
equations it follows that the map

(t,p) — 1(p)

is also of class C*° and is well defined on a maximal open subset of R x X.
The resulted family 7; of local maps of X (Figure 4), called the local flow or
simply the flow of the vector field f, has the following group type properties
(“o” denotes composition of maps)

Yt1 © Vta = Vt14+ter V-t = (’Yt)_la Yo = id. (1)

If the solution y(p) is well defined for all ¢ € R and p € X, then the

e

T T——

Figure 4

vector field f is called complete and its flow forms a one parameter group
of (global) diffeomorphisms of X. Any one parameter family of maps which
satisfies conditions (1) defines a unique vector field through the formula

10)= 5| ),

and the flow of this vector field coincides with ;.
We shall denote the local flow of a vector field f by 'y{ or by exp(tf). A
reason for the latter notation will become clear later.
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Example 1.4 The linear vector field f(z) = Az is complete and the cor-

responding flow is the one-parameter group of linear transformations p —
Aty s

e™'p, i.e.

At
Tt=€

;4
where et = 3., AZ:.—,.

1.3 Lie bracket and its properties

A nonlinear control system can be considered as a collection of dynamical
systems (vector fields) parametrized by a parameter called control. It is
natural to expect that basic properties of such a system depend on intercon-
nections between the different dynamical systems corresponding to different
controls. We represent our dynamical systems by vector fields as this allows
us to perform algebraic operations on them such as taking linear combina-
tions and a taking a product called Lie bracket. It is the Lie product which
allows studying interconnections between different dynamical systems in a
coordinate independent way.

The Lie bracket of two vector fields is another vector field which, roughly
speaking, measures noncommutativeness of the flows of both vector fields.
Noncommutativeness means here dependence of the result of applying the
flows on the order of applying these flows. This remark, as well as the
definition of Lie bracket is made precise below.

There are three equivalent definitions of Lie bracket and each of them will
be useful to us later. We start with the easiest (but coordinate dependent)
definition in R™. Let X C IR", and let f and g be vector fields on X. The
Lie bracket of f and g is another vector field on X defined as follows

17.61@) = 22 @)f (@) ~ oL (z)g(), ©)

where 0f /0z and 0g/0z denote the Jacobi matrices of f and g. We will call
this the Jacobian definition of Lie bracket.

Example 1.5 For the vector fields f = (1,0)” and g = (0,z;)” on IR one
easily finds that [f,g] = (0,1)7. Note that the Lie bracket of f and g adds
a new direction to the space spanned by f and g at the origin.

Let f = b be a constant vector field and g = Az be a linear vector field.
Then [f,g] = [b, Az] = Ab— 0 = Ab. Similar trivial calculations show that
the following holds.
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Proposition 1.6 The Lie bracket of two constant vector fields is zero. The
Lie bracket of a constant vector field with a linear vector field is a constant
vector field. Finally, the Lie bracket of two linear vector fields is a linear
vector field.

The basic geometric properties of Lie bracket are stated in the following
propositions. The first one says that vanishing of Lie bracket [f, g] is equiv-
alent to the fact that starting from a point p and going along trajectory of
f for time t and then along trajectory of g for time s gives always the same
result as with the order of taking f and g reversed (Figure 5).

Figure 5

Proposition 1.7 The Lie bracket of vector fields f and g is equal identically
to zero if and only if their flows commute, i.e.

[f,9]=0 <<= ~lonip)=1fo/(p) Vs,teR,V¥pe X,

where the equality on the right should be satisfied for those s,t and p for
which both sides are well defined.

Proof. To prove the implication “<=" it is enough to note that by computing
the partial derivatives (0/0t)(0/0s) at t = s = 0 of the left side of the
equality 'y{ ovI(p) =790 'yf (p) and the same partial derivatives (but in
reverse order) of the right side gives the equality (0f/0x)g = (8g/0z)f.

The converse implication will be shown after Proposition 1.13. [ |

Two vector fields having the property of Proposition 1.7 will be called
commuting.

Proposition 1.8 Let us fizr a p € X and consider the curve (Figure 6)

a(t) =+, 078, 0 vf o] ().
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Figure 6

Then we have that its first derivative at zero vanishes, o/(0) = 0 and the
second derivative is given by the Lie bracket:

o"(0) = 2[f, 4l(p).

The above means that, after a reparametrization, the tangent vector at
zero to the curve ¢ — a(t) is equal to 2[f, g|(p) (see Figure 6). This implies
that the points attainable from p by means of the vector fields f and g lie
not only in the “directions” f(p) and g(p), but also in the “direction” of
the Lie bracket [f,g](p). This fact will be of basic importance for studying
controllability properties of nonlinear control systems.

The proof of the above proposition is omitted and follows from a more
general fact proved in Section 4 (see also Spivak [Sp|, page 224). Note that
the formula in Proposition 1.8 can be used for defining the Lie bracket [f, g]-

Proposition 1.9 Suppose we are given two vector fields f and g on X and
a point p € X and let A1, Ao be real constants. Define the following (local)
diffeomorphisms of X

$r =707, di=9"0r 00 oA

Then the families of curves (Figure 7)

ag(t) = d’t/k SRERRS ¢t/k(p)a k-times
Br(t) = ¢t/k 0---0 %/k(p), k2-times

converge to the trajectories of the vector fields M\ f + Aog and [f, g], respec-
tively. More precisely, we have the convergence

[f.9]

IR0 and Br(t) — 3 (p) as k — oc.

ag(t) —
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Figure 7

We will not prove this proposition here, sending the reader to Section 4.
However, the reader should find the first property about the convergence
of ay intuitively clear (compare the principle of convexification from Sec-
tion 1.1). Namely, the movement which jumps sufficiently often between
trajectories of two vector fields (and the time spent for these vector fields
is proportional to some weights) follows, approximately, a trajectory of the
linear combination of these vector fields (with the same weights). This prop-
erty is used, for example, by sailors passing through narrow rivers or canals.
A sailing boat can go against the wind only with certain minimal positive
or negative angle (Example 1.2). But, even if the direction of the canal is in
the “dead” cone and the boat cannot go straight in this direction, the sailor
tacks sufficiently often spending suitable amount of time for the left and the
right tacks to reach the desired direction.

The property of convergence of i can be illustrated by the following
example.

Example 1.10 Car parking II. Suppose the strategy of turning the car in
Example 1.3 is inadmissible because the blocking cars are too close. There
is a better strategy for unparking which works in any situation. Namely, we
use repeatedly the following series of 4 moves: LF, RF, LB, RB, where “L”
and “R” stand for the leftmost and rightmost positions of the steering wheel
while “F” and “B” stand for forward and backward motions. This means
that our strategy is precisely the zig-zaging strategy described by Si(t) in
Proposition 1.9. Therefore, the resulting movement follows approximately
the Lie bracket of the vector fields

f=(rcos,rsing,b)T, g=(rcosg¢,rsingp, —b)T.
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We compute

0 0 —rsing 0 0 —rsing
of dg
— =10 0 rcos¢ and ==10 0 rcos¢
oz oz

0 0 0 00 0

and the Lie bracket of f and g equals to

[f, 9] = 2br(—sin ¢, cos ¢, 0)7.

In particular, at ¢ = 0 we have that
[£,9] = (0,2br,0)T.

The zig-zaging strategy produces movement approximating the trajectory
of the Lie bracket [f,g], that is the movement keeping the axis of the car
approximately constant (¢ = 0) and changing its za-coordinate only (Fig-
ure 2 (c)). This means that we should be able to unpark the car no matter
how close the other cars are.

1.4 Coordinate changes and Lie bracket

To study what happens with vector fields and flows under coordinate changes
let us consider a global diffeomorphism ® : X — X (or a partial diffeomor-
phism i.e. a diffeomorphism between two open subsets of X). As tangent

(q) d¢(a)f(q)

_———

)] 9= ¢'tp

Figure 8

vectors are transformed through the Jacobian map of a diffeomorphism, our
diffeomorphism defines the following transformation of a vector field f (see
Figure 8)

Ads(f)(p) = D®(q) f(g), a=2""(p),
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where D® denotes the tangent map of ® (Jacobian mapping of & repre-
sented, in coordinates, by the Jacobi matrix 0®/0z). Another commonly
used notation for the linear operator on V(X) corresponding to the change
of coordinates @ is

D, f = Ads.

Note that the coordinate change p = ®(q) transforms the differential
equation p = f(p) into the equation ¢ = f(q) where f = Adgf.

If ® is a global diffeomorphism of X, then the operation Adg is a lin-
ear operator on the space of vector fields on X, i.e. Adg(A1f1 + Aofa) =
A1Ade(f1) +A2Ads(f2). Additionally, if ¥ is another global diffeomorphism
of X, then

Adgow(f) = AdsAdy(f),

where “o” denotes composition of maps.
For further reference we state the following fact.

Proposition 1.11 Consider the vector field Ade(f). The local flow of this
vector field is given by
o = (I>o'yto(1>71.

Proof. Tt is easy to see that oy satisfies the group conditions (1) and we have

0

a1, 2o ? () =D2ET(p) F(27 (1) = (AdsS) ().

It is not immediately clear from the definition of Lie bracket in Section
1.3 that so defined [f,g] is a vector field, that is, it is transformed with
coordinate changes like a vector field. There are also other disadvantages
of this definition which are not shared by the following geometric definition
of Lie bracket. We define the Lie bracket of f and g as the derivative with
respect to t, at ¢ = 0, of the vector field g transformed by the flow of the
field f. More precisely, we define (Figure 9)

0 1

1,910) = D7 (o (9)) 90 () = 5 (Ad s 9)(): (3)

Let us check that this definition coincides with the Jacobian definition
from Section 1.3. By taking the partial derivative 0/0t at ¢t = 0 and taking
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43, Fovdm) 3(?‘:(9)3

Figure 9

into account that vy = id and 7({ (p) = p we find that the above definition,
where ¢ appears three times, gives

0

£.910) = (D3| 1)@+ 5 DEOOuGgl)+id | olu(p),

where we interchanged the order of taking the tangent map “D” (which is a
matrix of partial derivatives with respect to the coordinates) and the partial
derivative §/0t in the first expression. The first term gives —D f(p)g(p), the
second is equal to zero, and the third equals to Dg(p) f (p), which means that
this definition coincides with the previous one.

It follows from the second definition of Lie bracket that [f, g] transforms
with coordinate changes like a vector field, that is via the Jacobi matrix
of the coordinate change. Namely, we have the following basic property of
equivariance of Lie bracket with coordinate changes.

Proposition 1.12 If ® is a (partial or global) diffeomorphism of X then

[Ade f, Adeg] = Ads|f, g]-

Proof. As we have estabhshed earlier, the flow of the vector field Adgf is
equal to oy = ® o fy o ®~!. Thus, applying the geometric definition of Lie
bracket gives

[Ads f, Adeg](p) =

0 0
= 1|, (AdeAdys AderAdeg)(p) = 71 (AdeAd,s g)(p) = Adelf, 4]

51, Aacy! o1 Adag)(2)
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From the geometric definition of Lie bracket we deduce the following
relation. Note that Ad,yf f=r
t

Proposition 1.13 We have

9

Proof. To show the first equality it is enough to note that

0 0

a9 = gpl|, _ AdyAdye

and apply the geometric definition of Lie bracket to the vector fields —f
and Ad’yf g. The second equality follows analogously from %L OAd’yf g =
t = t

0
ah h:OAd’Y[Ad’Y;{g' | |

Proof of Proposition 1.7. To show the converse implication note that from
[f,9] = 0 and the equalities in Proposition 1.13 it follows that Ad 29 is

independent of ¢, i.e. Advfg Ad 49 =9 Therefore, the flow of g is
t
f f

equal to the flow of the vector field Advfg, ie. 7 oydoyl, = 9, by
t

Proposition 1.11. This implies that ,th oy =vdo ’y{ and the proposition is

proved. [ |

Below and in the following sections we shall use the following notation.
We denote ad g = [f, g]. Thus, ad; is a linear operator in the space of vector
fields V(X). We also consider its iterations

ad?eg =g and adgcg =ady---adyg i-times.

The following dependence between the operations Ad and ad follows from
the formula in Proposition 1.13

2 (Ad 10)(p) = ~(ads(Ad9)) (). (@

In the analytic case we also have an expansion formula which follows from
this relation.

Proposition 1.14 If the vector fields f and g are real analytic, then we
have the following expansion formula for the vector field g transformed by
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the flow of the vector field f:

o
(Ad_sg)( Z

=0

adfg ),

where the series converges absolutely for t in a neighborhood of zero (more
precisely, each of n components of this series converges absolutely).

Proof. Applying iteratively the formula (4) and taking into account that
vl = id we find that

(2) (ad ) @lmo = (-1)'adig(o)

Therefore, our equality is simply the Maclaurin series of the left-hand side.

1.5 Vector fields as differential operators

A smooth vector field f on X defines a linear operator L on the space of
smooth functions C*°(X) in the following way

L0 = 55| 90d0) =2 i) 50 )

This operator is called directional derivative along f or Lie derivative along
f and it is a differential operator of order one.

Conversely, any differential operator of order one with no zero order term
can be written as

~ 0
L= a;i(r)—
=1
and it defines a unique vector field given in coordinates as f = (a1,...,a,)".
(We can easily check that the coordinate vector (a1, ..., a,) of the operator L

transforms with a coordinate change ® by the Jacobi matrix 0®/0z. Thus
so defined f is a vector field on X.) This means that there is a unique
correspondence

f—>Lf

between vector fields and differential operators of order one (with no zero
order term).
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Because of the above correspondence mathematicians often identify vec-
tor fields f with the corresponding differential operators L; and write

Lf—f Zfzaxz

We will rather try to distinguish between these two objects.

We shall close this subsection with a third definition of Lie bracket and
some useful corollaries to it. Let f, g be vector fields and Ly, L, the corre-
sponding differential operators. Consider the commutator of these operators
defined by

[Ls,Lg) := LyL, — LyLy;.

Proposition 1.15 The commutator [Lg, Lg] is a differential operator of or-
der one which corresponds to the Lie bracket [f,g], i-e.,

[Ly, Lg] = Liy g-

Proof. Given any smooth function ¢, we compute the composed differential
operator on ¢

0 3
Lng¢ Zfz (Zg]a ) Zfzg]a a ¢‘|‘Zfz g] ¢

Ty

The analogous expression for LyL;¢ has the same first summand, due to
commutativeness of partial derivatives with respect to z; and z;, thus we
have

dg; 9¢ Z 9f; 0¢

[LfaLg]¢:Lngqs_LgquSZ%:fia—xia—xj - > 'Or; O

We see that [Ly, L] is a differential operator of order one. Using the Jaco-
bian definition of Lie bracket from Section 1.3 we see that Ly ¢ gives the
same expression

0 0
Lipg¢ = Z(Zf’ﬁ - af)aj]

Zg

which means that [Ly, Lg] = Lis g |
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If we identify vector fields f with the corresponding differential operators
Ly, ie. write f = Ly = Y, f;0/x;, then Proposition 1.15 suggests that we
can equivalently define the Lie bracket as the commutator

B B dg; , Of; \ 0
[f.9l=Ffg—9f = ;(; peeL 3$igz) oy
where g = 37,9;0/0x;. We shall call this the algebraic definition of Lie

bracket. Clearly, this definition coincides in a given coordinate system with
the Jacobian definition, if we use the identifications f = Ly, g = L,.

Commutator of linear operators is antisymmetric and satisfies the Jacobi
identity [4,[B,C]] + [B,[C,A]] + [C,[A, B]] = 0 (verify this using the defi-
nition [A4, B] = AB — BA of commutator). Therefore, we have the following
properties of Lie bracket

[f.g] = g, f] (antisymmetry),
[f,1g,h]] + (g, [h, f]] + [h,[f,g]] = 0 (Jacobi identity),

for any vector fields f, g, in V(X). The former property also follows easily
from the first definition of Lie bracket. Because of the above properties the
linear space V(X) of smooth vector fields on X, with the Lie bracket as
product, is called the Lie algebra of vector fields on X.

Further material concerning the basic geometric notions used in this and
the following chapters can be found in any textbook on differential geometry,
we refer especially to [1] and [6].

Appendix 1: Lie Algebras

A Lie algebra is a linear space L with a bilinear map [,-] : L x L — L
which satisfies the following properties

[f, g] = _[ga f] (a‘ntisymmetTY),
[f,lg, )] + (g, [h, f]] + [hs [f,9]] =0  (Jacobi condition).

The Jacobi condition can be equivalently written as the following Leibniz-
Jacobi condition

[f;1g, h]] = [[f, 9], h] + [g, [, h]],

or equivalently
ady[g, h] = [adsg, h] + [g,adh], (LJ1)
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where ad; denotes the linear operator in L defined by the formula

adsg = [f, g]-
The Leibniz-Jacobi condition has also the following equivalent form
adjgp f = adgadsf — adpadyf = [ady, ady]f, (LJ2)

where the square bracket on the right denotes the commutator of linear
operators in L: [adg,ad,] = adgad, — adpad,.

A linear subspace K of L which is closed under the product [-,-] : L X
L — L is called a Lie subalgebra of L. A Lie subalgebra generated by a
subset or simply Lie algebra generated by a subset S C L is the smallest Lie
subalgebra of L which contains S. A Lie ideal of L is a linear subspace I C L
such that [f,g] € I, whenever f € L and g € I.

Example 1.16 The space gl(n) of all square n X n matrices with the com-
mutator

[A,B] = AB — BA

forms a Lie algebra. There are various Lie subalgebras of this algebra which
are interesting and important for mathematics and physics. For example,
skew symmetric matrices form a Lie subalgebra of this Lie algebra.

Example 1.17 The space V(X) of smooth vector fields on a smooth man-
ifold X (or simply on X = IR") forms a Lie algebra with Lie bracket as
product. When the vector fields are treated as differential operators of order
one, then the Lie bracket becomes the commutator of operators, as in the
above case of square matrices (treated as linear operators). There is no sur-
prise about this, namely, there is a Lie subalgebra of the algebra of vector
fields which is formed by the space of linear vector fields: f = Az, or in the
operator form 5
f= % a,]avja—wi.

Here, the Lie bracket corresponds to taking commutators of the correspond-
ing matrices [Az, Bz] = (BA — AB)z = [B, A]x.

Example 1.18 In the Lie algebra of linear vector fields as defined above
there is an ideal which consists of all constant vector fields.
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An iterative application of the Leibniz-Jacobi identity (LJ2) and of anti-
symmetry of Lie bracket leads to the following general property. Let f1,...,f
be elements of a Lie algebra L. We shall call an iterated Lie bracket of these
elements any element of L obtained from these elements by applying itera-
tively the operation of Lie bracket in any possible order, e.g. [[f1, f4], [f3, f1]]-
Left iterated Lie brackets will be brackets of the form [f;,, ..., [fi._,, fi]---]-

Proposition 1.19 Any iterated Lie bracket of f1,..., fr is a linear combi-
nation of left iterated Lie brackets of f1,..., fk.

For example

([f1, fal, [f3, ful] = [adpy, ady,] [f3, f1] = [f1, [fa, [fss fu]l] = [fa, [f1s [fss fll]-

Exercise Prove the above proposition (you may use induction with respect
to the order of Lie bracket).

Appendix 2: Equivalence of families of vector fields

To close this chapter we shall show that the Lie brackets taken at a point of
an analytic family of vector fields form a complete set of its invariants. As a
control system can be represented by a family of vector fields, this will have
direct applications to control systems. In another version of this result we
will define a family of functions which forms a set of complete invariants for
state equivalence.

Consider two general families of analytic vector fields on X and X, re-
spectively, parametrized by the same parameter u € U

F = {fu}uEUa F = {fu}uEU-

We shall call these families locally equivalent at the points p and p, respec-
tively, if there is a local analytic diffcomorphism ® : X — X, ®(p) = p
which transforms the vector fields f, into f, locally, i.e.

Ade fy, = fu, for ueU

locally around p.

Denote by £ and £ the Lie algebras of vector fields generated by the
families F and F. Recall that a family of vector fields is called transitive at
a point if its Lie algebra, is of full rank at this point, i.e. the vector fields in
this Lie algebra span the whole tangent space at this point.
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We shall use the following notation for left iterated Lie brackets

f[uluz---uk] = [fula [fu27 ERR) [fuk—nfuk] o ]]

and analogous for the tilded family. In particular, fi, ;] = fu,-

Theorem 1.20 If the families F and F are transitive at the points p and
p, respectively, then they are locally equivalent at these points if and only if
there exists a linear map between the tangent spaces L : TyX — T3X such
that

L f[u1u2uk}(p) = f[uw2uk](ﬁ) (6)

for any k> 1 and any uy,...,ur € U.

Proof. Necessity. If f, = Adefy, then fu(p) = L fu(p) where L = d®(p).
To prove condition (6) in general it is enough to use iteratively the property
of Lie bracket

[Adaf, Adeg] = Ada[f.g]

from which we get f[ul...uk] = Adg flu,...;) and so the condition (6). [

The proof of sufficiency is more involved an will be presented in the next
section together with other versions of the above result.

2 Orbits, distributions, and foliations

2.1 Distributions and local Frobenius theorem

In this chapter we introduce notions and results which play a basic role in
analysis and understanding the structure of nonlinear control systems. They
are directly related to controllability properties of such systems. We denote
by X an open subset of R" or a diferentiable manifold of dimension 7.

Definition 2.1 A distribution on X is, by definition, a map A which assigns
to each point in X a subspace of the tangent space at this point, i.e.

X 5p— Ap) C T,X.

The distribution A is called of class C'* if, locally around each point in X,
there is a family of vector fields {f,} (called local generators of A) which
spans A, i.e. A(p) =span,fqa(p). A is called locally finitely generated if the
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above family of vector fields is finite. Finally, the distribution A is called of
dimension k if dim A(p) = k for all points p in X, and of constant dimension
if it is of dimension k, for some k.

We will tacitly assume that our distributions are of class C*°.

Definition 2.2 We say that a vector field f belongs to a distribution A and
write f € Aif f(p) € A(p) for all pin X. A distribution A is called involutive
if for any vector fields f,g € A the Lie bracket is also in A; [f,g] € A. If
the distribution has, locally, a finite number of generators fi,..., f, then
involutivity of A means that

U b)) = S @), 6 =1,..im,
k=1

where qﬁfj are C'° functions.

Involutivity plays a fundamental role in the following Frobenius theorem.

Theorem 2.3 If A is an involutive distribution of class C* and of dimen-
sion k on X then, locally around any point in X, there exists a smooth
change of coordinates which transforms the distribution A to the following
constant distribution

span {61, s 7619}7

where ey, ..., e are the constant versors e; = (0,...,1,...,0)T, with 1 at
i-th place.

Proof. The proof will consist of two steps.

Step 1. We shall first show that the distribution A is locally generated
by k pairwise commuting vector fields. Let us fix a point p in X and let
fi1,---, fr be any vector fields which generate the distribution A in a neigh-
borhood of p. Treating f; as column vectors, we form the n X k matrix
F = (f1,..., fr). Note that multiplying F' from the right by an invertible
k x k matrix of smooth functions does not change the distribution spanned
by the columns of F' (it changes its generators, only). By a possible permu-
tation of variables we achieve that the upper k£ x k submatrix of the matrix F
is nonsingular. Multiplying F' from the right by a suitable invertible matrix
we obtain that this submatrix is equal to the identity, i.e. the new matrix
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F takes the form

1 0 ... 0
01 ... 0
0 0 11,
* ok *
* ok *
where “*” denote unknown coefficients. The new vector fields formed by

the columns of this matrix commute. In fact, since their first k& coefficients
are constant, the first k coefficients of any Lie bracket [f;, f;] vanish. On
the other hand, from involutivity it follows that this Lie bracket is a linear
combination of the columns of F. Both these facts can only hold when the
coeflicients of this linear combination are equal to zero. This shows that the
new vector fields commute.

Step 2. Assume that the vector fields fi, ..., fr generate the distribution
A, locally around p, and they commute. We can choose other n — k vector
fields fy+t1,..-,fn so that f1,..., fn are linearly independent at p. Define a
map P by

(t1,..-,tn) — exp(t1f1) o exp(tafa) o - - - o exp(tn fn)(p).

As the flows of the vector fields fi,..., fx commute, we see that the order
of taking these flows in the above definition can be changed. Therefore,
an integral curve of a vector field e; = (0,...,1,...,0)7, 1 < i < k is
transformed to an integral curve of the vector field f; (as we may place
the flow of f; to the most left place). It follows that the map ® sends the
vector fields ey, ..., e, to the vector fields fi,..., fr and conversely does the
inverse map ®!. This inverse map is the desired map which transforms the
distribution A spanned by fi,..., fr to the constant distribution spanned
by e1,...,ek. |

In order to state a global version of this theorem as well as other the-
orems related to transitivity of families of vector fields and integrability of
distributions we need more definitions.
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2.2 Submanifolds and foliations

Definition 2.4 A subset S C X is called a regular submanifold of X of
dimension k if for any © € S there exists a neighborhood U of z and a
diffeomorphism & : U — V C IR" onto an open subset V' such that

dUNS)={z=(z1,...,20) €V | 231 =0,...,2, = 0}

(see Figure 10). The regularity class of this submanifold is by definition the
regularity class of the diffeomorphism & (we shall assume that this regularity

is C* or C¥).

In other words, a regular submanifolds of dimension & is a subset which
locally looks like a piece of subspace of dimension k, up to a change of
coordinates. A slightly weaker notion of a submanifold is introduced in the
following definition.

Figure 10

Definition 2.5 We call a subset S C X an immersed submanifold of X of
dimension k if

S:USZ- where S CSyCS3C---CS

=1
and S; are regular submanifolds of X of dimension k.

In the case when S itself is a regular submanifold we can take S; = S
and so S is also an immersed submanifold.

Example 2.6 In Figure 11 (a) and (b) are regular submanifolds of R? while
(c) and (d) are only immersed submanifolds.
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(ICl'e

(a) (b) (<) (4)

Figure 11

We shall later need two geometric properties of Lie bracket.

Property 1 If two vector fields f, g are tangent to an (immersed) subman-
ifold S then also their Lie bracket [f, g] is tangent to this submanifold.

This follows from the geometric definition of Lie bracket. In fact, if
f is tangent to S, then its flow transforms points of S into points of S
when the time is sufficiently small. Therefore, the tangent map to the flow
D'ytf transforms the tangent subspaces of S into tangent subspaces of S, in
particular, it transforms the tangent vectors g(p) into vectors tangent to S.
Moreover, the vectors v(t) = (Advftg)(p) are all in the tangent space T)S.

Taking derivative with respect to ¢ of this expression, which appears in the
geometric definition of [f, g, gives a tangent vector to S.

Definition 2.7 A foliation {Sa}aca of X of dimension k is a partition

a€A
of X into disjoint connected (immersed) submanifolds S,, called leaves,
which has the following property. For any z € X there exists a neigh-
borhood U of z and a diffeomorphism & : U — V C IR" onto an open
subset V' such that

(U NSa)ee) ={z = (x1,...,2n) €V | zpp1 =L 2y =),

where P.. denotes a connected component of the set P and the above prop-
erty should hold for any such connected component, with the constants c,
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depending on the leaf and the choice of the connected component (Figure 12).
Similarly as for submanifolds, the regularity of the foliation is defined by the
regularity of the diffeomorphism .

’_——-—~>
\\

Figure 12
Examples of foliations on subsets of IR? are presented in Figure 13. A
general example of a foliation of dimension k¥ = n—r is given by the following
equations for leaves

So={z € X | hi(z) :cé,...,hr(:c) =},

where ¢, are arbitrary constants and kb = (hq,...,h,) is a smooth map of
constant rank r (i.e. its Jacobi map is of rank 7).

D

Figure 13
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Property 2 Assume that a vector field g is tangent to a foliation {S, }aca,
that is, it is tangent to its leaves. Then, if the flow of another vector field
f locally preserves this foliation, the Lie bracket [f,g] is tangent to this
foliation.

Here by saying that the flow of f locally preserves the foliation {S, }aca
we mean that for any point p € S, there is a neighborhood U of p such that
the image of a piece of a leaf 'yf (SqNU) is contained in a leaf of the foliation
(dependent on t), for any ¢ sufficiently small.

To prove this property let us choose coordinates as in the definition
of the foliation and assume that 7{ locally preserves {Sq}aca. It follows
that the tangent map to 7{ maps tangent spaces to leaves into tangent
spaces to leaves. Therefore the vector D’ytf (p)g(p) is tangent to leaves and,
in particular, its last n — k components are zero (here we use our special
coordinates). Differentiating with respect to t at ¢ = 0 gives a vector with
the last n — k components equal to zero (and so tangent to a leaf), which by
the geometric definition of Lie bracket is equal to [f, g](p).

2.3 Orbits of families of vector fields

Consider a family of (global or partial) vector fields F = {f, }ycr on X.

Definition 2.8 We define the orbit of a point p € X of this family as the
set of points of X reachable from p piecewise by trajectories of vector fields
in the family, i.e.

Orb(p):{'ygc’“o---oygl | k>1, ui,...,up €U, t1,...,t € R},

where v} denotes the flow of the vector field f,. Of course, if some of our
vector fields are not complete then we consider only such ¢4, ..., ¢ for which
the above expression has sense.

The relation: “g belongs to the orbit of p” is an equivalence relation on
the space X. In fact, a point g belongs to the orbit Orb(p) if and only if it is
reachable from p piecewise by trajectories of the vector fields in the family
F. It is evident that ¢ is reachable from p if and only if p is reachable from
q (symmetry). Also, if ¢ is reachable from p and r is reachable from ¢, then
r is reachable from p (transitivity).

It follows then that the space X is a disjoint union of orbits (equivalence
classes).
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Definition 2.9 Let I" be the smallest distribution on X which contains the
vector fields in the family F (i.e. fy(p) € I'(p) for all u € U) and is invariant
under any flow v}, u € U, that is

D' ()T (p) C T (p))-

for all p € X, u € U and t for which the above expression is well defined.

Equivalently, we can write the invariance property (using partial vector
fields) in the form:

geEl= Adpg€el, foranyueU andt € R.

The following theorem was proved independently by H.J. Sussmann and
P. Stefan. We state it here without proof.

Theorem 2.10 (Orbit Theorem) Each orbit S = Orb(p) of a family of vec-
tor fields F = {fu}ucv is an immersed submanifold (of class C* if the vector
fields fy are of class C¥). Moreover, the tangent space to this submanifold
is given by the distribution T,

T,8 =T(p), for all pe X.

Corollary 2.11 If the vector fields f, are analytic, then the tangent space
to the orbit can be computed as

T,X = L(p) = {g(p) | g € Lie{fu }uev},

where Lie{fy}ucy denotes smallest family of (partial) vector fields which
contains the family F and is closed under taking linear combinations and
Lie bracket (this is the Lie algebra of vector fields generated by the family
F = {fuluev in the case when f, are global vector fields). In the smooth
case the following inclusion holds

L(p) C I'(p).

Proof. We shall first prove the inclusion. Using the second form of the
invariance property of I' and the geometric definition of Lie bracket we obtain
the following implication

gel = [fu,g] €T.
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Applying this implication iteratively, we deduce that the left iterated Lie
brackets

[fuka Tt [fuzaful] o ]
are in I'. As all iterated Lie brackets are linear combinations of left iterated
Lie brackets, it follows that L(p) C I'(p) for p € X.
To prove the equality in the analytic case it is enough to use the formula
D@t =5 el 1), 5= )
Ye \4)Jv\q) = il fud v y P=7\4),

i>0

which shows that transformations of vectors under the tangent maps to
flows of f, can be expressed by taking (infinite) linear combinations of Lie
brackets. This implies that I'(p) C L(p). |

Example 2.12 The following system in the plane
.’i)l = Uuir, |’U,1| S 1,
i‘g = U229, |’U,2| S 1,

represented by the family of vector fields

fu = (u1£171, U2$2)T

has four 2-dimensional orbits (the open octants), four 1-dimensional orbits
(open half-axes) and one zero dimensional orbit which is the origin.

Example 2.13 The family of three vector fields which represent rotations
around the three axes

fi= (0,33, —22)", fo=(23,0,—21)", f3=(22,—21,0)"

has a continuum of 2-dimensional orbits which are spheres with the center
at the origin and one zero dimensional orbit which is the origin itself. Note
that the orbits form a 2-dimensional foliation on the set X = IR*\ {0}.

The following example shows that in the nonanalytic case the equality
I'(p) = L(p) may not hold.

Example 2.14 Consider the family of the following two C'°° vector fields
in the plane

= (laO)T’ fa= (07¢($1))T’
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where ¢(y) is a smooth function on R positive for y < 0 (for example
¢(y) = exp(l/y)) and equal to zero for y > 0. Then the orbit of any
point is equal to the whole IR? and from the orbit theorem it follows that
dimT'(p) = 2 for any p. On the other hand, we have that L(p) is spanned
by the first vector field only, when z; > 0, so dim L(p) = 1.

Corollary 2.15 (Chow and Rashevskii) If dim L(p) = n for any p € X,
then any point of X is reachable from any other point piecewise by trajectories
of F = {fuluev (allowing positive and negative times), i.e. Orb(p) = X for
any p.

Proof. Tt follows from our assumption and the above corollary that I'(p) is
equal to the whole tangent space T}, X for any p. From the orbit theorem it
follows then that the orbit of any point is of full dimension, so it is an open
subset of X. We conclude that X is a union of disjoint open subsets and, as
X is connected, only one of them can be nonempty. Therefore, X consists
of a single orbit and any point is reachable from any other point piecewise
by trajectories of our family of vector fields. [

2.4 Integrability of distributions and foliations

The above results, especially the orbit theorem, allow us to give criteria for
integrability of distributions and prove some classical theorems.

Definition 2.16 We say that a distribution of constant dimension p —
A(p) on X is integrable if there exists a foliation {Sy}aca on X such that
for any p € X

TPS = A(p)’
where S is the leaf passing through p.

Finding the foliation which satisfies the condition of the above definition
is usually called integrating this distribution, while the foliation and its leaves
are called integral foliation and integral (sub)manifolds of the distribution.

Theorem 2.17 (Global Frobenius theorem) A smooth distribution of con-
stant dimension A is integrable if and only if it is involutive. The integral
foliation of A is the partition of X into orbits of the family of (partial) vector

fields {g | g € A}.
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Proof. Assume that our distribution is integrable and choose two vector fields
f,9 € A and any point p € X. Then f and g are tangent to the leaf S passing
through p, therefore their Lie bracket [f,g] is also tangent to this leaf by
Property 1. As this hap